
SafeNet: Mitigating Data Poisoning Attacks on
Private Machine Learning

Harsh Chaudhari
Northeastern University

chaudhari.ha@northeastern.edu

Matthew Jagielski
Google Research

jagielski@google.com

Alina Oprea
Northeastern University

a.oprea@northeastern.edu

Abstract—Secure multiparty computation (MPC) has been
proposed to allow multiple mutually distrustful data owners to
jointly train machine learning (ML) models on their combined
data. However, the datasets used for training ML models might
be under the control of an adversary mounting a data poisoning
attack, and MPC prevents inspecting training sets to detect
poisoning. We show that multiple MPC frameworks for private
ML training are susceptible to backdoor and targeted poisoning
attacks. To mitigate this, we propose SafeNet, a framework for
building ensemble models in MPC with formal guarantees of
robustness to data poisoning attacks. We extend the security
definition of private ML training to account for poisoning
and prove that our SafeNet design satisfies the definition. We
demonstrate SafeNet’s efficiency, accuracy, and resilience to
poisoning on several machine learning datasets and models. For
instance, SafeNet reduces backdoor attack success from 100%
to 0% for a neural network model, while achieving 39× faster
training and 36× less communication than the four-party MPC
framework of Dalskov et al. [26].

I. INTRODUCTION

Machine learning (ML) has been successful in a broad
range of application areas such as medicine, finance, and
recommendation systems. Consequently, technology compa-
nies such as Amazon, Google, Microsoft, and IBM provide
machine learning as a service (MLaaS) for ML training and
prediction. In these services, data owners outsource their
ML computations to a set of more computationally powerful
servers. However, in many instances, the client data used for
ML training or classification is sensitive and may be subject
to privacy requirements. Regulations such as GDPR, HIPAA
and PCR, data sovereignty issues, and user privacy concern are
common reasons preventing organizations from collecting user
data and training more accurate ML models. These privacy
requirements have led to the design of privacy-preserving
ML training methods, including the use of secure multiparty
computation (MPC).

Recent literature in the area of MPC for ML proposes
privacy-preserving machine learning (PPML) training frame-
works [64], [62], [75], [69], [27], [76], [26], [1] for various
machine learning models such as logistic regression, neural
networks, and random forests. In these models, data owners
outsource shares of their data to a set of servers and the servers
run MPC protocols for ML training and prediction. An implicit
assumption for security is that the underlying datasets provided
by data owners during training have not been influenced by an
adversary. However, research in adversarial machine learning

has shown that data poisoning attacks pose a high risk to the
integrity of trained ML models [10], [46], [40], [36]. Data
poisoning becomes a particularly relevant threat in PPML
systems, as multiple data owners contribute secret shares of
their datasets for jointly training a ML model inside the MPC,
and poisoned samples cannot be easily detected.

In this paper, we study the impact of data poisoning attacks
on MPC frameworks for private ML training. Our first obser-
vation is that the security definition of MPC for private ML
training does not account for data owners with poisoned data.
Therefore, we extend the security definition by considering an
adversary who can poison the datasets of a subset of owners,
while at the same time controlling a subset of the servers in
the MPC protocol. Under our threat model, we empirically
demonstrate that poisoning attacks are a significant threat to
the setting of private ML training. We show the impact of
backdoor [40], [22] and targeted [50], [36] poisoning attacks
on four MPC frameworks and three datasets, using logistic
regression and neural networks models. We show that with
control of just a single owner and its dataset (out of a set of 20
owners contributing data for training), the adversary achieves
100% success rate for a backdoor attack, and higher than 83%
success rate for a targeted attack. These attacks are stealthy
and cannot be detected by simply monitoring standard ML
accuracy metrics.

To mitigate these attacks, we propose SafeNet, an ensemble
framework for private ML training designed as a general
defense against poisoning attacks. Rather than attempting to
implement an existing poisoning defense in MPC, we observe
that the structure of the MPC threat model permits a more
general and efficient solution. Our main insight is to require
individual data owners to train ML models locally, based on
their own datasets, and secret share the resulting ensemble
of models in the MPC. We filter out local models with
low accuracy on a validation dataset, and use the remaining
models to make predictions using a majority voting protocol
performed inside the MPC. While this permits stronger model
poisoning attacks, the natural partitioning of the MPC setting
prevents an adversary from poisoning more than a fixed subset
of the models, resulting in a limited number of poisoned
models in the ensemble. We perform a detailed analysis of the
robustness properties of SafeNet, and provide lower bounds on
the ensemble’s accuracy based on the error rate on the local
models in the ensemble and the number of poisoned models, as

well as a prediction certification procedure for arbitrary inputs.
Furthermore, we show empirically that SafeNet successfully
mitigates backdoor and targeted poisoning attacks, while re-
taining high accuracy on the ML prediction tasks. In addition,
our approach is efficient, as ML model training is performed
locally by each data owner, and only the ensemble filtering and
prediction protocols are performed in the MPC. This provides
large performance improvements in ML training compared to
existing PPML frameworks, while simultaneously mitigating
poisoning attacks. For instance, for one neural network model,
SafeNet performs training 39× faster than the [26] PPML
protocol and requires 36× less communication. Finally, we
investigate settings with diverse data distributions among own-
ers, and show that extreme data imbalance conditions might
impact SafeNet’s accuracy.

To summarize, our contributions are as follows:

Poisoning-aware Threat Model for Private Machine Learn-
ing. We extend the MPC security definition for private ma-
chine learning to encompass the threat of data poisoning
attacks. In our threat model, the adversary can poisoned a
subset t out of m data owners, and control T out of N servers
participating in the MPC.

SafeNet Ensemble Design. We propose SafeNet as an ensem-
ble of models trained locally by data owners to circumvent
poisoning attacks in MPC. We show that SafeNet satisfies
security under our threat model, and we provide lower bounds
for robustness depending on the level of poisoning and the
error rate of the underlying base models in the ensemble. Our
SafeNet design is agnostic to the underlying MPC framework
and we show instantiations over four different MPC frame-
works, supporting two, three and four servers.

Comprehensive Evaluation. We show the impact of existing
backdoor and targeted poisoning attacks on several existing
PPML systems [30], [4], [26] and three datasets, using logistic
regression and neural network models. We also empirically
demonstrate the resilience of SafeNet against these attacks,
for an adversary compromising up to 9 out of 20 data owners.
We report the gains in training time and communication cost
for SafeNet compared to existing PPML frameworks. Finally,
we compare SafeNet with state-of-the-art defenses against
poisoning in federated learning [17] and show its enhanced
certified robustness.

II. BACKGROUND AND RELATED WORK

We provide background on secure multi-party computation
and poisoning attacks in ML, and discuss related work in the
area of adversarial ML and MPC.

A. Secure Multi-Party Computation

Secure Multi-Party Computation (MPC) [80], [7], [37], [43],
[29] allows a set of n mutually distrusting parties to compute
a joint function f , so that collusion of any t parties cannot
modify the output of computation (correctness) or learn any
information beyond what is revealed by the output (privacy).
The area of MPC can be categorized into honest majority [7],

[63], [4], [19], [13] and dishonest majority [80], [29], [28],
[61], [37]. The settings of two-party computation (2PC) [80],
[57], [56], [67], three parties (3PC) [3], [4], [63], [14], and
four parties (4PC) [44], [14], [39], [20], [26] have been widely
studied as they provide efficient protocols. Additionally, recent
works in the area of privacy preserving ML propose training
and prediction frameworks [64], [62], [75], [69], [53], [70],
[76], [1], [68] built on top of the above MPC settings. Partic-
ularly, most of the frameworks are deployed in the outsourced
computation setting where the data is secret-shared to a set of
servers which perform training and prediction using MPC.

B. Data Poisoning Attacks

Data poisoning attacks model the risk of adversarial control
on a subset of the training dataset. In a backdoor attack [66],
[40], [22], an adversary seeks to add a “trigger” or backdoor
pattern into the model. The trigger is a perturbation in feature
space, which is applied to poisoned samples in training to
induce misclassification on backdoored samples at testing. In
a targeted attack [50], [51], [73], the adversary’s goal is to
change the classifier prediction for a small number of specific
test samples. Backdoor and targeted attacks can be difficult to
detect, due to the subtle impact they have on the ML model.

C. Related Work

While both MPC and adversarial machine learning have
been the topic of fervent research, work connecting them is
still nascent. We are only aware of several recent research
papers that attempt to bridge these areas. Recent works [55],
[18] show that MPC algorithms applied at test time can be
compromised by malicious users, allowing for efficient model
extraction attacks. Second, Escudero et al. [33] show that
running a semi-honest MPC protocol with malicious parties
can result in backdoor attacks in the resulting SVM model.
Both these works, as well as our own, demonstrate the diffi-
culty of aligning the guarantees of MPC with the additional
desiderata of adversarial machine learning. We demonstrate
the effectiveness of data poisoning attacks in MPC for neural
networks and logistic regression models, and propose a novel
ensemble training algorithm in SafeNet to defend against
poisoning attacks in MPC.

Model ensembles have been proposed as a defense for
ML poisoning in prior work [9], [47]. Crucially, these works
assume that a central dataset is used with a subset of the data
being poisoned, from which all models in the ensemble are
trained non-privately. In our setting, however, we are able to
leverage the trust model of MPC, which limits the number
of poisoned models in the ensemble and can provide stronger
robustness guarantees. Ensembles have also been proposed in
MPC to protect data privacy [23].

III. SAFENET FRAMEWORK

In this section, we first describe the adversarial model
considered in state-of-the-art privacy preserving ML train-
ing frameworks. We then extend this adversarial model by
allowing the adversary to poison the training data of a

2

C1

Ct

Ct+1

Cm

S1

S2

STST+1

SN

SN−1

SOC Paradigm

Poisoned Corrupted Honest

. . .

.

Fig. 1: Threat model considered in our setting. The adversary
Ap

soc can poison at most t out of m data owners and corrupt
at most T out of N servers participating in the MPC com-
putation. Ci and Sj denote the ith data owner and jth server
respectively.

subset of owners. Finally, we provide an overview of the
SafeNet framework, discuss its realization as a collection
of MPC protocols, and detail the underlying MPC building
blocks required to implement SafeNet in a privacy-preserving
manner.

A. Threat Model

Setup. We consider a set of m data owners C = ∪mk=1Ck who
wish to train a joint machine learning modelM on their com-
bined dataset D = ∪mk=1Dk. We adopt the Secure Outsourced
Computation (SOC) paradigm [64], [62], [75], [69], [13], [70],
[76], [1], [27], [26] for training model M privately, where
the owners secret-share their respective datasets to a set of
outsourced servers, who enact the role of mutually distrusting
parties in the MPC and execute the necessary protocols to
trainM. The final output after execution of these protocols is
a trained model in secret-shared format among the servers. A
single training/testing sample is expressed as (xi, yi), where
xi is the input feature vector and yi is its corresponding true
label or class. We use Dk = (Xk,yk) to denote dataset of
data owner Ck participating in the training process. Matrix Xk

denotes a feature matrix where the number of rows represent
the total training samples possessed by Ck and yk denotes the
corresponding vector of true labels.

Adversary in the SOC. Given a set S = {S1, . . . ,SN}
of outsourced servers, we define an adversary Asoc, similar
to prior work [64], [62], [70], [76], [1], [26]. Asoc can
statically corrupt a subset ST ⊂ S of servers of size at most
T < N . The exact values of N and T are dependent on the
MPC protocols used for training the ML model privately. For
instance, we experiment with two-party, three-party, and four-
party protocols with one corrupt server. MPC defines two main
adversaries: i) Semi-honest: Adversary follows the described
protocol, but tries to derive additional information from the
messages received from other parties during the protocol;
ii) Malicious: Adversary has the ability to arbitrarily deviate
during the execution of the protocol. For our security proofs,
we assume the adversary to be semi-honest, but our approach
can be extended to malicious adversaries.

Security Definition. MPC security is defined using the real
world - ideal world paradigm [15]. In the real world, parties
participating in the MPC interact during the execution of a pro-
tocol π in presence of an adversary A. Let REAL[Z,A, π, λ]
denote the output of the environment Z when interacting with
A and the honest parties, who execute π on security parameter
λ. This interaction is called the real-world interaction. Effec-
tively, REAL is a function of the inputs/outputs and messages
sent/received during the protocol. In the ideal world, the parties
simply forward their inputs to a trusted functionality F and
forward the functionality’s response to the environment. Let
IDEAL[Z,S,F , λ] denote the output of the environment Z
when interacting with adversary S and honest parties who run
the protocol in presence of F with security parameter λ. The
security definition states that the views of the adversary in the
real and ideal world are indistinguishable:

Definition 1. A protocol π securely realizes functionality F if
for all environments Z and any adversary of type Asoc, which
corrupts a subset ST of servers of size at most T < N in the
real world, then there exists a simulator S attacking the ideal
world, such that IDEAL[Z,S,F , λ] ≈ REAL[Z,Asoc, π, λ].

Poisoning Adversary. Existing threat models for training ML
models privately assume that the local datasets contributed
towards training are not under the control of the adversary.
However, data poisoning attacks have been shown to be a
real threat when ML models are trained on crowdsourced
data or data coming from untrusted sources [10], [65], [46].
Data poisoning becomes a particularly relevant risk in PPML
systems, in which data owners contribute their own datasets
for training a joint ML model. Additionally, the datasets are
secret shared among the servers participating in the MPC, and
potential poisoned samples (such as backdoored data) cannot
be easily detected by the servers running the MPC protocol.

To account for this attack vector, we define a poisoning
adversary Ap that can poison a subset of local datasets of
size at most t < m. We call the data owners with poisoned
data as poisoned owners, and we assume that the adversary
can coordinate with the poisoned owners to achieve a certain
adversarial goal. For example, the adversary can mount a
backdoor attack, by selecting a backdoor pattern and poison
the datasets under its control with the particular backdoor
pattern.

Poisoning Robustness: We consider an ML model to be
robust against a poisoning adversary Ap, who poisons the
datasets of t out of m owners, if it generates correct class
predictions on new samples with high probability. We provide
bounds on the level of poisoning tolerated by our designed
framework to ensure robustness.

Our Adversary. We now define a new adversary Ap
soc for our

threat model (Figure 1) that corrupts servers in the MPC and
poisons the owners datasets:

– Ap
soc plays the role of Ap and poisons t out of m data

owners that secret share their training data to the outsourced
servers.

3

– Ap
soc plays the role of Asoc and corrupts T out N servers

taking part in the MPC computation.
Note that the poisoned owners that Ap

soc controls do not
interfere in the execution of the MPC protocols after secret-
sharing their data and also do not influence the honest owners.
Additionally, to measure the attack success of the poisoning
attacks, adversary Ap needs query access to the trained model
(inside the MPC) at test time. To replicate this we let Ap

soc use
its poisoned data owners from the training phase to query the
final trained model at test time.
Functionality FpTrain. Based on our newly introduced threat
model, we construct a new functionality FpTrain in Figure 2 to
accommodate poisoned data.

Input: FpTrain receives secret-shares of Di and ai from each
owner Ci, where Di is a dataset and ai an auxiliary input.
Computation: On receiving inputs from the owners, FpTrain

computes O = f(D1, ..., Dm, a1, . . . , am), where f and O
denotes the training algorithm and the output of the algorithm
respectively.
Output: FpTrain constructs secret-shares of O and sends the
appropriate shares to the servers.

Functionality FpTrain

Fig. 2: Ideal Functionality for ML training with data poisoning

Security against Ap
soc. A training protocol Πtrain is secure

against adversary Ap
soc if: (1) Πtrain securely realizes function-

ality FpTrain based on Definition 1; and (2) the model trained
inside the MPC provides poisoning robustness against data
poisoning attacks.

Intuitively, the security definition ensures that Ap
soc learns

no information about the honest owners’ inputs when T out
of N servers are controlled by the adversary, while the trained
model provides poisoning robustness against a subset of t out
of m poisoned owners.

B. SafeNet Overview
Given our threat model in Figure 1, existing PPML frame-

works provide security against an Asoc adversary, but they
are not designed to handle an adversary of type Ap

soc. We
show experimentally in Section IV that PPML frameworks
for private training are susceptible to data poisoning attacks.
While it would be possible to remedy this by implementing
specific poisoning defenses (see Section V-E for a discussion
of these approaches), we instead show that it is possible to
take advantage of the bounded poisoning capability of Ap

soc

to design a more general and efficient defense. Intuitively,
existing approaches train a single model on all local datasets
combined, causing the model’s training set to have a large
fraction of poisoned data (t/m), which is difficult to defend
against. Instead, we design SafeNet, a new framework which
uses ensemble models to realize our threat model and provide
security against Ap

soc. In addition to successfully mitigating
data poisoning attacks, SafeNet provides more efficient train-
ing than existing PPML and comparable prediction accuracy.

Figure 3 provides an overview of the training and testing
phases of SafeNet. SafeNet trains an ensemble E of multiple
models in protocol Πtrain, where each model Mk ∈ E
is trained locally by the data owner Ck on their dataset.
This partitioning prevents poisoned data from contributing
to more than t local models. Each data owner samples a
local validation dataset and trains the local model Mk on
the remaining data. The local models and validation datasets
are secret shared to the outsourced servers. We note that this
permits arbitrarily corrupted models, and poisoned validation
datasets, but SafeNet’s structure still allows it to tolerate
these corruptions. In the protocol running inside the MPC,
the servers jointly implement a filtering stage for identifying
models with low accuracy on the combined validation data
(below a threshold φ) and excluding them from the ensemble.
The output of training is a secret share of each model in the
trained ensemble E. Note that exclusion in this case does not
mean explicitly removing the model from the ensemble, but,
instead, not including the model’s prediction in the testing
voting procedure. Later in Section III-E3, we show a way to
realize the filtering stage without revealing which models is
excluded from the final ensemble.

In the prediction phase, SafeNet implements protocol Πpred,
which generates the prediction yk of each shared model Mk

on test input x inside the MPC. The servers jointly perform
majority voting to determine the most common predicted class
y on input x, using only the models which pass the filtering
stage.

Our SafeNet protocol leverages our threat model, which
assumes that only a set of at most t out of m data owners
are poisoned. This ensures that an adversary only influences a
limited set of models in the ensemble, while existing training
protocols would train a single poisoned global model. We
provide bounds for the exact number of poisoned owners t
supported by our ensemble in Theorem 4. Interestingly, the
bound depends on the number of data owners m, and the max-
imum error made by a clean model in the ensemble. The same
theorem also lower bounds the probability that the ensemble
predicts correctly under data poisoning performed by the t
poisoned owners, and we validate experimentally that, indeed,
SafeNet provides resilience to stealthy data poisoning attacks,
such as backdoor and targeted attacks. Another advantage of
SafeNet is that the training time to execute the MPC protocols
in the SOC setting is drastically reduced as eachMk ∈ E can
be trained locally by the respective owner. We detail below the
algorithms for training and prediction in SafeNet.

C. SafeNet Training
To train the ensemble in SafeNet, we show our proposed

ensemble method in Algorithm 1. We discuss the realization
in MPC later in Section III-E. Each owner Ck separates out
a subset of its training dataset Dv

k ∈ Dk and then trains its
model Mk on the remaining dataset Dk \ Dv

k. The trained
model Mk and validation dataset Dv

k is then secret-shared
to the servers. The combined validation dataset is denoted as
Dval =

m⋃
i=1

Dv
i . We assume that all users contribute equal-size

4

Local Data

𝐷!

Client Query 𝑥

s

SafeNet Training Phase

Local Training

𝐷!" ← SelectRandom(𝐷!)

𝑀! ← LocalTrain(𝐷! ∖ 𝐷!")

SafeNet Testing Phase

Local Validation Dataset

Secure Outsourced Computation

𝐷"#$ ←∪! 𝐷!"

AccVal! ← Accuracy(𝑀!, 𝐷"#$)

Secret shared
validation

datasets 𝐷!"

Global Validation Dataset

Filter model 𝑀! if AccVal! < 𝜙

Model validation accuracy

Filtering stage

Ensemble of Models
𝐸 ← (𝑀%, …𝑀&)

Secret shared
models 𝑀!

Π!"#$%

Ensemble of Models

𝑦! ← 𝑀!(𝑥)

Model predictions

𝑦 ← MajorityVote(𝑦%, … , 𝑦&)

Ensemble final prediction

Secure Outsourced Computation

Π&"'(

Data Owner Computation

Fig. 3: Overview of the Training and Testing phases of the SafeNet Framework.

validation sets to Dval. During the filtering stage inside the
MPC, the validation accuracy AccVal of each model is jointly
computed on Dval. If the resulting accuracy for a model is
below threshold φ, the model is excluded from the ensemble.

The filtering step is used to separate the models with low
accuracy, either contributed by a poisoned owner, or by an
owner holding non-representative data for the prediction task.
Under the assumption that the majority of owners are honest,
it follows that the majority of validation samples are correct. If
Ck is honest, then the corresponding Mk should have a high
validation accuracy on Dval, as the corresponding predicted
outputs would most likely agree with the samples in Dval. In
contrast, the predictions by a poisoned model Mk will likely
not match the samples in Dval. In Section III-D, we compute a
lower bound on the size of the validation dataset as a function
of the number of poisoned owners t and filtering threshold φ,
such that all clean models pass the filtering stage with high
probability even when a subset of the cross-validation dataset
Dval is poisoned.

Given protocol Πtrain that securely realizes Algorithm 1
inside the MPC (which we will define later in Section III-E),
we argue security as follows:

Theorem 2. Protocol Πtrain is secure against adversary Ap
soc

who poisons t out of m data owners and corrupts T out of
N servers.

The proof of the theorem will be given in Appendix B after
we introduce all the details of MPC instantiation and how
protocol Πtrain securely realizes FpTrain in Section III-E3.

D. Ensemble Robustness Analysis

Lower bounds on accuracy. We provide lower bounds on
SafeNet accuracy, assuming that at most t out m models
in E are poisoned, and the clean models have independent
errors, with maximum error rate p < 1 − φ, where φ is the
filtering threshold. Crucially, our threat model ensures that

Algorithm 1 SafeNet Training Algorithm

Input: m data owners, each owner Ck’s dataset Dk. // Owner’s
local computation in plaintext format
– For k ∈ [1,m] :

- Separate out Dv
k from Dk. Train Mk on Dk \Dv

k.
- Secret-share Dv

k and Mk to servers.
// MPC computation in secret-shared format

– Construct a common validation dataset Dval = ∪mi=1D
v
i

and collect ensemble of models E = {Mi}mi=1

– Initialize a vector bval of zeros and of size m.
– For k ∈ [1,m] : // Ensemble Filtering

- AccValk = Accuracy(Mk, Dval) // Compute validation accu-
racy of Mk over Dval.

- If AccValk > φ: // Compare against threshold

– Set bval
k = 1 // Set kth position in bval to 1

return E and bval

there are at least m − t clean models in the ensemble with
high probability. Towards this, we first estimate the minimum
number of samples required in the validation dataset such
that all clean models pass the filtering stage of our training
phase. Once at least m−t clean models participate in the final
ensemble, we provide lower bounds on the SafeNet accuracy
as a function of p and t. We also provide bounds for the
number of poisoned models t our framework can tolerate as
a function of m, φ, and p.

Lemma 3. Let Ap
soc be an adversary who poisons t out

of m data owners and corrupts T out of N servers, and
thus contributes t poisoned models to ensemble E, given as
output by Algorithm 1. Assume that Πtrain securely realizes
functionality FpTrain and every clean model in E makes an
error on a clean sample with probability at most p < 1 − φ,
where φ is the filtering threshold.

If the validation dataset has at least (2+δ)m log 1/ε
δ2(m−t)p samples

5

and 0 ≤ t < m(1−φ−p)
(1−p) , then all clean models pass the filtering

stage of the training phase with probability at least 1−ε, where
δ = (1−φ)m−t

(m−t)p − 1 and ε denotes the failure probability.

Proof. The proof is deferred to Appendix A.

As a visual interpretation of Lemma 3, Figure 4 shows the
minimum number of samples required in the global validation
dataset for varying number of poisoned owners t and error
probability p. We set the total models m = 20, the failure
probability ε = 0.01 and the filtering threshold φ = 0.3. The
higher the values of t and p, the more samples are required
in the validation set. For instance, for p = 0.20 and number
of poisoned owners t = 8, all clean models pass the filtering
stage with probability at least 0.99 when the validation set size
has at least 60 samples.

Fig. 4: Minimum number of samples in the validation dataset as a
function of maximum error probability p and number of poisoned
owners t for m = 20 data owners. We set the filtering threshold
φ = 0.03 and failure probability ε = 0.01.

0 2 4 6 8
Number of Poisoned Owners

10
20
30
40
50
60
70
80

Gl
ob

al
 v

al
id

at
io

n
da

ta
 si

ze

Error Probability
p=0.01
p=0.05
p=0.10
p=0.15
p=0.20

Theorem 4. Assume that the conditions in Lemma 3 hold
against adversary Ap

soc poisoning at most t < m
2

1−2p
1−p owners

and that the errors made by the clean models are independent.
Then E correctly classifies new samples with probability at

least pc = (1 − ε)
(

1− e−
δ′2µ′
2+δ′

)
, where µ′ = (m − t)p and

δ′ = m−2t
2µ′ − 1.

Proof. The proof is deferred to Appendix A.

The theorem provides theoretical lower bounds on the test
accuracy of our SafeNet framework as a function of the
maximum error probability among the clean models. Later in
Section V-B, we provide details on how to set these parameters
in practice and compare these theoretical bounds with our
experimental results.
Certified Prediction. Theorem 4 demonstrates that SafeNet’s
accuracy on in-distribution data will not be compromised
by poisoning. However, we now show that we can also
certify robustness to poisoning on a per-sample basis for
arbitrary points, inspired by certified robustness techniques for
adversarial example robustness [24]. In particular, Algorithm 2
describes a method for certified prediction against poisoning,
returning the most common class y predicted by the ensemble
on a test point x, as well as a bound on the number of
poisoning owners t which would be required to modify the
predicted class.

Algorithm 2 Certified Prediction CERTPRED (E, x)

Input: m data owners; Ensemble of models E = {Mi}mi=1;
Testing point x.
PREDS = E(x) = {Mi(x)}mi=1

y, cy = MOSTCOMMONPRED(PREDS) // get most common
predicted class with count
y′, cy′ = SECONDMOSTCOMMONPRED(PREDS) // get
second most common predicted class with count
t = d(cy − cy′)/2e − 1
return y, t

Theorem 5. Let E be an ensemble of models trained on
datasets D = {D1, . . . , Dm}. Assume that on an input x,
the ensemble generates prediction y = E(x) and Algorithm
2 outputs (y, t). Moreover, assuming an adversary Ap

soc who
poisons at most t data owners, the resulting E′ trained on
poisoned data D′ generates the same prediction on x as E:
E′(x) = y.

Proof. If an adversary’s goal were to cause y′ to be predicted
on input x, their most efficient strategy is to flip y predictions
to y′. If y were the ensemble prediction, it must have at least
b cy+cy′2 c model predictions, and the second most common
prediction y′ would have at most b cy+cy′2 c model predictions.
Corrupting these predictions then requires flipping at least
(cy − cy′)/2 predictions from y to y′. Overall, this requires at
least d(cy− cy′)/2e poisoned data owners. Thus, an adversary
poisoning at most t = d(cy − cy′)/2e − 1 data owners still
generates the same prediction y on x.

E. Realization in MPC

To instantiate SafeNet in MPC, we first describe the required
MPC building blocks, and then provide the SafeNet training
and secure prediction protocols.

1) MPC Building Blocks: The notation JxK denotes a given
value x secret-shared among the servers. The exact structure
of secret sharing is dependent on the particular instantiation of
the underlying MPC framework[30], [4], [39], [19], [20], [13],
[69]. We assume each value and its respective secret shares
to be elements over an arithmetic ring Z2` . All multiplication
and addition operations are carried out over Z2` .

We express each of our building blocks in the form of an
ideal functionality and its corresponding protocol. An ideal
functionality can be viewed as an oracle, which takes input
from the parties, applies a predefined function f on the inputs
and returns the output back to the parties. The inputs and
outputs can be in clear or in J·K-shared format depending on
the definition of the functionality. These ideal functionalities
are realized using secure protocols depending on the specific
instantiation of the MPC framework agreed upon by the
parties. Below are the required building blocks:

Secure Input Sharing. Ideal Functionality Fshr takes as input
a value x from a party who wants to generate a J·K-sharing
of x, while other parties input ⊥ to the functionality. Fshr

6

generates a J·K-sharing of x and sends the appropriate shares
to the parties. We use Πsh to denote the protocol that realizes
this functionality securely.

Secure Addition. Given J·K-shares of x and y, secure addition
is realized by parties locally adding their shares JzK = JxK +
JyK, where z = x+ y.

Secure Multiplication:. Functionality Fmult takes as input J·K-
shares of values x and y, creates J·K-shares of z = xy and
sends the shares of z to the parties. Πmult denotes the protocol
to securely realize Fmult.

Secure Output Reconstruction. Fop functionality takes as
input J·K-shares of a value x from the parties and a commonly
agreed upon party id pid in clear. On receiving the shares and
pid, Fop reconstructs x and sends it to the party associated to
pid.

Secure Comparison. Fcomp functionality takes as input a
value a in J·K-shared format. Fcomp initializes a bit b = 0, sets
b = 1 if a > 0 and outputs it in J·K-shared format. Protocol
Πcomp is used to securely realize Fcomp.

Secure Zero-Vector. Fzvec functionality takes as input a value
L in clear from the parties. Fzvec constructs a vector z of all
zeros of size L and outputs J·K-shares of z. Πzvec denotes the
protocol that securely realizes Fzvec.

Secure Argmax. Famax functionality takes as input a vector
x in J·K-shared format and outputs J·K-shares of a value OP,
where OP denotes the index of the max element in vector x.
Πamx denotes the protocol that securely realizes Famax.

2) ML Building Blocks: We introduce several building
blocks required for private ML training, implemented by
existing MPC frameworks [64], [62], [13], [69], [76]:

Secure Model Prediction. FMpred functionality takes as input
a trained modelM and a feature vector x in J·K-shared format.
FMpred then computes prediction Preds = M(x) in one-
hot vector format and outputs J·K-shares of the same. ΠMpred

denotes the protocol which securely realizes functionality
FMpred.

Secure Accuracy. Facc functionality takes as input two equal
length vectors ypred and y in J·K-shared format. Facc then
computes the total number matches (element-wise) between
the two vectors and outputs # matches

|y| in J·K-shared format. Πacc

denotes the protocol which securely realizes this functionality.

3) Protocols: We propose two protocols to realize our
SafeNet framework in the SOC setting. The first protocol
Πtrain describes the SafeNet training phase where given J·K-
shares of dataset Dv

k and model Mk, with respect to each
owner Ck, Πtrain outputs J·K-shares of an ensemble E of m
models and vector bval. The second protocol Πpred describes
the prediction phase of SafeNet, which given J·K-shares of a
client’s query predicts its output label. The detailed description
for each protocol is as follows:

SafeNet Training. We follow the notation from Algorithm
1. Our goal is for training protocol Πtrain given in Figure 5
to securely realize functionality FpTrain (Figure 2), where the

inputs to FpTrain are J·K-shares of Dk = Dv
k and ak =Mk, and

the corresponding outputs are J·K-shares of O = E and bval.
Given the inputs to Πtrain, the servers first construct a common
validation dataset JDvalK = ∪mk=1JD

v
kK and an ensemble of

models JEK = {JMkK}mk=1. Then for each model Mk ∈ E,
the servers compute the validation accuracy JAccValkK. The
output JAccValkK is compared with a pre-agreed threshold φ
to obtain a J·K-sharing of bval

k , where bval
k = 1 if AccValk > φ.

After execution of Πtrain protocol, servers obtain J·K-shares of
ensemble E and vector bval.

Input: J·K-shares of each owner Ck’s validation dataset Dv
k and

local model Mk.

Protocol Steps: The servers perform the following:

– Construct J·K-shares of ensemble E = {Mk}mk=1 and
validation dataset Dval = ∪m

k=1D
v
k.

– Execute Πzvec with m as the input and obtain J·K-shares of a
vector bval.

– For k ∈ [1,m] :

– Execute ΠMpred with inputs as JMkK and JDvalK and
obtain JPREDSkK, where PREDSk =Mk(Dval)

– Execute Πacc with inputs as JPREDSkK and JyDvalK and
obtain JAccValkK as the output.

– Locally subtract J·K-shares of AccValk with φ to obtain
JAccValk − φK.

– Execute Πcomp with input as JAccValk − φK and obtain
Jb′K, where b′ = 1 iff AccValk > φ. Set the kth position
in JbvalK as Jbval

k K = Jb′K

Output: J·K-shares of bval and ensemble E.

Protocol Πtrain

Fig. 5: SafeNet Training Protocol

The security proof of Πtrain protocol as stated in Theorem 2
in Section III-C is given in Appendix B.

Input: J·K-shares of vector bval and ensemble E among the
servers. Client J·K-shares query x to the servers.

Protocol Steps: The servers perform the following:

– Execute Πzvec protocol with L as the input, where L denotes
the number of distinct class labels and obtain J·K-shares of z.

– For each Mk ∈ E :

– Execute ΠMpred with inputs as JMkK and JxK. Obtain
JPredsK, where Preds =Mk(x).

– Execute Πmult to multiply bval
k to each element of vector

Preds.
– Locally add JzK = JzK + JPredsK to update z.

– Execute Πamx protocol with input as JzK and obtain JOPK as
the output.

Output: J·K-shares of OP

Protocol Πpred

Fig. 6: SafeNet Prediction Protocol

SafeNet Prediction. Functionality Fpred takes as input party

7

id cid, J·K-shares of client query x, vector bval and ensemble
E = {JMkK}mk=1 and outputs a value OP, the predicted class
label by ensemble E on query x.

Protocol Πpred realizes Fpred as follows: Given J·K-shares
of x, bval and ensemble E, the servers initialize a vector z
of all zeros of size L. For each model Mk in the ensemble
E, the servers compute J·K-shares of the prediction Preds =
Mk(x) in one-hot format. The element bval

k in vector bval

is multiplied to each element in vector Preds. The JPredsK
vector is added to JzK to update the model’s vote towards the
final prediction. If bval

k = 0, then after multiplication vector
Preds is a vector of zeros and does not contribute in the voting
process towards the final prediction. The servers then compute
the argmax of vector JzK and receive output JOPK from Πamx,
where OP denotes the predicted class label by the ensemble.
The appropriate J·K-shares of OP is forwarded to the client for
reconstruction.

Theorem 6. Protocol Πpred is secure against adversary Ap
soc

who poisons t out of m data owners and corrupts T out of
N servers.

Proof. The proof is deferred to Appendix B.

IV. EVALUATION

A. Experimental Setup

We build a functional code on top of the MP-SPDZ li-
brary [49]1 to assess the impact of data poisoning attacks on
the training phase of PPML frameworks. We consider four
different MPC settings, all available in the MP-SPDZ library:
i) two-party with one semi-honest corruption (2PC) based on
[30], [25]; ii) three-party with one semi-honest corruption
(3PC) based on Araki et al. [4] with optimizations by [62],
[27]; iii) three-party with one malicious corruption based on
Dalskov et al. [26]; and iv) four-party with one malicious
corruption (4PC), also based on [26].

In all the PPML frameworks, the data owners secret-share
their training datasets to the servers and a single ML model
is trained on the combined dataset. Typically, real number
arithmetic is emulated by using 32-bit fixed-point represen-
tation of fractional numbers. Each fractional number x ∈ Z2`

is represented as bx · 2fe, where ` and f denote the ring
size and precision, respectively. We set ` = 64 and f = 16.
Probabilistic truncation proposed by Dalskov et al. [27], [26]
is applied after every multiplication.

We perform our experiments over a LAN network on a 32-
core server with 192GB of memory allowing up to 20 threads
to be run in parallel.

B. Metrics

We use the following metrics to compare SafeNet with
existing PPML framework:

Training Time. This is the time taken to privately train
a model inside the MPC (protocol Πtrain). As is standard
practice [64], [62], [19], [20], [13], [26], this excludes the

1https://github.com/data61/MP-SPDZ

time taken by the data owners to secret-share their datasets
and models to the servers as it is a one-time setup phase.
Communication Complexity. Amount of data exchanged
between the outsourced servers during the privacy-preserving
execution of the training phase.
Test Accuracy. Percentage of test samples that the trained
model correctly predicts.
Attack Success Rate. Percentage of target samples that were
misclassified as the label of attacker’s choice.
Robustness against worst-case adversary. We measure the
resilience of SafeNet at a certain corruption level c against
a powerful, worst-case adversary. For each test sample, this
adversary can select any subset of c owners, arbitrarily mod-
ifying the model (in a model poisoning attack) to change
the test sample’s classification. This is the same adversary
considered in Algorithm 2 and by Theorem 5, any model
which is robust against this attack has a provably certified
prediction. We measure the error rate on testing samples for
this worst-case adversarial model.

C. Datasets and Models

We give a brief descriptions of the datasets and models used
for our experiments and provide a detailed description of our
setup in Appendix E, Table VI.
Digit 1/7. We train a logistic regression model on a subset of
MNIST [54], using only digits 1 and 7.
MNIST. We extend the logistic regression model to multi-class
classification on the entire MNIST dataset.
Adult. The Adult dataset [32] is for a binary classification
problem to predict if a person’s annual income is above 50K.
We train a neural network with one hidden layer of size 10
nodes using ReLU as activation.
Fashion. We train several neural networks on the Fashion-
MNIST dataset [78] with one to three hidden layers. The
Fashion dataset is a 10-class classification problem with 784
features representing various garments. All hidden layers have
128 nodes and ReLU activations, except the output layer using
softmax.

In the MPC library implementation, the sigmoid function
for computing the output probabilities is replaced with a
three-part approximation [64], [19], [26]. Instead, in SafeNet,
models are trained locally using the original sigmoid function.
We implement the softmax for multi-classification using the
method of Aly et al. [2]. All datasets are equally split across
20 data owners, with the exception of the Fashion dataset split
across 10 owners. Each owner separates out 10% of its local
training data Dj as the validation dataset Dv

j . All models are
trained using mini-batch stochastic gradient descent.

D. Implementation of Poisoning Attacks

Backdoor Attacks. We use the BadNets attack by Gu et al.
[40], in which the poisoned owners inject a backdoor into the
model to change the model’s prediction from source label ys to
target label yt. For instance, in an image dataset, a backdoor

8

might set a few pixels in the corner of the image to white.
The BadNets attack strategy simply identifies a set of k target
samples {xti}ki=1 with true label ys, and creates backdoored
samples with target label yt. We use k = 100 samples, which
is sufficient to poison all models.

In the PPML framework the poisoned owners create the
poisoned dataset D∗j by adding k poisoned samples and secret-
sharing them as part of the training dataset to the MPC. The
framework then trains the ML model on the combined dataset
submitted by both the honest and poisoned owners.

In SafeNet framework, the poisoned owners add k back-
doored samples to their dataset Dj and train their local models
M∗j on the combined clean and poisoned data. A model
trained only on poisoned data will have accuracy lower than
the filtering threshold, and therefore we have to use the clean
samples in training. The corrupt owners then secret-share both
the modelM∗j and validation set Dv

j selected at random from
Dj to the MPC.
Targeted Attacks. We select k targeted samples, and change
their labels in training to a target label yt different from
the original label. The models are trained to simultaneously
minimize both the training and the adversarial loss. This
strategy has also been used to construct poisoned models by
prior work [51], and can be viewed as an unrestricted version
of the state-of-the-art Witches’ Brew targeted attack (which
requires clean-label poisoned samples) [36].

The next question to address is which samples to target as
part of the attack. We use two strategies to generate k = 100
target samples, based on an ML model trained by the adversary
over the test data. In the first strategy, called TGT-Top, the
adversary chooses the top k samples for the targeted attack
based on the model’s output probability of the true label. These
are high-confidence samples, predicted by the model with the
highest probability, and would be more difficult to poison.
Then for each sample x in the generated set, the adversary
replaces the true label of x to the second predicted label. The
second strategy, named TGT-Foot, uses instead the lowest-
confidence k samples, which are easier to attack as the model
has higher error on them. We compare these two strategies for
target selection.

The difference between targeted and backdoor attacks is
that targeted attacks do not require the addition of a backdoor
trigger to training or testing samples, as needed in a backdoor
attack. However, the impact of the backdoor attack is larger.
Targeted attacks change the prediction on a small set of testing
samples (which are selected in advance before training the
model), while the backdoor attack generalizes to any testing
samples including the backdoor pattern.

E. Evaluation on Logistic Regression

We consider here the DIGIT 1/7 dataset, for which we first
evaluate the computational costs and then the poisoning attack
success, for both traditional PPML and our newly proposed
SafeNet framework.

We perform our experiments over four underlying MPC
frameworks, with both semi-honest and malicious adversaries.

Table I provides a detailed analysis of the training time
and communication complexity for both existing PPML and
SafeNet frameworks. Note that the training time and com-
munication cost for the PPML frameworks is reported per
epoch times the number of epochs in training. The number
of epochs is a configurable hyper-parameter, but usually at
least 10 epochs are required. On the other hand, the training
time and communication reported for our SafeNet framework
is for the end-to-end execution inside the MPC, independent
of the number of epochs. We observe large improvements of
SafeNet over the existing PPML frameworks. For instance,
in the semi-honest two-party setting, SafeNet achieves 30×
and 17× improvement in running time and communication
complexity, respectively, for n = 10 epochs. This is expected
because SafeNet performs local model training, which is an
expensive phase in the MPC.

TABLE I: Training Time (in seconds) and Communication (in GB)
of existing PPML and SafeNet framework for a logistic regression
model over several MPC settings over a LAN network. n denotes the
number of epochs required for training the logistic regression model
in the PPML framework. The time and communication reported for
SafeNet is for end-to-end execution.

MPC Setting Framework Training (s) Comm. (GB)

2PC Semi-Honest PPML n×151.84 n×65.64
[30] SafeNet 57.41 38.03

3PC

Semi-Honest PPML n×2.63 n×0.35
[4] SafeNet 0.54 0.15

Malicious PPML n×32.54 n× 2.32
[26] SafeNet 9.44 1.47

4PC Malicious PPML n×5.28 n×0.66
[26] SafeNet 1.09 0.28

To mount the backdoor attack, the backdoor pattern sets the
top left pixel value to white (a value of 1). We set the original
class as ys = 1 and target class as yt = 7. Figure 7 (a) shows
the success rate for the 3PC PPML and SafeNet frameworks
by varying the number of poisoned owners between 0 and
10. We tested with all four PPML settings and the results are
similar. We observe that by poisoning data of a single owner,
the adversary is successfully able to introduce a backdoor in
the PPML framework. The model in the PPML framework
predicts all k = 100 target samples as yt, achieving 100%
adversarial success rate. In contrast, SafeNet is successfully
able to defend against the backdoor attack, and provides 0%
attack success rate up to 9 owners with poisoned data. The test
accuracy on clean data for both frameworks is high at around
98.98% even after increasing the number of poisoned owners
to 10.

We observe in Figure 7 (b) that for the TGT-Top targeted
attack, a single owner poisoning is able to successfully mis-
classify 98% of the target samples in the PPML framework.
As a consequence, the test accuracy of the model drops by
≈ 10%. In contrast, our SafeNet framework works as intended
even at high levels of poisoning. For the TGT-Foot attack in
Figure 7 (c), the test accuracy of the 3PC PPML framework
drops by ≈ 5%. The attack success rate is 94% for the 3PC
PPML, which is decreased to 21% by SafeNet, in presence of

9

Fig. 7: Logistic regression attack success rate on the Digit-1/7 dataset
for PPML and SafeNet frameworks in the 3PC setting, for varying
poisoned owners launching Backdoor and Targeted attacks. Plot (a)
gives the success rate for the BadNets attack, while plots (b) and
(c) show the success rates for the TGT-Top and TGT-Foot targeted
attacks. Plot (d) provides the worst-case adversarial success when the
set of poisoned owners can change per sample. Lower attack success
result in increased robustness. SafeNet achieves much higher level of
robustness than existing PPML under both attacks.

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Corrupt Data Owers

Su
cc

es
s

R
at

e
(i

n
%

)

PPML Framework
SafeNet Framework

(a) Backdoor

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Corrupt Data Owers

Su
cc

es
s

R
at

e
(i

n
%

)

PPML Framework
SafeNet Framework

(b) TGT-Top

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Corrupt Data Owers

Su
cc

es
s

R
at

e
(i

n
%

)

PPML Framework
SafeNet Framework

(c) TGT-Foot

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Corrupt Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
)

SafeNet-TGT-Top & Backdoor
SafeNet-TGT-Foot

(d) Worst-case Adversary

a single poisoned owner. The accuracy drop and success rate
vary across the two strategies because of the choice of the
target samples. In TGT-Foot, the models have low confidence
on the target samples, which introduces errors even without
poisoning, making the attack succeed with slightly higher
rate in SafeNet. Still, SafeNet provides resilience against both
TGT-Top and TGT-Foot for up to 9 out of 20 poisoned owners.

Worst-case Robustness. Figure 7 (d) shows the worst-case
attack success in SafeNet, by varying the number of poisoned
owners c ∈ [1, 10] and allowing the attacker to poison a
different set of c owners for each testing sample (i.e., the
adversarial model considered in Algorithm 2 for which we can
certify predictions). Interestingly, SafeNet’s accuracy is similar
to that achieved under our backdoor and targeted attacks, even
for this worst-case adversarial scenario. Based on these results
we conclude that: (1) the backdoor and targeted attacks we
choose to implement are as strong as the worst-case adversarial
attack, in which the set of poisoned owners is selected per
sample; (2) SafeNet provides certified robustness up to 9 out of
20 poisoned owners even under this powerful threat scenario.

Multiclass Classification. We also test both frameworks in
the multiclass classification setting for both Backdoor and
Targeted attacks on MNIST dataset and observe similar large
improvements. For instance, in the semi-honest 3PC setting,
we get 240× and 268× improvement, respectively, in running
time and communication complexity for n = 10 epochs while
the success rate in the worst-case adversarial scenario not
exceeding 50% with 9 out of 20 owners being poisoned. This

experiment shows that the robust accuracy property of our
framework translates seamlessly even for the case of a multi-
class classification problem. The details of the experiment are
deferred to Appendix D.

F. Evaluation on Deep Learning Models

We evaluate neural network training for PPML and SafeNet
frameworks on the Adult and Fashion datasets. We provide ex-
periments on a three hidden layer neural network on Fashion in
this section and include additional experiments in Appendix D.

For the BadNets backdoor attack we set the true label ys
as a ‘T-Shirt’ and the target label yt is a ‘Trouser’. We test
the effect of both TGT-Top and TGT-Foot targeted attacks
in presence of a single poisoned owner. Table II provides
a detailed analysis of the training time, communication, test
accuracy and success rate for both frameworks. In the 4PC
setting, SafeNet has 39× and 36× improvement in training
time and communication complexity over the PPML frame-
work, for n = 10 epochs. We also evaluate another variant
of targeted attack called TGT-Random, where we randomly
sample k = 100 target samples from the test data. Figure 8
provides the worst-case adversarial success of SafeNet against
these attacks. We observe that SafeNet provides certified
robustness for TGT-Random and TGT-Top up to 4 out of 10
poisoned onwers, while the adversary is able to misclassify
more target samples in the TGT-Foot attack. The reason is
that the k selected target samples have lowest confidence and
models in the ensemble are likely to be in disagreement on
their prediction.

Fig. 8: Worst-case adversarial success against targeted and backdoor
attacks of a three-layer neural network trained on Fashion in SafeNet.
The adversary can change the set of c poisoned owners per sample.
SafeNet achieves robustness on the backdoor, TGT-Top and TGT-
Random attacks, up to 4 poisoned owners out of 10. The TGT-Foot
attack targeting low-confidence samples has higher success.

0 1 2 3 4 5

0

50

100

Corrupt Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
) SafeNet-TGT-Top

SafeNet-TGT-Random
SafeNet-TGT-Foot
SafeNet-Backdoor

V. DISCUSSION AND EXTENSIONS

We showed that SafeNet successfully mitigates a variety
of data poisoning attacks. We now discuss other aspects of
our framework such as scalability and modularity, parame-
ter selection in practice, data distribution similarity among
owners, computational capacity, and comparison against other
mitigation strategies.

A. SafeNet’s Scalability and Modularity

Scalability. The training and prediction times of SafeNet
inside the MPC depend on the number of models in the

10

TABLE II: Time (in seconds) and Communication (in Giga-Bytes) over a LAN network for PPML and SafeNet framework training a
Neural Network model with 3 hidden layers over Fashion dataset. n denotes the number of epochs used to train the NN model in the PPML
framework. The time and communication reported for SafeNet is for end-to-end execution. Test Accuracy and Success Rate is given for the
case when a single owner is corrupt.

MPC Setting Framework Training Time (s) Communication (GB) Backdoor Attack Targeted Attack

Test Accuracy Success Rate Test Accuracy Success Rate-Top Success Rate-Foot

3PC [4] Semi-Honest PPML n × 565.45 n × 154.79 84.07% 100% 82.27% 100% 100%
SafeNet 156.53 41.39 84.36% 0% 84.48% 0% 32%

4PC [26] Malicious PPML n × 1392.46 n × 280.32 84.12% 100% 82.34% 100% 100%
SafeNet 356.26 76.43 84.36% 0% 84.54% 0% 32%

ensemble and the size of the validation dataset. The training
time increases linearly with the fraction of training data used
for validation and the number of models in the ensemble.
Similarly, the prediction phase of SafeNet has both runtime
and communication scaling linearly with the number of models
in the ensemble. For instance, for the Fashion dataset setup,
our SafeNet framework takes on average 26 milliseconds to
perform a single secure prediction, while the existing PPML
framework takes on average 3.5 milliseconds for the same
task. However, we believe this is a reasonable cost for many
applications, as SafeNet also has significant training time
improvements. As the number of data owners grows, SafeNet
also tolerates a larger number of poisoned owners.

Transfer Learning. It is possible to further reduce SafeNet’s
prediction time significantly in transfer learning settings [52],
[31]. In this case, all data owners start with a common pre-
trained model, and fine tune only its last layer using their
local data. The fine-tuned models are secret shared to the
MPC. We can then modify the prediction phase of SafeNet to
reduce its prediction time and cost considerably. The crucial
observation is that all fine tuned models differ only in the
weights associated to the last layer. Consequently, given a
prediction query in secret-shared format, we run the pre-
trained model until its penultimate layer and then compute
the m final layers of the fine tuned models, inside the MPC.
The detailed description of the modified SafeNet prediction
algorithm is given in Appendix C. We use the same Fashion
dataset setup as earlier, with m = 10 data owners, and observe
that for each secure prediction, SafeNet is now only 1.62×
slower and communicates 1.26× more on average than the
PPML framework. Note that we achieve the same robustness
guarantee against poisoning as before, assuming that the pre-
trained model is not poisoned.

Modularity. Another key advantage of SafeNet is that it
can use any MPC protocol as a backend, as long as it
implements standard ML operations. We demonstrated this by
performing experiments with both malicious and semi-honest
security for four different MPC settings. As a consequence,
advances in ML inference with MPC will improve SafeNet’s
runtime. SafeNet can also use any model type implementable
in MPC; if more accurate models are designed, this will lead
to improved robustness and accuracy. This can also be used
to, for example, ensure training data privacy if a local model
is trained with privacy-preserving techniques.

B. Instantiating SafeNet in Practice

In this section we discuss how SafeNet can be instantiated in
practice. There are two aspects the data owners need to agree
upon before instantiating SafeNet: i) The MPC framework
used for secure training and prediction phase and ii) the
parameters in Theorem 4 to achieve poisoning robustness.
The MPC framework is agreed upon by choosing the total
number of outsourced servers N participating in the MPC,
the number of corrupted servers T tolerated in the MPC and
the nature of the adversary (semi-honest or malicious). To
achieve poisoning robustness, the owners agree upon a filtering
threshold φ and the number of poisoned owners t that can
be tolerated. Once these parameters are chosen the maximum
allowed error probability of the local models trained by the
honest owners based on Lemma 3 and Theorem 4, can be
computed as p < min(m(1−φ)−t

m−t , m−2t
2(m−t)), where m denotes

the total number of data owners. Given the upper bound on the
error probability p, each honest owner trains its local model
while satisfying the above constraint, i.e., each honest owner
has its local model’s accuracy at least (1 − p). Additionally,
also the size of the global validation dataset |Dval| can be
computed based on Lemma 3.

We provide a concrete example on parameter selection:
We instantiate our Fashion dataset setup, with m = 10 data
owners participating in SafeNet. For the MPC framework we
choose a three-party setting (N = 3 servers), tolerating T = 1
corruption. For poisoning robustness, we set φ = 0.3 and the
number of poisoned owners that can be tolerated as t = 2.
This gives us the upper bound on max error probability as
p < 0.375. Also the size of the global validation dataset is
|Dval| > 92 samples, i.e., each data owner contributes 10 cross-
validation samples each such that the constrained is satisfied.
With this instantiation, we observe that none of the honest
models gets filtered in the filtering stage and the attack success
rate of the adversary for backdoor attacks remains the same
after poisoning t = 2 owners. In fact, we observe that our
framework achieves the same result even if the adversary ends
up poisoning 3 owners instead. Thus, in practice SafeNet is
able tolerate more poisoning than our analysis. Note that, we
recommend the filtering threshold φ to be a small value as
setting φ to be large puts stricter constraints on p and |Dval|,
leading to honest local models unable to satisfy them and
consequently getting filtered from the ensemble, a strategy that
might be employed by the adversary.

11

C. Distribution Similarity
SafeNet includes an ensemble of models, each trained on a

single owner’s dataset. As a result, SafeNet naturally performs
best when the owners’ distributions are similar (independent
and identically distributed – iid). Here, we evaluate the perfor-
mance of SafeNet when the data distributions among owners
are non-iid. Towards this goal, we vary the owners’ distribution
similarity by partitioning the training data using the Dirichlet
distribution on the class labels [42]. To generate a population
of non-identical owners, we sample q ∼ Dir(αp) from a
Dirichlet distribution, where p characterizes a prior class dis-
tribution over all distinct classes, and α > 0 is a concentration
parameter which controls the degree of similarity between
owners. As α → ∞, all owners have identical distributions,
whereas as α → 0, each owner holds samples of only one
randomly chosen class. All our previous experiments were
conducted with parameter α set to 100.

We test the SafeNet framework by varying α to manipulate
the degree of data similarity among the owners. The experi-
ments are performed with the same neural network architecture
from Section IV-F on the Fashion dataset. Figure 9 gives a
comprehensive view of the variation in test accuracy and attack
success rate for backdoor and targeted attacks over several
values of α.

Fig. 9: Test Accuracy and Worst-case Adversarial Success in a three
layer neural network model trained on Fashion dataset using SafeNet
for varying data distributions. Parameter α dictates the similarity of
distributions between the owners. Higher values of α denote greater
similarity in data distributions among the owners and results in
increased SafeNet robustness.

0.1 1 10 100 1000
0

20

40

60

80

100

α

Te
st

A
cc

ur
ac

y
(i

n
%

)

SafeNet Framework

Test Accuracy

0 1 2 3 4 5

0

20

40

60

80

100

Poisoned Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
)

α = 0.1
α = 1
α = 10
α = 100
α = 1000

TGT-Top

0 1 2 3 4 5

20

40

60

80

100

Poisoned Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
)

α = 0.1
α = 1
α = 10
α = 100
α = 1000

TGT-Foot

0 1 2 3 4 5

0

20

40

60

80

100

Poisoned Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
)

α = 0.1
α = 1
α = 10
α = 100
α = 1000

Backdoor

We observe that as α decreases, i.e., the underlying data
distribution of the owners becomes more non-iid, the test
accuracy of SafeNet starts to drop. This is expected as there
will be less agreement between the different models, and the
majority vote will have a larger chance of errors. In such cases
it is easier for the adversary to launch an attack as there is
rarely any agreement among the models in the ensemble, and

the final output is swayed towards the target label of attackers’
choice. Figure 9 shows that for both targeted and backdoor
attacks, SafeNet holds up well until α reaches extremely small
values (α = 0.1), at which point we observe the robustness
break down.

However, the design of SafeNet allows us to detect differ-
ence in owners’ distributions at early stages of our framework.
For instance, we experiment for α = 0.1 and observe that the
average AccVal accuracy of the models is 17%. Such low
accuracies for most of the models in the ensemble indicate
non-identical distributions and we recommend not to use
SafeNet in such cases.

D. Owner’s Computational Capacity

In our current framework, the data owners train local models
on their individual datasets and secret-share these models
(along with the cross-validation dataset) to the MPC. In order
to train these local models, we assume data owners possess the
required computational capacity. In situations when a subset
of owners do not have access to sufficient computational
resources, we can use the PPML framework to train the
local models. In this design, a computationally restricted data
owner secret-shares his training dataset to the outsourced MPC
servers, which jointly train the owner’s local model.

We provide the details of our modified training algorithm
for SafeNet in Appendix C. This modification allows a com-
putationally restricted owner to take part in SafeNet albeit
increasing the training time and communication complexity
of the training phase of SafeNet. For instance, we instantiate
our Fashion dataset setup in the 3PC setting and assume
2 out of 10 data owners are computationally restricted. We
observe SafeNet still runs 1.82× faster and requires 3.53× less
communication compared to the existing PPML framework,
while achieving much stronger robustness against poisoning.

E. Comparing to poisoning defenses

Defending against poisoning attacks is an active area of
research, but defenses tend to be heuristic and specific to
attacks or domains. Many defenses for backdoor poisoning
attacks exist [58], [74], [21], [77], but these strategies work
only for Convolutional Neural Networks trained on image
datasets; Severi et al. [72] showed that these approaches fail
when tested on other data modalities and models. Furthermore,
recent work by Goldwasser et.al [38] formulated a way to plant
backdoors that are undetectable by any defense. In contrast,
SafeNet is model agnostic and works for a variety of data
modalities. Even if an attack is undetectable, the adversary
can still poison only a subset of models, making the ensemble
robust against poisoning. Recent work [60], [41] proposed
differential privacy as a mitigation strategy against targeted
attacks. However, differential privacy increases error rates, has
limited effectiveness if the attack size is large, and in some
cases may not even be an effective defense [45].

On the other hand, SafeNet does not suffer from these
limitations and in certain instances can tolerate around 30% of
the training data being poisoned, while being attack agnostic.

12

SafeNet is also robust to stronger model poisoning attacks [5],
[8], [34], which are possible when data owners can train their
models locally. SafeNet tolerates model poisoning because
each model only contributes a single vote to the final ensemble
prediction. In fact, all our empirical and theoretical analysis
of SafeNet is computed for arbitrarily corrupted models.

F. Comparison with Federated Learning

Federated Learning (FL) is a distributed machine learning
framework that allows clients to train a global model without
sharing their local training datasets to the central server.
However, it differs from the PPML setting we consider in the
following ways: (1) Clients do not share their local data to
the server in FL, whereas PPML allows sharing of datasets;
(2) Clients participate in multiple rounds of training in FL,
whereas they communicate only once with the servers in
PPML; (3) Clients receive the global model at each round in
FL, while in SafeNet they secret-share their models once at the
start of the protocol; and, finally, (4) PPML provides stronger
confidentiality guarantees such as privacy of the global model.

It is possible to combine FL and MPC to guarantee both
client and global model privacy [48], [83], [35], but this
involves large communication overhead and is susceptible
to poisoning [59]. For example, recent work [79], [8], [6]
showed that malicious data owners can significantly reduce
the learned global model’s accuracy. Existing defenses against
such owners use Byzantine-robust aggregation rules such as
trimmed mean [82], coordinate-wise mean [81] and Krum
[11], which have been show to be susceptible to backdoor
and model poisoning attacks [34]. Recent work in FL such as
FLTrust [16] and DeepSight [71] provide mitigation against
backdoor attacks. Both strategies are inherently heuristic,
while SafeNet offers provable robustness guarantees. FLTrust
also requires access to a clean dataset, which is not required
in our framework, and DeepSight inspects each model update
before aggregation, which is both difficult in MPC and leads
to privacy leakage from the updates, a drawback not found
in SafeNet. An important privacy challenge is that federated
learning approaches permit data reconstruction attacks when
the central server is malicious [12]. SafeNet prevents such
an attack, as it directly violates the security guarantee of the
MPC, when instantiated for the malicious setting.

The most related strategy to ours is that by Cao et al.
[17], who gave provable robustness guarantees for federated
learning aggregation. They propose an ensembling strategy,
where, with m data owners, n of which are malicious, they
train

(
m
k

)
global models and perform a majority vote. Here k

is a hyperparameter denoting how many clients contribute to
each global model. We now show that SafeNet outperforms
this technique; we instantiate their strategy for our Fashion
dataset setup and compare their Certified Accuracy metric to
SafeNet’s, with m = 10, k = {2, 4} and FedAvg as the base
algorithm.

Figure 10 (left) shows that SafeNet consistently outperforms
[17], in terms of maintaining a high certified accuracy in the
presence of large poisoning rates. Moreover, their strategy is

Fig. 10: Certified Accuracy of our framework compared to Cao
et al.’s [17]. Left plot provides the certified accuracy when [17] is
allowed to run for multiple rounds of interaction between the clients
and the server. The right plot provides certified accuracy of both
systems for a single round of interaction.

0 1 2 3 4 5 6

0

20

40

60

80

100

Poisoned Data Owers

C
er

tifi
ed

A
cc

ur
ac

y
(i

n
%

)

SafeNet Framework
[17], k = 2
[17], k = 4

Multiple rounds of Interaction

0 1 2 3 4 5 6

0

20

40

60

80

100

Poisoned Data Owers

C
er

tifi
ed

A
cc

ur
ac

y
(i

n
%

)

SafeNet Framework
[17], k = 2
[17], k = 4

Single round of Interaction

also particularly expensive when instantiated in MPC for both
training and prediction. At training, their approach requires
data owners to interact inside MPC to train

(
m
k

)
models over

multiple rounds. By contrast, SafeNet only requires interaction
with the MPC once at the beginning of the training phase,
making it significantly faster. When we allow their strategy
only one round of communication as in SafeNet (see the
right plot of Figure 10), certified accuracy further degrades.
Their prediction phase also requires heavy computation. For
example, at k = 4, they run prediction on 210 models, making
it 21x more expensive than SafeNet. Note that our certified
accuracy argument coincides with theirs at k = 1. They do
not consider this setting, as it would make them vulnerable
to data reconstruction attacks [12], an issue SafeNet does not
face.

VI. CONCLUSION

In this paper, we extend the security definitions of MPC
to account for data poisoning attacks when training machine
learning models privately. We consider a novel adversarial
model who can manipulate the training data of a subset of
owners, and control a subset of servers in the MPC. To mitigate
poisoning attacks, we propose SafeNet, a modular framework
that trains an ensemble of multiple ML models locally at
data owners and performs ensemble filtering and prediction
inside the MPC, taking advantage of the MPC threat model to
improve running time and poisoning robustness. We evaluate
thoroughly the accuracy and efficiency of SafeNet in terms of
training time and communication bandwidth, and also show
that it is resilient against backdoor and targeted poisoning at-
tacks. Our work provides one of the first connections between
adversarial ML and MPC, and it opens up new directions of
research to improve ML robustness in MPC settings.

VII. ACKNOWLEDGMENTS

We thank Nicolas Papernot and Peter Rindal for helpful
discussions and feedback. This research was sponsored by
the U.S. Army Combat Capabilities Development Command
Army Research Laboratory under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA). The
views and conclusions contained in this document are those

13

of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
Combat Capabilities Development Command Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] M. Abspoel, D. Escudero, and N. Volgushev. Secure training of decision
trees with continuous attributes. In PoPETS, 2021.

[2] A. Aly and N.P. Smart. Benchmarking privacy preserving scientific
operations. In ACNS, 2019.

[3] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara,
A. Watzman, and O. Weinstein. Optimized honest-majority MPC for
malicious adversaries - breaking the 1 billion-gate per second barrier.
In IEEE S&P, 2017.

[4] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-
throughput semi-honest secure three-party computation with an honest
majority. In ACM CCS, 2016.

[5] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and Vitaly Shmatikov. How
to backdoor federated learning. 2018.

[6] Bagdasaryan<B., A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to
backdoor federated learning. In AISTATS, 2020.

[7] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation
(Extended Abstract). In ACM STOC, 1988.

[8] A. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo. Analyzing federated
learning through an adversarial lens. In ICML, 2019.

[9] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli. Bagging
classifiers for fighting poisoning attacks in adversarial classification
tasks. In International workshop on multiple classifier systems, 2011.

[10] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support
vector machines. In ICML, 2012.

[11] P. Blanchard, E. Mhamdi, R. Guerraoui, and J. Stainer. Byzantine-
tolerant machine learning. In NeurIPS, 2017.

[12] F. Boenisch, A. Dziedzic, R. Schuster, A. Shamsabadi, I. Shumailov, and
N. Papernot. When the curious abandon honesty: Federated learning is
not private. In arXiv, 2021.

[13] M. Byali, H. Chaudhari, A. Patra, and A. Suresh. Flash: Fast and robust
framework for privacy-preserving machine learning. PoPETS, 2020.

[14] M. Byali, A. Joseph, A. Patra, and D. Ravi. Fast secure computation
for small population over the internet. ACM CCS, 2018.

[15] R. Canetti. Security and composition of multiparty cryptographic
protocols. In J. Cryptology, 2000.

[16] X. Cao, M. Fang, J. Liu, and N. Gong. Fltrust: Byzantine-robust
federated learning via trust bootstrapping. In NDSS, 2021.

[17] X. Cao, J. Jia, and N. Gong. Provably secure federated learning against
malicious clients. In AAAI, 2021.

[18] N. Chandran, D. Gupta, and A. Obbattu, L.B. andShah. Simc: Ml
inference secure against malicious clients at semi-honest cost. In
USENIX, 2022.

[19] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh. ASTRA: High-
throughput 3PC over Rings with Application to Secure Prediction. In
ACM CCSW, 2019.

[20] H. Chaudhari, R. Rachuri, and A. Suresh. Trident: Efficient 4pc
framework for privacy preserving machine learning. NDSS, 2020.

[21] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. M. Molloy, and B. Srivastava. Detecting backdoor attacks on deep
neural networks by activation clustering. In SafeAI@AAAI, 2019.

[22] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor attacks
on deep learning systems using data poisoning. 2017.

[23] C.A. Choquette-Choo, N. Dullerud, A. Dziedzic, Y. Zhang, S. Jha,
N. Papernot, and X. Wang. Ca{pc} learning: Confidential and private
collaborative learning. In ICLR, 2021.

[24] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness
via randomized smoothing. In ICML, 2019.

[25] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing. SPDZ2k:
Efficient MPC mod 2ˆk for Dishonest Majority. CRYPTO, 2018.

[26] A. Dalskov, D. Escudero, and M. Keller. Fantastic four: Honest-majority
four-party secure computation with malicious security. In USENIX,
2021.

[27] A.P.K. Dalskov, D. Escudero, and M. Keller. Secure evaluation of
quantized neural networks. In PoPETS, 2020.

[28] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the
SPDZ limits. In ESORICS, 2013.

[29] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty
Computation from Somewhat Homomorphic Encryption. In CRYPTO,
2012.

[30] D. Demmler, T. Schneider, and M. Zohner. ABY - A Framework for
Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS,
2015.

[31] J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In NAACL,
2019.

[32] D. Dua and C. Graff. UCI machine learning repository, 2017.
[33] D. Escudero, M. Jagielski, R. Rachuri, and P. Scholl. Adversarial Attacks

and Countermeasures on Private Training in MPC. In PPML@NeurIPS,
2021.

[34] M. Fang, X. Cao, J. Jia, and N. Gong. Local model poisoning attacks
to byzantine-robust federated learning. In Usenix, 2020.

[35] A. Fu, X. Zhang, N. Xiong, Y. Gao, H. Wang, and J. Zhang. Vfl:
A verifiable federated learning with privacy-preserving for big data in
industrial iot. In IEEE Transactions on Industrial Informatics, 2020.

[36] J. Geiping, L.H. Fowl, W.R. Huang, W. Czaja, G. Taylor, M. Moeller,
and T. Goldstein. Witches’ brew: Industrial scale data poisoning via
gradient matching. In ICLR, 2021.

[37] O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority.
In STOC, 1987.

[38] S. Goldwasser, M. Kim, V. Vaikuntanathan, and O. Zamir. Planting
undetectable backdoors in machine learning models. In arXiv, 2022.

[39] S. D. Gordon, S. Ranellucci, and X. Wang. Secure computation with
low communication from cross-checking. In ASIACRYPT, 2018.

[40] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg. Badnets: Evaluating
backdooring attacks on deep neural networks. IEEE Access, 2019.

[41] S. Hong, V. Chandrasekaran, Y. Kaya, T. Dumitras, and N. Papernot.
On the effectiveness of mitigating data poisoning attacks with gradient
shaping. In arxiv, 2021.

[42] T.M.Harry Hsu, H.Qi, and M.Brown. Measuring the effects of non-
identical data distribution for federated visual classification. In IACR
ePrint.

[43] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending Oblivious
Transfers Efficiently. In CRYPTO, 2003.

[44] Y. Ishai, R. Kumaresan, E. Kushilevitz, and A. Paskin-Cherniavsky.
Secure computation with minimal interaction, revisited. In CRYPTO,
2015.

[45] M. Jagielski and A. Oprea. Does differential privacy defeat data
poisoning? In DPML Workshop, 2021.

[46] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C.N. Rotaru, and B. Li.
Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning. In IEEE S&P, 2018.

[47] J. Jia, X. Cao, and N. Gong. Intrinsic certified robustness of bagging
against data poisoning attacks. In AAAI, 2021.

[48] R. Kanagavelu, Z. Li, J. Samsudin, Y. Yang, F. Yang, R. Goh, M. Cheah,
P. Wiwatphonthana, K. Akkarajitsakul, and S. Wang. Two-phase multi-
party computation enabled privacy-preserving federated learning. In
ACM CCGRID, 2020.

[49] M. Keller. MP-SPDZ: A versatile framework for multi-party computa-
tion. In ACM CCS, 2020.

[50] P.W. Koh and P. Liang. Understanding black-box predictions via
influence functions. In ICML, 2017.

[51] P.W. Koh, J. Steinhardt, and P. Liang. Stronger data poisoning attacks
break data sanitization defenses. In arXiv, 2018.

[52] S. Kornblith, J. Shlens, and Q.V. Le. Do better imagenet models transfer
better? In CVPR, 2019.

[53] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma. Cryptflow: Secure tensorflow inference. In IEEE Security
& Privacy, 2020.

[54] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, 1998.

[55] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R.A. Popa. Muse: Secure
inference resilient to malicious clients. In USENIX, 2021.

[56] Y. Lindell. Fast cut-and-choose-based protocols for malicious and covert
adversaries. In J. Cryptology, 2016.

14

[57] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In EUROCRYPT,
2007.

[58] K. Liu, B. Dolan, and S. Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In RAID, 2018.

[59] Z. Liu, Jiale G., W. Yang, K.n Fan, J.and Lam, and J. Zhao. Privacy-
preserving aggregation in federated learning: A survey. In arXiv, 2022.

[60] Y. Ma, X. Zhu, and J. Hsu. Data poisoning against differentially-private
learners: Attacks and defenses. In IJCAI, 2019.

[61] P. Mohassel and M. K. Franklin. Efficiency tradeoffs for malicious two-
party computation. In PKC, 2006.

[62] P. Mohassel and P. Rindal. ABY3: A Mixed Protocol Framework for
Machine Learning. In ACM CCS, 2018.

[63] P. Mohassel, M. Rosulek, and Y. Zhang. Fast and Secure Three-party
Computation: Garbled Circuit Approach. In CCS, 2015.

[64] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In IEEE S&P, 2017.

[65] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E.C. Lupu, and F. Roli. Towards poisoning of deep learning
algorithms with back-gradient optimization. In AISec@CCS, 2017.

[66] J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature
learning by training maliciously. In RAID, 2006.

[67] J. B. Nielsen and C. Orlandi. Cross and clean: Amortized garbled circuits
with constant overhead. In TCC, 2016.

[68] A. Patra, T. Schneider, A. Suresh, and H. Yalame. Aby2.0: Improved
mixed-protocol secure two-party computation. In USENIX, 2021.

[69] A. Patra and A. Suresh. Blaze: Blazing fast privacy-preserving machine
learning. NDSS, 2020.

[70] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma. Cryptflow2: Practical 2-party secure inference. In ACM
CCS, 2020.

[71] P. Rieger, T. Nguyen, M. Miettinen, and A. Sadeghi. Deepsight:
Mitigating backdoor attacks in federated learning through deep model
inspection. In NDSS, 2022.

[72] G. Severi, J. Meyer, S. Coull, and A. Oprea. Explanation-guided
backdoor poisoning attacks against malware classifiers. In USENIX,
2021.

[73] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras. When
does machine learning FAIL? generalized transferability for evasion and
poisoning attacks. In USENIX, 2018.

[74] B. Tran, J. Li, and A. Madry. Spectral signatures in backdoor attacks.
In NeurIPS, 2018.

[75] S. Wagh, D. Gupta, and N. Chandran. SecureNN: Efficient and private
neural network training. In PoPETS, 2019.

[76] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin. Falcon: Honest-majority maliciously secure framework for
private deep learning. In PoPETS, 2021.

[77] B. Wang, Y. Yao, S. Shan, H. Li, H. Viswanath, B. Zheng, and B.Y.
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks. In IEEE S&P, 2019.

[78] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017.

[79] C. Xie, S. Koyejo, and I. Gupta. Fall of empires: Breaking byzantine-
tolerant SGD by inner product manipulation. In UAI, 2019.

[80] A. C. Yao. Protocols for Secure Computations. In FOCS, 1982.
[81] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett. Byzantine-robust

distributed learning: Towards optimal statistical rates. In ICML, 2018.
[82] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett. Defending against

saddle point attack in byzantine-robust distributed learning. In ICML,
2019.

[83] H. Zhu, R. Mong Goh, and W. Ng. Privacy-preserving weighted
federated learning within the secret sharing framework. In IEEE Access,
2020.

APPENDIX A
ROBUST ACCURACY ANALYSIS

In this section we first provide a detailed proof on the size
of the validation dataset Dval such that all clean models clear
the filtering stage of the training phase of our framework. We
then provide a proof on achieving lower bounds on the test

accuracy of our framework given all clean models are a part
of the ensemble.

The main idea of deriving the minimum size of Dval uses the
point that the errors made by a clean model on a clean subset
of samples in Dval can be viewed as a Binomial distribution
in (m− t)n and p, where n denotes the size of the validation
dataset Dv

k contributed by an owner Ck. We can then upper
bound the total errors made by a clean model by applying
Chernoff bound and consequently compute the size of Dval.

Lemma 3. Let Ap
soc be an adversary who poisons t out

of m data owners and corrupts T out of N servers, and
thus contributes t poisoned models to ensemble E, given as
output by Algorithm 1. Assume that Πtrain securely realizes
functionality FpTrain and every clean model in E makes an
error on a clean sample with probability at most p < 1 − φ,
where φ is the filtering threshold.

If the validation dataset has at least (2+δ)m log 1/ε
δ2(m−t)p samples

and 0 ≤ t < m(1−φ−p)
(1−p) , then all clean models pass the filtering

stage of the training phase with probability at least 1−ε, where
δ = (1−φ)m−t

(m−t)p − 1 and ε denotes the failure probability.

Proof. Assume that each owner contributes equal size valida-
tion dataset Dv

k of n samples, then the combined validation set
Dval collected from m data owners is comprised of mn i.i.d.
samples. However, given an adversary Ap

soc from our threat
model, there can be at most t poisoned owners contributing
tn poisoned samples to Dval. We define a Bernoulli random
variable as follows:

Xi =

{
1, w.p. p
0, w.p. 1− p

where Xi denotes if a clean model makes an error on the
ith clean sample in the validation dataset. Then there are
Bin((m − t)n, p) errors made by the clean model on the
clean subset of samples in Dval. Note that, a model passes the
filtering stage only when it makes ≥ φmn correct predictions.
We assume that the worst case where the clean model makes
incorrect predictions on all the tn poisoned samples present
in Dval. As a result, the clean model must make at most
(1 − φ)mn − tn errors on the clean subset of Dval with
probability 1 − ε. We can upper bound the probability the
model makes at least (1 − φ)mn + 1 − tn errors with a
multiplicative Chernoff bound with δ > 0:

Pr[
∑(m−t)n
i=1 Xi > (1− φ)mn− tn] = Pr [

∑n
i=1Xi > (1 + δ)µ] < e−

δ2µ
2+δ

where µ = (m− t)np (the mean of Bin(mn− tn, p)) and
δ = (1−φ)m−t

(m−t)p . The chernoff bound gives that the probability

the clean model makes too many errors is at most e−
δ2µ
2+δ = ε.

Then it suffices to have this many samples:

|Dval| = mn =
(2 + δ)m log 1/ε

δ2(m− t)p

where ε denotes the failure probability and t < m(1−φ−p)
(1−p) .

The inequality on t comes from requiring δ > 0.

15

We use a similar strategy as above to compute the lower
bound on the test accuracy. On a high level, the proof follows
by viewing the combined errors made by the clean models
as a Binomial distribution Bin(m− t, p). We can then upper
bound the total errors made by all the models in the ensemble
by applying Chernoff bounds and consequentially lower bound
the ensemble accuracy.

Theorem 4. Assume that the conditions in Lemma 3 hold
against adversary Ap

soc poisoning at most t < m
2

1−2p
1−p owners

and that the errors made by the clean models are independent.
Then E correctly classifies new samples with probability at

least pc = (1 − ε)
(

1− e−
δ′2µ′
2+δ′

)
, where µ′ = (m − t)p and

δ′ = m−2t
2µ′ − 1.

Proof. Lemma 3 shows that, with probability > 1 − ε, no
clean models will be filtered during ensemble filtering. Given
all clean models pass the filtering stage, we consider the worst
case where even the t poisoned models bypass filtering. Now,
given a new test sample, m−t clean models have uncorrelated
errors each with probability at most p, the error made by each
clean model can be viewed as a Bernoulli random variable
with probability p and so the total errors made by clean models
follow a binomial X ∼ Bin(m− t, p). We assume that a new
sample will be misclassified by all t of the poisoned models.
Then the ensemble as a whole makes an error if t+Bin(m−
t, p) > m/2. We can then bound the probability this occurs
by applying Chernoff bound as follows:

Pr
[
X + t ≥ m

2

]
= Pr [X ≥ (1 + δ′)µ′] ≤ e−

δ′2µ′
2+δ′ ,

where µ′ = (m−t)p is the mean of X and δ′ = m−2t
2µ′ −1 > 0.

Then the probability of making a correct prediction can be
lower bounded by:

Pr
[
X <

m

2
− t
]
> 1− e−

δ′2µ′
2+δ′ ,

given the number of poisoned models

t <
m(1− 2p)

2(1− p)
.

The inequality on t comes from the constraint δ′ > 0 for
the Chernoff bound to hold. Note that, the above bound holds
only when all the clean models pass the filtering stage, which
occurs with probability at least 1− ε by Lemma 3. Then the
bound on the probability of making a correct prediction by the
ensemble can be written as:

Pr
[
X <

m

2
− t
]
> (1− ε)

(
1− e−

δ′2µ′
2+δ′

)

APPENDIX B
SECURITY PROOFS

We prove that protocol Πtrain is secure against an adversary
of type Ap

soc. Towards this, we first argue that protocol Πtrain

securely realizes the standard ideal-world functionality FpTrain.
We use simulation based security to prove our claim. Next,
we argue that the ensemble E trained using Πtrain protocol
provides poisoning robustness against Ap

soc.

Theorem 2. Protocol Πtrain is secure against adversary Ap
soc

who poisons t out of m data owners and corrupts T out of
N servers.

Proof. Let Ap
soc be a real-world adversary that semi-honestly

corrupts T out of N servers at the beginning of the protocol
Πtrain. We now present the steps of the ideal-world adversary
(simulator) Sf for Ap

soc. Note that, in the semi-honest setting
Sf already posses the input of Ap

soc and the final output shares
of bval. Sf acts on behalf of N − T honest servers, sets their
shares as random values in Z2` and simulates each step of
Πtrain protocol to the corrupt servers as follows:

– No simulation is required to construct J·K-shares of en-
semble E and validation dataset Dval as it happens locally.

– Sf simulates messages on behalf of honest servers as a
part of the protocol steps of Πzvec with public value m as
the input and eventually sends and receives appropriate
J·K-shares of bval to and from Ap

soc.

– For k ∈ [1,m]:

– Sf simulates messages on behalf of honest servers, as a
part of the protocol steps of ΠMpred, with inputs to the
protocol as J·K-shares of Mk and Dval and eventually
sends and receives appropriate J·K-shares of PREDSk
to and from Ap

soc.

– Sf simulates messages on behalf of honest servers, as
a part of the protocol steps of Πacc, with inputs to
the protocol as J·K-shares of PREDSk and yDval and
eventually sends and receives appropriate J·K-shares of
AccValk to and from Ap

soc.

– No simulation is required for subtraction with threshold
φ as it happens locally.

– Sf simulates messages on behalf of honest servers, as
a part of the protocol steps of Πcomp, with inputs to the
protocols as J·K-shares of AccVal − φ and at the end
Sf instead sends the original shares of bval

k as shares
of b′ associated to Ap

soc.

– No simulation is required to assign Jbval
k K = Jb′K.

The proof now simply follows from the fact that simulated
view and real-world view of the adversary are computationally
indistinguishable and concludes that Πtrain securely realizes
functionality FpTrain.

Now given the output of Πtrain protocol is an ensemble E,
we showed in the proof of Theorem III-D that E correctly
classifies a sample with probability at least pc. As a result the

16

underlying trained model also provides poisoning robustness
against Ap

soc.

We use a similar argument to show protocol Πpred is secure
against adversary Ap

soc.

Theorem 6. Protocol Πpred is secure against adversary Ap
soc

who poisons t out of m data owners and corrupts T out of
N servers.

Proof. Let Ap
soc be a real-world adversary that poisons t out

of m owners and semi honestly corrupts T out of N servers
at the beginning of Πpred protocol. We present steps of the
ideal-world adversary (simulator) Sf for Ap

soc. Sf on behalf
of the honest servers, sets their shares as random values in
Z2` and simulates each step of Πpred protocol to the corrupt
servers as follows:

– Sf simulates messages on behalf of honest servers as a
part of the protocol steps of Πzvec with public value L as
the input and eventually sends and receives appropriate
J·K-shares of z to and from Ap

soc.
– For k ∈ [1,m′]:

– Sf simulates messages on behalf of honest servers, as
a part of the protocol steps of ΠMpred, which takes
input as J·K-shares of Mk and x. Sf eventually sends
and receives appropriate J·K-shares of Preds to and
from Ap

soc.
– For every multiplication of Jbval

k K with respect to each
element in Preds, Sf simulates messages on behalf of
honest servers, as a part of the protocol steps of Πmult,
which takes input as J·K-shares of Predsj and bval

k . Sf
eventually sends and receives appropriate J·K-shares of
bval
k ×Predsj to and from Ap

soc.
– No simulation is required to update JzK as addition

happens locally.
– Sf simulates messages on behalf of honest servers, as

a part of the protocol steps of Πamx, which takes input
as J·K-shares of z. At the end Sf instead forwards the
original J·K-shares of OP associated to Ap

soc.
The proof now simply follows from the fact that simulated
view and real-world view of the adversary are computationally
indistinguishable. Poisoning robustness argument follows from
the fact that the ensemble E used for prediction was trained
using protocol Πtrain which was shown to be secure against
Ap

soc in Theorem 2.

This concludes the security proofs of our training and
prediction protocols.

APPENDIX C
ADDITIONAL ALGORITHMS

A. SafeNet Prediction phase in Transfer Learning Setting

In this section we provide a modified version of SafeNet’s
Prediction algorithm in the transfer learning setting, to improve
the running time and communication complexity of SafeNet.

Algorithm 3 provides the details of SafeNet’s prediction phase
below.

Algorithm 3 SafeNet Prediction Algorithm in Transfer Learn-
ing Setting

Input: Secret-shares of backbone model MB , ensemble of
m fine-tuned models E = {M1, . . . ,Mm}, vector bval and
client query x.
// MPC computation in secret-shared format

– Construct vector z of all zeros of size L, where L denotes
the number of distinct class labels.
– Run forward pass onMB with input x till its penultimate
layer. Let p denote the output vector of the penultimate
layer.
– For k ∈ [1,m] :

- Run forward pass on final layer of Mk with input as
p. Let the output of the computation be Preds, which is
one-hot encoding of the predicted label.

- Multiply bval
k to each element of Preds.

- Add z = z + Preds.
– Run argmax with input as z and obtain OP as the output.
return OP

B. SafeNet Training with Computationally Restricted Owners

In this section we provide a modified version of SafeNet’s
Training Algorithm, to accommodate when a subset of data
owners are computationally restricted, i.e., they can not train
their models locally. Algorithm 4 provides the details of
SafeNet’s training steps below.

APPENDIX D
ADDITIONAL EXPERIMENTS

Logistic Regresssion, Multiclass Classification. We use the
same strategies for the Backdoor and Targeted attacks on the
MNIST dataset. For BadNets, we select the initial class ys = 4
and the target label yt = 9, and use the same yt = 9 for
the targeted attack. Table III provides a detailed analysis of
the training time, communication, test accuracy, and success
rate for both frameworks, in presence of a single poisoned
owner. The worst-case adversarial success for SafeNet is in
Figure 11. The slow rise in the success rate of the adversary
across multiple attacks shows the robust accuracy property of
our framework translates smoothly for the case of a multi-class
classification problem.

Experiments on Adult Dataset. We report results for back-
door and targeted attacks on a single layer deep neural network
(with 10 hidden nodes) trained on the Adult dataset. We use
a similar attack strategy as used for logistic regression model
in Section IV-D. We observe that no instance is present with
true label y = 1 for feature capital-loss = 1. Consequently,
we choose a set of k = 100 target samples {xti}ki=1 with true
label ys = 0, and create backdoored samples {Pert(xti), yt =
1}ki=1, where Pert(·) function sets the capital-loss feature in
xt to 1. For the targeted attack, we only use TGT-Top because

17

TABLE III: Training time (in seconds) and Communication (in GB) over a LAN network for traditional PPML and SafeNet framework
training a multiclass logistic regression on MNIST. n denotes the number of epochs in the PPML framework. The time and communication
reported for SafeNet is for end-to-end execution. Test Accuracy and Success Rate are given for a single poisoned owner.

MPC Setting Framework Training Time (s) Communication (GB) Backdoor Attack Targeted Attack

Test Accuracy Success Rate Test Accuracy Success Rate-Top Success Rate-Foot

3PC [4] Semi-Honest PPML n×243.55 n×55.68 89.14% 100% 87.34% 83% 90%
SafeNet 10.03 2.05 88.68% 4% 88.65% 1% 10%

4PC [26] Malicious PPML n×588.42 n×105.85 89.14% 100% 87.22% 83% 90%
SafeNet 23.39 3.78 88.65% 4% 88.65% 1% 10%

Algorithm 4 SafeNet Training Algorithm with Computation-
ally Restricted Owners

Input: m total data owners of which mr subset of owners
are computationally restricted, each owner Ck’s dataset Dk.
// Computationally Restricted Owner’s local computation in plaintext
– For k ∈ [1,mr] :

- Separate out Dv
k from Dk.

- Secret-share cross-validation dataset Dv
k and training

dataset Dk \Dv
k to servers.

// Computationally Unrestricted Owner’s local computation in plaintext
– For k ∈ [mr+1,m] :

- Separate out Dv
k from Dk. Train Mk on Dk \Dv

k.
- Secret-share Dv

k and Mk to servers.
// MPC computation in secret-shared format
1. For k ∈ [1,mr] : // Train local models for restricted owners

- Train Mk on Dk \Dv
k.

2. Construct a common validation dataset Dval = ∪mi=1D
v
i

and collect ensemble of models E = {Mi}mi=1

3. Initialize a vector bval of zeros and of size m.
4. For k ∈ [1,m] : // Ensemble Filtering

- AccValk = Accuracy(Mk, Dval) // Compute validation accu-
racy of Mk over Dval.

- If AccValk > φ: // Compare against threshold

– Set bval
k = 1 // Set kth position in bval to 1

return E and bval

Fig. 11: Worst-case adversarial success of multi-class logistic re-
gression on MNIST in the SafeNet framework for backdoor and
targeted attacks. The adversary can change the set of c poisoned
owners per sample. SafeNet achieves certified robustness up to 9
poisoned owners out of 20 against backdoor and TGT-TOP attacks.
The TGT-Foot attack targeting low-confidence samples has slightly
higher success, as expected.

0 1 2 3 4 5 6 7 8 9 10

0

50

100

Poisoned Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
) SafeNet-TGT-Top

SafeNet-TGT-Foot
SafeNet-Backdoor

more than 50 out of 100 samples for TGT-Foot are mis-

classified before poisoning. Table IV provides the training time
and communication complexity of both PPML and SafeNet
frameworks. Figure 13 (a) and (b) provide the success rates in
both frameworks and show the resilience of SafeNet against
backdoor and targeted attacks.

TABLE IV: Training Time (in seconds) and Communication (in GB)
for training a single layer neural network model on the Adult dataset.
n denotes the number of epochs required for training the the neural
network in the PPML framework. The values reported for SafeNet
are for its total execution.

MPC Setting Framework Training Time (s) Communication (GB)

3PC
Semi-Honest [4] PPML n×8.72 n×0.87

SafeNet 5.79 1.32

Malicious [26] PPML n×223.15 n×16.49
SafeNet 179.58 19.29

4PC Malicious [26] PPML n×18.54 n×1.69
SafeNet 14.67 2.53

Experiments on Fashion Dataset. We present results on one
and two layer deep neural networks trained on the Fashion
dataset. We perform the same set of backdoor and targeted
attacks as described in Section IV. Table V provides detailed
analysis of the training time, communication, test accuracy,
and success rate for traditional PPML and SafeNet frame-
works. We observe similar improvements, where for instance
in the 4PC setting, SafeNet has 42× and 43× improvement in
training time and communication complexity over the PPML
framework, for n = 10 epochs for a two hidden layer neural
network. Figure 12 shows the worst-case attack success in
SafeNet (where the attacker can choose the subset of corrupted
owners per sample) and the results are similar to Figure 8.

Fig. 12: Worst-case adversarial success of one and two layer Neural
Networks on FASHION dataset in SafeNet framework for varying
poisoned owners.

0 1 2 3 4 5

0

20

40

60

80

100

Poisoned Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
)

SafeNet-TGT-Top
SafeNet-TGT-Random

SafeNet-TGT-Foot
SafeNet-Backdoor

1-Layer NN

0 1 2 3 4 5

0

20

40

60

80

100

Poisoned Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
)

SafeNet-TGT-Top
SafeNet-TGT-Random

SafeNet-TGT-Foot
SafeNet-Backdoor

2-Layer NN

18

Fig. 13: Attack Success Rate and a Neural Network in PPML and SafeNet frameworks, trained over Adult dataset, for varying corrupt
owners launching Backdoor (a) and Targeted (b) attacks. Plot (c) gives the worst-case adversarial success of SafeNet when a different set of
poisoned owners is allowed per sample.

0 1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

Poisoned Data Owers

Su
cc

es
s

R
at

e
(i

n
%

)

PPML Framework
SafeNet Framework

(a) Backdoor

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Poisoned Data Owers
Su

cc
es

s
R

at
e

(i
n

%
)

PPML Framework
SafeNet Framework

(b) Targeted

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Poisoned Data Owers

Id
ea

l
Su

cc
es

s
R

at
e

(i
n

%
)

SafeNet-Targeted
SafeNet-Backdoor

(c) Worst-case Adversary

TABLE V: Training Time (in seconds) and Communication (in GB) of PPML and SafeNet frameworks for one and two layer neural
network on the Fashion dataset. n denotes the number of epochs in the PPML framework. The time and communication reported for SafeNet
framework is for end-to-end execution. Test Accuracy and Success Rate is given for the case when a single owner is corrupt.

MPC Setting No. Hidden Layers Framework Training Time (s) Communication (GB) Backdoor Attack Targeted Attack

Test Accuracy Success Rate Test Accuracy Success Rate-Top Success Rate-Foot

3PC [4] Semi-Honest

1 PPML n×382.34 n×96.37 83.94% 100% 81.85% 100% 100%
SafeNet 65.71 14.58 84.54% 0% 84.37% 0% 38%

2 PPML n×474.66 n×125.58 84.35% 100% 83.39% 100% 100%
SafeNet 108.12 27.98 84.93% 0% 84.93% 0% 46%

4PC [26] Malicious

1 PPML n×869.12 n×174.12 83.71% 100% 81.94% 100% 100%
SafeNet 152.68 26.89 84.48% 0% 84.42% 0% 38%

2 PPML n×1099.06 n×227.23 84.35% 100% 83.26% 100% 100%
SafeNet 258.72 51.66 84.86% 0% 84.93% 0% 46%

APPENDIX E
DATASETS

Table VI provides the details of the datasets and the corre-
sponding models used for training both frameworks.

19

TABLE VI: Datasets and ML models used for comparison between SafeNet and PPML framework. Each value in the Architecture column
is an array which represents the number of nodes in each layer starting from the input layer. Each model is trained for n = 10 epochs for
both frameworks and mini-batch gradient descent with batch size of 128.

Dataset Features Train Samples per Owner Test Samples Labels ML Algorithm Architecture

Digit 1/7 784 650 2163 2 Logistic Regression [784,1]

MNIST 784 3000 10000 10 Logistic Regression [784,10]

Adult 108 1628 16281 2 Neural Network [108,10,1]

Fashion 784 3000 10000 10 Neural Network
[784,128,10]
[784,128,128,10]
[784,128,128,128,10]

20

	Introduction
	Background and Related Work
	Secure Multi-Party Computation
	Data Poisoning Attacks
	Related Work

	SafeNet Framework
	Threat Model
	SafeNet Overview
	SafeNet Training
	Ensemble Robustness Analysis
	Realization in MPC
	MPC Building Blocks
	ML Building Blocks
	Protocols

	Evaluation
	Experimental Setup
	Metrics
	Datasets and Models
	Implementation of Poisoning Attacks
	Evaluation on Logistic Regression
	Evaluation on Deep Learning Models

	Discussion and Extensions
	SafeNet's Scalability and Modularity
	Instantiating SafeNet in Practice
	Distribution Similarity
	Owner's Computational Capacity
	Comparing to poisoning defenses
	Comparison with Federated Learning

	Conclusion
	Acknowledgments
	References
	Appendix A: Robust Accuracy Analysis
	Appendix B: Security Proofs
	Appendix C: Additional Algorithms
	SafeNet Prediction phase in Transfer Learning Setting
	SafeNet Training with Computationally Restricted Owners

	Appendix D: Additional Experiments
	Appendix E: Datasets

