
Finding many Collisions via Reusable Quantum
Walks

Application to Lattice Sieving

Xavier Bonnetain1, André Chailloux2, André Schrottenloher3, and Yixin Shen4

1 Université de Lorraine, CNRS, Inria, Nancy, France
2 Inria, Paris, France

3 Cryptology Group, CWI, Amsterdam, The Netherlands
4 Royal Holloway, University of London

Abstract. Given a random function f with domain [2n] and codomain
[2m], with m ≥ n, a collision of f is a pair of distinct inputs with the same
image. Collision finding is an ubiquitous problem in cryptanalysis, and
it has been well studied using both classical and quantum algorithms.
Indeed, the quantum query complexity of the problem is well known to
be Θ(2m/3), and matching algorithms are known for any value of m.
The situation becomes different when one is looking for multiple collision
pairs. Here, for 2k collisions, a query lower bound of Θ(2(2k+m)/3) was
shown by Liu and Zhandry (EUROCRYPT 2019). A matching algorithm
is known, but only for relatively small values of m, when many collisions
exist. In this paper, we improve the algorithms for this problem and, in
particular, extend the range of admissible parameters where the lower
bound is met.
Our new method relies on a chained quantum walk algorithm, which
might be of independent interest. It allows to extract multiple solutions of
an MNRS-style quantum walk, without having to recompute it entirely:
after finding and outputting a solution, the current state is reused as the
initial state of another walk.
As an application, we improve the quantum sieving algorithms for the
shortest vector problem (SVP), with a complexity of 20.2563d+o(d) instead
of the previous 20.2570d+o(d).

Keywords: Quantum algorithms, quantum walks, collision search, lattice siev-
ing

1 Introduction

Quantum walks are a powerful algorithmic tool which has been used to pro-
vide state-of-the-art algorithms for various important problems in post-quantum
cryptography, such as the shortest vector problem (SVP) via lattice sieving [8],
the subset sum problem [4], information set decoding [19], etc.

These applications are all established under a particular quantum walk frame-
work called the MNRS framework [22], and the quantum walks look for marked

nodes in a so-called Johnson graph [19] (or a product of Johnson graphs). When
walking on this particular graph, the MNRS framework is somewhat rigid. First,
it requires to setup the uniform superposition of all nodes along with their at-
tached data structure, then it applies multiple times reflection operators which
move this quantum state close to the uniform superposition of all marked nodes.

Due to this rigidity, previously, the best way to find k different marked nodes
was to run the whole quantum walk (including the setup) k times. In [8] the
authors noticed that with a better algorithm for finding multiple close lattice
vectors, instead of one with a single walk, we would improve the total quantum
time complexity of their algorithm for solving the SVP.

A natural observation which guides us throughout this paper is that in certain
cases, after obtaining the uniform superposition of all marked nodes via the
MNRS quantum walk, it is possible to retrieve part of the solution from the
data structure and start another MNRS quantum walk using the remaining part
of the quantum state as the new starting state. By doing so, we avoid repeating
the setup cost for each new quantum walk, and we now benefit from a trade-off.

In particular, using this observation, we tackle the following problem:

Problem 1 (Multiple collision search). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n
be a random function. Let k ≤ 2n−m. Find 2k collision pairs, that is, pairs of
distinct x, y such that f(x) = f(y).

The constraints on the input and output domain are such that a significant
(Θ
(
22n−m

)
) number of collisions pairs exist in the random case. This problem

has several applications both in asymmetric and symmetric cryptography. For
example, the subproblem in lattice sieving of finding multiple close vectors to
a target vector mentioned before can be seen as a special case. The limited-
birthday problem, which appears in symmetric cryptanalysis (e.g., impossible
differential attacks [5] and rebound distinguishers [14]) is another example.

Lower Bounds. While quantum query lower bounds for the collision problem
(with a single solution) had been known for a longer time, Liu and Zhandry
proved more recently in [21] a query lower bound in Ω

(
22k/3+m/3

)
to find 2k

solutions, which holds for all values of m ≥ n.
For relatively small values of k and m (actually, k ≤ 3n− 2m, as we explain

in Section 6), the BHT collision search algorithm [7], allows to reach this bound.
Besides this algorithm, Ambainis’ algorithm [2] uses a quantum walk to find one

collision in time Õ
(
2m/3

)
. However, no matching algorithm was known for other

values, and in particular, for finding more than 1 collision with m bigger than
1.5n.

Contributions. Our main contribution in this paper is a chained quantum
walk algorithm to solve the multiple collision search problem. We formalize the
intuitive idea that the output state of a quantum walk can be reused, to some

extent, as the starting state of another. Our algorithm runs in Õ
(

2
2
3k+

m
3

)
time

2

and space, in the qRAM model, for any admissible values of k, n,m such that k ≤
m
4 . By combining it with the BHT approach, we can now meet the lower bound
over all values of k, n,m, except a range of (k,m) contained in

[
n
3 , n

]
× [n, 1.6n].

Nevertheless, our approach also improves the known complexities in this range.

Theorem 3 (Section 4). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be
a random function. Let k ≤ min(2n−m,m/4). There exists a quantum
algorithm making O

(
22k/3+m/3

)
quantum queries to f and running in

time Õ
(
22k/3+m/3

)
, that outputs 2k collision pairs of f .

Using this result, we improve the state-of-the-art time complexity of quantum
sieving to solve the SVP in [8] from 20.2570d+o(d) to 20.2563d+o(d). We also provide
time-memory tradeoffs that are conjectured to be tight [13]:

Theorem 6 (Section 4). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n
be a random function. For all k ≤ ` ≤ max(2n − m,m/2), there ex-

ists an algorithm that computes 2k collisions using Õ
(
2`
)

qubits and

Õ
(
2k+m/2−`/2

)
quantum gates and quantum queries to f .

Organization. In Section 2 we provide several technical preliminaries on quan-
tum algorithms, especially Grover’s algorithm. Indeed, an MNRS quantum walk
actually emulates a quantum search, and these results are helpful in analyzing
the behavior of such a walk. In Section 3, we give important details on the
MNRS framework, and in particular, the vertex-coin encoding, which is a sub-
tlety often omitted from depictions of the framework in the previous literature.
In Section 4 we detail our algorithm assuming a suitable quantum data structure
is given, and in Section 5 we detail the quantum radix trees. While there were
already proposed in [18], we give new (or previously omitted) details relative to
the radix tree operations, memory allocation, and how we can efficiently and
robustly extract collisions from it. We give a general summary of the multiple
collision search problem in Section 6 and our applications in Section 7.

2 Preliminaries

In this section, we give some preliminaries on collision search, quantum algo-
rithms and Grover search, which are important for the analysis of quantum
walks and their data structures.

2.1 Collision Search

In this paper, we study the problem of collision search in random functions.

Problem 2. Let f : {0, 1}n → {0, 1}m (n ≤ m) be a random function. Find a
collision of f , that is, a pair (x, y), x 6= y such that f(x) = f(y).

3

The case m < n can be solved by the same algorithms as the case m = n by
reducing f to a subset of its domain. This is why in the following, we focus only
on m ≥ n. The average number of collisions is O

(
22n−m

)
. When m ≥ 2n, we can

assume that exactly one collision exists, or none. Distinguishing between these
two cases is the problem of element distinctness, which is solved by searching for
the collision. Regardless of m, the collision problem can be solved in:

• Θ(2m/2) classical time (and queries to f). When m = n, the problem is the
easiest, as it requires only O

(
2n/2

)
time and poly(n) memory using Pollard’s

rho method. When m = 2n, the problem is harder since the best algorithm
also uses Θ(2n) memory.

• Θ(2m/3) quantum time (and quantum queries to f). A first algorithm was
given by Brassard, Høyer and Tapp to reach this for m = n [7], then the
lower bound was proven to be Ω(2m/3) [1], and afterwards, Ambainis solved
the element distinctness problem (the case m = 2n) by a quantum walk
algorithm [2] which can be adapted for any value of m.

In our case, we want to solve the problem of multiple collision search: as
there will be expectedly many collisions in the outputs of f , we want to find a
significant (exponential in n) number of them.

Problem 3. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n, k ≤ 2n − m. Find 2k

collisions of f .

Here the state of the art differ classically and quantumly:

• Classically, it is well known that the problem can be solved for any m and
k in Θ(2(k+m)/2) queries (as long as 2k does not exceed the average number
of collisions of f).

• Quantumly, Liu and Zhandry [21] gave a query lower bound Ω(22k/3+m/3).
However, a matching algorithm is only known for small m. For example, this
lower bound is matched for m = n by adapting the BHT algorithm [21,15].

On the Memory Complexity. For m = n, the best known classical algorithm
for multiple collision-finding is the parallel collision search (PCS) algorithm by
van Oorschot and Wiener [24]. It generalizes Pollard’s rho method which finds a
single collision in O

(
2n/2

)
time and poly(n) memory. Dinur [11] showed that in

this regime, the time-space trade-off of the PCS algorithm is optimal. Using a
restricted model of computation, it can also be shown optimal for larger values
of m.

Quantumly, a time-space lower bound of T 3S ≥ Ω
(
23k+m

)
has been shown [13].

However, the authors conjecture this bound can be improved to T 2S ≥ Ω
(
22k+m

)
.

All known quantum algorithms for collisions, including our new algorithms,
match this conjectured lower bound.

4

2.2 Quantum Algorithms

We refer to [23] for an introduction to quantum computation. We write our
quantum algorithms in the standard quantum circuit model. By default, we use
the (universal) Clifford+T gate set, although our complexity analysis remains
asymptotic, and we do not detail our algorithms at the gate level.

Memory Models. Many memory-intensive quantum algorithms require some kind
of quantum random-access model (qRAM), which can be stronger than the stan-
dard quantum circuit model. One can encounter two types of qRAM:

• Classical memory with quantum random access (QRACM): a classical mem-
ory of size M can be addressed in quantum superposition in polylog(M)
operations.
• Quantum memory with quantum random access (QRAQM): M qubits can

be addressed in quantum superposition in polylog(M) operations.

The QRAQM model is required by most quantum walk based algorithms for
cryptographic problems, e.g., subset-sum [3,4], information set decoding [19] and
the most recent quantum algorithm for lattice sieving [8]. Previous papers con-
sidered that it required only to augment the set of gates available in a quantum
circuit with the following “qRAM read” gate, which accesses in superposition
an array of M memory cells (e.g., individual bits):

|y1, . . . , yM 〉 |x〉 |i〉
qRAMR7−−−−→ |y1, . . . , yM 〉 |x⊕ yi〉 |i〉 . (1)

Thus, the term “QRAQM model” was deemed equivalent to “counting the
complexity in Clifford+T+qRAM gates” instead of just Clifford+T gates. Note
that the qRAMR gate is indeed a unitary, and it can be simulated with Clifford+T
gates, at the expense of a complexity linear in the number of addressed qubits.

qRAM write. The qRAMR gate, as its name indicates, allows only to read in su-
perposition. But in most previous algorithms that required the QRAQM model,
including the quantum walk algorithms that we are interested in, and those that
we introduce in this paper, we actually need a second qRAM gate that we name
the “qRAM write”5:

|y1, . . . , yM 〉 |x〉 |i〉
qRAMW7−−−−−→ |y1, . . . , yi ⊕ x, . . . yM 〉 |x〉 |i〉 . (2)

This operation is required to efficiently maintain quantum data structures such
as the quantum radix trees from the literature (see Section 5). Indeed, when
working on these data structures, it is required to update in polynomial time
the data at a position which can be in superposition (e.g., adding a new node
to the radix tree). In the following, we count the complexity of our algorithms
asymptotically on the “Clifford + T + qRAMR + qRAMW” gate set, so we
assume that both the qRAMR and qRAMW have unit cost, as would be required
by previous works.

5 The qRAMW is actually the qRAMR gate composed with a Hadamard transform.

5

Collision Finding without qRAM. To date, the best quantum algorithms for
collision finding, and the ones that reach the query lower bound, require the
qRAM model: the BHT algorithm [7] uses QRACM and Ambainis’ quantum
walk uses QRAQM [2] to define time-efficient quantum data structures. Initially
Ambainis used a skip list. We will focus on the more recent quantum radix tree,
but the QRAQM requirement remains the same.

To some extent, it is possible to get rid of qRAM. For m = n, the com-
plexity rises from O

(
2m/3

)
to O

(
22m/5

)
[9]. For m = 2n, the complexity rises

to O
(
23m/7

)
[17]. These algorithms can also be adapted for multiple collision

finding, where they will outperform the classical ones for some parameter ranges
(but not all).

2.3 Grover’s Algorithm

In this section, we recall Grover’s quantum search algorithm [12] and give a
few necessary results for the rest of our analysis. Indeed, as shown in [22], an
MNRS quantum walk actually emulates a quantum search, up to some error.
If we manage to put this error aside, the analysis of the walk follows from the
following lemmas.

Original Quantum Search. In the original setting of Grover’s search, we have
a function g : {0, 1}n → {0, 1} and the goal is to find x st. g(x) = 1 using
queries to g. In the quantum setting, we have access to the unitary Og : |x〉 |b〉 →
|x〉 |b⊕ g(x)〉, which is an efficient quantum unitary if g is efficiently computable.
In particular we can compute |ψU 〉 = 1√

2n

∑
x∈{0,1}n |x〉 |g(x)〉 with a single call

to Og. Let ε = |{x:g(x)=1}|
2n . We also define the normalized states

|ψB〉 =
1√

(1− ε)2n
∑

x:g(x)=0

|x〉 |g(x)〉 , |ψG〉 =
1√
ε2n

∑
x:g(x)=1

|x〉 |g(x)〉

and |ψU 〉 =
√

1− ε |ψB〉 +
√
ε |ψG〉. Let H = span({|ψB〉 , |ψG〉}). Let Rotθ be

the θ-rotation unitary in H:

Rotθ(cos(α) |φB〉+ sin(α) |ψG〉) = cos(α+ θ) |ψB〉+ sin(α+ θ) |ψG〉 .

For a fixed ε, let α = arcsin(
√
ε) so that

|φU 〉 =
√

1− ε |ψB〉+
√
ε |ψG〉 = cos(α) |ψB〉+ sin(α) |ψG〉 ,

For a state |ψ〉 ∈ H, let Ref |ψ〉 be the reflection over |ψ〉 in H:

Ref|ψ〉 |ψ〉 = |ψ〉 and Ref|ψ〉
∣∣ψ⊥〉 = −

∣∣ψ⊥〉
where

∣∣ψ⊥〉 is any state in H orthogonal to |ψ〉6 We have

Ref |ψU 〉Ref |ψB〉 = Rot2α .

6 For a fixed |ψ〉,
∣∣ψ⊥〉 is actually unique up to a global phase.

6

Assume that we have access to a checking oracle Ocheck which performs:{
Ocheck |ψB〉 |0〉 = |ψB〉 |0〉
Ocheck |ψG〉 |0〉 = |ψG〉 |1〉

In the standard setting described above, this is just copying the last register.
Starting from an “initial state” |ψU 〉, we apply repeatedly an iterate consisting of
a reflection over |ψU 〉, and a reflection over |ψB〉. This progressively transforms
the current state into the “good state” |ψG〉. Typically Ref |ψU 〉 is constructed
from a circuit that computes |ψU 〉 and Ref |ψB〉 is implemented using the checking
oracle above: in that case, we are actually performing an amplitude amplifica-
tion [6].

Proposition 1 (Grover’s algorithm, known α). Consider the following
algorithm, with α ≤ π/4:

1. Start from |ψU 〉.
2. Apply Rot2α = Ref |ψU 〉Ref |ψB〉 N times on |ψU 〉 with N = bπ/2−α2α c.
3. Apply Ocheck and measure the last qubit.

This procedure measures 1 wp. at least 1− 4α2 and the resulting state is |ψG〉.

Proof. Let us define γ = α+ 2Nα. We have

(Rot2α)n |ψU 〉 = cos(α+2Nα) |ψB〉+sin(α+2Nα) |ψG〉 = cos(γ) |ψB〉+sin(γ) |ψG〉 .

Notice that we chose N st. γ ≤ π
2 < γ + 2α so π

2 − γ ∈ [0, 2α). After applying
the checking oracle, we obtain the state

cos(γ) |ψB〉 |0〉+ sin(γ) |ψG〉 |1〉 .

Measuring the last qubit gives outcome 1 with probability sin2(γ) and the re-
sulting state in the first register is |ψG〉. In order to conclude, we compute

sin2(γ) = cos2(π/2− γ) ≥ cos2(2α) ≥ 1− 4α2. �

In our algorithms, we will start not from the uniform superposition |ψU 〉, but
from the bad subspace |ψB〉. We show that this makes little difference.

Proposition 2 (Starting from |ψB〉, known α). Consider the following al-
gorithm, with α ≤ π/4:

1. Start from |ψB〉.
2. Apply Rot2α = Ref |ψU 〉Ref |ψB〉 N

′ times on |ψB〉 with N ′ = bπ/22α c.
3. Apply the checking oracle and measure the last qubit.

This procedure measures 1 wp. at least 1− 4α2 and the resulting state is |ψG〉.

7

Proof. The proof is essentially the same as the previous one. Let γ′ = 2N ′α. We
have

(Rot2α)N
′
|ψB〉 = cos(2N ′α) |ψB〉+sin(2N ′α) |ψG〉 = cos(γ′) |ψB〉+sin(γ′) |ψG〉 .

Notice that we chose N ′ st. γ′ ≤ π
2 < γ′+ 2α so π

2 − γ
′ ∈ [0, 2α). After applying

the checking oracle, we obtain the state

cos(γ′) |ψB〉 |0〉+ sin(γ′) |ψG〉 |1〉 .

Measuring the last qubit gives 1 wp. sin2(γ′) and the resulting state in the first
register is |φG〉. In order to conclude, we compute

sin2(γ′) = cos2(π/2− γ′) ≥ cos2(2α) ≥ 1− 4α2. �

After applying the check and measuring, if we don’t succeed, we obtain the
state |ψB〉 again. So we can run the quantum search again.

In Grover’s algorithm, we have a procedure to construct |ψU 〉 and we use this
procedure to initialize the algorithm and to perform the operation Ref |ψU 〉. A
quantum walk will have the same general structure as Grover’s algorithm, but
we will manipulate very large states |ψU 〉. Though |ψU 〉 is long to construct (the
setup operation), performing Ref |ψU 〉 will be less costly.

In the MNRS framework, |ψU 〉 is chosen as the unique eigenvector of eigen-
value 1 of an operator related to a random walk in a graph. To perform Ref |ψU 〉
efficiently, we use phase estimation on this operator.

3 Quantum Walks for Collision Finding

In this section, we present MNRS quantum walks, which underlie most crypto-
graphic applications of quantum walks to date, and give important details on
their actual implementation using a vertex-coin encoding.

3.1 Definition and Example

We consider a regular, undirected graph G = (V,E), which in cryptographic
applications (e.g., collision search), is usually a Johnson graph (as in this paper)
or a product of Johnson graphs (a case detailed e.g. in [19]).

Definition 1 (Johnson graph). The Johnson graph J(N,R) is a regular,
undirected graph whose vertices are the subsets of [N] containing R elements,
with an edge between two vertices v and v′ iff |v ∩ v′| = R− 1. In other words, v
is adjacent to v′ if v′ can be obtained from v by removing an element and adding
an element from [N]\v in its place.

In collision search, a vertex in the graph specifies a set of R inputs to the
function f under study, where its domain {0, 1}n is identified with [2n]. Let
M ⊆ V be a set of marked vertices, e.g., all the subsets R ⊆ {0, 1}n which

8

Algorithm 1: Classical random walk on G

Setup an arbitrary vertex x ∈ V
repeat

repeat
Update: move to a random adjacent vertex

until the current vertex is uniformly random
Check if the current vertex is marked

until the current vertex is marked

contain a collision of f : ∃x, y ∈ R, x 6= y, f(x) = f(y). A classical random walk
on G finds a marked vertex using Algorithm 1.

The quantum walk is analogous to this process. Let ε = |M |
|V | be the proportion

of marked vertices and δ be the spectral gap of G. Starting from any vertex,
after O

(
1
δ

)
updates, we sample a vertex of the graph uniformly at random. For

a Johnson graph J(N,R), δ = N
R(N−R) '

1
R . Let S be the time to Setup, U the

time to Update, C the time to Check a given vertex. Then Algorithm 1 finds
a marked vertex in time: O

(
S + 1

ε

(
1
δU + C

))
. Magniez et al. [22] show how to

translate this generically in the quantum setting, provided that quantum analogs
of the Setup, Update and Check can be implemented.

Theorem 1 (From [22]). Assume that quantum algorithms for Setup, Up-
date and Check are given. Then there exists a quantum algorithm that finds a

marked vertex in time: Õ
(
S + 1√

ε

(
1√
δ
U + C

))
instead of O

(
1√
ε

(S + C)
)

with

a naive search.

Using this framework generically, we can recover the complexity of Ambainis’
algorithm for collision search: Õ

(
2m/3

)
for any codomain bit-size m. We use the

Johnson graph J(2n, 2m/3). Its spectral gap is approximately 2−m/3. A vertex is
marked if and only if it contains a collision, so the probability of being marked is
approximately 22m/3−m = 2−m/3. Using a quantum data structure for unordered
sets, we can implement the Setup operation in time Õ

(
2m/3

)
, the Update and

the Check in poly(n). The formula of Theorem 1 gives the complexity Õ
(
2m/3

)
.

3.2 Details of the MNRS Framework

In the d-regular graph G = (V,E), for each x ∈ V , let Nx be the set of neighbors
of x, of size d. In the case G = J(N,R), we have d = R(N − R). For a vertex
x, let |x〉 be an arbitrary encoding of x as a quantum state, let D(x) be a data
structure associated to x, and let |x̂〉 = |x〉 |D(x)〉.

Remark 1. The encoding of x is commonly thought of as the set itself, and the
data structure as the images of the set by f . But whenever we look at quantum
walks from the perspective of time complexity (and not query complexity), an
efficient quantum data structure is already required for x itself, i.e., an unordered

9

set data structure in the case of a Johnson graph, and one cannot really separate
x from D(x). This is why we will favor the notation |x̂〉.

For a vertex x, let |px〉 be the uniform superposition over its neighbors:
|px〉 = 1√

d

∑
y∈Nx |y〉, and: |p̂x〉 = 1√

d

∑
y∈Nx |ŷ〉. From now on, we consider a

walk on edges rather than vertices in the graph, and introduce:

|ψU 〉 = 1√
|V |

∑
x∈V |x̂〉 |px〉 the superposition of vertices (and neighbors)

|ψM 〉 = 1√
|M |

∑
x∈M |x̂〉 |px〉 the superposition of marked vertices

A = span{|x̂〉 |px〉}x∈V
B = span{|p̂y〉 |y〉}y∈V

Let RefA and RefB be respectively the reflection over the space A and the
space B. The core of the MNRS framework is to use these operations to emulate
a reflection over |ψU 〉. By alternating such reflections with reflections over |ψM 〉
(using the checking procedure), the quantum walk behaves exactly as a quantum
search, and the analysis of Section 2.3 applies.

Proposition 3 (From [22]). Let W = RefBRefA. We have 〈ψU |W |ψU 〉 = 1.
For any other eigenvector |ψ〉 of W , we have 〈ψ|W |ψ〉 = eiθ with θ ∈ [2

√
δ, π/2].

To reflect over |ψU 〉, we perform a phase estimation of the unitary W , which
allows to separate the part with eigenvalue 1, from the part with eigenvalue eiθ

with θ ∈ [2
√
δ, π/2]. The phase estimation circuit needs to call W a total of

O
(

1√
δ

)
times to estimate θ up to sufficient precision. It has some error, which

can be made insignificant with a polynomial increase in complexity; thus in the
following, we will consider the reflection RefU to be exact.

To construct W , we need to implement RefA and RefB . We first remark that:

RefB = SWUP ◦ RefA ◦ SWUP , (3)

where SWUP |x̂〉 |y〉 = |ŷ〉 |x〉. This SWUP (Swap-Update) operation can fur-
thermore be decomposed into an update of the database (UPD) followed by a
register swap:

|x̂〉 |y〉 = |x〉 |D(x)〉 |y〉 UPD−−−→ |x〉 |D(y)〉 |y〉 Swap−−−→ |y〉 |D(y)〉 |x〉 = |ŷ〉 |x〉 , (4)

so SWUP = Swap ◦UPD.
We would then implement RefA using an update unitary that, from a vertex

x, constructs the uniform superposition of neighbors. However this would require
us to write log2(|V |) data, and in practice, |V | is doubly exponential (the vertex
is represented by an exponential number of bits). Thankfully, in d-regular graphs,
and in particular in Johnson graphs, we can avoid this loophole by making the
encoding of edges more compact. Instead of storing a pair of vertices (x, y), which
will eventually result in having to rewrite entire vertices, we can store a single
vertex and a direction, or coin.

10

3.3 Vertex-coin Encoding

The encoding is a reversible operation: OEnc |x̂〉 |y〉 = |x̂〉 |cx→y〉 , which com-
presses an edge (x, y) by replacing y by a much smaller register of size dlog2(d)e.
Note that we only need the existence of such a circuit. We never use it during the
algorithms; all operations are directly performed using the compact encoding.

Let
∣∣ψcoinUnif

〉
= 1√

d

∑
c |c〉 be the uniform superposition of coins. In the vertex-

coin encoding, RefA corresponds to I ⊗Ref|ψcoinUnif 〉:

RefA = O−1Enc ◦
(
I ⊗ Ref|ψcoinUnif 〉

)
◦OEnc.

Now, for the SWUP operation, we have to decompose again UPD and Swap in
the encoded space. First, we define UP′D such that:

|x〉 |D(x)〉 |cx→y〉
UP ′D−−−→ |x〉 |D(y)〉 |cx→y〉 .

Moreover, we define Swap′ such that:

|x〉 |cx→y〉
Swap′−−−−→ |y〉 |cy→x〉 .

and we define SWUP′ = Swap′ ◦ UP′D (we abuse notation here, by extending
Swap′ where we apply the identity to the middle register), so:

SWUP′ |x̂〉 |cx→y〉 = |ŷ〉 |cy→x〉 ,

and SWUP′ = OEnc ◦ SWUP ◦O−1Enc. So we define
Ref ′A = I ⊗ Ref|ψcoinUnif 〉 = OEnc ◦RefA ◦O−1Enc

Ref ′B = SWUP′ ◦ Ref ′A ◦ SWUP′ = OEnc ◦ RefB ◦O−1Enc

W ′ = Ref ′B ◦ Ref ′A

(5)

By putting everything together, we have W ′ = OEnc ◦W ◦O−1Enc. So we can use
Proposition 3 to have the spectral properties and perform phase estimation on
W ′, and combine afterwards with Proposition 1. Since constructing the uniform
superposition of coins is trivial, all relies on the unitary SWUP′.

Theorem 2 (MNRS, adapted). Let |x̂〉 be an encoding of the vertex x
(incl. data structure) and assume that a vertex-coin encoding is given. Let α =

arcsin
√
ε. Starting from the state: 1√

|V |

∑
x∈V |x̂〉

∣∣ψcoinUnif

〉
, applying

⌊
π/2−α

2α

⌋
it-

erates of: • a checking procedure which flips the phase of marked vertices; • a
phase estimation of W ′; then apply the checking again and measure. With prob-
ability at least 1− 4α2, we measure 1 and collapse on the uniform superposition
of marked vertices.

11

Coins for a Johnson Graph. In a Johnson graph J(N,R), a coin c = (j, z) is a
pair where:

• j ∈ [R] is the index of the element that will be removed from the current
vertex (given an arbitrary ordering, e.g. the lexicographic ordering of bit-
strings).

• z ∈ [N − R] is the index of an element that does not belong to the current
vertex, and will be added as a replacement.

4 A Chained Quantum Walk to Find Many Collisions

In this section, we prove our main result.

Theorem 3. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a random function. Let
k ≤ min(2n−m,m/4). There exists a quantum algorithm making O

(
22k/3+m/3

)
quantum queries to f and using Õ

(
22k/3+m/3

)
Clifford+T+qRAMR+qRAMW

gates, that outputs 2k collision pairs of f .

Our new algorithm, which is detailed in Section 4.1 and Section 4.2, solves
the case k ≤ m

4 . The case k ≤ 2n−m was already solved by adapting the BHT
algorithm, as detailed in Section 6.

4.1 New Algorithm

We detail here our chained quantum walk algorithm. We start by introducing
some necessary notation.

Recall that the Johnson graph J(N,R) is the regular, undirected graph whose
vertices are subsets of size R of [N], and edges connect each pair of vertices which
differ in exactly one element. We identify [N] with {0, 1}n, the domain of f .

We assume that an efficient quantum unordered set data structure is given,
which makes vertices in the Johnson graph correspond to quantum states, while
allowing to implement efficiently the operations required for the MNRS quantum
walks. It will be detailed in Section 5. In the following we write |S〉 for the
quantum state corresponding to a set S.

Assume that a table of (multi)-collisions of f is given, which we denote C.
This table contains entries of the form: u : (x1, . . . , xr) where f(x1) = . . . =
f(xr) = u forms a multicollision of f , indexed by the image. We define the size
of C, its set of preimages and its set of images:{

Preim(C) :=
⋃
u:(x1,...,xr)∈C{x1, . . . , xr}

Im(C) :=
⋃
u:(x1,...,xr)∈C{u}

(6)

Given a table C, given a size parameter R, we define the two sets of sets:

V CR := {S ⊆ ({0, 1}n\Preim(C)) , |S| = R}
MC
R := {S ⊆ ({0, 1}n\Preim(C)) , |S| = R,

(∃x 6= y ∈ S, f(x) = f(y) ∨ ∃x ∈ S, f(x) ∈ Im(C))}

12

Idea of Our Algorithm. After running a quantum walk on a Johnson graph, we
obtain a superposition of vertices which contain a collision. Our main idea is
that, after removing this collision from the vertex and measuring it, it collapses
to a superposition close to a uniform superposition of vertices of smaller size.
We can then restart a quantum walk on this smaller Johnson graph, which runs
similarly as the previous one.

The definition of V CR and MC
R allows to formalize this idea: the first one will

be the set of vertices for the current walk, and the second one its set of marked
vertices. As we can see, the current walk excludes a set of previously measured
inputs, and a vertex is marked if it leads to a new collision, or to a preimage
of one of the previously measured images. The second case simply extends one
of the currently known multicollision tuples. The probability for a vertex to be
marked can be easily computed, and we just need to bound it as follows:

max

(
R|Im(C)|

2m
,
R(R− 1)

2m

)
≤ εR,C ≤

R|Im(C)|
2m

+
R(R− 1)

2m
,

since any vertex containing a collision, or a preimage from the table C, is marked.
In Section 5, we will show that with an appropriate data structure, there

exists an extraction algorithm EXTRACT which does the following:

EXTRACT : C,R,
1√
|MC

R |

∑
S∈MC

R

|S〉 7→ C ′, R′,
1√

|V C′R′ \MC′
R′ |

∑
S∈V C′

R′ \M
C′
R′

|S〉 ,

where R′ = R − r for some value r, and C ′ contains exactly r new elements
(collisions adding new entries, or preimages going into previous entries). Thus,
EXTRACT transforms the output of a successful walk into the set of unmarked
vertices for the next walk.

We can now give Algorithm 2, depending on a tunable parameter `.

4.2 Complexity Analysis

Theorem 4 (Time-memory tradeoff). For all k ≤ ` ≤ min(2k/3+m/3,m/2),

Algorithm 2 computes 2k collisions using Õ
(
2`
)

qubits and Õ
(
2k+m/2−`/2

)
Clif-

ford+T+qRAMR+qRAMW gates.

Proof. It should be noted that Algorithm 2 outputs a set of multicollisions rather
than collisions. But for a random function with a domain of n bits, there is a
polynomial (in n) limit to the width of multicollisions that can appear. Thus, we
have a polynomial relation p(n) between |Preim(C)| and |Im(C)|. In particular, by
taking 2` greater than p(n)2k+1, we ensure that during the algorithm, R > 2`−1.
In particular, we never run out of elements.

Secondly, we can bound εR,C ≥ R(R−1)
2m . This allows to upper bound easily

the time complexity of any of the walks: if the current vertex size is R then it

runs for O
(
2m/2/R

)
iterates, and each iterate contains Õ

(√
R
)

operations. The

13

Algorithm 2: Chained quantum walk algorithm for multiple collisions.

Input: quantum access to f : {0, 1}n → {0, 1}m, parameter k
Output: a table of multicollisions C such that |Im(C)| ≥ 2k

C ← ∅, R← 2` /* Initialize an empty table */

|ψ〉 ←
∑

S∈V C
2`
|S〉

while |Im(C)| < 2k do
Run the quantum walk:
• Starting state: |ψ〉 =

∑
S∈V C

R
\MC

R
|S〉

• Graph: J({0, 1}n\Preim(C), R) (Johnson graph with vertices of size R,
excluding the preimages of C)

• Marked vertices: MC
R

• Iterates: b(π/2)/(2α)c, where α = arcsin
√
εR,C

• Spectral gap: δ ' 1
R

Apply CHECK and measure the result: let flag be the output
if flag is true then

/* The state collapses on:
∑

S∈MC
R
|S〉 */

Apply EXTRACT (contains measurements)

• Update the table C
• Update the current width R
• Update the state: |ψ〉 =

∑
S∈V C

R
\MC

R
|S〉

/* Otherwise, the state collapses on:
∑

S∈V C
R

\MC
R
|S〉 for the

previous R and C. There is nothing to extract from it, C
and R remain unchanged. */

return C

constants in the O are the same throughout the algorithm. This means that we

can upper bound the complexity of each walk by Õ
(

2m/2/
√
R
)
≤ Õ

(
2m/2−`/2

)
.

By Theorem 2, the success probability of this walk is bigger than 1− 4εR,C .
If we do not succeed, the CHECK followed by a measurement make the current
state collapse again on the superposition of unmarked vertices, and we run the
exact same walk again. Note that for this algorithm to work, we must have
εR,C < 0.5. This corresponds to the probability that an element in the list
collides with another element (either in the list itself or in the set of forbidden

preimages), which is a Õ
(
22`−m

)
. Hence, we must have ` ≤ m/2.

Then, as ` ≤ 2k/3 +m/3, the final complexity of the algorithm is

Õ
(

2` + 2k2m/2−`/2
)

= Õ
(

2k+m/2−`/2
)
. �

5 Quantum Radix Trees and Extractions

In this section, we detail the quantum radix tree data structure, a history-
independent unordered set data structure introduced in [18]. We show that it

14

0000

00

0010

10

00

1001

01

1011

11

0

1111

111

1

Fig. 1. Tree R(S) representing the set S = {0000, 0010, 1001, 1011, 1111} (the example
is taken from [18]).

allows to perform, exactly and in a polynomial number of Clifford+T+qRAMR
+ qRAMW gates, the two main operations required for our walk: SWUP′ and
EXTRACT. We describe these operations in pseudocode, while ensuring that
they are reversible and polynomial.

5.1 Logical Level

Following [18], the quantum radix tree is an implementation of a radix tree storing
an unordered set S of n-bit strings. It has one additional property: its concrete
memory layout is history-independent. Indeed, there are many ways to encode
a radix tree in memory, and as elements are inserted and removed, we cannot
have a unique bit-string T (S) representing a set S. We use instead a uniform
superposition of all memory layouts of the tree, which makes the quantum state
|T (S)〉 unique, and independent of the order in which the elements were inserted
or removed. Only the entry point (the root) has a fixed position.

We separate the encoding of S into |T (S)〉 in two levels: first, a logical level, in
which S is encoded as a unique radix tree R(S); second, a physical level, in which
R(S) is encoded into a quantum state |T (S)〉. The logical mapping S → R(S)
is standard.

Definition 2 (From [18]). Let S be a set of n-bit strings. The radix tree R(S)
is a binary tree in which each leaf is labeled with an element of S, and each edge
with a substring, so that the concatenation of all substrings on the path from the
root to the leaf yields the corresponding element. Furthermore, the labels of two
children of any non-leaf node start with different bits.

By convention, we put the “0” bit on the left, and “1” on the right. In addition
to the n-bit strings stored by the tree, we append to each node the value of an
`-bit invariant which can be computed from its children, and depends only on
the logical structure of the radix tree, not its physical structure. Typically the
invariant can count the number of elements in the tree.

5.2 Memory Representation

We now detail the correspondence from R(S) to |T (S)〉. We suppose that a
quantum bit-string data structure is given, that handles bit-strings of length

15

(5, 1, 2, 00, 1)

(2, 3, 4, 00, 10)

(1,⊥,⊥, ε, ε) (1,⊥,⊥, ε, ε)

(3, 5, 7, 0, 111)

(2, 8, 9, 01, 11)

(1,⊥,⊥, ε, ε) (1,⊥,⊥, ε, ε)

(1,⊥,⊥, ε, ε)
Structured view:

0 (5, 1, 2, 00, 1) 1 (2, 3, 4, 00, 10) 2 (3, 5, 7, 10, 11) 3 (1,⊥,⊥, ε, ε)
Actual memory content: 4 (1,⊥,⊥, ε, ε) 5 (2, 8, 9, 01, 11) 6 Empty cell 7 (1,⊥,⊥, ε, ε)

8 (1,⊥,⊥, ε, ε) 9 (1,⊥,⊥, ε, ε)

Fig. 2. Example of memory layout for the tree of Figure 1, holding the set S =
{0000, 0010, 1001, 1011, 1111}.

between 0 and n and performs operations such as concatenation, computing
shared prefixes, testing if the bit-string has a given prefix, in time poly(n).

State of the Memory. We suppose that O (Mn) qubits of memory are given,
where M ≥ R will be set later on. We divide these qubits into M cells of O (n)
qubits each, which we index from 0 to M − 1. We encode cell addresses on
m = dlog2Me + 1 bits, and we also define an “empty” address ⊥. Each cell
will be either empty, or contain a node of the radix tree, encoded as a tuple
(i, al, ar, `l, `r) where:

• i is the value of the invariant
• al and ar (m-bit strings) are respectively the memory addresses of the cells

holding the left and right children, either valid indices or ⊥. A node with
al = ar = ⊥ is a leaf.
• `l and `r are the labels of the left and right edges. (ε if the node is a leaf,

where ε is the empty string).

In other words, we have added to the tree R(S) a choice of memory locations
for the nodes, which we name informally the memory layout of the tree. The
structure of R(S) itself remains independent on its memory layout.

The root of the tree is stored in cell number 0. In Figure 2, we give an example
of a memory representation of the tree R(S) of Figure 1. We take as invariant
the number of leaves which, at the root, gives the number of elements in the set.

A radix tree encoding a set of size R contains 2R − 1 nodes (including the
root), which means that we need (a priori) no more than M = 2R − 1 cells in
our memory. In addition to the bit-strings x, we could add any data dx to which
x serves as a unique index. (This means adding another register which is non-
empty for leaf nodes only). Finally, it is possible to account for multiplicity of
elements in the tree by adding multiplicity counters, but since this is unnecessary
for our applications, we will stick to the case of unique indices.

16

Definition. Let S be a set of size R, encoded in a radix tree with 2R−1 nodes. We
can always take an arbitrary ordering of the nodes in the tree, for example the
lexicographic ordering of the paths to the root (left = 0, right = 1). This means
that, for any sequence of non-repeating cell addresses I, of length 2R−1, we can
define a mapping: S, I 7→ TI(S) which specifies the writing of the tree in memory,
by choosing the addresses I = (i1 = 0, . . . , i2R−1) for the elements. For example,
the tree of Figure 2 would correspond to the sequence (0, 1, 3, 4, 2, 5, 8, 9, 7). We
can then define the quantum radix tree encoding S as the quantum state:

|T (S)〉 =
∑

valid sequences I

|TI(S)〉 , (7)

where we take a uniform superposition over all valid memory layouts.
For two different sets S and S′, and for any pair I, I ′ (even if I ′ = I), we

have TI′(S) 6= TI(S
′): the encodings always differ. This means that, as expected,

we have 〈T (S)|T (S′)〉 = 0.

Memory Allocator. In order to maintain this uniform superposition over all
possible memory layouts, we need an implementation of a memory allocator. This
unitary ALLOC takes as input the current state of the memory, and returns a
uniform superposition over the indices of all currently unoccupied cells. Possible
implementations of ALLOC are detailed in Section 5.4.

5.3 Basic Operations

We show how to operate on the quantum radix trees in poly(n) Clifford+T
+qRAMR+qRAMW gates. We start with the basics: lookup, insertion and dele-
tion.

Lookup. We define a unitary LOOKUP which, given S and a new element x,
returns whether x belongs to S:

LOOKUP : |x〉 |T (S)〉 |0〉 7→ |x〉 |T (S)〉 |x ∈ S〉 . (8)

We implement LOOKUP by descending in the radix tree R(S); he pseudocode
is given in Algorithm 3. Since the “while” loop contains at most n iterates,
quantumly these n iterates are performed controlled on a flag that says whether
the computation already ended. After obtaining the result, they are recomputed
to erase the intermediate registers.

Insertion. We define a unitary INSERT, which, given a new element x, inserts
x in the set S. If x already belongs to S, its behavior is unspecified.

INSERT : |x〉 |T (S)〉 7→ |x〉 |T (S ∪ {x})〉 . (9)

The implementation of INSERT is more complex, but the operation is still
reversible. The pseudocode is given in Algorithm 4. At first, we find the point of

17

Algorithm 3: LOOKUP as a classical algorithm.

Input: element x, quantum radix tree T (S)
Output: whether x ∈ S
(i, al, ar, `l, `r)← root
y ← ε (empty string)
while al 6= ⊥ (node is not a leaf) do

if y||`l is a prefix of x then
y ← y||al
(i, al, ar, `l, `r)← node at address al

else if y||`r is a prefix of x then
y ← y||al
(i, al, ar, `l, `r)← node at address ar

else
Break (not a solution)

return true if y = x

insertion in the tree, then we call ALLOC twice to obtain new memory addresses
for two new nodes. We modify locally the layout to insert these new nodes,
including a new leaf for the new element x. Then, we update the invariant on
the path to the new leaf. Finally, we uncompute the path to the new leaf (all
the addresses of the nodes on this path). To do so, we perform a loop similar to
LOOKUP, given the knowledge of the newly inserted element x.

Deletion. The deletion can be implemented by uncomputing INSERT, since it
is a reversible operation. It performs:

INSERT† : |x〉 |T (S ∪ {x})〉 7→ |x〉 |T (S)〉 . (10)

The deletion of an element that is not in S is unspecified.

Quantum Lookup. We can implement a “quantum lookup” unitary QLOOKUP
which produces a uniform superposition of elements in S having a specific prop-
erty P . The only requirement is that the invariant of nodes has to store the
number of nodes in the subtree having this property (and so, leaf nodes will
indicate if the given x satisfies P (x) or not).

QLOOKUP : |T (S)〉 |0〉 7→ |T (S)〉
∑

x∈S|P (x)

|x〉 . (11)

This unitary is implemented by descending in the tree coherently (i.e., in
superposition over the left and right paths) with a weight that depends on the
number of solutions in the left and right subtrees. First, we initialize an address
register |a〉 to the root. Then, for n times (the maximal depth of the tree), we
update the current address register as follows:

• We count the number of solutions in the left and right subtrees of the node
at address |a〉 (say, tl and tr).

18

Algorithm 4: INSERT as a classical algorithm.

Input: element x, quantum radix tree T (S)
Output: element x, quantum radix tree T (S ∪ {x})
Find the first node j1 : (i, al, ar, `l, `r) such that y is a prefix of x, y||`l is not a
prefix of x and y||`r is not a prefix of x either. Write all the addresses of the
nodes on the path from the root to j1

/* If at this point we have found that the element belongs to S
instead, then the rest of the computation is meaningless. */

/* By construction `l starts with 0 and `r starts with 1. One of

them shares a non-empty prefix z with the remaining part of x.
Without loss of generality, we assume that it is `l. */

Let `l = z||t and x = y||z||x′
Call ALLOC to obtain an address j2
Replace al with j2 in the node j1 : (i, al, ar, `l, `r) (move al to a temporary
register)

Call ALLOC to obtain an address j3
Write at address j3: (∗,⊥,⊥, ε, ε)
/* Information at this point: x, al, j2, j3, the path to j1 and the

tree */

if t starts with 0 then
Move al and cut `l to modify the two nodes in positions j1 and j2 as
follows: j1 : (i, j2, ar, z, `r) and j2 : (∗, al, j3, t, x′).

else
Move al and cut `l to modify the two nodes in positions j1 and j2 as
follows: j1 : (i, j2, ar, z, `r) and j2 : (∗, j3, al, t, x′).

/* We make this choice so that the left edge is always labeled

starting with a 0 and the right edge with a 1 */

/* Since we have moved j3 and al, the remaining information is: x,
the modified tree, j2 and the path to j1 (actually the path to x
in the new tree) */

Recompute the invariants on the path to x, in reverse order (starting from the
address j2).

/* The recomputation of the invariants is reversible (but we still

know the path to x) */

Do a lookup of x to uncompute the path to x.
/* Now the only information that remains is x, T (S ∪ {x}). */

19

• We map |a〉 to |a〉
(√

tl
tl+tr

|left child of a〉+
√

tr
tl+tr

|right child of a〉
)

. (We

do nothing if |a〉 is a leaf).

In the end, we obtain a uniform superposition of the paths to all elements satisfy-
ing P . We can query these elements, then uncompute the paths using an inverse
LOOKUP. Likewise, we can also perform a quantum lookup of pairs satisfying
a given property, e.g., retrieve a uniform superposition of all collision pairs in S.

5.4 Quantum memory allocators

We now define the unitary ALLOC, which given the current state of the memory,
creates the uniform superposition of unallocated cells:

ALLOC : |current memory〉 |0〉 7→ |current memory〉
∑

i unoccupied

|i〉 . (12)

We do not need to define a different unitary for un-allocation; we only have to
recompute ALLOC to erase the addresses of cells that we are currently cleaning.
To implement ALLOC, we add to each memory cell a flag indicating if it is
allocated. We propose two approaches.

Quantum search allocation. Classically, we can allocate new cells by simply
choosing addresses at random and checking if they are already allocated or not.
Quantumly, we can follow this approach using a quantum search over all the
cells for unallocated ones. Obviously, for this approach to be efficient, we need
the proportion of unallocated cells to be always constant. Besides, if we keep
a counter of the number of allocated cells (which does not vary during our
quantum walk steps anyway), we can make this operation exact using Amplitude
Amplification (Theorem 4 in [6]). Indeed, this counter gives the proportion of
allocated cells, so we know exactly the probability of success of the amplified
algorithm.

We can implement this procedure with a single iteration of quantum search
as long as we have a 33% overhead on the maximal number of allocated cells
(similarly to the case of searching with a single query studied in [10]).

Quantum tree allocation. A more standard, but less time-efficient approach to
implement ALLOC is to organize the memory cells in a complete binary tree (a
heap), so that each node of the tree stores the number of unallocated cells in its
children. This tree is not a quantum radix tree, since its size never changes, and
no elements are inserted or removed. In order to obtain the uniform superposition
of free cell addresses, we mimic the approach of QLOOKUP.

5.5 Higher-level Operations for Collision Walks

We now implement efficiently the higher-level operations required by our al-
gorithms: performing a quantum walk update (SWUP′), looking for collisions
(CHECK) and extracting them (EXTRACT).

20

Representation. We consider the case of (multi-)collision search. Here the set S is
a subset of [N] = {0, 1}n, but we also need to store the images of these elements
by the function f : {0, 1}n → {0, 1}m. Let F = {f(x)||x, x ∈ S}. A collision of
f is a pair (f(x)||x), (f(y)||y) such that f(x) = f(y), i.e., the bit-strings have
the same value on the first m bits.

Since our goal is to retrieve efficiently the collision pairs, we will store both
a radix tree T (S) to keep track of the elements, and T (F) to keep track of the
collisions. One should note that the sets F and S have the same size. When
inserting or deleting elements, we insert and delete both in T (S) and T (F).
These trees are stored in two separate chunks of memory cells.

SWUP’. We show an efficient implementation of the unitary SWUP′:

SWUP′ |T (S)〉 |T (F)〉 |cS→S′〉 = |T (S′)〉 |T (F ′)〉 |cS′→S〉 (13)

Where cS→S′ is the coin register which contains information on the transition of
a set S to a set S′. As we have detailed before, the coin is encoded as a pair (j, z)
where j ∈ [R] is the index of an element in S, which has to be removed, and
z ∈ [N − R] is the index of an element in {0, 1}n\S, which has to be inserted.
We implement SWUP′ as follows:

1. First, we convert the coin register to a pair x, y where: • y is the z-th element
of {0, 1}n which is not in S (see details in Appendix A) and • x is the j-th
element of S (according to the lexicographic ordering of bit-strings). This
can be done easily if the invariant of each node stores the number of leaves
in its subtree. Note that both the mapping from z to y, and from j to x, are
reversible. At this point the state is |T (S)〉 |T (F)〉 |x, y〉.

2. We use INSERT† to delete x from T (S), and delete f(x)||x from T (F).
3. We use INSERT to insert y in T (S) and f(y)||y in T (F). At this point the

state is: |T (S′)〉 |T (F ′)〉 |x, y〉 where S′ = (S\{x}) ∪ {y} and F ′ is the set of
corresponding images.

4. Finally, we convert the pair x, y back to a coin register.

Remark 2 (Walking in a reduced set). In our walk, we actually reduce the set of
possible elements, due to the previously measured collisions. So the coin does not
encode an element of {0, 1}n\S, but of {0, 1}n\S\Preim(C), where C is our cur-
rent table of multicollisions. An adapted algorithm is also given in Appendix A
for this case.

Checking. Checking whether the tree contains a multicollision, or a preimage
of some given set, can be made trivial by defining an appropriate invariant of
the tree T (F), which counts such solutions. The unitary CHECK simply checks
whether this invariant is zero.

Extracting. The most important property for our chained quantum walk is the
capacity to extract multicollisions from the radix tree, in a way that preserves
the rest of the state, and allows to reuse a superposition of marked vertices for

21

the current walk, as a superposition of unmarked vertices for the next one. Recall
from Section 4.1 that we have defined a table of multicollisions C, a set V CR of
sets of size R in {0, 1}n\Preim(C), and a set MC

R ⊆ V CR of marked vertices, which
contain either a new element mapping to Im(C), or a new collision.

The operation EXTRACT does:

EXTRACT : C,R,
1√
|MC

R |

∑
S∈MC

R

|S〉 7→ C ′, R′,
1√

|V C′R′ \MC′
R′ |

∑
S∈V C′

R′ \M
C′
R′

|S〉 ,

for a smaller R′ and a bigger C ′. It is implemented as Algorithm 5.

Algorithm 5: Multicollision extraction: EXTRACT.

Input: C, R, uniform superposition over MC
R

Output: C′ R′, uniform superposition over V C′

R′ \MC′

R′

flag ← true
C′ ← C, R′ ← R
while flag is true do

Apply CHECK and measure the result: let flag be the output
/* If flag is true, the superposition has collapsed to a uniform

superposition of subsets that contain at least one collision

or preimage of C */

Perform a “quantum lookup” of the solutions (multicollision or preimage)
Select one uniformly at random and copy it outside the tree, with its
width r

Apply INSERT† to remove the elements from the tree
Measure r and these elements
R′ ← R− r
if r > 1 then

Insert a new entry in C′

else
Insert the element in C′, at the index of its image

The correctness of EXTRACT comes from the fact that, when we extract
and measure an r-collision (x1, . . . , xr) with image u, we collapse on the uniform
superposition over all sets of size R− r which:

• do not contain any of x1, . . . , xr;
• do not contain u (otherwise this would have gone into the multicollision).

We continue until there is no multicollision to measure anymore, where we are
guaranteed that the current state is good to run the next walk.

Extraction without Measurement. Algorithm 5 contains measurements, but it is
possible to perform the whole chained quantum walk without. The idea is to

22

apply a sequence of a fixed number of walks, controlled by the current result
of CHECK. That is, if the current vertex does not contain a solution anymore,
we start walking again, but if the vertex still contains a solution, we remove
it instead. We are ensured that each of these operations produces a collision,
though we do not know which ones did. We also keep track of the current vertex
size to implement correctly the walk. At each step, it is reduced at least by 2,
and at most by poly(n) (the maximal collision size). Since the walk step is done
with phase estimation, we simply set the precision of the phase estimation circuit
at the highest level required, i.e. depending on the initial vertex size, and it will
work correctly for all walks.

6 Searching for Many Collisions, in General

As we have seen, our new algorithm is valid (and tight) for all values of n, m
and k ≤ 2n−m such that k ≤ m

4 . Two approaches can be used for higher values
of k.

BHT. A standard approach to find multiple collisions, which works when m is
small, is to extend the BHT algorithm [7]. We select a parameter `, then make
2` queries, and look for 2k collisions on this list of queries. This is done by a
quantum search on {0, 1}n for an input colliding with the list.

There are on average 22n−m collision pairs in the function, so a random
element of {0, 1}n has a probability O (2n−m) to be in a collision pair. This
gives O

(
2`−m+n

)
collision pairs for the initial list.

Thus, a search for a collision with the list has O
(
2`−m+n

)
solutions in a

search space of size 2n, and it requires
√

2n

2`+m−n
= 2(m−`)/2 iterates.

If this procedure is to output 2k collisions, we need ` such that 2`−m+n ≥ 2k

i.e. ` − m + n ≥ k. By trying to equalize the complexity of the two steps, we
obtain: ` = k + m−`

2 =⇒ ` = 2k
3 + m

3 which is only valid for k ≤ 3n− 2m. For
a bigger k, we can repeat this. We find 23n−2m collisions in time (and memory)

22n−m, and we do this 2k−(3n−2m) times, for a total time Õ
(
2k+m−n

)
. If we

want to restrict the memory then we obtain the tradeoff of Õ
(
2k+m/2−`/2

)
time

using O
(
2`
)

memory.

Using our method. If k > m/4, then the memory limitation in Theorem 4 on
` becomes relevant. In that case, as we are restricted to ` ≤ m/2, the minimal

achievable time is Õ
(
2k+m/2−`/2

)
= Õ

(
2k+m/4

)
.

Conclusion. The time and memory complexities of the problem are the following
(in log2 and without polynomial factors):

• If k ≤ 3n− 2m: 2k
3 + m

3 time and memory using BHT

• Otherwise, if k ≤ m
4 : 2k

3 + m
3 time and memory using our algorithm

• Otherwise, if m ≤ 4
3n: k +m− n time and 2n−m memory using BHT

23

• Otherwise, if m ≥ 4
3n: k + m

4 time and m
2 memory using our algorithm

This situation is summarized in Figure 3, and it allows us to conclude:

Theorem 5. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a random function.

Let k ≤ 2n−m. There exists an algorithm finding 2k collisions in Õ
(
2C(k,m,n)

)
Clifford+T+qRAMR+qRAMW gates, and using Õ

(
2C(k,m,n)

)
quantum queries

to f , where:

C(k,m, n) = max

(
2k

3
+
m

3
, k + min

(
m− n, m

4

))
. (14)

Proof. We check that: k ≤ 3n− 2m ⇐⇒ 2k
3 + m

3 ≥ k+m− n and k ≤ m
4 ⇐⇒

2k
3 + m

3 ≥ k + m
4 . ut

We conjecture that the best achievable complexity is, in fact, C(k,m, n) =
2k
3 + m

3 for any admissible values of k, m and n. It would however require a non-
trivial extension of our algorithm, capable of outputting collisions at a higher
rate than what we currently achieve.

In terms of time-memory trade-offs, we can summarize the results as:

Theorem 6 (General Time-memory tradeoff). For all k ≤ ` ≤ min(2k/3+
m/3,max(2n−m,m/2)), there exists an algorithm that computes 2k collisions us-

ing Õ
(
2`
)

qubits and Õ
(
2k+m/2−`/2

)
Clifford+T+qRAMR+qRAMW gates and

quantum queries to f .

Similarly, as in [13], we conjecture that the trade-off should be achievable for
all ` ≤ 2k/3 +m/3.

7 Applications

In this section, we show how our algorithm can be used as a building block for
lattice sieving and to solve the limited birthday problem. We also discuss the
problem of multicollision search.

7.1 Improvements in quantum sieving for solving the Shortest
Vector Problem

Context A lattice L = L(b1, . . . ,bd) := {
∑d
i=1 zibi : zi ∈ Z} is the set of all

integer combinations of linearly independent vectors b1, . . . ,bd ∈ Rd. We call d
the rank of the lattice and (b1, . . . ,bd) a basis of the lattice.

The most important computational problem on lattices is the Shortest Vector
Problem (SVP). Given a basis for a lattice L ⊆ Rd, SVP asks to compute a non-
zero vector in L with the smallest Euclidean norm.

The main lattice reduction algorithm used for lattice-based cryptanalysis is
the famous BKZ algorithm [25]. It internally uses an algorithm for solving (near)

24

1 4/3 3/2 2
0

1/4

1/3
2/5

2/3

1

BHT
2k
3

+ m
3

Ours
2k
3

+ m
3

Ours (extended)
k + m

4

BHT (extended)
k +m− n

m/n

k
/
n

Fig. 3. Exponent in the algorithm depending on the relative values of k,m and n.

exact SVP in lower-dimensional lattices. Therefore, finding faster algorithms to
solve exact SVP is critical to choosing security parameters of cryptographic
primitives.

Previously, the fastest quantum algorithm solved SVP under heuristic as-
sumptions in 20.2570d+o(d) time [8]. It applies the MNRS quantum walk tech-
nique to the state-of-the-art classical algorithm called lattice sieving, where we
combine close vectors together to obtain shorter vectors at each step.

It was noted in [8] that the algorithm could be slightly improved if we could
find many marked vertices in a quantum walk without repaying the setup each
time, which is exactly what we showed in Section 4. Without going through the
whole framework of the [8] algorithm, we present its main parameters and ideas,
and how our quantum walks improves it.

The sieving algorithm works as follows: we start from N ≈ 20.2075d+o(d)

points x1, . . . , xn on the d-dimensional sphere of some norm R and we want to
find N pairs (xi, xj) such that the norm of xi − xj is slightly smaller than R.
This is one sieving step and the full algorithm performs the above sieving step
poly(d) times, so we concentrate on the running time of a single sieving step.

Parameters of the algorithm. We fix a dimension d. The algorithm uses a
free parameter c ∈ (0, 1). For an angle α ∈ [0, π/2], Vd(α) is the ratio of the
volume of a spherical cap of angle α to the volume of the d-dimensional sphere.
This means

Vd(α) = poly(d) sind(α).

We also define:

25

• N = 1
Vd(π/3)

≈ 20.2075d+o(d).

• α st. Vd(α) = N−(1−c).
• θ∗α = 2 arcsin(1

2 sin(α)).

• ζ st. Nζ = N2cVd−1(θ∗α).

The quantum algorithm of [8] in dimension d with free parameter c runs in time

T = NBREP · (INIT +N1−cFAS1). (15)

where

• NBREP = max{1, N c−ζ+o(1)}.
• INIT = N1+o(1).
• FAS1 is the running time of finding many marked elements in a Johnson

graph using a quantum walk, which we will describe more in detail below.

The idea of the FindAllSolutions subroutine (FAS1) is the following: we start
from N c points x1, . . . , xNc of norm R which already are at an angle α of a
certain point s, and we want to find most (at least a constant fraction) of the
pairs (xi, xj) st. ||xi − xj ||2 < R. There are on average Nζ and the goal of this
procedure is to find a constant fraction of them.

7.2 Analysis of FAS1

The analysis of this random walk involves a new free parameter c1 < c over
which we can optimize. Following [8], we also define

• β st. Vd(β) = 1
Nc1 .

• ρ0 st. Nρ0 = Vd(β)
Wd(β,θ∗α)

, where Wd(β, θ
∗
α) = poly(d) ·

(
1− 2 cos2(β)

1+cos(θ∗α)

)d/2
.

In order to find these solutions, the authors of [8] construct a code C on the
sphere and check only the pair (xi, xj) if xi, xj are at angle at most β of the
same code point c. This means they have a function f that maps a point xi to
the nearest codeword, which in this setting is efficiently computable. Then the
idea is to look for solution pairs (xi, xj) st. f(xi) = f(xj). By doing so, they miss
on some collision pairs, but there will be solutions that satisfy this property and
will be easy to find. Then once they run out of solutions of this form, they choose
another code C and start again. Here, the code will be of size 2c1 .

To perform the above, they use a quantum walk for collision finding, except
that pairs (xi, xj) st. f(xi) = f(xj) do not necessarily satisfy ||xi − xj ||2 < R
(but this condition can also be checked efficiently). They construct the same
Johnson graph as for collision finding. Each node contains N c1 points for a
parameter c1 < c and 2 nodes are adjacent if they differ by exactly one point.
The only difference is that a node is marked not only if it contains xi, xj such
that f(xi) = f(xj), but also that ||xi−xj ||2 < R. For each node, the probability
that a node contains a solution pair (xi, xj) is N2c1Vd−1(θ∗α) and the probability
that it also satisfies f(xi) = f(xj) is N−ρ, so ε = N2c1−ρ0Vd−1(θ∗α). On the

26

other hand, looking only at pairs such that f(xi) = f(xj) allows to perform the
quantum walk with efficient update, as for the regular collision finding.

This quantum walk has parameters:7

• S = N c1 .
• δ = N−c1 .
• ε = N2c1−ρ0Vd−1(θ∗α).
• U = 1.
• C = 1.

For each choice of C, we need to find Nζ−ρ0 random marked vertices, and then
repeat this Nρ0 times to find Nζ solutions. The formula used in [8] is

FAS1 = Nρ0 ·Nζ−ρ0
(
S +

1√
ε

(
1√
δ
U + C

))
.

However, with our results, we don’t have to redo the setup in the quantum walk
and we obtain

FAS1 = Nρ0 ·
(
S +

Nζ−ρ0
√
ε

(
1√
δ
U + C

))
.

With this improvement, we redid the optimization of [8] and obtained the fol-
lowing new running for quantum sieving.

We take the following set of parameters: c ≈ 0.3875, c1 ≈ 0.27 which gives
ζ ≈ 0.1568 and ρ0 ≈ 0.1214. Notice that with these parameters, we are indeed in
the range of Theorem 3 since the number of solutions we extract is 2k = Nζ−ρ0 ≈
N0.0354 and the range of the function f on which we collision is 2m = 2c1 ≈ N0.27

(the number of points in the code), so we indeed have k ≤ m
4 . The parameters

of the quantum walk become:

S ≈ N0.27, ε ≈ N−0.2, δ ≈ N−0.27, U = C = 1 .

This gives FAS1 ≈ N0.27. Plugging this into Equation 15, we get a total run-
ning time of N1.2347 which is equal to 20.2563d+o(d) (recall that N = 1

Vd(π/3)
≈

20.2075d+o(d)) improving slightly the previous running time of 20.2570d+o(d).

7.3 Solving the Limited Birthday Problem

The following problem is very common in symmetric cryptanalysis. It appears
for example in impossible differential attacks [5], but also in rebound distin-
guishers [14]. In the former case we use generic algorithms to solve the problem
for a black-box E, and in the latter, a valid distinguisher for E is defined as an
algorithm outputting the pairs faster than the generic one.

7 In [8], there are extra parameters c2, ρ ≈ 0, we perform the same choice here (we
checked that with our improvement, this remains the optimal choice).

27

Problem 4 (Limited Birthday). Given access to a black-box permutation E :
{0, 1}n → {0, 1}n and possibly its inverse E−1, given two vector spaces Din

and Dout of sizes 2∆in and 2∆out respectively, find 2k pairs x, x′ such that x 6=
x′, x⊕ x′ ∈ Din, E(x)⊕ E(x′) ∈ Dout.

For simplicity, we will focus only on the time complexity of the problem,
although some parameter choices require a large memory as well. Classically the
best known time complexity is given in [5]:

max

(
min

∆∈{∆in,∆out}

(√
2k+n+1−∆

)
, 2k+n+1−∆in−∆out

)
(16)

This complexity is known to be tight for N = 1 [14].

In the quantum setting, we need to consider superposition access to E and
possibly E−1 to have a speedup on this problem8. Previously the methods
used [20] involved only individual calls to Ambainis’ algorithm (when there are
few solutions) or an adaptation of the BHT algorithm (when there are many
solutions).

The quantum algorithm, as the classical one, relies on the definition of struc-
tures of size 2∆in , which are subsets of the inputs of the form Tx = {x⊕v, v ∈ Din}
for a fixed x. For a given structure Tx, we can define a function hx : {0, 1}∆in →
{0, 1}n−∆out such that any collision of hx yields a pair solution to the limited
birthday problem. The algorithm then depends on the number of required pairs
compared to the (expected) number of collisions of hx.

• If 2k < 22∆in

2n−∆out
⇐⇒ k < 2∆in−n+∆out, then we need only one structure.

To recover all the pairs, we need a time exponent (by Theorem 5):

max

(
2k

3
+
n−∆out

3
, k + min

(
n−∆out −∆in,

n−∆out

4

))

• If 22∆in

2n−∆out
< 1, then we follow the approach of [20], which is to repeat 2k

times a Grover search among structures, to find one that contains a pair (this
is done with Ambainis’ algorithm). The time exponent is k + n−∆out

2 − ∆in

3 .

• If 1 < 22∆in

2n−∆out
< 2k, we need to consider several structures and to extract

all of their collision pairs. Using Theorem 5 this gives a time exponent:

max

(
k +

2

3
(n−∆in −∆out), k + min

(
n−∆out −∆in,

n−∆out

4

))
Finally, we can swap the roles of ∆in and ∆out and take the minimum. Un-

fortunately this does not lead to an equation as simple as Equation (16).

8 When E is a black box with a secret key, this is the Q2 model, see e.g.[20]. In some
cases, e.g. rebound distinguishers, E does not contain any secret.

28

7.4 On multicollision-finding

A natural extension of this work would be to look for multicollisions.

Problem 5 (r-collision search). Let f : {0, 1}n → {0, 1}m be a random function.
Find an r-collision of f , that is, a tuple (x1, . . . , xr) of distinct elements such
that f(x1) = . . . = f(xr).

As with collisions, the lower bound by Liu and Zhandry [21] is known to be
tight when m ≤ n. The corresponding algorithm is an extension of the BHT
algorithm which constructs increasingly smaller lists of i-collisions, starting with
1-collisions (evaluations of the function f on arbitrary points) and ending with
a list of r-collisions.

This algorithm, given in [15,16], finds 2k r-collisions in time and memory:

Õ
(

2k
2(r−1)

2r−1 2m
2(r−1)−1

2r−1

)
.

As with 2-collisions, it is possible to extend it when m > n. Of course, there’s
a constraint: the list i must contain more tuples that are part of an i+1-collision
than the size of the list i+ 1.

The size of each i-collision list is Ni = 2k
2r−2r−i

2r−1 2m
2r−i−1
2r−1 . The probability

that an i-collision extends to an i + 1-collision is of order 2n−m. Hence, for the
algorithm to work, we must have, for all i, Ni+1/Ni ≤ 2n−m. This means:

k
2r−i−1

2r − 1
−m2r−i−1

2r − 1
≤ n−m .

This constraint is the most restrictive for the largest possible i, r−1. We obtain
the following constraint, which subsumes the others:

k
1

2r − 1
+m

(
1− 1

2r − 1

)
≤ n .

This gives the point up to which this algorithm meets the lower bound. We
could use our new algorithm as a subroutine in this one, to find 2-collisions, and
this would allow to relax the constraint over N2/N1. Unfortunately, this cannot
help to find multicollisions, as the other constraints are more restrictive. More
generally, these constraints show that it is not possible to increase the range of
the BHT-like r-collision algorithm solely by using an r − i-collision algorithm
with an increased range.

Acknowledgments. A.S. wants to thank Nicolas David and Maŕıa Naya-
Plasencia for discussions on the limited birthday problem. A.S. is supported
by ERC-ADG-ALGSTRONGCRYPTO (project 740972). Y.S. is supported by
EPSRC grant EP/S02087X/1 and EP/W02778X/1.

29

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum Walk Algorithm for Element Distinctness. SIAM J. Com-
put. 37(1), 210–239 (2007)

3. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: PQCrypto. LNCS, vol. 7932, pp. 16–33. Springer (2013)

4. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: ASIACRYPT (2). Lecture Notes in Com-
puter Science, vol. 12492, pp. 633–666. Springer (2020)

5. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: Applications to clefia, camellia, lblock and simon. In: ASI-
ACRYPT (1). Lecture Notes in Computer Science, vol. 8873, pp. 179–199. Springer
(2014)

6. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002)

7. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: LATIN. Lecture Notes in Computer Science, vol. 1380, pp. 163–169.
Springer (1998)

8. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: ASI-
ACRYPT (4). Lecture Notes in Computer Science, vol. 13093, pp. 63–91. Springer
(2021)

9. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: ASI-
ACRYPT (2). Lecture Notes in Computer Science, vol. 10625, pp. 211–240.
Springer (2017)

10. Chi, D.P., Kim, J.: Quantum database search by a single query. In: QCQC 1998.
LNCS, vol. 1509, pp. 148–151. Springer, Heidelberg (1999)

11. Dinur, I.: Tight time-space lower bounds for finding multiple collision pairs and
their applications. In: EUROCRYPT (1). Lecture Notes in Computer Science, vol.
12105, pp. 405–434. Springer (2020)

12. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing 1996. pp. 212–219. ACM (1996)

13. Hamoudi, Y., Magniez, F.: Quantum time-space tradeoff for finding multiple col-
lision pairs. In: TQC. LIPIcs, vol. 197, pp. 1:1–1:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021)

14. Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y.: Improved attacks on sliscp per-
mutation and tight bound of limited birthday distinguishers. IACR Trans. Sym-
metric Cryptol. 2020(4), 147–172 (2020)

15. Hosoyamada, A., Sasaki, Y., Tani, S., Xagawa, K.: Improved quantum
multicollision-finding algorithm. In: PQCrypto. Lecture Notes in Computer Sci-
ence, vol. 11505, pp. 350–367. Springer (2019)

16. Hosoyamada, A., Sasaki, Y., Tani, S., Xagawa, K.: Quantum algorithm for the
multicollision problem. Theor. Comput. Sci. 842, 100–117 (2020)

17. Jaques, S., Schrottenloher, A.: Low-gate quantum golden collision finding. In: SAC.
Lecture Notes in Computer Science, vol. 12804, pp. 329–359. Springer (2020)

18. Jeffery, S.: Frameworks for Quantum Algorithms. Ph.D. thesis, University of Wa-
terloo, Ontario, Canada (2014), http://hdl.handle.net/10012/8710

30

http://hdl.handle.net/10012/8710

19. Kachigar, G., Tillich, J.: Quantum information set decoding algorithms. In:
PQCrypto. LNCS, vol. 10346, pp. 69–89. Springer (2017)

20. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

21. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: EUROCRYPT (3).
Lecture Notes in Computer Science, vol. 11478, pp. 189–218. Springer (2019)

22. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
J. Comput. 40(1), 142–164 (2011)

23. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
24. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-

plications. J. Cryptol. 12(1), 1–28 (1999)
25. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algo-

rithms. Theor. Comput. Sci. 53, 201–224 (1987), https://doi.org/10.1016/

0304-3975(87)90064-8

31

https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8

Appendix

A z-th element outside the radix tree

In this section, we solve the following problem:

Find the value y of the z-th element of {0, 1}n which is not in S.

We need the following invariant in the tree: each node n of S stores the number
of leaves in the subtree rooted at n. We denote this quantity by leaves(n). See
Figure 4 for an example.

5

2

0000

00

0010

10

00

3

2

1001

01

1011

11

0

1111

111

1

Fig. 4. Example of tree where each node stores the number of leaves in the subtree.
We omit this quantity (which is 1) on the leaves themselves for readability.

Assume that S has R elements in {0, 1}n, let N = 2n. Assume here that
we have some easily computable order on {0, 1}n, represented by a map φ :
{0, 1}n → N that assigns to each bit-string its index, and its inverse φ−1 also
easily computable. Given i ∈ [N − R], the goal is to find the ith element in
{0, 1}n \ S.

32

Algorithm 6: FindNthNotInSubtree(i, T , node)

Input: index i, radix tree T , node node

Output: ith element in {x ∈ {0, 1}n : φ(x) > φ(`)} \ subtree(T,node)
where ` is the bit-string of the left-most leaf in the subtree
rooted at node

if node is a leaf then
Let x be the bit-string of node
return φ−1(φ(x) + i)

else
/* Here node must have two children left(node) and

right(node) */

Let x be the bit-string of the left-most leaf in subtree rooted at node
Let y be the bit-string of the left-most leaf in subtree rooted at
right(node)

/* compute the number of elements in [x, y) \ T */

δ ← φ(y)− φ(x)− leaves(left(node))

if i > δ then
return FindNthNotInSubtree(i− δ,T,right(node))

else
return FindNthNotInSubtree(i,T,left(node))

Algorithm 7: FindNthNotInTree(i, T)

Input: index i, radix tree T
Output: ith element in {0, 1}n \ T
Compute the bit-string x of the leftmost leaf of the tree T
if i < φ(x) then

return φ−1(i)
else

return FindNthNotInSubtree(i− φ(x), T , root(T))

Theorem 7. FindNthNotInTree(i, T) returns the ith element in {0, 1}n \ T in
poly(n) time.

We now consider the same problem where we have two trees T and T ′ and
we want to find the ith element in {0, 1}n which is not in T and not in T ′. We
assume that T and T ′ have disjoint leaves. This problem appears in our chained
quantum walk in Section 4.

Theorem 8. FindNthNotInTwoTrees(i,T,T’) returns the ith element in {0, 1}n\
(T ∪ T ′) in poly(n) time.

33

Algorithm 8: CountInIntervalNotSubtree(u, v, T , node)

Input: bit-strings u and v, radix tree T , a node node of T
Output: size of [u, v) \ {all the leaves in the subtree root at node}
Let x be the bit-string of the left-most leaf in subtree rooted at node

Let y be the bit-string of the right-most leaf in subtree rooted at node

/* when the interval [u, v) entirely covers the subtree */

if φ(u) 6 φ(x) and φ(y) < φ(v) then
return φ(v)− φ(u)− leaves(node)

/* when the interval [u, v) is disjoint from the subtree */

if φ(v) 6 φ(x) or φ(y) < φ(u) then
return φ(v)− φ(u)

/* if we are here, node cannot be a leaf */

Let z be the bit-string of the left-most leaf in subtree rooted at right(node)

if φ(v) 6 φ(z) then
/* when [u, v) only intersects the left subtree */

return CountInIntervalNotTree(u, v, T , left(node))
else if φ(z) 6 φ(u) then

/* when [u, v) only intersects the right subtree */

return CountInIntervalNotTree(u, v, T , right(node))
else

return CountInIntervalNotTree(u, z, T , left(node))
+CountInIntervalNotTree(z, v, T , right(node))

Algorithm 9: CountInIntervalNotTree(u, v, T)

Input: bit-strings u and v, radix tree T
Output: size of [u, v) \ T
return CountInIntervalNotSubtree(u, v, T, root(T))

34

Algorithm 10: FindNthNotInTwoSubtrees(i, T , T ′, node)

Input: index i, radix trees T and T ′ with disjoint leaves, node node of T
Output: ith element in {x ∈ {0, 1}n : φ(x) > φ(`)} \ (subtree(T,node) ∪ T ′)

where ` is the bit-string of the left-most leaf in the subtree of T
rooted at node

if node is a leaf then
Let x be the bit-string of node

δ ← CountInIntervalNotTree(0n, x, T ′)

return FindNthNotInSubtree(i+ δ + 1, T ′)
else

/* Here node must have two children left(node) and right(node)

*/

Let x be the bit-string of the left-most leaf in subtree rooted at node

Let y be the bit-string of the left-most leaf in subtree rooted at
right(node)

/* compute the number of elements in [x, y) \ (T ∪ T ′) */

δ ← CountInIntervalNotTree(x,y,T’)− leaves(left(node))

if i > δ then
return FindNthNotInTwoSubtrees(i− δ,T,T’,right(node))

else
return FindNthNotInTwoSubtrees(i,T,T’,left(node))

Algorithm 11: FindNthNotInTwoTrees(i, T , T ′)

Input: index i, radix trees T and T ′ with disjoint leaves
Output: ith element in {0, 1}n \ (T ∪ T ′)
Compute the bit-string x of the leftmost leaf of the tree T
/* compute the number of elements on the left of T that are not in

T ′ */

δ ← CountInIntervalNotTree(0n, x, T ′)

if i < δ then
return FindNthNotInTree(i, T ′)

else
return FindNthNotInTwoSubtrees(i− δ, T , T ′, root(T))

35

	Finding many Collisions via Reusable Quantum Walks

