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Abstract. In [1] we studied collision side-channel attacks, and derived
an optimal distinguisher for key ranking. In this note we propose a heuris-
tic estimation procedure for key ranking based on this distinguisher, and
provide estimates of lower bounds for secret key ranks in collision side
channel attacks.
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1 Introduction

Side-channel attacks exploit measurable leakage signals produced by the under-
lying hardware platform during execution of cryptographic functions. Given an
adequate stochastic model of the signals optimal strategies for an attack on the
secret key can be derived. In [1] we studied collision side-channel attacks based
on an optimal distinguisher. The distinguisher is a function of a key and of the
measured values of leakage signals which allows to decide for any two keys the
order of their a-posteriori probabilities conditioned on the measured values, and
it can be used to enumerate the keys in a descending order. The attacker can
try each key starting with the first one for minimizing the expected number of
trials until the secret key has been found. In security evaluations a lower bound
for the position of the secret key, i.e. its rank, in the enumeration allows to
rate the attacker’s best case effort needed to find the secret key. In this note we
propose a heuristic estimation procedure for key ranking based on the optimal
distinguisher, and we provide estimates of lower bounds for secret key ranks in
collision side channel attacks.

2 Background

The optimal distinguisherDopt.fun.gauss and its objective functionD(k, x) which
were derived in [1] for collision side-channel attacks assuming Gaussian leakage
function values and Gaussian noise are restated in the following equations

Dopt.fun.gauss = argmaxk∈(Fn
2 )

L D(k, x),

D(k, x) =
∑L

i=1

∑L
j=1 Di,j(k

(i) ⊕ k(j), x) and
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Di,j(d, x) =
∑

q∈Fn
2
x(q)(i)x(q⊕d)(j).

The component x(q)(l) of x ∈ (R2n)L represents the measured value of the leakage
signal during the calculation of the l-th of L n-bit S-Boxes with the input data q ∈
Fn
2 . It is assumed that the actual input to the l-th S-Box is q⊕k⋆(l), where k⋆(l) ∈

Fn
2 is the l-th sub-key of the secret key k⋆ ∈ (Fn

2 )
L. The objective functionD(k, x)

provides for each candidate key k ∈ (Fn
2 )

L a value which is strictly increasing
with the a-posteriori probability of k conditioned on the measured values x. The
rank of the secret key k⋆ is r⋆ = |{k ∈ (Fn

2 )
L | D(k, x) ≥ D(k⋆, x)}|.

3 Estimation of Lower Bounds for Secret Key Ranks

Given the secret key k⋆ and the measured values x an estimate r̃ of a lower
bound r for the secret key rank r⋆ can be obtained by sampling some key subset
S ⊆ (Fn

2 )
L and counting sampled keys k for which D(k, x) ≥ D(k⋆, x).

Let Ni = {1, . . . , i} ⊂ N, and let b ∈ N2n−1, c ∈ NL−1, m, û ∈ N+ and t̂ ∈ Nm

denote the estimation parameters.

Let Kl denote a set of b largest regarding
∑L

i=1 Dl,i(d ⊕ k∗(i), x) (Variant I)
or Dl,L(d⊕k∗(L), x) (Variant II) elements d from Fn

2 \{k⋆(l)}, C = {N ⊆ NL−1 |
|N | = c}, S = {k ∈ (Fn

2 )
L | ∃N∈C∀l∈NL

(l /∈ N ∧ k(l) = k⋆(l) ∨ l ∈ N ∧ k(l) ∈ Kl)}
and t = |{k ∈ S | D(k, x) ≥ D(k⋆, x)}|. Then r = max{2nt, 2n} is a lower bound
for the secret key rank r⋆. The reason for the factor 2n is: for each k ∈ S there
are 2n−1 values d ∈ Fn

2 \{(0)n} for which k⊕dL /∈ S and D(k⊕dL, x) = D(k, x).
We have r⋆ ≥ 2n because for each d ∈ Fn

2 D(dL ⊕ k⋆, x) = D(k⋆, x). Hence, the
lower bound can be set to r = 2n when t = 0.

The keys k are sampled from the set S uniformly at random; first N is sampled
from C, then for each l ∈ N the sub-key k(l) is sampled from Kl, and for each
l ∈ NL \ N the sub-key k(l) is set to k⋆(l). Let t̃ denote the number of keys
k found in m samples for which D(k, x) ≥ D(k⋆, x), B(m, p; i) denote the bi-

nomial distribution and γ(m, p; l) =
∑l−1

i=0 B(m, p; i). The confidence coefficient

γ(m, t̃
ûm ; t̃) of the lower bound t̃

ûm for p = t
|S| (see 2.3, [2]) is at least γ(m, t̂

ûm ; t̂)

when t̃ ≥ t̂ ≥ 3 and û ≥ 2.1 Our estimate r̃ of the lower bound r is r̃ = 2n t̃
m |S|

when t̃ ≥ t̂ and r̃ = 2n otherwise. Then the confidence coefficient of the lower
bound r̃/û for r is at least γ(m, t̂

ûm ; t̂) for t̂ ≥ 3 and û ≥ 2.

1 d
dp
γ(m, p; l) = −l

(
m
l

)
pl−1(1− p)n−l < 0 (see 2, [2]) and

d2

dp2
γ(m, p; l) = l

(
m
l

)
pl−2(1− p)m−l−1((m− 1)p− (l − 1)) < 0 for p < l−1

m−1
hence

γ(m, p+∆p; l+1) > γ(m, p; l)+∆p
∂
∂p

γ(m, p+∆p; l)+
(
m
l

)
(p+∆p)

l(1−(p+∆p))
m−l

= γ(m, p; l)−∆pl
(
m
l

)
(p+∆p)

l−1(1− (p+∆p))
m−l +

(
m
l

)
(p+∆p)

l(1− (p+∆p))
m−l

= γ(m, p; l) +
(
m
l

)
(p+∆p)

l−1(1− (p+∆p))
m−l(p+∆p(1− l)) for p+∆p < l−1

m−1
.

For t̃ > t̂ ≥ 3 and û ≥ 2 we then have γ(m, t̃+1
ûm

; t̃ + 1) > γ(m, t̃
ûm

; t̃) > · · · >

γ(m, t̂
ûm

; t̂).
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4 Simulation Results

We simulated attacks for Gaussian leakage function values φq and Gaussian noise
ηq,l. The simulation parameters were n = 8, L = 16, k⋆ = ((0)n)L and the noise
variance σ2. In a simulated attack we first created for each q ∈ Fn

2 and for each
l ∈ NL realisations φq and ηq,l of independent standard normal random variables.
Then the vector x was created by setting its components x(q)(l) =

√
2φq + σηq,l.

In each simulated attack the estimate r̃ of the lower bound r for the secret
key rank r⋆ was estimated using Variant I for σ2/18.75 ≤ 2.0 and Variant II
for σ2/18.75 > 2.0 with m = 224, t̂ = 32 and selected values for b and c (for
each b ∈ N2n−1 and each c ∈ NL−1 estimates of the lower bound were calcu-
lated with m = 218 and t̂ = 3, then b and c with largest value of the estimate
were selected). The confidence coefficient of the lower bound r̃/û for r is at least
γ(224, 32

û∗224 ; 32) = 0.9997 for û = 2 and 0.9999999998 for û = 4. Attacks were
simulated 1, 000 times for each noise variance σ2 and empirical quantiles of lower
bound estimates r̃ were calculated. The results are shown in Table 1.

σ2/18.75 1st decile 2nd decile median

1.0 8 8 14
1.5 22 28 38
2.0 41 47 59
2.5 56 67 84
3.0 74 83 99
3.5 85 94 108

Table 1. log2 of empirical quantiles of lower bound estimates r̃.

The results fit the following reference data. For σ2 = 1.0 ∗ 18.75 the optimal
algorithm for collision side-channel attacks has a 28-th order success rate of 0.1
in the same simulation set-up (see Fig. 1, [1]). For σ2 = 3.5 ∗ 18.75 the empirical
median of secret key rank estimates is 2109(each of 1,000 estimates was obtained
in our simulation set-up using 224 uniform random samples from the set of all
2128 keys).
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