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Abstract. Some of the most efficient protocols for Multi-Party Compu-
tation (MPC) use a two-phase approach where correlated randomness,
in particular Beaver triples, is generated in the offline phase and then
used to speed up the online phase. Recently, more complex correlations
have been introduced to optimize certain operations even further, such
as matrix triples for matrix multiplications. In this paper, our goal is
to speed up the evaluation of multivariate polynomials and therewith of
whole arithmetic circuits in the online phase. To this end, we introduce a
new form of correlated randomness: arithmetic tuples. Arithmetic tuples
can be fine tuned in various ways to the constraints of application at
hand, in terms of round complexity, bandwidth, and tuple size. We show
that for many real-world setups an arithmetic tuples based online phase
outperforms state-of-the-art protocols based on Beaver triples.

1 Introduction

Multi-Party Computation (MPC) allows several parties to compute an arith-
metic circuit on private inputs without revealing information about the inputs
apart from the result. Modern two-phase protocols, like SPDZ [30,31] and re-
lated protocols [5,49,50], consist of an offline phase, where (structured) random
data, classically in the form of Beaver triples [8], is precomputed, and an on-
line phase, where the precomputed data is used to compute the desired output
from the private inputs. This general design principle allows parties to speed-up
the online phase considerably. A reasonably less-efficient offline phase is usually
considered acceptable since preprocessing can start well before the input data
becomes available. Efficiency in these types of two-phase protocols and gener-
ally in MPC-protocols heavily depends on the number of communication rounds
needed and the bandwidth, i.e. the amount of data that has to be sent. Local
computation times are often considered less relevant for real-world applications
as long as hardware requirements, e.g. memory requirements, do not get out of
hand.

In actively secure MPC protocols like SPDZ (and improvements thereof) clas-
sical multiplication with Beaver triples [8] is still the most prevalent technique
to evaluate arithmetic circuits efficiently. The approach usually comes with log-
arithmically many rounds, communicating linearly many elements, with a linear



Table 1: Comparison for the evaluation a degree d =
∑m−1

j=0 dj monomial f in m
variables with Beaver triples, binomial tuples, and arithmetic tuples.

Approach Rounds Bandwidth Tuple Size

Beaver Triples ⌈log d⌉ 2(d− 1) 3(d− 1)

Binomial Tuples 1 m
∏m−1

j=0 (dj + 1)− 1

Example Intermediate Arithmetic Tuple 1 O(m log(m)) O(d log(m)2)

amount of preprocessed data in the depth of the arithmetic circuit. Recently, a
natural extension of the classical Beaver technique emerged that allows to re-
duce the round complexity3 down to 1 and has only around half the bandwidth
of Beaver triple based protocols [22,28,62,64]. However, the underlying form of
correlated randomness, which we call binomial tuples, will in general have expo-
nential size in the number of inputs. Therefore, this approach has only been used
for products of a few variables or exponentiation of a single variable [28,30].4

In this paper, we propose a new online protocol Πonline based on a new
form of correlated random tuple, which generalizes both Beaver’s technique and
binomial tuples. The new online phase then allows to evaluate any arithmetic
(sub-)circuits and therewith any multivariate polynomial in a minimal number
of rounds (just as binomial tuples) but with a much more moderate tuple sizes.
Security-wise, our technique still provides, just like SPDZ and related-protocols,
active security as long as one party remains honest.

We want to shortly describe the high-level idea of our approach. A SPDZ-
like online phase has the following characteristics: at the begining parties pos-
sess (among others) shares of the input variables, they perform a series of local
computations and communication to produce (masked) intermediate results and
possibly output at some point a final result.5 In current protocols this process
is usually implemented using the standard properties of additive sharing, i.e.
to produce an intermediate or final value y, each party Pi first locally com-
putes an additive share [y]i thereof, which is then published and summed up:
f ′([y]1 , . . . , [yn]) :=

∑n
i=1 [y]i = y. This is however, not necessary. One can re-

place f ′ by any circuit on the set P of information available to the parties. Given
P , the parties can then locally compute the intermediate/final result. It is often
advantageous to use the usually stronger local computation power by shifting
more of the overall computation into a then more complex circuit f ′. Naturally,
certain limitations apply to f ′ and P , for example the input size should remain
within practical range for two reasons: (i) for a very large input size (e.g. expo-
nential) the local evaluation of f ′ might still become the bottleneck of the overall
Multi-Party computation; (ii) all information in P has to be created either by

3 We refer to Section 3 for more details on how to count communication rounds.
4 Note that an increased tuple size not only slows down the offline phase that has to
generate these huge tuples, also the online runtime increases as the data contained
in the tuples has to be processed.

5 Other outputs, e.g. a share for each party, are also common and compatible with
our online protocol (cf. Protocol 1.2).
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the preprocessing or by transmissions from the other parties and will therefore
either increase the bandwidth or slow down the preprocessing phase (similar
to the case of binomial tuples). To satisfy these constraints, we will build for
each polynomial f in m input variables x0, . . . , xm−1 a sufficiently small set of
published values Bf ⊂ P and a circuit f ′ such that f(x0, . . . , xm) = f ′(Bf ), i.e.
the parties can compute f(x0, . . . , xm) locally on Bf using f ′. We call elements
of Bf building blocks. In order to construct the building blocks in Bf we will
use a new form of correlated randomness called arithmetic tuples. As mentioned
before the size of the correlated random data, i.e. the arithmetic tuple size, also
affects performance and has to be kept reasonably low.6

Another natural requirement in our MPC setup is that Bf is privacy-
preserving, i.e. apart from the final result no information should be leaked. As it
turns out this makes the construction of f ′ and Bf technically challenging. The
reason is that more complex circuits f ′ that contain many multiplication gates
are not easily compatible with the information-theoretically secure additive one-
time pad masks we use.7 One of the main contributions of this paper is therefore
the proof that it is possible to build any polyomial f from a reasonably small
set of building blocks Bf such that the elements of Bf can still be constructed
with an arithmetic tuple of practical size. In fact, we will see in Section 5.2 that
we can find a suitable Bf that consists only of polynomials of small degree ≤ 3
such that each polynomial can be constructed by an arithmetic tuple of size at
most 8.

In summary, a protocol run will roughly look as follows: To compute
f(x0, . . . , xm−1) the parties precompute in an actively secure offline phase
suitably formed shared arithmetic tuples which, among others, contain masks
a0, . . . , am−1 for each input variable. The parties open the masked values xj−aj
for 0 ≤ j < m. Subsequently, the parties use the masked values xj − aj together
with shares of the remaining arithmetic tuple entries to locally compute shares of
privacy-preserving building blocks. In principle, a building block can now be any
shared data that the parties can locally compute given xj − aj , 0 ≤ j < m and
the shared tuple. The parties open all building blocks at once. By construction
this allows them to locally compute f(x0, . . . , xm−1) as f

′(Bf ).

The choice of the circuit f ′ and the resulting number and shape of build-
ing blocks and arithmetic tuples strongly influence various aspects of the online
phase for the parties. For example, a more shallow circuit f ′ and/or high de-
gree building blocks reduce the overall number of building blocks. Since building
blocks are opened this decreases the bandwidth. The tradeoff are larger tu-
ple sizes (Section 5.2 for the explicit formulas for tuple size and bandwidth).
Hence, the choice of f ′ makes our approach very flexible because it allows par-
ties to evaluate polynomials in many different ways. That is, the evaluation can
be tailored and optimized w.r.t. the needs of parties. Table 1 shows one spe-

6 The tuple size naturally affects the offline phase. It might also affect the online phase,
e.g. in the case of an exponential tuple size, since the data contained in the tuples
has to be processed like in the case of binomial tuples.

7 We refer to Section 5.1 for further details and examples.
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cific kind of arithmetic tuple. This tuple lies between the linear size for Beaver
multiplication and the exponential size for binomial tuples, has minimal round
complexity, and a higher bandwidth cost than the other approaches. Almost all
other trade-offs are however possible. For example, we can also construct an
arithmetic tuple that keeps the round complexity at 1 and achieves a bandwidth
in O(m log log(m)) (or basically anything between the bandwidth m for bino-
mial tuples and O(m log(m)))—the tuple will then however have a tuple size

somewhere between O(d log(m)2) and
∏m−1

j=0 (dj +1)−1. The exact relation will
be explained in Section 5.2.

Since our protocol is also composable we can split up an arithmetic circuit
into subcircuits and apply the arithmetic tuples approach to evaluate each of
them. This feature adds additional flexibility since it allows us to trade round
complexity and bandwidth/tuple size; Figure 2 illustrates that adding just one
round can already make a big difference.

In summary, we can construct local arithmetic circuits f ′, privacy-preserving
building blocks and suitable arithmetic tuples such that we get bandwidth, tu-
ple size, and/or round complexity (almost) anywhere between Beaver triples and
binomial tuples. So, arithmetic tuples will improve the online performance of (al-
most) any SPDZ-like MPC protocol and can be tuned for optimal performance
in the concrete setting where the protocol is deployed.8 For example, if network
latency is (moderately) high, we should try to minimize round complexity. Sim-
ilarly, bandwidth/data rate restrictions imply that one should use arithmetic
tuples with lower bandwidth. If the runtime of the offline phase, local memory
and/or computation time are important, striving for small tuple sizes is rec-
ommended. Our first experiments show that strategic deployment of arithmetic
tuples can significantly speed-up the performance of the online phase.

Our Contributions. In summary, our contributions are as follows:

– We introduce arithmetic tuples, which generalize the concept of Beaver triples
and binomial tuples. These tuples allow parties to evaluate a multivariate
polynomial or an arithmetic (sub-)circuit in just one round of online com-
munication plus one opening round. Our tuple size is significantly lower than
for existing single-round approaches.

– We compute the tuple size and bandwidth needed in the online phase for
all types of arithmetic tuples and discuss the multi-round use of our online
protocol. Our tuple size is significantly lower than for existing single-round
approaches and also multi-round computations yield improvements (e.g. lower
bandwidth and round complexity than Beaver multiplication). More generally,
our resulting arithmetic tuples based online protocolΠonline allows to optimize
efficiency w.r.t. the number of rounds, bandwidth, and tuple size. Πonline

guarantees active security as long as one party is honest.

8 The sole exception is a setup with no or a very small latency and products of exactly
2k input variables for some k ∈ N. In this special case our technique will coincide with
classical Beaver multiplication and will have the same performance as e.g. SPDZ.
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– We present different protocols for the generation of arithmetic tuples as well
as an new extended sacrificing technique compatible with arithmetic tuples
(cf. Section 6 and Appendix C.1).

– We evaluate the performance of our approach for sample applications (eval-
uation of polynomials, comparisons of secret-shared values, simple machine
learning algorithms) in Section 8 which shows that arithmetic tuples speed-up
these computations compared to Beaver multiplication and binomial tuples.

Structure of the Paper. We start by recalling some basic notation and con-
cepts in Section 3 and present binomial tuples in Section 4. We then introduce
arithmetic tuples in Section 5, study their size and bandwidth requirements,
and integrate them in our (online) MPC protocol. Section 6 focuses on the tu-
ple production, i.e. the offline phase. Example applications and benchmarks are
presented in Sections 7 and 8, respectively. Section 2 covers related work. We con-
clude in Section 9. More details can be found in the appendix, which is submitted
as part of the supplementary material, which also includes our implementation.

2 Related Work

We see our work as an improvement to the common online phase of SPDZ [31]
and related Protocols [49,50,5]. We therefore concentrate our discussion on recent
progress applicable to SPDZ-like papers, rather than classical theoretical results
like [4,8,45,24].

A first small optimization of the Beaver triple-based online phase in SPDZ
already appeared in [30] where square pairs are used to improve the squaring
of secret shared values. This idea has been picked up by Morton Dahl who
describes in [28] a variety of generalized tuples that can improve the online phase.
These include power tuples for the computation of a monomial xd for a secret-
shared value x, which are binomial tuples (cf. Section 4) for a single variable.
Dahl [28] also presents matrix triples and convolution triples which have also
been discussed in [58] in the passively secure domain. Matrix (and convolution)
triples have since then seen further attention and are by now available as part
of an actively secure protocol [21]. The multivariate version of binomial tuples
appears in the passively secure protocol of [22] with additional trust assumptions
on the dealing server, whereas the authenticated binomial tuples in this paper
provide active security. Ohata and Nuida [62] use a slight variation of a binomial
tuple in the passively secure setup.

Another classical approach to the secure evaluation of a polynomial is in-
cluded in [4] and again in [29]. The more recent minor extension presented in
[55] uses random multiplicative masks rj to hide the inputs xj . The parties
then use Beaver triples to compute and open yj = xjrj . A share of the product∏m

j=1 xj is given by the product of the yj times a share of the product of the

inverses r−1
j , i.e.

[∏m
j=1 xj

]
=
∏m

j=1 yj

[∏m
j=1 r

−1
j

]
. A standard technique from

[29] can ensure that a possible 0 value is not detectable and the protocol becomes
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passively secure. The combined passively-secure protocols needs 4+1+2 rounds
of (online) communication (cf. [19]).9 The extension in [29] to an actively secure
protocol uses a cut-and-choose technique, which is generally not compatible with
the MAC-authenticated approach of SPDZ-like protocols. We remark that [55]
also presents a protocol to compute powers of matrices (building on [4])—the
papers do not discuss the case of matrices of non-full rank; the case of non-full
rank matrices leaks information just as the zero case does for field elements. The
general idea to use a multiplicative structure in the underlying primitives, e.g.
a multiplicative secret sharing as in [11,39], is quite tempting. However, these
multiplicative sharings can generally not compute additions in a cheap way and
conversion techniques back to an additive sharing as it is used in SPDZ-like
protocols are costly. While these protocols have a constant round complexity
and small tuple size, making these approaches actively secure (if possible) comes
with a considerable overhead.

Futhermore, there are many papers optimizing the use of maskings/tuples.
Boura et al. [14] make use of the exponential identity (exp(x + y) = exp(x) ·
exp(y)) to employ an additive sharing for a multiplicative computation—a
Fourier series expansion further allows one to use the functional properties of the
exponential function to compute approximations of arbitrary smooth functions,
too. How the necessary sharings of the exponential function can be created with-
out a trusted third party in an offline phase (passively or even actively secure)
is not discussed.

Boura et al. [14] reuse their masks for certain input variables for different
multiplication gates. Dahl [28] extends the idea to reuse already constructed ran-
domness to be applicable to neural networks. Function-dependent preprocessing
can decrease the required tuple size and bandwidth in the online phase [9,64].
Also note that with a pseudo-random generator, as, e.g., in [15], structured ran-
domness can be produced without further communication. Special solutions also
exist for more complex structured random data like the matrix triples mentioned
before ([21,58]).

3 Preliminaries

For our theoretical considerations in Section 5.2 we are working on a commuta-
tive base ring R. For all other parts we choose R a finite field as in [31]. We call
a computation local if the parties can perform it without interaction.

3.1 Performance Measures

When we analyze the theoretical performance of our protocols, bandwidth is
measured in the number of ring elements sent. Analogously, the size of the struc-
tured randomness needed for one polynomial evaluation in the online phase, i.e.

9 4 rounds to check if xj is zero, 1 round to replace xj with a non-zero x′
j if xj was

zero, and 2 rounds to compute and open yj ; an additional round is necessary to set
the product to zero if any of the xj was zero; if wrong results (due to the x′

j) are
acceptable in this case, this does not add an additional round.
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the tuple size, is the number of ring elements contained in the tuple. The round
complexity of a protocol is the number of communication rounds. One com-
munication round consists of all information that can be sent in parallel. In
particular, if in a protocol party P1 has to wait for a message from P2 before P1

can send her message, the protocol has round complexity 2. The opening phase
in actively secure SPDZ-like protocols comes with an additional invocation of
a MAC check subroutine (cf. Section 3.2 and Protocol 1.9)—to account for the
different structures of an opening round we will count opening rounds separately,
usually indicated by a “+1” in the round count. It is quite common to ignore
the opening round completely for composable protocols since to compute the
composition of two or more functions the parties need only one global opening
round. E.g. if parties can compute a function f in kf + 1 rounds and function
g in kg + 1 rounds, they can compute g ◦ f in kf + kg + 1 rounds. To simplify
notation, we sometimes drop the “+1”.

3.2 Secret-Sharing and SPDZ-MACs

As we focus on MPC in the dishonest majority setting, we use classical additive
secret-sharing, denoted by [ · ]. A secret x is shared among n parties such that
x =

∑n
i=1 [x]i where [x]i is the share of party Pi. All shares are needed to

reconstruct a secret and n− 1 or less shares do not reveal any information. This
secret sharing scheme is linear, i.e., we can set [x+ y]i := [x]i+[y]i, [cx]i := c·[x]i,
[x+ c]i := [x]i + c · δi1 for shared values x, y and a publicly known constant c,
where δij is the Kronecker delta. To open (or reconstruct) a secret-shared value,
parties simply broadcast their shares and compute the sum of all shares. Our
techniques hold independently of the used secret-sharing scheme.

In SPDZ and related protocols, shares are additionally authenticated to verify
the outputs of the protocol using a MAC key [30,31]. The MAC key α ∈ R is
shared in the preprocessing phase. Secret shared values (including inputs and
structured randomness like Beaver triples or arithmetic tuples) are authenticated
in the offline phase—we use JxK := ([x] , [αx]) to denote authenticated shares of
x and JXK = (Jx1K, . . . , JxkK) for a tuple X = (x1, . . . , xk). Linear operations on
authenticated shares are a trivial extension of linear operations on shares with
the exception of Jx+cKi := ([x+ c]i , [αx]i+c·[α]i). A MAC check enables parties
to verify the integrity of previously opened shares (cf. Protocol 1.9 or [30,31]).
The soundness of the MAC check is proportional to 1

|R| , can be aggregated over

many opened linear combinations, and does not reveal the MAC key [30].

4 Binomial Tuples: Composable, One Round, Small
Bandwidth, Large Tuples

In this section, we discuss a natural generalization of Beaver triples based on
binomial expansion. Our goal is to compute a polynomial f in m variables
x0, . . . , xm−1 ∈ R of total degree d =

∑m−1
j=0 dj with one round of communication

plus one opening round. A passively secure version of this extension was used
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in [22]. Recall the binomial expansion for one variable x: xd = (x − a + a)d =∑d
e=0

(
d
e

)
ae(x − a)d−e. Then

[
xd
]
i
=
∑d

e=0

(
d
e

)
[ae]i (x − a)d−e is an additive

sharing of xd based on sharings of ae and the publicly known/previously opened
x − a. One can generalize this construction to several variables in the straight-
forward way. Namely, let aj ∈ R be a shared value for each 0 ≤ j < m. Define

ae :=
∏m−1

j=0 a
ej
j for e = (e0, . . . , em−1) ∈×m−1

j=0
{0, . . . , dj} =: E. Note that

a0 = a(1,0,...,0), . . . , am−1 = a(0,...,0,1) are already included in the ae. Further-
more, a(0,...,0) = 1 is independent of the aj and therefore a publicly known

constant. Hence, we have a tuple size of
∏m−1

j=0 (dj + 1)− 1.

Now we can construct a sharing of f(x0, . . . , xm−1) =
∏m−1

j=0 x
dj

j using

a shared tuple [(ae)e∈E ] by [f(x0, . . . , xm−1)]i =
∑

e∈E [ae]i
∏m−1

k=0

(
dk

ek

)
(xk −

ak)
dk−ek . This is in fact a sharing of f(x0, . . . , xm−1) since

n∑
i=1

[f(x0, . . . , xm−1)]i =
∑
e∈E

ae
m−1∏
k=0

(
dk
ek

)
(xk − ak)

dk−ek

=

m−1∏
k=0

dk∑
ek=0

(
dk
ek

)
aekk (xk − ak)

dk−ek =

m−1∏
k=0

xdk

k . (1)

We call tuples of the form [(ae)e∈E ] binomial tuples. To be used in a maliciously
secure online phase one extends binomial tuples in the usual way by adding
MACs. We get authenticated binomial tuples J(ae)e∈EK := (([ae] , [αae]))e∈E and
the correctness of the resulting online phase follows from Equation (1).

Remark 1. The construction linearly extends to polynomials of the
form g(x0, . . . , xm−1) =

∑
e∈E ge

∏m−1
j=0 x

ej
j with ge ∈ R coeffi-

cients, where each ae has to occurs at most once in the bino-
mial tuple. For example, for x3

0x1 + x0x
3
1 we need an 11-tuple

J(a(1,0), a(2,0), a(3,0), a(0,1), a(1,1), a(2,1), a(3,1), a(0,2), a(0,3), a(1,2), a(1,3))K.

At (a naive) first glance binomial tuples seem to have a clear advantage com-
pared to a classical Beaver multiplication based online phase like in [31] if we
want to secretly evaluate a polynomial on shared data: the round complexity is
minimal and also the data sent in the online phase is small. E.g. for a degree
d =

∑m−1
j=0 dj monomial in m variables, classical Beaver multiplication (without

authentication or circuit-dependent preprocessing as in [9]) uses ⌈log(d)⌉ + 1
rounds and has to send at least 2d−1 elements per party to open the result. Bi-
nomial tuples on the other hand allow one to compute the same monomial in just
two rounds of communication (including the opening round) with a bandwidth of
m+1 field elements per player. The effect is even stronger for monomials in one
variable or the simultaneous computation of several of these powers. However,

for
∏m−1

j=0 x
dj

j the binomial tuple is of size
∏m−1

j=0 (dj + 1) − 1. In particular, for

dj = 1 for all 0 ≤ j < m, the tuple size becomes 2m − 1 = 2d − 1. For large d, a
maliciously secure offline phase might not be able to produce a sufficient number
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of binomial tuples in reasonable time. We also expect a decrease of performance
of the online phase for large m since the local iteration through the large tuple
might become relevant. As already mentioned in the introduction, we overcome
these shortcomings with arithmetic tuples, which still guarantee minimal round
complexity but with a smaller overall tuple size.

5 Arithmetic Tuples: Composable One Round Protocols
With Moderate Tuple Size

We now present our main technical results on the use of arithmetic tuples, which
generalize both the concept Beaver triples and binomial tuples and come with the
advantages already sketched in the introduction. We first provide some intuition
in Section 5.1 and then present the formal construction of arithmetic tuples
along with our main theorems in Sections 5.2 and 5.3; the tuple generation in
the offline phase is discussed in Section 6.

5.1 Examples of Arithmetic Tuples and Highly-Level Construction
Idea

Recall from the introduction that in our protocol parties receive structured ran-
domness from the offline phase, which contains more structure than plain Beaver
triples, and use this to locally compute shares of so-called building blocks, where
a building block is roughly any polynomial in the shared inputs, computed from
the publicly available data and the shared tuple entries. Once (locally) com-
puted building blocks will be opened so that they can publicly be used by all
parties. Hence, they must be constructed in such a way that they do not reveal
any information on party inputs or intermediate results. Now, with the opened
building blocks every party can construct the final result locally.

In the following we discuss two examples of increasing complexity to illus-
trate the general design principle for arithmetic tuples and their corresponding
building blocks. A formal description is contained in the next subsection.

We start by looking at arithmetic tuples for computing the product of four
shared inputs Jx0K·Jx1K·Jx2K·Jx3K. Here, each party receives a structured 13-tuple
of the form

(Ja0K,Ja1K,Ja2K,Ja3K,Ja0a1K,Ja01K,Ja01a2K,Ja01a3K,Ja2a3K,
Ja23K,Ja23a0K,Ja23a1K,Ja01a2a3 + a23a0a1 − a01a23K) (2)

from the offline phase. The parties then proceed in the online phase according to
Protocol 1.1. In this simple example the building blocks are y01, y23, y0123 and
the subsequent local computation is to combine these blocks as y01y23 + y0123.
This example corresponds to the classical arithmetic circuit for the multiplication
of four variables, i.e. we first compute (in parallel) x0x1 and x2x3 and in the
second step the product of all four variables. To stay secure however, we cannot
open x0x1 or x2x3, so we mask these products with fresh randomness a01 and a23,

9



1. Pi computes and opens JxjKi − JajKi for all 0 ≤ j < 4.
2. Pi computes locally and opens

(i) Jy01K = Jx0x1 − a01Ki = (x0 − a0)Jx1Ki + Ja0Ki(x1 − a1) + Ja0a1Ki − Ja01Ki
(ii) Jy23K = Jx2x3 − a23Ki = (x2 − a2)Jx3Ki + Ja2Ki(x3 − a3) + Ja2a3Ki − Ja23Ki
(iii) Jy0123Ki = Ja23x0x1 + a01x2x3 − a01a23Ki = (x0 − a0)(x1 − a1)Ja23Ki + (x0 −

a0)Ja1a23Ki+ Ja0a23Ki(x1−a1)+ Ja01Ki(x2−a2)(x3−a3)+(x2−a2)Ja3a01Ki+
Ja2a01Ki(x3 − a3) + Ja0a1a23 + a01a2a3 − a01a23Ki.

3. Pi computes the result x0x1x2x3 = y01y23 + y0123.

Protocol 1.1: Protocol to compute the product x0 · · ·x3.

respectively. This leads to the unwanted mixed term a23x0x1+a01x2x3−a01a23
in the second level multiplication. We remove this mixed term with the final
building block y0123. Note that the security of this approach follows analogously
to Beaver multiplication. We will present a security proof of our general online
protocol later in Theorem 2 (in Section 5.3).

Now let us extend the example to multiply eight variables, i.e., to compute
x0 · · ·x7. For this purpose, we replace y0123 by y0123 − a0123 with a new mask
a0123. We can do this by simply adding the share Ja0123K locally before we open
the block. Hence we can compute the masked value x0 · · ·x3 − a0123 = y01y23 +
y0123 − a0123. In parallel, and analogously, we construct x4 · · ·x7 − a4567 using
another tuple as in Eq. (2) with the obvious notational changes in the indices.
Note that we still have the same number of rounds but we can now compute

(x0 · · ·x3 − a0123)(x4 · · ·x7 − a4567)

= x0 · · ·x7 − a4567x0 · · ·x3 + a0123x4 · · ·x7 − a0123a4567.

In order to get the product
∏7

j=0 xj we need further building blocks to can-

cel out the intermediate terms like a4567
∏3

j=0 xj . However, we do not need
to build them from scratch since we can use, e.g., y23 and one additional
block Ja4567x0x1 − a4567,01K = Ja4567K(x0 − a0)(x1 − a1) + Ja0a4567K(x1 − a1) +
Ja1a4567K(x0−a0)+ Ja0a1a4567−a4567,01K for new randomness a4567,01. The par-
ties can locally multiply y23 and this new block. This again leads to more terms
like a4567,01x2x3 which we also need to compensate with further building blocks.
Still, with a sufficient number of suitably formed building blocks we can finally
compute

∏7
j=0 xj . Note that we never increase the number of communication

rounds since all building blocks are constructed and opened in parallel.
Of course this construction method can only be efficient if we keep the num-

ber of building blocks reasonably low. Just as in this example, we therefore use
already constructed building blocks over and over again to compensate for dif-
ferent mixed terms. Not only do we use the masked products like x0x1 − a01,
but also the new blocks of the form a4567x0x1 − a4567,01 with one secret shared
prefactor or even products with 2 prefactors, e.g. terms like abx0x1 − c for new
randomness a, b, c. Our main technical result tells us that building blocks of these
three shapes, i.e. monomials in the input variables with up to two prefactors and
an additive mask, are enough to construct any product of input variables. The
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fact that we can use one building block multiple times is the reason why we
can reduce the bandwidth to O(m log(m)) and consequentially the tuple size
down to O(m log(m)2) for a product of m input variables, while keeping the
communication low. In comparison, a binomial tuple has exponential tuple size
for the same product. Similar results hold for arbitrary monomials and general
polynomials.

Also note that this construction works in the case when we compute a product
in more than two factors (e.g. x0 · · ·x5 as (x0x1−a01)(x2x3−a23)(x4x5−a45) plus
mixed terms). Allowing arbitrary partitions in our general construction gives us
the flexibility to tune arithmetic tuples for smaller size or lower bandwidth. Also,
the approach can be generalized to polynomials in m variables instead of just
monomials.

5.2 The General Construction

We now present our formal mathematical results. Since we our results might be
applicable in different setups (e.g. for computations on ciphertexts) this subsec-
tion is kept in a very formal mathematical language. To better understand the
high level idea, we refer to the introduction, the previous subsection as well as
Figure 1 or Example 3.

Let R be our commutative base ring, X and A disjoint finite sets of
indeterminates—we will assume that all indeterminates commute to later eval-
uate at elements of our commutative ring. Let P ⊂ R[X,A] be a finite set
of polynomials and L(X,A,P ) = {

∑
r∈A∪X∪{1},g∈R[P ] rg}. We call BA,P,f ⊂

L(X,A,P ) a set of building blocks for a polynomial f ∈ R[X] given A and P if
f ∈ R[P∪BA,P,f ]. We call a building block b additive if f is R-linear in b.10 X will
model the set of our input variables, A the set of arithmetic tuple entries—both
usually only available in shared form. P contains public information available
from previous rounds, e.g. P = {xj − aj : 0 ≤ j < m}, xj ∈ X, aj ∈ A after
an initial masking round. L(X,A,P ) contains the linear combinations of the
X,A which can be computed locally, the public information from P can also be
multiplied locally. To simplify notation we will sometimes drop the dependence
on A,P if it is clear from context, i.e. simply write Bf . Note that a basis is not
unique. B is called minimal if f /∈ R[P ∪ (B \ {b})] for each b ∈ B. Since all
building blocks are sent in our MPC protocol round we are mainly interested in
minimal sets. Of course inclusion does not establish a total order for sets of build-
ing blocks, e.g. in the previous example Protocol 1.1 both Bx0···x3

= {x0 · · ·x3}
and B′

x0···x3
= {y01, y23, y0123} are minimal—Bx0···x3

can be constructed using
a binomial tuple as in Section 4; B′

x0···x3
is spanned by the y01, y23, y0123 from

example Equation (2). We call a set of building blocks privacy-preserving if f
can be combined in way that no information about the inputs or any interme-
diate results is leaked that cannot be deduced from the final result. Usually we
ensure building blocks to be privacy-preserving by adding fresh randomness as a

10 The additivitiy of b depends on the choice of g ∈ R[P ∪ BA,P,f ] with f(X) =
g(P ∪BA,P,f ). In our setup this choice will be clear from context.
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one-time pad. In particular, Bx0···x3
and B′

x0···x3
are clearly privacy-preserving.

Obviously, Bf∪Bg is a set of building blocks for f+g ∈ R[X] and (f, g) ∈ R[X]2;
Bf is a set of building blocks for cf for any constant c ∈ R. In particular, we can
first concentrate on the building blocks for a symmetric monomial x0 · · ·xm−1,

and later use the results to describe general monomials xd0
0 · · ·x

dm−1

m−1 or a general
multivariate polynomial f .

To simplify notation we set xM =
∏

i∈M xi for any M ⊂ N, i.e. want to
compute x{0,...,m−1}. We further set yM = xM − aM for some random el-
ement aM .11 Our goal is to write x{0,...,m−1} in terms of the ySl−1,j

for a

partition {0, . . . ,m − 1} =: Sl,0 =
⋃̇

j∈Zrl−1
Sl−1,j , rl−1 ∈ N+ with some non-

empty sets Sl−1,j , i.e. xM = Q(ySl−1,j
: j ∈ Zrl−1

) for some polynomial
Q. In the example from Section 5.1 we had {0, 1, 2, 3} = {0, 1} ∪̇ {2, 3} and
x0123 = y01y23 + a01y23 + a23y01 + a01a23. If we can construct all summands in
Q locally from building blocks then we are done. In the example, we can locally
build a01y23, a23y01, a01a23.

12

If we cannot build the summands in Q, then we have to construct each
summand from smaller blocks. In general, we consider a series of refinements
{0, . . . ,m − 1} =

⋃̇
j∈Zrk

Sk,j of disjoint unions of non-empty sets for each 0 ≤
k ≤ l, 1 = rl < rl−1 < · · · < r0 ≤ m, i.e. ∀0 ≤ k < l ∀j ∈ Zrk ∃j0 ∈ Zrk+1

:
Sk,j ⊆ Sk+1,j0 . For later use we also define Ik,j := {i ∈ Zrk−1

: Sk−1,i ⊂ Sk,j}
for k > 0.

We will usually start at the ground level
⋃̇

j∈Zrk
Sk,j where we can construct

the building blocks locally and then we build higher degree products level-by-
level until we get to

∏m−1
j=0 xj . Depending on the size of a specific S0,j , a building

block yS0,j (or a multiple thereof) will have degree |S0,j | in the xj—the degree
can vary over the different j. Recall that in principle we can build any degree
|S0,j |-term locally using binomial tuples once we know the masked inputs xj−aj
(cf. Section 4). We will use this fact later, but first let us see how many building
blocks are needed to go one level up. This is the content of Lemma 1 below.

Without loss of generality we will consider Sk−1,i = {i} and Sk,j = {0, . . . , r−
1} and hence |Ik,j | = r for the next three lemmas. This simplifies the notation
significantly. Furthermore, given a ∅ ≠ J = {j0, . . . js} ⊂ Zr with representatives
0 ≤ j0 < · · · js < r, js+1 = j0 and a set of functions {fij , (i, j) ∈ Z2

r}, we define
the product fJ :=

∏s
t=0 fjt,jt+1−1.

13 We give a specific example of this notation
in the proof of Lemma 1.

Lemma 1. Let A1 = {ai+1,...,j : i, j ∈ Zr, i ̸= j} ⊂ A be a set of commuting
variables. For i, j ∈ Zr set fij = xiai+1,...,j − ai,...,j if i ̸= j and fii = xi − ai.

14

11 We will sometimes drop the set brackets {. . .} in the index to simplify notation, e.g.
x0123 instead of x{0,1,2,3}.

12 As we have seen, we only need one building block for all three terms—this optimiza-
tion is discussed later.

13 We use indices in Zr because they wrap around nicely. To be more formal, let i be
the unique representative of i ∈ Zr in {0, . . . , r − 1}.

14 We chose the notation ai+1,...,j—ai,j is a valid alternative.
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The term xZr
− Q(fij : (i, j) ∈ Z2

r)) is constant for Q(fij : (i, j) ∈ Z2
r) :=∑

∅̸=J⊂Zr
fJ .

Proof. Consider ∅ ̸= J = {j0, . . . js} ⊂ Zr as above with representatives 0 ≤
j0 < · · · js < r, js+1 = j0. Then fJ =

∏s
t=0(xjtajt+1,...,jt+1−1 − ajt,...,jt+1−1) by

definition. E.g. the set J = Z5 leads to fJ =
∏4

i=0(xi−ai) and J = {2, 4, 5} ⊂ Z6

to (x2a3−a23)(x4−a4)(x5a01−a501). We note that there are exactly r2 different
factors in products associated to non-empty sets J , since a factor is defined by
its start jt and end index jt+1, i.e. 2 ordered samples from Zr. We show that∏

j∈Zr
xj −

∑
∅̸=J⊂Zr

fJ is constant.15 Note that apart from
∏

j∈Zr
xj each non-

constant summand is of the form xjaj+1,...,k−1g for some specific term g and
some j, k.16 Each of these terms (for a fixed g, j and k) occurs exactly once
with a positive sign for a J which contains jl = j, jl+1 = k ̸= j + 1 for some
l, i.e. as a summand in fjl,k−1g = (xjlajl+1,...,k−1 − ajl,...,k−1)g.

17 It occurs
exactly once with a negative sign for a J ′ = J ∪ {j + 1}, i.e. as a summand in
fjl,jlfjl+1,k−1g = (xjl − ajl)(xjl+1ajl+2,...,k−1 − ajl+1,...,k−1)g. Thus these terms
cancel out. So does

∏
j∈Zr

xj with the degree r term in fZr
. Thus, the remaining

summands are constant.

Remark 2. Note that only the r terms fii have a leading coefficient 1, one for
each variable xi. Another r terms are not used in products with other terms,
namely the fi,i−1. We can use this fact to combine these fi,i−1 into a single
private building block

∑s
i=0 xiai+1,...,i−1 − aconst for an aconst ∈ A—this fact

was used to create y0123 in the example from Section 5.1. In particular, we can
replace A1 by {ai+1,...,j : i, j ∈ Zr, i ̸= j, j + 1} ∪ {aconst}. Furthermore, if A
contains a suitably formed aconst ∈ A, we can build exactly xSk,j

or ySk,j
. Finally,

for each i ∈ Zr there are r − 1 terms linear in xi with a variable prefactor (this
includes the fi,i−1).

We want to shortly return to the general picture. Lemma 1 tells us that we
can combine xSk,j

from secret linear terms in xSk−1,i
, i ∈ Ik,j (up to a constant).

It also implies (cf. Remark 2) that |Ik,j | of these smaller degree terms are again
of the same shape xSk−1,i

(up to a constant)—for these terms we apply Lemma 1

again to lower the degree further. Lemma 1 applied for Sk−1,i =
⋃̇

µ∈Ik−1,i
Sk−2,µ

results in |Ik−1,i|2 terms linear in xSk−2,µ
, µ ∈ Ik−1,j . We can reuse some of these

terms of Lemma 1 and Lemma 2 is used to account for the remaining terms linear
in xSk−1,i

but with non-trivial prefactor a ∈ A. Lemma 2 uses the same notation
as Lemma 1.

Lemma 2. Let A1, fij, Q be as in Lemma 1. Let µ ∈ Zr be a fixed index
and a ∈ A some variable. Define Tµ := {(i, j) ∈ Z2

r : j − µ ≤ i− µ− 1} and
Sµ = Zr \ Tµ. Let Aµ

2 = {bµij : (i, j) ∈ Tµ} ⊂ A \ A1. Define ga,µij = fij

15 This sum is exponential in r. We will however usually use r small enough that this
local computation does not effect the overall runtime significantly.

16 Take j := min{i : xiai+1,...,k a factor of the summand for some k ̸= i+ 1}.
17 The other elements of J are uniquely determined by g.
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for (i, j) ∈ Sµ, ga,µµµ = axµ − bµµ, ga,µµj = axµaµ+1,...,j − bµµ,...,j for j ̸= µ and

ga,µij = xib
µ
i+1,...,j − bµi,...,j for Tµ \ ({µ} × Zr). Then axZr

−Q(ga,µkl : (k, l) ∈ Z2
r)

is constant.

Proof. To simplify notation set bµi,...,j := ai,...,j for (i, j) ∈ Sµ. Then we can
simply copy the proof of Lemma 1 for the variables (axµ, xj , j ̸= µ) and cofficients
b∗ instead of a∗. Hence, a

∏
j∈Zr

xj −Q(ga,µij : (i, j) ∈ Z2
r) is constant.

Remark 3. Observe that r − 1 of the leading coefficients are products of two
elements18 of A, i.e. the axµaµ+1,...,j in ga,µµj for j ̸= µ. Moreover, note that r
of the new r(r + 1)/2 terms are not used in products with others, namely the
ga,µi,i−1—in particular, (i, i − 1) ∈ Tµ. As before, these can be combined into a

single building block
∑s

i=0 xib
µ
i+1,...,i−1 − bµconst for bµconst ∈ A. One can then

modify A2 as in Remark 2.

Similar to the discussion after Remark 2, Lemma 2 comes with linear terms
that have two secret prefactors and Lemma 3 below shows how we can build
these terms from lower degree terms.

Lemma 3. Let µ, ν ∈ Zr be two fixed indices with µ ̸= ν and a, b ∈ A. Let
A1, A

µ
2 , A

ν
2 , fij, g

a,µ
ij , gb,νij , Q, Sµ, Sν , Tµ, Tν be as in Lemmas 1 and 2. Let

A3 = {cij : (i, j) ∈ Tµ∩Tν} ⊂ A\(A1∪Aµ
2∪Aν

2). Let hij = fij for (i, j) ∈ Sµ∩Sν ,
hij = gµij for (i, j) ∈ Tµ \ Tν , hij = gνij for (i, j) ∈ Tν \ Tµ. For (i, j) ∈ Tµ ∩ Tν

set: hij = xici+1,...,j−ci,...,j for µ ̸= i ̸= ν, hµj = axµb
µ
µ+1,...,j−cµ,...,j for j ̸= µ,

hνj = bxνb
ν
ν+1,...,j − cν,...,j for j ̸= ν, and hµµ = axµ− cµ, hνν = bxν − cν . Then

abxZr
−Q(hij : (i, j) ∈ Z2

r) is constant.

Proof. Note that we can set consistently ci,...,j = ai,...,j for (i, j) ∈ Sµ∩Sν , since
then (i+1, j) ∈ Sµ∩Sν if i ̸= j. Set ci,...,j = bµi,...,j for (i, j) ∈ Tµ \Tν , since then
(i+1, j) ∈ Tµ\Tν apart from i ̸= µ. Analogously ci,...,j = bνi,...,j for (i, j) ∈ Tν\Tµ.
Furthermore, (i, j) ∈ Tµ ∩ Tν ⇒ (i + 1, j) ∈ Tµ ∩ Tν for i ̸= µ ̸= ν. The claim
now follows as in Lemma 1 with variables (axµ, bxν , xj : µ ̸= j ̸= ν).

Remark 4. Again r of the new terms are not used in products, i.e. hi,i−1 and
(i, i− 1) ∈ Tµ ∩Tν , and the usual reductions apply also to A3. Furthermore, the
number of new terms with two variable prefactors is also r, i.e. the terms hµj

for j − ν ≤ µ− ν − 1 and hνj for j − µ ≤ ν − µ− 1.

Finally in Lemma 3 no new types of linear terms come up, i.e. we still only
have prefactors 1, a or ab for some a, b ∈ A. Hence, we can iteratively use the
three previous lemmas to reduce to any basis level S0,i we choose. The general
construction is illustrated in Figure 1. Observe that one only needs terms of
the form fij , g

∗
ij , h

∗
ij which are by definition of the expected form with 0, 1 or 2

prefactors.
We can now compute the number of elementary building blocks needed to

compute x0 · · ·xm−1. Let N
0
Sk,j

be the number of elementary privacy-preserving

18 Not necessarily different.
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Fig. 1: The diagram illustrates which types of lower-degree polynomials are used to
build higher degree terms. We added a left-upper index to denote the level, e.g. kg∗ij
denotes a linear term in xSk,i as used in Lemma 2. Boxes, e.g. around kfij , denote

sets over i, j ∈ Ik+1,̃i with ĩ the specific index one level higher, e.g. the index of k+1fĩj̃ ;
round framings denote single elements. The labels of the arrows refer to the numbers of
the Lemmas 1 to 3. Note that in some special cases, e.g. fii not all arrows are necessary,
e.g. only Lemma 1. Furthermore, the g∗ij already contain some fij which will not be
constructed multiple times. Analogously for hij .

building blocks linear in xS0,i
needed to compute xSk,j

−aSk,j
for some aSk,j

∈ A.
Let N1

Sk,j
be the number of additional elementary privacy-preserving building

blocks linear in xS0,i
needed to compute also axSk,j

− bSk,j
for some a, bSk,j

∈ A.
Let N2

Sk,j
be the number of further additional elementary privacy-preserving

building blocks linear in xS0,i needed to also compute abxSk,j
− cSk,j

for some
a, b, cSk,j

∈ A. From Lemmas 1 to 3 and Remarks 2 to 4 we get

N0
Sk,j

=
∑

i∈Ik,j

N0
Sk−1,i

+ (|Ik,j | − 1)
∑

i∈Ik,j

N1
Sk−1,i

− |Ik,j |+ 1 (3)

N1
Sk,j

=
∑

i∈Ik,j\{µ}

N1
Sk−1,i

|Tµ ∩Mi|+(|Ik,j | − 1)N2
Sk−1,µ

+N1
Sk−1,µ

−|Ik,j |+1 (4)

N2
Sk,j

=
∑

i∈Ik,j

N
1+|{i}∩{µ,ν}|
Sk−1,i

|Mi ∩ Tµ ∩ Tν | − |Ik,j |+ 1 (5)

where Mι = {ι} × Ik,j and the Tµ, Tν are defined as in Lemma 2 using our
identification Ik,j → Zr.

19 Recall that we can remove the |Ik,j | linear summands
in each mixed term by a single building block. Hence, we get the final summand
−|Ij,k|+ 1 in each of the expressions.

Application in MPC Protocols and Asymptotic Behavior. Now, we will
explain how we can use the previously discussed purely theoretical results in an
MPC online phase. We remark however, that the technique might be usable in
other setups to transform interactively evaluated arithmetic circuits in to circuits
that can be evaluated locally.

19 While N1
S1,i

and N2
Sk,j

depend on µ and ν, these indices can be chosen freely. For
this reason we decided to not mark the two numbers with another µ or ν index.
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Lemmas 1 to 3 show how to locally evaluate a term xSl,0
for some finite

set Sl,0 from publicly available privacy-preserving building blocks linear in xS0,j

with Sl,0 =
⋃̇

j∈Zr0
S0,j . Equations (3) to (5) describe how many of these building

blocks we need if we set Nγ
S0,j

for all γ = 0, 1, 2 and all j ∈ Zr0 . In our MPC

protocol we have to send the resulting N0
Sl,0

building blocks plus the inital |Sl,0|
masked values send first. The Equations (3) to (5) also decribe the number of
variables used in these building blocks, namely the |A1|, |Aµ

2 |, |A3| from Lem-
mas 1 to 3 (with the size modifications discussed in the corresponding remarks).
We will use binomial tuples to construct these building blocks. Recall from Sec-
tion 4 that a term yS can be computed with a 2|S| − 1 tuple for any finite set
S; a term dxS − bS , as well as a term dd′xS + cS for some d, d′, bS , cS ∈ A, each
need a tuple of size 2|S| compensating for the additional prefactor(s), i.e. in the
notation of Section 4 a tuple (dae)e∈E or (dd′ae)e∈E . Hence if we replace the
Nγ

Sk,j
, γ = 0, 1, 2 in Equations (3) to (5) by the corresponding tuple sizes T γ

Sk,j

and set T 0
S0,j

+1 = T 1
S0,j

= T 2
S0,j

= 2|S0,j |, then T γ
Sl,0

will be the tuple size needed
to compute xSl,0

.
We will call these tuples arithmetic tuples because they are used to construct

the inputs of an arithmetic circuits. This arithmetic circuit is definied by Lem-
mas 1 to 3, e.g. in Lemma 1 we compute for each ∅ ̸= J ⊂ Ik,j a multiplication
gate fJ =

∏s
t=0 fjt,jt+1−1 and then use an addition gate to add over all the J to

get xSk,j
. Note that the maximal number of inputs into fJ is just |Ik,j |, i.e. the

number of factors in the product
∏

i∈Ik,j
ySk−1,i

.
Arithmetic tuples are an obvious generalization to Beaver triples or binomial

tuples, which are usually only used to build a single building block. The size of
an arithmetic tuple as well as the number of building blocks strongly depends
on the locally evaluated circuit as the following Theorem 1 on the asymptotic
complexity shows. Before we do so, we give an initiating example:

Example 1. As an example we want to compute the product of x0, . . . , x15 using
the partitions by Sk,j = {2k+1 · j + i : 0 ≤ i < 2k+1}. In particular, we will get
elementary building blocks linear in x{2j,2j+1}, 0 ≤ j < 8. For the cases y{2j,2j+1}
we need a 22 − 1 = 3-tuple, for the one prefactor case ax{2j,2j+1} − b{2j,2j+1}
a 4-tuple. Thus we can construct the degree 4 terms yS1,j

by a tuple of size
3 + 3 + (2 − 1)(4 + 4) − 2 + 1 = 13. Moreover, for µ = 2j + 1 we have Tµ =
{(ι, κ) ∈ {2j, 2j + 1}2 : κ ≤ ι} and T 1

S1,j
= 4 · 1 + 1 · 4 + 4 − 2 + 1 = 11.

Thus T 0
S2,j

= 13 + 13 + (2 − 1) · 22 − 2 + 1 = 47. Next, we compute again

the mixed terms with µ = 2j + 1, ν = 2j and hence Tµ ∩ Tν = {(µ, µ), (ν, ν)}:
T 2
S1,j

= T 2
S0,j

+ T 2
S0,j
− 2+ 1 = 7 and T 1

S2,j
= 11 · 1+ (2− 1) · 7+ 11− 2+ 1 = 28.

Thus, T 0
S2,j

= 47+47+(2−1) ·56−2+1 = 149, i.e. we can construct a x{0,...,15}
in one masking round and one opening round with a 149-tuple. In comparision,
a binomial tuple for the computation of x{0,...,15} has size 216 − 1.

To better understand how the asymptotic behavior of the bandwidth and
tuple size depends on the number of factors |Ik,j | locally multiplied in one multi-
plication gate, we extend the previous example to arbitrary products of m = λbn
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variables for some base b ≥ 1 and Sk,j = {λbk · j + i : 0 ≤ i < λbk}, 0 ≤ j <
bn−k, 0 ≤ k ≤ n, i.e. each degree bk term splits into b building blocks of degree
bk−1 until we reach a level of elementary building blocks of degree λ ≥ 1. In
Example 1 we had b = 2, n = 3, λ = 2. Now we can state the main result on the
asymptotic behavior, which we prove in Appendix A.

Theorem 1. Let λ, b, Sk,j be defined as before. A product of m = λbn shared

inputs can be constructed with an arithmetic tuple of size O
(
2λ
(

b2+1
2

)n)
with

bandwidth O
((

b2+1
2

)n)
. In the special case b = 2, one only needs a tuple of size

2n−2((2λ − 1)n2 + (2λ+2 − 2λ + 1)n + 4(2λ − 2)) + 1. For b = 2, the bandwidth
becomes 2nn+ 1 +m.

Remark 5. If we fix λ small, e.g. λ ≤ 3, the case b = 2 leads to a bandwith in
O(m log(m)) and a tuple size in O(m log(m)2) while in all cases b > 2 both val-
ues are not even in O(m2) (cf. Proof Theorem 1 and Lemma 4 in Appendix A).
Furthermore, we remark that for a mixed number of factors going into a mul-
tiplication gate as in Equations (3) to (5) the complexity will be dominated by
the largest number of factors that occurs in a significant fraction of gates. In
particular, by choosing all multiplication gates to have two factors, we get for
any m: bandwidth in O(m log(m)) and tuple size in O(m log(m)2). Finally, the
complexity analysis also covers the case of a binomial tuple for b = 1.

Polynomials in Several Variables. Up to this point we mainly discussed
the computation of symmetric monomials of the form x0 · · ·xm−1. However, the

previous results directly transfer to general monomials xd = xd0
0 · · ·x

dm−1

m−1 , d =

(d0, . . . , dm−1) simply by replacing the variables xi in the building blocks by xdi
i .

A building block will then be linear in
∏

s∈S0,j
xds
s and this building block can

still be constructed using a binomial tuple. From Section 4 we know that T 0
S0,j

=

T 1
S0,j
− 1 = T 2

S0,j
− 1 =

∏
s∈S0,j

(ds+1)− 1. For the special case where |S0,j | = 1,

e.g. S0,j = {j}, we have T 0
{j} = dj+1, i.e. Jxdj

j −a′j,dj
K = −Ja′j,dj

K+
∑dj

i=0Ja
i
jK(xj−

aj)
dj−i for a new mask a′j,dj

. Then the tuple size needed to compute xd0
0 · · ·x

dm
m−1

follows recursively from Equations (3) to (5). If dj = d′ the tuple size to compute

xd0
0 · · ·x

dm−1

m−1 for m = d′2n becomes 2n−2((d′ + 1)n2 + (3d′ + 7)n+ 4d′) + 1. For
details we refer to the proof of Theorem 1 in Appendix A which contains the
formulas (and proof thereof) whenever T 1

S0,j
= T 2

S0,j
. The result shows that in the

total degree d =
∑m−1

j=0 dj = md′ we can get down to complexity O(d log(m)2)
in the tuple size. The same bound on the complexity also holds for all other
cases with d =

∑m−1
j=0 dj since we can choose µ, ν in Equations (4) and (5)

and therewith the building blocks with additional prefactors from those base
cases where T 1

S0,j
= T 2

S0,j
is minimal, i.e. from the cases with dj ≤ d/m. Please

note that the monomial xd0
0 · · ·x

dm−1

m−1 was also discussed in the introduction in
Table 1.
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Next, we recall from the beginning of this section that given sets of building
blocks Bf and Bg for functions f, g, f+g can be computed using the set Bf ∪Bg.
Hence a general multivariate polynomial f(x0, . . . , xm−1) =

∑
e∈E fex

e can be
constructed using

⋃
e∈E:fe ̸=0 Bxe , i.e. the building blocks Bxe for its monomials.

Analogously, one combines the corresponding arithmetic tuples to a tuple that
allows to construct Bf . As in Remark 2 all additive building blocks from the
different Bxe with fe ̸= 0 can be combined into a single building block which
further reduces the number of blocks and the corresponding to tuple. Overall we
find for any multivariate polynomial f an arithmetic tuple and a set of building
blocks Bf to evaluate f(x0, . . . , xm−1).

5.3 Security and Composability

From Section 5.2 we know how to evaluate a polynomial f(x0, . . . , xm−1) in
a single round using arithmetic tuples. With our MPC protocol Πonline pre-
sented in Protocol 1.2, we are able to do this in three different ways: (i) com-
pute f(x0, . . . , xm−1) publicly (i.e. the result is an output of the function to
be evaluated with MPC), (ii) compute Jf(x0, . . . , xm−1)K (this can be used
in other subprotocols that require their inputs as shares), and (iii) compute
f(x0, . . . , xm−1) − b where b is part of the tuple for another polynomial g; this
allows our protocol to be used in a multi-round fashion. While (i) and (ii) are
straightforward applications of the results from the previous subsections, we
want to take a closer look at the multi-round use, which allows a different form
of tradeoff. Namely, we allow a (slightly) larger number of communication rounds
but can therefore further reduce the tuple size and bandwidth.

Multi-Round Evaluation. Assume the parties have agreed on a series of poly-
nomials fj , 0 ≤ j < m with input tuples Xj (not-necessarily disjoint) and a poly-
nomial f in m variables. They want to compute f(f0(X0), . . . , fm−1(Xm−1)).
The parties construct suitable arithmetic tuples JAjK, 0 ≤ j < m (for each fj)
and JAK (for f) in the preprocessing phase and receive inputs JXjK in the input
phase. They run Πonline.Arithmetic(Xj , fj , continuation := (f, j)) in parallel to
receive (xι − aι), 0 ≤ ι < |Xj |, 0 ≤ j < m in a single broadcast round. Then the
parties locally compute the shares of the building blocks and adjust an additive
building block of Bfj by JajK ∈ JAK such that after the next broadcast every
party can locally compute the public values zj := fj(Xj)− aj .

Finally, they call Πonline.Arithmetic((z1, . . . , zm), f, continuation := open).
Observe that in this call, the second step of Πonline.Arithmetic does not require
any opening of elements as all zj are already public masked values.

Remark 6. Note that our protocol is compatible with techniques used in Tur-
bospeedz [9] and ABY2.0 [64] that use function-dependent preprocessing. This
allows to reduce the online bandwidth even more. As an extreme case, one would
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only have to open the building blocks in our protocol as all maskings xj −aj are
already accounted for.20

In Section 5.2 we have seen that by suitably choosing the arithmetic tuples,
the corresponding building blocks and the local circuit evaluated on the build-
ing blocks, we can tradeoff bandwidth and tuple size while keeping the round
complexity minimal. The multi-round feature adds additional flexibility to our
online protocols Πonline. In particular, it allows to increase the round complex-
ity slightly to prevent possible performance bottlenecks in bandwidth and tuple
size.

Example 2. The example discusses different trade-off of round complexity, band-
width and tuple size in the special case of a product of m = 12 variables. There
if we impose no restrictions on the offline phase, e.g. if a trusted third party pro-
vides the offline data for the online phase, then we can choose a binomial tuple
size which has the small bandwidth of 13 ring elements and round complexity
1(+1), but a tuple size of 4095. For time-critical offline phases the classical Beaver
multiplication approach needs a comparably small tuple size of 3(m − 1) = 33
but needs ⌈logm⌉(+1) = 4(+1) rounds of communication and a bandwidth of
2m − 1 = 23 ring elements. Arithmetic tuples with only 2-factor multiplication
gates (cf. Table 2) provide an intermediate solution of tuple size 95, bandwidth
29 and 1(+1) round of communication.21 If we accept slightly more communi-
cation rounds, say 2, then a combination of 4 binomial tuples for degree 3 and
one arithmetic tuple for degree 4 in the second round will only need bandwidth
4·4+3 = 19 and tuple size 4·7+13 = 41. If we replace the second round with two
rounds of classical Beaver multiplication we still have bandwidth 4 · 4 + 3 = 19
but tuple size 4 · 7 + 9 = 37.

Figure 2 further illustrates this tradeoff between round complexity, band-
width and tuple size. We remark that once the polynomial to be evaluated and
the network setup are known, a compiler can use the exact calculations of tuple
size and bandwidth from Equation (3) to determine the best performing arith-
metic tuple solution before the actual computation starts. Furthermore, ideal
solutions for classical and regularly used setups can be hard-coded.

Security. Our Protocol 1.2 Πonline is secure and composable in the sense of
universal composability (UC) [18], i.e. it can be combined with other MPC pro-
tocols and itself, while still giving the same guarantees as an idealized protocol
(a so-called functionality; Fonline in our case). For the sake of completeness we
include this and other ideal functionalities in Appendix B. However, apart from
the Arithmetic subprotocol there are no significant changes to [30,50].

20 Using only Beaver multiplication (or binomial tuples), this would exactly correspond
to the complexity of ABY2.0 or Turbospeedz, where we open one element per mul-
tiplication instead of two elements as in classical protocols.

21 Please see Example 3 for a vizualization of the arithmetic tuple construction in the
case m = 12.
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Fig. 2: Multi-round example to evaluate a product of m factors with arithmetic tuples
with optimal tuple size.

Let JXK be a tuple of authenticated inputs to a polynomial f and JAK the re-
spective tuple. Intuitively, the security of our approach can be argued as follows:
All opened values apart from one additive building block are masked with a new
random element from JAK, i.e. they are encrypted with a one-time pad and hence
information-theoretically secure. The final additive building block contains the
result minus a public constant (constructed from the other uniformly random
looking building blocks). In particular, it contains no more information than the
result itself.

All values that are opened are authenticated and thus their integrity can be
checked with the usual aggregated MAC check (cf. Protocol 1.9; recall that we
now consider R to be a finite field). In particular, ΠCheckMAC is chosen identical
to the classical MAC check in [30]. Formally we have the following security result:

Πonline

Initialize. The parties call FJ·K to get a sufficient number of (shared) random data
(including tuples, MAC key shares).
Input. On input a finit set X of inputs of party Pi, the parties invoke FJ·K. Input.
They receive JxK for each x ∈ X.
Arithmetic. On input ((z1, . . . , zm), f, continuation), the parties do the following:
1. Get a tuple J(a1, . . . , ak)K from FJ·K.Tuple. If continuation is another polynomial

g and an index j (i.e. the result of f is used as the jth input to g), FJ·K.Tuple also
returns JbjK—the jth entry of the tuple for g.

2. Each zj is either a share JxjK or a previously opened value yj = xj−aj ; the parties
compute and open JyjK = JxjK− JajK for each of the shares.

3. The parties compute the building blocks JBf K. If continuation = share, open all
but the additive building block; if continuation = open, open all building blocks;
otherwise subtract JbjK from the additive building block and open all building block.

4. Compute Jf(x1, . . . , xm)K, f(x1, . . . , xm), or f(x1, . . . , xm) − bj from the building
blocks (depending on the value of continuation).

Check. Call ΠCheckMAC for all values opened up until now.

Protocol 1.2: Online Protocol.

Theorem 2. The protocol Πonline realizes Fonline in the
(FJ·K,Frandom,Fcommit)-hybrid model with statistical security against any
active adversary corrupting up to n− 1 parties.
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Proof. The proof of this theorem is mostly the same as the security proofs for
the corresponding online protocols in [30,31]. Both construct a suitable simu-
lator, e.g. [30, Fig. 22]. The only difference for a simulator in our protocol is
in arithmetic operations that will be opened (i.e. calls to Πonline.Arithmetic
with continuation = open). Recall that the simulator works on random inputs
(instead of the real inputs for honest (input) parties) and simulates the pro-
tocol run with these inputs. It will then receive an output z of the simulation
that is most likely wrong. However, the ideal functionality Fonline provides the
simulator with the real output y. The simulator adjusts the share of the final
additive building block badd of one (simulated) honest party Pi by ∆ = y − z,
i.e. [badd]i → [badd]i +∆. Since the simulator also knows the MAC key α, it can
change [αbadd]i → [αbadd]i + α∆. Thus the MAC check for the result will pass
(if corrupted parties did not misbehave) and the result will be the same in the
real and ideal world.

Actively-Secure Offline Phase. In order to build a complete actively-secure
MPC protocol, the new correlated randomness, i.e. arithmetic tuples, has to be
produced in an actively secure way. In Section 6 we therefore present different
and partly new solutions for an actively secure tuple generation.

6 Tuple Production

There are various established methods for generating correlated randomness in
the offline phase. The most prominent ones are the following: somewhat homo-
morphic encryption (SHE; SPDZ [30,31] utilizes BGV [16]), oblivious transfer
(as used in MASCOT [49]), or linear homomorphic encryption (LHE; as used
in Overdrive [50]). These mostly focus on generating Beaver triples. We present
two ways to generate arithmetic tuples based on these following methods: one
directly uses the generated Beaver triples for tuple production and the other
generalizes the underlying techniques to generate higher order randomness. We
focus on a LHE-based offline phase based on Overdrive for the latter and present
a leveled homomorphic arithmetic tuple generation in Appendix C.3.

6.1 Plugin Approach

We can use the structured randomness, i.e. Beaver triples, generated by exist-
ing protocols to construct arithmetic tuples in an actively secure offline phase.
Each entry of an arithmetic tuple is a share of some polynomial in random vari-
ables, i.e. the additive masks for the building blocks. These polynomials can
be computed with the SPDZ online phase. This means, we produce in our of-
fline phase a sufficient number of Beaver triples to run the SPDZ online phase
(still within our offline phase) to compute the tuple entries. This straightforward
generation corresponds nicely with the idea to shift as much computation from
the online phase into the offline phase. The advantage of using already existing
offline phases is that efficient implementations like [1] or [48] are available and
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that further improvements of these offline phases will be directly available to the
production of arithmetic tuples as well.

Remark 7. Please also note that an arithmetic tuple does not have to contain
complex correlated randomness of high degree. In fact, as we have seen in Sec-
tion 5.2, for specific arithmetic tuples we only need building blocks with up to
two prefactors linear in a monomial of some degree d. But we only need ran-
domness of degree d + 2 for these building blocks of degree d, e.g., d = 2 to
compute building blocks with 2 prefactors such as abx1x2—in this example the
tuple contains Jaba1K, Jaba2K, Jaba1a2K.

6.2 Linear Homomorphic Encryption

We now propose a new multi-round offline protocol for generating arithmetic
tuples based on linear homomorphic encryption. We construct a protocol simi-
lar to Overdrive’s multiplication protocol [50] but which extends it to multiple
rounds (to compute higher order randomness). In contrast to Section 6.1, where
Overdrive is one method to produce Beaver triples, one can also run several
rounds of Overdrive to produce higher order randomness. E.g. after one round
of Overdrive, which needs two rounds of communication, the parties have shares
[ab], [cd] and after a second round of Overdrive they get shares of [abcd] and
so on. To produce a degree m term we then need ⌈log(m)⌉ rounds of Over-
drive resulting in 2⌈log(m)⌉ rounds of communication—in each Overdrive round
a party Pj first sends a ciphertext Encpkj

([a]j) to Pi and then receives back a

term Encpkj
([a]j) [b]i + Enc′pkj

(rji) which they decrypt to [aj ] [b]i + rji. Here,

Enc′ has larger noise than Enc (cf. [50] for further details).
Our adaption removes the second step. Instead of returning Encpkj

([a]j [b]i+
rij) to Pj , this ciphertext is sent on to all parties that multiply their secrets onto
the ciphertext. By the linear property of the encryption scheme, the new factors
again move into the ciphertext. When the ciphertext of the product arrives back
at the initial party, they can decrypt the product. Thus far, this description
mostly resembles the original Overdrive multiplication protocol. In our multi-
round version, we additionally make the parties prove (in zero-knowledge) that
the resulting ciphertext Encpkj

([a]j [b]i+rij) is still “fresh enough” (i.e. contains
a low amount of noise) to be used in another round. An example of this approach
is shown in Protocol 1.3, where the parties have to prove correct multiplication
(and adding of “small” additional noise) which implies that the total noise in the
ciphertext is small as well. Correctness and privacy of our construction follows
similarly to Overdrive [50]. The additional ZKP of correct multiplication (using
FZK-mul) guarantees privacy by giving parties provable upper-bounds on the
noise contained in ciphertexts. Then, they can choose the randomness in Enc′

large enough to hide any information about their own shares. Observe that after
one round of ΠLHE-rd every party Pi has their share [c]i of the product c and
encryptions of all shares Encpkj

([c]j) for each 1 ≤ j ≤ n, i.e. we can iterate
protocol ΠLHE-rd, as seen in Protocol 1.4. In particular, each product of m
shares can be computed in ⌈log(m)⌉ rounds.
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ΠLHE-rd

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .

2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n with FZK-mul.

3. Decrypt d̂ij to dij for all 1 ≤ j ≤ n.
Set [c]i =

∑n
j=1 dij and Encpkj ([c]j) =

∑n
k=1 d̂jk for all 1 ≤ j ≤ n.

Protocol 1.3: Multiplication using an LHE scheme.

We have included several variations of our technique in Appendix C.2 that
achieve provable upper bounds on the ciphertext noise but are based on ZKPs for
different relations (e.g. ZKPs for verifiable decryption). With this, we can ben-
efit from future improvements of various types of zero-knowledge proofs which
are then also transferable to our approach. The tradeoff of our construction is a
larger ciphertext size: Since noise adds up every round and is not canceled out by
intermediate decryptions, the ciphertext size will grow more and more. However,
as mentioned in Remark 7, we generally do not need to compute randomness
of very high degree. Additionally, if the noise reaches a level that is too high to
continue the computation on ciphertexts, the secret-key holder can decrypt and
provide a new ciphertext with fresh small randomness at cost of one interme-
diate communication round. Also note that the reduction in round complexity,
which was the main motivation for our adaption to Overdrive, suggests that our
approach is best employed in settings with (moderately) high network latency
and sufficient bandwidth to handle the larger ciphertexts.

ΠLHE

Let f be a degree d polynomial in m variables x0, · · · , xm−1. Each party Pi holds [xj ]i
for each 0 ≤ j < m and computes [f(x0, . . . , xm−1)]i with the following protocol:

1. Broadcast Encpki([xj ]i) for 0 ≤ j < m and proof that it is well-formed with the
zero-knowledge proof FS

ZKPoP from [50].
2. Compute [f(x0, . . . , xm−1)]i in ⌈log d⌉ rounds of ΠLHE-rd.

Protocol 1.4: Triple production with multi-round LHE.

Once the shares of the tuples are created, they are authenticated using FJ·K.
The parties then use the new extended sacrificing technique to check that the
tuples are well formed. Details can be found in Appendix C.1.

Remark 8. Our MP-SPDZ implementation [3] currently only covers the online
phase. Based on the log-linear overhead in tuple size, the overhead in runtime
for the offline phase will be in the same range (e.g. based on Beaver triples as
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discussed in Section 6). As our focus in on applications where the offline phase
is not time-critical, we leave benchmarking (and optimizing) the offline phase to
future work.

7 Applications

Our arithmetic tuple approach is clearly relevant for applications where arith-
metic circuits, polynomials and products (of many factors) need to be computed.
But it can also be used in applications which might seem less obvious. Here,
we present some example scenarios where arithmetic tuples can be used and
in Section 8 we sketch our implementation and first benchmarks. These show
improvements due to our approach for all tested applications.

As mentioned, the most natural application is to use our tuples as primitives
in MPC protocols (e.g. SPDZ [31] and similar protocols) to compute polyno-
mials in Fp. Most applications that perform operations on integer-valued data
can benefit from arithmetic tuples directly. In certain real-world applications,
e.g. to compute the soft-max function in privacy-preserving machine learning,
polynomials are also evaluated on fixed-point representations of real numbers R.
Since fixed-point numbers often require rescaling intermediate results (trunca-
tion) after a few multiplications to avoid overflow in the underlying finite field
representation. Arithmetic tuples of small polynomial degree as discussed in
Theorem 1 and Remark 7 could be a good fit for these applications. A detailed
discussion on polynomial evaluations over R with arithmetic tuples is, however,
left to future work. As we demonstrate next, there are applications where our
arithmetic tuples approach can be applied to both integer-valued and fixed-point
data immediately.

Comparisons. Our approach can also be used to speed-up comparisons, i.e.
equality tests (x = y) and inequality tests (x < y, x ≤ y, etc.). Comparisons are
an ubiquitous operation in MPC, for example, in secure online auctions, linear
programming, secure clustering, secure floating-point addition, private decision
tree schemes, private sorting, and electronic voting, to name just a few. Also in
machine learning applications, we find comparisons, e.g. in ReLU, MaxPool, or
ArgMax layers of deep neural networks.

Classical approaches for comparisons are built on evaluating k-ary symmet-
ric boolean functions (e.g., AND and OR; cf. [19,20,61]). They often use (not
maliciously secure) techniques as in [4,29,55] to get constant-round protocols. In-
stead, we can express these boolean operations as multiplications (Jx∧yK = Jx·yK,
Jx ∨ yK = J1− (1− x) · (1− y)K) and evaluate them with our tuples. Some also
need prefix operations, e.g. prefix-ORs, which we can simply represent as prefix
products. Details on how to use our arithmetic tuples to compute prefix products
can be found in Appendix D.

To give a concrete example, we briefly look at a standard approach for equal-
ity and less-than tests [19,61], where comparing two secret-shared values is re-
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duced to two basic operations: bit-wise equality tests and bit-wise less-than tests
with one shared and one public input (see Protocols 1.5 and 1.6).

ΠEQ

1. Let JrjKi and cj be the inputs (bit-decomposed; index 0 ≤ j < k for the jth bit).
2. Let JejKi = (cj = JrjKi) = 1− JrjKi − cj + 2cjJrjKi for 0 ≤ j < k.
3. Let JeKi =

∧k−1
j=0 JejKi =

∏k−1
j=0 JejKi.

4. Return JeKi.

Protocol 1.5: Bit-wise equality test protocol [61].

ΠLT

1. Let JrjKi and cj be the inputs (bit-decomposed; index 0 ≤ j < k for the jth bit).
2. Let JdjKi = cj ⊕ JrjKi = cj + JrjKi − 2cjJrjKi for 0 ≤ j < k.
3. Let Jfk−1Ki, . . . , Jf0Ki = PrefixOR(Jdk−1Ki, . . . , Jd0Ki).
4. Let Jgk−1Ki = Jfk−1Ki and JgjKi = JfjKi − Jfj+1Ki for 0 ≤ j < k − 1.
5. Let JhjKi = cjJgjKi for 0 ≤ j < k.
6. Let JhKi =

∑k−1
j=0 JhjKi.

7. Return JhKi.

Protocol 1.6: Bit-wise less-than protocol [29].

Checking equality of JxKi and JyKi is a straightforward zero test of Jx− yKi,
which in turn is an equality test of a public value c = x− y+ r and a (bit-wise)
shared value r (cf. Protocol 1.5). We see that this protocol involves two opera-
tions with communication: (i) a masked opening (not pictured in Protocol 1.5)
and (ii) a multiplication of k shares. The latter is a native operation with our
tuple-based approach. All other operations are local operations on shares.

Inequality tests of JxKi and JyKi (to compute Jx ≤ yKi) can be done as in [19].
This also involves a masked opening and a bit-wise comparison. We only depict
the core of the inequality protocol, the bit-wise less-than protocol (Protocol 1.6).
The version shown here is based on the classical less-than protocol in [29] and
turns out to be more efficient than the ones of [19,65] (as we can avoid one round
of communication that is needed to work with information-leaking (passively
secure) constant-round multiplication protocols). Only the single prefix-OR in
Protocol 1.6, which can be expressed as a single prefix multiplication with in-
verted inputs and outputs, requires communication—the other operations are
linear, and thus, can be done locally on shares. A prefix-OR is again a native
operation with our tuples.

Evaluating comparisons with our tuples is more efficient standard techniques
in SPDZ-like protocols as we can now use constant-round techniques based on our
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constant round (prefix) multiplication. Please note that there are MPC proto-
cols specically crafted to optimize comparisions. However, to use these protocols
together with SPDZ expensive conversations are needed and separate bench-
marks for comparision can hence not be easily compared. We therefore decided
to restrict our comparision to two efficient protocols for comparision included in
MP-SPDZ.

Results for sample applications (auctions, e-voting, neural networks) are dis-
cussed next.

8 Implementation and Evaluation

To illustrate the practicality of our approach, we have implemented the online
phase in the MP-SPDZ framework [48] and run several benchmarks. Our imple-
mentation is available at [3]. These first benchmarks show that we can outper-
form the standard Beaver triple-based approach for all tested applications. Our
benchmarks include (i) evaluation of multivariate polynomials, (ii) establishing
a ranking of inputs (e.g. for auctions or e-voting), and (iii) evaluating neural
networks. We ran the experiments on a single machine (laptop with an i7-8565U
CPU, 1.80GHz) and simulated different network settings for n = 2 parties with
standard Linux tools (see Appendix E for details). All tested latency settings
are rather conservative and roughly correspond to parties located in the same
country or continent. The tested latencies are significantly lower than the 40ms
assumed in the WAN setting (e.g. in [62]). The trends in all benchmarks show
that our approach will perform even better in such a setting.

Our MP-SPDZ implementation currently only covers the online phase. Based
on the log-linear overhead in tuple size, the overhead in runtime for the offline
phase will be in the same range (e.g. based on Beaver triples as discussed in
Section 6). As our focus in on applications where the offline phase is not time-
critical, we leave benchmarking (and optimizing) the offline phase to future work.

We added elementary operations for powers and products to MP-SPDZ. The
former are based on binomial tuples, as a special case of arithmetic tuples, and
the latter on arithmetic tuples that minimize the tuple size (see Equation (3)
and the case b = 2 in Theorem 1). Both operations are also available as a prefix
variant. All operations support MP-SPDZ’s parallelism model: arbitrarily many
operations of the same type can be combined and are executed in one step
(reducing the number of communication rounds).

Note that in most of our benchmarks, one could not expect binomial tuples
to work on their own, as some examples contain products of 32 or 64 elements—
the resulting tuple sizes, 232 and 264, and local computation times are beyond
practical. Therefore, we do not compare our approach to binomial tuples but to
classical approaches (Beaver multiplication).

Next, we describe our test applications and discuss the results of our bench-
marks.
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Polynomial Evaluation. As an example for polynomial evaluation, we chose
the power series expansion of a multivariate Gauss functions exp(−⟨x, x⟩/2)
up to degree d in each variable. This polynomial is then simply evaluated by
computing all needed (prefix) powers of all variables and multiplying them with
our arithmetic tuples. We compare this to the same computation with standard
(Beaver triple-based) tools included in MP-SPDZ.

Figure 3 shows the results for this benchmark. Our approach has a clear
advantage in runtime— even for very small network delays of only 2ms. Note
that also the bandwidth is lower with our approach. For the Beaver-based im-
plementation, we can clearly see the effect of a logarithmic number of rounds on
the runtime, while our approach has an almost constant runtime (in the degree
of the polynomial).
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Fig. 3: Benchmark for polynomial evaluation (blue: default MP-SPDZ implementation,
orange: ours).

Rankings. For auctions (or e-voting), one can compute a ranking of the bids
(or votes) and reveal the top k results (e.g. with k = 1 only the highest bid
or the candidate with the most votes). Obviously, one can also compute arbi-
trary functions in MPC of this result before revealing it (e.g. for tally-hiding
e-voting [52]). Note that e-voting (or auctions) might require additional secu-
rity properties (e.g. public verifiability or identifiable abort) that is not directly
covered by our protocol. However, this can be achieved with extension to SPDZ
that have these properties [6,7,26]. Our approach is fully compatible with these
SPDZ-based protocols.

There are several ways to compute a ranking. Computing a comparison ma-
trix (containing x ≤ y for all pairs x, y) is most versatile as one can compute
many functions from it [52]. Two straightforward ways of computing the matrix
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include computing the matrix directly and computing it from two triangular
matrices (xi ≤ xj)0<i<j and (xi = xj)0<i<j . These operations can be imple-
mented with our tuples as described in Section 7. We tested both approaches
and compare them to the respective default implementation in MP-SPDZ (based
on the protocols with logarithmic complexity in [19]; with and without edabits
[33] to speed up the comparison). We compute rankings of m = 40 items (bids
or candidates). The benchmark results in Fig. 4 show that our new approach is
faster than the others.
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(a) Using pairwise inequality tests.
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(b) Using inequality and equality tests.

Fig. 4: Benchmark for rankings (blue: default MP-SPDZ implementation, orange: ours,
green: MP-SPDZ with edabits [33]).

Remark 9. SPDZ is an protocol originally designed for an arithmetic circuit
evaluation and not for comparisions. In particular, there other MPC approach
better suited for some types of comparisions. However, our goal is to extend
SPDZ and hence in particular to avoid expensive conversations to some other
scheme. We therefore decided to compare our evaluation for comparisions also
to SPDZ, although there are other competitive MPC protocols.

Neural Networks. Among others, MP-SPDZ [48] contains examples of deep
neural networks. For our benchmarks, we ran the networks labeled A [58], B [54],
C [53], and D [66] (as in [51,71]). Each of these networks has a final ArgMax layer.
Replacing only this single layer with our arithmetic tuple-based comparison
(see Section 7) can already have a noticeable impact on the overall runtime of
the network, as can be seen in Fig. 5. We also remark that a bandwidth rate
restriction does not affect the performance and hence the theoretical bandwidth
overhead of the arithmetic tuples approach is negligible in our example. Similiar
results hold for the other evaluations.22

22 Appendix E contains further evaluations for other bandwidth restrictions.
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(a) ArgMax Layer, unlimited rate. (b) ArgMax Layer, 50 Mbit/s rate restriction.

(c) Network A [58]. (d) Network B [54].

(e) Network C [53]. (f) Network D [66].

Fig. 5: Benchmarks for evaluating neural networks A–D included in MP-
SPDZ [48] (cf. [66]; blue: default MP-SPDZ implementation, orange: ours).
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9 Conclusion and Future Work

In summary, arithmetic tuples provide a new tool to evaluate polynomials (or
arithmetic circuits) in a minimal number of communication rounds with mod-
erate tuple size and bandwidth, i.e. we provide lower round complexity than
Beaver multiplication and better tuple size than with binomial tuples. Addition-
ally, the framework is flexible and allows protocols to trade lower bandwidth for
larger tuple sizes (and vice versa). It supports multi-round evaluations that can
achieve lower bandwidth and smaller round complexity than Beaver multiplica-
tion for only a slightly larger tuple size. We show our performance advantage over
SPDZ in the online phase for classical sample applications like the evaluation of
multivariate polynomials or comparisons.

In Section 5.2, we describe in detail how the different performance measures
for arithmetic tuples relate for arbitrary monomials in the input variables. This
could be the basis for a new generation of MPC compilers that automatically
transforms a function to be evaluated into an arithmetic circuit that is either
evaluated as a whole with our technique or arithmetic tuples are used round-wise
to evaluate the subcircuits.

Furthermore, our theoretical results from Section 5.2 have the potential to be
applied outside of secret-sharing based MPC, e.g. to evaluate polynomials with
encrypted inputs when we replace secret-sharing and openings in our protocol
with ciphertexts and decryption. This could be used e.g. in an MPC offline phase
to compute correlated randomness of a very high degree with linear/levelled
homomorphic encryption in a small (constant) number of rounds.

While we generally work on finite fields or rings in this paper, our case study
on comparisons also applies to applications with real-valued data. It would, how-
ever, be interesting future work to investigate challenges related the evaluation of
real-valued polynomials with fixed-point arithmetic and to optimize arithmetic
tuples for such applications.
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63. Ore, Ø.: Über höhere kongruenzen. Norsk Mat. Forenings Skrifter 1(7), 15 (1922)
64. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: Improved Mixed-

Protocol Secure Two-Party Computation. In: USENIX Security 2021. pp. 2165–
2182. USENIX Association (2021)

65. Reistad, T.I.: Multiparty Comparison - An Improved Multiparty Protocol for Com-
parison of Secret-shared Values. In: SECRYPT 2009. pp. 325–330. INSTICC Press
(2009)

66. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: A Hybrid Secure Computation Framework for Machine Learn-
ing Applications. In: AsiaCCS 2018. pp. 707–721. ACM (2018)

67. Sahraei, S., Avestimehr, A.S.: INTERPOL: Information Theoretically Verifiable
Polynomial Evaluation. In: ISIT 2019. pp. 1112–1116. IEEE (2019)

33



68. Silde, T.: Verifiable Decryption for BGV. IACR Cryptol. ePrint Arch. p. 1693
(2021)

69. Tassa, T., Jarrous, A., Ben-Ya’akov, Y.: Oblivious evaluation of multivariate poly-
nomials. J. Math. Cryptol. 7(1), 1–29 (2013)

70. Vaikuntanathan, V.: Secure Computation and PPML: Progress and Challenges
(2021), PPML 3rd Privacy-Preserving Machine Learning Workshop 2021

71. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-Party Secure Computation for
Neural Network Training. Proc. Priv. Enhancing Technol. 2019(3), 26–49 (2019)

A Technical Proofs for Theoretical Bandwidth and Tuple
Size Computations

In this appendix we present the proofs to results from Section 5.2. We will also
include tuple-size-optimized arithmetic tuples for the product of m ≤ 2 elements
in Table 2.
Proof of Theorem 1. We will only need the case N1

S0
= N2

S0
= 2N

1/2
S0

to treat
bandwidth and tuples size simultaneously. Hence, we slightly restrict our setup
to this case from now on. In fact using generalized tuples we can construct the
elementary building blocks with tuple sizes T 0

S0,j
= 2λ − 1, T 1

S0,j
= T 2

S0,j
= 2λ.

For the number of building blocks we trivially have T 0
S0,j

= T 1
S0,j

= T 2
S0,j

= 1.

Now choose µ = bj + b − 1 to get Tµ = {(ι, κ) ∈ {bj, . . . , bj + b − 1}2 : κ ≤ ι}
and ν = bj + ⌊ b−1

2 ⌋ to get Tµ ∩ Tν = {(ι, κ) ∈ {bj, . . . , bj + b − 1}2 : (κ ≤
ι ≤ ν) ∨ (ν + 1 ≤ ι, κ ≤ ι − ν − 1)}. In particular, |Tµ ∩Mbj+i| = i + 1 and
|Tµ ∩ Tν ∩Mbj+i| = i + 1 for 0 ≤ i ≤ ν − bj, |Tµ ∩ Tν ∩Mi+ν+1| = i + 1 for
0 ≤ i < µ− ν. Hence we have

N0
Sk

= bN0
Sk−1

+ (b− 1)(bN1
Sk−1

− 1) (6)

N1
Sk

=
(b− 1)b+ 2

2
N1

Sk−1
+ (b− 1)(N2

Sk−1
− 1) (7)

N2
Sk

= uN1
Sk−1

+ b(N2
Sk−1

− 1) + 1 (8)

with u = (b−1)2−1
4 for b even and u = (b−1)2

4 for b odd. Note that the we could
remove unnecessary indices due to the symmetry of the Sk := Sk,j . In order to
get the required upper bound it will be enough to consider the odd case, which

obviously leads to higher numbers. For the case u = (b−1)2

4 we have

b(N2
Sk
− 1) = ((b+ 1)N

1/2
S0
− 1)

(
b2 + 1

2

)k
+

(b2 − 1)(N
1/2
S0
− 1)

2

(
b+ 1

2

)k−1

(9)

bN1
Sk

= 2
(
(b+ 1)N

1/2
S0
− 1
)(b2 + 1

2

)k

− 2(N
1/2
S0
− 1)

(
b+ 1

2

)k

(10)

(b− 1)(N0
Sk
− 1) = 4b(N2

Sk
− 1) + ((b− 1)(N0

S0
− 1)− 4b(2N

1/2
S0
− 1))bk (11)
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Note that it is enough to proof these formulas for N0
S0

= T 0
S0

= 2λ − 1, N1
S0

=

T 1
S0

= N2
S0

= T 2
S0

= 2λ to get the estimates on the tuple size, and for N0
S0

=
N1

S0
= N2

S0
= 1 for the bandwidth estimate. Recall that the bandwidth is just

N0
Sn

+ m, which accounts for the building blocks as well as the bandwidth of
the first round of interaction, i.e. the m terms xi − ai. This does not affect the
asymptotic behavior, but the special formula in the case b = 2 discussed below.
We will prove the explicit formula (9), (10), (11) by induction on k with k = 0:23

b(N2
S0
− 1) = (b+ 1)N

1/2
S0
− 1 + (b− 1)(N

1/2
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− 1), bN1
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− 1)−

2(N
1/2
S0
− 1) and (b− 1)(N0

S0
) = 4b(N2

S0
− 1)+ (b− 1)(N0

S0
− 1)− 4b(2N

1/2
S0
− 1).

Hence, we get
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)
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(
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+
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2

(
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where we used 2u + b = b2−2b+1+2b
2 = b2+1

2 and b(b2 − 1)N
1/2
S0
− 1) − 2(N

1/2
S0
−

1)u(b + 1) = b+1
2 (N

1/2
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− 1)(2b(b − 1) − (b − 1)2) = (b2 − 1)(N
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2 .
Analogously
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=
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where we used (b − 1)b + b + 1 = b2 + 1 and (b − 1)b + 2 − 2(b−1)(b2−1)
2(b+1) =

b(b− 1)− (b− 1)2 + 2 = b+ 1. Finally,

(b− 1)(N0
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− 1)
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= 4b2(N2
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− 1))bk+1

where we used the explicit formula for N2
Sk

which was already proved before.
This completes the proof of the first part of the statement.

23 We will keep the N∗
∗ notation for the rest of the proof. For the tuple size substitute

the corresponding T ∗
∗ .
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The second part concerns the case b = 2. In particular, we have u = 0 in (8) and

N1
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and N1
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decouple partly. Thus we get N2
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2 · ((2N1/2
S0
− 1) · 2k + 1) − 1 = 2(N2

Sk
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= 2−1((2N
1/2
S0
− 1)(−1 + 1) + 4N

1/2
S0

) = 2N
1/2
S0

. Altogether
we get the tuple size

N0
Sk+1

= 2k−1((2N
1/2
S0
− 1)(k + 1)2 + (6N

1/2
S0

+ 1)(k + 1) + 4(N0
S0
− 1)) + 1

= 2k−1((2N
1/2
S0
− 1)(k2 + 2k) + (6N

1/2
S0

+ 1)k + 8N
1/2
S0

+ 4(N0
S0
− 1)) + 1

= 2 · (2k−2((2N
1/2
S0
− 1)k2 + (6N

1/2
S0

+ 1)k + 4(N0
S0
− 1)) + 1)

+ 2 · 2k−1((2N
1/2
S0
− 1)k + 4N

1/2
S0

)− 1

= 2N0
Sk

+ 2N1
Sk
− 1

where we started our induction with N0
S0

= 1
4 · 4(N

0
S0
− 1) + 1.

We see that the case b = 2 leads to a tuple size in O(m log(m)2) while in all
other cases b > 2 the tuple size is not even in O(n2). We did not show this last
fact in the previous proof for even b > 2 explicitly. It follows however from the
next lemma—again we use N∗

∗ for both the number of building blocks and the
tuple size:

Lemma 4. Let b > 2 be even. Define

Ñ2
Sk

=
1

2

(
b2

2

)k

+ 1, Ñ1
Sk

=

(
b2

2

)k

, Ñ0
Sk

=

(
b2

2

)k

Then Ñ l
Sk
≤ N l

Sk
for l = 0, 1, 2 and all k ≥ 0.

Proof. For the even case we have u = (b−1)2−1
2 . Also note, that the cases k = 0

are trivial. The statement is by definition correct for k = 0. Inductively we get

Ñ2
Sk+1

=
1

2

(
b2

2

)k+1

+ 1 =
b(b− 2) + 2b

4

(
b2

2

)k

+ 1 = u

(
b2

2

)k

+
b

2

(
b2

2

)k

+ 1

= uÑ1
Sk

+ b(Ñ2
Sk
− 1) + 1 ≤ uN1

Sk
+ b(N2

Sk
− 1) + 1 = N2

Sk+1

For Ñ1
Sk+1

we proceed similarly:

Ñ1
Sk+1

=

(
b2

2

)k+1

≤ (b− 1)b+ 2

2

(
b2

2

)k

+
b− 1

2

(
b2

2

)k

=
(b− 1)b+ 2

2
Ñ1

Sk−1
+ (b− 1)(Ñ2

Sk−1
− 1)

≤ (b− 1)b+ 2

2
N1

Sk−1
+ (b− 1)(N2

Sk−1
− 1) = bN1

Sk+1
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Finally,

Ñ0
Sk+1

=

(
b2

2

)k+1

≤ b

(
b2

2

)k

+ (b2 − b)

(
b2

2

)k

− b+ 1

≤ bÑ0
Sk−1

+ (b− 1)(bÑ1
Sk−1

− 1) ≤ bN0
Sk−1

+ (b− 1)(bN1
Sk−1

− 1) = N0
Sk+1

since b− 1 ≤
(

b2

2

)k+1

for k ≥ 0, b ≥ 4.

Example 3. In this example we visualize Example 2 by diagrams. We will use
double frames for building blocks. To account for Remarks 2 to 4 we will only
mark one part of a building block with the double frame and the other parts
with a dashed frame to make counting easier.

Take S3,0 = {0, . . . , 11}, S2,0 = {0, . . . , 5}, S2,1 = {6, . . . , 11} and set 2x0 =
xS2,0

, 2x1 = xS2,1

x{0,...,11}

× // 2f002f11 // +

OO

2a0,1 +
2a1,0 − 2a0

2a1oo

2f00 = 2x0 − 2a0

OO

2f11 = 2x1 − 2a1

hh

f01 = 3x0
3a1 − 2a0,1

OO

f10 = 2x1
2a0 − 2a1,0

ii

Next set S1,0 = {0, . . . , 3}, S1,1 = {4, 5}, S1,2 = {6, . . . , 9}, S1,3 = {10, 11}.
Consider first 1x0 = xS1,0 ,

1x1 = xS1,1 and

2f00

× // 1f001f11 // +

OO

1a0,1 +
1a1,0 − 1a0

1a1 − 2a0oo

1f00 = 1x0 − 1a0

OO

1f11 = 1x1 − 1a1

ii

��

1f01 = 1x0
1a1 − 1a0,1

OO

1f10 = 1x1
1a0 − 1a1,0

jj

1g
2a1,0
00 = 2a1

1x0 − 1b00

))

1g
2a1,0
0,1 = 2a1x0

1a1 − 1b00,1

��

1g
2a1,0
1,0 = x1

1b00 − 1b00,1

tt× // +

��

1b00,1 +
1b01,0 − 1a1

1b00 − 2a0,1oo

2f01

Of course we get the analogous decomposition for 2f11 and 2f10 if we set 1x0 =
xS1,2

, 1x1 = xS1,3
. Finally consider S0,0 = {0, 1}, S0,1 = {2, 3}, S0,2 = {4, 5} =

S1,1, S0,3 = {6, 7}, S0,4 = {8, 9}, S0,5 = {10, 11} = S1,3. One first notes we do

not further decompose 1f11,
1f10,

1g∗,01,0 for both choices S0,2 = S1,1, S0,5 = S1,3.

Again by symmetry it will be enough to consider 0x0 = xS0,0
, 1x1 = xS0,1

.
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1f00

× // 0f000f11 // +

OO

0a0,1 +
0a1,0 − 0a0

0a1 − 1a0oo

0f00 = 0x0 − 0a0

OO

0f11 = 0x1 − 0a1

ii

��

xx

0f01 = 0x0
0a1 − 0a0,1

OO

0f10 = 0x1
0a0 − 0a1,0

jj

0g
1a1,0
00 = 1a1

0x0 − 0b00

((

0g
1a1,0
0,1 = 1a1x0

0a1 − 0b00,1

��

0g
1a1,0
1,0 = x1

0b00 − 0b00,1

tt0g
2a1,0
0,0 = 2a1x0 − 0b00

��

""

× // +

��

0b00,1 +
0b01,0 − 0a1

0b00 − 1a0,1oo

× // 1g
2a1,0
0,0

1f01
0h0,1 = 2a1

0c1x0 − 0c1,0

tt0h1,1 = x1
1a1 − 0c1 // × // +

��

0h1,0 = 1a1
0b00x1 − 0c0,1oo

1g
2a1,0
0,1

0c1,0 +
0c0,1 − 0b00

0c1 − 1b00,1

jj

Observe that we got 1+ 2 · 2+ 2 · 6 building blocks and hence with the intial
12 masked inputs xi − ai we get as expected bandwidth 29. We leave it to the
reader to check the tuple size 95. See also Table 2 below.

B Functionalities

In this section we present the ideal functionalities and security proofs. We as-
sume that the parties have access to a functionality Frandom to produce random
elements from R and a commitment functionality Fcommit—possible realization
can be found e.g. in [30].

Remark 10. To describe Fonline, we used a modification of the functionality
FAMPC from [31]. One can also use FOnline from [30] or similar functionalities.

Remark 11. The functionality FJ·K can be realized as in [50, Fig. 4].

Lemma 5. The protocol CheckMAC is correct and sound. It rejects with prob-
ability 1− 2

|R| if at least one value is not computed correctly.

Proof. Identical to the corresponding proof in [31].
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Table 2: Arithmetic tuples to compute x0 · · ·xm−1 optimized for tuple size. Numbers
indicate the degree of the building block, brackets are evaluated from the inside, e.g.
((2, 2), 3) first generates a degree 4 term an then a degree 7 term.

m Tuple Size Bandwidth Circuit

1 1 1 (1)
2 3 3 (1,1)
3 7 4 (1,1,1)
4 13 7 (2,2)
5 21 8 (3,2)
6 29 9 (3,3)
7 38 13 ((2,2),3)
8 47 17 ((2,2),(2,2))
9 59 18 ((3,2),(2,2))
10 71 19 ((3,2),(3,2))
11 83 24 (((2,2),2),(3,2))
12 95 29 (((2,2),2),((2,2),2))
13 108 34 (((2,2),2),((2,2),(2,1)))
14 121 39 (((2,2),(2,1)),((2,2),(2,1)))
15 135 40 (((2,2),(2,2)),((2,2),(2,1)))
16 149 41 (((2,2),(2,2)),((2,2),(2,2)))
17 165 42 (((3,2),(2,2)),((2,2),(2,2)))
18 180 48 ((((2,2),2),(2,2)),((2,2),(2,2)))
19 196 49 ((((2,2),2),(2,2)),((3,2),(2,2)))
20 211 55 ((((2,2),2),(2,2)),(((2,2)),2),(2,2)))
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Fonline

Initialize. On input (Initialize, p) from all parties, the functionality stores p.

Input. On input (Input, Pi, idx, x) from Pi and (Input, Pi, idx) from all others, the
functionality stores (idx, x). idx has to be a new identifier.

Arithmetic. On input (Arithmetic, (idxk )0≤k<m, f, idz) for an arithmetic circuit
f (with m inputs) from all parties with idz new, the functionality retrieves
(idxk , xk)1≤k<m and stores (idz, f(x0, . . . , xm−1)).

Output. On input (Output, idx) for idx defined, from all honest parties, the function-
ality retrieves (idx, x) and outputs it to the adversary. If the adversary replies by ok,
then x is output to all players, otherwise output ⊥ to all players.

Protocol 1.7: Ideal functionality for the online phase.

FJ·K

Initialize. On input (Initialize, p) from all parties, store p and compute [α]i for honest
Pi and receive [α]j for corrupted Pj ; then set α :=

∑n
i=1 [α]i.

Input. On input (Input, Pi, idx, x) from Pi and (Input, Pi, idx) from all others, sample
[x]i for honest Pi under the constraint x =

∑n
i=1 [x]i (for [x]j received by Adv for

corrupted Pj) and authenticate the shares. Send JxKi to the respective Pi.

Tuple. On input (Tuple, f) by all parties for a polynomial f : Rm → R. Sample ran-
dom masks (a1, . . . , al) and compute the tuple (a1, . . . , ak) for the respective building
blocks.a Authenticate the tuple and send J(a1, . . . , ak)Ki to the respective Pi.

Abort. On input ⊥ from Adv, send ⊥ to all parties.

a m ≤ l < k as also building blocks contain masks and we need additional tuple entries
to compute building blocks.

Protocol 1.8: Preprocessing functionality.

C Further Results on the Offline Phase

This section contains results that can be used in our offline phase. It starts wit a
subsection on sacrificing for binomial and arithmetic tuples which can be applied
to most of the currently implemented actively secure offline phases like the once
in [31] or [50]. In Appendix C.2 we offer options on how to realize the ZKP
functionality used in Section 6.2. Finally we shortly discuss arithmetic tuple
production with leveled homomorphic encryption.

C.1 Extended Sacrificing Technique

This appendix contains a new sacrificing technique for binomial and arithmetic
tuples which can also be applied to most of the currently implemented actively
secure offline phases like the once in [31] or [50].
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ΠCheckMAC

Every party Pi has JyjKi = ([yj ]i , [αyj ]i [α]i), 1 ≤ j ≤ m. y = (y1, . . . , ym) ∈ Rm is
public and has to be checked.a

1. The parties sample a random r ∈ Rm.
2. Every party computes [σ]i = rt([αy]i − [α]i y) for r

t the transpose of r.
3. Call Fcommit with (Commit, [σ]i) and receive handle τi.
4. After each party has committed, call Fcommit with (Open, τi) to open [σ]i.
5. If

∑n
i=1 [σ]i ̸= 0 then abort.

a [αy]i = ([αy1]i , . . . , [αym]i).

Protocol 1.9: CheckMAC

To make sure that the binomial tuples are indeed in the right form, we need
to extend the well-know sacrificing technique from [31] in Protocol 1.10.24

Πsacrificing

Let (re) and (r′e) be two binomial tuples for e = (e0, . . . , em−1), 0 ≤ ej ≤ dj , 0 ≤ j < m.

1. The parties use Frand to get random s0, . . . , sm−1.
2. The parties compute and open tj = sj

[
r′j
]
i
− [rj ]i for 0 ≤ j < m.

3. The parties compute

[sac]i =
∑

0≤j<m
0≤ej≤dj

se ·
[
re′

]
i
−

∑
0≤j<m
0≤fj≤ej

[
rf

]
i

m−1∏
k=0

t
ek−fk
k


with se =

∏m
j=1 s

ej
j . The parties commit to and open [sac]i with Fcommit.

4. If
∑n

i=1 [sac]i = 0 return (r′e), otherwise abort.

Protocol 1.10: Verification for generalized tuples by sacrificing.

Inspecting Protocol 1.10, we see that it is obliviously correct. We use the
simple identity

∑
0≤j<m
0≤fj≤ej

[
rf
]
i

m−1∏
k=0

tek−fk
k =

m−1∏
j=0

(sjr
′
j)

ej =

n∑
i=1

se · [re′]i

where the first equality holds if (re) is correct and the second one if (re′) is
a correct binomial tuple. Then we get

∑n
i=1 [sac]i = 0. On the other hand, if

24 We will use the index notation from Section 4.
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∑n
i=1 [sac]i = 0, s is a zero of a polynomial in m variables. If at least one party

is honest, the coefficients of the polynomial are random (by the guarantees of
Frand). The Schwartz-Zippel Lemma for finite fields [63] guarantees that the
probability that a random s is a zero of a total degree d ≥ 0 polynomial f is
smaller than d

p : Pr(f(s0, . . . , sm−1) = 0 | rs ∈ Fp) ≤ d
p for f ̸= 0 and d =∑m−1

j=0 dj . For a sufficiently large field size, this probability is negligible, which
shows the security of our sacrificing protocol.

Remark 12. Recall from Section 5.2 that building blocks in our protocol are
constructed using binomial tuples — respectively tuples of the form (a, aae) or
(ab, abae) for additional random tuple entries a, b plus some random additive
terms. For all these binomial tuple within two arithmetic tuple of the same type
for the same function, we can simply apply the sacrificing step for two binomial
tuples from Protocol 1.10.

C.2 Results For A Linear Homomorphic Offline Phase

In this section, we present three approaches to efficiently construct a linear homo-
morphic offline phase. All these approaches require the parties to prove certain
parts of their computation in zero-knowledge in each round.25 Protocols 1.11,
1.13 and 1.15 depict the (exposition-only) functionalities used in Protocols 1.3,
1.12 and 1.14, respectively. The main reason for the ZKPs is that the parties
need to know that the ciphertexts Encpkj

([c]j) can be used in the next round.
For this, an upper bound on the noise contained in these ciphertexts has to be
known. This enables maskings with rij in the next round to be chosen large

enough so d̃ji does not leak information about [b]i to Pj .
The first approach (Protocol 1.12) requires parties to prove correct decryp-

tion in zero-knowledge. This protocol leaves the responsibility for proving that
Encpkj

([c]j) has small noise with Pj . Verifiable decryption can be achieved effi-
ciently with recent protocols [40,56,68].

FZK-dec

On input Encpki(a) by party Pi:

Send (Encpki(a), Pi, ok) to all parties Pj if the noise in the ciphertext is small wrt. the
bound Bdec (also send a to Pi). Otherwise, send (Encpki(a), Pi, fail).

Protocol 1.11: Ideal functionality for verifiable decryption.

The second approach (Protocol 1.14) requires parties to prove correct de-
cryption in zero-knowledge but it is done differently to the approach taken in

25 Results that are not used as the input to subsequent rounds do not require proofs.
As Overdrive is a one-round protocol, it only needs ZKPs for the initial ciphertexts.
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ΠLHE-rd-dec

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .

2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n.

3. Set Encpkj ([c]j) =
∑n

k=1 d̂jk for all 1 ≤ j ≤ n.
Decrypt Encpki([c]i) to [c]i with FZK-dec (and broadcast the proof).

Protocol 1.12: Multiplication using an LHE scheme with ZKP of decryption.

Protocol 1.12. Instead of proving that they can decrypt Encpkj
([c]j) with small

noise, Pj could instead prove knowledge of a small witness (plaintext and ran-
domness) that encrypts to Encpkj

([c]j). For this, we would need a decryption
algorithm that also recovers (some) randomness that matches the ciphertext.
This is modelled in Protocol 1.13.

FZK-dec

On input Encpki(a) by party Pi:

Send (a, ã) to Pi with Encpki(a, ã) = Encpki(a).

Protocol 1.13: Ideal functionality for decryption with extraction.

ΠLHE-rd-ext

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .

2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n.

3. Set Encpkj ([c]j) =
∑n

k=1 d̂jk for all 1 ≤ j ≤ n.
Decrypt Encpki([c]i) to ([c]i , ρ) with Fdec-ext.
Use FZK to prove Encpki([c]i) = Enc([c]i , ρ) (and broadcast the proof).

Protocol 1.14: Multiplication using an LHE scheme with randomness extraction.

The third and maybe most straighforward approach (used in Protocol 1.3)
requires parties to prove correct multiplication in zero-knowledge. Examples for
protocols that provide verifiable multiplication can, for example, be found in the
BDOZ [10] and below.
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FZK-mul

On input (Encpk(a),Encpk(c), b, r, r̃) by party Pi:

Send (Encpk(a),Encpk(c), Pi, ok) to all parties Pj if Encpk(c) = Encpk(a)·b−Encpk(r, r̃)
and b, r, r̃ are short w.r.t. the respective bounds Bplain, B

′
plain, B

′
rand. Otherwise, send

(Encpk(a),Encpk(c), Pi, fail).

Protocol 1.15: Ideal functionality for verifiable multiplication.

A Modified Zero-Knowledge Proof. In order for the protocol ΠLHE to be
secure we have to realize the functionality FZK-mul used in Protocol 1.4. This
can be done by slightly adapting existing zero-knowledge proofs, e.g. from [31],
[30], [50] or [5]. As an example we present suitable modifications to [31], Fig.
9 with slight simplifications to the bounds similar to [50], Fig. 10. Note that
this interactive proof can be transformed into a non-interactive proof in the
usually way using the Fiat-Shamir heuristic—we refer to [31] for non-interactive
variants.

Let Bτ
plain and Bρ

rand be the ZKP bounds introduced in [31], i.e. Bτ
plain = 2secρ

and Bρ
rand = 2secρ. Let V = 2 sec−1, Me ∈ {0, 1}V×sec the matrix associated to

a challenge e ∈ {0, 1}sec with (Me)ij = ei−j+1 for 1 ≤ i − j + 1 ≤ sec and zero
otherwise. Let U,X ∈ Rsec be a plaintext vector, R ∈ Rsec×3 the encryption
randomness. Encpk(X,R) = (Encpk(Xi, Ri))1≤i≤sec denotes a vector where each
row is a ciphertext. The ciphertext Encpk(b) with ∥b∥∞ ≤ Bτ

plain is public and
has been verified as in [50] or with some previous instance of this proof—note
that Encpk(b) is one-dimensional in the ciphertext space. We want to give a
zero-knowledge proof of plaintext-knowledge for the following relation

Relξ,χρ = {(E,w) : E = (pk, C), w = (X,U,R) ∈ Rsec ×Rsec ×Rsec×3 s.t.

C ← Encpk(B)U + Encpk(X,R), ∥U∥∞ ≤ Bξ
plain,

∥X∥∞ ≤ Bχ
plain, ∥R∥∞ ≤ Bρ

rand}

Completeness and zero-knowledge are only guaranteed for ∥U∥∞ ≤ ξ,
∥X∥∞ ≤ χ and ∥R∥∞ ≤ ρ. τ, ξ, χ, ρ are negligible w.r.t sec compared to

Bτ
plain, B

ξ
plain, B

χ
plain, B

ρ
rand.

Proof. Completeness follows as in [31], Theorem 5:

D = Encpk(b)Q+ Encpk(Z, T )

= Encpk(b)(W +MeU) + Encpk(Y +MeX,S +MeR)

= Encpk(b)W + Encpk(Y, S) +Me(Encpk(b)U + Encpk(X,R))

= A+MeC

Also Q,Z, T are in the correct range with overwhelming probability. Given two
transcripts one can find suitable X,R as in [31]. To account for the additional
U , we note that (Me − Me′)U = Q obviously has a solution. Hence we get
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ΠZKP

1. The prover samples W,Y ∈ RV and randomness S ∈ RV ×3 such that ∥Wi∥∞ ≤
Bξ

plain, ∥Yi∥∞ ≤ Bχ
plain and ∥Si∥∞ ≤ Bρ

rand for all 1 ≤ i ≤ V . The prover sends
A = Encpk(b)W + Encpk(Y, S) to the verifier.

2. The verifier selects e ∈ {0, 1}sec and sends it to the prover.
3. The prover sets Z = Y +MeX, T = S +MeR, Q = W +MeU and sends it to the

verifier.
4. The verifier sets D = Encpk(b)Q+Encpk(Z, T ) and accepts if Q,Z represent valid

plaintexts andD = A+MeC and ∥Qi∥∞ ≤ Bξ
plain, ∥Zi∥∞ ≤ Bχ

plain, ∥Ti∥∞ ≤ Bρ
rand.

Protocol 1.16: The Zero-Knowledge Protocol.

soundness. Finally, honest verifier zero knowledge follows since W and W+MeU
are indistinguishable.

Please note that the increase in noise will result in a larger ciphertext modulus
and hence will inrease bandwidth.

Remark 13. Please note that Enc(b) is constantly the same in all components.
In particular, the aggregated proof technique only uses its full potential if the
parties need bUi +Xi for a high number of different Ui and Xi. This is e.g. the
case for high degree polynomials.

At the end of this section we want to point to less oblivious techniques that
work under certain circumstances, e.g. in an honest majority setup. For example,
approaches like [23] and [13] use single-prover-multi-verifier proof systems where
the statement is t-secret-shared between the verifiers and thus no group of t− 1
verifiers knows anything about the statement. This suggests an approach where
we would make all the intermediate results part of the statement in which case
the verifying circuit would be quite straightforward and short. One party, Pj ,
could be the prover and all the others would be the verifiers. However, since we
are interested in the case where n − 1 out of n parties might be malicious, we
run into a problem. Namely, [13] gives a negative result stating that it is unlikely
that we obtain a protocol where both the prover and all-but-one of the verifiers
are malicious.

Yet another alternative approach is to use multi-prover-single-verifier proof
systems. The paper [25] suggests a proof system where for a publicly known
statement x, the witness is split into several parts w1, . . . , wk where every prover
knows just one of the witness parts. The provers prove that for a verifying circuit
C, C(x,w1, . . . , wk) = 1. This seems again naturally applicable to our case, as
here Pi knows ai and the randomness used to encrypt ai, Pj knows bj , ri,j and the
randomness used to encrypt ri,j and so on. However, it is based on the MPC-in-
the-head approach which suggests a considerable overhead as the protocol must
be rerun a significant amount of times for privacy amplification.
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Remark 14. To reduce the overhead introduced by noise flooding is an ongoing
research task. There are however promising results as the ones announced in [70]
that might be applied in our setup, too.

C.3 Leveled Homomorphic Enryption

Given an encryption scheme Enc that is homomorphic with respect to at least
m− 1 multiplications, a binomial tuple can be produced by Protocol 1.17:26

ΠSHE

1. Each player Pi generates [aj ]i ∈ R for 0 ≤ j < m and [fe]i ∈ R for e =
(e0, . . . , em−1) and 0 ≤ ej ≤ dj .

2. Pi computes and broadcasts Enc([aj ]i) and Enc([fe]i) for all j and e as above.
3. Pi invokes a zero-knowledge functionality of plaintext knowledge FZK as a prover

for the created ciphertexts (cf. [31]).
4. Compute locally Enc(aj)←

∑n
i=1 Enc([aj ]i), Enc(f

e)←
∑n

i=1 Enc([f
e]i).

5. Compute locally Enc(ae) =
∏m−1

j=0 Enc([aj ])
ej and Enc(ae + fe) = Enc(ae) +

Enc(fe).
6. Decrypt Enc(ae + fe) to get ae + fe.
7. Set [ae]1 ← ae + fe − [fe]1 and [ae]i ← − [fe]i for 2 ≤ i ≤ n.

Protocol 1.17: Protocol for generation of [a]e for all 0 ≤ ej ≤ dj using leveled
homomorphic encryption.

Once the shares of the tuples are created, they are authenticated using FJ·K.
The parties then use the new extended sacrificing technique to check that the
tuples are well formed. Details can be found in Appendix C.1.

As in Remark 7 we remark that for our construction it is often enough to
consider low degree polynomials that contain products with at most 5 factors.
In these cases a homomorphic encryption scheme that supports 4 homomorphic
multiplications is enough. The lowest degree arithmetic tuples that can be used
to evaluate an arbitrary multivariate polynomial have entries which need at most
2 multiplications.

We remark that this approach profits from future improvements of the en-
cryption scheme. Already existing optimizations like packing methods (e.g. [59])
or using the natural action of the Galois group in case R is a underlying cyclo-
tomic field extension (cf. [38]), can be used to improve the performance of the
offline phase.

D Prefix Products with Arithmetic Tuples

Here, we describe how one can add on the approach presented in Section 5 to
additionally get all the prefix products. For simplicity, we assume that we have to

26 We use the index notation from Section 4.
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compute prefix products for m factors where m is a power of two. This is usually
the case for comparisons where m is the number of bits used to represent values
(e.g. when working with 32 bit or 64 bit numbers) and the construction presented
next applies (with small modifications) to m of any shape.

First, note that the arithmetic tuples approach gives us x0 − a0, x0x1 −
a01, . . . , x0 · · ·xm′−1 − a0,...,m′−1 for all m′ < m that are again powers of two.
x0 − a0 is an initial masked value and the other terms are building blocks or
are publicly computed from them. We get similarly structured terms (again as
masked value, building block, or publicly computed) with shifted indices, e.g.
x2x3 − a23, x4x5 − a45, x4x5x6x7 − a4567. The following construction either con-
verts these terms directly to shares, or uses them with binomial tuples to com-
pute the remaining terms. Note that all these terms are already masked and we
can compute products with binomial tuples without an additional computation
round. For example, we compute Jx0x1K = x0x1 − a01 + Ja01K and Jx0x1x3K by
multiplying x0x1− a01 and x3− a3 (by treating these values as the ones opened
for normal multiplication with binomial tuples).

With the following (recursive) construction, we can compute all the prefix
products: Assume we can get shares of the prefix products pl,h,i of xl, . . . , xh with

pl,h,i =
∏i

j=l xj , l ≤ i ≤ h and have masked values as described above (computed
with the arithmetic tuples approach of Section 5). Then, we can compute the
shared prefix products of x0, . . . , x2m−1 as follows:

1. Compute shares of the prefix products for x0, . . . , xm−1 and xm, . . . , x2m−1.

2. Compute Jp0,2m−1,m+iK = Jp1,m−1,m−1K · Jpm,2m−1,m+iK, 0 ≤ i < m− 1.

3. The final Jp0,2m−1,2m−1K can be computed from an opened value as above.

Instead of computing these products in step 2 directly, we simply add one factor
to the binomial tuple (or add a new degree-2 binomial tuple if pm,2m−1,i−a (for
some mask a) was directly computed by our approach of Section 5).

By construction, we know that we need binomial tuples of a logarithmic
degree. Additionally, we see that if the degree of the tuple for p0,m−1,i is smaller
than the one for p0,m−1,i+1, it is already covered by the latter one, decreasing the
number of tuples we need to add. For powers of two (m = 2n), we observe that
we need 2n−1 − 1 additional binomial tuples of degree at most n. We prove the
latter (the number of additional tuples; the degree is fixed by construction) by
induction: The number of tuples for the case 2n+1 is what we need for p0,2n−1,i

(2n−1 − 1) and for p2n,2n+1−1,i. For the latter, we need 2n−1 tuples. This has
the following reason. Of the 2n− 1 remaining prefixes to cover, 2n−1− 1 already
have a tuple candidate assigned to them. Of the remaining 2n−1 prefixes, 2n−1−
1 are covered when expanding the previously mentioned tuples by one factor
(p0,2n−1,2n−1; this factor is also the only factor required for terms that did not
have a tuple assigned to them before). In total, we have to add 2n−1 tuples for
p2n,2n+1−1,i and get 2n − 1 tuples to compute prefixes p0,2n+1−1,i.
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E Further Specific of the Implementation and Evaluation

The results of Figs. 3 to 5 were obtained by averaging 32 program runs for each
parameter setting (e.g. fixed delay, number of variables and, degree). In all our
experiments we introduced an artificial network delay/latency using the tc(8)
Linux tool. This gives us control to simulate various network settings. Our first
benchmark (evaluation of multivariate polynomials) was tested with 2ms, 5ms
and 10ms delay to also show the effect parameters besides the delay (the number
of variables and the maximum degree in each variable). The other benchmarks
(rankings and neural networks) were run with delays from 0ms to 20ms (in steps
of 1ms below 10ms and 2ms steps above 10ms delay).

For the ranking benchmark, we chose to compare our implementation to
MP-SPDZ with edabits [33] as it is MP-SPDZ’s recommendation for our test
program. We can see that this is indeed an improvement over the standard
implementation,27 however our new tuple-based approach clearly beats both
existing approaches.

For the Machine Learning benchmark, we chose to not vary any parameters of
the models. Instead, networks A and D correspond to smaller/simpler models,
while networks B and C are larger/more complex (approximately ordered by
size/complexity: A < D < B < C).

Finally, our implementation lacks certain features that would (when imple-
mented correctly) only speed-up any application. This includes finding optimal
partitions for products; currently, arithmetic tuples are created naively by simply
splitting products in half recursively instead of finding local arithmetic circuits
with optimal size and/or better bandwidth. Bandwidth and/or size optimal par-
titions could be implemented on top of our results from Section 5.2 instead.
Another optimization opportunity is the one shown in Protocol 1.2 (combining
the evaluation of a polynomial with the masking step of the next polynomial
evaluation). This would allow us to combine the opening round of one com-
putation with arithmetic tuples and the input round of another computation.
Currently, every operation based on arithmetic tuples28 takes two rounds as
we always create a share of the result; the sequential composition of two such
operations takes four rounds and so on.

Effect of Bandwidth Rate Restrictions. To better understand the effect of
our approach on neural networks we also give the benchmarks for the ArgMax
Layer seperately. Additionally this evalution was done with different bandwidth
restrictions imposed—50 Mbit/s, 1 GB/s, unlimited. The results in Figures 5
and 6 show that there is no significant impact of the bandwidth overhead in this
example. Similar results hold for all our evaluations.

27 Note that edabits are an improvement in Fig. 4b only for very low latency.
28 Except operations with binomial tuples; these are implemented in one round.
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(a) ArgMax, 1 Gbit/s rate restriction. (b) Combination of ArgMax.

Fig. 6: The right diagram contains the ArgMax Evaluations from Figure 5 and the left
side in one diagram for comparison.

F Further Related Literature

In this appendix we extend our exposition of related work in Section 2.
Since polynomial evaluation is one of the most fundamental arithmetic tasks,

several solutions outside of SPDZ-like protocols or even MPC have been sug-
gested over the last 30 years. To mention only a few different ideas: [57] uses
shared polynomials, [35,27] use homomorphic encryption in the online phase,
[41] also uses homomorphic encryption but in a single centralized server setup.
Of course any fully homomorphic encryption scheme like the original protocol
by Gentry [37] can also be used to evaluate a polynomial. Another idea is to use
oblivious transfer-based techniques like in [60] or [36,69] where one party holds
the polynomial f and the other party holds the input variables x0, . . . , xm−1. Yet
another recent idea is to compute multivariate polynomials of time-series data
utilizing private stream aggregation (PSA) and trusted execution environments
(TEEs) as in [47].

In [17] or [67], public verifiability of a polynomial evaluation is studied. We
remark that our protocols can be extended to support (public) verifiability or
(publicly) identifiable abort similarly to known extensions of [31], e.g. [6,7,26].

Since our paper aims at minimizing communication, we also want to shortly
point to a more detailed discussion on the importance of communication rounds
in MPC, e.g. in [2,12] or [34].

Finally, there is also the recent research direction of non-interactive MPC (cf.
[32,42,43,44,46]) where parties send data online once and reconstruct the result
locally without an opening round. However, these protocols are either vulnerable
to residual function attacks or use trusted hardware (e.g., TEEs).
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