
MPClan: Protocol Suite for Privacy-Conscious
Computations

Nishat Koti∗, Shravani Patil∗, Arpita Patra∗, Ajith Suresh†,
∗Indian Institute of Science, Bangalore, Email: {kotis, shravanip, arpita}@iisc.ac.in

†Technical University of Darmstadt, Germany, Email: suresh@encrypto.cs.tu-darmstadt.de

Abstract—The growing volumes of data being collected and
its analysis to provide better services are creating worries about
digital privacy. To address privacy concerns and give practical
solutions, the literature has relied on secure multiparty com-
putation. However, recent research has mostly focused on the
small-party honest-majority setting of up to four parties, noting
efficiency concerns. In this work, we extend the strategies to
support a larger number of participants in an honest-majority
setting with efficiency at the center stage.

Cast in the preprocessing paradigm, our semi-honest protocol
improves the online complexity of the decade-old state-of-the-art
protocol of Damgård and Nielson (CRYPTO’07). In addition to
having an improved online communication cost, we can shut down
almost half of the parties in the online phase, thereby saving up
to 50% in the system’s operational costs. Our maliciously secure
protocol also enjoys similar benefits and requires only half of the
parties, except for one-time verification, towards the end.

To showcase the practicality of the designed protocols, we
benchmark popular applications such as deep neural networks,
graph neural networks, genome sequence matching, and biomet-
ric matching using prototype implementations. Our improved
protocols aid in bringing up to 60-80% savings in monetary cost
over prior work.

I. INTRODUCTION

Today’s world is seeing a visible transition from offline
services to a heavy dependency on online platforms for bank-
ing, socializing, healthcare, etc. This is leading to an increased
user presence online, which leaves a trail of online activity and
personal data over the Internet. The availability of such user-
specific data opens up possibilities for its misuse. For instance,
there has been a lot of concern raised regarding advertisement
service providers such as Google, Facebook breaching user
privacy for targeted advertisement services [34]. In the process
of providing enhanced targeted advertisement services, service
providers are allegedly learning more information about their
users than they are entitled to (e.g., user’s shopping activity,
browsing history) from various data collection entities. These
entities collect user data via website cookies, loyalty cards,
etc. [65]. While such targeted advertisements offer a personal-
ized online experience, they may come at the cost of revealing
unauthorized user data to these service providers. Such a chal-
lenge is also encountered in the healthcare sector. Collaborative
analysis among healthcare institutes over patient data is known
to facilitate better diagnosis and improved treatment. However,
laws such as GDPR, which prevent sharing of patient records,
hinder such collaborations, thereby re-emphasizing the need
for mechanisms that enable privacy-preserving computations.

Such mechanisms that ensure privacy-preserving computa-
tions can be facilitated via several privacy-enhancing technolo-

gies such as homomorphic encryption [16], [41], differential
privacy [36], secure multiparty computation [89], [11], [43],
to name a few. We focus on secure multiparty computation
(MPC) as it has been the cornerstone of research lately,
showcasing its effectiveness in various applications such as
privacy-preserving machine learning [56], [68], [85], secure
collaborative analytics [75], secure genome matching [79], [5],
etc. Essentially, it offers a solution to the potential privacy
issues which may arise in collaborative computation scenarios
such as targeted advertisements described earlier. MPC allows
mutually distrusting parties to perform computations on their
private inputs such that they learn nothing beyond the output of
the computation. The distrust among the parties is captured by
the notion of a centralized adversary, which is said to corrupt
up to t out of the n participating parties. Depending on its
behaviour, the adversary can be categorized as either semi-
honest or malicious [42]. Semi-honest adversary models the
corruption scenario where the corrupt parties are restricted to
follow the protocol and cannot deviate arbitrarily, as in the
stronger notion of malicious corruption.

MPC with honest majority, where only a minority of the
parties are corrupt, enables construction of efficient protocols
for multiple parties [13], [31], [1], [48], [12], [75]. The re-
cent concretely efficient protocols have only considered small
number of parties [56], [74], [22], [85], [68], [28], [66], [84],
which restricts the number of corruptions to at most one.
Although the small-party setting has found application in the
outsourced computation paradigm too, the multiparty setting
is a better fit for real-world deployments due to its resiliency
to a higher number of corruptions (up to t < n/2). Thus, for
larger n, the number of corruptions that can be tolerated is also
higher, thereby increasing the trust in the system. Moreover,
multiparty setting allows for privacy-conscious computations
even in a non-outsourced deployment scenario, such as in
providing targeted advertisement services (described in Fig. 1
and elaborated below), when outsourcing the computation is
not feasible/preferable. Hence, to design efficient protocols, we
focus on honest majority multiparty computation.

a) Use Case.: Consider the scenario of targeted adver-
tisement services depicted in Fig. 1(a). Typically, data collec-
tion entities track a user’s online activities via website cookies
while browsing the Internet (1). Also known as cookie profil-
ing, such data collection allows the entities to create a “profile”
for each user, which may contain information such as browsing
habits, gender, marital status, and age, to name a few, as shown
in 2 . These profiles can facilitate targeted advertisements
via specialized algorithms (4), which is leveraged by the
advertisement service providers such as Google and Facebook.

Fig. 1: Use case for privacy-conscious solutions

While such services offer a personalized experience, it comes
at the expense of users’ private data being revealed to the
service providers, as indicated in 3 . A feasible solution
(Fig. 1(b)) instead is to place a solution box at the interface
between these service providers and the data collection entities
such that it provides mechanisms to ensure the privacy of user
data while also facilitating the required computations over the
same (to provide targeted advertisement services). MPC being
a technology that supports privacy-preserving computations,
lends itself well to such tasks. Instead of the data collection
entities directly revealing the user data to the advertisement
service providers, they can engage in an instance of MPC
protocol (3) which securely runs the required algorithm on
the user data while maintaining its privacy. Moreover, such
a computation does not require the data collection entities to
reveal their data to each other, thus offering a viable solution.
Furthermore, as studied in [49], the effectiveness of targeted
advertisements can greatly benefit from the use of machine
learning algorithms. In particular, neural networks, and more
recently graph neural networks [24], [72], [90], [62], [88] have
shown the potential to better analyse the data available via user
profiles, in turn allowing for a refined personalized experience.
We thus focus on protocols for securely evaluating the standard
neural networks such as VGG16 [82] (deep neural network)
and graph neural network, and provide benchmarks for the
same in Section V.

A. Related work

We restrict related work to MPC protocols in honest-
majority setting. Despite the interest in MPC for small pop-
ulation [4], [3], [39], [23], [1], [21], [74], [22], [18], [56],
[85], [28], MPC protocols for arbitrary number of parties
have been studied largely [38], [31], [48], [6], [8], [10], [15],
[13], [17], [78], [2], [19], [12], [45]. In the honest majority
(t < n/2) semi-honest setting, [31], [40] forms the state of
the art MPC protocols over fields in the information theoretic
setting. This was further optimized in the computational setting
in [13] using a one-time setup for correlated randomness.
We will often refer to this optimized honest-majority semi-
honest protocol of [31] as DN07. In the information-theoretic
setting, the work of [46], improves upon the communication
and round complexity of [31]. The work of [38] recently
demonstrates MPC protocols in the honest majority setting

in the preprocessing model with malicious security, which
requires communicating 3t field elements in the online as well
as the preprocessing phase. We observe that the semi-honest
protocol derived from this requires communicating 2t elements
in the online and 3t elements in the preprocessing phase. The
recent work of [12], [6] provides semi-honest MPC protocols
which require each party to communicate roughly t elements
per multiplication gate, resulting in quadratic communication
in the number of parties. DN07 has served as the basis for
obtaining malicious security for free (i.e. amortized commu-
nication cost of 3t elements per multiplication gate) in the
computational setting [13], [15] as well as in the information-
theoretic setting [48], [46]. Both [48] and [15] follow the
approach of executing a semi-honest protocol, followed by a
verification phase to check the correctness of multiplication
which involves heavy polynomial interpolation operations.
As mentioned earlier, the recent work of [38] focuses on
maliciously secure protocols for honest-majority setting in the
preprocessing model. Their protocol relies on an instantiation
of [48] in the preprocessing phase that requires communicating
3t elements while requiring another 3t element communication
in the online phase. However, their protocol is inefficient due to
a consistency check required after each level of multiplication
and introduces depth-dependent overhead in communication
complexity. The absence of this check results in a privacy
breach as described in [47] and is elaborated in §B-B0c.

B. Towards practically efficient protocols

Before stating our contributions, we elaborate on the
choices made in designing a practically efficient protocol.

1. Preprocessing paradigm. With the goal of attaining as
fast a response time as possible, the protocols are cast in
the preprocessing paradigm [33], [30], [54], [52], [7], [32],
[25], [76], [53], [74], [22]. Here, expensive data-independent
computations are carried out in a preprocessing phase, thereby
making way for a fast and efficient data-dependent online
phase. We thus focus on improving the online phase without
hampering the overall protocol complexity.

2. Algebraic structure. To further enhance efficiency by
utilizing the underlying CPU architecture, several protocols
work over rings [68], [56], [22], [85], [57], [66]. We follow
this approach and design MPC protocols operating over the
ring Z2ℓ and rely on replicated secret sharing (RSS). Note
that usage of RSS inherently results in exponential blow-up
in the number of shares for an arbitrary number of parties.
Hence, it is well-suited for the practically-oriented scenarios
comprising of a constant number of parties [13], [15], which
we restrict to for benchmarking our protocols.

3. Masked evaluation. To make our protocols efficient in
the preprocessing paradigm, we use the masked evaluation
paradigm, a variant of the replicated secret sharing scheme.
The secret data is masked using a masking value in this case,
and the mask is RSS shared. The computation is done on
the publicly available masked values and the shared masks.
This technique was first introduced in the context of circuit
garbling schemes (see [64], [87]), and was then adapted to
secret sharing-based protocols in dishonest majority (see [51],
[9]). It was later applied to small-population honest-majority
settings such as [44], [21], [74], [28], [56] and [57] to aid in
the development of practically efficient protocols.

2

4. Adversarial strategy. Based on the deployment scenario,
different levels of security may be desired. While semi-honest
security suffices for several applications as shown in [4], [59],
[21], [70], [5], [79], [20], [83], malicious security is always
desirable. Thus, to cater to different scenarios, our protocols
are designed to provide semi-honest and malicious security,
where each security goal has its merit.

5. Monetary cost. To reduce the operational costs in the
online phase, several recent works [74], [56], [22], [57]
reduce the number of (online) computing parties. This is
useful in long computations such as those involved in privacy-
preserving machine learning (PPML) applications, which span
several days or even weeks. Reducing the number of online
parties is especially advantageous for protocols deployed in the
secure outsourced computation (SOC) setting since one has to
pay for the up-time of every hired server. Shutting down even
a single server significantly helps in reducing the monetary
cost [67], [57] of the system. We thus focus on ensuring the
participation of a minimal number of parties during the online
computation in our protocols. This is achieved for the first
time in the multiparty (malicious) setting1. Specifically, all
the protocols for the semi-honest setting in our framework
benefit from using only t+1 parties in the online phase. The
protocols in the malicious setting also enjoy this benefit except
that the remainder t parties are required to come online for
a short verification phase at the end. The reduction in online
parties aids in improving the operational cost of the framework
by almost 50%. This is unlike prior works [31], [13], [15],
[48], [46] which require active participation from all parties
throughout the computation.

C. Our Contributions

We begin with a quick overview of the contributions of
this work, followed by the details.
• We construct an n-party semi-honest protocol in the pre-
processing paradigm which offers an improved online phase
than the decade-old state-of-the-art protocol of [31], without
inflating its total cost. Moreover, our protocol reduces the
number of active parties in the online phase, thereby improving
the system’s operational cost when deployed in SOC setting.
• We extend our semi-honest protocol to the malicious setting,
while retaining the benefits of requiring reduced number of
parties in online phase for majority of the computation. Our
offer over state-of-the-art protocol of [38] is a stronger security
guarantee of fairness, and O(d) improvement in round com-
plexity. Here, d denotes depth of the circuit to be evaluated.
• We provide support for 3 and 4 input multiplication, at the
same online complexity as that of the 2 input multiplication.
In addition to improving the communication cost over the ap-
proach of sequential multiplications, multi-input multiplication
offers a 2× improvement in the round complexity which is
beneficial for high latency networks.
• We design building blocks for a range of applications such
as deep neural networks, graph neural networks, genome
sequence matching and biometric matching. When the appli-
cations are benchmarked, our semi-honest protocol witnesses a
saving of up to 69% in monetary cost, and has 3.5× to 4.6×

1A recent work [38] also claims to achieve this reduction in online parties.
However, their protocol suffers from a privacy breach as explained in §B-B0c.

improvements in online run time and throughput over [31].
Interestingly, our maliciously secure protocols outperforms the
semi-honest protocol of [31] in terms of online run time and
throughput for the applications under consideration, achieving
the goal of fast online phase.

We now elaborate on the contributions and highlight the
technical details and novelty of our work.

Fig. 2: Hierarchy of primitives in our 3-tier framework

Our protocol suite follows a 3-tier architecture (Fig. 2) to
attain the final goal of privacy-conscious computations. The
first tier comprises fundamental primitives such as input shar-
ing, reconstruction, multiplication (with truncation), and multi-
input multiplication. The second tier includes building blocks
such as dot product, matrix multiplication, conversion between
Boolean and arithmetic worlds, comparison, equality, non-
linear activation functions, to name a few, as required in the
applications considered. Finally, the third tier is applications.
Our main contribution lies in Tier I and is detailed below.

1) Tier I - MPC protocols: Our goal is to design protocols
with a fast online phase. Thus, working over Z2ℓ and relying
on RSS, we design a semi-honest MPC protocol in the com-
putational setting assuming a one-time shared-key setup for
correlated randomness.

Note that the straightforward extension of semi-honest
multiplication protocol of [31] to the preprocessing model,
which can also be derived from the recent work of [38], incurs
a communication of 3t elements in the preprocessing phase
while communicating 2t elements in the online. This amounts
to a 1.6× overhead in the total cost over [31]. Our contribution
lies in ensuring a fast online phase, without inflating the total
communication cost of the protocol. Specifically, our protocol
requires communicating only 2t ring elements in the online
phase and t in the preprocessing, for a multiplication gate.
We are the first to achieve a communication cost of 2t in the
online phase (unlike 3t in the prior works [31], [40]), without
incurring any overhead in the total cost, i.e., our total cost
still matches that of the best known (optimized) semi-honest
honest-majority protocol [31], [40].

We extend our protocol to provide malicious security with
fairness2 at the cost of additionally communicating t elements
in the online phase and 2t in the preprocessing phase. Although
(abort3) protocol of [38] has the same communication as our
maliciously secure protocol, we achieve a stronger security
notion of fairness. Moreover, [38] requires an additional round
of communication for consistency checks after each level, the

2Guarantees either all parties receive the output or none do.
3Honest parties may not receive the output while corrupt parties do.

3

absence of which results in a privacy breach (described in
[47] and elaborated in §B-B0c), and necessitates participation
from all parties. However, by relying on a variant of RSS,
our protocol avoids the consistency check after each level of
circuit evaluation and ensures privacy. Notably, we only require
participation from all parties for a one-time verification at the
end of evaluation, thus reducing the number of rounds by d (d
denotes circuit depth).

3 and 4 input multiplications: Following [73], [71],
[57], to reduce the online communication cost and round
complexity, we design protocols to enable the multiplication
of 3 and 4 inputs in a single shot. Compared to the naive
approach of performing sequential multiplications to multiply
3/4 inputs, the multi-input multiplication protocol enjoys the
benefit of having the same online phase complexity as that
of the 2-input multiplication protocol. This brings in a 2×
improvement in the online round complexity and improves
the online communication cost. Support for multi-input mul-
tiplication enables usage of optimized adder circuits [73] for
secure comparison and Boolean addition, thereby resulting in
a faster online phase. The recent work of [46] also proposes a
method to improve the round complexity of circuit evaluation
by evaluating all gates in two consecutive layers in a circuit
in parallel. We observe that their method can be viewed as a
variant of multi-input multiplication with 3 and 4 inputs. Thus,
our protocols need not be limited to facilitate faster comparison
and Boolean additions alone (as described above), but can be
used to reduce the round and communication complexity of
any general circuit evaluation. Note that [46] only improves the
round complexity (2×) without inflating the communication
cost when compared to [31]. However, we focus on improving
round complexity (2×) as well as communication of the online
phase by trading off an increase in the preprocessing.

2) Tier II - Building Blocks: We design efficient protocols
for several building blocks in semi-honest and malicious set-
tings, which are stepping stones for Tier III applications. These
are extensions from the small party setting [68], [74], [56],
[73], and hence we defer the details to §C-A (semi-honest)
and §C-B (malicious).

3) Tier III - Applications: To showcase the practicality of
our framework and improvements of our protocols, we bench-
mark a range of applications such as neural networks (NN),
which also includes the popular deep NN called VGG16 [82],
graph neural network, genome sequence matching, and biomet-
ric matching, and are considered for the first time in the n-party
honest-majority setting. We benchmark the applications in the
WAN setting using Google Cloud instances. As mentioned,
owing to the inherent restrictions of RSS and keeping the focus
on practical scenarios, we showcase the performance of our
protocols for n = 5, 7, and 9 and compare with the state-of-
the-art semi-honest protocol of [31].

1. Deep neural networks. We benchmark inference phases
of deep neural networks such as LeNet [60] and VGG16 [82].
We observe savings of up to 69% in monetary cost, and im-
provements of up to 4.3× in online run-time and throughput,
in comparison to [31].

2. Graph neural network. We benchmark the inference phase
of graph neural network [35], [81] on MNIST [61] data set.
In comparison to [31], our protocol improves up to 3.5× in
online run-time, and sees up to 15% savings in monetary cost.

3. Genome sequence matching. We demonstrate an efficient
protocol for similar sequence queries (SSQ), which can be
used to perform secure genome matching. Our protocol is
based on the protocol of [79] which works for 2 parties
and uses an edit distance approximation [5]. We extend and
optimize the protocol for the multiparty setting. In comparison
to [31], we witness improvements of up to 4× in online run-
time and throughput, and savings of 66% in monetary cost.

4. Biometric matching. We propose efficient protocols for
computing Euclidean distance (ED), which forms the basis
for performing biometric matching. Continuing the trend, we
witness a 4.6× improvement in online run-time and throughput
compared to [31], and savings of up to 85% in monetary cost.

II. PRELIMINARIES

We cast our protocols in the (function-dependent) prepro-
cessing paradigm to enable a fast online phase. Parties rely
on a one-time shared key setup (see §A) [74], [22], [56],
[68], [4], [18] to enable generation of correlated randomness,
non-interactively. Our protocols are designed for rings (Z2ℓ).
We use fixed-point arithmetic (FPA) [70], [68], [21], [22],
[74], [56] representation to operate over decimal values. Here,
a decimal value is represented as an ℓ-bit integer in signed
2’s complement representation. The most significant bit (msb)
represents the sign bit, and d least significant bits are reserved
for the fractional part. The ℓ-bit integer is then treated as an
element of Z2ℓ , and operations are performed modulo 2ℓ. We
let ℓ = 64, d = 13, with ℓ− d− 1 bits for the integer part.

This work considers both semi-honest and malicious adver-
sarial models with static and at most t < n/2 corruptions. The
security of constructions is proved using the real-world/ ideal-
world simulation paradigm [63], and the details are provided
in §E. Let P = {P1, P2, . . . , Pn} denote the set of n parties
which are connected by pair-wise private and authentic chan-
nels in a synchronous network. Set E = {P1, P2, . . . , Pt+1},
termed as the evaluator set, comprises parties that are active
during the online phase. Set D = {Pt+2, Pt+3, . . . , Pn},
termed as the helper set, comprises parties which help in
the preprocessing phase, and in the online verification in the
malicious setting. Parties agree on a Pking ∈ E . Without loss
of generality, let Pking = Pt+1.

a) Sharing semantics: We use the following sharing
semantics, based on RSS & additive sharing schemes, which
facilitate a fast online phase.

• ⟨·⟩-sharing: This denotes the replicated secret sharing
(RSS) of a value with threshold t. A value a ∈ Z2ℓ is said to
be RSS-shared with threshold t if for every subset T ⊂ P of
n− t parties there exists ⟨a⟩T ∈ Z2ℓ possessed by all Pi ∈ T
such that a =

∑
T ⟨a⟩T .

Alternatively, for every set of t parties, the residual h =
n − t parties forming the set T , hold the share ⟨a⟩T . Let
T1, T2, . . . , Tq ⊂ P be the distinct subsets of size h, where
q =

(
n
h

)
represents the total number of shares. Since Pi

belongs to
(
n−1
h−1

)
such sets, the tuple of shares {⟨a⟩T } that

it possesses are denoted as ⟨a⟩i.
• [·]-sharing: A value a ∈ Z2ℓ is said to be [·]-shared

(additively shared) among parties in P if Pi ∈ P possesses
[a]i ∈ Z2ℓ such that a = [a]1 + [a]2 + . . .+ [a]n.

4

Helper primitive Input Output

Π[0] - [·]-sharing of 0
Πrand - ⟨·⟩-sharing of a random value r ∈ Z

2ℓ

ΠpRand Identity of a party Ps ⟨·⟩-sharing of a random value r ∈ Z
2ℓ

such that Ps learns all shares
Π·→⟨⟨·⟩⟩ a ∈ Z

2ℓ
held by at least t + 1 parties ⟨⟨a⟩⟩-sharing

Π⟨·⟩→T [·] ⟨a⟩-sharing, T ⊂ P such that |T | = t + 1 T [a]-sharing
Π⟨·⟩→[·] ⟨a⟩-sharing [a]-sharing
Π⟨⟨·⟩⟩→T [·] ⟨⟨a⟩⟩-sharing, T ⊂ P such that |T | = t + 1 T [a]-sharing
Π⟨⟨·⟩⟩→[·] ⟨⟨a⟩⟩-sharing [a]-sharing
Π⟨⟨·⟩⟩→⟨·⟩ ⟨⟨a⟩⟩-sharing ⟨a⟩-sharing
Π⟨·⟩·⟨·⟩→[·] ⟨a⟩-sharing, ⟨b⟩-sharing [ab]-sharing
Πagree P, v⃗1, . . . , v⃗n ‘continue’ if v⃗i = v⃗j for all Pi, Pj ∈ P , ‘abort’ otherwise
Π⟨·⟩ a, identity of a party Ps ⟨a⟩-sharing

TABLE I: Description of helper primitives – all primitives are non-interactive, except Πagree (see §A-A for details)

• T [·]-sharing: A value a ∈ Z2ℓ is said to be T [·]-shared
among t + 1 parties in T , if each Pi ∈ T holds T [a]i such
that a =

∑
Pi∈T

T [a]i. We refer to this sharing scheme as
(t+1)-additive sharing, and use E [a] to denote such a sharing
among parties in E .
• ⟨⟨·⟩⟩-sharing: A value a ∈ Z2ℓ is said to be ⟨⟨·⟩⟩-shared

in the semi-honest setting if there exist values λa,ma ∈ Z2ℓ

such that ma = a + λa where λa is ⟨·⟩-shared among P and
every Pi ∈ E holds ma. We denote the shares of Pi ∈ D by
⟨⟨a⟩⟩i = ⟨λa⟩i and that of Pi ∈ E as ⟨⟨a⟩⟩i = (ma, ⟨λa⟩i). In
the malicious setting, ma is held by all parties, and ⟨⟨a⟩⟩i =
(ma, ⟨λa⟩i) for all Pi ∈ P .

It is trivial to see that all the sharing schemes mentioned
above are linear. This allows parties to compute linear opera-
tions such as addition and multiplication with constants locally.
The Boolean world operates over Z2 , and we denote the
corresponding Boolean sharing with a superscript B. Notations
are summarized in Table II.

Notation Description

n = 2t + 1 Total number of parties with t corrupt and h = t + 1 honest

T1, . . . , Tq q =
(n
h

)
distinct subsets of P with t + 1 parties each

q Number of replicated secret shares (RSS) of a value

g =
(n−1
h−1

)
Number of RSS shares of a value held by a party

E Online parties (P1, . . . , Pt+1) that actively carry out the
computation

D Helper parties (Pt+2, . . . , Pn)

ai ith element of vector a⃗

a⃗ ⊙ b⃗ dot product of vectors a⃗ and b⃗

A
⊙

B Multiplication of matrices A and B

bR Arithmetic (Ring) equivalent over Z
2ℓ

of bit b ∈ Z2

v[i] ith bit of ℓ-bit value v ∈ Z
2ℓ

ma = a + λa Masked value ma for a ∈ Z
2ℓ

with mask λa ∈ Z
2ℓ

Ma1a2...ak

∏k
i=1 mai

; Product of masked values ma1 , . . . ,mak

Λa1a2...ak

∏k
i=1 λai

; Product of masks λa1 , . . . , λak

TABLE II: Notations used in this work

b) Helper primitives: We use the primitives described
in Table I from literature [13], [15], [74], [26] in our protocols,
and their details are deferred to §A-A. The Boolean variants
of corresponding primitives are denoted with a superscript B.

III. MPCLAN PROTOCOL

This section details the semi-honest MPC protocol execu-
tion performed over the ring Z2ℓ that comprises three phases–
input sharing, evaluation (linear operations and multiplication),
and output reconstruction.

a) Input sharing and Output Reconstruction: To enable
Ps ∈ P to ⟨⟨·⟩⟩-share a value v ∈ Z2ℓ , parties first non-
interactively sample ⟨·⟩-shares of λv, relying on the shared-
key setup, such that Ps learns all these shares on clear (via
ΠpRand). This enables Ps to compute and send mv = v + λv
to parties in E , thereby generating ⟨⟨v⟩⟩.

To reconstruct v towards all parties given ⟨⟨v⟩⟩, parties in
E non-interactively generate its additive shares, E [v], among
themselves (via Π⟨⟨·⟩⟩→E [·]). These parties send their additive
shares to Pking, who computes and sends v to all parties. Re-
construction towards a single party, say Ps, proceeds similarly
except that the protocol terminates after parties in E send their
additive shares of v to Pking = Ps, who then computes v.

b) Evaluation: Evaluation comprises linear operations
of addition and multiplication with public constant, and non-
linear operations such as multiplication. Parties can non-
interactively compute linear operations owing to the linearity
of the ⟨⟨·⟩⟩-sharing. Concretely, given ⟨⟨a⟩⟩, ⟨⟨b⟩⟩ and public con-
stants c1, c2, parties can non-interactively compute ⟨⟨c1a+c2b⟩⟩
as c1⟨⟨a⟩⟩+ c2⟨⟨b⟩⟩.

To compute ⟨⟨·⟩⟩-shares for non-linear operations such as
multiplication, say z = ab given ⟨⟨a⟩⟩, ⟨⟨b⟩⟩, parties proceed as
follows. At a high-level, the approach is to enable generation of
⟨⟨z−r⟩⟩ and ⟨⟨r⟩⟩ for a random r ∈ Z2ℓ , which enables parties to
non-interactively compute ⟨⟨z⟩⟩ = ⟨⟨z− r⟩⟩+ ⟨⟨r⟩⟩. Observe that
⟨⟨r⟩⟩ can be generated non-interactively by locally sampling
each of its shares. To generate ⟨⟨z − r⟩⟩, we let parties in E
obtain z − r, following which ⟨⟨z − r⟩⟩ can be generated non-
interactively (this is achieved via Π·→⟨⟨·⟩⟩ where all parties set
their shares of ⟨λz−r⟩ as 0, and parties in E set mz−r = z− r).
Observe that z remains private while revealing z− r to parties
in E since r is a random mask not known to adversary.

To enable parties in E to obtain z − r, we let z − r =
D+E, where D is additively shared among parties in D while
E is additively shared among parties in E (D,E are defined in
the following paragraphs). Thus, to reconstruct z − r towards
parties in E , parties send their respective additive shares of D

5

or E towards Pking ∈ P . Pking reconstructs D,E, and sends
z − r = D + E to parties in E . Elaborately, as seen in [21],
[57], z− r can be computed as

z− r = ab− r = (ma − λa) (mb − λb)− r

= Mab −maλb −mbλa + Λab − r (1)
= Mab −maλb −mbλa + (Λab − r)E︸ ︷︷ ︸

E

+(Λab − r)D︸ ︷︷ ︸
D

where Λab − r = (Λab − r)D + (Λab − r)E .
We next detail the steps in the multiplication protocol, and

its schematic representation is provided in Fig. 3.

1

2 3

4 5

6

1 Generation of random r ∈ Z2ℓ 2 Computing [r] &⟨⟨r⟩⟩
3 Computing E [λa],

E [λb] 4 D sending {[z− r]}D to Pking

5 E sending {[z− r]}E to Pking and receiving result from Pking

6 Computing ⟨⟨z⟩⟩
Fig. 3: Steps of multiplication protocol

▶ Step 1 : Parties non-interactively generate ⟨r⟩ by locally
sampling each of its shares (via Πrand). Parties locally compute
[r] and ⟨⟨r⟩⟩ from ⟨r⟩ using Π⟨·⟩→[·] and Π⟨·⟩→⟨⟨·⟩⟩, respectively.
Looking ahead, [r] aids in generating additive shares of D,E,
while ⟨⟨r⟩⟩ aids in computing ⟨⟨z⟩⟩ from ⟨⟨z− r⟩⟩.
▶ Step 2 : This step involves computing additive shares of

Λab − r among all parties. For this, parties non-interactively
generate [Λab] from ⟨λa⟩, ⟨λb⟩ (via Π⟨·⟩·⟨·⟩→[·]). Pi ∈ P sets its
additive share of Λab− r as [Λab − r]i = [Λab]i− [r]i. Observe
that the shares [Λab − r]i of Pi ∈ D define the additive shares
of D = (Λab − r)D among parties in D. Similarly, the shares
[Λab − r]i of Pi ∈ E define the additive shares of (Λab − r)E
among parties in E (i.e. E [(Λab − r)E]).
▶ Step 3 : Parties in E generate additive shares of λa, λb

among themselves (E [·]-shares, via Π⟨·⟩→E [·]). Looking ahead,
E [λa],

E [λb] aid in generating additive shares of E among E .
▶ Step 4 : Parties in D send their additive shares of D (as

defined in step 2) to Pking, who reconstructs D.
▶ Step 5 : Pi ∈ E \ {Pking} non-interactively generates

additive share, E [E]i, of E among parties in E as E [E]i =
−ma

E [λb]i − mb
E [λa]i +

E [(Λab − r)E]i. Note that it suffices
for only one designated party in E to add Mab in its share
of E [E], and without loss of generality we let this designated
party be Pking. For Pking = Pt+1 in our case, E [E]t+1 = Mab−
ma

E [λb]t+1−mb
E [λa]t+1+

E [(Λab − r)E]t+1. Parties send their
additive shares of E to Pking, who reconstructs E, and sends
z− r = D+ E to parties in E .

▶ Step 6 : Parties non-interactively generate ⟨⟨z − r⟩⟩ (via
Π·→⟨⟨·⟩⟩) as explained earlier. Using ⟨⟨r⟩⟩ generated in step 1 ,
parties compute ⟨⟨z⟩⟩ = ⟨⟨z− r⟩⟩+ ⟨⟨r⟩⟩, as required.

isTr = 1 denotes perform truncation, isTr = 0 denotes otherwise.

Preprocessing:

1 If isTr = 0: invoke Πrand to generate ⟨r⟩ where r ∈ Z2ℓ .
Invoke Π⟨·⟩→[·] and Π⟨·⟩→⟨⟨·⟩⟩ on ⟨r⟩ to generate [r] and ⟨⟨r⟩⟩,
respectively.

• Else, invoke ΠdsBits(P, 1) (Fig. 22) to generate ⟨⟨r⟩⟩, ⟨⟨rd⟩⟩,
and Π⟨⟨·⟩⟩→[·] on ⟨⟨r⟩⟩ to generate [r] .

2 Invoke Π⟨·⟩·⟨·⟩→[·] on ⟨λa⟩, ⟨λb⟩ to generate [Λab], and
compute [Λab − r] = [Λab]− [r].

• Pi ∈ E sets E [(Λab − r)E]i = [Λab − r]i.

3 Pi ∈ E invokes Π⟨·⟩→E [·] on ⟨λa⟩, ⟨λb⟩ to generate
E [λa]i,

E [λb]i, respectively.

4 Pi ∈ D sends [Λab − r]i to Pking, who sets D =∑
i:Pi∈D [Λab − r]i.

Online:

5 Pi ∈ E computes E [ζ]i = −ma
E [λb]i − mb

E [λa]i +
E [(Λab − r)E]i, and sends E [ζ]i to Pking.

• Pking computes E = Mab +
∑

i:Pi∈E
E [ζ]i and sends z− r =

D+ E to all parties in E .
6 If isTr = 0: invoke Π·→⟨⟨·⟩⟩ on z − r to generate ⟨⟨z − r⟩⟩,

and compute ⟨⟨z⟩⟩ = ⟨⟨z− r⟩⟩+ ⟨⟨r⟩⟩.
• Else, invoke Π·→⟨⟨·⟩⟩ on (z− r)d to generate ⟨⟨(z− r)d⟩⟩, and

compute ⟨⟨zd⟩⟩ = ⟨⟨(z− r)d⟩⟩+ ⟨⟨rd⟩⟩.

Protocol Πmult(P, ⟨⟨a⟩⟩, ⟨⟨b⟩⟩, isTr)

Fig. 4: Semi-honest: Multiplication protocol

Lemma III.1. Protocol Πmult (Fig. 4) incurs a communication
of t elements in the preprocessing phase and 2t elements in 2
rounds in the online phase for multiplication when isTr = 0.

Analysis: Observe that the communication towards Pking in
steps 4 and 5 , can be performed in parallel, resulting in the
overall round complexity of the protocol being two. Further,
a communication of t elements is required in step 4 and 2t
elements is required in 5 (since Pking ∈ E), thereby having
a total communication complexity of 3t ring elements. This
complexity resembles that of DN07. However, our sharing
semantics enables us to push some of the steps mentioned
above to a preprocessing phase, resulting in a fast online
phase, which is non-trivial to achieve in the case of DN07.
Elaborately, observe that since r, λa, λb are independent of the
input (owing to our sharing semantics), computation involving
these terms ranging from steps 1 to 4 can thus be moved to a
preprocessing phase. This improves the online communication
complexity by slashing the inward communication towards
Pking by half. Thus, the online phase requires only 2t ring
elements of communication while offloading t elements of
communication to the preprocessing phase.

Note that a straightforward extension of semi-honest mul-
tiplication of [31] to the preprocessing model, which can
be derived from [38], does not provide an efficient solution.
Although such a protocol has the same online complexity (2t

6

elements) as our online phase, it has the drawback of inflating
the overall communication cost by a factor of 1.6× over [31].
Elaborately, the online communication cost of 2t elements can
be attained by appropriately defining the sharing semantics and
using the Pking approach, similar to our protocol. However, this
requires parties to generate the sharing of Λab = λa · λb from
the shares of λa and λb during the preprocessing phase, and
requires a full-fledged multiplication, incurring a cost of 3t
elements. This yields a protocol with a total cost of 5t elements
in comparison to the 3t cost of the all-online DN07 protocol.
Thus, departing from this approach, the novelty of our protocol
lies in leveraging the interplay between the sharing semantics
and redesigning the communication pattern among the parties
to ensure that the total cost of 3t does not change.

Furthermore, our protocol design allows parties in D to
remain shut in the online phase, thereby reducing the system’s
operational load. This is because parties in D only contribute
towards the computation of D, which can be completed in
the preprocessing phase. However, the preprocessing phase
becomes function-dependent due to the linear gates, for which
the λ value for the output wires cannot be chosen randomly.
Concretely, if c is the output of a linear gate, say addition, with
inputs a, b, then λc cannot be chosen randomly and should be
defined as λc = λa + λb.

Ideal functionality Fn−PC for evaluating function f in the
n-party setting with semi-honest security appears in Fig. 5.

Fn−PC interacts with the parties in P and the adversary Ssh.
Let f denote the function to be computed. Let xs be the input
corresponding to the party Ps, and ys be the corresponding output,
i.e ({ys}ns=1) = f({xs}ns=1).

Step 1: Fn−PC receives (Input, xs) from Ps ∈ P , & computes
({ys}ns=1) = f({xs}ns=1).

Step 2: Fn−PC sends (Output, ys) to Ps ∈ P .

Functionality Fn−PC

Fig. 5: Semi-honest: Ideal functionality for function f

c) Incorporating truncation: To retain FPA semantics,
it is required to truncate the result of multiplication, z = ab,
which ends up having 2d bits in the fractional part, by d bits,
i.e. compute zd = z/2d. For this, we extend the probabilistic
truncation technique of [68], [56], [57] proposed in the small
party domain to the n-party setting. Given (r, rd)-pair, with
rd = r/2d, the truncated value of z can be obtained as zd =
(z− r)d+rd. Accuracy and correctness of this method follows
from [68], [66].

– Samples random r ∈ Z2ℓ , and computes rd = r/2d.
– Generates ⟨⟨·⟩⟩-shares of r, rd and set output share for Ps ∈ P

as ys = {⟨⟨r⟩⟩s, ⟨⟨r
d⟩⟩s}.

Output: Send (Output, ys) to Ps ∈ P .

Functionality FTrGen

Fig. 6: Ideal functionality FTrGen

Our multiplication protocol can be modified to addition-
ally perform truncation by incorporating the following two
changes– (i) generate ⟨⟨rd⟩⟩ in step 1 , and (ii) compute

⟨⟨zd⟩⟩ = ⟨⟨(z− r)d⟩⟩ + ⟨⟨rd⟩⟩, instead, in step 6 . For (i), we
rely on the ideal functionality, FTrGen (Fig. 6), for computing
⟨⟨r⟩⟩, ⟨⟨rd⟩⟩. FTrGen can be instantiated using the appropriate
MPC protocol which will be used as a black-box in our
multiplication. Thus, improvements in the MPC protocol that
realizes FTrGen can be inherited in our multiplication protocol.
In our work, we instantiate FTrGen using ΠdsBits (Fig. 22),
which is a slightly modified version of the doubly-shared
random bit generation protocol of [29], adapted to our n-party
setting. Concretely, ΠdsBits generates ℓ doubly-shared random
bits instead of a single bit, as done in the protocol of [29].
Here, a doubly-shared random bit is a bit which is arithmetic
as well as Boolean shared. We defer the details of ΠdsBits to
§B-A since it follows easily from the protocol of [29]. With
respect to (ii), observe that it is a local operation, and hence
performing truncation does not incur any additional overhead
in the online phase.

d) Dot product: Given ⟨⟨·⟩⟩-shares of vectors x⃗ and y⃗ of
size n, dot product outputs ⟨⟨z⟩⟩ where z = x⃗⊙ y⃗ =

∑n
k=1 xkyk

and ⊙ denotes the dot product operation. The design of our
multiplication protocol enables easy extension to support dot
product computation without incurring any overhead. Con-
cretely, similar to multiplication,

z− r = (x⃗⊙ y⃗)− r

=

n∑
k=1

Mxkyk −
n∑

k=1

mxkλyk −
n∑

k=1

mykλxk +

n∑
k=1

Λxkyk − r

(2)

In each of the summands of z− r, each of the n product terms
can be generated similar to that in the multiplication protocol,
which can then be locally summed up before sending it towards
Pking. Due to this simple extension, we defer the formal dot
product protocol (Fig. 23) to §B-A. Looking ahead, for matrix
multiplication, each element of the resultant matrix can be
computed via a dot product.

e) Multi input multiplication: 3-input and 4-input mul-
tiplication protocols have showcased their wide applicability
in improving the online phase complexity [57], [73], [71].
Concretely, computing z = abc (3-input) or z = abcd (4-
input) naively requires at least two sequential invocations of
2-input multiplication protocol in the online phase. Instead, 3-
input and 4-input multiplication protocol, respectively, enables
performing this computation with the same online complexity
as that of a single 2-input multiplication. Thus, we design 3-
input and 4-input multiplication protocols by extending the
techniques of [73], [57] to the n-party setting. Designing these
protocols require modifications in the preprocessing steps.
Consider 3-input multiplication where the goal is to generate
⟨⟨·⟩⟩-sharing of z = abc given ⟨⟨a⟩⟩, ⟨⟨b⟩⟩, ⟨⟨c⟩⟩. Note that

z− r = abc− r = (ma − λa)(mb − λb)(mc − λc)− r

= Mabc −Macλb −Mbcλa −Mabλc
+maΛbc +mbΛac +mcΛab − Λabc − r

We follow an approach closely related to 2-input multiplica-
tion, with the difference being that parties additionally require
to generate the additive sharing of Λbc,Λac and Λabc during
preprocessing. Given these sharings, parties proceed with a
similar online phase as in Πmult to compute the 3-input
multiplication without inflating the online cost. Similarly, for

7

4-input multiplication, parties need to generate the additive
sharing of Λad,Λbd,Λcd,Λabd,Λacd,Λbcd,Λabcd in addition to
those required in the case of 3-input multiplication. The
generation of these sharings follows a similar approach as the
2-input multiplication, and the details are deferred to §B-A.
Table III compares the cost of computing z = abc via a 2-input
multiplication sequentially vs a 3-input multiplication, and
computing z = abcd via a 2-input and 4-input multiplication.

Prep. Online

2-input mult. 2tℓ 4tℓ 4
3-input mult. 6tℓ 2tℓ 2

2-input mult. 3tℓ 6tℓ 4
4-input mult. 15tℓ 2tℓ 2

Multiplication
type

Building
Block

Communication Online
Rounds

z = abc

z = abcd

TABLE III: Semi-honest: Communication and round complexity for
computing multi-input multiplications

The recent work of [46] provides a method to reduce the
round complexity of circuit evaluation. They group the (dis-
tinct) consecutive layers in the circuit into pairs and perform
a parallel evaluation of all gates in the two layers in a group.
Consider a multiplication gate with inputs x, y (obtained as
output from a previous layer) and output z. Their approach
considers three cases: (i) if x and y are not the outputs of a
multiplication gate, (ii) exactly one among x, y is the output
of a multiplication gate, and (iii) both x, y are outputs of a
multiplication gate. We observe that case (ii) and (iii) in their
approach resembles multi-input multiplication, which allows
evaluating the second layer of multiplication (z = x · y) non-
interactively, thereby saving on rounds.

Fig. 7: 4-input multiplication

For instance, consider a 2-layer sub-circuit as in Fig. 7
where x = a · b, y = c · d are outputs of a multiplication gate
which are fed as input to a multiplication gate in the next level.
The approach of [46] allows computation of z = (a ·b) · (c ·d)
in a single shot, which is equivalent to computing z via a
4-input multiplication in our case. Similarly, when only one
of the inputs (either x or y) is the output of multiplication,
computation of z = x · y resembles a 3-input multiplication.
Thus, cases (i), (ii), (iii) correspond to 2-input, 3-input, and 4-
input multiplication, respectively, in our work and are sufficient
to reduce round complexity of any circuit evaluation by half.
Hence, we restrict our focus to 3 and 4-input multiplication.

IV. EXTENDING TO MALICIOUS SECURITY

Using standard approaches [74], [56], [38], it is straightfor-
ward to adapt the semi-honest protocols such as input sharing
and output reconstruction to the malicious setting. The details

are provided in §B-B for completeness. Hence, in this section,
we focus on the challenges encountered and their resolutions
for obtaining a maliciously secure multiplication protocol.

Note that although a maliciously secure multiplication pro-
tocol can be achieved by compiling our semi-honest protocol
using compiler techniques such as [1], [15], the resultant
protocol has an expensive online phase. For instance, using
the compiler of [1] yields a protocol that requires computation
over extended rings and communicating 4t extended ring
elements in the online phase. This is not favourable compared
to working over plain rings, especially in the online phase.
Further, compilers such as those in [15] require heavy com-
putational machinery like reliance on zero-knowledge proofs
in the online phase, which is also not desirable. Thus, to
attain a computation and communication efficient online phase,
departing from the aforementioned compiler-based approaches,
we design a maliciously secure multiplication protocol that
requires communicating 3t ring elements in each phase. It is
worth noting that we can do this while retaining the benefits
of requiring only t + 1 parties in the online phase (for most
of the computation). The remaining t parties are required to
come online only for a short one-time verification phase, that is
deferred to the end of the computation. Deferring verification
may result in a privacy breach [47]. However, we describe later
why the privacy breach does not arise in our protocol.

To enable generation of ⟨⟨z⟩⟩ = ⟨⟨ab⟩⟩ from ⟨⟨a⟩⟩ and ⟨⟨b⟩⟩,
we retain the high-level ideas from the semi-honest protocol.
Our task reduces to (i) generating additive shares of Λab

among parties in E (i.e. E [Λab]) given ⟨λa⟩ and ⟨λb⟩, in the
preprocessing phase, and (ii) reconstructing z− r in the online
phase. Given (i), computing E [z− r] in the online phase is
a local operation. Given (ii), parties can invoke Π·→⟨⟨·⟩⟩ to
generate ⟨⟨z − r⟩⟩, and compute ⟨⟨z⟩⟩ = ⟨⟨z − r⟩⟩ + ⟨⟨r⟩⟩, where
⟨⟨r⟩⟩ is generated in the preprocessing phase, as discussed in
the semi-honest case.

FMulPre interacts with the parties in P and the adversary S. Let Ti

be the set of the honest parties.

Input: FMulPre receives the ⟨·⟩-shares of a, b from the parties.
It also receives ⟨·⟩-shares of z = ab of corrupt parties from S.
S is also allowed to send a special command, (abort,P), which
indicates that parties in P with indices in P should abort.

FMulPre proceeds as follows.
– Reconstruct a, b using the shares received from honest parties,

and compute z = ab.
– Compute the ⟨·⟩-share of z to be held by the set of honest

parties as the difference between z and the sum of ⟨·⟩-shares of z
received from corrupt parties.
– Let ys denote the ⟨·⟩-shares of z for party Ps ∈ P . If received
(abort,P) from S, set ys = abort for Ps, where s ∈ P.

Output: Send (Output, ys) to every Ps ∈ P .

Functionality FMulPre

Fig. 8: Ideal functionality FMulPre

For task (i), our idea for the semi-honest case, of making
parties in D to send their shares to Pking, does not work in
the presence of a malicious adversary. To address this, we
make black-box use of a maliciously secure multiplication
protocol, abstracted as a functionality FMulPre in Fig. 8, that

8

computes ⟨Λab⟩ from ⟨λa⟩, ⟨λb⟩. In this work, we instantiate
FMulPre with the state-of-the-art multiplication protocol of [15]
that provides abort security. Note that although the protocol
of [15] relies on zero-knowledge proofs, this computation is
carried out in the preprocessing phase of our multiplication
protocol. Moreover, since preprocessing is done for many in-
stances in one shot, the zero-knowledge proof can benefit from
amortization. The parties then invoke Π⟨·⟩→E [·] to obtain E [Λab]
from ⟨Λab⟩. Looking ahead, ⟨Λab⟩ also aids in performing the
online verification check.

For task (ii), in the online phase, we retain the idea of
parties in E optimistically reconstructing z − r from their
additive shares (E [·]-share) to ensure that only the parties in
E remain active for most of the computation. Moreover, this
optimistic reconstruction requires only O(t)-element commu-
nication rather than the O(t2) required for reconstruction from
⟨·⟩-shares (which is what will be used later for performing
verification, albeit to perform only one such reconstruction).
Thus, similar to the semi-honest protocol, parties in E opti-
mistically reconstruct z−r towards Pking, who further sends the
reconstructed value to the parties in E . In the malicious setting,
this approach requires additional care since a malicious party
may send a wrong E [·]-share of z − r to Pking or a malicious
Pking may send an incorrectly reconstructed (inconsistent) z−r
to the parties. To account for these behaviours, the protocol is
augmented with a short one-off verification phase to verify the
consistency and correctness of z− r. This phase is executed in
the end of the protocol and requires the presence of all parties,
and hence the possession of z− r by all. This is in contrast to
the semi-honest protocol where z−r is given to only parties in
E . To keep D disengaged for most of the online phase, sending
z− r to them is deferred till the end of the protocol. This send
is a one-off and can be combined for all multiplication gates.
Details of verification protocol ΠVrfy (Fig. 9) are given next.

Verification comprises two checks– a consistency check
to first verify that Pking has indeed sent the same z − r to
all the parties, followed by a correctness check to verify the
correctness of the z−r. For the former, parties perform a hash-
based consistency check of z − r, and abort in case of any
inconsistency. If z − r is consistent, parties verify its correct-
ness. The high-level idea for verifying correctness is to robustly
reconstruct z−r, but now from its ⟨·⟩-shares (can be computed
given ⟨λa⟩, ⟨λa⟩, ⟨Λab⟩ that are generated in the preprocessing
phase). Parties can then verify if this reconstructed value equals
the value received from Pking. Concretely, this is equivalent
to robustly reconstructing ⟨Ω⟩ = ⟨z − r − (Mab − maλb −
mbλa + Λab − r)⟩, where z − r is the value received from
Pking, and verifying if Ω = 0. For robust reconstruction of
⟨Ω⟩, every party sends its ⟨·⟩-share to every other party who
misses this share, and aborts in case of inconsistencies in
the received values. Elaborately, reconstruction of Ω towards
Ps ∈ P proceeds as follows. For each missing ⟨·⟩-share of
Ω at Ps, each of the t + 1 parties holding this share send it
to Ps. Ps uses this share for reconstruction if all the t + 1
received values are consistent, else it aborts. Presence of
at least one honest party among the t + 1 guarantees that
inconsistency, if any, can be detected. Since each share in ⟨Ω⟩
is held by t+ 1 parties, comprising at least one honest party,
any cheating by up to t corrupt parties is guaranteed to be
detected. Note that this reconstruction requires communicating
O(t2) ring elements to verify the correct computation of a

single multiplication gate, the cost of which can be optimized
using standard optimization techniques [1], [23]. Concretely,
the correctness of z − r for several multiplication gates can
be verified with a single reconstruction by reconstructing a
linear combination of Ω for several gates and verifying equality
with 0. Thus, only one robust reconstruction from ⟨·⟩-shares
is required for several multiplication gates, whose cost gets
amortized due to verification across multiple gates.

Let (a1, b1, z1), . . . , (am, bm, zm) denote the inputs and outputs
of the m multiplication gates to be verified.
– Consistency Check. Invoke Πagree on {z1 − r1, . . . , zm − rm}.
– Correctness Check. Repeat the following κ times.
- Generate random θ1, . . . , θm ∈ Z2ℓ and compute

⟨Ω⟩ =

m∑
i=1

θi
(
zi − ri −

(
Maibi

− mai
⟨λbi

⟩ − mbi
⟨λai

⟩ + ⟨Λaibi
⟩ − ⟨ri⟩

))
- For each ⟨·⟩-share of Ω, the t+1 parties possessing this share

send it to every party that misses this share. If the recipient party
receives inconsistent values for any missing share, it aborts.

- Reconstruct Ω and abort if Ω ̸= 0.

Protocol ΠVrfy (P, {⟨⟨ai⟩⟩, ⟨⟨bi⟩⟩, zi − ri, ⟨Λaibi⟩, ⟨ri⟩}
m
i=1)

Fig. 9: Malicious: Verification protocol for all multiplication gates

It is worth noting that this random linear combination
technique does not trivially work over rings. This is due
to the existence of zero divisors which results in the linear
combination being 0 with a probability 1/2 (which denotes
the cheating probability of the adversary) [1]. Hence, to
obtain the desired security, the verification check is repeated
κ times where κ is the security parameter. This bounds the
cheating probability of adversary to 1/2κ. Another approach
is to perform the verification over extended rings [13], [14].
Specifically, verification operations are carried out over a ring
Z2ℓ/f(x) which is a ring of all polynomials with coefficients
in Z2ℓ modulo a degree d polynomial f(x) that is irreducible
over Z2 . Each element of Z2ℓ is lifted to a degree d polynomial
in Z2ℓ [x]/f(x), which increases the communication required
to perform verification by a factor of d.

To summarize, the maliciously secure multiplication pro-
tocol (see Fig. 27) can be broken down into the following.

– Preprocessing phase which involves generation of ⟨Λab⟩ by
invoking FMulPre. Malicious behaviour, if any, will be caught
by FMulPre. ⟨Λab⟩ is non-interactively converted into E [·]-shares
of λab. E [λa],

E [λb] is also generated non-interactively.
– Generation of E [·]-shares of λa, λb,Λab during preprocessing
enables computation of E [z− r] in the online phase, and
thereby reconstruction of z − r via Pking. The crucial point
to note here is that this requires the presence of only parties
in E in the online phase. This is followed by non-interactive
generation of ⟨⟨z− r⟩⟩ from which ⟨⟨z⟩⟩ is computed as ⟨⟨z⟩⟩ =
⟨⟨z− r⟩⟩+ ⟨⟨r⟩⟩, where ⟨⟨r⟩⟩ is generated during preprocessing.
– Finally, to catch malicious behaviour in the online phase, if
any, in the verification phase the correctness of the generated
⟨⟨z⟩⟩ is checked simultaneously, for each z that is the output of
a multiplication gate. This is done by invoking ΠVrfy. Note that
before this verification begins, Pking sends z− r corresponding
to all multiplication gates to parties in D in a single shot.

9

As pointed out in [47], deferring the correctness check to
later may result in a privacy breach when using a sharing
scheme that allows for redundancy (such as RSS or Shamir
sharing). The details are elaborated in §B-B0c. However, the
crucial point to note here is that although we rely on a
variant of RSS which introduces redundancy, recall that while
performing a reconstruction towards Pking, we rely on E [·]-
sharing of z− r, which is a (t+ 1)-additive sharing. The use
of additive sharing while performing reconstruction towards
Pking eliminates any redundancy in the sharing scheme and
thus, helps in overcoming this subtle privacy breach, as also
shown in [47]. This privacy breach persists in [38], and is
discussed in §B-B0c.

Lemma IV.1. Protocol ΠM
mult (Fig. 27) incurs a communi-

cation of 3t elements in the preprocessing phase and 3t
elements in 2 rounds in the online phase for multiplication
when isTr = 0.

The ideal functionality Fn−PC for evaluating a function f
in the n-party setting while providing malicious security (with
abort) appears in Fig. 10.

Fn−PC interacts with the parties in P and the adversary Smal. Let f
denote the function to be computed. Let xs be the input of party Ps,
and ys be the corresponding output, i.e ({ys}ns=1) = f({xs}ns=1).
Smal is also allowed to send a special command, (abort,P),
which indicates that honest parties in P with indices in P should
abort.

Step 1: Fn−PC receives (Input, xs) from Ps ∈ P . If (Input, ∗)
already received from Ps, then ignore the current message. Oth-
erwise, record x′

s = xs internally.

Step 2: Compute ({ys}ns=1) = f({xs}ns=1) and send the output
ys for a corrupt Ps to Smal.

Step 3: If received (Signal, abort,P) from Smal, set ys =
abort for Ps, where s ∈ P. Send (Output, ys) to honest Ps ∈ P .

Functionality Fmal
n−PC

Fig. 10: Malicious: Ideal functionality for evaluating function f

a) Multiplication with truncation: Similar to the semi-
honest protocol, truncation can be incorporated in the ma-
licious multiplication as well without inflating the online
communication. For this, we rely on maliciously secure ideal
functionality, FM

TrGen (Fig. 28), to generate the ⟨⟨·⟩⟩-shares of
(r, rd) and is instantiated using ΠM

dsBits [29] protocol in our
work. On a high level, the semi-honest versions of interactive
operations such as multiplication and reconstruction in ΠdsBits

are replaced with their maliciously secure counterparts in
ΠM

dsBits, and more details are provided in §B-B.

b) Dot product: Similar to the maliciously secure mul-
tiplication protocol that relied on FMulPre to generate ⟨·⟩-
shares of the multiplicative term, Λab in the preprocessing
phase, the maliciously secure dot product protocol invokes
FDotPPre (Fig. 29) to generate ⟨·⟩-shares of the multiplicative
term,

∑n
k=1 Λxkyk , required to compute the dot product as per

equation (2). Given ⟨·⟩-shares of
∑n

k=1 Λxkyk , online phase
proceeds similar to that of multiplication.

Observe that a trivial realization of FDotPPre can be reduced
to n instances of multiplication. However, we extend the ideas
from [56] and rely on a distributed zero-knowledge proof [15]

to eliminate the vector-size dependency in the preprocessing
phase. Concretely, we instantiate FDotPPre using a semi-honest
dot product protocol [48] whose cost matches that of semi-
honest multiplication [31] (and thus is independent of the
vector-size), followed by a verification phase to verify the cor-
rectness of the dot product computation. For the verification,
we extend the verification technique for multiplication in [15],
to now verify the correctness of dot product, such that the
cost due to verification can be amortized away for multiple
dot products, thereby resulting in vector-size independent
preprocessing. Details of this extension are deferred to §B-B.

c) Multi input multiplication: This protocol is similar
to its semi-honest counterpart with the difference that the
preprocessing phase relies on invoking FMulPre for generating
the required multiplicative terms. The details are deferred to
§B-B0f. Table IV compares the cost of computing multi-input
multiplication via a 2-input multiplication sequentially vs. the
multi-input multiplication protocol.

Prep. Online

2-input mult. 6tℓ 6tℓ 4
3-input mult. 12tℓ 3tℓ 2

2-input mult. 9tℓ 9tℓ 4
4-input mult. 33tℓ 3tℓ 2

Multiplication
type

Building
Block

Communication Online
Rounds

z = abc

z = abcd

TABLE IV: Malicious: Communication and round complexity for
computing multi-input multiplications

V. APPLICATIONS & BENCHMARKS

To evaluate the performance of our protocols, we bench-
mark some of the popular applications such as deep neural net-
works (NN), graph neural networks (GNN), similar sequence
queries (SSQ), and biometric matching where MPC is used to
achieve privacy. While these applications have been looked at
in the small party setting [70], [56], [81], [5], [79], [85], [73],
[68], we believe the n-party setting is a better fit for reasons
described in the introduction. To the best of our knowledge,
we are the first to benchmark these in the multiparty honest-
majority setting for more than four parties.

a) Benchmark environment: The performance of our
protocols is analyzed using a prototype implementation build-
ing over the ENCRYPTO library [27] in C++17.

We chose 64 bit ring (Z264) for our arithmetic world,
and the operations over extended ring were carried out using
the NTL library4. Since the correctness and accuracy of
the applications considered in the secure computation set-
ting are already established, our benchmark aims to demon-
strate our protocols’ performance and is not fully functional.
Moreover, we believe that incorporating state-of-the-art code
optimizations like GPU-assisted computing can enhance the
efficiency of our protocols, which is left as future work.
Since there is no defined way to capture an adversary’s
misbehaviour, following standard practice [68], [56], [28], we
benchmark honest executions of the protocols, which also in-
clude the steps performed for verification in the malicious case.

4https://libntl.org

10

https://libntl.org

266 ms

161 m
s35

6
m

s

247 ms

West Europe South-East Asia

187 ms

East Australia South Asia

219 ms

Fig. 11: Round trip time (rtt)

We use multi-threading,
wherever possible, to
facilitate efficient
computation and
communication among
the parties. The parties
in the computation are
emulated using Google
Cloud (n1-standard-64
instances, 2.0 GHz
Intel Xeon Skylake, 64
vCPUs, 240 GB RAM)
with machines located in East Australia, South Asia, South
East Asia, and West Europe. All our experiments are run for
5, 7, and 9 parties, each.

b) Benchmark parameters: We report the run-time and
communication of the online phase and total (= preprocessing
+ online). To capture the effect of online round complexity
and communication in one go, we also report the throughput
(TP [4], [68], [56]) of the online phase. TP denotes the
number of operations that can be performed in one minute.
Finally, when deployed in the outsourced setting, one pays the
price for the communication and up-time of the hired servers.
To demonstrate how our protocols fare in this scenario, we
additionally report the monetary cost (Cost) [67], [57] for the
applications considered. This cost is estimated using Google
Cloud Platform [80] pricing, where 1 GB and 1 hour of usage
costs USD 0.08 and USD 3.04, respectively.

A. Comparison with DN07

In this section, we benchmark our semi-honest and mali-
cious protocols over synthetic circuits comprising one million
multiplications with varying depths of 1, 100, and 1000, and
compare against the optimized ring variant of DN07 [13]. The
gates are distributed equally across each level in the circuit.

a) Communication: The communication cost for 1 mil-
lion multiplications is tabulated in Table V for the 5, 7, and
9 party settings. As can be observed, the online phase of
our semi-honest protocol enjoys the benefits of pushing 33%
communication to a preprocessing phase compared to DN07.
The observed values corroborate the claimed improvement in
the online complexity of our protocol. Our malicious protocol
retains the online communication cost of DN07 while incurring
a similar overhead in the preprocessing.

Ref. n = 5 n = 7 n = 9

DN07 (semi) (0, 45.78) (0, 68.66) (0, 91.55)
This (semi) (15.26, 30.52) (22.88, 45.78) (30.51, 61.04)
This (mal) (45.79, 45.78) (68.67, 68.67) (91.57, 91.57)

TABLE V: Communication (Preprocessing, Online) in MB for 1
million multiplications

Note that pushing the communication to the preprocessing
phase has several benefits. First, communication with respect
to several instances can happen in a single shot and leverage
the benefit of serialization. Second, with respect to resource-
constrained devices such as mobile phones, the preprocessing
communication can occur whenever they have access to a high-
bandwidth Wi-Fi network (for instance, when the device is at
home overnight). These benefits facilitate a fast online phase,
as observed, that may happen over a low-bandwidth network.

b) Run-time: The time taken to evaluate circuits of
different depths appears in Table VI. Since the time for the
5, 7, and 9 party settings vary within the range [0, 0.5], we
report values only for the 7-party setting in Table VI. With
respect to the online run-time, our semi-honest protocol’s time
is expected to be similar to that of DN07. However, DN07
demonstrates around 1.5× higher run-time. This difference can
be attributed to the asymmetry in the rtt among parties, which
vanished when benchmarked over a symmetric rtt setting.
Compared to the semi-honest protocol, the malicious variant
incurs a minimal overhead of less than one second in the online
run-time due to the one-time verification phase. However,
the overhead is higher for the case of the overall run-time.
Concretely, it is around 10 seconds and is due to the distributed
zero-knowledge proof computation in the preprocessing phase.
Note that this overhead is independent of the circuit depth and
gets amortized for deeper circuits as evident from Table VI
(depth 1 vs. 1000).

Ref. d = 1 d = 100 d = 1000

DN07 (semi) (0, 0.65) (0, 54.97) (0, 549.69)
This (semi) (0.47, 0.45) (0.47, 30.75) (0.47, 307.48)
This (mal) (10.52, 1.36) (10.53, 68.67) (10.54, 308.39)

TABLE VI: Latency in seconds (Preprocessing, Online) for varying
depth (d) circuits with 1 million multiplications for n = 7

c) Monetary Cost: Another key highlight of our proto-
cols is their improved monetary cost, as evident from Fig. 12.
Concretely, for 9 parties (semi-honest), we observe a saving
of 17% over DN07 for a depth-1 circuit, and it increases up
to 72% for circuits with depth 1000. This is primarily due
to the reduction in the number of online parties over DN07.
Comparing our semi-honest and malicious variants, the latter
has an overhead of 8× for depth-1 circuit, and it reduces
to 1.14× for depth-1000 circuit. This is justified because the
verification cost is amortized for deeper circuits, as mentioned
earlier. Interestingly, our malicious variant outperforms even
the semi-honest DN07 upon reaching circuit depths of 100 and
above. A similar analysis holds in the symmetric rtt setting as
well, where the saving is up to 56% (for d = 1000).

This (semi)

This (mal)

d = 1 d = 100 d = 1000
0

2

4

6

8

10

12

[31] (semi)

d = 1 d = 100 d = 1000
0

2

4

6

8

10

12

Fig. 12: Monetary cost (in USD) for evaluating circuits (1000
instances) of various depths (d) for n = 9 parties. The values are
reported in log2 scale. Bars in solid colors denote computation over
network given in Fig. 11, while the area represented via crosshatch
pattern denotes the additional cost incurred in the symmetric rtt setting
(356 ms).

d) Online Throughput (TP):: Owing to the asymmetric
rtt as described earlier, our semi-honest variant witnesses up
to 1.78× improvements in TP (for a single execution) over

11

GNN NN-1 N-2 NN-3
4

6

8

10

T
hr

ou
gh

pu
t

DN07-5
DN07-7
DN07-9

This 5, 7, 9

(a) Online throughput
GNN NN-1 N-2 NN-3

3

4

5

6

7

8

E
nd

-t
o-

en
d

ru
nt

im
e

(s
ec

on
ds

)

DN07-5
DN07-7
DN07-9

This 5, 7, 9

(b) End-to-end runtime
GNN NN-1 N-2 NN-3

4

6

8

10

E
nd

-t
o-

en
d

m
on

et
ar

y
co

st
(U

SD
) DN07-5 This 5

DN07-7 This 7
DN07-9 This 9

(c) End-to-end monetary cost (1000 queries)
Fig. 13: Comparison for GNN and deep NN between our semi-honest protocol and DN07 (values plotted are logarithmic in base 2)

DN07, which vanishes in the symmetric rtt setting. However,
recall that our protocol requires only t + 1 active parties in
the online phase, which leaves several channels among the
parties underutilized. Hence, we can leverage the load bal-
ancing technique where parties’ roles are interchanged across
various parallel executions. For instance, one approach is to
make every party act as Pking, i.e., in 5PC, in one execution,
Pking = P1, E = {P1, P2, P3},D = {P4, P5}, while in another
execution Pking = P2, E = {P2, P3, P4},D = {P5, P1}, and
so on. To analyse the effect of load balancing, we performed
experiments with similar rtt among the parties and observed
a 1.5× improvement in our semi-honest variant over DN07.
This is justified as we communicate over four channels among
the parties as opposed to six in DN07. We note that while
enhancing the security from semi-honest to malicious, we
observe a significant drop in TP, which is about 3× for
the depth-1 circuit. This is primarily due to increased run
time owing to the verification in online phase for malicious
setting. However, this drop tends to zero for deeper circuits
(as verification cost gets amortized), making online phase of
our maliciously secure protocol on par with semi-honest one.

B. Deep Neural Networks (DNN) and Graph Neural Networks
(GNN)

We benchmark three different neural networks (NN) [68],
[74], [85] with increasing number of parameters–(i) NN-1: a 3-
layer fully connected one from [70], (ii) NN-2: the LeNet [60]
architecture, and (iii) NN-3: VGG16 [82] architecture (further
details are deferred to §D-A0a). We benchmark the inference
phase of the above NNs, which comprises computing activa-
tion matrices, followed by applying an activation function or
pooling operation, depending on the network architecture. NN-
1 and NN-2 are benchmarked over MNIST dataset [61] while
NN-3 is benchmarked using CIFAR-10 dataset [58]. We also
benchmark GNN inference, for which we use the simplified
architecture of [35] given in [81]. This architecture (§D-A0b)
is shown to achieve an accuracy of more than 99% on
MNIST classification [81]. To analyse the improvement of
our protocols, we also benchmark (semi-honest) DN07 for the
applications by adapting our building blocks to their setting.

The semi-honest benchmarks for the different NNs and
GNN appear in Table X (§D-A0a) while the malicious ones
appear in Table XI (§D-A0a). Fig. 13 gives a pictorial view of
the trends observed while comparing the semi-honest variants
and are described next. We incur a very minimal overhead in
the run-time of our protocols when moving from five to nine
parties over all the networks considered. Hence, we use ±δ

to denote this variation in the table. The trends witnessed in
synthetic circuit benchmarks (§V-A) carry forward to neural
networks as well due to reasons discussed previously. For
instance, the improvement in the online run-time for our semi-
honest variant is up to 4.3× over DN07. The effect of reduced
run-time and improved communication results in a significant
improvement in online throughput of our protocol over DN07.
Concretely, the gain ranges up to 4.3×. Further, the improved
run-time coupled with the reduced number of online parties
for our case brings in a saving of up to 69% in monetary cost
for NN-1. However, the improvement drops to 33% for deep
network NN-3. The reduction in savings is due to improved
run-time getting nullified by increased communication from
NN-1 to NN-3, making communication the dominant factor in
determining monetary cost.

Observe that, unlike the case in synthetic circuits (Ta-
ble V), the total communication here is an order of magnitude
higher. This is primarily due to the higher communication cost
incurred for performing the truncation operation–specifically,
generation of the doubly-shared bits (ΠdsBits, Fig. 22) in the
preprocessing phase. It is worth noting that ΠdsBits is used as a
black-box, and an improved instantiation for it will lower the
communication. Similar trends are observed for GNN as well,
where the online run-time of DN07 is up to 3.5× higher than
our semi-honest protocol. This is reflected in the throughput
where we gain up to 3.4×. Further, we observe savings of up
to 15% in monetary cost due to the reduced number of active
parties and lesser run-time.

Moving to the malicious setting, we incur an overhead of
up to 3% in online run-time, 6% in communication, and 13%
in monetary cost over the semi-honest counterpart. Details are
deferred to §D-A0a.

C. Genome Sequence Matching

Given a genome sequence as a query, genome matching
aims to identify the most similar sequence from a database
of sequences. This task is also known as similar sequence
query (SSQ). It requires the computation of Edit Distance
(ED), which quantifies how different two sequences are by
identifying the minimum number of additions, deletions, and
substitutions required to transform one sequence to the other.
To compute the ED, we extend the (2-party) protocol from
[79] which builds on top of the approximation from [5], to the
n-party setting. The details of the approximation algorithm for
ED computation appear in §D-C. The accuracy and correctness
of this algorithm follow from [5]. Among the two phases of the
ED algorithm, where the first phase happens non-interactively,

12

we only focus on the second phase of ED, which requires
interaction and benchmark the same.

This (semi)

This (mal)

(1000, 25) (2000, 30) (4000, 35)
0

200

400

600

800

1,000

(number of sequences, block length)

[31] (semi)

Fig. 14: Monetary cost for SSQ evaluation for varying number of
sequences and block lengths ((1000,25), (2000, 30), (4000,35)) for
n = 9 parties. Costs for 1000 instances are reported in USD.

The benchmarks for genome sequence matching appear in
Table VII, Table XIII (§D-C). Following [79], we consider
three cases with different number of sequences in the database
(m) and different block lengths (ω). The benchmarks for
m = 2000, ω = 30 are reported in Table VII, while the ones
for m = 1000, ω = 25 and m = 4000, ω = 35 appear in
Table XIII. We witness similar trends here, where our semi-
honest protocol has improvements of up to 4× in both online
run-time and throughput over DN07. Our malicious variant
incurs a minimal overhead in the range of 5-6% in online run-
time and total communication over the semi-honest counter-
part. For the monetary cost (Fig. 14), our semi-honest protocol
has up to 66% saving over DN07, and malicious variant has
around 42%-54% overhead over semi-honest counterpart.

Comma Time TPb Commc Timed Coste

5 25.82 66.33 57.89 0.40 82.24 0.31
7 38.75 69.63 55.15 0.60 86.99 0.47
9 51.67 69.66 55.09 0.80 87.39 0.62

5 15.39 0.40 0.11
7 23.08 0.60 0.16
9 30.78 0.80 0.21

5 22.79 209.84 0.42 0.17
7 33.88 209.49 0.64 0.25
9 44.06 207.23 0.85 0.30

Ref. n
Online End-to-end

DN07

This
(semi)

17.61
±.02

217.93
±0.2

21.69
±.02

This
(mal)

18.3
±.2

34.52
±.2

acommunication in MB bTP denotes throughput ccommunication in GB
dTime in seconds emonetary cost in USD

TABLE VII: Genome sequence matching for m = 2000, ω = 30.

D. Biometric Matching

We extend support for biometric matching, which finds ap-
plication in many real-world tasks such as face recognition [37]
and fingerprint matching [50]. The goal of such computation
is to identify a sample from a database of m samples that
is “closest” to a sample u⃗ held by a user. We follow the
general trend and reduce the biometric matching problem to
that of finding the sample from the database which has the least
Euclidean Distance (EuD) with the user’s sample u⃗. Details
of the protocol are deferred to §D-B.

The benchmarks for biometric matching appear in Ta-
ble VIII, Table XII (§D-B). The former table considers the

case with 1024 and 65536 sequences in the database, while
the latter considers 4096 and 16384 sequences. As is evident
from Table VIII, our semi-honest protocol witnesses a 4.6×
improvement over DN07 in both online run-time and through-
put. Further, in terms of monetary cost, we observe a saving of
around 85%. With respect to our maliciously secure protocol,
we incur a minimal overhead of around 9.5% in terms of
total communication and around 4% in online throughput over
our semi-honest variant. We note that our malicious variant
outperforms semi-honest DN07 in both online run-time and
throughput, thereby achieving our goal of a fast online phase.

Comm Time TPa Comm Time Costb

5 0.63 55.52 69.17 6.92 66.55 0.20
7 0.94 58.27 65.90 10.38 69.32 0.30
9 1.25 58.30 65.88 13.84 69.35 0.40

5 0.09 6.93 0.03
7 0.13 10.40 0.05
9 0.18 13.86 0.06

5 0.14 7.61 0.08
7 0.21 11.42 0.11
9 0.28 15.22 0.14

5 40.14 88.64 43.32 443.34 108.53 0.40
7 60.23 93.04 41.27 665.00 114.45 0.59
9 80.31 93.10 41.16 886.67 114.55 0.79

5 5.62 443.99 0.13
7 8.44 665.99 0.18
9 11.25 887.99 0.23

5 8.44 486.85 0.18
7 12.67 730.28 0.26
9 16.89 972.72 0.33

#seq Ref. n
Online End-to-end

1024

DN07

This
(semi)

12.61
±.02

304.62
±.03

14.79
±.02

This
(mal)

13.43
±.02

285.93
±.2

26.67
±.02

65536

DN07

This
(semi)

19.99
±.02

192.09
±.04

24.62
±.1

This
(mal)

20.86
±.02

183.88
±.07

37.33
±.05

Communication in MB and time in seconds.
aTP denotes throughput bmonetary cost in USD

TABLE VIII: Benchmarks for biometric matching.

CONCLUSION

This work improves the practical efficiency of n-party
honest-majority protocols using function-dependent prepro-
cessing. While our first construction achieves a fast online
phase compared to the semi-honest protocol of DN07, the
second enhances security by tolerating malicious adversaries
with minimal overhead in the online phase. The active partic-
ipation of half of the participants in both of our constructions
is a major highlight. This reduction in online parties results in
monetary benefits in real-world deployments.

ACKNOWLEDGEMENTS

The authors would like to acknowledge support from
Centre for Networked Intelligence (a Cisco CSR initiative) at
the Indian Institute of Science, Bengaluru, SERB MATRICS
(Theoretical Sciences) Grant 2020, Google India AI/ML Re-
search Award 2020, DST National Mission on Interdisciplinary
Cyber-Physical Systems (NM-CPS) 2020, National Security
Council, India, and the support from Google Cloud to perform
the benchmarking.

This project has received funding from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agree-
ment No. 850990 (PSOTI). This work was co-funded by
the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119
CROSSING/236615297.

13

REFERENCES

[1] Mark Abspoel, Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof.
An efficient passive-to-active compiler for honest-majority MPC over
rings. In ACNS, 2021.

[2] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P Smart,
and Tim Wood. Zaphod: Efficiently Combining LSSS and Garbled
Circuits in SCALE. In ACM WAHC@CCS, 2019.

[3] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda
Lindell, Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein.
Optimized honest-majority MPC for malicious adversaries - breaking
the 1 billion-gate per second barrier. In IEEE S&P, 2017.

[4] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation
with an honest majority. In ACM CCS, 2016.

[5] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. Privacy-
preserving search of similar patients in genomic data. PETS, 2018.

[6] Alessandro Baccarini, Marina Blanton, and Chen Yuan. Multi-party
replicated secret sharing over a ring with applications to privacy-
preserving machine learning. ePrint Archive, 2020. https://eprint.iacr.
org/2020/1577.

[7] Carsten Baum, Ivan Damgård, Tomas Toft, and Rasmus Winther Za-
karias. Better preprocessing for secure multiparty computation. In
ACNS, 2016.

[8] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-
honest secure multiparty computation for the internet. In CCS, 2016.

[9] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz:
Double your online spdz! improving SPDZ using function dependent
preprocessing. In ACNS, 2019.

[10] Aner Ben-Efraim and Eran Omri. Concrete efficiency improvements for
multiparty garbling with an honest majority. In LATINCRYPT, 2017.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In STOC, 1988.

[12] Marina Blanton, Ahreum Kang, and Chen Yuan. Improved building
blocks for secure multi-party computation based on secret sharing with
honest majority. In ACNS, 2020.

[13] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear
PCPs. In CRYPTO, 2019.

[14] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully
secure three-party computation via sublinear distributed zero-knowledge
proofs. In ACM CCS, 2019.

[15] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient
fully secure computation via distributed zero-knowledge proofs. In
ASIACRYPT, 2020.

[16] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
Fully Homomorphic Encryption without Bootstrapping. ACM Trans.
Comput. Theory, 2014.

[17] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr
Tkachenko. MOTION - A Framework for Mixed-Protocol Multi-Party
Computation. ePrint Archive, 2020. https://eprint.iacr.org/2020/1137.

[18] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. FLASH:
Fast and Robust Framework for Privacy-preserving Machine Learning.
PETS, 2020.

[19] Sergiu Carpov, Kevin Deforth, Nicolas Gama, Mariya Georgieva, Dim-
itar Jetchev, Jonathan Katz, Iraklis Leontiadis, M. Mohammadi, Abson
Sae-Tang, and Marius Vuille. Manticore: Efficient Framework for
Scalable Secure Multiparty Computation Protocols. ePrint Archive,
2021. https://eprint.iacr.org/2021/200.

[20] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bha-
vana Obbattu, Sruthi Sekar, and Akash Shah. Efficient Linear Multiparty
PSI and Extensions to Circuit/Quorum PSI. In ACM CCS, 2021.

[21] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh.
ASTRA: High Throughput 3PC over Rings with Application to Secure
Prediction. In ACM CCSW@CCS, 2019.

[22] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Trident: Efficient
4PC Framework for Privacy Preserving Machine Learning. In NDSS,
2020.

[23] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC
for malicious adversaries. In CRYPTO, 2018.

[24] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks
for youtube recommendations. In RecSys, 2016.

[25] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPDZ2k : Efficient MPC mod 2k for Dishonest
Majority. In CRYPTO, 2018.

[26] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion,
pseudorandom secret-sharing and applications to secure computation.
In TCC, 2005.

[27] Cryptography and Privacy Engineering Group at TU Darmstadt. EN-
CRYPTO Utils, 2017. https://github.com/encryptogroup/ENCRYPTO
utils.

[28] Anders Dalskov, Daniel Escudero, and Marcel Keller. Fantastic Four:
Honest-Majority Four-Party Secure Computation With Malicious Secu-
rity. In USENIX Security, 2021.

[29] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel
Keller, Peter Scholl, and Nikolaj Volgushev. New primitives for actively-
secure MPC over rings with applications to private machine learning.
In IEEE S&P, 2019.

[30] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In ESORICS, 2013.

[31] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In CRYPTO, 2007.

[32] Ivan Damgård, Claudio Orlandi, and Mark Simkin. Yet another compiler
for active security or: Efficient MPC over arbitrary rings. In CRYPTO,
2018.

[33] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
CRYPTO, 2012.

[34] Enrique Dans. How signal cleverly exposed Facebook’s disregard for
privacy. Forbes, 2021. https://www.forbes.com/sites/enriquedans/2021/
05/07/how-signal-cleverly-exposed-facebooks-disregard-forprivacy.

[35] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Con-
volutional Neural Networks on Graphs with Fast Localized Spectral
Filtering. In NeurIPS, 2016.

[36] Cynthia Dwork. Differential Privacy: A Survey of Results. In TAMC,
2008.

[37] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser,
Inald Lagendijk, and Tomas Toft. Privacy-preserving face recognition.
In PETS, 2009.

[38] Daniel Escudero and Anders Dalskov. Honest Majority MPC with Abort
with Minimal Online Communication. In LATINCRYPT, 2021.

[39] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-
throughput secure three-party computation for malicious adversaries and
an honest majority. In EUROCRYPT, 2017.

[40] Daniel Genkin, Yuval Ishai, Manoj M Prabhakaran, Amit Sahai, and
Eran Tromer. Circuits resilient to additive attacks with applications to
secure computation. In STOC, 2014.

[41] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO, 2013.

[42] Oded Goldreich. Foundations of cryptography: volume 2, basic appli-
cations. Cambridge university press, 2009.

[43] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In STOC, 1987.

[44] S Dov Gordon, Samuel Ranellucci, and Xiao Wang. Secure computation
with low communication from cross-checking. In ASIACRYPT, 2018.

[45] S Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The More
The Merrier: Reducing the Cost of Large Scale MPC. In EUROCRYPT,
2021.

[46] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou,
and Yifan Song. ATLAS: Efficient and Scalable MPC in the Honest
Majority Setting. In CRYPTO, 2021.

14

https://eprint.iacr.org/2020/1577
https://eprint.iacr.org/2020/1577
https://eprint.iacr.org/2020/1137
https://eprint.iacr.org/2021/200
https://github.com/encryptogroup/ENCRYPTO_utils
https://github.com/encryptogroup/ENCRYPTO_utils
https://www.forbes.com/sites/enriquedans/2021/05/07/how-signal-cleverly-exposed-facebooks-disregard-forprivacy
https://www.forbes.com/sites/enriquedans/2021/05/07/how-signal-cleverly-exposed-facebooks-disregard-forprivacy

[47] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient
unconditional MPC with guaranteed output delivery. In CRYPTO.
Springer, 2019.

[48] Vipul Goyal and Yifan Song. Malicious Security Comes Free in Honest-
Majority MPC. In CRYPTO, 2020.

[49] Gianluigi Guido, M Irene Prete, Stefano Miraglia, and Irma De Mare.
Targeting direct marketing campaigns by neural networks. Journal of
Marketing Management, 2011.

[50] Wilko Henecka and Thomas Schneider. Faster secure two-party com-
putation with less memory. In AsiaCCS, 2013.

[51] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signa-
tures. In CCS, 2018.

[52] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster
Malicious Arithmetic Secure Computation with Oblivious Transfer. In
CCS, 2016.

[53] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT, 2018.

[54] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for
practical actively secure MPC with dishonest majority. In CCS, 2013.

[55] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In ICLR, 2017.

[56] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT:
Super-fast and Robust Privacy-Preserving Machine Learning. In
USENIX Security, 2021.

[57] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. Tetrad:
Actively Secure 4PC for Secure Training and Inference. To Appear in
NDSS, 2022. https://eprint.iacr.org/2021/755.

[58] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10
dataset. 2014. https://www.cs.toronto.edu/∼kriz/cifar.html.

[59] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros, Frederick Jansen,
and Mayank Varia. Secure MPC for analytics as a web application. In
IEEE SecDev, 2016.

[60] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 1998.

[61] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010. http://yann.lecun.com/exdb/mnist/.

[62] Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing
Xie, Tianqi Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. Adsgnn:
Behavior-graph augmented relevance modeling in sponsored search. In
SIGIR, 2021.

[63] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. In Tutorials on the Foundations of Cryptography. 2017.

[64] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai.
Efficient constant round multi-party computation combining BMR and
SPDZ. In CRYPTO, 2015.

[65] Megan Malone. How does Facebook know what ads to show
you? (example). Vici Media, 2021. https://www.vicimediainc.com/
how-does-facebook-know-what-ads-to-show-you/.

[66] Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, and S Dov Gordon.
Secure parallel computation on national scale volumes of data. In
USENIX Security, 2020.

[67] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti
Yung. Two-sided malicious security for private intersection-sum with
cardinality. In CRYPTO, 2020.

[68] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol frame-
work for machine learning. In CCS, 2018.

[69] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and Secure
Three-party Computation: The Garbled Circuit Approach. In CCS,
2015.

[70] Payman Mohassel and Yupeng Zhang. SecureML: A System for
Scalable Privacy-Preserving Machine Learning. In IEEE S&P, 2017.

[71] Satsuya Ohata and Koji Nuida. Communication-Efficient (Client-Aided)
Secure Two-Party Protocols and Its Application. In FC, 2020.

[72] Keunchan Park, Jisoo Lee, and Jaeho Choi. Deep neural networks for
news recommendations. In CIKM, 2017.

[73] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame.
ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation. In
USENIX Security, 2021.

[74] Arpita Patra and Ajith Suresh. BLAZE: Blazing Fast Privacy-Preserving
Machine Learning. In NDSS, 2020.

[75] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada
Popa, and Joseph M Hellerstein. Senate: A Maliciously-Secure MPC
Platform for Collaborative Analytics. In USENIX Security, 2021.

[76] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A
Hybrid Secure Computation Framework for Machine Learning Appli-
cations. In AsiaCCS, 2018.

[77] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage Resis-
tance, Second-Preimage Resistance, and Collision Resistance. In FSE,
2004.

[78] Dragos Rotaru and Tim Wood. MArBled Circuits: Mixing Arithmetic
and Boolean Circuits with Active Security. In INDOCRYPT, 2019.

[79] Thomas Schneider and Oleksandr Tkachenko. EPISODE: efficient
privacy-preserving similar sequence queries on outsourced genomic
databases. In AsiaCCS, 2019.

[80] Google Cloud Computing Services. Google Cloud Platform, 2008.
Network costs - https://cloud.google.com/vpc/network-pricing, Compu-
tation costs - https://cloud.google.com/compute/vm-instance-pricing.

[81] Liyan Shen, Xiaojun Chen, Jinqiao Shi, Ye Dong, and Binxing Fang.
An Efficient 3-Party Framework for Privacy-Preserving Neural Network
Inference. In ESORICS, 2020.

[82] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In ICLR, 2015.

[83] Jinhyun So, Basak Güler, and Amir Salman Avestimehr. CodedPri-
vateML: A Fast and Privacy-Preserving Framework for Distributed
Machine Learning. IEEE J. Sel. Areas Inf. Theory, 2021.

[84] Ajith Suresh. MPCLeague: Robust MPC Platform for Privacy-
Preserving Machine Learning. PhD Thesis, 2021. https://arxiv.org/pdf/
2112.13338.

[85] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz,
Prateek Mittal, and Tal Rabin. FALCON: Honest-Majority Maliciously
Secure Framework for Private Deep Learning. In PETS, 2020.

[86] Robert A Wagner and Michael J Fischer. The String-to-String Correc-
tion Problem. J. ACM, 1974.

[87] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated
garbling and efficient maliciously secure two-party computation. In
CCS, 2017.

[88] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay
Agrawal, Amit Singh, Guangzhong Sun, and Xing Xie. Graphformers:
Gnn-nested transformers for representation learning on textual graph.
In NeurIPS, 2021.

[89] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In FOCS, 1982.

[90] Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger,
Tianqi Yang, Liangjie Zhang, Ruofei Zhang, and Huasha Zhao. Textgnn:
Improving text encoder via graph neural network in sponsored search.
In WWW, 2021.

APPENDIX A
PRELIMINARIES

a) Shared key setup: Fsetup [4], [68], [74] enables
establishment of common random keys for a pseudo-random
function (PRF) F , among parties. This aids in non-interactively
generating correlated randomness. Here F : {0, 1}κ ×
{0, 1}κ → X is a secure PRF, with co-domain X being Z2ℓ .
The semi-honest functionality, Fsetup appears in Fig. 15. The
functionality for the malicious case is similar, except that the
adversary now has the capability to abort.

To sample a random value r ∈ Z2ℓ among a set of t + 1
parties T = {P1, . . . , Pt+1} non-interactively, each Pi ∈ T

15

https://eprint.iacr.org/2021/755
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://www.vicimediainc.com/how-does-facebook-know-what-ads-to-show-you/
https://www.vicimediainc.com/how-does-facebook-know-what-ads-to-show-you/
https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://arxiv.org/pdf/2112.13338
https://arxiv.org/pdf/2112.13338

invokes FkT (idT) and obtains r. Here, idT denotes a counter
maintained by the parties in T , and is updated after every PRF
invocation. The appropriate keys used to sample is implicit
from the context, from the identities of the parties that sample.

Fsetup interacts with the parties in P and the adversary S. Fsetup

picks random keys kT , kT ′ for every set T , T ′ ⊆ P of t+1, t+2
parties, respectively. Fsetup picks random keys kij for every pair
of parties Pi, Pj ∈ P and i < j.
– Set xs = {ksi, kjs}∀i:s<i≤n,∀j:1≤j<s.
– Set ys = {kT }∀T ⊂P:|T |=t+1 when Ps ∈ T .
– Set zs = {kT ′}∀T ′⊆P:|T ′|=t+2 when Ps ∈ T ′.

Output: Send (Output, xs, ys, zs) to every Ps ∈ P .

Functionality Fsetup

Fig. 15: Ideal functionality for shared-key setup

b) Collision-Resistant Hash Function: A family of hash
functions [77] {H : K×M→ Y} is said to be collision resistant
if for all PPT adversaries A, given the hash function Hk for
k ∈R K, the following holds: Pr[(x, x′) ← A(k) : (x ̸=
x′) ∧ Hk(x) = Hk(x

′)] = negl(κ), where x, x′ ∈ {0, 1}m,
m = poly(κ), and κ is security parameter.

c) Commitment Scheme: Let Com(x) denote the com-
mitment of a value x [69]. The commitment scheme Com(x)
possesses two properties; hiding and binding. The former
ensures privacy of value x given its commitment Com(x),
while the latter prevents a corrupt party from opening the
commitment to a different value x′ ̸= x.

A. Helper primitives
(1) Π[0] → [0] (Fig. 18): To generate [·]-shares of 0, each

party non-interactively samples two values, each with one of
its neighboring parties. A party’s shares of 0 are defined as
the difference between these values.

1. Pi, Pi+1, for i ∈ {1, . . . , n−1}, sample a random value ri ∈R

Z2ℓ , while P1, Pn sample a random value rn ∈R Z2ℓ , using their
respective common PRF keys.

2. Pi for i ∈ {2, . . . , n} sets [0]i = ri − ri−1, while P1 sets
[0]1 = r1 − rn.

Protocol Π[0]

Fig. 16: Generating [·]-shares of 0

(2) Πrand → ⟨r⟩ (Fig. 17): To generate ⟨·⟩-shares of a
random r ∈ Z2ℓ , every set of t + 1 parties non-interactively
sample a random value using keys established during the setup
phase and define r to be the sum of these values.

1. Every Pi ∈ Tj for j ∈ {1, . . . , q}, samples ⟨r⟩Tj ∈R Z2ℓ

using the common PRF key.

2. Define r =
∑q

j=1⟨r⟩Tj .

Protocol Πrand

Fig. 17: Generating ⟨·⟩-shares of a random value

(3) ΠpRand(Ps) → ⟨r⟩ (Fig. 18): This protocol generates
⟨·⟩-shares of a random value r such that Ps learns all the

shares. Every set of t+ 1 parties non-interactively samples a
random value together with Ps, using the keys established (for
every set of t+ 2 parties) during the setup phase.

1. Every Pi ∈ Tj for j ∈ {1, . . . , q}, samples ⟨r⟩Tj ∈R Z2ℓ ,
together with Ps, using the common PRF key.

2. Define r =
∑q

j=1⟨r⟩Tj .

Protocol ΠpRand(Ps)

Fig. 18: Generating ⟨·⟩-shares of a random value along with Ps

(4) Π·→⟨⟨·⟩⟩(a)→ ⟨⟨a⟩⟩: This protocol generates ⟨⟨a⟩⟩ when
a ∈ Z2ℓ is held by at least t + 1 parties, say parties in E .
For this, Pi ∈ E sets ma = a and ⟨·⟩-shares of λa as 0. To
generate ⟨⟨a⟩⟩ in the malicious case where all parties hold a,
we let parties set ma = a and shares of λa as 0.

(5) Π⟨·⟩→T [·](⟨a⟩) → T [a] (Fig. 19): This protocol en-
ables parties in T = {E1, E2, . . . , Et+1} to generate T [a]
from [a]. To generate T [a]i, the idea is to sum up the shares in
⟨a⟩T1

, . . . , ⟨a⟩Tq , while ensuring that every share is accounted
for and no share is incorporated more than once. Concretely,
for share ⟨a⟩Tj

held by parties in Tj for j ∈ {1, . . . , q},
Ei ∈ Tj incorporates ⟨a⟩Tj

in its share of E [a]i if Ei has
the least index in Tj .

1. Let T = {E1, . . . , Et+1}.

2. Ei ∈ T computes E [a]i =
∑q

j=1⟨a⟩Tj · eij , where eij = 1 if
Ei has the least index in Tj , and 0, otherwise.

Protocol Π⟨·⟩→T [·](⟨a⟩)

Fig. 19: Conversion from ⟨·⟩-share to T [·]-share

(6) Π⟨·⟩→[·](⟨a⟩)→ [a]: ⟨·⟩-share can be converted to [·]-
share following similar procedure as Π⟨·⟩→T [·], and is denoted
as Π⟨·⟩→[·](⟨a⟩). We omit the details due to similarity.

(7) Π⟨⟨·⟩⟩→T [·](⟨⟨a⟩⟩) → T [a]: Parties in T invoke
Π⟨·⟩→T [·] on −λa to generate T [−λa], followed by a desig-
nated Pi ∈ T that holds ma setting T [a]i = ma +

E [−λa]i.

(8) Π⟨⟨·⟩⟩→[·](⟨⟨a⟩⟩) → [a]: [a] can be generated from ⟨⟨a⟩⟩
similar to Π⟨⟨·⟩⟩→T [·], and is denoted as Π⟨⟨·⟩⟩→[·](⟨⟨a⟩⟩).

(9) Π⟨·⟩→⟨⟨·⟩⟩(⟨a⟩) → ⟨⟨a⟩⟩: To convert ⟨a⟩, to ⟨⟨a⟩⟩, set
ma = 0 and set ⟨λa⟩ = −⟨a⟩.

(10) Π⟨⟨·⟩⟩→⟨·⟩(⟨⟨a⟩⟩) → ⟨a⟩: To convert ⟨⟨a⟩⟩ to ⟨a⟩, set
⟨a⟩Tj

= −⟨λa⟩Tj
for j ∈ {1, . . . , q − 1} and ⟨a⟩Tq = ma −

⟨λa⟩Tq , where Tq = E .

(11) Π⟨·⟩·⟨·⟩→[·](⟨a⟩, ⟨b⟩)→ [ab] (Fig. 20): Given ⟨a⟩, ⟨b⟩,
parties non-interactively compute [ab] as follows. Observe that
[ab] =

∑q
j=1

[
⟨a⟩Tj

b
]
. To generate

[
⟨a⟩Tj

b
]
, the idea is to

generate Tj
[
⟨a⟩Tj

b
]

and perform a conversion. Parties in Tj
generate Tj

[
⟨a⟩Tj

b
]

as Tj
[
⟨a⟩Tj

b
]

=
(
⟨a⟩Tj

)
·
(Tj [b]

)
. To

obtain
[
⟨a⟩Tjb

]
from Tj

[
⟨a⟩Tjb

]
, Pi ∈ P sets

[
⟨a⟩Tjb

]
i
=

Tj
[
⟨a⟩Tj

b
]
i

if Pi ∈ Tj and
[
⟨a⟩Tj

b
]
i
= 0, otherwise.

16

1. For j ∈ {1, . . . , q}:
• Pi ∈ Tj invokes Π⟨·⟩→T [·] on ⟨b⟩ to generate Tj [b]i.

• Set
[
⟨a⟩Tjb

]
i
=

(
⟨a⟩Tj

)
·
(Tj [b]i

)
if Pi ∈ Tj , and

[
⟨a⟩Tjb

]
i
=

0, otherwise.

2. Pi ∈ P computes [ab]i =
∑q

j=1

[
⟨a⟩Tjb

]
i
.

Protocol Π⟨·⟩·⟨·⟩→[·](P, ⟨a⟩, ⟨b⟩)

Fig. 20: ⟨a⟩, ⟨b⟩ to [ab]

(12) Πagree(P, {v⃗1, . . . , v⃗n}) → continue/abort: Al-
lows parties to check if they hold the same set of values
v⃗ = (v1, . . . , vm), where parties continue if the values are
same, and abort otherwise. We denote the version of v⃗ held by
Pi ∈ P as v⃗i. To check for consistency of v⃗, parties compute
hash, H = H(v1|| . . . ||vm), of the concatenation of all values
v1, . . . , vm, and exchange H among themselves. If any party
receives inconsistent hashes, it aborts; else it continues.

(13) Π⟨·⟩(Ps, a) → ⟨a⟩: To enable Ps to generate ⟨a⟩,
parties generate ⟨a⟩Tj for j ∈ {1, . . . , q − 1} using ΠpRand,
with Ps learning ⟨a⟩Tj (i.e., ⟨a⟩Tj are sampled using common
key amongst t + 2 parties). Ps sets ⟨a⟩Tq = a −

∑q−1
j=1⟨a⟩Tj

and sends ⟨a⟩Tq to parties in Tq. For malicious case, this is
followed by invoking Πagree(P, {⟨a⟩Tq}) to check consistency
of value sent by Ps.

APPENDIX B
MPCLAN PROTOCOLS

Here, we provide the formal protocol steps for the various
protocols discussed earlier.

A. Semi-honest protocols

a) Input sharing: The protocol for input sharing ap-
pears in Fig. 21.

Preprocessing: Invoke ΠpRand(Ps) to generate ⟨λa⟩, with Ps

learning λa where λa ∈ Z2ℓ .

Online: Ps computes and sends ma = a+ λa to all Pi ∈ E .

Protocol ΠSh(Ps, a)

Fig. 21: Semi-honest: Input sharing protocol

b) Truncation - Instantiating FTrGen: We rely on a
modified version of the doubly shared random bit (a bit that
is arithmetic as well as Boolean shared) generation protocol
of [29], extended to our n-party setting, to generate ⟨⟨r⟩⟩, ⟨⟨rd⟩⟩
as required to perform truncation. Here, rd represents the
truncated (by d bits) version of r ∈ Z2ℓ . The resulting protocol
is referred to as ΠdsBits (Fig. 22).

At a high-level, generation of doubly shared bits relies on
the property that every non-zero quadratic residue has exactly
one root when working over fields. The work of [29], operating
over rings, shows that something similar holds over rings as
well. Concretely, according to lemma 4.1 of [29]: if a is such
that a2 ≡ℓ 1, then a is congruent mod 2ℓ to either 1,−1,−1+
2ℓ−1, 1+2ℓ−1 . Thus, the doubly shared bit generation protocol
of [29] proceeds as follows. Generate a2 for a ∈ Z2ℓ+2 such

that a2 ≡ℓ+2 1, and compute its smallest root c mod 2ℓ+2.
Compute (c−1a), and by lemma 4.1 of [29] it follows that
c−1a ∈ {±1,±1 + 2ℓ+1}. That is, (c−1a) is congruent to ±1
modulo 2ℓ+1. Thus, d = c−1a + 1 is congruent to 0 or 2
modulo 2ℓ+1 with equal probability. Hence, setting b = d/2
outputs bit b = 0 or bit b = 1 with equal probability. Observe
that the computation has to be performed over Z2ℓ+2 . Hence,
in the protocol description, we use ℓ+ 2 in the superscript to
distinguish shares of x over Z2ℓ+2 from its shares over Z2ℓ .

The main change in ΠdsBits from that of the protocol in [29]
is that to generate ⟨⟨r⟩⟩, ⟨⟨rd⟩⟩ ΠdsBits generates ℓ random doubly
shared bits b0, . . . , bℓ−1 ∈ Z2 instead of a single one, and
composes these ℓ bits to generate r, and composes the higher
ℓ− d bits to generate rd, as follows.

(
⟨⟨r⟩⟩, ⟨⟨rd⟩⟩

)
=

(
ℓ−1∑
i=0

2i⟨⟨bRi ⟩⟩,
ℓ−1∑
i=d

2i−d⟨⟨bRi ⟩⟩

)
(3)

Looking ahead, ΠdsBits can also be used only to generate
a single doubly shared random bit, which finds use in other
building blocks such as bit to arithmetic conversion and
arithmetic to Boolean conversion. Thus, to distinguish the case
when (⟨⟨r⟩⟩, ⟨⟨rd⟩⟩) has to be generated versus when only a
single doubly shared bit is to be generated, ΠdsBits takes a
bit isTr as input and gives as output a doubly shared bit
⟨⟨bR⟩⟩, ⟨⟨b⟩⟩B if isTr = 0, and (⟨⟨r⟩⟩, ⟨⟨rd⟩⟩) otherwise. The
protocol appears in Fig. 22.

If isTr = 1, set k = ℓ else set k = 1. For i ∈ {0, . . . , k− 1}:

1. Invoke Πrand to generate ⟨ui⟩ℓ+2 for ui ∈ Z2ℓ+2 , and Π[0] to
generate [0]ℓ+2.

2. Compute ⟨ai⟩ℓ+2 = 2⟨ui⟩ℓ+2 + 1.

3. Invoke Π⟨·⟩·⟨·⟩→[·] on ⟨ai⟩ℓ+2 to generate [ei]
ℓ+2 where ei =

a2i .

4. Send [ei]
ℓ+2 + [0]ℓ+2 to Pking, who reconstructs ei + 0 = ei

and sends to all.

5. Let ci be the smallest root of ei modulo 2ℓ+2, and c−1
i its

inverse. Compute ⟨di⟩ℓ+2 = c−1
i ⟨ai⟩ℓ+2 + 1.

6. Pj sets ⟨bi⟩ℓ+2
j = ⟨di⟩ℓ+2

j /2, and ⟨bRi ⟩j , ⟨bi⟩Bj as the least sig-
nificant ℓ bits and the least significant bit of ⟨bi⟩ℓ+2

j , respectively.

7. Invoke Π⟨·⟩→⟨⟨·⟩⟩ on ⟨bRi ⟩, ⟨bi⟩B to generate ⟨⟨bRi ⟩⟩, ⟨⟨bi⟩⟩B.

If isTr = 1, set:

(⟨⟨r⟩⟩, ⟨⟨rd⟩⟩) =
(

k−1∑
i=0

2i⟨⟨bRi ⟩⟩,
k−1∑
i=d

2i−d⟨⟨bRi ⟩⟩
)

Protocol ΠdsBits(P, isTr)

Fig. 22: Semi-honest: Doubly shared bits

A final thing to note is that the computation in ΠdsBits

proceeds over secret-shared data. Thus, to generate shares
of the doubly shared bit b, one should be able to divide
each share of d by 2, which necessitates d and its shares
to be even. This holds true since ⟨d⟩ℓ+2 = c−1⟨a⟩ℓ+2 +

17

1 = c−1
(
2⟨u⟩ℓ+2 + 1

)
+ 1 = 2c−1⟨u⟩ℓ+2 + c−1 + 1. Here,

2c−1⟨u⟩ℓ+2 is even due to multiplication by 2, while c−1 + 1
is even since c−1 is odd by definition.

c) Dot product: As described before, a dot product
can be viewed as n instances of multiplication such that the
communication for all the instances is aggregated and per-
formed in a single shot to eliminate the vector-size dependency.
Consequently, the dot product protocol follows along the lines
of the multiplication, and the formal details appear in Fig. 23.

d) Multi-input multiplication: The goal of 3-input mul-
tiplication (Fig. 24) is to generate ⟨⟨·⟩⟩-sharing of z = abc given
⟨⟨a⟩⟩, ⟨⟨b⟩⟩, ⟨⟨c⟩⟩, in a single shot. Observe that

z− r = abc− r = (ma − λa)(mb − λb)(mc − λc)− r

= Mabc −Macλb −Mbcλa −Mabλc
+maΛbc +mbΛac +mcΛab − Λabc − r

Given that E [Λab],
E [Λac],

E [Λbc],
E [Λabc + r] can be gen-

erated in the preprocessing among the parties in E , parties
proceed with a similar online phase as in Πmult to compute the
3-input multiplication without inflating the online cost. With
respect to the preprocessing phase,

Preprocessing:

1. Invoke Πrand to generate ⟨r⟩ where r ∈ Z2ℓ , followed by
Π⟨·⟩→[·] to generate [r].

2. Invoke Π⟨·⟩·⟨·⟩→[·] on ⟨λxk ⟩, ⟨λyk ⟩ to generate [Λxkyk] for k ∈
{1, . . . , n}, and compute

[∑n
k=1 Λxkyk − r

]
=

∑n
k=1 [Λxkyk]−[r].

3. Pi ∈ E invokes Π⟨·⟩→E [·] on ⟨λxk ⟩, ⟨λyk ⟩ to generate E [λxk]i,
E [λyk]i, respectively, for k ∈ {1, . . . , n}.

4. Pi ∈ D sends
[∑n

k=1 Λxkyk − r
]
i

to Pking, who sets D =∑
i:Pi∈D

[∑n
k=1 Λxkyk − r

]
i
.

Online:

1. Pi ∈ E computes E [ζ]i =∑n
k=1

(
−mxk

E [λyk]i −myk
E [λxk]i

)
+

[∑n
k=1 Λxkyk − r

]
i
,

and sends E [ζ]i to Pking.

2. Pking computes E =
∑n

k=1 Mxkyk +
∑

i:Pi∈E
E [ζ]i and sends

z− r = D+ E to all parties in E .

3. Invoke Π·→⟨⟨·⟩⟩ on z − r to generate ⟨⟨z − r⟩⟩, and compute
⟨⟨z⟩⟩ = ⟨⟨z− r⟩⟩+ ⟨⟨r⟩⟩.

Protocol Πdp(P, ⟨⟨x⃗⟩⟩, ⟨⟨y⃗⟩⟩)

Fig. 23: Semi-honest: Dot product protocol

– For generating E [Λac],
E [Λbc] parties first compute the

respective additive sharings ([·]) using ⟨λa⟩, ⟨λb⟩ and ⟨λc⟩ (via
two invocations of Π⟨·⟩·⟨·⟩→[·], Fig. 20). Following this parties
in D communicate their share of [Λac] and [Λbc] to Pking, each
masked with a random [·]-sharing of 0 (generated using Π[0],
Fig. 16). This establishes E [Λac],

E [Λbc] among parties in E .

– For generating E [Λab], a slightly different approach is
taken where parties first generate ⟨Λab⟩ using ⟨λa⟩, ⟨λb⟩ (as ex-
plained later), followed by non-interactively generating E [Λab]

(via Π⟨·⟩→T [·], Fig. 19). The reason for generating ⟨Λab⟩ (in-
stead of directly generating E [Λab]) is to facilitate generation of
E [Λabc − r] from ⟨Λab⟩, ⟨λc⟩ and [r], which closely follows the
preprocessing phase of the 2-input multiplication. Specifically,
parties can generate [Λabc] using Π⟨·⟩·⟨·⟩→[·] (Fig. 20) on ⟨Λab⟩,
⟨λc⟩, followed by parties in D communicating their [Λabc]
shares masked with [·]-sharing of a random r to Pking. This
generates E [Λabc + r]-sharing required during online phase.

– Regarding generation of ⟨Λab⟩, all parties generate ⟨·⟩-
sharing of a random γ ∈ Z2ℓ non-interactively and convert
it to [γ]. Parties then compute [Λab + γ] by computing [Λab]
from ⟨λa⟩, ⟨λb⟩ followed by summing it up with [γ]. Parties
reconstruct this value towards Pking, who then generates ⟨Λab+
γ⟩, from which parties compute ⟨Λab⟩ = ⟨Λab + γ⟩ − ⟨γ⟩. On
obtaining ⟨Λab⟩, parties generate E [Λab] by invoking Π⟨·⟩→E [·].

Similarly, for the 4-input multiplication, to obtain ⟨⟨·⟩⟩-
sharing of z = abcd given the ⟨⟨·⟩⟩-sharing of a, b, c, d, we
can write z+ r as

z− r = (ma − λa)(mb − λb)(mc − λc)(md − λd)− r (4)
= Mabcd −Mbcdλa −Macdλb −Mabdλc −Mabcλd
+ MabΛcd + MacΛbd + MadΛbc + MbcΛad + MbdΛac

+ McdΛab −maΛbcd −mbΛacd −mcΛabd −mdΛabc

+ Λabcd − r

Here, parties need to generate the E [·]-sharing of Λab,Λac,Λad,
Λbc,Λbd,Λcd,Λabc,Λabd,Λacd,Λbcd,Λabcd. Generation of E [·]-
sharing of Λac,Λad,Λbc,Λbd can proceed similar to generation
of E [Λac] in Π3−mult. Generation of E [·]-sharing of Λab,Λcd

is carried out by first generating its ⟨·⟩-sharing. This enables
generation of E [·]-sharing of Λabc,Λabd,Λacd,Λbcd following
steps similar to generation of E [Λac] in Π3−mult. Finally,
E [Λabcd − r] is generated similar to generating E [Λabc + r] in
Π3−mult. We omit formal details of 4-input multiplication
protocol, Π4−mult, as it is very close to Π3−mult.

Preprocessing:

1. Invoke Πrand to generate ⟨r⟩ and ⟨γ⟩ where r, γ ∈ Z2ℓ . Invoke
Π⟨·⟩→[·] to generate [r] , [γ].

2. Invoke Π[0] to generate two different [·]-shares of 0: [01], [02].

3. Generation of E [Λac],
E [Λbc].

• Invoke Π⟨·⟩·⟨·⟩→[·] on ⟨λa⟩, ⟨λc⟩ to generate [Λac]i, and com-
pute [Λac + 01]i = [Λac]i + [01]i.
• Pi ∈ D sends [Λac + 01]i to Pking(= Pt+1).
• Analogous steps are carried out to generate [Λbc + 02].
• Pi ∈ E \ Pt+1 sets E [Λbc]i = [Λbc + 02]i and E [Λac]i =
[Λac + 01]i.

• Pt+1 sets E [Λbc]t+1 = [Λbc + 02]t+1 +
∑

i:Pi∈D [Λbc + 02]i
and E [Λac]t+1 = [Λac + 01]t+1 +

∑
i:Pi∈D [Λac + 01]i.

4. Generation of E [Λab].
• Invoke Π⟨·⟩·⟨·⟩→[·] on ⟨λa⟩, ⟨λb⟩ to generate [Λab]i, set
[Λab + γ]i = [Λab]i + [γ]i, and send [Λab + γ]i to Pking.
• Pking reconstructs Λab+γ, and sends Λab+γ to Pi ∈ E . Parties

non-interactively generate ⟨Λab + γ⟩ via Π·→⟨⟨·⟩⟩ and Π⟨⟨·⟩⟩→⟨·⟩.

Protocol Π3−mult(P, ⟨⟨a⟩⟩, ⟨⟨b⟩⟩, ⟨⟨c⟩⟩)

18

• Compute ⟨Λab⟩ = ⟨Λab + γ⟩ − ⟨γ⟩ and invoke Π⟨·⟩→E [·] on
⟨Λab⟩ to generate E [Λab].

5. Generation of E [Λabc + r].
• Invoke Π⟨·⟩·⟨·⟩→[·] on ⟨Λab⟩, ⟨λc⟩ to generate [Λabc]i, and

compute [Λabc + r]i = [Λabc]i + [r]i.
• Pi ∈ D sends [Λabc + r]i to Pking.

• Pi ∈ E \ Pt+1 sets E [Λabc + r]i = [Λabc + r]i.

• Pt+1 sets E [Λabc + r]t+1 = [Λabc + r]t+1 +∑
i:Pi∈D [Λabc + r]i.

6. Pi ∈ E invoke Π⟨·⟩→E [·] on ⟨λa⟩, ⟨λb⟩ and ⟨λc⟩ to generate
E [λa]i,

E [λb]i,
E [λc]i, respectively.

Online:

1. Pi ∈ E computes and sends E [ζ]i = −Mac
E [λb]i−Mbc

E [λa]i−
Mab

E [λc]i +ma
E [Λbc]i +mb

E [Λac]i +mc
E [Λab]i −

E [Λabc + r]i to
Pking.

2. Pking computes and sends z − r = Mabc +
∑

i:Pi∈E
E [ζ]i to

Pi ∈ E .

3. Invoke Π·→⟨⟨·⟩⟩ on z − r to generate ⟨⟨z − r⟩⟩, and compute
⟨⟨z⟩⟩ = ⟨⟨(z− r)⟩⟩+ ⟨⟨r⟩⟩.

Fig. 24: Semi-honest: 3-input multiplication protocol

B. Malicious protocols

a) Input sharing: This protocol is similar to the semi-
honest one, where to enable Ps to generate ⟨⟨a⟩⟩, parties
generate ⟨λa⟩ such that Ps learns λa, followed by Ps sending
the masked value ma = a + λa to all. However, note that a
corrupt Ps can cause inconsistency among the honest parties
by sending different masked values. To ensure the same value
is received by all, parties perform a hash-based consistency
check, denoted by Πagree (§II), where each party sends a
hash of the received masked value(s) to every other party and
aborts if it receives inconsistent hashes. Note that this check
for all the inputs can be combined, thereby amortizing the cost.

Preprocessing: Invoke ΠpRand(Ps) to generate ⟨λa⟩, with Ps

learning λa where λa ∈ Z2ℓ .

Online: Ps computes and sends ma = a+ λa to all Pi ∈ P .

Verification: Invoke Πagree on {ma}.

Protocol ΠM
Sh(Ps, a)

Fig. 25: Malicious: Input sharing protocol

b) Reconstruction: To reconstruct ⟨⟨·⟩⟩-shared value a
towards Ps ∈ P , observe that each share that Ps misses is
held by t + 1 other parties. Each of these parties sends the
missing share to Ps. If the received values for a share are
consistent, Ps uses this value to perform reconstruction, and
aborts otherwise. As an optimization, one party can send the
missing share while reconstructing several values, and t others
can send its hash.

Preprocessing:

1. Invoke Πrand to generate ⟨λz⟩ where λz ∈R Z2ℓ .

2. For j ∈ {1, . . . , q}:
• Each Pi ∈ Tj generates commitments on ⟨λz⟩Tj using the

common randomness, and sends to all other parties.
• Pi /∈ Tj aborts if commitments for ⟨λz⟩Tj are inconsistent.

Online:

1. Parties broadcast an alive bit, indicating that they did not abort.

2. If all parties are alive, Pi ∈ P sends the decommitment to the
shares in ⟨λz⟩i to the respective parties.

3. Parties use the valid decommitment to obtain the missing share
of λz, reconstruct λz, and compute z = mz − λz.

Protocol Πfair
Rec(⟨⟨z⟩⟩)

Fig. 26: Fair: Reconstruction protocol

Fairness is a stronger security notion than security with
abort, where, during reconstruction, either all parties learn the
output or none do. For fair reconstruction, we extend the tech-
niques in [74] to the n-party setting, where commitments are
generated on each share of the mask (required to reconstruct
z) by t + 1 parties in the preprocessing phase. During the
online phase, these are decommitted towards the respective
parties if all parties are alive (did not abort). Since there is at
least one honest party among every set of t+ 1 parties, if all
honest parties are alive, then parties are guaranteed to obtain
the correct decommitment of the missing share from the honest
party, and all honest parties can reconstruct the output. Else,
none of the parties will obtain the output.

c) Multiplication: The maliciously secure multiplica-
tion protocol appears in Fig. 27.

isTr = 1 denotes that truncation is required and isTr = 0 denotes
otherwise.

Preprocessing:

1. If isTr = 0: invoke Πrand to generate ⟨r⟩ where r ∈ Z2ℓ . Invoke
Π⟨·⟩→[·] and Π⟨·⟩→⟨⟨·⟩⟩ on ⟨r⟩ to generate [r] and ⟨⟨r⟩⟩, respectively.

2. Else, invoke ΠM
dsBits(P, 1) (Fig. 22) to generate ⟨⟨r⟩⟩, ⟨⟨rd⟩⟩, and

Π⟨⟨·⟩⟩→[·] on ⟨⟨r⟩⟩ to generate [r] .

3. Invoke ΠmultPre on ⟨λa⟩, ⟨λb⟩ to generate ⟨Λab⟩.

4. Pi ∈ E invokes Π⟨·⟩→E [·] on ⟨Λab⟩, ⟨λa⟩, ⟨λb⟩ and ⟨r⟩ to
generate E [Λab], E [λa], E [λb] and E [r], respectively.

Online:

1. Pi ∈ E computes E [ζ]i = −ma
E [λb]i−mb

E [λa]i+
E [Λab − r]i,

and sends E [ζ]i to Pking.

2. Pking reconstructs ζ, computes and sends z − r = ζ + Mab to
all partiesa.

3. If isTr = 0: invoke Π·→⟨⟨·⟩⟩ on z− r to generate ⟨⟨z− r⟩⟩, and
compute ⟨⟨z⟩⟩ = ⟨⟨z− r⟩⟩+ ⟨⟨r⟩⟩.

Protocol ΠM
mult(P, ⟨⟨a⟩⟩, ⟨⟨b⟩⟩, isTr)

19

4. Else, invoke Π·→⟨⟨·⟩⟩ on (z− r)d to generate ⟨⟨(z− r)d⟩⟩, and
compute ⟨⟨zd⟩⟩ = ⟨⟨(z− r)d⟩⟩+ ⟨⟨rd⟩⟩.

Verification for all multiplication gates: Invoke ΠVrfy on ⟨⟨·⟩⟩-
shares of (a1, b1, z1), . . . , (am, bm, zm) which denote the inputs
and outputs of the m multiplication gates whose correctness is to
be verified.

az−r is sent to parties in E during the online phase computation whereas
it is sent to parties in D in a single shot before verification begins.

Fig. 27: Malicious: Multiplication protocol

d) Overcoming the privacy breach described in [47]:
We elaborate on the privacy breach that arises due to deferring
the correctness check and how it is overcome in our case. We
first explain the attack that a malicious adversary can launch
if reconstruction towards Pking is performed by relying on
RSS (or Shamir sharing) naively and further justify why it
gets bypassed in our protocol. Consider a circuit with two
sequential multiplication gates with the output of the first gate,
say a, going as input to the second gate. Let b denote the
other input to the second multiplication gate, and z denote its
output. In a Pking based approach for multiplication, t parties
send their respective (RSS/Shamir) share of a masked value to
Pking. In particular, for the first multiplication gate in the circuit
mentioned above, t parties send their corresponding share of
a − ra to Pking, who reconstructs it and sends it back to all.
Delaying the verification allows a malicious Pking to send an
inconsistent value of a− ra to the parties, using which it can
learn the private input b, as follows. Suppose Pking sends the
correct a − ra to all but one out of the remaining t online
parties, to which it sends a − ra + δ. Owing to this, for the
next multiplication gate Pking receives the shares of z−rz from
the former t−1 parties and a share of (a+δ)b−rz = z+δb−rz
from the latter party. Having obtained these and additionally
using the shares of z − rz and z + δb − rz corresponding to
the t corrupt parties including itself, a malicious Pking can
reconstruct z − rz as well as z + δb − rz, thus learning b in
clear. The crux of this attack lies in the fact that a malicious
adversary corrupting t parties including Pking already possesses
t shares each of z−rz and z+δb−rz. Thus, an additional share
of these obtained from the online parties allows it to carry out
the attack successfully. However, the same does not hold for
the case of additive (E [·]) sharing.

Notice that in our protocol, during reconstruction towards
Pking, any redundancy due to ⟨⟨·⟩⟩-sharing is eliminated with
parties switching to E [·]-sharing (additive sharing among par-
ties in E). Due to this, even if Pking sends inconsistent values
to the parties, the E [·]-share of z − rz or z + δb − rz that it
receives, corresponds to an additive share defined with respect
to parties in E . Hence, this additionally received additive share
cannot be combined with the shares held by the t corrupt
parties to perform the reconstruction. Thus, the earlier strategy
of Pking of using these additional shares in conjunction with
the t corrupt shares to reconstruct z− rz and z+ δb− rz does
not hold. The primary reason which prevents the attack is the
elimination of redundancy in the sharing scheme by switching
to (t+1)-out-of-(t+1) additive sharing (E [·]-sharing) for the
set of parties in E , which is known to withstand this attack [47].

e) Discussion about [38]: The above attack can be
circumvented by making Pking broadcast the reconstructed

value to all the parties, as discussed in [38]. To further optimize
the protocol by requiring only t + 1 parties to be active in
the online phase, they rely on broadcast with abort, which
comprises two phases–(i) send: where Pking sends the value
to the recipients, and (ii) verification: where the recipients
exchange hash of the received value among themselves, and
abort in case of inconsistency. However, for amortization, they
defer the verification (even with respect to broadcast) towards
the end of the protocol, thus making their protocol susceptible
to the aforementioned attack. We observe that one fix is to
perform the verification with respect to broadcast after each
level in the circuit. This, however, requires all the parties to
be online. An optimization to let only the t + 1 parties in
the online phase to perform this verification after each level,
thereby allowing the remaining t parties to be shut off. Specif-
ically, this involves performing verification where the online
parties exchange the hash of the received value and abort in
case of inconsistency. When the remainder t (offline) parties
come online towards the end of the protocol for verifying
the correctness of the multiplication gates, this verification
should be preceded by first verifying the consistency of the
values broadcast by Pking to the offline parties (and involves
participation of all n parties). Since the online phase involves
broadcasting the reconstructed value to t other online parties,
this amounts to an exchange of O(t2) hashes after each level,
thereby incurring a circuit depth-dependent overhead in the
communication cost as well as the rounds. In order for the
communication cost to get amortized, it is required that the
circuit has O(t2) gates at each level. However, the overhead
in terms of number of rounds persists.

Multiplication with truncation – Instantiating FM
TrGen with

maliciously secure doubly shared bits generation protocol: As
mentioned earlier, FM

TrGen (Fig. 28) can be realized using the
maliciously secure variant of ΠdsBits, denoted as ΠM

dsBits. This
protocol is similar to the semi-honest protocol except with
the following differences to account for malicious behaviour.
The ⟨·⟩-shares of ei = a2 are generated by invoking ΠmultPre

instead of relying on Π⟨·⟩·⟨·⟩→[·]. This ensures generation
of correct ⟨·⟩-shares of ei, and malicious behaviour, if any,
will lead to an abort. Following this, ei is either correctly
reconstructed towards all or parties abort. This ensures that
an adversary cannot lead to reconstruction of an incorrect ei.
Concretely, for reconstruction, similar to multiplication, every
party sends its ⟨·⟩-share to every other party, and aborts in
case of inconsistencies in the received values5. The rest of the
protocol steps (which are non-interactive) remain unchanged,
and hence a formal protocol is omitted.

FM
TrGen interacts with the parties in P and the adversary S.

Input: FM
TrGen optionally receives a special command, (abort,P),

from S indicating that honest parties in P with indices in P should
abort.

FM
TrGen proceeds as follows.

Functionality FM
TrGen

5This can be optimized similar to the online phase of multiplication
protocol, where the value is first reconstructed towards Pking who sends
the reconstructed value to all, followed by verifying its correctness via the
verification check.

20

– Samples random r ∈ Z2ℓ , and computes rd = r/2d.
– Generates ⟨⟨·⟩⟩-shares of r, rd.
– Let ys denote the ⟨⟨·⟩⟩-shares of r, rd for party Ps ∈ P . If

received (abort,P) from S, set ys = abort for Ps, where s ∈ P.

Output: Send (Output, ys) to every Ps ∈ P .

Fig. 28: Ideal functionality FM
TrGen

f) Multi-input multiplication: The malicious variant of
multi-input multiplication protocol, at a high level, can be
viewed as an amalgamation of the semi-honest multi-input
multiplication and the malicious multiplication protocol. For
the case of 3-input multiplication, recall that the semi-honest
protocol to compute ⟨⟨z⟩⟩ given ⟨⟨a⟩⟩, ⟨⟨b⟩⟩ and ⟨⟨c⟩⟩ where
z = abc requires parties to obtain E [Λab],

E [Λac],
E [Λbc] and

E [Λabc] in the preprocessing phase, which is then used to
reconstruct mz in the online phase.

Since parties in E are required to hold the correct E [·]-
sharings before the online phase begins, as in the case of
multiplication, the techniques from semi-honest protocol fail
in this setting. Hence, our protocol uses 4 instances of a
maliciously secure multiplication protocol in the preprocessing
phase, one each to compute ⟨Λab⟩, ⟨Λac⟩, ⟨Λbc⟩ and ⟨Λabc⟩.
Each of the ⟨·⟩-sharing is further converted to E [·]-sharing
using Π⟨·⟩→E [·] to ensure active participation of only t + 1
parties in the online phase for reconstruction of z− r . Further,
to detect malicious behaviour during reconstruction of z − r,
a verification check similar to the multiplication protocol is
performed such that parties abort if the check fails.

For 4-input multiplication, parties obtain ⟨⟨·⟩⟩-sharing of
z = abcd using z− r = (ma − λa)(mb − λb)(mc − λc)(md −
λd) − r. The protocol proceeds in a similar manner as the 3-
input case by delegating the computation of product terms to
the preprocessing phase.

g) Dot product: To generate ⟨⟨z⟩⟩ for z = x⃗ ⊙ y⃗
where x⃗ and y⃗ are vectors of size n and are ⟨⟨·⟩⟩-shared, the
protocol proceeds similar to the semi-honest variant. That is,
in the preprocessing phase parties in E obtain E [·]-shares of
σ =

∑n
k=1 λxkλyk and λxk , λyk for k ∈ {1, . . . , n}. Although

the latter two can be computed by parties locally with an
invocation of Π⟨·⟩→E [·] (Fig. 19), computation of the former
differs significantly from the semi-honest protocol. For this,
we extend the ideas from SWIFT [56] and generate σ, by
executing a maliciously secure dot product protocol ΠdotPre

(abstracted as a functionality FDotPPre in Fig. 29). Specifically,
parties invoke ΠdotPre on ⟨·⟩-shares of λ⃗x = (λx1 , . . . , λxn) and
λ⃗y = (λy1 , . . . , λyn) to compute ⟨σ⟩, followed by an invocation
of Π⟨·⟩→E [·] to obtain E [σ]. Having computed the necessary
preprocessing data, the online phase proceeds similarly to the
semi-honest protocol where parties reconstruct z− r via Pking.
To account for misbehaviour, the protocol is augmented with
a verification phase similar to that in malicious multiplication.

FDotPPre interacts with the parties in P and the adversary S. Let
Ti be the set of the honest parties.

Input: FDotPPre receives the ⟨·⟩-shares of the vectors a⃗ =
(a1, . . . , an) and b⃗ = (b1, . . . , bn) from the parties. FDotPPre also

Functionality FDotPPre

receives ⟨·⟩-shares of z = a⃗⊙b⃗ of corrupt parties from S. S is also
allowed to send a special command, (abort,P), which indicates
that parties in P with indices in P should abort.

FDotPPre proceeds as follows.
– Reconstruct ak, bk for k ∈ {1, . . . , n} using the shares received

from honest parties and compute z =
∑n

k=1 ak · bk.
– Compute the ⟨·⟩-share of z to be held by the set of honest

parties as the difference between z and the sum of ⟨·⟩-shares of z
received from corrupt parties.
– Let ys denote the ⟨·⟩-shares of z for party Ps ∈ P . If received
(abort,P) from S, set ys = abort for Ps, where s ∈ P.

Output: Send (Output, ys) to every Ps ∈ P .

Fig. 29: Ideal functionality for ΠdotPre

Observe that a trivial realization of FDotPPre can be reduced
to n instances of multiplication. However, we extend the ideas
from [14], [15], [56] to eliminate the vector-size dependency
in the preprocessing phase. For this, we instantiate ΠdotPre

using a semi-honest dot product protocol [48] whose cost
matches that of semi-honest multiplication [31], followed by
a verification phase where the cost of verification can be
amortized away for multiple dot products, thereby resulting
in vector-size independent preprocessing.

Elaborately, the semi-honest dot product [48] protocol takes
as input ⟨x⃗⟩, ⟨y⃗⟩ where x⃗, y⃗ are vectors of size n, and outputs
⟨z⟩ = ⟨x⃗ ⊙ y⃗⟩. For this, parties invoke Π⟨·⟩·⟨·⟩→[·] on each
element in x⃗, y⃗ and sum these up to generate [ρ] = [x⃗⊙ y⃗].
These shares are randomized by summing with [r] (converted
from ⟨r⟩) for a random r, and the sum z+ r = (x⃗⊙ y⃗) + r is
reconstructed towards Pking, who sends the reconstructed z+ r
to parties in E . All parties then non-interactively generate ⟨z+
r⟩ by setting one of its share as z+r and the others as 0. Given
⟨z+ r⟩, ⟨r⟩, parties can compute ⟨z⟩ = ⟨z+ r⟩ − ⟨r⟩. Observe
that communication of [z+ r] to Pking requires 2t elements,
while communicating z+ r to parties in E requires t elements,
resulting in a matching cost of 3t elements as that required for
semi-honest multiplication [31].

To verify the correctness of this dot product computation,
we extend the verification technique for multiplication in [15],
to verify the correctness of dot product. We give a high
level idea of how the verification of m dot product triples
(x⃗1, y⃗1, z1), . . . , (x⃗m, y⃗m, zm), can be performed. For this,
correctness of the dot product triples can be verified by taking
a random linear combination,

β =

m∑
k=1

θk ·

zk −
n∑

j=1

xkj · ykj


where {θk}mk=1 is randomly chosen by all the parties and
checking if β = 0. Given ⟨·⟩-shares of x⃗k, y⃗k, zk for k ∈
{1, . . . ,m}, parties can compute an additive share ([·]-share)
of β by invoking Π⟨·⟩·⟨·⟩→[·]. However, since [·]-sharing does
not allow for robust reconstruction, the approach is to generate
⟨β⟩ and then robustly reconstruct it and check equality with 0.
To generate ⟨β⟩, parties first ⟨·⟩-share (via Π⟨·⟩, §A-A) their

21

[·]-share of

ψ =

m∑
k=1

θk ·
n∑

j=1

xkj · ykj .

Let ψi denote the [·]-share of ψ held by Pi. Given ⟨ψi⟩ for
i ∈ {1, . . . , n}, parties can compute

⟨β⟩ =
m∑

k=1

θk · ⟨zk⟩ −
n∑

i=1

⟨ψi⟩

and reconstruct β. It is, however, required to ensure that every
party Pi ⟨·⟩-shares the correct ψi. To check the correctness of
ψi, parties need to verify if

ψi −
m∑

k=1

θk

 n∑
j=1

xikj · yikj

 = 0 (5)

where xikj , y
i
kj denote the ⟨·⟩-share of xkj , ykj held by Pi. Note

that following along the lines of Π·→⟨⟨·⟩⟩, parties can generate
these ⟨·⟩-share of xikj , y

i
kj from ⟨·⟩-shares of xkj , ykj , non-

interactively. Now, setting akj = θkx
i
kj , bkj = yikj , c = ψi, for

k ∈ {1, . . . ,m}, Eq. (5), can re-written as

c−
m∑

k=1

n∑
j=1

akjbkj = 0

=⇒ c−
mn∑
l=1

ãlb̃l = 0 (6)

The correctness of Eq. (6) can be verified by invoking
Fabort

proveDeg2Rel (see section 3 of [15] for the definition and its
instantiation), which takes as input ⟨·⟩-shares of ãl, b̃l, c for
l ∈ {1, . . . ,mn}, which are known in clear to party Pi, and
verifies if Eq. (6) holds. The protocol realizing Fabort

proveDeg2Rel

for all n parties requires communicating O(n log(mn)+n) ex-
tended ring elements per party. Further, since steps other than
Fabort

proveDeg2Rel require sharing and reconstructing one element,
it adds a small constant cost, resulting in the communication
cost for verifying m dot products for vector size n being
O(n log(mn) + n) extended ring elements per party.

APPENDIX C
BUILDING BLOCKS

For completeness, we discuss the building blocks used
in our framework. These blocks are known from the litera-
ture [57], [73] and we show how these can be extended to
n-party setting.

A. Semi-honest building blocks

a) Bit to arithmetic : Given Boolean shares ⟨⟨b⟩⟩B of
bit b, protocol Πbit2A generates its arithmetic shares, ⟨⟨bR⟩⟩
over Z2ℓ (Fig. 30). Here, bR denotes the arithmetic values of
b over the ring Z2ℓ . The idea is to generate a randomized
version, ζ = b⊕ r of b, and then recover arithmetic shares of
b as b = ζ ⊕ r by performing arithmetic equivalent of XOR
(x⊕ y = xR + yR − 2xRyR).

Preprocessing:

1. Invoke ΠdsBits to generate ⟨⟨rR⟩⟩, ⟨⟨r⟩⟩B for r ∈ Z2 .

2. Invoke preprocessing phase of Πmult.

Online:

1. Compute ⟨⟨ζ⟩⟩B = ⟨⟨b⟩⟩B ⊕ ⟨⟨r⟩⟩B.

2. Pi ∈ E invokes ΠB
⟨⟨·⟩⟩→E [·] to generate E [ζ]Bi and sends E [ζ]Bi

to Pking, who reconstructs ζ and generates ⟨⟨ζR⟩⟩.

3. Invoke online phase of Πmult to generate ⟨⟨ζRrR⟩⟩, and compute
⟨⟨bR⟩⟩ = ⟨⟨ζR⟩⟩+ ⟨⟨rR⟩⟩ − 2⟨⟨ζRrR⟩⟩.

Protocol Πbit2A(P, ⟨⟨b⟩⟩B)

Fig. 30: Semi-honest: Bit to arithmetic

b) Bit injection: ΠBitInj facilitates generation of ⟨⟨bR ·v⟩⟩
given ⟨⟨b⟩⟩B, ⟨⟨v⟩⟩ for b ∈ Z2 and v ∈ Z2ℓ . As seen in [57],

bRv = (mb ⊕ λb)R(mv − λv)
= mR

bmv −mR
bλv + (2mR

b − 1)(λRbλv −mvλ
R
b)

Given E [·]-shares of λv, λ
R
b , λ

R
bλv, r and ⟨⟨r⟩⟩ for r ∈ Z2ℓ ,

and the knowledge that mv,m
R
b is held by all parties in

E , parties can compute E[bRv + r
]
, reconstruct it via Pking

and generate ⟨⟨bRv + r⟩⟩. ⟨⟨bRv⟩⟩ can then be computed as
⟨⟨bRv⟩⟩ = ⟨⟨bRv + r⟩⟩ − ⟨⟨r⟩⟩. To facilitate this, in the prepro-
cessing phase parties generate E [·]-shares of r, λv, λ

R
b , λ

R
bλv,

and ⟨⟨r⟩⟩. Here, E [r], E [λv] and ⟨⟨r⟩⟩ are generated as in the
preprocessing of multiplication, E[λRb] is generated via Πbit2A

followed by Π⟨⟨·⟩⟩→E [·] (§II), and E[λRbλv] is generated as in
the preprocessing of multiplication.

c) Arithmetic to Boolean sharing: Extending the tech-
niques from [57], protocol ΠA2B generates ⟨⟨x⟩⟩B from ⟨⟨x⟩⟩
for x ∈ Z2ℓ . For this, given arithmetic and Boolean shares of
r ∈ Z2ℓ , Boolean shares of x are computed as (x + r) − r
by evaluating a parallel prefix adder (PPA) circuit [73], [68].
The PPA circuit inputs two Boolean values (x + r, −r in this
case) and outputs their sum. The protocol appears in Fig. 31.
Looking ahead, ΠA2B is used in the preprocessing phase in
the applications considered. Hence, we rely on the PPA circuit
from [68] as it provides a good trade-off between rounds and
communication as opposed to the circuit from [73] which
is optimized to provide a fast online phase at the expense
of a higher preprocessing cost (yielding a higher total cost
than [68]).

Preprocessing:

1. Invoke ΠdsBits(P, 0) to generate ⟨⟨(r[i])R⟩⟩ and ⟨⟨r[i]⟩⟩B where
r[i] ∈ Z2 for i ∈ {0, . . . , ℓ−1}, and set ⟨⟨r⟩⟩ =

∑ℓ−1
i=0 2

i⟨⟨(r[i])R⟩⟩.

2. Execute the preprocessing phase for the PPA circuit which
computes ⟨⟨x⟩⟩B = ⟨⟨x+ r⟩⟩B − ⟨⟨r⟩⟩B.

Online:

1. Compute ⟨⟨x+ r⟩⟩ = ⟨⟨x⟩⟩+ ⟨⟨r⟩⟩

Protocol ΠA2B(P, ⟨⟨x⟩⟩)

22

2. Parties in E invoke Π⟨·⟩→E [·] on ⟨⟨x + r⟩⟩ to generate E [x+ r]
and send their share to Pking.

3. Pking reconstructs and sends x+ r to all parties in E .

4. Invoke ΠB
·→⟨⟨·⟩⟩ to generate ⟨⟨x + r⟩⟩B, and execute the online

phase of PPA circuit to compute ⟨⟨x⟩⟩B = ⟨⟨x+ r⟩⟩B − ⟨⟨r⟩⟩B.

Fig. 31: Semi-honest: Arithmetic to Boolean

d) Boolean to arithmetic sharing: This protocol gen-
erates ⟨⟨x⟩⟩ from ⟨⟨x⟩⟩B where x ∈ Z2ℓ . Inspired from [57],
[56], observe that x =

∑ℓ−1
i=0 2

i(x[i])R. Thus, we invoke Πbit2A

on x[i] for i ∈ {0, . . . , ℓ− 1} to generate ⟨⟨x[i]R⟩⟩ followed by
locally combining it as per the above equation to generate ⟨⟨x⟩⟩.
Optimizations in [57] carry forward to our setting as well.

e) Comparison: To compare x, y ∈ Z2ℓ in FPA, we
extend the technique of [68], [74], [56], [22], [57], [73], where
checking x < y is equivalent to checking if the most significant
bit (msb) of v = x− y is 1. To extract the msb from ⟨⟨v⟩⟩, we
rely on Πbitext which takes as input ⟨⟨v⟩⟩ and outputs the ⟨⟨·⟩⟩B-
share of the msb of v, denoted as ⟨⟨msb(v)⟩⟩B. The optimized
bit extraction circuit from [73] is used for computing the msb
whose inputs are two ⟨⟨·⟩⟩B-shared values and output is the
⟨⟨·⟩⟩B-shared msb of the sum of these two inputs. Observe that,
given ⟨⟨v⟩⟩, v can be written as v = mv−λv, and hence ⟨⟨·⟩⟩B-
shares of mv and λv constitute the two inputs to the circuit.
While ⟨⟨mv⟩⟩B can be generated non-interactively by invoking
ΠB

·→⟨⟨·⟩⟩ in the online phase, ⟨⟨λv⟩⟩B is generated by performing
an arithmetic to boolean conversion in the preprocessing phase.
Evaluation of bit extraction circuit then gives ⟨⟨msb(v)⟩⟩B.

f) Equality Check: Given ⟨⟨·⟩⟩-shared x, y ∈ Z2ℓ , this
protocol outputs a ⟨⟨·⟩⟩B-shared bit, which is set to 1 if
x = y, and 0 otherwise. The approach is to obtain the bit
decomposition of v = x − y by performing ΠA2B, and check
if all bits of v are 0. For this, parties non-interactively obtain
1’s complement of the bits of v, denoted as v̄, by setting the
corresponding mv̄ = 1 ⊕ mv and λv̄ = λv. Parties proceed to
compute an AND of all the bits in v̄ following the standard-
tree based approach where we use the 4-input multiplication
to save on rounds and communication. If v = 0, then the AND
outputs 1 else it outputs a 0. The protocol appears in Fig. 32.

Preprocessing:

1. Perform preprocessing phase of ΠA2B and the preprocessing of
4-input multiplications.

Online:

1. Compute ⟨⟨v⟩⟩ = ⟨⟨x⟩⟩−⟨⟨y⟩⟩ and invoke ΠA2B to generate ⟨⟨v⟩⟩B.

2. Generate ⟨⟨v̄⟩⟩B by setting mv̄ = 1⊕mv and λv̄ = λv.

3. Perform AND of all the bits in v̄ following the tree based
approach by invoking the online phase of 4-input multiplication
to generate ⟨⟨b⟩⟩B.

Protocol ΠEq(P, ⟨⟨x⟩⟩, ⟨⟨y⟩⟩)

Fig. 32: Semi-honest: Equality check protocol

g) Maxpool / Minpool: Maxpool allows parties to com-
pute ⟨⟨·⟩⟩-share of the maximum value xmax among a vector
of values x⃗ = (x1, . . . , xn). For this, we proceed along the
lines of [57]. Observe that the maximum among two values
xi, xj can be computed by first using the secure comparison
protocol to obtain ⟨⟨b⟩⟩B such that b = 0 if xi ≥ xj and 1
otherwise. Following this, parties can compute b(xj − xi)+ xi
using the bit injection protocol, to obtain the maximum value
as the output. To compute the maximum among a vector of
values, parties follow the standard binary tree-based approach
where consecutive pairs of values are compared in a level-by-
level manner. We refer to the resulting protocol as Πmax. A
protocol Πmin for minpool can be worked out similarly.

h) ReLU: The ReLU function, ReLU(v) = max(0, v),
can be written as ReLU(v) = b · v, where bit b = 1 if v < 0
and 0 otherwise. Here b denotes the complement of b. Given
⟨⟨v⟩⟩, parties invoke Πbitext on ⟨⟨v⟩⟩ to obtain ⟨⟨b⟩⟩B. The ⟨⟨·⟩⟩B-
sharing of b is then computed, non-interactively, by setting
mb = 1⊕mb. Given ⟨⟨b⟩⟩B and ⟨⟨v⟩⟩, ReLU can be computed
using ΠBitInj.

B. Malicious blocks

Note that the malicious variants for the building blocks
such as bit to arithmetic, Boolean to arithmetic, and arithmetic
to Boolean conversion, bit extraction, secure comparison, se-
cure equality check, ReLU, maxpool, and convolutions, follow
along similar lines to that of the semi-honest protocols with
the difference that the underlying protocols used are replaced
with their maliciously secure variants. Moreover, for steps that
involve opening values via Pking, the reconstructed values are
sent to all and are accompanied by a verification check similar
to the one in the multiplication protocol.

C. Communication cost

Table IX summarises the communication cost and online
round complexity of the semi-honest and maliciously secure
protocols.

APPENDIX D
ADDITIONAL BENCHMARKS

A. Deep NN and GNN

a) NN architecture: Among NNs, the first, NN-1, is a
3-layered fully connected network with ReLU activation after
each layer, as considered in [68], [74], [56]. The second, NN-2,
is LeNet [60] architecture, which contains two convolutional
layers and two fully connected layers with ReLU activation
after each layer. Additionally, for convolutional layers, this is
followed by maxpool operation. Finally, NN-3 is VGG16 [82]
architecture that comprises 16 layers in total, which includes
fully connected, convolutional, ReLU activation, and maxpool
layers. Last 2 NNs were considered in [85].

b) GNN architecture: The goal of spectral-based
GNNs [35], [55] is to learn a function of signals x⃗1, . . . , x⃗m
each of length n, on a graph G = (V,E,M), where V is the
set of n vertices of the graph, E is the set of edges and M
is the the graph description in terms of an n × n adjacency
matrix. The jth component of every signal x⃗i corresponds to

23

Preprocessing Online Preprocessing Online

Sharing – (t + 1)ℓ 1 – 2tℓ 1
Reconstructiona – 3tℓ 2 – n(q − g)ℓ 1

Multiplication tℓ 2tℓ 2 3tℓ 3tℓ 2
3-input multiplication 6tℓ 2tℓ 2 12tℓ 3tℓ 2
4-input multiplication 15tℓ 2tℓ 2 33tℓ 3tℓ 2

Doubly shared bits 4t(ℓ + 2) – – 6t(ℓ + 2) – –

4t(ℓ + 2)ℓ + tℓ 2tℓ 2 3tℓ + 6t(ℓ + 2)ℓ 3tℓ 2

Dot product tℓ 2tℓ 2 3tℓ 3tℓ 2
Bit to arithmetic 4t(ℓ + 2) + tℓ 4tℓ 4 6t(ℓ + 2) + 3tℓ 6tℓ 4

Bit injection 4t(ℓ + 2) + 6tℓ 2tℓ 2 6t(ℓ + 2) + 12tℓ 3tℓ 2

Arithmetic to Boolean 4t(ℓ + 2)ℓ
+tℓ log2 ℓ

2tℓ(1 + log2 ℓ) 2 + 2 log2 ℓ
6t(ℓ + 2)ℓ
+3tℓ log2 ℓ

3tℓ(1 + log2 ℓ) 2 + 2 log2 ℓ

Boolean to arithmetic 4t(ℓ + 2)ℓ 2tℓ 2 6t(ℓ + 2)ℓ 3tℓ 2

Comparisonb u1 + 4t(ℓ + 2)ℓ+
3tℓ log2 ℓ + 2tℓ

2tu2 2 log4 ℓ
6t(ℓ + 2)ℓ + 6tℓ log2 ℓ

+3tℓ + u1
3tu2 2 log4 ℓ

Building
Block

Semi-honest Malicious

Communication Rounds
Online

Communication Rounds
Online

Multiplication
with truncation

ℓ - size of ring in bits.
aAccounts for reconstruction towards all; q =

(n
h

)
, g =

(n−1
h−1

)
. bu1 = 3tn2 + 12tn3 + 33tn4, u2 = n2 + n3 + n4, n2 = 41, n3 = 27, n4 = 47

denote the number of AND gates in the bit extraction circuit of ABY2 [73] with 2, 3, 4 inputs, respectively.

TABLE IX: Communication and round complexity of protocols: semi-honest and malicious

jth node of the graph. Training data is used to compute graph
description M , which is common for all signals considered.

The approximation of graph filters using a truncated expan-
sion in terms of Chebyshev polynomials was put forth in [35].
Chebyshev polynomials are recursively defined as follows:

Tk(x) =


1 if k = 0

x if k = 1

2xTk−1(x)− Tk−2(x) otherwise

and the inference phase for a n × c signal matrix X with
f feature maps, where c represents the dimension of feature
vector for each node, with a K-localized filter matrix Θk

can be performed as Y =
∑K−1

k=0 Tk(L̃)XΘk. Here, L̃ =
2

λmax
· L − I · λmax, and λmax is the largest eigenvalue of

the normalized graph Laplacian L, Y is an n×f dimensional
matrix and the trainable parameter for the kth layer Θk is of
dimension c× f .

We use the simplified architecture of [35] given in [81]. The
GNN architecture in the latter uses one graph convolution layer
without pooling operation instead of the original model with
two graph convolution layers, each of which is followed by a
pooling operation. Further, K is set to 5 instead of 25. This
architecture is shown to achieve an accuracy of more than 99%
on MNIST classification in [81]. The GNN architecture [81]
is as follows.

– Graph convolution layer:

- Input: Tk(L̃) with dimensions 784× 784, Θk with dimen-
sions 1 × 32, for k ∈ {0, . . . ,K − 1}, and 28 × 28 image
transformed into a vector x⃗ of dimension 784.

- Output:
∑K−1

k=0 Tk(L̃)⃗xΘk with dimensions 784× 32.

– ReLU activation: Calculates the ReLU for each input.
– Fully connected layer (FC): with 10 nodes.

Benchmarks for the semi-honest and maliciously secure
protocol appear in Table X, Table XI. Compared to our semi-
honest variant for evaluating NNs, the malicious variant incurs

Comm Time TPa Comm Time Costb

5 0.16 211.69 3.41 21.46 0.06
7 0.24 202.48 5.11 22.29 0.10
9 0.33 202.49 6.81 22.31 0.13

5 0.02 3.41 0.02
7 0.03 5.11 0.03
9 0.05 6.81 0.04

5 15.58 46.20 83.12 269.23 56.44 0.21
7 23.39 48.39 79.35 403.85 59.60 0.32
9 31.18 48.40 79.35 538.47 59.61 0.42

5 1.92 269.50 0.10
7 2.88 404.25 0.14
9 3.84 539.00 0.18

5 228.07 152.95 25.11 4288.26 213.77 1.34
7 342.24 160.10 23.99 6432.39 227.28 1.96
9 456.33 160.14 23.99 8576.52 227.33 2.56

5 29.70 4292.06 0.91
7 44.55 6438.09 1.08
9 59.40 8584.12 1.71

5 20.14 7.26 528.66 956.21 17.00 0.20
7 30.22 7.54 509.38 1434.31 17.54 0.29
9 40.29 7.56 509.38 1912.41 17.57 0.38

5 5.34 956.46 0.17
7 8.00 1434.69 0.26
9 10.67 1912.92 0.33

NN
Type Ref. n

Online End-to-end

NN-1

DN07 18.55
±.4

This
4.61
±.02

832.61
±.04

11.09
±.02

NN-2

DN07

This
11.08
±.02

346.60
±.3

25.34
±.03

NN-3

DN07

This
36.92
±.02

104.01
±.04

104.09
±.03

GNN

DN07

This
2.16
±.02

1777.78
±.06

8.97
±.02

Communication in MB and time in seconds.
aTP denotes throughput bmonetary cost in USD

TABLE X: Semi-honest: Benchmarks for deep NN and GNN.

a 2× higher online communication cost for NN-1 and NN-
2. However, this difference closes in with deeper NNs, with
the communication being 1.5× for NN-3. The drop in the
difference can be attributed to the one-time cost of verification
required in the malicious variant, which gets amortized over
deeper circuits. Due to the same reason, in comparison to the
semi-honest case, the malicious variant has an overhead of
around 1 second in the online run-time, which in turn reflects in
the reduced throughput. Similar to the semi-honest evaluation
of NNs, the overall communication is an order of magnitude
higher than the online communication due to the cost incurred
for truncation during preprocessing. Also, analogous to the
trend observed for synthetic circuits, the overhead in overall
run-time is approximately 11 seconds owing to the distributed
zero-knowledge proof verification required in the preprocess-

24

ing phase. For GNN, the trend follows closely to that of NN-
3,where malicious variant incurs 1.5× higher communication
than its semi-honest counterpart.

Comm Time TPa Comm Time Costb

5 0.04 3.59 0.07
7 0.06 5.39 0.10
9 0.08 7.20 0.11

5 2.88 286.18 0.15
7 4.32 429.28 0.22
9 5.77 571.98 0.27

5 44.56 4535.95 124.54 1.04
7 66.84 6804.06 126.69 1.53
9 89.12 9066.43 129.42 1.94

5 8.01 1275.75 977.65 0.23
7 12.01 1267.35 1466.49 0.34
9 16.02 1267.32 1954.95 0.42

NN
Type n

Online End-to-end

NN-1 5.44
±.02

706.40
±.04

22.96
±.02

NN-2 11.93
±.03

322.63
±.2

37.71
±.04

NN-3 37.91
±.02

101.27
±.04

GNN 3.02
±.02

22.39
±.03

Communication in MB and time in seconds.
aTP denotes throughput bmonetary cost in USD

TABLE XI: Malicious: Benchmarks for deep NN and GNN.

B. Biometric Matching

Given a database of m biometric samples (s⃗1, . . . , s⃗m)
each of size n, and a user holding its sample u⃗, the goal
of biometric matching is to identify the sample from the
database that is “closest” to u⃗. The notion of “closeness” can
be formalized by various distance metrics, of which Euclidean
Distance (EuD) is the most widely used. Following the
general trend, we reduce our biometric matching problem to
that of finding the sample from the database which has the
least EuD with the user’s sample u⃗. We follow [70], [73]
where the EuD between two vectors x⃗, y⃗ each of length n is
given as

EuDx⃗y⃗ =

i=n∑
i=1

(xi − yi)
2 = z⃗ ⊙ z⃗ (7)

where z⃗ = ((x1 − y1), . . . , (xn − yn)). To achieve this goal of
performing biometric matching securely, each s⃗i, for all i ∈
{1, . . . ,m} in the database is ⟨⟨·⟩⟩-shared among the n parties
participating in the computation. Specifically, each component
s⃗ij , for all j ∈ {1, . . . , n} is ⟨⟨·⟩⟩-shared among all the parties.
Similarly, the user also ⟨⟨·⟩⟩-shares its sample u⃗. The parties
compute a ⟨⟨·⟩⟩-shared distance vector DV of size m, where
the ith component corresponds to the EuD between u⃗ and s⃗i.
For this, each party locally obtains ⟨⟨z⃗i⟩⟩ = ⟨⟨s⃗i⟩⟩ − ⟨⟨u⃗⟩⟩ and
computes ⟨⟨DVi⟩⟩ according to Eq. 7 using the dot product
operation. The final step is then to identify the minimum of
these m components of DV, which can be performed using the
protocol Πmin for minpool operation. Table XII tabulates the
benchmarks when the database has 4096 and 16384 samples.

The trend observed for 4096 and 16384 samples adheres
to that observed from Table VIII for the case of 1024 and
65536 samples. Specifically, these settings also enjoy a 4.6×
improvement in online run-time and throughput and around
83% saving in the monetary cost compared to DN07. More-
over, similar to the prior case, the malicious variant incurs a
minimal overhead of 4% in the online throughput and 9.5% in
the total communication compared to our semi-honest setting.

Comm Time TPa Comm Time Costb

5 2.51 66.51 57.73 27.70 79.85 0.24
7 3.76 69.81 55.00 41.55 83.24 0.36
9 5.02 69.87 54.97 55.40 83.30 0.48

5 0.35 27.74 0.04
7 0.53 41.61 0.06
9 0.70 55.49 0.08

5 0.53 30.43 0.09
7 0.80 45.65 0.13
9 1.07 60.81 0.16

5 10.03 77.51 49.54 110.83 93.47 0.29
7 15.06 81.35 47.20 166.24 97.70 0.45
9 20.07 81.36 47.14 221.66 97.71 0.59

5 1.41 110.99 0.06
7 2.11 166.49 0.09
9 2.81 221.99 0.11

5 2.11 121.71 0.11
7 3.17 182.58 0.16
9 4.23 243.19 0.20

#seq Ref. n
Online End-to-end

4096

DN07

This (semi) 15.07
±.02

254.86
±.03

17.35
±.03

This (mal) 15.89
±.02

241.66
±.1

29.27
±.02

16384

DN07

This (semi) 17.53
±.02

219.16
±.04

20.24
±.05

This (mal) 18.35
±.02

209.24
±.06

32.30
±.03

Communication in MB and time in seconds.
aTP denotes throughput bmonetary cost in USD

TABLE XII: Benchmarks for biometric matching for varying num-
ber of sequences in the database.

C. Genome Sequence Matching

Given a genome sequence as a query, genome matching
aims to identify the most similar sequence from a database of
sequences. This task is also commonly referred to as Similar
Sequence Query (SSQ) identification and has implications in
the advancing field of medical science. An SSQ algorithm
on two sequences s and q, requires the computation of Edit
Distance (ED), which quantifies how different two sequences
are by identifying the minimum number of additions, deletions,
and substitutions needed to transform one sequence to the
other. To compute the ED, we extend the (2-party) protocol
from [79] which builds on top of the approximation from
[5], to the n-party setting. We proceed to describe the high-
level idea of the approximation algorithm for ED computation
for a query sequence q against a database of sequences
{s1, . . . , sm}.

The ED approximation algorithm has a non-interactive
phase, during which the database owner with the sequences
s1, . . . , sm, generates a Look-Up-Table (LUT) for each se-
quence. These LUTs are then secret-shared among all the
parties. To generate the LUT, the sequences in the database are
aligned with respect to a common reference genome sequence
(using the Wagner-Fischer algorithm [86]), and divided into
blocks of a fixed, predetermined size. Based on the most fre-
quently occurring block sequences in the database, an LUT is
constructed consisting of these block values and their distance
from each other. Specifically, for a database of m sequences
{s1, . . . , sm}, each of length ω blocks, an LUTi is constructed
for each si. Each LUT has m columns, one corresponding to
each si in the database, and ω rows, one corresponding to each
block of a sequence, where LUTs[i][j] corresponds to the ED
between block i of the sequence s and sj . This completes the
non-interactive phase of the ED approximation algorithm.

Given the LUTs, when a new query q has to be processed,
its ED must be computed from every sequence s in the
database. For this, similar to the non-interactive phase, the
query is first aligned with the reference sequence and broken

25

down into blocks of the same fixed size. Then, the ith block
from the query is matched with the ith block of each sequence
in the LUT for a sequence s. If the block values match,
then the precomputed distance is taken as the output for
that block; otherwise, the output is taken to be 0. Finally,
the resultant sum of distances for all the blocks is taken
to be the approximated ED between q and the sequence s.
Computing the ED to all such sequences s in the database
then allows the identification of the most similar sequence
for the query using the minpool operation. Algorithms for
ED computation between two sequences, and SSQ appear in
Fig. 33, Fig. 34, respectively, where accuracy and correctness
follow from [5].

1. For i = 1 to ω

• For j = 1 to m

- Invoke ΠEq on ⟨⟨LUTs[i][j]⟩⟩ and ⟨⟨q[i]⟩⟩ to generate ⟨⟨bj⟩⟩B.

- Invoke Πbit2A on ⟨⟨bj⟩⟩B and generate ⟨⟨bj⟩⟩.
• Let b⃗ = {b1, . . . , bm}. Compute ⟨⟨di⟩⟩ =
Πdp(⟨⟨⃗b⟩⟩, ⟨⟨LUTs[i][·]⟩⟩).

2. Compute ⟨⟨d⟩⟩ =
∑ω

i=1⟨⟨di⟩⟩.

Protocol ΠED(P, ⟨⟨LUTs⟩⟩, ⟨⟨q⟩⟩)

Fig. 33: Edit distance between query q and sequence s with respect
to a database of m sequences and ω blocks

1. For s = 1 to m

• Invoke ΠED on ⟨⟨LUTs⟩⟩ and ⟨⟨q⟩⟩ to generate ⟨⟨ds⟩⟩.

2. Invoke Πmin on ⟨⟨d1⟩⟩, . . . , ⟨⟨dm⟩⟩ to generate ⟨⟨smin⟩⟩ ∈
{d1, . . . , dm}.

Protocol ΠSSQ(P, {⟨⟨LUTs⟩⟩}ms=1, ⟨⟨q⟩⟩)

Fig. 34: Similar sequence queries

Since the generation of LUTs happens non-interactively,
we only focus on the computation of ED with respect to the
new query q, which requires interaction, and benchmark the
same. Table XIII provides the benchmarks when the database
consists of m = 1000, 4000 for block length ω = 25, 35
respectively. As expected, the observations tabulated for the
varying sequence lengths follows closely to the ones for the
case of m = 2000 and ω = 30 given in Table VII.

APPENDIX E
SECURITY PROOFS

Security proofs are given in the real-world/ideal-world
simulation-based paradigm [63]. Let Ash,Amal denote the real-
world semi-honest, malicious adversary, respectively, corrupt-
ing at most t parties in P , denoted by C. Let Ssh,Smal

denote the corresponding ideal world semi-honest, malicious
adversary, respectively. Security proofs are given in the
Fsetup,FTrGen-hybrid (and FM

TrGen,FMulPre,FDotPPre-hybrid for
malicious setting) model. For modularity, we provide simula-
tion steps for each protocol separately.

Comma Time TPb Commc Time Costd

5 10.85 60.58 63.39 0.17 74.13 0.25
7 16.28 63.60 60.38 0.25 77.76 0.37
9 21.71 63.62 60.37 0.33 77.79 0.50

5 6.42 0.17 0.07
7 9.63 0.25 0.10
9 12.84 0.33 0.13

5 9.51 228.71 0.18 0.12
7 14.14 228.44 0.27 0.16
9 18.40 226.82 0.36 0.21

5 59.87 72.08 53.27 0.92 92.04 0.43
7 89.86 75.65 50.76 1.39 98.90 0.64
9 119.81 75.67 50.72 1.85 98.93 0.84

5 35.87 0.92 0.21
7 53.80 1.39 0.31
9 71.74 1.85 0.39

5 53.11 0.99 0.29
7 78.96 1.48 0.42
9 102.68 1.97 0.52

m,ω Ref. n
Online End-to-end

m = 1000
ω = 25

DN07

This (semi) 16.12
±.01

236.21
±.15

19.08
±.02

This (mal) 16.8
±.1

31.21
±.08

m = 4000
ω = 35

DN07

This (semi) 19.34
±.02

198.55
±.35

25.97
±.03

This (mal) 20.11
±.06

190.95
±.4

41.83
±.06

Time in seconds.
acommunication in MB bTP denotes throughput ccommunication in GB dmonetary cost in USD

TABLE XIII: Benchmarks for genome sequence matching for
varying number of sequences (m) and block length (ω).

A. Semi-honest security

The following is the strategy for simulating the computa-
tion of function f (represented by a circuit ckt). The simulator
Ssh knows the input and output of the adversary Ash, and sets
the inputs of the honest parties to be 0. Ssh emulates Fsetup and
gives the respective keys to the Ash. Knowing all the inputs
and randomness, Ssh can compute all the intermediate values
for each building block in the clear. Thus, Ssh proceeds to
simulate each building block in topological order using the
aforementioned values (input and output of Ash, randomness
and intermediate values). We provide the simulation steps for
each of the sub-protocols separately for modularity. When
carried out in the respective order, these steps result in the
simulation steps for the entire computation. To distinguish the
simulators for various protocols, we use the corresponding
protocol name as the subscript of Ssh.

a) Sharing and Reconstruction: Simulation for input
sharing (Fig. 21) and reconstruction appears in Fig. 35, Fig. 36,
respectively.

Preprocessing:

– Emulate Fsetup and give the respective shared keys to Ash.
– Samples shares of λa commonly held with Ash using the

respective PRF keys while other values are sampled randomly.

Online:

– If Ps ∈ C, receive ma from Ash on behalf of honest parties
in E . Else, set a = 0, ma = λa and sends ma to Ash on behalf of
Ps if there exists a corrupt party in E .

Simulator Ssh
Sh

Fig. 35: Semi-honest: Simulation for ΠSh(Ps, a)

– If Pking ∈ C, use the output a, and ma and E [λa]j held by
corrupt Pj ∈ C ∩ E to compute the shares E [λa]i of each honest
Pi ∈ E such that ma − a =

∑
Pi∈E\C

E [λa]i +
∑

Pj∈C∩E
E [λa]j .

Send the shares of the honest parties in E to Ash.

Simulator Ssh
Rec

26

– If Pking is honest, send output a to Ash on behalf of Pking.

Fig. 36: Semi-honest: Simulation for reconstruction

b) Multiplication: Simulation steps for multiplication
(Fig. 4) are provided in Fig. 37.

Preprocessing:

– If isTr = 0: Sample ⟨·⟩-shares of r commonly held with Ash

using the respective shared keys while other values are sampled
randomly.

– Else if isTr = 1: Emulate FTrGen to generate ⟨⟨r⟩⟩, ⟨⟨rd⟩⟩.
– On behalf of every honest Pi ∈ D, send a random value for

[Λab − r]i to Ash if Pking ∈ C.

Online:

– If Pking ∈ C, send random value for E [ζ]i to Ash on behalf
of the honest Pi ∈ E .

– If Pking /∈ C, send a random z − r to Ash, if there exists a
corrupt party in E .

Simulator Ssh
mult

Fig. 37: Semi-honest: Simulation for Πmult

Observe that the adversary’s view in the simulation is
indistinguishable from its view in the real world since it only
receives random value in each step of the protocol.

c) Other building blocks: Simulation steps for the
remaining building blocks can be obtained analogously by
simulating the steps for the respective underlying protocols
in their order of invocations.

B. Malicious security

The following is the strategy for simulating the computa-
tion of function f (represented by a circuit ckt). The simulator
emulates Fsetup and gives the respective keys to the malicious
adversary, Amal. This is followed by the input sharing phase in
which Smal extracts the input of Amal, using the known keys,
and sets the inputs of the honest parties to be 0. Knowing all
the inputs, Smal can compute all the intermediate values for
each building block in the clear. Further, Smal invokes Fmal

n−PC

and obtains the function output on clear. Smal proceeds to
simulate each building block in topological order using the
aforementioned values (inputs of Amal, intermediate values,
and function output). As before, we provide the simulation
steps for each of the sub-protocols separately for modularity.
When carried out in the respective order, these steps result
in the simulation steps for the entire computation. To distin-
guish the simulators for various protocols, the corresponding
protocol name appears as the subscript of Smal.

a) Sharing: Simulation for sharing appears in Fig. 38.

Preprocessing:

– Emulate Fsetup and give the respective shared keys to Amal.
– Samples shares of λa commonly held with Amal using the

respective PRF keys while other values are sampled randomly.

Online:

Simulator Smal
Sh

– For Ps ∈ C, receive ma from Amal on behalf of honest parties
in E , and obtain a = ma−λa (since Smal knows all the PRF keys,
it knows λa). Invoke Fmal

n−PC with (Input, a) on behalf of Amal.
– On behalf of the honest parties, set its input a = 0, ma = λa

and send ma to Amal if there exists a corrupt party in E .

Verification: Send H(ma) to Amal on behalf of the honest parties.
If inconsistent mas were received with respect to a corrupt party,
invoke Fmal

n−PC with (Signal, abort).

Fig. 38: Malicious: Simulation for ΠM
Sh(Ps, a)

b) Reconstruction: Simulation for reconstruction (with
abort) appears in Fig. 39.

– Use output a obtained from Fmal
n−PC, ma and ⟨λa⟩j held by

corrupt Pj ∈ C to compute the shares ⟨λa⟩i of each honest Pi ∈ E
such that ma − a = λa. Send the shares of the honest parties in E
to Amal, and receive shares from Amal on behalf of honest parties.

– If any honest party Pi is unable to reconstruct the output, add
Pi to set P . Send (Signal, abort, P) to Fmal

n−PC.

Simulator Smal
Rec

Fig. 39: Malicious: Simulation for reconstruction

c) Multiplication: Simulation steps for multiplication
(Fig. 27) are provided in Fig. 40.

Preprocessing:

– If isTr = 0: Sample ⟨·⟩-shares of r commonly held with Amal

using the respective shared keys while other values are sampled
randomly.

– Else if isTr = 1: Emulate FM
TrGen to generate ⟨⟨r⟩⟩, ⟨⟨rd⟩⟩.

– Emulate FMulPre to generate ⟨·⟩-shares of Λab.

Online:

– If Pking ∈ C, send random value for E [ζ]i to Amal on behalf
of the honest Pi ∈ E .

– If Pking /∈ C, send a random z− r to Amal.

Verification:

– Send H(z1 − r1|| . . . ||zm − rm) with respect to m multi-
plications, to Amal on behalf of the honest parties. If the hash
values received from Amal are inconsistent, invoke Fmal

n−PC with
(Signal, abort).

– If Amal has sent incorrect z−r for any multiplication (Smal can
detect this since it knows all inputs and randomness that should
be used by Amal), generate random shares for Ω and simulate
reconstruction steps of Smal

Rec . Invoke Fmal
n−PC with (Signal, abort).

– Else, if Amal has behaved honestly throughout, simulate
reconstruction of Ω = 0 using steps from Smal

Rec . Invoke Fmal
n−PC

with (Signal, abort).

Simulator Smal
mult

Fig. 40: Malicious: Simulation for ΠM
mult

Observe that since Amal sees random shares in both the real-
world protocol and in the simulation, indistinguishability of
the simulation follows.

d) Other building blocks: Simulations for the remaining
building blocks can be obtained analogously and using the
steps for the underlying protocols.

27

	Introduction
	Related work
	Towards practically efficient protocols
	Our Contributions
	Tier I - MPC protocols
	Tier II - Building Blocks
	Tier III - Applications

	Preliminaries
	MPClan Protocol
	Extending to malicious security
	Applications & benchmarks
	Comparison with DN07
	Deep Neural Networks (DNN) and Graph Neural Networks (GNN)
	Genome Sequence Matching
	Biometric Matching

	References
	Appendix A: Preliminaries
	Helper primitives

	Appendix B: MPClan protocols
	Semi-honest protocols
	Malicious protocols

	Appendix C: Building blocks
	Semi-honest building blocks
	Malicious blocks
	Communication cost

	Appendix D: Additional Benchmarks
	Deep NN and GNN
	Biometric Matching
	Genome Sequence Matching

	Appendix E: Security Proofs
	Semi-honest security
	Malicious security

