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Abstract. As of today, the Hermite constants γn are only known for
n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 24}.
We noted that the known values of (4/γn)n coincide with the values of
the minimal determinants of any n-dimensional integral lattice when the
length of the smallest lattice element µ is fixed to 4.

Based on this observation, we conjecture that the values of γn
n for n =

9, . . . , 23 are those given in Table 2.

We provide a supporting argument to back this conjecture. We also pro-
vide a provable lower bound on the Hermite constants for 1 ≤ n ≤ 24.

1 The Observation

Hermite constants γn determine how short a lattice element can be. γn is de-
fined as follows: Let L be a lattice in Euclidean space Rn with unit co-volume.
Denoting by λ1 the minimal length of a nonzero element of L we denote by √

γn
the maximal value of λ1 over all such lattices L. Table 1 gives all known values
of γn

n :

n 1 2 3 4 5 6 7 8 9...23 24

γn
n 1 4

3
2 4 8 64

3
64 28 ? 248

Table 1. All known values of γn
n

During the implementation of post-quantum encryption algorithms, we noted
that the eight ratios between the first known Hermite constant values and 2n

coincide with the values α2,n of the minimal determinants of any n-dimensional
integral lattice when we fix the length of the smallest lattice element to µ = 2.
Because this coincidence does not hold for n = 24 we further investigated what
happens for higher µ values.

It turns out that all 9 known values of (4/γn)
n coincide with α4,n, which

is the equivalent of α2,n when µ = 4. The quantities αµ,n are known for µ ∈
{2, 3, 4}, n ≥ 0 [CS99] and are lattice-related, which makes the following conjec-
ture reasonably likely:



Conjecture 1. For 1 ≤ n ≤ 24:

γn
n =

4n

α4,n

where α4,n is the minimal determinant of any n-dimensional 4-norm integral
lattice.

If Conjecture 1 is true then the values of γn
n for n = 9, . . . , 23 would be those

given in green in Table 2.
In addition, our estimates coincide with two other values for n = 9, 10 given

(with an apparently incomplete proof [Cox47]) in [Cha46].

n α2,n α4,n 2n 4n 2n/α2,n 4n/α4,n γn
n

1 2 4 21 41 20 20 20

2 3 12 22 42 22/3 22/3 22/3
3 4 32 23 43 21 21 21

4 4 64 24 44 22 22 22

5 4 128 25 45 23 23 23

6 3 192 26 46 26/3 26/3 26/3
7 2 256 27 47 26 26 26

8 1 256 28 48 28 28 28

9 2 512 29 49 28 29 29

10 3 768 210 410 210/3 212/3 212/3
11 2 972 211 411 210 220/35 ?
12 1 729 212 412 212 224/36 ?
13 2 972 213 413 212 224/35 ?
14 1 768 214 414 214 220/3 ?
15 1 512 215 415 215 221 ?
16 1 256 216 416 216 224 ?
17 1 256 217 417 217 226 ?
18 1 192 218 418 218 230/3 ?
19 1 128 219 419 219 231 ?
20 1 64 220 420 220 234 ?
21 1 32 221 421 221 237 ?
22 1 12 222 422 222 242/3 ?
23 1 4 223 423 223 244 ?
24 1 1 224 424 224 248 248

Table 2. Values of γn
n , α2,n, α4,n, the coinciding values are shown in blue and the

mismatch for µ = 2 is shown in red. The two values of [Cha46] are shown in magenta.
The conjectured values are given in green.

The observation fits with the known bounds of γn (the classical Γ -function
one and [WCW19]). Namely:

n

2πe
< γn =

4
n
√
α4,n

≤ 2

π
Γ (2 +

n

2
)2/n <

n

8.5
+ 2 for 1 ≤ i ≤ 24
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The conjectured values that we get for γn
n are remarkably close to the line

(n−1)/8+1 but this is unfortunately incompatible with the (crude) upper bound
having a slope of 1/8.5 as both lines meet at n = 153. The next “natural” line
having a slope < 1/8.5 and lower bounding all the values we found is (n−1)/9+1.
Given that from 17 and on we see a takeoff from (n− 1)/9 + 1, if this takeoff is
indeed preserved for higher values we may consider (n− 1)/9 + 1 as a plausible
candidate lower-bound. We also note that for all 24 known and conjectured
values:

0 < Γ (2 +
n

2
)2/n − γn <

1

2
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Fig. 1. The conjectured values are shown in violet. The blue line is the proved Γ -
function bound. The black line is the Γ -function bound minus 1/2

.

2 Motivation

The outline of our reasoning is the following: we depart from the observation
that the problem of computing Hermite constants and the problem of computing
smallest determinants are equivalent. However, to our knowledge solutions to the
smallest determinant problem are only known for integral lattices and µ = 2, 3, 4.

We conjecture that the two problems are still equivalent even when one re-
stricts the minimal determinant problem to even integral lattices. First we restate
some well known definitions.
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Fig. 2. The conjectured values are shown in violet. The red
line is (n− 1)/9 + 1. The orange line is the proved upper bound n/8.5 + 2, the blue

line is the proved Γ -function bound. The green line is the proved lower bound
n/(2πe).

Definition 1 (Hermite function). Let Ln be the set of all lattices with di-
mension n and L ∈ Ln. The Hermite function is defined as:

γ(L) =
µ

det(L)
1
n

where µ = min(L) is the length of the smallest nonzero element of L.

A simple property of the Hermite function is the invariance under scaling.

Theorem 1 (Invariance under scaling). Let c ∈ R>0 and γ(L) be the Her-
mite function. It holds that:

γ(cL) = γ(L)

Proof. This follows directly from the definition of the Hermite function. □

Definition 2 (Hermite constant). Let Ln be the set of all lattices with di-
mension n and L ∈ Ln. The Hermite constant γn is defined as:

γn = sup{γ(L)|L ∈ Ln}

We now have all the necessary definitions and theorems but let us first give
the intuition behind the equivalence theorem. To find a Hermite constant γn,
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imagine that one starts with an arbitrary L ∈ Ln with:

γ(L) =
µ

det(L)
1
n

The goal is now to modify L in a way that increases γ(L) up to γn. Clearly, this
can only be achieved by increasing µ or by decreasing det(L).

From the invariance under scaling we know that it is allowed to either fix
det(L) and increase µ or fix µ and decrease det(L), one can always scale up or
down in the end. Note that both approaches solve the same problem: maximizing
the ratio. Solutions to both problems are thus equivalent. More formally:

Definition 3 (L1, L2, L3). Given the set Ln of all lattices with dimension n ∈
N. Let L1 ∈ Ln be:

L1 = argmax
L

min(L)

det(L)
1
n

Let L2 ∈ Ln be:

L2 = argmax
L

1

det(L)
1
n

Let L3 ∈ Ln be:
L3 = argmax

L
min(L)

where again min(L) = µ is the length of the smallest nonzero element of L.

Theorem 2 (Equivalence). Let Ln be the set of all lattices of dimension n,
γ(L) be the Hermite function, γn the Hermite constant of dimension n and L1,
L2 and L3 be defined as above. It holds that:

γn = γ(L1) = γ(L2) = γ(L3)

Proof. This follows directly from Theorem 1. □

2.1 The problem of integral lattices

The question remains why the sequences calculated from α2,n and α4,n differ for
n ≥ 9. This follows from the fact that the values of αµ,n were computed with
the restriction to integral lattices. This means that the determinant cannot get
smaller than 1. Now a problem arises when µ is fixed and det(L) = 1. Under
such circumstances we can no longer decrease det(L) and µ is fixed so the only
scaling comes from the dimension (the root in the denominator).

This explains perfectly why 2n

α2,n
works until n = 8 but not after. Because for

n = 8 we hit det(L) = 1. This also suggests that the results we obtained for 4n

α4,n

are only optimal until n = 24, but also gives good reason to conjecture that until
then they are in fact optimal. More importantly, this gives an indication how to
find the next Hermite constants for n > 24: solve the problem of the minimal
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determinant of n dimensional lattices with a bigger µ. Whether µ needs to be
a power of two or just even is unclear. To be safe we choose even. This in turn
allows us to formulate the more general conjecture:

Conjecture 2. For any n ≥ 0:

γn
n =

µn

αµ,n

where αµ,n is the minimal determinant of any n-dimensional µ-norm integral
lattice and µ is even and chosen big enough.

2.2 Lower bound on γn

If in fact it should turn out that neither Conjecture 1 nor 2 are true we note
that the values from our observation still provide a provable lower bound on the
Hermite constants for 1 ≤ n ≤ 24.

An open question: It is clear that the restriction to integral lattices in the cal-
culation of the αµ,n will lead to problems when the determinant reaches its mini-
mum. It can also be seen that the approach doesn’t work for µ = 3. We think that
this also follows from this restriction to integral lattices. The question remains
why this restriction does not lead to other problems and non-optimal solutions
for the even/power-of-two lattices before the determinant limit is reached. In our
reasoning the restriction to integral lattices is not needed but to our knowledge
only solutions to the restricted problem are known.

Reverse-engineering the constants? Note that all known and conjectured
Hermite constants up to γ24

24 can be written as a power of 2 that is sometimes
divided by a power of three. We assume the conjecture to hold and denote this
as

γn
n =

4n

α4,n
=

2vn

3un
= 2vn−log2(3)ui

These powers feature a symmetry in value and position if we start from n = 0,
see Table 3. This can be written as:

γ24−n
24−n = 248−4nγn

n for 1 ≤ n ≤ 24

Given that there is a symmetry around element n = 12, it might be possible
that this symmetry is further preserved after n = 24 in a way unknown so far,
thereby revealing more information on higher value Hermite constants.

Let δ = 2 − log2(3) and ℓ(n) = n log2 γn = un − log2(3)vn, and denote by
n̄ = |6− n

2 |. Then:

⌊ℓ(n)⌋ =
⌊
(n− 4)2

8

⌋
− |n̄− 2| − n̄+ 8
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This can be further refined because ℓ(n)−⌊ℓ(n)⌋ equals −δ when n = 2 mod
4. We can hence add those periodical values to further refine the estimator to:

∆n =

⌊
(n− 4)2

8

⌋
− |n̄− 2| − n̄+ 8 + δ

⌊
n− 3 mod 4

3

⌋
∆n differs from ℓ(n) only by 5δ− 2 ≃ 0.07518 for n = 11, 13 and by 6δ− 2 ≃

0.49022 for n = 12. As values range between 0 and 48, the relative order of
magnitude of this discrepancy is ≃ 1% of the observed phenomenon’s scale for
n = 12 and even less for n = 11, 13.

It is possible to silence the discrepancies for n = 11, 13 by adding to ∆n a
further corrective term of

(5δ − 2)(1− n̄+ |1− n̄|)

and then tackle n = 12 in a similar manner but this renders the formula
more artificial and seems to hinder rather than clarify its nature. With such a
correction the two quantities differ only by 4δ − 2 = 0.33985 at one single point
(n = 12). Note that this formula might summarize the behavior for n ≤ 24 but
not beyond n = 26 because for n ≥ 26 the conjectured value of ⌊ℓ(n)⌋ exceeds
the Γ upper bound.

The relationship un = ⌊ 5
8 (vn − ⌊ℓn⌋)⌋1 and the near-coincidence between un

and (vn − ⌊ℓn⌋)/2 (that differ by one unit at n = 11, 12, 13) clearly point to a
structure yet to be explained. The following additional observations related to
similar mathematical objects may provide further hints.

Additional observations: It is worthy noting that ⌊n2/8⌋ behavior is also
deeply hidden in Table I page 594 of [CS82]. We first noticed that 2nλ24+n = λn

for n = 0, . . . , 23. Then defining

4n−24

λn
=

2u
′
n

3v
′
n

for n = 25, . . . , 47

we noted that v′n = 1 when n mod 4 = 2 and that f(n) = u′
n+2v′n−⌊ (n−24)2

8 ⌋
presents three perfect linear regularities shown in Figure 4.

This provides a direct way to compute λn. A direct beautiful formula for λn,
valid for n = 0, . . . , 47, is:

λn =

(
3

4

)⌊n+1 mod 4
3 ⌋

×2
||n̄|−2|+|n̄|−

⌊
(n̄−2)2

2

⌋
−n⌊ n

24−1⌋−2
where n̄ = 6− n mod 24

2

A similar plateau appears in lattice Kn (Table II, page 601 of [CS82]) as shown
in Figure 3 where u′′

n and v′′n denote the powers of 2 and 3 found in κn.

1 This simply stems from the fact that ⌊ 5
8
⌈n log2(3)⌉⌋ = n for 1 ≤ i ≤ 16.
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n un 2n−vn

0
1 2
2 1 2
3 5
4 6
5 7
6 1 6
7 8
8 8
9 9
10 1 8
11 5 2
12 6
13 5 2
14 1 8
15 9
16 8
17 8
18 1 6
19 7
20 6
21 5
22 1 2
23 2
24

Table 3. Symmetry in the powers of 2 and 3 in 4n/α4,n.
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Fig. 3. u′′
n + 2v′′n for n = 1, . . . , 24.
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Fig. 4. u′
n + 2v′n − ⌊ (n−24)2

8
⌋ for n = 25, . . . , 47.

3 Conclusion

This note formulates conjectures relating to the values of Hermite constants for
9 ≤ n ≤ 23. We explicit coherent regularities in the values of the conjectured
constants and show that other lattice-related constants share similar features,
notably a behavior governed by ⌊ (n−c1)

2

c2
⌋ for constants c1, c2.
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