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Abstract. In [1] we studied collision side-channel attacks, and derived
an optimal distinguisher for key ranking. In this note we propose a heuris-
tic estimation procedure for key ranking based on this distinguisher, and
provide estimates of lower bounds for secret key ranks in collision side
channel attacks.
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1 Introduction

Side-channel attacks exploit measurable leakage signals produced by an under-
lying hardware platform during execution of cryptographic functions. Given an
adequate stochastic model of the signals optimal strategies for an attack on the
secret key can be derived. In [1] we studied collision side-channel attacks based
on an optimal distinguisher for a key. The distinguisher is a statistic based on
the measured values of leakage signals which allows to decide for any two key
candidates the order of their a-posteriori probabilities conditioned on the mea-
sured values, and it can be used to list the key candidates in a descending order.
The attacker can use the list and try each key candidate starting with the first
one for minimizing the expected number of trials until the secret key has been
found. In security evaluations it is sufficient to know the position of the secret
key, i.e. its rank, in the list even without actually creating the list. This allows
to rate the best case effort needed to find the secret key. We propose a heuristic
estimation procedure for key ranking based on the optimal distinguisher, and
provide estimates of lower bounds for secret key ranks in collision side channel
attacks.

2 Background

The distinguisher Dopt.fun.gauss and its objective function D(k) which were de-
rived in [1] for optimal collision side-channel attacks assuming a Gaussian noise
and Gaussian leakage function values are restated in the following equations:

Dopt.fun.gauss = argmaxk∈(Fn
2 )

L D(k),
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D(k) =
∑L

i=1

∑L
j=1 Di,j(k

(i) ⊕ k(j)), and

Di,j(d) =
∑

q∈Fn
2
x(q)(i)x(q⊕d)(j).

The component x(q)(l) of x ∈ (R2n)L represents the measured value of a leakage
signal during the calculation of the l-th of L n-bit S-Boxes with the input data
q ∈ Fn

2 . It is assumed that the actual input to the l-th S-Box is q ⊕ k⋆(l),
where k⋆(l) ∈ Fn

2 is the l-th sub-key of the secret key k⋆ ∈ (Fn
2 )

L. The objective
function D(k) provides for each key candidate k ∈ (Fn

2 )
L a value which is strictly

increasing with the a-posteriori probability of k conditioned on the measured
values x.

3 Estimation of Lower Bounds for Secret Key Ranks

An estimate of a lower bound for the secret key rank can be obtained by sam-
pling some key subset and counting the keys in the sample with ranks lower than
or equal to the rank of the secret key.

Let Ni = {1, . . . , i} ⊂ N, and let b ∈ N2n−1, c ∈ NL−1, m, û ∈ N+ and t̂ ∈ Nm

denote the estimation paramaters.

Let Kl denote a set of b largest wrt.
∑L

i=1 Dl,i(d ⊕ k∗(i)) (Variant I) or wrt.
Dl,L(d ⊕ k∗(L)) (Variant II) elements d from Fn

2 \ {k⋆(l)}, C = {N ⊆ NL−1 |
|N | = c}, S = {k ∈ (Fn

2 )
L | ∃N∈C∀l∈NL

(l /∈ N ∧ k(l) = k⋆(l) ∨ l ∈ N ∧ k(l) ∈ Kl)}
and t = |{k ∈ S | D(k) ≥ D(k⋆)}|. Then r = 2nmax(t, 1) is a lower bound for
the secret key rank |{k ∈ (Fn

2 )
L | D(k) ≥ D(k⋆}|.1

Let t̃ denote a number of keys k found in m samples from the set S s.t. D(k) ≥
D(k⋆).2 Then r̃ = 2nmax( t̃

m |S|, 1) is an estimate of the lower bound r.

Let B(n, p; k) denote the binomial distribution. Let γ(n, p; k) =
∑k−1

i=0 B(n, p; i).

When t̃ ≥ t̂ ≥ 3 and û ≥ 2 then the confidence level γ(m, t̃
ûm , t̃) for t

|S| >
t̃

ûm
3

is at least γ(m, t̂
ûm , t̂).4 We set r̃ = 2n when t̃ < t̂. Now the confidence level

for log2(r) ≥ log2(r̃) − log2(û) is at least γ(m, t̂
ûm , t̂). E.g. γ(224, 32

4∗224 , 32) =
1− 1.3 ∗ 10−10.
1 The reason for the factor 2n is: for each k ∈ S there are 2n − 1 keys k′ = k⊕ dL /∈ S
with d ∈ Fn

2 \ {(0)n} s.t. D(k′) = D(k).
2 The set S is sampled uniformly at random; for each sample first N ∈ C and then
for each l ∈ N the sub-keys k(l) ∈ Kl are selected uniformly at random.

3 See 2.3, [2].
4 d

dp
γ(n, p; k) = −k

(
n
k

)
pk−1(1− p)n−k < 0 (see 2, [2]) and

d2

dp2
γ(n, p; k) = k

(
n
k

)
pk−2(1− p)n−k−1((n− 1)p− (k − 1)) < 0 for p < k−1

n−1
hence

γ(n, p+∆p; k+1) > γ(n, p; k)+∆p
∂
∂p

γ(n, p+∆p; k)+
(
n
k

)
(p+∆p)

k(1−(p+∆p))
n−k

= γ(n, p; k)−∆pk
(
n
k

)
(p+∆p)

k−1(1− (p+∆p))
n−k +

(
n
k

)
(p+∆p)

k(1− (p+∆p))
n−k

= γ(n, p; k) +
(
n
k

)
(p+∆p)

k−1(1− (p+∆p))
n−k(p+∆p(1− k)) for p+∆p < k−1

n−1
.
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4 Simulation Results

We simulated attacks for a Gaussian noise and Gaussian leakage function values.
The simulation parameters were n = 8, L = 16, k⋆ = ((0)n)L and a noise vari-
ance σ2. In a simulated attack we first created for each q ∈ Fn

2 and each l ∈ NL

realisations φq and ηq,l of independent standard normal random variables. Then
the vector x was created by setting its components x(q)(l) =

√
2φq + σηq,l.

In each simulated attack a lower bound r for the secret key rank was estimated5

with selected parameters b, c6 and with m = 224 and t̂ = 32. Attacks were simu-
lated 1, 000 times for each noise variance and empirical quantiles of lower bound
estimates were calculated. The results are shown in Table 1.

σ2/18.75 1st decile 2nd decile median

1.0 87 8 14
1.5 22 28 38
2.0 41 47 59
2.5 56 67 84
3.0 74 83 99
3.5 85 94 1088

Table 1. log2 of empirical quantiles of lower bound estimates.

5 Summary

We proposed a heuristic estimation procedure for key ranking, and provided
estimates of lower bounds for secret key ranks in collision side channel attacks.
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With n = m, p = t̃
ûm

,∆p = 1
ûm

, k = t̃ > t̂ ≥ 3 and û ≥ 2 we then have

γ(m, t̃+1
ûm

; t̃+ 1) > γ(m, t̃
ûm

; t̃) > · · · > γ(m, t̂
ûm

; t̂).
5 We used Variant I for σ2/18.75 ≤ 2.0 and Variant II for σ2/18.75 > 2.0.
6 For each b ∈ N2n−1 and each c ∈ NL−1 estimates r̃ were calculated with m = 218

and t̂ = 3 and a pair b, c with largest value of r̃ was selected.
7 For σ2 = 1.0 ∗ 18.75 the optimal algorithm for collision side-channel attacks has a
success rate of 0.1 in the same simulation set-up (see Fig. 1, [1]).

8 For σ2 = 3.5 ∗ 18.75 the empirical median of secret key rank estimates is 2109 (each
of 1,000 estimates was obtained in our simulation set-up using 224 uniform random
samples from the set of 2128 keys).
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