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Abstract. In [1] we studied collision side-channel attacks and derived an optimal distinguisher
for key ranking. In this note we show that the problem of key ranking using this distinguisher is
NP-hard and we provide estimates of lower bounds for secret key ranks in collision side-channel
attacks.
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1 Introduction

Side-channel attacks exploit measurable leakage signals produced by an underlying hardware plat-
form during execution of cryptographic functions. Given an adequate stochastic model of the signals
optimal strategies for key recovery can be derived. In [1] we studied collision side-channel attacks
based on an optimal distinguisher for a key. The distinguisher is a statistic based on the measured
values of leakage signals which allows to decide for any two key candidates the order of their a poste-
riori probabilities conditioned on the measured values, and it can be used to list the key candidates
in a descending order. The attacker can use the list and try each key candidate starting with the
first one for minimizing the expected number of trials until the secret key has been found. In security
evaluations it is sufficient to know the position of the secret key, i.e. its rank, in the list even without
actually creating the list. This allows to rate the best case effort needed to find the secret key. We
show that the problem of key ranking using the optimal distinguisher is NP-hard and we provide
estimates of lower bounds for secret key ranks in collision side-channel attacks.

The distinguisher Dopt.fun.gauss and its objective function D(k, x) which were derived in [1] for
optimal collision side-channel attacks assuming a Gaussian noise and Gaussian leakage function
values are restated in the following equations.

Dopt.fun.gauss = argmax
k∈(Fn

2 )
L

D(k, x)

D(k, x) =
∑
q∈Fn

2

(

L∑
l=1

x(q⊕k(l))(l))2 =

L∑
i=1

L∑
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Di,j(k
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Di,j(d, x) =
∑
q∈Fn

2

x(q)(i)x(q⊕d)(j)

The component x(q)(l) of x ∈ (R2n)L represents the measured value of a leakage signal during the
calculation of the l-th out of L n-bit S-Boxes with the input data q ∈ Fn

2 . It is assumed that the
actual input to the l-th S-Box is q ⊕ k⋆(l), where k⋆(l) ∈ Fn

2 is the l-th sub-key of the secret key
k⋆ ∈ (Fn

2 )
L. The objective function D(k, x) provides for each key candidate k ∈ (Fn

2 )
L a value which

is proportional to the a posteriori probability of k conditioned on the measured values x.
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2 Key Ranking is NP-Hard

The key ranking problem for optimal collision side-channel attacks is stated as follows. Given the vec-
tor x of measured values of leakage signals calculate the number R(x, r) of key candidates k ∈ (Fn

2 )
L

s.t. D(k, x) ≥ r. Actually, in an attack the number R(x,D(k⋆, x)) is of interest.

We reduce the NP-complete partition problem1 to the key ranking problem. Given a multiset in-
stance S = {s1, . . . , sL} ⊂ N of the partition problem we create in polynomial time an instance

x = ((x(0)(1) = −s1, x
(1)(1) = +s1), . . . , (x

(0)(L) = −sL, x
(1)(L) = +sL))

of the key ranking problem.

Let ρ(0) = −1 and ρ(1) = 1. Because ∀k∈FL
2
D(k, x) ∈ N we have R(x, 1) < 2L if and only if

there is a key k ∈ FL
2 for which D(k, x) =

∑
q∈F2

(
∑L

l=1 x
(q⊕k(l)))2 = 2(

∑L
l=1 ρ(k

(l))sl)
2 = 0. It

follows that R(x, 1) < 2L if and only if the partition problem S has a solution. ■

3 Estimation of Lower Bounds for Secret Key Ranks

An estimate of a lower bound for the secret key rank can be obtained by estimating the number of
keys in some key subset with ranks higher than or equal to the rank of the secret key.

Let Ni = {1, ..., i} ⊂ N, Cc = {C ⊆ NL−1 | |C| = c}, b ∈ N2n−1, c ∈ NL−1 and l ∈ NL−1.

Let Kl,b ⊆ Fn
2 \ {k⋆(l)} denote a set s.t. |Kl,b| = b and

∀d∈Kl,b
∀d′∈Fn

2 \{k⋆(l)}\Kl,b
Dl,L(d⊕ k⋆(L), x) ≥ Dl,L(d

′ ⊕ k⋆(L), x).

Let Sb,c = {k ∈ (Fn
2 )

L | ∃C∈Cc∀l∈NL
(l /∈ C ∧ k(l) = k⋆(l) ∨ l ∈ C ∧ k(l) ∈ Kl,b)} and let sb,c = |Sb,c|.2

Let tb,c denote the number of keys k ∈ Sb,c s.t. D(k, x) ≥ D(k⋆, x).

Then rb,c = max(2ntb,c, 2
n) is a lower bound for the secret key rank R(x,D(k⋆, x)).3

Let S̃b,c denote a multiset of m = 224 keys obtained by uniform random sampling the set Sb,c.
4

Let t̃b,c denote the number of keys k ∈ S̃b,c s.t. D(k, x) ≥ D(k⋆, x).

Then r̃b,c = max(2n
t̃b,c
m sb,c, 2

n) is an estimate of the lower bound rb,c.

If
tb,c
sb,c

<
t̃b,c
4m then the probability that t̃b,c ≥ t̂ = 32 is less than p̂ = 1.3 ∗ 10−10.5 We set r̃b,c = 2n if

t̃b,c < t̂. It is now expected that log2(rb,c) ≥ log2(r̃b,c)− 2 in a fraction 1− p̂ of estimations.

1 See e.g. https://en.wikipedia.org/wiki/Partition problem
2 |Sb,c| =

(
L−1
c

)
bc.

3 For each k = (k(1), . . . , k(L−1), k⋆(L)) ∈ S(k⋆, x, b, c) and for each d ∈ Fn
2 \ {(0)n} there is a key k′ =

(k(1), . . . , k(L−1), k⋆(L) ⊕ d) /∈ S(k⋆, x, b, c) s.t. D(k, x) = D(k′, x); there are 2n − 1 such keys k′.
4 First an element C ∈ Cc and then for each l ∈ C the sub-keys k(l) ∈ Kl,b are selected at random.
5 For the calculation of the bound p̂ = 1 −

∑t̂−1
i=0 P ( t̂

4
; i) an approximation of the binomial B(m, t̂

4m
; i) by

the Poisson distribution P ( t̂
4
; i) was used.
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4 Simulation Results

We simulated attacks for a Gaussian noise and Gaussian leakage function values. The simulation
parameters were n=8, L = 16, k⋆ = ((0)n)L and a noise variance σ2. In a simulated attack we first
created for each q ∈ Fn

2 and each l ∈ NL realisations φq and ηq,l of independent standard normal
random variables. Then the vector x was created by setting its components x(q)(l) =

√
2φq + σηq,l.

In each simulated attack a lower bound rb,c for the secret key rank R(x,D(k⋆, x)) was estimated
according to section 3 with preselected values for the parameters b and c.6 Attacks were simulated
1, 000 times for each of some noise variance values7 and empirical quantiles of lower bound estimates
were calculated. The results are shown in Table 1.

σ2/18.75 1st10-quantile 1st5-quantile median

1.0 8 8 11
1.5 16 18 25
2.0 27 36 53
2.5 52 56 72
3.0 69 73 88
3.5 83 87 101

Table 1. log2 of empirical quantiles of lower bound estimates.
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6 For each b ∈ {2i − 1 | i ∈ Nn} and for each c ∈ NL−1 the estimates r̃b,c were calculated according to
section 3 with m = 216 and t̂ = 3; then the values argmaxb,c r̃b,c were preselected.

7 One value is σ2 = 18.75 for which the optimal algorithm for collision side-channel attacks has a success
rate of 0.1 in the same simulation set-up (see Fig. 1, [1]).


