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Abstract. Quantum computing is considered among the next big leaps in the computer science.
While a fully functional quantum computer is still in the future, there is an ever-growing need to
evaluate the security of the secret-key ciphers against a potent quantum adversary.
Keeping this in mind, our work explores the key recovery attack using the Grover’s search on the three
variants of AES (-128, -192, -256) with respect to the quantum implementation and the quantum
key search using the Grover’s algorithm. We develop a pool of implementations, by mostly reducing
the circuit depth metrics. We consider various strategies for optimization, as well as make use of the
state-of-the-art advancements in the relevant fields.
In a nutshell, we present the least Toffoli depth and full depth implementations of AES, thereby
improving from Zou et al.’s Asiacrypt’20 paper by more than 98 percent for all variants of AES. Our
qubit count - Toffoli depth product is improved from theirs by more than 75 percent. Furthermore, we
analyze the Jaques et al.’s Eurocrypt’20 implementations in details, fix its bugs and report corrected
benchmarks. To the best of our finding, our work improves from all the previous works (including the
recent Eprint’22 paper by Huang and Sun) in terms of Toffoli/full depth and Toffoli depth - qubit
count product.
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1 Introduction

In the current situation in the world of cryptography, quantum computers are considered an
upcoming major threat. This is due to the innate nature of how the quantum computers can
efficiently model and solve certain problems. There is an overlap between the problems efficiently
solvable by a functional quantum computer and those act as the backbones to certain cryptographic
systems. Those problems are hard to solve by a classical computer, hence considered secure as of
now, but the security of those systems may be threatened if quantum computers become viable in
the future. It is well-known that the public key cryptography will have severe consequence [32],
still the secret-key counterpart will likely not be completely unscathed either. Depending on the
structure, a secret-key cipher, too, can have severe security flaw against a quantum computer (refer
to [22,39]).

One serious way for this to manifest arises from the observation that, a lot of the post-quantum
ciphers use some secret-key ciphers internally as a component in one way or the other (apart from
the standalone usage of the secret-key ciphers). This is evident from the current portfolio of the
Post-Quantum Cryptography (PQC) standardization3 being organized by the US government’s
National Institute of Standards and Technology (NIST)4. While the core components of ciphers
are based on a problem presumed to be quantum-safe, due to the usage of secret-key ciphers,

We thank Da Lin (Hubei University, Wuhan, PR China) for the kind support.
3https://csrc.nist.gov/projects/post-quantum-cryptography.
4For example, the Public Key Encryption & Key Encapsulation Mechanism (PKE & KEM) finalist CRYSTALS-

KYBER [51] and the Digital Signature (DS) finalist CRYSTALS-DILITHIUM [25] use SHA-3 in some form.

https://csrc.nist.gov/projects/post-quantum-cryptography
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it may be possible for the attacker to bypass the overall security claim (i.e., by exploiting only
the secret-key component). In other words, it may just so happen that the secret-key component
becomes the security bottleneck of the a post-quantum cipher (despite the core components being
secure) against a potent quantum computer. Therefore, it is probably a commendable plan to
consider the quantum security of the secret-key ciphers, to be on the safe side.

Ultimately, the NIST call for post-quantum ciphers specified five levels of security. Each of
the levels are defined over secret-key ciphers (variants of AES for PKE & KEM, and variants of
SHA-3 for DS). As noted in [38, Section 1], this essentially calls for a concrete and precise resource
estimates that would be required by an attacker with a quantum computer at disposal.

Therefore, finding quantum vulnerabilities of a secret-key cipher is among the top research
directions (see Section 1.3 for related works). One of the main way an attacker with a functional
quantum computer can try to mitigate the security of the secret-key ciphers is by running the
Grover’s search algorithm [31] (refer to Section 1.2 for an overview). As a rule of thumb, it reduces
the search space to nearly square root complexity (with a high probability).

Our work makes a humble attempt to conduct a detailed and systematic quantum assisted
exhaustive search on the AES family of block ciphers (AES-128, AES-192 and AES-256) [17]. Most
recent papers about AES quantum implementations focus on reducing the number of qubits, but
do not give much consideration to the depth of the circuit [1, 30, 43, 54, 55, 59]. That said, until
a few years ago, quantum computers could not use enough qubits. However, it is hard to say
that today’s quantum computers are small anymore. Quantum computers that will emerge in the
near future are not small, and this can be observed in IBM’s quantum computer development
roadmap5. In the Noisy Intermediate-Scale Quantum (NISQ) era, Toffoli depth is probably the
most important metric for error-prone quantum computing [59] and full depth is related to the
execution time of circuits [10]. The importance of depth is also observed in NIST’s post-quantum
security requirements. In estimating the complexity of quantum attacks, NIST uses only the
number of gates and depth as metrics, not the number of qubits [49].

We revisit recent research works to incorporate state-of-the art improvements in various related
areas, in a bid to reduce the cost (qubit count, gate count), circuit depth (Toffoli depth, full depth)
and/or cost-depth trade-off (Toffoli depth × qubit count) of the quantum circuits. In the process,
we carefully weigh and choose from a number of possible options.

1.1 Contribution and Organization

We discuss in detail about the considerations/choices that are made during design separately for
AES in Section 2. In particular, we optimize AES for quantum computers, keeping the focus on the
Toffoli depth and full depth (our AES quantum circuits attain the least Toffoli and full depths).
Further, we also consider the Toffoli depth × qubit count as a trade-off (since the qubit count is
also an important metric).

We observe that the implementation by [38] contains some programming related issue, which
probably results in underestimating the resources for non-linear components (the same issue was
reported by the Asiacrypt’20 authors [59], and they did not use those results either); although
the linear components are not affected. We patch the issues (such as impossible parallelism and
omitting initialization of ancilla qubits) and estimate the correct quantum gates and depth from
the number of qubits they report in Section 3.

Main results are consolidated in Section 4 (cost of the implemented quantum circuits), and
Section 5 (cost for running the Grover’s search). Comparison of our implementations with respect
to the previous works are shown in Table 4 for the three variants of AES. Table 1 shows the overall

5https://research.ibm.com/blog/ibm-quantum-roadmap.

https://research.ibm.com/blog/ibm-quantum-roadmap
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performance gain of our work with respect to previous AES implementations. It can be seen that
we make significant improvement over the Asiacrypt’20 paper [59] (such as our Toffoli depth is
reduced by over 98% for AES-128) and also the bug-fixed version of the Eurocrypt’20 paper [38].
We also include the two improved implementations done in [33] for a quick comparison. In [33],
the qubit count and Toffoli depth of the AES quantum circuit are determined by the number of
parallel S-box implementations which is denoted by p. For p = 18, more S-boxes operate in parallel,
reducing the Toffoli depth, but increasing the qubit count. In contrast, when p = 9, the fewest
qubit counts are obtained, but the Toffoli depth is increased.

In [33], the trade-off of the number of qubits-depth for the AES quantum circuit is determined
according to p. As p increases, the Toffoli depth decreases, but the number of qubits increases,
and the details are described in [33].

We develop multiple quantum implementations of the ciphers in the AES family (AES-128,
AES-192 and AES-256), and report the least depth implementations so-far (with moderate number
of qubits and quantum gates). Optimization is done at three levels, namely individual component
level (S-box, MixColumn etc.), architecture level (16 S-boxes to make 1 SubBytes, 4 MixColumn
to make 1 MixColumns etc.), and finally by sharing of resources among the modules. We present a
pool of three implementations, each optimized for a specific objective (see Section 1.4 for related
discussion):

� The regular version uses the least qubit count in our work and reduces Toffoli circuit depth
compared to the previous works for all the 3 variants.

# The shallow version runs all parallel-executable parts of AES simultaneously, including reverse
operations. The depth of one round only counts SubBytes + MixColumns, which is ideal. The
shallow version takes the least qubit cost and Toffoli circuit depth product with an improved
pipeline architecture. According to [59], this is an important a notion of circuit complexity.

✠ Further, the shallow/low depth version looks for reducing the circuit depth by opting for a low
quantum depth implementation of MixColumn (which was found in [44]).

We present 8 distinct implementations for each variant of AES (thus, 24 implementations
altogether):
1. Regular version

(a) Depth-3 S-box [33], MixColumn [56]
(b) Depth-4 S-box [33], MixColumn [56]

2. Shallow version
(a) Depth-3 S-box [33], MixColumn [56]
(b) Depth-4 S-box [33], MixColumn [56]

3. Shallow/low depth version
(a) Depth-3 S-box [33], MixColumn [44]
(b) Depth-4 S-box [33], MixColumn [44]

4. Bug-fixed code of [38]
(a) In-place MixColumn [38]
(b) Maximov’s MixColumn [47]

We conclude in Section 6. Some additional information/discussion can be found in Appendices
A (description of the AES variants), B (details about implementation and result) and C (a brief
comparison of classical and quantum depths). Our source codes are written in IBM ProjectQ6,
which is a Python-based open-source framework for quantum computing. All our relevant source
codes can be accessed as an open-source project7.

As noted, we make use of the state-of-the-art progress in the relevant areas. For instance,
coming to the implementation of AES MixColumn, a few have been proposed in a relatively short
time [45,46,47,56]. We have experimented with all these, and ultimately choose that of [56] (for
regular and shallow versions) and [46] (for shallow/low depth version).

Throughout this paper, we use the following shorthand notations: T (T -gate), #T (T -gate
count), T -depth, #M (qubit count), and #TD (Toffoli depth).

6Homepage: https://projectq.ch/.
7https://github.com/starj1023/AES QC.

https://projectq.ch/
https://github.com/starj1023/AES_QC
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Table 1: Performance comparison of AES quantum implementations.

Cipher Source #TD✒ #M✑ #TD ×#M✒✑ Full depth

A
E
S
-1
2
8

GLRS [30] 12,672 (99.76) 984 (−84.55) 12,469,248 (97.96) 110,799 (99.12)

LPS [43] 1,880 (98.41) 864 (−86.43) 1,624,320 (84.32) 28,927 (96.62)

ZWSLW [59] 2,016 (98.51) 512 (−91.96) 1,032,192 (75.32) ·
HS [33] (p = 18) 820 (95.12) 492 (−92.27) 403,440 (30.86) ·
HS [33] (p = 9) 1,558 (97.43) 374 (−94.13) 582,692 (56.29) ·

JNRV [38] (fixed) 2,394 (98.33) 1,656 (−74.00) 3,964,464 (93.58) 33,320 (97.07)

This work 40# ✠ 6,368# 254,720# 978#

A
E
S
-1
9
2

GLRS [30] 11,088 (99.68) 1,112 (−83.37) 12,329,856 (97.34) 96,956 (98.79)

LPS [43] 1,640 (97.81) 896 (−86.60) 1,469,440 (78.15) 25,556 (95.41)

ZWSLW [59] 2,022 (98.22) 640 (−90.43) 1,294,080 (75.19) ·
JNRV [38] (fixed) 2,682 (98.21) 1,976 (−70.46) 5,299,632 (93.94) 37,328 (96.86)

This work 48# ✠ 6,688# 321,024# 1,174#

A
E
S
-2
5
6

GLRS [30] 14,976 (99.72) 1,336 (−80.85) 20,007,936 (98.05) 130,929 (98.95)

LPS [43] 2,160 (98.06) 1,232 (−82.34) 2,661,120 (85.32) 33,525 (95.89)

ZWSLW [59] 2,292 (98.17) 768 (−88.99) 1,760,256 (77.81) ·
JNRV [38] (fixed) 3,306 (98.31) 2,296 (−67.09) 7,590,576 (94.85) 46,012 (97.01)

This work 56# ✠ 6,976# 390,656# 1,377#

Parenthesized numbers show % improvement reported in this work.

✒: #TD is Toffoli depth.

✑: #M is qubit count.

�: Regular version (using MixColumn from [56].

#: Shallow version (using MixColumn from [56]).

✠: Shallow/low depth version (using MixColumn from [44]).

Reflection on Huang and Sun (Eprint’22) We are aware of the parallel development by
Huang and Sun (Eprint’22) [33]. The content of this paper only revolves with AES-128, and can
be summarized as:

• Improve from the Asiacrypt’20 paper’s [59] qubit count and performance.

• Choose an improved S-box implementation atop the Eurocrypt’20 implementation [38] with
proposal for a quick fix for the qubit count.

In our humble opinion, this fix done by [33] on the Eurocrypt’20 implementation is not perfect
(based on the Q# code8. Also, the number of qubits was estimated manually in [33, Table 7] in
the bug-fix of [38]. Not counting the bug-fix, they only proposed two versions, for AES-128 in
total (depth-3 and depth-4 S-box implementations, both using the MixColumn implementation
from [56]), whereas we implemented eight versions.

In our paper the main contributions are, low depth implementations of AES and a thorough
bug-fixing of the Eurocrypt’20 implementations. Our approaches are mostly disjoint from that
of [33]; and when their S-box implementation is used in our implementation, our result outperforms
theirs (thus we have the best-known implementation so far). Parallelism is a major focus in their
work, which we pursue through our shallow version. As one can see from Table 1, our results are
indeed better than those are reported in [33]. Further, we cover optimized quantum implementations
of AES-192 and AES-256 as well.

8https://github.com/AES-quantum-circuit/AES-quantum-circuit.

https://github.com/AES-quantum-circuit/AES-quantum-circuit
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1.2 Quantum Key Search using Grover’s Algorithm

For a secret-key cipher using an k-bit key, 2k queries are required for the exhaustive key search.
The Grover’s search [31] is a well-known quantum algorithm that recovers the key with a high
probability in about ⌊π4

√
2k⌋ queries. The procedure can be briefly described as follows (some basic

familiarity with the quantum notations/terminology is assumed, one may refer to, e.g., [21, 48] for
a more detailed description):

1. A k-qubit key is prepared in superposition |ψ⟩ by applying Hadamard gates. All states of
qubits have the same amplitude:

|ψ⟩ = H⊗k |0⟩⊗k =
( |0⟩+ |1⟩√

2

)
=

1

2k/2

2k−1∑

x=0

|x⟩ (1)

2. The cipher is implemented as a quantum circuit and placed in oracle. In oracle f(x), the
plaintext is encrypted with the key in the superposition state. As a result, ciphertexts for all
key values are generated. The sign of the solution key is changed to a negative by comparing it
with the known ciphertext. The condition (f(x) = 1) changes the sign to negative and applies
to all states. For this phase flip, an n-qubit controlled Z gate is utilized (n is the length of the
ciphertext).

f(x) =

{
1 if Enc(k) = c

0 if Enc(k) ̸= c
(2)

Uf (|ψ⟩ |−⟩) =
1

2k/2

2k−1∑

x=0

(−1)f(x) |x⟩ |−⟩ (3)

3. Lastly, the diffusion operator9 amplifies the amplitude of the negative sign state. Diffusion
operator is implemented with the following (H gates layer→ X gates layer→ k-qubit controlled
Z gate → X gates layer → H gates layer). In [50], a simple technique was introduced by which
a constant number of X gates are used for the diffusion operator. If a constant number of X
gates are applied before the Hadamard gates in Step 1, the diffusion operator is implemented
as (H gates layer → k-qubit controlled Z gate → H gates layer).

The Grover’s search executes Equations (2), (3) and diffusion operator in a series to sufficiently
increase the amplitude of the solution and observes it at the end. For an k-bit key, the optimal
number of iterations of the Grover’s search algorithm is roughly ⌊π4

√
2k⌋ [16], which is about

√
2k.

In the process, an exhaustive key search that requires 2k queries in a classic computer is reduced
to roughly

√
2k queries in a quantum computer (this works with a high probability).

In the exhaustive key search, r = ⌈k/n⌉ (plaintext, ciphertext) pairs are needed to recover a
unique key that is not a spurious key (see Section 5 for details). Figure 1 shows the Grover’s oracle
of exhaustive key search. Encryption† is defined as the reverse operation of encryption, which
reverts to the state before encryption.

1.3 Related Works

Quantum analysis of secret-key ciphers with respect to the Grover’s search algorithm is one
of the major research direction now-a-days. Some of the prominent examples include, but not

9Since the diffusion operator is usually generic, it does not require any special techniques to implement.
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|kÍ
Enc Enc†

|kÍ
|mÍ |mÍ

|0Í • |0Í
|≠Í |≠Í

Figure 15: temp1
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=

(a) Grover’s oracle for r = 1.

D Issue with Q# A�ecting Eurocrypt’20 Implementations952

In this part, we give a brief explanation of the cases where Q#’s ResourcesEstimator issues953

arise and how those issues a�ect the Eurocrypt 2020 paper’s [JNRV20] quantum benchmarks.954

As noted in [ZWS+20] and in Section 7.2, this apparently leads to underestimation of gate955

count, qubit count and depth reported in [JNRV20] for both AES (S-box, S-box≠1) and956

LowMC (S-box). This was discovered when we tried to cross-check their publicly available957

source codes10.958

To our understanding, some problems arise if the qubits are allocated by the using959

command in Q# (and it a�ects the non-linear components). However more experiments960

are to be carried out in order to be completely certain about it.961

The using command automatically disposes when the function ends. If ancilla qubits962

to implement AES S-box are allocated with the using command, the consistency between963

depth and qubits is lost. When 16 S-boxes are executed in SubBytes, the ancilla qubits964

allocated by the using are counted only for the first S-box and not after. Also counts the965

depth for executing 16 S-boxes simultaneously. In order to derive the correct result, the966

number of qubits or depth must be increased. To be modified, the number of qubits must967

be increased or the depth must be increased. Q#’s Resources Estimator tries to find its968

own lower bound for depth and qubit. That is, to achieve the qubits of the lower bound,969

the depth may have to be increased, and to achieve the depth of the lower bound, the970

qubits may have to be increased.971

Another problem is that ancilla qubits allocated by using command are always prepared972

in a clean state. After S-box operation, ancilla qubits are not in a clean state(i.e. not all973

zeros), so they cannot be used in the next S-box as it is. However, the qubits allocated by974

the using command are always set to 0, the impossible S-box operation becomes possible.975

This is possible if new ancilla qubits are allocated for every S-box, but the qubits do not976

increase in resource estimation. This issue leads to returning a lower bound on the number977

of gates because the reverse operation is ignored. These issues are not problematic for978

single estimates (e.g cost for one S-box). For this reason we only use a few of the results979

reported in [JNRV20] with caution. However, in the current version, these issues seem to980

be resolved11.981

These issues allow designing quantum circuit structures that are impossible. For982

example, encryption can be performed without a cleaning up operation in S-boxes. It983

seems di�cult to estimate after solving the issues in [JNRV20], since apparently there984

is no quick fix and hence a considerable e�ort to change the design structure is to be985

made. Therefore, we skip reporting the correct estimate of [JNRV20] after the Q# patch986

is applied, rather keep it as a future work.987

|kÍ •
Enc Enc†

• |kÍ
|m0Í |m0Í

|0Í • |0Í
|0Í

Enc Enc†

|0Í
|m1Í |m1Í

|0Í • |0Í
|≠Í |≠Í

Figure 14: temp1

10https://github.com/microsoft/grover-blocks.
11https://github.com/microsoft/qsharp-runtime/pull/404.
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=

(b) Grover’s oracle for r = 2.

Fig. 1: Schematic architecture for key search using Grover’s algorithm.

limited to, AES [13,38, 42, 43, 59]10, SIMON [6], SPECK [5,34], PRESENT and GIFT [36], SHA-2
and SHA-3 [2], FSR-based ciphers [4], ChaCha [9], SM3 [52,57], RECTANGLE and KNOT [7],
DEFAULT [35].

However, this is not the only active direction of research; there are other avenues which try to
find an efficient quantum attack for a secret-key cipher. One may, for instance, refer to classical
attacks that are ported to the quantum realm [28,40], or specialized quantum attacks like [12,23,24].
These avenues, though important, are out-of-scope for our current work.

1.4 Regular and Shallow Versions

Our quantum circuit implementations are divided into regular and shallow versions. The regular
version offers high parallelism while taking into account the trade-off of qubit-depth. The shallow
version also considers the trade-off of qubit-depth, but further reduces the depth by burdening the
use of qubit. The shallow version has the best performance in terms of Toffoli depth and Toffoli
depth-qubit count product; and taken as the default option in this paper. The shallow/low depth
version seems to achieve the lowest depth for quantum circuit implementation.

The regular version of AES focuses on the parallelism within the round. In the regular version,
when the next round is continued, waiting occurs due to the reverse operations of the previous
round. In other words, the next round cannot start until the reverse operation is complete. On the
other hand, the shallow version of AES succeeds in parallelization while processing all rounds. In
the shallow version , the reverse operation of the previous round is run simultaneously with the
operations of this round in an alternate approach. The shallow version uses more qubits, but offers
lower depth because all rounds of parallel-operable parts run completely simultaneously. Shallow
version achieves an ideal circuit depth that counts as depth of SubBytes plus MixColumns in every
round (except the last round, which only counts SubBytes).

2 AES in Quantum

Most papers implementing quantum circuits for AES focus on reducing the usage of qubits
[1, 30, 43, 55, 59]. However, the serial circuit structure is forced to reduce the qubits, which
significantly increases the circuit depth. Our quantum circuit implementations for AES considers
the trade-off of using qubits in the best possible way to reduce circuit depth. As a result, our AES
quantum circuit implementations provide the best trade-off in #TD ×#M , where #TD is the

10As far as we can tell, the authors of [13] only made some estimates but did not present any implementation.
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Toffoli depth, and #M is the number of qubits. This product is taken as the trade-off indicator for
the quantum circuit presented in [59].

2.1 Regular Implementations of AES Quantum Circuits

The round function of AES is composed of SubBytes, ShiftRows, MixColumns, and AddRoundKey.
For the key schedule, an on-the-fly approach is adopted, and our AES quantum circuit imple-
mentation executes the key schedule simultaneously with SubBytes in the round function. All
the S-boxes in key schedule and round function are designed to operate in parallel. That is, the
depth is the same as operating an 8-bit S-box once. Quantum implementation for S-box is required
for key schedule and SubBytes, and S-box occupies the most resources in AES quantum circuit.
In [30], Grassl et al. used Itoh–Tsujii inversion to implement S-box of AES, which requires a lot of
quantum resources. Recently, the hardware design for AES has been adopted to implement an
efficient S-box quantum circuit. In particular, S-box implementation techniques [14,15] proposed by
Boyar-Peralta were frequently used. In [43], Langenberg et al. adopted the S-box implementation
of [14] and converted it to suit their purpose of reducing qubits. The S-box implementation of [14]
was adopted and improved in [58]. Zou et al. [59] also used the S-box−1 implementation in designing
a new architecture for AES that reduced number of qubits.

2.2 Implementation of S-box (SubByte)

Table 2 shows the resources required for the näıve implementations by Boyer-Peralta [14, 15]
and the resources for the S-boxes used by the previous authors [43, 59]. Resource estimation is
performed in IBM ProjectQ and according to the method of [3], one Toffoli gate is decomposed
into 7 T gates + 8 Clifford gates, T -depth of 4 , and full depth of 8.

Apart from these, another method which is a courtesy of Dansarie [18,19] exists. This is rather
generic, as it can find implementation of an arbitrary 8-bit S-box (i.e., not specific to the AES
S-box, which is the case for [14,15]), with respect to a user-provided set of logic gates. With the
publicly available source codes11 we checked the implementation of the AES S-box. However, the
cost for the AES S-box seems to be more than 400 gates, therefore we kept the proper applicability
of [18,19] as a future work.

Table 2: Comparison of quantum resources required for S-box implementations.

Method #CNOT #1qCliff #T #TD #qubits (M) Full depth

S-box [14] 358 68 224 8 123 104

S-box [15] 392 72 238 6 136 85

S-box [43] 628 98 367 40 32 514

S-box [59] 437 72 245 55 22 339

S-box [33]☼ 418 72 238 4 136 72

S-box [33]⊛ 824 160 546 3 198 69

☼⊛: Used in this work.

If the Boyer-Peralta’s S-box implementations [14, 15] are näıvely ported to quantum, the
quantum version of [15] requires more ancilla qubits (i.e., 120 ancilla qubits excluding input and
output) than the quantum version of [14] (107 ancilla qubits), but provides lower depth. In [38],
Jaques et al. adopted the näıve implementation of the S-box of [15] on a quantum circuit.

11https://github.com/dansarie/sboxgates.

https://github.com/dansarie/sboxgates
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Very recently, Huang and Sun reported an improved quantum implementation for the S-box
of [38] in their Eprint’22 paper [33]. They presented two quantum implementations of reduced
Toffoli depth with new observations of the classical implementation of the AES S-box as given
in [15]. The first version reduceed the Toffoli depth without increasing the number of qubits, while
the second version used more qubits to further reduce the Toffoli depth.

In [43, 59], the authors extended the first S-box implementation by Boyar-Peralta [14] and
presented the S-box quantum circuit with a reduced number of qubits. Consequently, it leaves us
with a few of ways to choose from.

Considering the trade-off between the circuit depth and the number of qubits required for
an S-box implementation, we treat two cases. The first case is when the ancilla qubits have to
be allocated per SubBytes, which is indeed sensitive to the number of qubits. The second case
is when the initially allocated ancilla qubits can be reused. In this case, there is no need to
allocate additional ancilla qubits for the next SubBytes. Therefore, the number of ancilla qubits is
maintained, but the depth increases accordingly. We choose the second S-box implementation for
our case, since we believe the benefit of depth reduction outweighs the price for initial allocation
of additional qubits. Alternatively, it is also possible to implement a method of allocating new
ancilla qubits to each S-box. In this case, since there is no need for additional operations to reuse
ancilla qubits, the fewest quantum gates and the lowest circuit depth are obtained. However, we
think that this trade-off of the number of qubits-depth (gates) places an excessive burden on the
number of qubits. Thus, we use Huang and Sun’s [33] S-box implementations with relatively high
qubit count but low depth.

One may note that the AES implementation in [59] required the implementation of the inverse
S-box. In our case, however, we do not use the inverse S-box.

2.3 Implementation of SubBytes

After we decide upon the implementation of one S-box (SubByte, Section 2.2), this can be used to
implement 16 S-boxes (SubBytes). Regarding the implementation of SubBytes in AES, Figure 2(a)
is the method that uses the fewest qubits. In this case, all S-boxes are executed sequentially, which
causes a significant increase in depth, as shown in Figure 2(a). On the other hand, we reduce the
depth by allocating more ancillas set initially. The notation S-box† is described in Appendix A.

In one round, 16 S-boxes in SubBytes and 4 S-boxes in key schedule, a total of 20 S-boxes are
operated, simultaneously. Therefore, we allocate 20×120 ancilla qubits for S-box with Toffoli depth
4 and 20× 182 ancilla qubits for S-box with Toffoli depth 3 to run all S-boxes simultaneously. After
S-box operations, ancilla qubits are not in a clean state (i.e., not all ancilla is 0). Initialization
(i.e., returning to 0) is performed in parallel for the next round. Figure 2(b) shows 16 S-boxes
operation in parallel using multiple ancillas sets. In [59], 16 S-boxes of SubBytes were implemented
in parallel using residual ancillas, but key schedule was not implemented in parallel with SubBytes.

2.4 Implementation of Key Schedule

In the key schedule of AES, SubWord operates on rearranged 32-qubit. Out of the 20× (120 or 182)
ancilla qubits previously decided to use (refer to Section 2.2), 4× (120 or 182) ancilla qubits are
used to simultaneously operate S-boxes for 32-qubit in the key schedule (16 × 120 or 16 × 182
ancilla qubits are used in SubBytes of round). For rearranging the 32 qubits, quantum resources
are not used by using logical swap that only changes the index of the qubits.

In SubBytes, the outputs of S-boxes are stored in new qubits. On the other hand, in the key
schedule, no additional qubits are allocated because the outputs of the S-boxes are XORed (using
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|AncillasÍ S-box • S-box† S-box • S-box† . . . S-box • S-box†

|u0≥7Í • • . . .

|s0≥7Í . . .

|u8≥15Í • • . . .

|s8≥15Í . . .

...

|u120≥127Í . . . • •

|s120≥127Í . . .

Figure 7: temp1
Kyungbae: Is Figure 4 a bit awkward?230

|AncillasÍ¢4set SubBytes(1/4) • SubBytes(1/4)† |AncillasÍ¢4set

|k0≥31Í Rotation • • Rotation† |k0≥31Í

|k32≥63Í • |k32≥63Í

|k64≥95Í • |k64≥95Í

|k96≥127Í X(RC) • |k96≥127Í

Figure 5: temp

4.1.4 Implementation of AES MixColumns231

In [XZL+20], Xiang et al. presented a novel heuristic search algorithm to globally optimize232

the implementation of linear matrices based on the decomposition theory of inverse matrices.233

It was applied to MixColumn of AES and presented an in-house implementation using 92234

XOR operations. To the best of our knowledge, [XZL+20] has never been applied to the235

implementation of quantum circuits for AES. We port the implementation of MixColumns236

in [XZL+20] to quantum(Code 2) and use it in our AES quantum circuits. Table 2 shows237

the quantum resources required to implement MixColumn of AES. The implementation of238

MixColumns in this work provides the best performance in every respect(qubits, gates,239

depth). For 4◊ MixColumn on 128-qubit, it operates simultaneously without additional240

qubits.241

Table 2: Comparison of quantum resources required for AES MixColumn implementa-
tionsAnubhab: Is this one MixColumn (32 � 32 matrix), i.e., not one MixColumns (128 � 128
matrix), right? Kyungbae: Yes, that’s right.

#CNOT #qubits Full depth
MixColumn [ASAM18] 275 32 200
MixColumn [JNRV19] 277 32 111

MixColumn [GRR16,ZWS+20] 277 32 39
MixColumn [XZL+20]† 92 32 30

†: Used in this work

4.1.5 Architecture of AES quantum circuits242

There are several architectures for designing quantum circuits of AES. The architectures243

di�er in how they store the 128-qubit output generated from SubBytes in each round.244

In [GLRS15,ASAM18,LPS20], the zig-zag architecture(Figure 6) was adopted that uses 4245

lines to save qubits by performing reverses on rounds. In [ZWS+20], an improved zig-zag246

architecture that requires only 2 lines using a quantum circuit of S-box≠1 was presented.247

The basic pipeline architecture allocates 128-qubits every round and does not need reverses248

of rounds.249

In our approach, which has already allocated many ancilla qubits, the overhead of250

increasing the number of qubits according to the architecture is relatively low. Therefore,251

for our implementation, rather than reducing the number of qubits with the zig-zag method,252

a pipeline architecture that can reduce the depth by omitting the reverses is more suitable.253

Figure 7 shows the pipeline architecture of our AES-128 quantum circuit in more detail.254

In Figure 7, SubBytes to generate 128-qubit output and SubBytes† to clean ancilla qubits255

10

Figure 8: AES-128 key schedule

for our implementation, rather than reducing the number of qubits with the zig-zag method,353

a pipeline architecture that can reduce the depth by omitting the reverses is more suitable.354

Figure 11 shows the pipeline architecture of our AES-128 quantum circuit in more detail.355

In Figure 11, SubBytes to generate 128-qubit output and SubBytes† to clean ancilla qubits356

operate serially 19 times in total(SubBytes is 10, SubBytes† is 9). Depending on the357

number of rounds, AES-192 operates 23 times and AES-256 operates 27 times. In our358

parallel design, the key schedule operates simultaneously with SubBytes and MixColumn359

operates simultaneously with SubBytes†. Therefore, the circuit depth is determined by360

the number of serial operations of SubBytes and SubBytes†. In SubBytes, S-boxes operate361

simultaneously, so the depth of SubBytes is 85 equal to the depth of S-box once. Finally,362

our AES quantum circuits provide a depth of 1,611 (about 85◊19) for AES-128, 1,926363

(about 85◊23) for AES-256, and 2,258 (about 85◊27) for AES-256.364

Additionally, we extend to a fully parallel version in which all possible parts of AES365

quantum circuits operate simultaneously. This can be achieved by using 2 sets of 20 ◊ 120366

ancilla qubits. In the fully parallel version, the first SubBytes in Figure 11 uses the first367

20 ◊ 120 ancilla qubits. The second SubBytes uses the second 20 ◊ 120 ancilla qubits, and368

at the same time SubBytes† cleans the first 20 ◊ 120 ancilla qubits. That is, SubBytes†369

operates simultaneously with the SubBytes of the next round.(Think that all SubBytes†370

in Figure 11 are pushed one space to the right.) This is possible because SubBytes and371

SubBytes† do not share ancilla qubits. Finally, the fully parallel version counts the depth372

for one round as SubBytes (85) + MixColumns (30), which is the ideal depth. The circuit373
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(a) Using 1 set of ancillas.

|AncillasÍ S-box • S-box†

|u0≥7Í • •

|s0≥7Í

|AncillasÍ S-box • S-box†

|u8≥15Í • •

|s8≥15Í

...

|AncillasÍ S-box • S-box†

|u120≥127Í • •

|s120≥127Í

Figure 6: Source code Anubhab: Looks a bit complicated... we can ignore it perhaps

It was applied to MixColumn of AES and presented an in-house implementation using 92335

XOR operations. To the best of our knowledge, [XZL+20] has never been applied to the336

implementation of quantum circuits for AES. We port the implementation of MixColumns337

in [XZL+20] to quantum(Code 2) and use it in our AES quantum circuits. Table 3 shows338

the quantum resources required to implement MixColumn of AES. The implementation of339

MixColumns in this work provides the best performance in every respect(qubits, gates,340

depth). For 4 ◊ MixColumn on 128-qubit, it operates simultaneously without additional341

qubits.342

Table 3: Comparison of quantum resources required for AES MixColumn implementations
#CNOT #qubits Full depth

MixColumn [ASAM18] 275 32 200
MixColumn [JNRV19] 277 32 111

MixColumn [GRR16,ZWS+20] 277 32 39
MixColumn [XZL+20]> 92 32 30

>: Used in this work

4.6 Architecture of AES quantum circuits343

There are several architectures for designing quantum circuits of AES. The architectures344

di�er in how they store the 128-qubit output generated from SubBytes in each round.345

In [GLRS15,ASAM18,LPS20], the zig-zag architecture(Figure 10) was adopted that uses 4346

lines to save qubits by performing reverses on rounds. In [ZWS+20], an improved zig-zag347

architecture that requires only 2 lines using a quantum circuit of S-box≠1 was presented.348

The basic pipeline architecture allocates 128-qubits every round and does not need reverses349

of rounds.350

In our approach, which has already allocated many ancilla qubits, the overhead of351

increasing the number of qubits according to the architecture is relatively low. Therefore,352
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(b) Using multiple sets of ancillas.

Fig. 2: SubBytes implementation.

CNOT gates) inside the key. Since SubWord for 32-qubit operates in parallel with SubBytes of
round, there is no depth overhead in our AES quantum circuit implementation. This approach
is already utilized in [38]. XORing the 8-bit round constant (RC) is implemented by performing
X gates to |k120∼127⟩ according to the positions where the bit value of the round constant is 1.
Lastly, the CNOT gates inside the key are performed. Figure 3 shows the quantum circuit for the
AES-128 key schedule (see Appendix A for description of Rotation† and SubWord†).

In most implementations of AES quantum circuits, the full depth and Toffoli depth of AES-128
are higher [30,38,43] or similar [59] to those of AES-192. Although AES-128 has fewer rounds, this
is due to differences in key schedule. AES-128 requires 16 S-boxes for SubBytes and 4 S-boxes for
key schedule in every round. On the other hand, some rounds of AES-192 require only 16 S-boxes
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by performing X gates to |k120≥127Í according to the positions where the bit value of the294

round constant is 1. Lastly, the CNOT gates inside the key are performed. Figure 6 shows295

the quantum circuit for the AES-128 key schedule.296

|AncillasÍ¢4set SubBytes(1/4) • SubBytes(1/4)† |AncillasÍ¢4set

|k0≥31Í Rotation • • Rotation† |k0≥31Í

|k32≥63Í • |k32≥63Í

|k64≥95Í • |k64≥95Í

|k96≥127Í X(RC) • |k96≥127Í

Figure 9: temp2

depth of AES-128 is 1,108 (about 10 rounds ◊ 115), AES-192 is 1,330 (about 12 rounds ◊374

115), and AES-256 is 1,559 (about 14 rounds ◊ 115).375

qubits by performing reverses on rounds. In [ZWS+20], an improved zig-zag architecture228

that requires only 2 lines using a quantum circuit of S-box≠1 was presented. The basic229

architecture, the pipeline, allocates 128-qubits every round and does not need reverses of230

rounds. We adopt a pipeline architecture that uses the most qubits but has the lowest231

depth. Figure 4 shows the pipeline architecture of our AES-128 quantum circuit in more232

detail.233

Pipeline, zig-zag, improved zig-zag...234

Input SB SB†

|0Í¢128 R1 SB SB†

|0Í¢128 R2 SB SB†

|0Í¢128 R3 SB SB†

|0Í¢128 R4 SB SB†

|0Í¢128 R5 SB SB†

|0Í¢128 R6 SB SB†

|0Í¢128 R7 SB SB†

|0Í¢128 R8 SB SB†

|0Í¢128 R9 SB

|0Í¢128 R10 Output

Figure 4: Pipeline architecture

6 Quantum Exhaustive Key Search243

Based on the proposed quantum circuits for SPECK, we estimate the cost of applying244

Grover’s search algorithm to exhaustive key search. Now we estimate the attack cost at245

the T + Cli�ord level, not at the NCT level. Following the approach in [AMM+13], we246

decompose the To�oli gate into 7 T gates + 8 Cli�ord gates. X gates and CNOT gates are247

counted as Cli�ord gates. In oracle, the target encryption quantum circuit is located and248

works twice due to encryption + reverse(decryption). In addition, an n-multi controlled249

NOT gate that compares the generated ciphertext(n-qubit) with a known ciphertext is250

required. An n-multi controlled NOT gate is decomposed into (32 ·n≠ 84) T gates [WR14].251

The cost of oracle is 2 ◊ Table 7(except for qubits) + (32 · n ≠ 84) T gates Anubhab:252

Which row/column of Table 7?. Kyungbae: Everything except qubits!This is shown in253

Table 8.254

The Grover search algorithm generally uses a di�usion operator of a typical structure,255

so the cost is determined according to the oracle. For this reason, it is common to estimate256

the cost based on the oracle excluding the di�usion operator [AMM20a,GLRS15,LPS20].257

The complexity of exhaustive key search for a symmetric key cipher using an n-bit key is258

O(2n). Although the Grover’s search algorithm is well known to reduce the complexity of259

O(2n) to
�

(2n), M. Boyer et al. analyzed Grover’s algorithm tightly and suggested that260

the optimal number of iterations is Â fi
4

Ô
2nÊ [BBHT98]. Therefore, the cost of the Grover261

exhaustive key search is the total gates ◊ total depth in Table 8 ◊Â fi
4

Ô
2nÊ .262

Additionally, we evaluated the post-quantum security strength for symmetric key263

cryptography presented by NIST based on the cost of Grover key search. NIST estimates264

the security strength based on the cost of Grover key search for AES estimated by Grassl265

et al [GLRS15]. Level-1 is the cost of Grover key search for AES-128 (2170), and Level-3266
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Figure 4: Pipeline architecture

gost R

Input

|0Í¢128 R1 R1
† R5 R5

† R8 R8
† R10 Output

|0Í¢128 R2 R2
† R6 R6

† R9

|0Í¢128 R3 R3
† R7

|0Í¢128 R4

Figure 5: Ziz-zag architecture

5 Performance235

Our quantum circuits of AES-128/-256 can obtain the best trade-o� of T ·M , where T is236

the To�oli depth and M is the number of qubits.237

In this section, the performance of the proposed quantum circuit for SPECK is compared238

with previous implementations. Table 5 shows the results of the first implementation239

of SPECK as quantum circuits by Jang et al [JCKS20]. They used a ripple carry-240

based quantum adder and did not take into account the room for parallel addition.241
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Figure 10: Zig-zag architecture

5 Implementation of LowMC376

LowMC round consists of SboxLayer, LinearLayer, ConstantAddition, and KeyAddition,377

and in the key schedule, round keys are generated through LinearLayer.378

5.1 Implementation of LowMC S-box379

Kyungbae: LowMC L1: 10 S-boxes, 20 rounds, 128-bit block and 128-bit key, LowMC380

L3: 10 S-boxes, 30 rounds, 192-bit block and 192-bit key, LowMC L5: 10 S-boxes, 38381

rounds, 256-bit block and 256-bit key.382

In [JNRV19], two types of quantum circuit implementations for 3-bit Sbox of LowMC383

were introduced. Table 4 shows the quantum resources required for the two versions of the384

3-bit S-box. The in-place S-box stores the output value in the input, and the shallow S-box385

additionally uses 3 output qubits and 3 ancilla qubits, but the depth can be reduced and386

the shallow S-box is adopted in their implementation. In the case of the in-place S-box,387

when the To�oli gate is decomposed, the full depth is 23, and the shallow S-box is lower388

at 12.389

There are several trade-o�s in adopting the S-box. For To�oli depth, the in-place S-box390

is 3 and the shallow S-box is 1. This is definitely an advantage for the shallow S-box. But391

for full depth, we found that the full depth of the S-box does not a�ect the full depth of392

the LowMC when using 10 S-boxes. This is because the depth for S-box is covered by393

the key schedule and the Linear layer. One thing to note is that in-place S-box can be394

operated in parallel without additional cost, but shallow S-box requires additional ancilla395

qubits for parallel operation, and qubits for output are allocated every round. Considering396

these trade-o�s, we adopt the in-place S-box in our implementation.397
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Figure 5: AES-128 key schedule in quantum

|AncillasÍ¢4set SubWord • SubWord† |AncillasÍ¢4set

|k0≥31Í Rotation • • Rotation† |k0≥31Í

|k32≥63Í • |k32≥63Í

|k64≥95Í • |k64≥95Í

|k96≥127Í X(RC) • |k96≥127Í

Figure 6: temp2

3.4 Implementation of AES AddRoundKey and ShiftRows297

The AddRoundKey operation, which XORs a 128-qubit round key, can be implemented298

simply by using 128 CNOT gates. In the case of ShiftRows, it can be implemented using299

swap gates, but quantum resources are not used through logical swap that changes the300

index of qubits. Since no special implementation technique is applied for AddRoundKey301

and ShiftRows, this approach is mostly used in quantum circuit implementations.302

3.5 Implementation of AES MixColumns303

In [XZL+20], Xiang et al. presented a novel heuristic search algorithm to globally optimize304

the implementation of linear matrices based on the decomposition theory of inverse305

matrices. It was applied to MixColumn of AES and presented an in-house implementation306

using 92 XOR operations. To the best of our knowledge, the result by [XZL+20] has307

never been applied to the implementation of quantum circuits for AES. We port the308

implementation of MixColumns in [XZL+20] to quantum (Code 2) and use it in our AES309

quantum circuits. Table 3 shows the quantum resources required to implement MixColumn310

of AES. The implementation of MixColumns in this work is e�cient in all respects (qubits,311

gates, depth). For 4 ◊ MixColumn on 128-qubit, which is denoted as MixColumns, it312

operates simultaneously without any additional qubit. If MixColumn that requires ancilla313

qubits is adopted (i.e. [LWF+22] and [LXZZ21] in Table 3), additional cost is required for314

MixColumns to be designed in parallel or to clean ancilla qubits, as in SubBytes.315
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Fig. 3: AES-128 key schedule in quantum.

for SubBytes, since SubWord in the key schedule are not required. As a result, AES-128 has a
higher depth than AES-192.

Another interpretation of this is that there is an overhead for key schedules in implementing
AES quantum circuits. However, in our AES quantum circuits there is no overhead for key
schedule (except for gates). Our AES quantum circuit runs the key schedule in complete parallel,
so we achieve the same depth as if the key schedule was omitted. As a result, unlike other
implementations, the quantum resources required for our AES-128, 192, and 256 quantum circuits
are strictly dependent on the number of rounds.

2.5 Implementation of AddRoundKey and ShiftRows

The AddRoundKey operation, which XORs a 128-qubit round key, can be implemented simply by
using 128 CNOT gates. In the case of ShiftRows, it can be implemented using swap gates, but
quantum resources are not used through logical swap that changes the index of qubits. Since no
special implementation technique is applied for AddRoundKey and ShiftRows, this approach is
mostly used in quantum circuit implementations.

2.6 Implementation of MixColumn (and MixColumns)

In [56], Xiang et al. presented a novel heuristic search algorithm to optimize the implementation
of linear layers based on factorization of binary matrices. When applied to the MixColumn of
AES, their algorithm resulted in an implementation using 92 XOR gates (with classical depth
6) in a classical circuit. A different implementation costing 92 XOR gates (with classical depth
6) was reported previously by [47]. These two were the least cost implementations in classical
circuits, until another implementation with 91 XOR gates (with classical depth 7) was found
by [45]. Recently, a new implementation of AES MixColumn was found thanks to [46], which
managed to reduce the classical depth to 3 with 103 XOR gates (cf. 103 XOR/3 classical depth
implementation from [8]). However, this work came as a tie with another implementation from [44],
albeit the latter requires 105 XOR gates.

While dealing with quantum circuit, the best option (in terms of gate cost) seems to be that
one reported by [56], as can be seen from Table 3. This implementation is relatively easier to
port to a quantum circuit, since the operations are done in-place (i.e., of the form: a ← a ⊕ b).
In contrast, implementations like that of [45,46,47], are not compatible per-se, as those require
usage of temporary variables. These temporary variables would incur additional cost (due to extra
ancilla qubits in parallel implementation) and/or depth (due to cleaning up qubits) when these
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are converted to quantum circuits. On a different direction, the implementation from [44] appears
to have lower depth than that of [46] when converted to quantum circuits.

In addition to that, a direct comparison with the quantum MixColumn implementations used
by the previous papers [1, 29,38, 59], this representation is the most efficient in terms of number of
qubits (32, a tie with [1,29,38,59]), CNOT gates (92, which is the same as the number of XOR
gates in classical, and by far and large the best).

To the best of our knowledge, the result by [56] has never been applied to the implementation
of quantum circuits for AES (except for the very recent [33]), and so is the case for [44]. We port
the implementation of MixColumn in [56] to quantum and use it in our AES quantum circuit.
This implementation is used in the regular and shallow versions. Additionally, in order to minimize
the circuit depth, we also use the MixColumn implementation from [44] in our shallow/low depth
version. In our AES quantum circuit, if we adopt an implementation that requires temporary
variables for MixColumns (i.e., not in-place), the overhead of ancilla qubits for temporary variables
is offset. This is because some of the ancilla qubits allocated from SubBytes can be reused in
MixColumns. In SubBytes, ancilla qubits are initialized to 0 for reuse in the next round. We
reuse these ancilla qubits in MixColumns as a concept to borrow for a while. If it is a stand-alone
MixColumn, ancilla qubits for temporary variables are required, but since we reuse ancilla qubits,
only 64-qubits are used for the input and output of the MixColumn.

Table 3: Comparison of quantum resources required for AES MixColumn implementations.

Method #CNOT #qubits (M) Full depth

MixColumn [29,59] 277 32 39

MixColumn [41] 194 129 15

MixColumn [1] 275 32 200

MixColumn [47]✝ 188 126 13

MixColumn [38]✜ 277 32 111

MixColumn [53] 188 126 17

MixColumn [56]� # 92 32 30

MixColumn [45]⋏ 182 123 16

MixColumn [46]⋎ 206 135 13

MixColumn [44]⋎✠ 210 137 11

✝ ✜: Reused in this work to fix [38].

� #: Used in this work (regular, shallow versions), [33].

⋏: Least XOR count in classical circuit.

⋎: Least depth in classical circuit.

✠: Used in this work (shallow/low depth version).

In other words, for our implementation, it does not matter how many ancilla qubits are required
in MixColumn. That is, unless it is an in-place MixColumn, there is no qubit count-depth trade-off,
so the MixColumn with the lowest depth is the best regardless of the number of qubits.

For the 128-bit MixColumns operation (i.e., 4 MixColumn operations), the MixColumn imple-
mentation can be scaled up directly (with proper adjustment for quantum depth).

2.7 Architecture of Quantum Circuits

There are several architectures for designing quantum circuits of AES. The architectures differ in
how they store the 128-qubit output generated from SubBytes in each round. In [1, 30, 43], the
basic zig-zag architecture (Figure 4(a)) was adopted that uses 4 lines to save qubits by performing



12 of 28

reverses on rounds. In [59], an improved zig-zag architecture that requires only 2 lines of qubits
(Figure 4(b)) was presented. By using a quantum circuit of S-box−1, they were able to achieve
an improved architecture using fewer qubits. The basic pipeline architecture allocates 128-qubits
every round and does not need reverses of rounds. Simply put, the zig-zag architecture requires
reverse operations on rounds to save qubits, significantly increasing depth and gates. The pipeline
architecture allocates new qubits per round, but does not require reverse operations, reducing
depth and gates. It’s a trade-off issue, but in a sense, a generic pipeline is probably the most
efficient architecture for implementing AES quantum circuits. We believe that it is much more
efficient to allocate a new 128-qubits per round than doubling the gates, depth by performing
reverse operations on the rounds to save qubits.

In our approach, which has already allocated many ancilla qubits, the overhead of increasing the
number of qubits according to the architecture is relatively low. Therefore, for our implementation,
rather than reducing the number of qubits with the zig-zag method, a pipeline architecture that
can reduce the depth by omitting the reverses is more suitable. Figure 5(a) shows the pipeline
architecture of our AES-128 quantum circuit in more detail for the regular version, and Figure
5(b) shows the same for the shallow version.

In Figure 5(a), SubBytes to generate 128-qubit output and SubBytes† to clean ancilla qubits
operate serially 19 times in total (SubBytes is 10, SubBytes† is 9). Depending on the number of
rounds, AES-192 operates 23 times and AES-256 operates 27 times. In our parallel design, the
key schedule operates simultaneously with SubBytes and MixColumn operates simultaneously
with SubBytes†. Therefore, the circuit depth is determined by the number of serial operations of
SubBytes and SubBytes†.

In SubBytes, S-boxes operate simultaneously. The depth of SubBytes is 72 equal to the depth
of S-box (with Toffoli depth 4) once. Finally, when S-box with Toffoli depth 4 is used, our AES
quantum circuits provide a depth of 1,364 (about 72×19) for AES-128, 1,627 (about 72× 23) for
AES-256, and 1,907 (about 72× 27) for AES-256.

Further, we propose a shallow version in which all possible parts of AES quantum circuits
operate, simultaneously. When S-box with Toffoli depth 4 is used, this can be achieved by using 2
sets of 20× 120 ancilla qubits. In the shallow version, the first SubBytes in Figure 5(b) uses the
first 20× 120 ancilla qubits. The second SubBytes uses the second 20× 120 ancilla qubits, and
at the same time SubBytes† cleans the first 20× 120 ancilla qubits. That is, SubBytes† operates
simultaneously with the SubBytes of the next round. Conceptually, this can be thought as all
SubBytes† in Figure 5(a) are pushed one space to the right. This is possible because SubBytes
and SubBytes† do not share any ancilla qubit. Finally, the shallow version counts the depth for
one round as SubBytes (72) + MixColumns (30), which is the ideal depth. The circuit depth
of AES-128 is 978 (about 9 rounds × 102 + 72), AES-192 is 1,174 (about 11 rounds × 102 +
72), and AES-256 is 1,377 (about 13 rounds × 102 + 72). The low depth version changes only
the MixColumn from the shallow version to a MixColumn based on [44]. The low depth version
counts the depth for one round as SubBytes (72) + MixColumns (11). In the shallow version, up
to SubBytes† operates concurrently within one round, providing maximum parallelism. Finally,
the shallow version of AES offers the best Toffoli depth of Sbox’s Toffoli depth × rounds.

3 Bug-fixing JNRV (Eurocrypt’20) AES Implementations

In this part, we report errors from the AES implementation and resource estimation by Jaques,
Naehrig, Roetteler and Virdia in Eurocrypt’20 [38]. To this end, we analyze the Q# code of
their AES implementation and cross-compare it with the quantum resources reported in the
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5.1 Implementation of LowMC S-box400

Kyungbae: LowMC L1: 10 S-boxes, 20 rounds, 128-bit block and 128-bit key, LowMC401

L3: 10 S-boxes, 30 rounds, 192-bit block and 192-bit key, LowMC L5: 10 S-boxes, 38402

rounds, 256-bit block and 256-bit key.403

In [JNRV19], two types of quantum circuit implementations for 3-bit Sbox of LowMC404

were introduced. Table 4 shows the quantum resources required for the two versions of the405

3-bit S-box. The in-place S-box stores the output value in the input, and the shallow S-box406

additionally uses 3 output qubits and 3 ancilla qubits, but the depth can be reduced and407

the shallow S-box is adopted in their implementation. In the case of the in-place S-box,408

when the To�oli gate is decomposed, the full depth is 23, and the shallow S-box is lower409

at 12.410

There are several trade-o�s in adopting the S-box. For To�oli depth, the in-place S-box411

is 3 and the shallow S-box is 1. This is definitely an advantage for the shallow S-box. But412

for full depth, we found that the full depth of the S-box does not a�ect the full depth of413

the LowMC when using 10 S-boxes. This is because the depth for S-box is covered by414

the key schedule and the Linear layer. One thing to note is that in-place S-box can be415
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⇠: Used in this work

5.2 Implementation of LowMC Linear Layer and Key Schedule419

In the linear layer, the pseudo-randomly generated matrix over GF(2) Anubhab: Binary420

and GF(2) are the same thingKJThank you for correcting! of dimension n◊ n in LowMC421

instantiation is multiplied by an n-bit block. For quantum circuit implementation, CNOT422

gate is performed depending on where the bit value of the matrix is 1. In the CNOT423

gate, the n-qubit block acts as a control, and a newly allocated n-qubit acts as a target.424

Finally, the matrix product is stored in the newly allocated n-qubit. Although n-qubits to425
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56% performance improvement in terms of depth. Details of the implementation of the365

quantum adder used in our SPECK quantum circuits are presented in Algorithm 1.366

4.1 Parallel Implementation of Quantum Circuits for SPECK367

Anubhab: This part is repeated, to combineKyungbae: I confirmed.368

In this part, we explore where parallel addition is possible in the implementation of369

SPECK as a quantum circuit. We use the initial k0 in the first round, then update k0 to370

ki to use it as the round key in the rth ound (0 Æ i Æ r ≠ 1). By taking this on-the-fly371

approach, there is no need to allocate qubits for the key schedule. For each round, the372

round function and key schedule are executed together. Due to this, addition (x n –) + y373

in the round function and addition ki + (li n –) in the key schedule can be performed in374

parallel. In the previous implementation, the key schedule is performed after the round375

function in the i-th round by adopting the same on-the-fly approach. And only one carry376

qubit c0 for addition is allocated. We take two di�erent approaches for parallel addition.377

Anubhab: The notation (round function (2/2) etc.) is to be explained Kyungbae:378

Added! First, k should not be updated in the key schedule until the round key k is used in379

the round function. In general, parallel addition is impossible because the round function380

and the key schedule are performed sequentially. We present the procedure for each round as381

round function (1/2) æ key schedule (1/2) æ round function (2/2) æ key schedule(2/2)382

instead of round function(1/1) æ key schedule(1/1). Round function(1/2) is x = (x n383

–) + y and key schedule(1/2) is li = ki + (li n –), which are parallel addition targets.384

Since ki should not be updated (required in round function(2/2)), the result of addition385

in key schedule(1/2) is stored in li. Round function(2/2) is x = x ü ki, y = (y o —) ü x386

and key schedule(2/2) is ki = (ki o —) ü (li ü i)387
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(b) Improved implementation.

Fig. 4: Zig-zag architecture for AES quantum circuit.

Table 4: Comparison of quantum resources required for variants of AES.

Cipher Source #CNOT #NOT #Toffoli #TD
#qubits

#TD ×#M
Full

(M) depth

A
E
S
-1
2
8

GLRS [30] 166,548 1,456 151,552 12,672 984 12,469,248 110,799
ASAM [1] 192,832 1,370 150,528 · 976 · ·
LPS [43] 107,960 1,570 16,940 1,880 864 1,624,320 28,927

ZWSLW [30] 128,517 4,528 19,788 2,016 512 1,032,192 ·
# Regular☼ 84,120 800 12,920 76 3,936 299,136 1,364

� Shallow☼ 81,312 800 12,240 40 6,368 254,720 978

✠ Shallow/low☼ 90,816 800 12,240 40 7,520 300,800 799

# Regular⊛ 138,080 800 29,640 57 5,176 295,032 1,307
� Shallow⊛ 132,432 800 28,080 30 8,848 265,440 948

✠ Shallow/low⊛ 141,936 800 28,080 30 10,000 300,000 769

A
E
S
-1
9
2

GLRS [30] 189,432 1,608 172,032 11,088 1,112 12,329,856 96,956
LPS [43] 125,580 1,692 19,580 1,640 896 1,469,440 25,556

ZWSLW [30] 152,378 5,128 22,380 2,022 640 1,294,080 ·
# Regular☼ 96,112 896 14,688 92 4,256 391,552 1,627

� Shallow☼ 92,856 896 14,008 48 6,688 321,024 1,174

✠ Shallow/low☼ 104,472 896 14,008 48 8,096 388,608 955

# Regular⊛ 157,456 896 33,696 69 5,496 379,224 1,558
� Shallow⊛ 151,360 896 32,136 36 9,168 330,048 1,138

✠ Shallow/low⊛ 162,976 896 32,136 36 10,576 380,736 919

A
E
S
-2
5
6

GLRS [30] 233,836 1,943 215,040 14,976 1,336 20,007,936 130,929
LPS [43] 151,011 1,992 23,760 2,160 1,232 2,661,120 33,525

ZWSLW [30] 177,645 6,103 26,774 2,292 768 1,760,256 ·
# Regular☼ 117,704 1,103 18,088 108 4,576 494,208 1,907

� Shallow☼ 113,744 1,103 17,408 56 6,976 390,656 1,377

✠ Shallow/low☼ 127,472 1,103 17,408 56 8,640 483,840 1,118

# Regular⊛ 193,248 1,103 41,496 81 5,816 471,096 1,826
� Shallow⊛ 186,448 1,103 39,936 42 9,456 397,152 1,335

✠ Shallow/low⊛ 200,176 1,103 39,936 42 11,120 467,040 1,076

☼: Using S-box with Toffoli depth 4.
⊛: Using S-box with Toffoli depth 3.

Eurocrypt’20 paper. Furthermore, we fix bugs in the AES implementation of Eurocrypt’20 and
reports the corrected resources for the lower-bound resources in their work.



14 of 28

SB: SubBytes. SB†: Clean ancilla qubits used in SubBytes.

Input SB SB†

|0Í¢128 R1 SB SB†

|0Í¢128 R2 SB SB†

|0Í¢128 R3 SB SB†

|0Í¢128 R4 SB SB†

|0Í¢128 R5 SB SB†

|0Í¢128 R6 SB SB†

|0Í¢128 R7 SB SB†

|0Í¢128 R8 SB SB†

|0Í¢128 R9 SB

|0Í¢128 R10 Output

Figure 12: temp3

clean state, and it is reused in the next key schedule. AddRoundKey is simply implemented414

using only CNOT gates. Due to the reverse operation, the CNOT gates are doubled, but415

the depth does not increase because the reverse operation of the key schedule is performed416

in parallel with the linear layer for the n-qubit block. Table 6 shows the quantum resources417

required to implement quantum circuits for the key schedule. It should be pointed out418

that in Table 6, our result excludes the initially newly allocated k-qubit, and the reverse419

operation of the last key schedule is omitted(no need to make it clean).420

6 Performance421

In this section, we evaluate the performance of the implemented AES, SPECK, and LowMC422

quantum circuits. We use the quantum programming tool ProjectQ to implement and423

simulate quantum circuits. An internal library, ClassicalSimulator, simulates quantum424

ghost R

Input

|0Í¢128 R1 R1
† R5 R5

† R8 R8
† R10 Output

|0Í¢128 R2 R2
† R6 R6

† R9

|0Í¢128 R3 R3
† R7

|0Í¢128 R4

Figure 13: temp4

17

(a) Regular version.

54

|ai • • • |a + bci

|bi • • • |a + b + aci

|ci • • |a + b + c + abi
(a) Regular version.

|ai • • • • |ai
|bi • • • • |bi
|ci • • • |ci
|0i • • • |0i
|0i • • |0i
|0i • • |0i
|xi |x + a + bci
|yi |y + a + b + aci
|zi |z + a + b + c + abi

(b) Shallow version.

Fig. 10: Quantum implementations of LowMC S-box.
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(b) Shallow version (and shallow/low depth version).

Fig. 5: Pipeline architecture of AES.

3.1 Issues with Q#

For a clearer context, we give a brief description of the cases where Q#’s ResourcesEstimator
issues arise and how those issues affect the quantum benchmarks given in the Eurocrypt’20
paper [38]. This was discovered when we tried to cross-check their publicly available source codes12.
Indeed, this was also noted in [59] as a bug; and this apparently led to underestimation of gate
count, qubit count and depth reported in [38] for the non-linear components (namely the S-box
and S-box−1 of AES).

To our understanding, some problems arise if the qubits are allocated by the using command
in Q# (and it affects the non-linear components). However more experiments are to be carried out
in order to be completely certain about it.

The using command automatically disposes when the function ends. If ancilla qubits to
implement AES S-box are allocated with the using command, the consistency between depth

12https://github.com/microsoft/grover-blocks.

https://github.com/microsoft/grover-blocks
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and qubits is lost. When 16 S-boxes are executed in SubBytes, the ancilla qubits allocated by
the using are counted only for the first S-box and not after. Also counts the depth for executing
16 S-boxes simultaneously. In order to derive the correct result, the number of qubits or depth
must be increased. To be modified, the number of qubits must be increased or the depth must be
increased. Q#’s ResourcesEstimator tries to find its own lower bound for depth and qubit. That
is, to achieve the qubits of the lower bound, the depth may have to be increased, and to achieve
the depth of the lower bound, the qubits may have to be increased.

Another problem is that ancilla qubits allocated by using command are always prepared in a
clean state. After S-box operation, ancilla qubits are not in a clean state(i.e. not all zeros), so they
cannot be used in the next S-box as it is. However, the qubits allocated by the using command
are always set to 0, the impossible S-box operation becomes possible. This is possible if new ancilla
qubits are allocated for every S-box, but the qubits do not increase in resource estimation. This
issue leads to returning a lower bound on the number of gates because the reverse operation is
ignored. These issues are not problematic for single estimates (e.g., cost for one S-box). For this
reason we only use a few of the results reported in [38] with caution. However, in the current
version, these issues seem to be resolved13.

These issues allow designing quantum circuit structures that are impossible. For example,
encryption can be performed without a cleaning up operation in S-boxes. It seems difficult to
estimate after solving the issues in [38], since apparently there is no quick fix and hence a
considerable effort to change the design structure is to be made.

Non-parallelizable SubBytes In their implementation, the S-box of [14] is adopted and ported
to the quantum domain. The quantum resources required for the S-box quantum circuit reported
in the Eurocrypt’20 paper [38, Table 1] are only correct for the stand-alone S-box (except for
T -depth, this will be described in Section 3.1). However, in the case of SubBytes operating with
16 S-boxes, incorrect quantum resources are reported. This is a major cause of their resource
estimation issues.

According to the reported number of required qubits, only one ancilla set is used in their
SubBytes implementation. In other words, 16 S-boxes share one ancilla set. Thus, the arrangement
of qubits in their SubBytes quantum circuit is the serial structure of Figure 2(a). Since 16 S-boxes
generate each output using one ancilla set, all S-boxes in a limited space (one ancilla set) must
be operated sequentially. However, in their report, the depth of the SubBytes is the same as the
depth for a stand-alone S-box (meaning all S-boxes operate in parallel). That is, it is an impossible
quantum circuit structure and the lower-bound depth is reported. The same error applies to the
SubWord implementation of Key schedule.

Issue with AND Gate This issue is also found in their use of AND gates. Suppose that 5 Toffoli
gates are operated in parallel during the Sbox process. Toffoli gates (method of [3]) operate in
parallel without any additional work, providing one Toffoli depth and full depth for one Toffoli
gate. On the other hand, in the AND gate of Figure 6(a), one ancilla qubit (bottom line) is used.
Thus, if replaced with AND gates, 5 ancilla qubits for 5 AND gates must be allocated for parallel
operation. Clearly, the ancilla qubit of the AND gate is initialized to 0 after operation and can be
reused in the next AND gate, but a sequential operation is forced.

In a nutshell, in their S-box (out of 137 qubits, 136 qubits for the S-box and 1 qubit for the
AND gate application), only one ancilla qubit is used for AND gates. However, quantum resources
for parallel operations are reported.

13https://github.com/microsoft/qsharp-runtime/pull/404.

https://github.com/microsoft/qsharp-runtime/pull/404
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If we compare the cost of the Grover’s key search of DEFAULT (2157)
with the post-quantum security level of NIST, Level 1 (2170) cannot be
achieved. However, it should be pointed out that the estimated costs
(from the work of Grassl et al. [20]) for the levels (level 1: 2170, level 3:
2233, and level 5: 2298) are considerably high, and the level is defined
according to the relative attack cost for AES. This is evident from the
significantly reduced cost of most recent quantum implementations of
ciphers [2, 9, 13, 21,24,26,29,31,36].

NIST noted that these preliminary classifications should be evaluated
conservatively if the cost of best known attacks is significantly reduced.
To the best of our knowledge, in EuroCrypt’20, the estimated costs for
AES by Jaques et al.7 [29] are the lowest: 2157, 2221, and 2285 . If the
Grover’s key search cost for DEFAULT estimated in this work (2157) is
compared with the cost estimated in [29] (2157), DEFAULT can achieve
post-quantum security Level 1.

7 Conclusion

In this paper, we present a detailed implementation and analysis of the
newly proposed block cipher, DEFAULT [6,8]. Along with optimizations,
we explore the possible vulnerability of DEFAULT against a quantum
adversary. We show DEFAULT can be expected to meet the NIST specified
quantum security of Level 1. As one can expect this line of research only
to grow with the passage of time, we are optimistic that our work would
become useful for the upcoming researchers.

Circuit test

|ai • T † • |ai

|bi • T † • |bi

|0i H • • T • • H S |a · bi

|0i T |0i

Fig. 8: Quantum circuit to run Grover’s oracle on DEFAULT

7There was some issue with the version of Q# (a quantum programming tool
supported by Microsoft) used in [29], which was found after the publication. See
https://github.com/microsoft/grover-blocks for more details.
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(a) AND gate.

Optimized Quantum Polynomial Multiplication with To↵oli Depth One 5

|ai • T † • |ai

|bi • T † • |bi

|0i H • • T • • H S |a · bi

|0i T |0i
(a) Quantum AND gate.

|ai S • • |ai

|bi S S† |bi

|0i H X |0i
(b) Quantum AND† gate.

Fig. 2: Quantum AND gate of T -depth one introduced in [5]
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(b) AND† gate.

Fig. 6: Quantum AND and AND† gates.

Uninitialized Ancilla Qubits in SubBytes To generate the quantum S-box output for [15], an
ancilla set consisting of 120 qubits is required. Ancilla qubits are responsible for storing the temp
values to compute the correct output for the input. After S-box is operated, these ancilla qubits
still have their temp values stored. Thus, in order to reuse these ancilla qubits in the subsequent
S-boxes, it is essential to initialize the stored temp values to 0. For this, reverse operation must be
performed as shown in Figure 2(a) or 2(b).

However, in their quantum circuit implementation, initialization of qubits of ancilla set used in
S-box is omitted. The authors say that they do not clean up ancilla qubits by not performing a
reverse operation until the ciphertext is generated. This implementation is possible only when new
clean ancilla qubits are allocated for every S-box used in encryption. Their intention is to reduce
circuit depth, but we believe that omitting the reverse operation will not produce the correct
ciphertext. Since the unclean ancilla qubits are reused in subsequent S-boxes, the correct output
cannot be generated, so their implementation cannot be verified. Also, reduced quantum gates and
depth due to the omitted reverse operations are estimated.

When we tested the SubWord quantum circuit for a 32-qubit input 0xffffffff by omitting
the reverse operation and reusing the ancilla set, the output was 0x6a4e6216. Only the first S-box
generates the correct output (0x16), and the subsequent S-boxes generate incorrect outputs. By
analyzing their Q# source code, we think that this problem occurs probably because ancilla qubits
are allocated by C#’s using command.

3.2 Corrected Report

To our understanding, some problems arise if the qubits are allocated by the using command in
Q# (and it affects the non-linear components). However more experiments are to be carried out in
order to be completely certain about it.

The using command automatically disposes when the function ends. If ancilla qubits to
implement AES S-box are allocated with the using command, the consistency between depth
and qubits is lost. When 16 S-boxes are executed in SubBytes, the ancilla qubits allocated by the
using are counted only for the first S-box and not after. Also counts the depth for executing 16
S-boxes simultaneously. In order to derive the correct result, the number of qubits or depth must
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be increased. Q#’s ResourcesEstimator tries to find its own lower bound for depth and qubit.
That is, to achieve the qubits of the lower bound, the depth may have to be increased, and to
achieve the depth of the lower bound, the qubits may have to be increased.

Another problem is that ancilla qubits allocated by using command are always prepared in a
clean state. After S-box operation, ancilla qubits are not in a clean state (i.e., not all zero), so they
cannot be used in the next S-box as it is. However, the qubits allocated by the using command
are always set to 0, the impossible S-box operation becomes possible. This is possible if new ancilla
qubits are allocated for every S-box, but the qubits do not increase in resource estimation.

These issues allow designing quantum circuit structures that are impossible. In these issues, we
estimate the corrected results from the results reported as lower-bound in their AES quantum
circuit architecture. We contribute to three major modifications:

1. We reflect on the increasing depth in their number of qubits using only one ancilla set. As
shown in Figure 2(a), since the ancilla set is shared, not only SubBytes but also S-boxes of
SubWord of the key schedule are operated sequentially.

2. We modify the omitted reverse operations to be performed so that they produce the correct
output, which further increases the depth.

3. We correct the implementation of MixColumns where the same issue occurs. In Eurocrypt’20
paper [38], two MixColumn implementations were presented. The in-place method of MixColumn
implementation (which uses PLU decomposition, and derived by the authors themselves [38])
does not cause this issue. On the other hand, similar to S-box, the same issue applies to the
MixColumn implementation by Maximov [47], which requires ancilla qubits, so this is also
solved in the same way as the S-box.

We modified from the quantum circuit base of [38] and implemented it on ProjectQ. Our
source code generates the correct ciphertext and the correct resources are estimated. To avoid
confusion, we estimate quantum resources using Toffoli gates (using the method from [3]), rather
than applying AND gates with issues.

Results with bug-fixed Eurocrypt’20 implementation can be found in Table 5. Table 5(a) shows
quantum resources for S-box and MixColumns reported in the Eurocrypt’20 paper. Quantum
resources in Table 5(a) include cleaning up of used ancilla qubits. Table 5(b) shows the quantum
resources for AES oracles reported in the Eurocrypt’20 paper. Quantum resources are reported
for an oracle rather than a single AES quantum circuit. In oracle, since the AES quantum circuit
operates twice, the estimation of quantum resources for a single AES quantum circuit can be
counted in half except for the number of qubits in Table 5(b). Table 5(c) shows the estimated
resources for SubBytes, key schedule, MixColumns, and one round where the issue occurs. The
difference for the corrected MixColumns is relatively small, but the depth estimated as lower-bound
for SubBytes is corrected high. The resources estimated in Table 5(c) include a reverse operation to
clean ancilla qubits. Table 5(d) shows the corrected quantum resources for AES quantum circuits,
and it is confirmed that the depth increases significantly when maintaining the number of qubits.
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Table 5: Corrected benchmarks for JNRV (Eurocrypt’20) implementation of AES.
(a) AES-128 gate costs

Method S-box
MixColumns

In-place [38] Maximov [47]

#CNOT 654 1,108 1,248

#1qCliff 184 0 0

#T 136 0 0

#Measure 34 0 0

#T -depth 6 0 0

#qubits (M) 137 128 318

Full depth 101 111 22

(b) Oracles

Method
In-place MixColumn [38] Maximov’s MixColumn [47]

AES-128 AES-192 AES-256 AES-128 AES-192 AES-256

#CNOT 292,313 329,697 404,139 294,863 332,665 407,667

#1qCliff 84,428 94316 116,286 84,488 94,092 116,062

#T 54,908 61,436 75,580 54,908 61,436 75,580

#Measure 13,727 15,359 18,895 13,727 15,359 18,895

#T -depth 121 120 126 121 120 126

#qubits (M) 1,665 1,985 2,305 2,817 3,393 3,969

Full depth 2,816 2,978 3,353 2,086 1,879 1,951

(c) AES-128 Modules

Method #CNOT #1qCliff #T #TD #qubits (M) Full depth

SubBytes 12,000 1,220 7,328 192 376 2,672

Key schedule 3,096 355 1,832 48 248 669

MixColumns (Maximov [47]) 1,248 0 0 0 318 88

One round✞ 16,472 1,507 9,160 240 632 3,417

✞: One typical round (that includes MixColumn).

(d) Summary

Method #CNOT #1qCliff #T #TD #qubits (M) Full depth

AES-128✜ 161,982 14,400 91,380 2,394 1,656 33,320

AES-192✜ 182,774 16,128 102,372 2,682 1,976 37,328

AES-256✜ 224,214 19,871 126,188 3,306 2,296 46,012

AES-128✝ 163,242 14,994 91,380 2,394 2,808 33,914

AES-192✝ 184,314 16,854 102,372 2,682 3,384 38,054

AES-256✝ 226,034 20,729 126,188 3,306 3,960 46,870

✜: Using in-place MixColumn [38].

✝: Using Maximov’s MixColumn [47].

4 Performance of AES Quantum Circuits

In this part, we present the performance of our implementations of AES quantum circuits. We use
the open-source quantum programming tool IBM ProjectQ to implement and simulate the quantum
circuits. An internal library, ClassicalSimulator, simulates quantum circuits and verifies test
vectors. Quantum resources required to implement quantum circuits are estimated using another
library, ResourceCounter.

Table 4 shows the quantum resources required to implement our AES quantum circuits and
previous AES quantum circuits. Although various decompositions exist for the Toffoli gate, Table 4
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enables consistent comparison with NCT (NOT, CNOT, Toffoli) level analysis. In [1,30], Itoh–Tsujii-
based inversion is implemented on a quantum circuit, so many resources are used for SubBytes.
In [43,59], more efficient quantum circuits are implemented by extending the S-box of [14], but the
circuit depth is increased due to the serial execution of S-boxes by concentrating on saving qubits.
On the other hand, our implementation focuses on minimizing circuit depth while considering
the trade-offs for using qubits. In [59], #TD ×#M (where #TD is the Toffoli depth and #M is
the number of qubits is used to measure the trade-off of quantum circuits. In this work, all AES
quantum circuits with reduced depth and quantum gates using a reasonable number of qubits offer
the best trade-off. In [38], the quantum resources required to implement quantum circuits for AES
were also estimated. However, there seem to be some issues with Q#’s ResourcesEstimator14

used in their work, especially in implementing quantum circuits for SubBytes. Therefore, the results
of [38] are not used here. Following [59, Table 10], Table 6 shows detailed quantum resources by
decomposing Toffoli gates for the AES quantum circuits implemented in this work. The Toffoli gate
is decomposed into 7 T gates + 8 Clifford gates, a T depth of 4, and a full depth of 8 according to
one of the methods (described in Section 2.2) in [3].

Table 6: Quantum resources required for variants of AES (this work).

Cipher #CNOT #1qCliff #T #T -depth #qubits (M) Full depth

AES-128�☼ 161,640 14,400 90,440 304 3,936 1,364

AES-128#☼ 154,752 14,400 85,680 160 6,368 978

AES-128✠☼ 164,256 16,832 85,680 160 7,520 799

AES-128�⊛ 315,920 32,000 207,480 228 5,176 1,307

AES-128#⊛ 300,912 32,000 196,560 120 8,848 948

AES-128✠⊛ 310,416 33,248 196,560 120 10,000 769

AES-192�☼ 184,240 16,400 102,816 368 4,256 1,627

AES-192#☼ 176,904 16,400 98,056 192 6,688 1,174

AES-192✠☼ 188,520 19,440 98,056 192 8,096 955

AES-192�⊛ 359,632 36,464 235,872 276 5,496 1,558

AES-192#⊛ 344,176 36,464 224,952 144 9,168 1,138

AES-192✠⊛ 355,792 38,024 224,952 144 10,576 919

AES-256�☼ 226,232 19,871 126,616 432 4,576 1,907

AES-256#☼ 218,192 19,871 121,856 224 6,976 1,377

AES-256✠☼ 231,920 23,519 121,856 224 8,640 1,118

AES-256�⊛ 442,224 44,159 290,472 324 5,816 1,826

AES-256#⊛ 426,064 44,159 279,552 168 9,456 1,335

AES-256✠⊛ 439,792 46,031 279,552 168 11,120 1,076

�: Regular version (using MixColumn from [56]).

#: Shallow version (using MixColumn from [56]).

✠: Shallow/low depth version (using MixColumn from [44]).

☼: S-box with Toffoli depth 4.

⊛: S-box with Toffoli depth 3.

5 Quantum Key Search

In this part, the corresponding costs for applying Grover’s search algorithm to exhaustive key
search are estimated based on the proposed quantum circuits for the three variants of AES. We
estimate the cost of oracle, which accounts for the largest portion of Grover’s search algorithm. The

14https://github.com/microsoft/qsharp-runtime/issues/192.

https://github.com/microsoft/qsharp-runtime/issues/192
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Table 7: Quantum resources required for exhaustive key search for AES (this work).

Cipher r #qubits (M) Total gates Total depth Search complexity NIST security

AES-128�

1

3,937 1.597 · 282 1.046 · 275 1.671 · 2157
Level-1

(2170)
AES-128# 6,369 1.527 · 282 1.501 · 274 1.146 · 2157
AES-128✠ 7,521 1.599 · 282 1.226 · 274 1.96 · 2156
AES-192�

2

8,321 1.536 · 2115 1.248 · 2107 1.917 · 2222
Level-3

(2233)
AES-192# 13,185 1.464 · 2115 1.801 · 2106 1.318 · 2222
AES-192✠ 16,001 1.551 · 2115 1.465 · 2106 1.136 · 2222
AES-256�

2

8,897 1.797 · 2147 1.463 · 2139 1.314 · 2287
Level-5

(2298)
AES-256# 13,697 1.720 · 2147 1.056 · 2139 1.816 · 2286
AES-256✠ 17,025 1.824 · 2147 1.715 · 2138 1.564 · 2286

�: Regular version (using MixColumn from [56]).

#: Shallow version (using MixColumn from [56]).

✠: Shallow/low depth version (using MixColumn from [44]).

overhead for diffusion operator is negligible compared to oracle and is not difficult to implement. For
this reason, it is common to estimate the cost for oracle excluding the diffusion operator [5, 30, 43].
In the oracle, the target cipher’s quantum circuit encrypts a known plaintext with the key in the
superposition state. The generated ciphertext in the superposition state is compared with the
known ciphertext and a reverse operation is performed for Grover’s iterations. For comparison, an
n-multi controlled NOT gate is used to check that the generated ciphertext (n-qubit) is a known
ciphertext. This occupies a small part in the oracle, and since the main part is a block cipher’s
quantum circuit, the cost for an n-multi controlled NOT gate is omitted for simplicity of analysis.

In quantum exhaustive key search, to recover a unique key, not a spurious key, Grassl et al.
in [30] estimated the attack cost for r known (plaintext, ciphertext) pairs (r = 3,, r = 4 and r = 5,
respectively). Later in [43], Langenberg et al. explained that r = ⌈k/n⌉ (key size/block size) is
sufficient to successfully recover a unique key. The authors in [38] also estimated the cost for the
same r (plaintext, ciphertext) pairs in [43] through detailed computations. Following this approach,
we also estimate the cost of recovering a unique key for r = ⌈k/n⌉ (plaintext, ciphertext) pairs.
When r = 1, the target block cipher quantum circuit is serially executed twice in oracle. Thus,
the cost of oracle is twice that required to implement a quantum circuit, excluding qubits. When
r ≥ 2, r target block quantum circuits are executed twice in parallel, and the following should be
considered in cost estimation. Although r ≥ 2 plaintexts are used, only one input key is used, so
the cost for key schedule sholud be estimated only once. Finally, the cost of quantum exhaustive
key search for the target block cipher is roughly the cost of oracle × ⌊π4

√
2k⌋ (where k is the key

size). Costs are estimated at the T + Clifford level and computed as total gates × total depth.
We show the cost of quantum exhaustive key search for AES (AES-128, AES-192, AES-256 using
S-box with Toffoli depth of 4) in Table 7, respectively. Additionally, we evaluate the post-quantum
security strength for symmetric key cryptography presented by NIST based on the cost of Grover’s
key search [49]. NIST estimated the security strength based on the cost of Grover’s key search
for AES estimated by Grassl et al. [30]. Level 1 is the cost of Grover’s key search for AES-128
(2170), and Level 3 and Level 5 are costs for AES-192 (2233) and AES-256 (2298), respectively. The
number of qubits is not included in NIST’s estimation. NIST is focusing more on gates and depths
that increase dramatically with Grover iterations. The quantum exhaustive search cost for the
AES family estimated in this paper is much reduced from the cost previously estimated by NIST
based on Grassl et al.’s work [30].

NIST recommended that the submissions to meet the requirements for Levels 1, 2 and/or 3
and states that this will provide sufficient security for the foreseeable future post-quantum era [49].
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Now, we compare the cost of quantum exhaustive key search of AES and LowMC in this work with
NIST security. In the case of 128-bit key, security is not achieved in all ciphers, and in the case of
192-bit and 256-bit key, security is achieved one level lower. However, it should be pointed out that
the estimated costs (from the work of Grassl et al. [30]) for the levels (level 1: 2170, level 3: 2233,
and level 5: 2298) are considerably high. This is evident from the significantly reduced cost of most
recent quantum implementations of ciphers [7, 11, 27, 36, 37, 38, 43, 59]. By current NIST estimates
(too conservative), most ciphers do not achieve their post-quantum security corresponding to their
key size. NIST noted that these preliminary classifications should be evaluated conservatively if
the cost of best known attacks is significantly reduced. Also, the specific cost is defined based on
Grassl’s AES quantum circuit, but the security level is defined according to the relative attack
cost for AES. Based on our validated AES quantum circuit, the estimated cost of the attack is the
lowest and is much lower than the NIST estimate.

6 Conclusion

In this work, we collate multiple contributions reported in the last couple of years, together with
up-to-date improvements in the quantum technology as well as optimizations on the building blocks
of the ciphers. Among other results, we show the least Toffoli depth and full depth implementations
of all variants of AES (more than 98% and 95% improvement from [59] and [33] respectively) as
well as least qubit count-Toffoli depth product (more than 75% and 30% from the same papers).
We also patch the implementations from [38]. A quick comparison of NIST’s security level (under
Grover’s search) of our work together with [43] is given in Table 8. This table summarizes how our
work influences the state-of-the-art evaluation of the security level in terms of the product of gate
count and depth.

Table 8: Comparison of NIST security levels for variants of AES.

NIST security NIST estimate [49] Updated in LPS [43] Updated in this work

Level-1 (AES-128) 2170 2162 2157

Level-3 (AES-192) 2233 2227 2222

Level-5 (AES-256) 2298 2291 2286

Finding optimizations for the cipher building blocks can be considered among the top priorities
for the future research works. As far as we can tell, there is a vacant niche for a tool that can
efficiently find such implementation for 8×8 S-boxes. The tools described in [18,19,20] can possibly
be considered as starting points.

We could find two other papers with new MixColumn implementations. First, the authors of [8]
presented two implementations (103 XOR/3 classical depth, and 95 XOR/6 classical depth)15;
however we could not verify the results (probably due to an encoding issue). Second, an implemen-
tation of 108 XOR count is mentioned in [26, Footnote 3/Page 42], but it is not clear to us so far.
These can be considered in a future work.
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A Concise Description of AES Variants

The Advanced Encryption Standard (AES) [17] is an SPN block cipher family with a block of 128
bits. The state of AES is arranged as a 4× 4 matrix of bytes. AES contains three specific variants
denoted as AES-128, AES-192 and AES-256 according to the key size. Schematic diagrams of
AES-128 round function and key schedule can be found in Figure 7.

Round Function The round function of AES consists of AddRoundKey ◦ MixColumns ◦
ShiftRows ◦ SubBytes, except for the last round which misses the MixColumns operation.

SubBytes. This operation substitutes each element by a predefined 8× 8 S-box.

ShiftRows. This operation cyclically rotates the rth row of state to the left by i places, for
i = 0, 1, 2, 3.

MixColumns. The MixColumn operation pre-multiplies each of the state column with the right
circulant matrix (0x02, 0x03, 0x01, 0x01), over GF(28)[x] with modulus x4 + 1.

AddRoundKey. The sub-key of each round is generated by the Key Expansion algorithm. Each
call of AddRoundKey XORs the 128-bit sub-key to the state.

The encryption procedure for different instances of AES family are somewhat similar, except
the number of round varies. For AES-128, AES-192 and AES-256, the round numbers are 10, 12,
14 respectively and all round functions are identical except that there is no MixColumns operation
in the last round. Note that there is an extra key addition before the first round (also known as
whitening).
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https://arxiv.org/abs/2109.12354
https://eprint.iacr.org/2019/1245
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Key Schedule Similar to the state, the master key of AES is allocated to a 4× l grid of byte
in order, where l = 4, 6 or 8 for AES-128, AES-192 and AES-256, respectively. Generally, the
generation of the round sub-keys are based on word (the entire column in the grid) with the
operations RotWord (cyclically rotating the bytes in a word to the left by one byte), SubWord
(operating the SubBytes of round function on each bytes in a word) and the XOR of Rcon[r] (the
rth 32-bit round constant).

The master key is loaded to the grid W0,W1, · · · ,Wi; where i is 3, 5 and 7 for AES-128,
AES-192 and AES-256 respectively. In order to guarantee the encryption, 40, 46 and 52 words
need to be provided by key expansion for those three AES instances, respectively.

For AES-128, the word Wi is generated by

Wi =

{
Wi−4 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/4], if i ≡ 0 mod 4,

Wi−4 ⊕Wi−1, otherwise,

where i = 4, 5, · · · , 43.
For AES-192, the word Wi is generated by

Wi =

{
Wi−6 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/6], if i ≡ 0 mod 6,

Wi−6 ⊕Wi−1, otherwise,

where i = 6, 7, · · · , 51.
For AES-256, the word Wi is generated by

Wi =





Wi−8 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/8], if i ≡ 0 mod 8,

Wi−8 ⊕ SubWord(Wi−1), if i ≡ 4 mod 8,

Wi−8 ⊕Wi−1, otherwise,

where i = 8, 9, · · · , 59.

Notes

Singular and Plural Forms The AES state is represented as a 4× 4 matrix and the operation
on one column of the matrix is denoted here as MixColumn. As described earlier, MixColumn
corresponds to a matrix multiplication over GF(28), which can equivalently be expressed as
multiplication by a matrix of dimension 32×32 over F2. In the AES round function, the MixColumns
operates on the whole block by applying MixColumn to every four bytes in the state (i.e., one
column in the 4× 4 matrix). Thus, one MixColumns operation is equivalent to 4× MixColumn
operations on different columns in the matrix. Denoting the binary matrix corresponding to
MixColumn as M with size 32 × 32, MixColumns can be represented as the diagonal matrix
(M,M,M,M) of dimension 128× 128 over F2.

The bytes in each row of the matrix will be cyclically shifted to the left in each round and
the shift operation on the bytes in one row is denoted here as ShiftRow, in the step of ShiftRows,
the ShiftRow will be operated on all the rows in the matrix and shift the bytes in the ith row to
the left by i bytes, where i = 1, 2, 3. Thus, one ShiftRows operation is equivalent to 4× ShiftRow
operations on different rows in the 4× 4 matrix with the shift parameter varies from 0 to 3.

Different from MixColumns and ShiftRows, the SubBytes in the round function updates every
byte in the 4× 4 matrix in the same way. The process of applying the S-box to one byte in the
AES state is denoted here as SubByte. In each round, the SubBytes updates all the bytes in the
4× 4 matrix by replacing each byte by another one according to the predefined nonlinear map.
Thus, one SubBytes operation is equivalent to 16 SubByte operations on the bytes of the 4× 4
matrix.
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Fig. 7: Schematic of AES construction.

S-box and S-box† in Quantum S-box in quantum denotes before storing values from ancilla
qubits to output qubits. Denote the reverse operation of S-box as S-box† and uses input qubits to
clean up ancilla qubits.

SubBytes and SubBytes† in Quantum SubBytes of AES in quantum denotes parallel operation
for 16 S-boxes. Denote the reverse operation of SubBytes as SubBytes† and cleans up all used
ancilla qubits in 16 S-boxes.

Rotation and Rotation† in Quantum Rotation of AES in quantum denotes the same RotWord.
The reverse operation of Rotation is denoted as Rotation†.

SubWord and SubWord† in Quantum SubWord of AES in quantum denotes parallel operation
for 4 S-boxes. We denote the reverse operation of SubWord as SubWord† (and clean up all used
ancilla qubits in 4 S-boxes).
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B Further Details on Implementation and Result

Similar to [59, Table 6], we show the per-round benchmark for our implementations of the AES
family in Table 9.

Table 9: Quantum resources required per round for variants of AES using S-box with Toffoli depth 4 (this work).

Cipher Round
#CNOT #NOT #Toffoli #TD

� # ✠ � # ✠ � # ✠ � # ✠

AES-128

1≀ 8,960 5,064 6,120 79 1,360 680 8 4
2 8,832 8,960 10,016 79 1,360 1,360 8 4
3 8,832 8,960 10,016 81 1,360 1,360 8 4
4 8,832 8,960 10,016 81 1,360 1,360 8 4
5 8,832 8,960 10,016 81 1,360 1,360 8 4
6 8,832 8,960 10,016 79 1,360 1,360 8 4
7 8,832 8,960 10,016 79 1,360 1,360 8 4
8 8,832 8,960 10,016 81 1,360 1,360 8 4
9 8,832 8,960 10,016 80 1,360 1,360 8 4
10 4,504 4,568 4,568 80 680 680 4 4

AES-192

1≀ 9,024 9,056 10,112 79 1,360 1,360 8 4
2 8,896 8,992 10,048 79 1,360 1,360 8 4
3 7,088 7,152 8,208 64 1,088 1,088 8 4
4 8,896 8,928 9,984 81 1,360 1,360 8 4
5 8,896 8,992 10,048 81 1,360 1,360 8 4
6 7,088 7,152 8,208 64 1,088 1,088 8 4
7 8,896 8,928 9,984 81 1,360 1,360 8 4
8 8,896 8,992 10,048 79 1,360 1,360 8 4
9 7,088 7,152 8,208 64 1,088 1,088 8 4
10 8,896 8,928 9,984 79 1,360 1,360 8 4
11 8,896 5,032 6,088 81 1,360 680 8 4
12 3,552 3,552 3,552 64 544 544 4 4

AES-256

1≀ 7,216 4,048 5,104 64 1,088 544 8 4
2 8,832 8,040 9,096 79 1,360 1,224 8 4
3 8,832 8,832 9,888 80 1,360 1,360 8 4
4 8,832 8,832 9,888 79 1,360 1,360 8 4
5 8,832 8,832 9,888 80 1,360 1,360 8 4
6 8,832 8,832 9,888 81 1,360 1,360 8 4
7 8,832 8,832 9,888 80 1,360 1,360 8 4
8 8,832 8,832 9,888 81 1,360 1,360 8 4
9 8,832 8,832 9,888 80 1,360 1,360 8 4
10 8,832 8,832 9,888 81 1,360 1,360 8 4
11 8,832 8,832 9,888 80 1,360 1,360 8 4
12 8,832 8,832 9,888 79 1,360 1,360 8 4
13 8,832 8,832 9,888 80 1,360 1,360 8 4
14 4,504 4,504 4,504 79 680 680 4 4

Using S-box with Toffoli depth 4
�: Regular version (using MixColumn from [56]).
#: Shallow version (using MixColumn from [56]).

✠: Shallow/low depth version (using MixColumn from [46]).
≀: Including initial key XOR.
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Table 10: Quantum resources required per round for variants of AES using S-box with Toffoli depth 3 (this work).

Cipher Round
#CNOT #NOT #Toffoli #TD

� # ✠ � # ✠ � # ✠ � # ✠

AES-128

1≀ 14,640 7,904 8,960 79 3,120 1,560 6 3
2 14,512 14,640 15,696 79 3,120 3,120 6 3
3 14,512 14,640 15,696 81 3,120 3,120 6 3
4 14,512 14,640 15,696 81 3,120 3,120 6 3
5 14,512 14,640 15,696 81 3,120 3,120 6 3
6 14,512 14,640 15,696 79 3,120 3,120 6 3
7 14,512 14,640 15,696 79 3,120 3,120 6 3
8 14,512 14,640 15,696 81 3,120 3,120 6 3
9 14,512 14,640 15,696 80 3,120 3,120 6 3
10 7,344 7,408 7,408 80 1,560 1,560 3 3

AES-192

1≀ 14,704 14,736 15,792 79 3,120 3,120 6 3
2 14,576 14,672 15,728 79 3,120 3,120 6 3
3 11,632 11,696 12,752 64 2,496 2,496 6 3
4 14,576 14,608 15,664 81 3,120 3,120 6 3
5 14,576 14,672 15,728 81 3,120 3,120 6 3
6 11,632 11,696 12,752 64 2,496 2,496 6 3
7 14,576 14,608 15,664 81 3,120 3,120 6 3
8 14,576 14,672 15,728 79 3,120 3,120 6 3
9 11,632 11,696 12,752 64 2,496 2,496 6 3
10 14,576 14,608 15,728 79 3,120 3,120 6 3
11 14,576 7,872 8,928 81 3,120 1,560 6 3
12 5,824 5,824 5,824 64 1,248 1,248 3 3

AES-256

1≀ 11,760 6,320 7,376 64 2,496 1,248 6 3
2 14,512 13,152 14,208 79 3,120 2,808 6 3
3 14,512 14,512 15,568 80 3,120 3,120 6 3
4 14,512 14,512 15,568 79 3,120 3,120 6 3
5 14,512 14,512 15,568 80 3,120 3,120 6 3
6 14,512 14,512 15,568 81 3,120 3,120 6 3
7 14,512 14,512 15,568 80 3,120 3,120 6 3
8 14,512 14,512 15,568 81 3,120 3,120 6 3
9 14,512 14,512 15,568 80 3,120 3,120 6 3
10 14,512 14,512 15,568 81 3,120 3,120 6 3
11 14,512 14,512 15,568 80 3,120 3,120 6 3
12 14,512 14,512 15,568 79 3,120 3,120 6 3
13 14,512 14,512 15,568 80 3,120 3,120 6 3
14 7,344 7,344 7,344 79 1,560 1,560 3 3

�: Regular version (using MixColumn from [56]).
#: Shallow version (using MixColumn from [56]).

✠: Shallow/low depth version (using MixColumn from [46]).
≀: Including initial key XOR.

C Depth of Sequential XOR: Classical vs. Quantum

One may note from Table 3 that the depth for quantum circuit corresponding to the implementation
by [56] is 30, whereas the same for the classical circuit is 6. Although this implementation operates
in-place, it still reuses one variable multiple times. In other words, the same variable appears
multiple times in the right hand side. For example, one may check that x31 appears more than
once: x16 ← x16⊕x31 (Line 15), x4 ← x4⊕x31 (Line 29), x0 ← x0⊕x31 (Line 56), and so on. This
does not account for extra depth in a classical circuit (as multiple fan-outs are allowed). However,
in a quantum circuit where there is exactly one fan-out, this situation causes increase of depth.
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