
Quantum Analysis of AES

Lowering Limit of Quantum Attack Complexity

Kyungbae Jang1, Anubhab Baksi2, Hyunji Kim1, Gyeongju Song1,
Hwajeong Seo1, and Anupam Chattopadhyay2

1 Division of IT Convergence Engineering, Hansung University, Seoul, South Korea

2 Temasek Laboratories, Nanyang Technological University, Singapore

starj1023@gmail.com, anubhab001@e.ntu.edu.sg, khj1594012@gmail.com,
thdrudwn98@gmail.com hwajeong84@gmail.com, anupam@ntu.edu.sg

Abstract. Quantum computing is considered among the next big leaps
in computer science. While a fully functional quantum computer is still
in the future, there is an ever-growing need to evaluate the security of the
secret-key ciphers against a potent quantum adversary. Keeping this in
mind, our work explores the key recovery attack using the Grover’s search
on the three variants of AES (-128, -192, -256). In total, we develop a pool
of 14 implementations per AES variant, by taking the state-of-the-art
advancements in the relevant fields into account.

In a nutshell, we present the least Toffoli depth and full depth imple-
mentations of AES, thereby improving from Zou et al.’s Asiacrypt’20
paper by more than 98 percent for all variants of AES. We show that the
qubit count - Toffoli depth product is reduced from theirs by more than
75 percent. Furthermore, we analyze the Jaques et al.’s Eurocrypt’20
implementations in details, fix the bugs (arising from some problem of the
quantum computing tool used and not related to their coding) and report
corrected benchmarks. To the best of our finding, our work improves from
all the previous works (including the Asiacrypt’22 paper by Huang and
Sun) in terms of various quantum circuit complexity metrics (such as,
Toffoli depth, full depth, Toffoli depth - qubit count product, and so on).

Equipped with the basic AES implementations, we further investigate the
prospect of the Grover’s search. In that direction, under the MAXDEPTH
constraint (specified by NIST), the circuit depth metrics (Toffoli depth,
T-depth and full depth) become crucial factors and parallelization for
often becomes necessary. We provide the least depth implementation in
this respect, that offers the best performance in terms of metrics for circuit
complexity (like, depth-squared - gate count product, depth-squared -
qubit count product).

Keywords: Quantum Implementation · Grover’s Search · AES

We thank Da Lin (Hubei University, Wuhan, PR China) for the kind support.
This work presented in this paper won the grand award at the Cryptography Paper
Competition (cryptography application and utilization category) organized by the South
Korean Government, 2022 (https://kiisc.or.kr/bbs/nn/article/2147).

https://kiisc.or.kr/bbs/nn/article/2147

2

1 Introduction

In the current situation in the world of cryptography, quantum computers are
considered an upcoming major threat. This is due to the innate nature of how
the quantum computers can efficiently model and solve certain problems. There
is an overlap between the problems efficiently solvable by a functional quantum
computer and those act as the backbones to certain cryptographic systems. Those
problems are hard to solve by a classical computer, hence considered secure as of
now, but the security of those systems may be threatened if quantum computers
become viable in the future. It is well-known that there will be severe consequence
in the field of public key cryptography [26], still the secret key counterpart will
likely not be completely unscathed either. Depending on the structure, a secret
key cipher, too, can have severe security flaw against a quantum computer (refer
to [21,35])3.

One serious way for this to manifest arises from the observation that, a lot of
the post-quantum ciphers use some secret key ciphers internally as a component
in one way or the other (apart from the standalone usage of the secret key ciphers).
This is evident from the current portfolio of the Post-Quantum Cryptography
(PQC) standardization4 being organized by the US government’s National Insti-
tute of Standards and Technology (NIST). While the core components of ciphers
are based on a problem presumed to be quantum-safe, due to the usage of secret
key ciphers, it may be possible for the attacker to bypass the overall security
claim (i.e., by exploiting only the secret key component). In other words, it may
just so happen that the secret key component becomes the security bottleneck of
the a post-quantum cipher (despite the core components being secure) against
a potent quantum computer. Therefore, it is probably a commendable plan to
consider the quantum security of the secret key ciphers, to be on the safe side.

Therefore, finding the generic quantum security level for a secret key cipher
is among the top research directions (see Section 2.2 for related works). One
of the main way an attacker with a functional quantum computer can try to
mitigate the security of the secret key ciphers is by running the Grover’s search
algorithm [25]. As a rule of thumb, it reduces the time complexity of exhaustive
key search to nearly the square-root bound (with a high probability).

Our work makes a detailed and systematic attempt to estimate the search
complexity on the AES family of block ciphers (AES-128, AES-192 and AES-
256) [16], thereafter finding the complexity for the Grover’s search [25]. In
the process, we revisit recent research works to incorporate state-of-the art
advancements in various related areas (including those which are reported recently
like [40, 41, 42, 54]). Our objective lies in reducing the cost in various metrics
(see Section 2.1 for an overview on the quantum gates); such as qubit count,

3However, it is to be mentioned that the quantum computers are the nowhere near to
be considered a serious generic threat against the secret key ciphers (due to impractical
resource requirement) as of yet, despite the paradigm growing in leaps and bound in
the past few years.

4https://csrc.nist.gov/projects/post-quantum-cryptography.

https://csrc.nist.gov/projects/post-quantum-cryptography

3

gate count, circuit depth (Toffoli depth, full depth) and/or cost-depth trade-off
(Toffoli depth × qubit count, full depth × qubit count, among other options). In
the process, we carefully weigh and choose from a number of possible options.

Contribution and Organization

The prerequisite for this work is summarized in Section 2. In particular, the
quantum gates are briefly described in Section 2.1, and previous literary works
in Section 2.2.

We discuss in detail about the considerations/choices that are made during
design separately for AES in Section 3 and architecture for combined components
in Section 4.

We observe that the implementation by [34] contains some Q# programming
issue, which probably results in underestimating the resources for non-linear
components; although the linear components are not affected. We patch the
issues (such as impossible parallelism and inconsistencies from reported quantum
resources) and estimate the correct quantum gates and depth from the number
of qubits in Section 5. It is to be noted that the same Q# issue was reported in
the Asiacrypt’20 [60], Asiacrypt’22 [28] and Indocrypt’22 [31] papers. Also the
authors of [34] confirmed it in a private communication.

Main results are consolidated in Section 6 (cost of the implemented quantum
circuits) and Section 7 (cost for running the Grover’s search). Comparison of
our implementations with respect to the previous works are shown in Table 4
for the three variants of AES. Table 1 shows the overall performance gain of our
work with respect to previous AES implementations. It can be seen that we make
significant improvement over the Asiacrypt’20 paper [60] (such as our Toffoli
depth TD is reduced by over 98% for AES-128) and also the bug-fixed version of
the Eurocrypt’20 paper [34]. We also include the two implementations done in [28]
for a quick comparison. In [28], the qubit count and Toffoli depth of the AES
quantum circuit are determined by the number of parallel S-box implementations
which is denoted by p — as p increases, the Toffoli depth decreases, but the
number of qubits increases.

We develop multiple quantum implementations of the ciphers in the AES fam-
ily (AES-128, AES-192 and AES-256), and report the least full depth FD (with
moderate number of qubits M and quantum gates G) and cost-depth trade-off
(TD-M ; FD-M ; and G-FD) implementations so-far. By increasing the number
of qubits by a less quantity, we reduce the full depth greatly, so that the overall
produce is significantly reduced. Moreover, this low depth is highly advanta-
geous for reducing the cost when parallelization is required due to the depth
limit in Grover’s search (see Appendix B). Optimization is done at three levels,
namely individual component level (S-box, MixColumn etc.), architecture level
(16 S-boxes to make 1 SubBytes, 4 MixColumn to make 1 MixColumns etc.),
and finally by sharing of resources among the modules. We present a pool of
three implementations, each optimized for a specific objective (see Section 3.1
for related discussion):

4

1. The regular version uses the least qubit count and FD-M cost in our work,
and reduces Toffoli circuit depth compared to the previous works for all the
3 variants. The MixColumn implementation is taken from [54], which allows
zero ancilla/garbage qubit and incurs 92 CNOT gates.

2. The shallow version runs all parallel-executable parts of AES simultaneously,
including reverse operations. The depth of one round only counts SubBytes
+ MixColumns, which is optimal. The shallow version takes the least qubit
count and Toffoli depth product (TD-M cost) with an improved pipeline
architecture. According to [60], this is an important notion of circuit com-
plexity. Similar to the regular version, the MixColumn implementation is
taken from [54].

3. Further, the shallow/low depth version looks for reducing the circuit depth by
opting for a low quantum depth implementation of MixColumn (which was
found by the authors of [40]). This version is optimal when parallelization of
Grover’s search is unavoidable under the constraints of depth.

Orthogonal to three architectural choices, we also use two S-box implementa-
tions (from [28]) that incur the Toffoli depth of 4 and 3 respectively. On top of
that, we present two implementations of the bug-fixed version of Eurocrypt’20 [34]
in Section 5 for AES-128, AES-192 and AES-256. These two versions differ based
on whether the in-place MixColumn from [34] is used or the Maximov’s MixCol-
umn implementation from [43] is used (both were used in [34]). In order to keep
the modification at minimum, we reuse the same design choices made in [34]. For
this reason, we reuse the S-box implementation as in [34], which was adopted
from [13].

In this work, we present 8 distinct implementations for each variant of AES:
1. Regular (MixColumn from [54]).

(a) 3 Toffoli depth S-box [28].
(b) 4 Toffoli depth S-box [28].

2. Shallow (MixColumn from [54]).
(a) 3 Toffoli depth S-box [28].
(b) 4 Toffoli depth S-box [28].

3. Shallow/low depth (MixColumn from [40]).
(a) 3 Toffoli depth S-box [28].
(b) 4 Toffoli depth S-box [28].

4. Bug-fixing [34] (S-box from [13]).
(a) In-place MixColumn [34].
(b) Maximov’s MixColumn [43].

Further, except the bug-fixed version (for which only the Toffoli gate version
is available), rest of the 3 versions are all done for the Toffoli gate as well as the
AND gate. Combining all, we present 42 implementations altogether: 3 versions
× 2 type of S-box × 3 AES variants × 2 type of gates (Toffoli and AND) +
bug-fixed JNRV for 3 AES variants × 2 type of MixColumn.

About the novelty/new building block introduced in this paper, we would
like to note the following points:

1. We optimize the depth of the components by using more ancilla sets (except
in-place MixColumns) through parallelization. We reduce the depth while
conserving the number of qubits by allowing for many ancilla qubits and
reusing them in the next round through reverse operations.

2. We present a new idea for pipelining of operation (Figure 4(b)), which reduces
the T-depth and full depth from the previous works (as in Figure 4(a)). This
involves combining the previous round’s reverse operation with the current
round’s operation by using two alternate ancilla sets.

5

Table 1: Performance comparison of AES quantum implementations.

AES
Toffoli depth Qubit count Full depth

(TD) (M) TD ×M (FD) FD ×M

1
2
8

GLRS [24] 12672 (99.76) 984 (−84.55) 12469248 (97.96) 110799 (99.12) 109026216 (94.29)

LPS [39] 1880 (98.41) 864 (−86.43) 1624320 (84.32) 28927 (96.62) 24992928 (75.08)

ZWSLW [60] 2016 (98.51) 512 (−91.96) 1032192 (75.32) · ·

HS [28]
✝ 18 820 (95.12) 492 (−92.27) 403440 (30.86) · ·
✝ 9 1558 (97.43) 374 (−94.13) 582692 (56.29) · ·

❆ 2394 (98.33) 1656 (−74.00) 3964464 (93.58) 33320 (97.07) 55177920 (88.71)

✿ 40$ % 6368$ 254720$ 978$ 6227904$

1
9
2

GLRS [24] 11088 (99.68) 1112 (−83.37) 12329856 (97.34) 96956 (98.79) 107815072 (92.72)

LPS [39] 1640 (97.81) 896 (−86.60) 1469440 (78.15) 25556 (95.41) 22898176 (65.71)

ZWSLW [60] 2022 (98.22) 640 (−90.43) 1294080 (75.19) · ·
❆ 2682 (98.21) 1976 (−70.46) 5299632 (93.94) 37328 (96.86) 73760128 (89.36)

✿ 48$ % 6688$ 321024$ 1174$ 7851712$

2
5
6

GLRS [24] 14976 (99.72) 1336 (−80.85) 20007936 (98.05) 130929 (98.95) 174921144 (94.51)

LPS [39] 2160 (98.06) 1232 (−82.34) 2661120 (85.32) 33525 (95.89) 41302800 (76.74)

ZWSLW [60] 2292 (98.17) 768 (−88.99) 1760256 (77.81) · ·
❆ 3306 (98.31) 2296 (−67.09) 7590576 (94.85) 46012 (97.01) 105643552 (90.91)

✿ 56$ % 6976$ 390656$ 1377$ 9605952$

Parenthesized numbers show % (positive) improvement reported in this work.

✝: Choice of p.

�: Regular version (using Toffoli gate).

$: Shallow version (using Toffoli gate). ✿: S-box with Toffoli depth 4.

%: Shallow/low depth version (using Toffoli gate).

❆: Bug-fixed JNRV [34] (using Toffoli gate).

3. We propose two new structures (shallow, shallow/low depth). The shallow/low
depth version has the advantage that the ancilla qubits for MixColumn can
be taken for free (in the regular version, used in [34], ancilla qubits are not
free when the Q# bug is patched).

As a consequence of our analysis, the state-of-the-art bounds of the quantum
security level [45] is updated in Section 7. The cost for the Grover’s search for
each implementation can be observed from Table 7 (Table 7(a) with Toffoli and
7(b) with AND gates). We conclude in Section 8, where we present the other
AES related quantum analysis with respect to the updated security level (refer
to Figure 6 for a quick view).

Some additional information/discussion can be found in Appendices A (a
short discussion on the AES variants), B (the Grover’s search algorithm), C
(discussion on the requirement/specification by NIST), D (a brief comparison
of classical and quantum depths for the in-place XOR/CNOT implementation
of linear layers), E (detailed discussion on the Eurocrypt’20 [34] bug), and F
(per-round based break-up of quantum resources).

6

Our source codes are written in ProjectQ5, which is a Python-based open-
source framework for quantum computing. All our relevant source codes can be
accessed online as an open-source project6.

2 Background

2.1 Quantum Gate Basic

Throughout this paper, we use the following shorthand notations: #NOT (re-
versible NOT gate count), #CNOT (CNOT count), #Toffoli (Toffoli count),
TD (Toffoli depth), #T (T-gate count), Td (T-depth), #1qCliff as Clifford gate
count, #Measure (Measurement count), G (total gates), FD (full depth) and M
(qubit count). The full depth is related to the execution time of circuits [10]. The
importance of depth is also noted in NIST’s post-quantum security requirements.
In estimating the complexity of quantum attacks, NIST used only the number of
gates and depth as metrics, not the number of qubits [45].

We optimize AES for quantum computers; keeping an eye on the qubit count,
Toffoli depth and full depth. Further, we also consider the Toffoli depth × qubit
count, the TD-M cost, and full depth × qubit count, the FD-M cost as metrics
for trade-off. Our AES quantum circuits attain the least Toffoli and full depths,
TD-M and FD-M costs, significantly contributing to the advancement of the
state-of-the-art.

It can be stated that the Toffoli gate is decomposed in terms of the Clifford
and T gates, the cost and depth of such a decomposition varies based on the
method [3, 27, 48]. Further, a Clifford gate can refer to CNOT and 1qCliff gates.
Also, the T-depth, an important factor in error correction, is determined by
T gates when Toffoli gate is decomposed. After designing the quantum circuit,
we need to decompose the Toffoli gates to estimate detailed quantum resources.
In this paper, when estimating detailed quantum resources, the Toffoli gate is
decomposed into (8 Clifford gates + 7 T gates), T-depth 4, and full depth 8
following one of the methods in [3].

Additionally, we adopt the quantum AND gates from [34]. This AND gate is
decomposed into (11 Clifford gates + 4 T gates), T-depth 1, and full depth 8, and
requires 1 ancilla qubit. The reverse of the AND gate which does the un-compute
operation (i.e., AND† gate) is designed according to the measured value of the
target qubit of the AND† gate. This AND† gate is counted as (7 Clifford gates +
1 Measurement gate) in resource estimation. Although not adopted in our work,
there is another version of the AND gate [23] that does not require an ancilla
qubit, but has a T-depth of 2.

We first use Toffoli gates to verify the simulation results of the implemented
quantum circuit. Since ProjectQ allows classical simulation of Toffoli gates, we
can verify test vectors for large-scale quantum circuits. A Toffoli gate can be
simulated classically and decomposed only when estimating resources. On the

5Homepage: https://projectq.ch/.
6https://github.com/starj1023/AES QC.

https://projectq.ch/
https://github.com/starj1023/AES_QC

7

other hand, classical simulation of AND gates is not supported. Therefore, we
adopt a method of verifying the implemented quantum circuit using Toffoli gates
and then replacing the top part with AND gates to estimate resources.

2.2 Related Work

Quantum analysis of secret-key ciphers with respect to the Grover’s search
algorithm is one of the major research direction now-a-days. Some of the prominent
examples include, but not limited to, AES [11,34,39,60], SIMON [6], SPECK [5,29],
PRESENT and GIFT [32], SHA-2 and SHA-3 [2], FSR-based ciphers [4], ChaCha
[9], SM3 [49,58], RECTANGLE and KNOT [7], DEFAULT [30], ARIA [15], few
Korean ciphers [33,37], SPECK and LowMC [31], CHAM [55].

In comparison with the recent work by Huang and Sun (Asiacrypt’22) [28],
we note the following points. Our approaches are mostly disjoint from that of [28];
and when their S-box implementation is used in our implementation, our result
outperforms theirs (thus we have the best-known implementation so far). As it
can be seen from Table 1, our results are indeed better than those are reported
in [28]. Further, we cover optimized quantum implementations of AES-192 and
AES-256 as well.

3 Components for Quantum Circuits for AES

3.1 Regular, Shallow and Shallow/Low Depth Versions

Our quantum circuit implementations are divided into regular and shallow
versions. The regular version offers high parallelism while taking into account
the trade-off of depth-qubit. The regular version has the best performance for
FD-M cost (which is the full depth - qubit count product. The shallow version
also considers the trade-off of qubit-depth, but further reduces the depth by
burdening the use of qubit. The shallow version has the best performance in
terms of Toffoli depth and TD-M cost (which is the Toffoli depth - qubit count
product). The shallow/low depth version seems to achieve the lowest depth for
quantum circuit implementation. The shallow/low version is the optimal choice
when parallelization of the Grover’s search is essential due to the depth limit.

The regular version focuses on the parallelism within the round. In this version,
while the current round awaits, the previous round goes through the reverse (i.e.,
un-compute) operation. In other words, the next round cannot start until the
reverse operation on the current round is complete.

On the other hand, the shallow version manages to parallelize the processing
for all the rounds. In this version, the reverse operation of the previous round is
run simultaneously with the current round, alternating between the even and
the odd rounds (for instance, while the even rounds are at compute operation,
the odd rounds are at the un-compute operation). This version uses more qubits,
but offers lower depths, because all the rounds of the parallelizable parts of the
cipher run simultaneously. As a consequence, it achieves lower circuit depth, as in

8

this case the bottleneck of the depth is that of the SubBytes plus MixColumns in
every round (except for the last round where MixColumns depth is not counted).

That said, one may notice that the depth can be reduced if a different
implementation of MixColumn is opted for, though the Toffoli depth is unchanged.
In our shallow version, we choose the MixColumn implementation from [54], as
it offers in-place implementation. As pointed out in Table 3, it is possible to
lower the depth at the expense of more qubits, if the MixColumn implementation
from [40] is chosen instead. Thus, everything else being inherited from the shallow
version, the shallow/low depth version achieves lower full depth.

Most papers implementing quantum circuits for AES focus on reducing the
usage of qubits [1, 24,28, 39,52,60]. However, the serial circuit structure (which
aims at reducing the number of qubits) significantly increases the circuit depth.
As stated already, our quantum circuits for AES attempt to find the best possible
balance between the number of qubits required with its relation to increment
of the circuit depth. Thanks to the careful choices, our AES quantum circuits
provide arguably the best trade-offs in terms of TD-M cost by varying TD and
M , where recall that TD is the Toffoli depth and M is the number of qubits.
This product is taken as the trade-off indicator for the quantum circuit in [60].
We also use the depth - qubits count product in estimating the FD-M cost. This
metric is also realistic and is used primarily for evaluation. Our AES quantum
circuit achieves the best trade-offs even in terms of FD-M cost.

3.2 Implementation of S-box (SubByte)

Table 2 shows the resources required for the implementations found by Boyar-
Peralta [12,13] and the resources for the S-boxes used by the previous authors [39,
60]. Resource estimation is performed in ProjectQ and according to the method
of [3], one Toffoli gate is decomposed into (8 Clifford gates + 7 T gates), and
T-depth of 4, and full depth of 8. For the cost comparison and implementation
details in Section 3, we use only the Toffoli gate. If we adopt the AND gate instead
of the Toffoli gate, an ancilla qubit is required, but it can be saved depending
on the overall structure. Thus, the cost of the AND gate version is estimated
in Section 6 by replacing the Toffoli gates at the top of the implemented AES
quantum circuits with AND gates.

Note that the S-box implementation in [24] is based on a field inversion
technique, while the rest are based on some version of the Boyar-Peralta’s
algorithm [12, 13]. Apart from these, another method which is a courtesy of
Dansarie [17, 18] exists. This is rather generic, as it can find implementation
of an arbitrary 8-bit S-box (i.e., unlike [12, 13], this is not specific to the AES
S-box), with respect to a user-provided set of logic gates. In total, we found
5 implementations in which the number of lines in the C source files is in the
ballpark of 400 (it contains AND, OR and NOT gates; and sometime one line
contains more than 1 gate). These are not used in this work due to high quantum
cost (see Table 2 for the benchmarks).

If the Boyar-Peralta’s S-box implementations [12,13] are directly ported to
quantum, then the version of [13] requires more ancilla qubits (120 ancilla qubits)

9

Table 2: Comparison of quantum implementations of AES S-box.

Method #CNOT #1qCliff #T TD M Full depth

S-box [24] 1818 124 1792 88 40 951

S-box [12] 358 68 224 8 123 104

S-box [13] ✜ 392 72 238 6 136 85

S-box [39] 628 98 367 40 32 514

S-box [60] 437 72 245 55 22 339

S-box [17,18]

391 lines 1470 670 1218 66 399 640

406 lines 1507 548 1245 74 414 709

413 lines 1484 561 1169 62 421 591

409 lines 1483 574 1190 74 416 693

400 lines 2244 1006 2254 111 408 998

S-box [28]
✿ 418 72 238 4 136 72

❀ 824 160 546 3 198 69

✜: Reused in this work to fix [34].

✿: Used in this work (Toffoli depth 4).

❀: Used in this work (Toffoli depth 3).

than the quantum version of [12] (107 ancilla qubits), but attains lower depth.
JNRV adopted the implementation of the S-box of [13] on a quantum circuit [34]
as-is.

Recently, Huang and Sun reported an improved quantum implementation for
the S-box of [34] in their Asiacrypt’22 paper [28]. They presented two quantum
implementations of reduced Toffoli depth with new observations of the classical
implementation of the AES S-box as given in [13]. The first version reduced the
Toffoli depth without increasing the number of qubits, while the second version
used more qubits to further reduce the Toffoli depth.

In [39, 60], the authors extended the first S-box implementation by Boyar-
Peralta [12] and presented the S-box quantum circuit with a reduced number of
qubits. Consequently, it leaves us with a few of ways to choose from.

Considering the trade-off between the circuit depth and the number of qubits
required for an S-box implementation, we treat two cases. The first case is when
the ancilla qubits have to be allocated per SubBytes, which is indeed sensitive to
the number of qubits. The second case is when the initially allocated ancilla qubits
can be reused. In this case, there is no need to allocate additional ancilla qubits for
the next SubBytes. Therefore, the number of ancilla qubits is maintained, but the
depth and number of gates increase due to the reverse operations needed to reuse
the ancilla qubits. We choose the second case for our SubBytes implementation,
since we believe the benefit of reducing the number of qubits outweighs the cost
saved by not performing additional reverse operations. In this case, only the
initial allocation is burdened because the ancilla qubits are reused. Thus, we use
Huang and Sun’s [28] S-box implementations with relatively high qubit count
but low depth. That is, we increase the initial burden and use fast (low depth)
S-boxes for free (without ancilla qubits) until the end.

10

One may note that the AES implementation in [60] required the implemen-
tation of the inverse S-box. In our case, however, we do not use the inverse
S-box.

3.3 Implementation of SubBytes

After we decide upon the implementation of one S-box (SubByte, Section 3.2), this
can be used to implement 16 S-boxes (SubBytes). Regarding the implementation
of SubBytes in AES, Figure 1(a) shows the method that uses the fewest qubits.
In this case, all S-boxes are executed sequentially, which causes a significant
increase in depth, as shown in Figure 1(a). On the other hand, we reduce the
depth by allocating more ancilla sets initially. The notation S-box† is described
in Appendix A.3.

|Ancilla⟩ S-box S-box† S-box • S-box† . . . S-box • S-box†

|u0∼7⟩ • • . . .

|s0∼7⟩ . . .

|u8∼15⟩ • • . . .

|s8∼15⟩ . . .

|u120∼127⟩ . . . • •

s120∼127 . . .

(a) Using one ancilla set. (b) Using multiple an-
cilla sets.

Fig. 1: SubBytes implementation in quantum.

In one round, 16 S-boxes in SubBytes and 4 S-boxes in key schedule, a total of
20 S-boxes are operated, simultaneously. Therefore, we allocate 20× 120 ancilla
qubits for S-boxes with Toffoli depth 4 and 20× 182 ancilla qubits for S-boxes
with Toffoli depth 3 to run all S-boxes simultaneously. Figure 1(b) shows 16
S-boxes operation in parallel using multiple ancilla sets. After S-box operations,
ancilla qubits are not in a clean state (i.e., not all ancilla is 0). Initialization with
16 S-boxes† operation (i.e., returning to 0) is performed in parallel for the next
round. Thanks to this, we can reuse the initialized ancilla qubits in the next round
of SubBytes. Of course, these reverse operations save qubits, but increase depth.
However, if we allocate ancilla qubits each time by skipping reverse operations,
it is an abuse of qubits. We consider these trade-offs carefully and the shallow
version offsets this depth overhead from reverse operations (this will be described
in Section 4.2).

11

In [60], 16 S-boxes of SubBytes were implemented in parallel using residual
ancillas, but key schedule was not implemented in parallel with SubBytes.

3.4 Implementation of Key Schedule

In the key schedule of AES, SubWord operates on rearranged 32-qubit. Out of the
20× (120 or 182) ancilla qubits previously decided to use (refer to Section 3.3),
4 × (120 or 182) ancilla qubits are used to simultaneously operate S-boxes for
32-qubit in the key schedule (16 × 120 or 16 × 182 ancilla qubits are used in
SubBytes of round). For rearranging the 32 qubits, quantum resources are not
used by using logical swap that only changes the index of the qubits.

In SubBytes, the outputs of S-boxes are stored in new qubits. On the other
hand, in the key schedule, no additional qubits are allocated because the outputs
of the S-boxes are XORed (using CNOT gates) inside the key. Since SubWord for
32-qubit operates in parallel with SubBytes of round, there is no depth overhead
in our AES quantum circuit implementation. This approach is already utilized
in [34]. XORing the 8-bit round constant (RC) is implemented by performing X
gates to |k120∼127⟩ according to the positions where the bit value of the round
constant is 1. Lastly, the CNOT gates inside the key are performed. Figure 2
shows the quantum circuit for the AES-128 key schedule (see Appendix A.3 for
description of Rotation† and SubWord†).

All the S-boxes in key schedule and round function are designed to operate
in parallel. That is, the depth is the same as operating an 8-bit S-box once.
Quantum implementation for S-box is required for key schedule and SubBytes,
and S-box occupies the most resources in AES quantum circuit. In [24], GLRS
used Itoh–Tsujii inversion to implement S-box of AES, which requires a lot of
quantum resources. Recently, the hardware design for AES has been adopted to
implement an efficient S-box quantum circuit. In particular, S-box implementation
techniques [12, 13] proposed by Boyar-Peralta were frequently used. In [39],
Langenberg et al. adopted the S-box implementation of [12] and converted it
to suit their purpose of reducing qubits. The S-box implementation of [12] was
adopted and improved in [59]. ZWSLW [60] also used the S-box−1 implementation
in designing a new architecture for AES that reduced number of qubits. For the
key schedule, an on-the-fly approach is adopted, and our AES quantum circuit
implementation executes the key schedule simultaneously with SubBytes in the
round function.

In most implementations of AES quantum circuits, the full depth and Toffoli
depth of AES-128 are higher [24, 34, 39] or similar [60] to those of AES-192.
Although AES-128 has fewer rounds, this is due to differences in key schedule.
AES-128 requires 16 S-boxes for SubBytes and 4 S-boxes for key schedule in
every round. On the other hand, some rounds of AES-192 require only 16 S-boxes
for SubBytes, since SubWord in the key schedule are not required. As a result,
AES-128 has a higher depth than AES-192.

Another interpretation of this is that there is a depth overhead for key schedule
in implementing AES quantum circuits. However, in our AES quantum circuits
there is no depth overhead for key schedule (there is overhead for gates and

12

|Ancilla⟩⊗4 set SubWord • SubWord† |Ancilla⟩⊗4 set

|k0∼31⟩ Rotation • • Rotation† |k0∼31⟩

|k32∼63⟩ • |k32∼63⟩

|k64∼95⟩ • |k64∼95⟩

|k96∼127⟩ X(RC) • |k96∼127⟩

Fig. 2: AES-128 key schedule in quantum.

ancilla qubits). Our AES quantum circuit runs the key schedule in complete
parallel, so we achieve the same depth as if the key schedule was omitted. As
a result, unlike other implementations, the quantum resources required for our
AES-128, -192, and -256 quantum circuits are strictly dependent on the number
of rounds.

3.5 Implementation of AddRoundKey and ShiftRows

The AddRoundKey operation, which XORs a 128-qubit round key, can be
implemented simply by using 128 CNOT gates. In the case of ShiftRows, it can
be implemented using swap gates, but quantum resources are not used through
logical swap that changes the index of qubits. Since no special implementation
technique is applied for AddRoundKey and ShiftRows, this approach is mostly
used in quantum circuit implementations.

3.6 Implementation of MixColumn

In [54], Xiang et al. presented a novel heuristic search algorithm to optimize the
implementation of linear layers based on factorization of binary matrices. When
applied to the MixColumn of AES, their algorithm resulted in an implementation
using 92 XOR gates (with classical depth 6) in a classical circuit. A different
implementation costing 92 XOR gates (with classical depth 6) was reported
previously by [43]. These two were the least cost implementations in classical
circuits, until another implementation with 91 XOR gates (with classical depth
7) was found by [41]. Recently, a new implementation of AES MixColumn was
found thanks to [42], which managed to reduce the classical depth to 3 with 103
XOR gates (cf. 103 XOR/3 classical depth implementation from [8]). However,
this work came as a tie with another implementation from [40], albeit the latter
required 105 XOR gates.

When it comes to quantum implementation, one may observe that the fol-
lowing implementations operate in-place (i.e., of the form a← a⊕ b and require
only 32 qubits):

(a) PLU factorization in some form (used in [1, 24,34,60]);
(b) 92 XOR implementation reported in [54] (used in [28]).

13

Note from Table 3 that, the implementation by [54] requires the least number of
XOR/CNOT gates. This hugely improves from the previous in-place implementa-
tions based on the PLU factorization [24,34,60]7. In contrast, implementations
like that of [41,42,43], do not work in-place, due to the require usage of temporary
variables (i.e., ancilla/garbage qubits) and/or depth (due to cleaning up qubits).
On a different direction, the implementation from [40] appears to have lower
depth than that of [42] when converted to quantum circuits. Related discussion
can be found in [47].

We port the implementation of MixColumn in [54] to quantum and use it
in our AES quantum circuit. This implementation is used in the regular and
shallow versions. Additionally, in order to minimize the circuit depth, we also
use the MixColumn implementation from [40] in our shallow/low depth version.

Table 3: Comparison of quantum implementations of AES MixColumn.

Method #CNOT #qubit (M) Depth

MixColumn (Näıve)
GF(28)

184 64
25

GF(2) 52

MixColumn [24,60]✟ 277 32 39
MixColumn [38] 194 129 15

MixColumn [1]✟ 275 32 200

MixColumn [43]✛ 188 126 13

MixColumn [34]✚✟ 277 32 111
MixColumn [50] 188 126 17

MixColumn [54]� $ ✟ 92 32 30

MixColumn [41]✳ 182 123 16

MixColumn [42]✴ 206 135 13

MixColumn [8]
103 XOR/3 depth 206 135 11
95 XOR/6 depth 190 127 15

MixColumn [40]✴ % 210 137 11

✛ ✚: Reused in this work to fix [34] ❆.
� $: Used in regular and shallow versions; in [28].

✳: Least XOR count in classical circuit.
✴: Least depth in classical circuit.

%: Used in shallow/low depth version.
✟: In-place implementation.

The authors of [8] presented two implementations (103 XOR/3 classical depth,
and 95 XOR/6 classical depth). If taken as-is, the 103 XOR/3 classical depth
implementation yields 206 CNOT gates, 135 #qubits, with 11 quantum depth
when ported. Thus, it is in theory possible to slightly improve our shallow/low
depth version by switching to this implementation. Further, if the 95 XOR/6
classical depth implementation is ported as-is; it incurs 190 CNOT gates with 127

7In the Eurocrypt’20 paper [34], the authors remarked that they could not reproduce
the result from [24].

14

#qubits with depth 15; however we could not verify the results (probably due to
an encoding issue). Second, an implementation of 108 XOR count is mentioned
in [22, Footnote 3/Page 42], but it is not clear to us so far.

Apart from the specialized MixColumn implementations just narrated, it
is perhaps worth noting that the näıve quantum implementation (i.e., directly
porting the matrix to quantum circuit) was seemingly never studied. With our
implementations, one as a 4× 4 matrix over GF(28), and the other as a 32× 32
binary matrix; we notice from Table 3, the CNOT count being the same, that
the depth varies.

3.7 Implementation of MixColumns

For the 128-bit MixColumns operation (i.e., 4 MixColumn operations), the
MixColumn implementation can be scaled up directly. As the MixColumn used
in the regular and the shallow versions work in-place, we do not have to consider
the impact of ancilla qubits. This, however, is more complicated in case of the
shallow/low depth version, as described next.

In the shallow/low depth version, we need to account for the ancilla qubits
(since the implementation [40] is not in-place). This observation although hints
that we need extra qubits (to work as ancilla), here we show how this is not the
case. Recall from the implementation of SubBytes (Section 3.2 and Section 3.3)
the S-box implementation is also not in-place, requiring ancilla qubits (20× 120
or 20×182). Those ancilla qubits are initialized as 0 after one SubBytes operation
(to use in the next round). Therefore, during the MixColumns operations those
qubits are idle. As we only need 64 qubits to implement the MixColumn from [40]
(32 as input plus 32 as output qubits), those idle qubits are reused. Thus, even
though the MixColumn implementation is not in-place, at the end, we do not
need any extra qubit. So, the qubit count does not increase when SubBytes is
counted within the scope.

In other words, the total number of qubit requirement is 64 for any imple-
mentation in Table 3 (save for the in-place implementations [1,54] where it is 32)
when the non-standalone implementation of MixColumns (in which MixColumn
does not operate in-place) is considered. However, when the combined SubBytes
and MixColumns is considered, because of efficient resource sharing, the total
qubit count does not increase, also the full depth does not increase.

4 Architecture of AES Quantum Circuits

A combined description of the AES quantum circuits for all the 3 versions is
presented here. There are several architectures for designing quantum circuits of
AES. The architectures differ in how they store the 128-qubit output generated
from SubBytes in each round. In [1,24,39], the basic zig-zag architecture (Figure
3(a)) was adopted that uses 4 lines to save qubits by performing reverses on
rounds. In [60], an improved zig-zag architecture that requires only 2 lines of qubits
(Figure 3(b)) was presented. By using a quantum circuit of S-box−1, they were

15

able to achieve an improved architecture using fewer qubits. The basic pipeline
architecture allocates 128-qubits every round and does not need reverses of rounds.
Simply put, the zig-zag architecture requires reverse operations on rounds to
save qubits, significantly increasing depth and gates. The pipeline architecture
allocates new qubits per round, but does not require reverse operations, reducing
depth and gates. It is a trade-off issue, but in a sense, a generic pipeline is
probably the most efficient architecture for implementing AES quantum circuits.
We believe that it is much more efficient to allocate a new 128-qubits per round
than doubling the gates, depth by performing reverse operations on the rounds
to save qubits.

In our approach, where we have allocated many ancilla qubits already, the
overhead of increasing the number of qubits according to the architecture is
relatively low. Therefore, for our implementation, rather than reducing the
number of qubits with the zig-zag method, a pipeline architecture that can
reduce the depth by omitting the reverses is more suitable. Figure 4(a) shows
the pipeline architecture of our AES-128 quantum circuit in more detail for the
regular version, and Figure 4(b) shows the same for the shallow and shallow/low
depth versions. To be more precise, each R1∼10 in Figure 3 represents the full
round, but each R1∼10 in Figure 4 does not contain SubBytes.

16

Table 4: Comparison of quantum resources required for variants of AES.

AES #CNOT #NOT #Toffoli TD #qubits
TD-M cost

(TD ×M)

Full

depth

TD2-M cost

(TD2 ×M)

1
2
8

GLRS [24] 166548 1456 151552 12672 984 12469248 110799 158010310656

ASAM [1] 192832 1370 150528 · 976 · · ·
LPS [39] 107960 1570 16940 1880 864 1624320 28927 3053721600

ZWSLW [60] 128517 4528 19788 2016 512 1032192 · 2080899072

HS [28]
✝ 18 126016 2528 17888 820 492 403440 · 330820800

✝ 9 126016 2528 17888 1558 374 582692 · 907834136

� 84120 800 12920 76 3936 299136 1364 22734336

$ ✿ 81312 800 12240 40 6368 254720 978 10188800

% 90816 800 12240 40 7520 300800 799 12032000

� 138080 800 29640 57 5176 295032 1307 16816824

$ ❀ 132432 800 28080 30 8848 265440 948 7963200

% 141936 800 28080 30 10000 300000 769 9000000

1
9
2

GLRS [24] 189432 1608 172032 11088 1112 12329856 96956 136713443328

LPS [39] 125580 1692 19580 1640 896 1469440 25556 2409881600

ZWSLW [60] 152378 5128 22380 2022 640 1294080 · 2616629760

� 96112 896 14688 92 4256 391552 1627 36022784

$ ✿ 92856 896 14008 48 6688 321024 1174 15409152

% 104472 896 14008 48 8096 388608 955 18653184

� 157456 896 33696 69 5496 379224 1558 26166456

$ ❀ 151360 896 32136 36 9168 330048 1138 11881728

% 162976 896 32136 36 10576 380736 919 13706496

2
5
6

GLRS [24] 233836 1943 215040 14976 1336 20007936 130929 299638849536

LPS [39] 151011 1992 23760 2160 1232 2661120 33525 5748019200

ZWSLW [60] 177645 6103 26774 2292 768 1760256 · 4034506752

� 117704 1103 18088 108 4576 494208 1907 53374464

$ ✿ 113744 1103 17408 56 6976 390656 1377 21876736

% 127472 1103 17408 56 8640 483840 1118 27095040

� 193248 1103 41496 81 5816 471096 1826 38158776

$ ❀ 186448 1103 39936 42 9456 397152 1335 16680384

% 200176 1103 39936 42 11120 467040 1076 19615680

✝: Choice of p.

�: Regular version (using Toffoli gate).
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version (using Toffoli gate).

%: Shallow/low depth version (using Toffoli gate).

4.1 Regular Version

In our parallel design, the key schedule operates simultaneously with SubBytes and
MixColumn operates simultaneously with SubBytes†. Therefore, the circuit depth
is determined by the number of serial operations of SubBytes and SubBytes†.

As shown in Figure 4(a), SubBytes generates 128-qubit output and SubBytes†

cleans the ancilla qubits. In total, SubBytes runs 10 times and SubBytes† runs
9 times (as it is redundant to clean the last round SubBytes) serially, 19 times
in total. Similarly, AES-192 operates 23 times (12 SubBytes plus 11 SubBytes†)
and AES-256 operates 27 times (14 SubBytes plus 13 SubBytes†).

17

In SubBytes, S-boxes operate simultaneously. The depth of SubBytes is 72
equal to the depth of S-box (with Toffoli depth 4) once. Finally, when S-box
with Toffoli depth 4 is used, our AES quantum circuits provide a depth of 1364
(about 72×19) for AES-128, 1627 (about 72× 23) for AES-256, and 1907 (about
72× 27) for AES-256.

4.2 Shallow Version and Shallow/Low Depth Version

Further, we propose a shallow version in which all possible parts of AES quantum
circuits operate, simultaneously. When S-box with Toffoli depth 4 is used, this
can be achieved by using 2 sets of 20× 120 ancilla qubits. In the shallow version,
the first SubBytes in Figure 4(b) uses the first 20 × 120 ancilla qubits. The
second SubBytes uses the second 20× 120 ancilla qubits, and at the same time
SubBytes† cleans the first 20× 120 ancilla qubits. That is, SubBytes† operates
simultaneously with the SubBytes of the next round. Conceptually, this can be
thought as all SubBytes† in Figure 4(a) are pushed one space to the right. This
is possible because SubBytes and SubBytes† do not share any ancilla qubit. The
shallow version counts the depth for one round as SubBytes (72) + MixColumns
(30), which is the ideal depth. The circuit depth of AES-128 is 978 (about 9
rounds × 102 + 72), that of AES-192 is 1174 (about 11 rounds × 102 + 72),
and the same for AES-256 is 1377 (about 13 rounds × 102 + 72). In the shallow
version, up to SubBytes† operates concurrently within one round, providing
maximum parallelism. Finally, the shallow and shallow/low depth versions offer
the least Toffoli depth of the S-box’s Toffoli depth × rounds and Toffoli depth ×
qubit count.

The shallow/low depth version replaces only the MixColumn implementation
from the shallow version to a MixColumn which is a courtesy of [40]. The low
depth version counts the depth for one round as SubBytes (72) + MixColumns
(11). The low depth version of AES offers the least Toffoli depth and full depth.

(a) Basic (GLRS, LPS, ASAM).

(b) Modified (ZWSLW).

Fig. 3: Zig-zag architecture for AES-128 quantum circuit.

18

SB: SubBytes. SB†: Clean ancilla qubits used in preceding SubBytes.

(a) Regular version (JNRV).

(b) Shallow and shallow/low depth versions (Ours).

Fig. 4: Pipeline architecture of AES-128.

5 Bug-fixing JNRV (Eurocrypt’20) AES Implementation

In this part, we take a deeper look at the AES implementation and resource
estimation by Jaques, Naehrig, Roetteler and Virdia in Eurocrypt’20 [34]. It is
already well-known the resource estimation in their paper was incorrect due to
some problem in Q# (unrelated to the coding of [34]), as already noted by at least
two previous works [28,60] as well as acknowledged by the Eurocrypt’20 authors8

themselves. Also, one may refer to Appendix E for supplementary discussion
on this topic. We fix the Q# bugs and report the corrected benchmarks for the
resource requirement of [34] by porting their codes to ProjectQ.

8See https://github.com/microsoft/qsharp-runtime/issues/1037 and
https://github.com/sam-jaques/grover-blocks/tree/sjaques-version-update#

issue-with-estimating-resources.

https://github.com/microsoft/qsharp-runtime/issues/1037
https://github.com/sam-jaques/grover-blocks/tree/sjaques-version-update#issue-with-estimating-resources
https://github.com/sam-jaques/grover-blocks/tree/sjaques-version-update#issue-with-estimating-resources

19

5.1 Issues with Q#

For a clearer context, we give a brief description of the cases where Q#’s
ResourcesEstimator issues arise and how those issues affect the quantum bench-
marks given in the Eurocrypt’20 paper [34]. This was discovered when we tried
to cross-check their publicly available source codes9. Indeed, this was also noted
in [60] as a bug; and this apparently led to underestimation of gate count, qubit
count and depth reported in [34] for the non-linear components (namely the
S-box and S-box† of AES).

To our understanding, some problems arise if the qubits are allocated by the
using command in Q# (and it affects the non-linear components). However more
experiments are to be carried out in order to be completely certain about it.

Non-parallelizable SubBytes In their implementation, the S-box of [12] is
adopted and ported to the quantum domain. The quantum resources required
for the S-box quantum circuit reported in the Eurocrypt’20 paper [34, Table
1] are only correct for the stand-alone S-box (except for T-depth, this will be
described in Section 5.1). However, in the case of SubBytes operating with 16
S-boxes, incorrect quantum resources are reported. This is a major cause of their
resource estimation issues.

According to the reported number of required qubits, only one ancilla set is
used in their SubBytes implementation. In other words, 16 S-boxes share one
ancilla set. Thus, the arrangement of qubits in their SubBytes quantum circuit is
the serial structure of Figure 1(a). Since 16 S-boxes generate each output using
one ancilla set, all S-boxes in a limited space (one ancilla set) must be operated
sequentially. However, in their report, the depth of the SubBytes is the same as
the depth for a stand-alone S-box (meaning all S-boxes operate in parallel). That
is, it is an impossible quantum circuit structure and the lower-bound depth is
reported. The same error applies to the SubWord implementation of key schedule.

Issue with AND Gate This issue is also found in their use of AND gates.
Suppose that 5 Toffoli gates are operated in parallel during the S-box process.
Toffoli gates (the method used in [3]) operate in parallel without any additional
work, providing one Toffoli depth and full depth for one Toffoli gate. On the
other hand, in the AND gate of Figure 5(a), one garbage qubit (bottom line in
Figure 5(a)) is used. Thus, if replaced with AND gates, 5 garbage qubits for 5
AND gates must be allocated for parallel operation. Note that, the garbage qubit
of the AND gate is initialized to 0 after operation and can be reused in the next
AND gate, but a sequential operation is forced.

In a nutshell, in their S-box (out of 137 qubits, 136 qubits for the S-box and 1
qubit for the AND gate application), only one ancilla qubit is used for one AND
gate. However, quantum resources for parallel operations are reported. Technically
speaking, the ancilla qubits required for the AND gates can be replaced with

9https://github.com/microsoft/grover-blocks.

https://github.com/microsoft/grover-blocks

20

idle state qubits in the S-box operation, but this was not considered in their
implementation.

|a⟩ • T † • |a⟩
|b⟩ • T † • |b⟩

(Ancilla) |0⟩ H • • T • • H S |ab⟩ (Result)

(Ancilla) |0⟩ T |0⟩ (Garbage)

(a) AND gate.

(b) AND† gate.

Fig. 5: Quantum AND and AND† gates in JNRV (Eurocrypt’20).

Inconsistency and Underestimation of Full Depth In their AES quantum
circuits using Maximov’s MixColumn, the AES-192 quantum circuit offers the
lowest full depth (see Table 5(b)), although the number of rounds of AES-192 (12
rounds) is higher than that of AES-128 (10 rounds). This case is observed in the
zig-zag architecture [24, 39] since the number of key schedules is less in AES-192.
However, as a result of analyzing their quantum circuit design (e.g., pipeline and
parallel structure) and quantum resources, the full depth should depend on the
number of rounds because the key schedule operates in parallel with SubBytes. In
other words, in their AES quantum circuits, the full depth should be independent
of the number of key schedules. However, their AES-192 quantum circuit has a
lower full depth than their AES-128 quantum circuit. Moreover, their AES-256
(14 rounds) quantum circuit has a lower full depth than their AES-128 quantum
circuit.

Also, the full depth of their AES-192 and 256 quantum circuits cannot be
derived. By analyzing full depth with the quantum resources required for their
SubBytes and MixColumn, we believe their report is underestimated. Let us
assume the following two things to estimate the full depth for their AES quantum
circuit. All S-Boxes of SubBytes operate in parallel (in this case the full depth
of SubBytes is 101, see Table 5(a)) and the full depth of round is counted only
for SubBytes. Then, about 1212 (12 rounds × 101) should be the full depth of
the AES-192 quantum circuit, and the full depth of the oracle where the AES
quantum circuit is operated twice should be about 2424 (12 rounds × 101 × 2).
Even with these optimistic assumptions, the full depth of the oracle they estimate

21

for AES-192 (1879 in Table 5(b)) cannot be derived. This underestimation also
applies to the full depth of the oracle for AES-256, where they estimated 1951 in
Table 5(b) ̸= about 2828 (14 rounds × 101 × 2).

This inconsistency is also observed in AES quantum circuits using in-place
MixColumn (full depth is 111, as shown in Table 5(a)). To take one case, the
full depth of oracle for AES-256 is 3353 (Table 5(b)). In the AES-256 quantum
circuit, MixColumns operates for 13 rounds excluding the last round. Then, even
counting only MixColumns, the full depth of oracle for AES-256 is 2886 (13
rounds × 111 × 2) even though SubBytes are not counted. If we consider the full
depth with SubBytes included (cannot be operated in parallel with MixColumns),
the full depth 3353 is lower than expected (i.e., underestimated in the reports
of [34]).

5.2 Corrected Report

To our understanding, some problems arise if the qubits are allocated by the
using command in Q# (and it affects the non-linear components). However more
experiments are to be carried out in order to be completely certain about it.

The using command automatically disposes when the function ends. If ancilla
qubits to implement AES S-box are allocated with the using command, the
consistency between depth and qubits is lost. When 16 S-boxes are executed
in SubBytes, the ancilla qubits allocated by the using are counted only for
the first S-box and not after. Also counts the depth for executing 16 S-boxes
simultaneously. In order to derive the correct result, the number of qubits or
depth must be increased. Q#’s ResourcesEstimator tries to find its own lower
bound for depth and qubit. That is, to achieve the qubits of the lower bound, the
depth may have to be increased, and to achieve the depth of the lower bound,
the qubits may have to be increased.

Another problem is inconsistencies between quantum resources. We observe
underestimation when cross-checking the full depth of oracles, S-box and Mix-
Column they report. We could not pinpoint the exact cause, but we suspect
the problems were caused by the using command and the AND gate. As noted,
these problems effectively construct quantum circuits that are impossible. To
patch, we contribute in three major directions:

1. We reflect on the increasing depth in their number of qubits using only one
ancilla set. As shown in Figure 1(a), since the ancilla set is shared, not only
SubBytes but also S-boxes of SubWord of the key schedule are operated
sequentially.

2. We correct the implementation of MixColumns where the same issue occurs.
In Eurocrypt’20 paper [34], two MixColumn implementations were presented.
The in-place method of MixColumn implementation (which uses PLU de-
composition, and derived by the authors themselves [34]) does not cause this
issue. On the other hand, similar to S-box, the same issue applies to the
MixColumn implementation by Maximov [43], which requires ancilla qubits,
so this is also solved in the same way as the S-box.

22

3. We have modified the quantum circuits (SubBytes, key schedule and Mix-
Columns) done by [34] and re-implemented their algorithm on ProjectQ to
bypass the Q# bug. To avoid confusion, we estimate quantum resources using
Toffoli gates (using the method from [3]), rather than applying AND gates
(which could lead to some coding-related issues).

One way to correct the error is to estimate the correct depth by fixing the
erroneous parallelism based on the number of qubits reported. Another way is
to increase the number of qubits to satisfy the excessively estimated parallelism.
We adopt the first approach and report the modified depth while keeping the
reported number of qubits.

Our results with the bug-fixed Eurocrypt’20 implementation can be found in
Table 5. Table 5(a) shows quantum resources for S-box and MixColumns reported
in the Eurocrypt’20 paper. Quantum resources in Table 5(a) include cleaning
up of used ancilla qubits. Table 5(b) shows corrected estimates for the quantum
resources for AES oracles reported in the Eurocrypt’20 paper. Quantum resources
are reported for an oracle rather than a single AES quantum circuit.

In the oracle, since the AES quantum circuit operates twice, the estimation
of quantum resources for a single AES quantum circuit can be counted in half
except for the number of qubits in Table 5(b). Table 5(c) shows the estimated
resources (corrected) for SubBytes, key schedule, MixColumns, and one round
where the issue occurs. The difference for the corrected MixColumns is relatively
small, but the depth estimated as the lower-bound for SubBytes is corrected high.
The resources estimated in Table 5(c) include a reverse operation to clean ancilla
qubits. At the end, Table 5(d) shows the corrected quantum resources for AES
quantum circuits, and it is confirmed that the depth increases significantly when
maintaining the number of qubits.

Table 5: Corrected benchmarks for JNRV (Eurocrypt’20) implementation of AES.
(a) AES-128 gate costs.

Method
S-box MixColumns

(SubByte) In-place [34] Maximov [43]

#CNOT 654 1108 1248
#1qCliff 184 0 0

#T 136 0 0
#Measure 34 0 0
T-depth 6 0 0

#qubits (M) 137 128 318
Full depth 101 111 22

23

(b) Oracles.

Method
In-place MixColumn [34] Maximov’s MixColumn [43]

AES-128 AES-192 AES-256 AES-128 AES-192 AES-256

#CNOT 292313 329697 404139 294863 332665 407667
#1qCliff 84428 94316 116286 84488 94092 116062

#T 54908 61436 75580 54908 61436 75580
#Measure 13727 15359 18895 13727 15359 18895
T-depth 121 120 126 121 120 126

#qubits (M) 1665 1985 2305 2817 3393 3969
Full depth 2816 2978 3353 2086 1879 1951

(c) AES-128 Modules.

Method #CNOT #1qCliff #T T-depth #qubit Full depth

SubBytes 12000 1220 7328 768 376 2672
Key schedule 3096 355 1832 192 248 669

MixColumns [43] 1248 0 0 0 318 88

One round✞ 16472 1507 9160 960 632 3417

✞: One typical round (that includes MixColumn).

6 Performance of Quantum Circuits

In this part, we present the performance of our implementations of AES quantum
circuits. We use the open-source quantum programming tool ProjectQ to imple-
ment and simulate the quantum circuits. An internal library, ClassicalSimulator,
simulates quantum circuits and verifies test vectors. Quantum resources re-
quired to implement quantum circuits are estimated using another library,
ResourceCounter.

As for the results, Table 4 shows the quantum resources required to implement
our AES quantum circuits and previous AES quantum circuits. Although various
decompositions exist for the Toffoli gate, Table 4 enables consistent compari-
son with NCT (NOT, CNOT, Toffoli) level analysis. Table 4 only covers the

(d) Summary.

AES #CNOT #1qCliff #T T-depth #qubit Full depth

128
✚

161982 14400 91380 9576 1656 33320
192 182774 16128 102372 10728 1976 37328
256 224214 19871 126188 13224 2296 46012

128
✛

163242 14994 91380 9576 2808 33914
192 184314 16854 102372 10728 3384 38054
256 226034 20729 126188 13224 3960 46870

✚: In-place MixColumn [34].
✛: Maximov’s MixColumn [43].

24

version using the Toffoli gate, not the version using the AND gate. In [1, 24],
the Itoh–Tsujii-based inversion is implemented on a quantum circuit, so many
resources are used for SubBytes. In [39,60], more efficient quantum circuits are
implemented by extending the S-box of [12], but the circuit depth is increased
due to the serial execution of S-boxes by concentrating on saving qubits. On
the other hand, our implementation focuses on minimizing circuit depth while
considering the trade-offs for using qubits. In [60], the TD-M cost metric (where
TD is the Toffoli depth, and M is the number of qubits) was used to measure
the trade-off of quantum circuits. The TD-M cost evaluates the performance
of the quantum circuit alone, but in practice, due to depth limitations under
the Grover’s search, parallelization is necessary. The TD2-M complexity metric
in Table 4 demonstrates that in the trade-off of parallelization under Grover’s
search, the depth metric becomes significantly more important (this is discussed
in more detail in the next Section 7). In this work, all AES quantum circuits
with reduced depth and quantum gates using a reasonable number of qubits offer
the best trade-off.

In [34], the quantum resources required to implement quantum circuits for
AES were also estimated. However, there seem to be some issues with Q#’s
ResourcesEstimator10 used in their work, specially in implementing quantum
circuits for SubBytes. Therefore, the results of [34] are not used here. In the
NCT level analysis, replacing Toffoli gates with AND gates does not make much
sense. As decomposition-based estimation is meaningful, we compare the required
quantum resources by decomposing Toffoli and AND gates. Similar to [60, Table
10], Table 6 shows the detailed quantum resources by decomposing Toffoli gates
(Table 6(a)) and AND gates taken from [34] (Table 6(b)) for the AES quantum
circuits implemented in this work. The Toffoli gate is decomposed into (8 Clifford
gates + 7 T gates), and T depth 4, and full depth 8 following to one of the
methods (described in Section 3.2) in [3]. The AND gate requires 1 ancilla qubit
and is decomposed into (11 Clifford gates + 4 T gates), and T depth 1, and full
depth 8; and the AND† gate (Figure 5(b)) is decomposed into (7 Clifford gates +
1 Measurement gate), and incurs full depth of 6.

To replace the AES quantum circuits that use the Toffoli gate with the AND
gate, a number of ancilla qubits equal to the maximum number of AND gates
operating in parallel is required. However, the number of ancilla qubits needed
for AND gates can be minimized by utilizing idle ancilla qubits that are already
allocated for S-boxes. As a result, for the AND gate version using the S-box with
Toffoli depth 4, only 4 ancilla qubits are needed for replacement; while for the
version using the S-box with Toffoli depth 3, an additional 432 ancilla qubits are
allocated for replacement.

7 Performance of Quantum Key Search

In this part, the corresponding costs for applying Grover’s search algorithm to
exhaustive key search are estimated based on the proposed quantum circuits for

10https://github.com/microsoft/qsharp-runtime/issues/192.

https://github.com/microsoft/qsharp-runtime/issues/192

25

Table 6: Quantum circuit resources required for variants of AES (this work).
(a) Using Toffoli gate.

AES #CNOT #1qCliff #T
T-depth

(Td)

#qubit

(M)

Full depth

(FD)

Td-M cost

(Td×M)

FD-M cost

(FD ×M)

1
2
8

�

✿
161640 14400 90440 304 3936 1364 1196544 5368704

$ 154752 14400 85680 160 6368 978 1018880 6227904

% 164256 16832 85680 160 7520 799 1203200 6008480

�

❀
315920 32000 207480 228 5176 1307 1180128 6765032

$ 300912 32000 196560 120 8848 948 1061760 8387904

% 310416 33248 196560 120 10000 769 1200000 7690000

1
9
2

�

✿
184240 16400 102816 368 4256 1627 1566208 6924512

$ 176904 16400 98056 192 6688 1174 1284096 7851712

% 188520 19440 98056 192 8096 955 1554432 7731680

�

❀
359632 36464 235872 276 5496 1558 1516896 8562768

$ 344176 36464 224952 144 9168 1138 1320192 10433184

% 355792 38024 224952 144 10576 919 1522944 1522944

2
5
6

�

✿
226232 19871 126616 432 4576 1907 1976832 8726432

$ 218192 19871 121856 224 6976 1377 1562624 9605952

% 231920 23519 121856 224 8640 1118 1935360 9659520

�

❀
442224 44159 290472 324 5816 1826 1884384 10620016

$ 426064 44159 279552 168 9456 1335 1588608 12623760

% 439792 46031 279552 168 11120 1076 1868160 11965120

�: Regular version.
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version.

%: Shallow/low depth version.

the three variants of AES. We estimate the cost of oracle, which accounts for the
largest portion of Grover’s search algorithm. The overhead for diffusion operator is
negligible compared to oracle and is not difficult to implement. For this reason, it
is common to estimate the cost for oracle excluding the diffusion operator [5,24,39].
In the oracle, the target cipher’s quantum circuit encrypts a known plaintext with
the key in the superposition state. The generated ciphertext in the superposition
state is compared with the known ciphertext and a reverse operation is performed
for Grover’s iterations. For comparison, an n-multi controlled NOT gate is used
to check that the generated ciphertext (n-qubit) is a known ciphertext. In Grassl
et al. [24] and Langenberg et al.’s AES paper [39], the authors added 32n− 84
T-gates to their estimate for the n-multi controlled NOT gate [53]. If we estimate
the cost of a 128-multi control NOT gate, only 4012 (= 128× 32− 84) T-gates
increase. However, the total number of gates to operate our AES-128 circuit in
the oracle is already 532960 (the number of T gates is 180880). However, there is
no significant change in the number of gates. In contrast, the T-depth overhead
is relatively high. However, the increase in depth was also ignored in [24,39]. Also
in [34], the estimation of the n-multi controlled NOT gate was totally ignored.
So, for the n-multi controlled NOT gate, we estimate the number of T gates to

26

(b) Using AND gate.

AES #CNOT #1qCliff #T #Measure
T-depth

(Td)

#qubit

(M)

Full depth

(FD)

Td-M cost

(Td×M)

FD-M cost

(FD ×M)
1
2
8

�

✿
147160 39560 27200 6120 76 3940 1071 299440 4219740

$ 142992 37520 27200 5440 40 6372 928 254880 5913216

% 152496 39952 27200 5440 40 7524 749 300960 5635476

�

❀
289760 89720 62400 14040 57 5608 1123 319656 6297784

$ 280992 85040 62400 12480 30 9280 908 278400 8426240

% 290496 86288 62400 12480 30 10432 729 312960 7604928

1
9
2

�

✿
167152 45232 30464 7072 92 4260 1270 391920 5410200

$ 162536 43192 30464 6392 48 6692 1114 321216 7454888

% 174152 46232 30464 6392 48 8100 895 388800 7249500

�

❀
328336 102608 69888 16224 69 5928 1334 409032 7907952

$ 319120 97928 69888 14664 36 9600 1090 345600 10464000

% 330736 99488 69888 14664 36 11008 871 396288 9587968

2
5
6

�

✿
205216 55367 37536 8704 108 4580 1486 494640 6805880

$ 199896 53327 37536 8024 56 6980 1307 390880 9122860

% 213624 56975 37536 8024 56 8644 1048 484064 9058912

�

❀
403752 125591 86112 19968 81 6248 1562 506088 9759376

$ 393832 120911 86112 18408 42 9888 1279 415296 12646752

% 407560 122783 86112 18408 42 11552 1020 485184 11783040

�: Regular version.
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version.

%: Shallow/low depth version.

be (32n − 84) according to the decomposition method in [53] and T-depth is
maintained.

In quantum exhaustive key search, to recover a unique key, not a spurious key,
Grassl et al. in [24] estimated the attack cost for r known (plaintext, ciphertext)
pairs (r = 3, r = 4 and r = 5, respectively). Later in [39], Langenberg et al.
explained that r = ⌈k/n⌉ (key size/block size) is sufficient to successfully recover
a unique key. The authors in [34] also estimated the cost for the same r (plaintext,
ciphertext) pairs in [39] through detailed computations. Following this approach,
we also estimate the cost of recovering a unique key for r = ⌈k/n⌉ (plaintext,
ciphertext) pairs. When r = 1, the quantum circuit of the target block cipher
is serially executed twice in oracle. Thus, the cost of the oracle is twice that
required to implement a quantum circuit, excluding qubits. When r ≥ 2, r target
block quantum circuits are executed twice in parallel, and the following should be
considered in cost estimation. Although r ≥ 2 plaintexts are used, only one input
key is used, so the cost for key schedule should be estimated only once. Finally,
the complexity of quantum exhaustive key search for the target block cipher is
roughly the cost of oracle × ⌊π4

√
2k⌋ (where k is the key size). The complexity

figures are estimated at the (Clifford + T) level and computed as the number of
total decomposed gates × full depth.

We show the cost of quantum key search by the Grover’s algorithm for AES-
128, AES-192, AES-256; with the two S-boxes (i.e., with Toffoli depth of 4 and
3) in Table 7(a) (using Toffoli gate) and Table 7(b) (using AND gate). Based on

27

Table 7: Quantum resources required for Grover’s search on AES (this work).
(a) Using Toffoli gate.

AES r
#qubit Total gates Full depth FD-G cost FD-M cost Cost under MAXDEPTH

(M) (G) (FD) (FD ×G) (FD ×M) FD2-G FD2-M Td2-M

1
2
8

�

✿

1

3,937 1.609 · 282 1.046 · 275 1.683 · 2157 1.005 · 287 1.76 · 2232 1.051 · 2162 1.668 · 2157

$ 6,369 1.539 · 282 1.501 · 274 1.155 · 2157 1.167 · 287 1.734 · 2231 1.752 · 2161 1.495 · 2156

% 7,521 1.611 · 282 1.226 · 274 1.974 · 2156 1.126 · 287 1.21 · 2231 1.38 · 2161 1.765 · 2156

�

❀

5,177 1.670 · 283 1.002 · 275 1.674 · 2158 1.266 · 287 1.677 · 2233 1.269 · 2162 1.235 · 2157

$ 8,849 1.592 · 283 1.454 · 274 1.158 · 2158 1.571 · 287 1.684 · 2232 1.142 · 2162 1.166 · 2156

% 10,001 1.625 · 283 1.18 · 274 1.916 · 2157 1.441 · 287 1.13 · 2232 1.7 · 2161 1.317 · 2156

1
9
2

�

✿

2

7,841 1.694 · 2115 1.248 · 2107 1.057 · 2223 1.195 · 2120 1.319 · 2330 1.491 · 2227 1.22 · 2223

$ 12,225 1.622 · 2115 1.801 · 2106 1.460 · 2222 1.344 · 2120 1.315 · 2329 1.21 · 2227 1.032 · 2222

% 15,041 1.71 · 2115 1.465 · 2106 1.252 · 2222 1.345 · 2120 1.834 · 2328 1.97 · 2226 1.27 · 2222

�

❀

10,073 1.758 · 2116 1.195 · 2107 1.051 · 2224 1.469 · 2120 1.256 · 2331 1.755 · 2227 1.759 · 2222

$ 16,689 1.694 · 2116 1.746 · 2106 1.479 · 2223 1.779 · 2120 1.291 · 2330 1.553 · 2227 1.589 · 2221

% 19,505 1.733 · 2116 1.41 · 2106 1.222 · 2223 1.679 · 2120 1.723 · 2329 1.184 · 2227 1.856 · 2221

2
5
6

�

✿

2

8,417 1.018 · 2148 1.463 · 2139 1.489 · 2287 1.503 · 2152 1.089 · 2427 1.099 · 2292 1.8 · 2287

$ 12,737 1.967 · 2147 1.056 · 2139 1.039 · 2287 1.642 · 2152 1.097 · 2426 1.734 · 2291 1.461 · 2286

% 16,065 1.036 · 2148 1.715 · 2138 1.776 · 2286 1.682 · 2152 1.523 · 2425 1.442 · 2291 1.843 · 2286

�

❀

10,649 1.058 · 2149 1.401 · 2139 1.481 · 2288 1.821 · 2152 1.037 · 2428 1.276 · 2292 1.28 · 2287

$ 17,201 1.021 · 2149 1.024 · 2139 1.045 · 2288 1.075 · 2153 1.07 · 2427 1.101 · 2292 1.107 · 2286

% 20,529 1.0444 · 2149 1.65 · 2138 1.724 · 2287 1.034 · 2153 1.422 · 2426 1.706 · 2291 1.322 · 2286

�: Regular version.
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version.

%: Shallow/low depth version.

Table 7, we can determine the optimal strategy for implementing the Grover’s
search algorithm for each AES variant while adhering to the depth constraint.
For AES-128 (full depth ≤ 296), parallelization is not essential since it does not
fall under the MAXDEPTH limit. Thus, without considering parallelization, the
shallow/low depth version using S-box with Toffoli depth 4 has the lowest attack
complexity (circuit size). However, when considering the more realistic metric
of FD-M cost, the regular version using S-box with Toffoli depth 4 shows the
highest efficiency. If the T-depth metric for error correction takes priority (i.e.,
Td-M cost), then the shallow version using S-box with Toffoli depth 4 is the
optimal choice (although it is not shown in Tables 7(a) and 7(b), it can be found
in Tables 6(a) and 6(b)). In contrast to AES-128, AES-192 and AES-256 require
parallelization of the Grover’ search due to the MAXDEPTH limitation. As
specified in Appendix C, parallelizing Grover’s search is highly inefficient, and in
such cases, we should minimize FD2-G, FD2-M , and Td2-M costs (i.e., Cost
under MAXDEPTH in Table 7). Therefore, under the MAXDEPTH limit, the
shallow/low depth version using S-box with Toffoli depth 4 is the most efficient
in terms of attack complexity (FD2-G cost) and the realistic metric (FD2-M).
If we consider the T-depth (Td2-M), then the shallow version using S-box with
Toffoli depth 3 is the optimal choice here.

28

(b) Using AND gate.

AES r
#qubit Total gates Full depth FD-G cost FD-M cost Cost under MAXDEPTH

(M) (G) (FD) (FD ×G) (FD ×M) FD2-G FD2-M Td2-M
1
2
8

�

✿

1

3,941 1.331 · 282 1.644 · 274 1.093 · 2157 1.582 · 286 1.797 · 2231 1.3 · 2161 1.663 · 2153

$ 6,373 1.289 · 282 1.424 · 274 1.836 · 2156 1.108 · 287 1.307 · 2231 1.578 · 2161 1.461 · 2152

% 7,525 1.361 · 282 1.149 · 274 1.564 · 2156 1.055 · 287 1.797 · 2230 1.212 · 2161 1.725 · 2152

�

❀

5,609 1.372 · 283 1.723 · 274 1.182 · 2158 1.180 · 287 1.018 · 2233 1.017 · 2162 1.325 · 2153

$ 9,281 1.327 · 283 1.394 · 274 1.849 · 2157 1.579 · 287 1.289 · 2232 1.101 · 2162 1.222 · 2152

% 10,433 1.359 · 283 1.118 · 274 1.520 · 2157 1.424 · 287 1.699 · 2231 1.592 · 2161 1.374 · 2152

1
9
2

�

✿

2

7,845 1.398 · 2115 1.948 · 2106 1.362 · 2222 1.865 · 2119 1.327 · 2329 1.817 · 2226 1.212 · 2219

$ 12,229 1.360 · 2115 1.709 · 2106 1.162 · 2222 1.276 · 2120 1.986 · 2328 1.09 · 2227 1.026 · 2218

% 15,045 1.448 · 2115 1.373 · 2106 1.988 · 2221 1.261 · 2120 1.365 · 2328 1.731 · 2226 1.261 · 2218

�

❀

10,825 1.44 · 2116 1.023 · 2107 1.474 · 2223 1.352 · 2120 1.508 · 2330 1.383 · 2227 1.882 · 2218

$ 17,441 1.4 · 2116 1.672 · 2106 1.17 · 2223 1.780 · 2120 1.956 · 2329 1.488 · 2227 1.63 · 2217

% 20,257 1.439 · 2116 1.336 · 2106 1.923 · 2222 1.652 · 2120 1.285 · 2329 1.104 · 2227 1.894 · 2217

2
5
6

�

✿

2

8,421 1.678 · 2147 1.14 · 2139 1.912 · 2286 1.172 · 2152 1.09 · 2426 1.336 · 2291 1.791 · 2283

$ 12,741 1.635 · 2147 1.002 · 2139 1.639 · 2286 1.558 · 2152 1.642 · 2425 1.561 · 2291 1.427 · 2282

% 16,069 1.739 · 2147 1.607 · 2138 1.398 · 2286 1.576 · 2152 1.123 · 2425 1.266 · 2291 1.8 · 2282

�

❀

11,401 1.73 · 2148 1.198 · 2139 1.037 · 2288 1.667 · 2152 1.242 · 2427 1.997 · 2291 1.37 · 2283

$ 17,953 1.688 · 2148 1.962 · 2138 1.655 · 2287 1.075 · 2153 1.624 · 2426 1.055 · 2292 1.131 · 2282

% 21,281 1.734 · 2148 1.564 · 2138 1.357 · 2287 1.016 · 2153 1.061 · 2426 1.589 · 2291 1.341 · 2282

�: Regular version.
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version.

%: Shallow/low depth version.

Additionally, a quick comparison of NIST’s security level (under the Grover’s
search) of our work together with the previous works is given in Table 8. As it
can be seen, when compared with the current state-of-the-art security bounds, we
reduce the quantum complexity for running the Grover’s search on the AES family,
thereby setting up a new benchmark for the NIST security levels. The complexity
is calculated in terms of the product of decomposed (Clifford and T) gate
count and full depth. Also, the MAXDEPTH constraint (see Appendix C) is not
considered in the computation. For instance, the figure of 2156.97 corresponding to
the shallow/low version in Table 8 is computed as the product of the total number
of decomposed gates and the full depth for 264 (i.e., square-root bound of the
exhaustive case) searches (required to run Grover’s search). If the MAXDEPTH
constraint is to be considered, one has scale down the complexity figures by
dividing by the MAXDEPTH constant.

8 Conclusion

In this work, we collate multiple research contributions, including the up-to-
date optimizations on the building blocks of the ciphers in one place; whence
significantly reducing the quantum circuit complexity for the AES family of block
ciphers. Among other results, we show the least Toffoli depth and full depth
implementations of all variants of AES (more than 98% and 95% improvement
from [60] and [28] respectively). At the same time, we improve the Toffoli depth -

29

Table 8: Comparison of NIST security levels based on AES variants.

Level
GLRS [24] NIST [45] LPS [39]

This work

(AES) � $ % ❆

1
2168.6683 2170 2162.6093

✿: 2157.1283 ✿: 2156.8766 ✿: 2156.6452 ✚: 2162.3577

(128) ❀: 2158.2412 ❀: 2157.8867 ❀: 2157.6041 ✛: 2162.5641

3
2233.4645 2227.6491

✿: 2222.4457 ✿: 2222.2166 ✿: 2221.9913 ✚: 2227.5867

(192) ❀: 2223.5597 ❀: 2223.2265 ❀: 2222.9434 ✛: 2227.6260

5
2298.3467 2292.3100

✿: 2286.9351 ✿: 2286.7128 ✿: 2286.4834 ✚: 2292.1520

(256) ❀: 2288.0524 ❀: 2287.7268 ❀: 2287.4404 ✛: 2292.1900

�: Regular version (using AND gate).
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version (using AND gate).

%: Shallow/low depth version (using AND gate).

❆: Bug-fixed JNRV [34] (using S-box from [13]; using Toffoli gate).

✚: In-place MixColumn [34]. ✛: Maximov’s MixColumn [43].

qubit count product by more than 75% and 30%, and more than 84% and 99% in
the Toffoli depth-square - qubit count product compared to the respective papers.
A bird’s-eye view can be seen from Figure 6, where we show our work contributes
in lowering the quantum circuit complexity (in terms of qubit count and full depth)
compared to GLRS [24] and LPS [39]. In total, we present 14 implementations
per variant of AES (including bug-fixing of [34]), each incorporating a special
design idea/optimization.

Most recent papers about AES quantum implementations focus on reducing
the number of qubits, but do not appear to give much consideration on depth
reduction of the circuit [1, 24,39,51,52,60]. In our work, one of the major ways
we lower the depth metrics is by allowing a relatively higher number of qubits,
so that the product terms (i.e., when the number of qubits is multiplied with the
circuit depth metrics or decomposed gate counts) becomes smaller. Having a lower
circuit depth also makes it easier to maximize the number of iterations (required
to run the Grover’s search algorithm) and thus is a crucial factor in reducing
the cost of evaluating the overall quantum search complexity for exhaustive key
search a cipher.

Finding optimizations for the cipher building blocks can be considered among
the top priorities for the future research works. Besides, the idea in [19] can be
used on top of our implementations to further reduce the cost for AES-192 and
AES-256 (i.e., when r > 1); this is kept as a follow-up work. Similarly, other
decompositions of the Toffoli gate (e.g., [48]) can also be considered in the future
scope.

References

1. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Information Processing 17(5) (may 2018) 1–30

30

128 256192

Key Size →

2128

2149

2170

2191

2212

2233

2254

2275

2296

2317

Level 1

Level 3

Level 5

Q
u
a
n
tu

m
C

ir
c
u
it

C
o
m

p
le

x
it

y
→

LPS

LPS

LPS

GLRS

GLRS

GLRS

Between AES-128 & AES-192

#Qubits (M)
Aqua Between AES-128 & AES-192
Indigo Between AES-192 & AES-256
Maroon More than AES-256

Full depth

Shallow/low depth version with Toffoli depth 4 S-box

Reference

Fig. 6: Comparison of quantum circuit complexities for AES variants.

2. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.:
Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3.
In Avanzi, R., Heys, H., eds.: Selected Areas in Cryptography – SAC 2016, Cham,
Springer International Publishing (2017) 317–337

3. Amy, M., Maslov, D., Mosca, M., Roetteler, M., Roetteler, M.: A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 32(6) (Jun 2013)
818–830

4. Anand, R., Maitra, A., Maitra, S., Mukherjee, C.S., Mukhopadhyay, S.: Quan-
tum resource estimation for FSR based symmetric ciphers and related Grover’s
attacks. In Adhikari, A., Küsters, R., Preneel, B., eds.: Progress in Cryptology
- INDOCRYPT 2021 - 22nd International Conference on Cryptology in India,
Jaipur, India, December 12-15, 2021, Proceedings. Volume 13143 of Lecture Notes
in Computer Science., Springer (2021) 179–198

5. Anand, R., Maitra, A., Mukhopadhyay, S.: Evaluation of quantum cryptanalysis
on SPECK. In Bhargavan, K., Oswald, E., Prabhakaran, M., eds.: Progress in
Cryptology – INDOCRYPT 2020, Cham, Springer International Publishing (2020)
395–413

31

6. Anand, R., Maitra, A., Mukhopadhyay, S.: Grover on SIMON. Quantum Information
Processing 19(9) (Sep 2020) http://dx.doi.org/10.1007/s11128-020-02844-w.

7. Baksi, A., Jang, K., Song, G., Seo, H., Xiang, Z.: Quantum implementation and
resource estimates for rectangle and knot. Quantum Information Processing 20(12)
(dec 2021)

8. Banik, S., Funabiki, Y., Isobe, T.: Further results on efficient implementations of
block cipher linear layers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
104-A(1) (2021) 213–225

9. Bathe, B.N., Anand, R., Dutta, S.: Evaluation of Grover’s algorithm toward
quantum cryptanalysis on ChaCha. Quantum Inf. Process. 20(12) (2021) 394

10. Bhattacharjee, D., Chattopadhyay, A.: Depth-optimal quantum circuit placement
for arbitrary topologies. arXiv preprint arXiv:1703.08540 (2017)

11. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Transactions on Symmetric Cryptology 2019(2) (Jun. 2019) 55–93

12. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In Festa, P., ed.: Experimental Algorithms, Berlin,
Heidelberg, Springer Berlin Heidelberg (2010) 178–189

13. Boyar, J., Peralta, R.: A depth-16 circuit for the AES S-box. Cryptology ePrint
Archive, Report 2011/332 (2011) https://eprint.iacr.org/2011/332.

14. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4-5) (Jun 1998) 493–505

15. Chauhan, A.K., Sanadhya, S.K.: Quantum resource estimates of grover’s key
search on aria. In: International Conference on Security, Privacy, and Applied
Cryptography Engineering, Springer (2020) 238–258

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002)

17. Dansarie, M.: Cryptanalysis of the SoDark family of cipher algorithms. PhD thesis,
Naval Postgraduate School, Dudley Knox Library (2017) https://calhoun.nps.
edu/handle/10945/56118.

18. Dansarie, M.: sboxgates: A program for finding low gate count implementations of
S-boxes. Journal of Open Source Software 6(62) (2021) 2946

19. Davenport, J.H., Pring, B.: Improvements to quantum search techniques for block-
ciphers, with applications to aes. In Dunkelman, O., Jacobson, Jr., M.J., O’Flynn,
C., eds.: Selected Areas in Cryptography, Cham, Springer International Publishing
(2021) 360–384

20. de Wolf, R.: Quantum Computing: Lecture Notes. (2019) https://arxiv.org/

pdf/1907.09415v1.pdf.
21. Dong, X., Dong, B., Wang, X.: Quantum attacks on some feistel block ciphers. Des.

Codes Cryptogr. 88(6) (2020) 1179–1203
22. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new snow stream cipher called

snow-v. IACR Transactions on Symmetric Cryptology 2019(3) (Sep. 2019) 1–42
23. Gidney, C.: Halving the cost of quantum addition. Quantum 2 (2018) 74
24. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s

algorithm to AES: Quantum resource estimates. In Takagi, T., ed.: Post-Quantum
Cryptography, Cham, Springer International Publishing (2016) 29–43

25. Grover, L.K.: A fast quantum mechanical algorithm for database search. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
(1996) 212–219

26. Grumbling, E., Horowitz, M.: Quantum Computing: Progress and Prospects. The
National Academies Press, Washington DC (2019) https://www.nap.edu/catalog/
25196/quantum-computing-progress-and-prospects.

http://dx.doi.org/10.1007/s11128-020-02844-w
https://eprint.iacr.org/2011/332
https://calhoun.nps.edu/handle/10945/56118
https://calhoun.nps.edu/handle/10945/56118
https://arxiv.org/pdf/1907.09415v1.pdf
https://arxiv.org/pdf/1907.09415v1.pdf
https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects
https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects

32

27. He, Y., Luo, M.X., Zhang, E., Wang, H.K., Wang, X.F.: Decompositions of n-qubit
toffoli gates with linear circuit complexity. International Journal of Theoretical
Physics 56(7) (2017) 2350–2361

28. Huang, Z., Sun, S.: Synthesizing quantum circuits of AES with lower t-depth and
less qubits. In Agrawal, S., Lin, D., eds.: Advances in Cryptology - ASIACRYPT
2022 - 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part
III. Volume 13793 of Lecture Notes in Computer Science., Springer (2022) 614–644

29. Jang, K., Choi, S., Kwon, H., Kim, H., Park, J., Seo, H.: Grover on Korean block
ciphers. Applied Sciences 10(18) (2020)

30. Jang, K., Baksi, A., Breier, J., Seo, H., Chattopadhyay, A.: Quantum implementation
and analysis of default. Cryptology ePrint Archive, Paper 2022/647 (2022) https:
//eprint.iacr.org/2022/647.

31. Jang, K., Baksi, A., Kim, H., Seo, H., Chattopadhyay, A.: Improved quantum
analysis of SPECK and lowmc. In Isobe, T., Sarkar, S., eds.: Progress in Cryptology
- INDOCRYPT 2022 - 23rd International Conference on Cryptology in India,
Kolkata, India, December 11-14, 2022, Proceedings. Volume 13774 of Lecture Notes
in Computer Science., Springer (2022) 517–540

32. Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Efficient implementation
of PRESENT and GIFT on quantum computers. Applied Sciences 11(11) (2021)

33. Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Parallel quantum addition
for Korean block cipher. IACR Cryptol. ePrint Arch. (2021) 1507

34. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for
quantum key search on AES and lowmc. In Canteaut, A., Ishai, Y., eds.: Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part II. Volume 12106 of Lecture Notes in Computer Science.,
Springer (2020) 280–310

35. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: CRYPTO, Springer (2016) 207–237

36. Kim, P., Han, D., Jeong, K.C.: Time–space complexity of quantum search algorithms
in symmetric cryptanalysis: applying to aes and sha-2. Quantum Information
Processing 17(12) (2018) 1–39

37. kn, K., Song, G., Kwon, H., Uhm, S., Kim, H., Lee, W.K., Seo, H.: Grover on pipo.
Electronics 10(10) (2021) 1194

38. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line
programs for mds matrices. IACR Transactions on Symmetric Cryptology 2017(4)
(Dec. 2017) 188–211

39. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
the advanced encryption standard as a quantum circuit. IEEE Transactions on
Quantum Engineering 1 (01 2020) 1–12

40. Li, S., Sun, S., Li, C., Wei, Z., Hu, L.: Constructing low-latency involutory mds
matrices with lightweight circuits. IACR Transactions on Symmetric Cryptology
(2019) 84–117

41. Lin, D., Xiang, Z., Zeng, X., Zhang, S.: A framework to optimize implementations
of matrices. In Paterson, K.G., ed.: Topics in Cryptology - CT-RSA 2021 - Cryp-
tographers’ Track at the RSA Conference 2021, Virtual Event, May 17-20, 2021,
Proceedings. Volume 12704 of Lecture Notes in Computer Science., Springer (2021)
609–632

https://eprint.iacr.org/2022/647
https://eprint.iacr.org/2022/647

33

42. Liu, Q., Wang, W., Fan, Y., Wu, L., Sun, L., Wang, M.: Towards low-latency
implementation of linear layers. IACR Transactions on Symmetric Cryptology
2022(1) (Mar. 2022) 158–182

43. Maximov, A.: AES MixColumn with 92 XOR gates. Cryptology ePrint Archive,
Report 2019/833 (2019) https://eprint.iacr.org/2019/833.

44. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary Edition). Cambridge University Press (2010)

45. NIST.: Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process (2016) https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf.
46. Perriello, S.: Design and development of a quantum circuit to solve the information

set decoding problem. (2019)
47. Roy, S., Baksi, A., Chattopadhyay, A.: Quantum implementation of ascon linear

layer. Cryptology ePrint Archive, Paper 2023/617 (2023) https://eprint.iacr.
org/2023/617.

48. Selinger, P.: Quantum circuits of t-depth one. Physical Review A 87(4) (2013)
042302

49. Song, G., Jang, K., Kim, H., Lee, W., Hu, Z., Seo, H.: Grover on SM3. IACR
Cryptol. ePrint Arch. (2021) https://eprint.iacr.org/2021/668.

50. Tan, Q.Q., Peyrin, T.: Improved heuristics for short linear programs. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020(1) (2020) 203–230

51. Wang, Z.G., Wei, S.J., Long, G.L.: A quantum circuit design of aes requiring fewer
quantum qubits and gate operations. Frontiers of Physics 17(4) (2022) 1–7

52. Wang, Z., Wei, S., Long, G.: A quantum circuit design of AES (2021) https:

//arxiv.org/abs/2109.12354.
53. Wiebe, N., Roetteler, M.: Quantum arithmetic and numerical analysis using

repeat-until-success circuits (2014)
54. Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of

linear layers. IACR Trans. Symmetric Cryptol. 2020(2) (2020) 120–145
55. Yang, Y., Jang, K., Baksi, A., Seo, H.: Optimized implementation and analysis of

cham in quantum computing. Applied Sciences 13(8) (2023)
56. Zalka, C.: Grover’s quantum searching algorithm is optimal. Physical Review A

60(4) (1999) 2746
57. Zhu, C., Huang, Z.: Optimizing the depth of quantum implementations of linear

layers. In: Information Security and Cryptology - 18th International Conference,
Inscrypt 2022, Beijing, China, December 11-13, 2022. Volume 13837 of Lecture
Notes in Computer Science., Springer (2022) 129–147

58. Zou, J., Li, L., Wei, Z., Luo, Y., Liu, Q., Wu, W.: New quantum circuit im-
plementations of sm4 and sm3. Quantum Information Processing 21(5) (2022)
1–38

59. Zou, J., Liu, Y., Dong, C., Wu, W., Dong, L.: Observations on the quantum
circuit of the SBox of AES. Cryptology ePrint Archive, Report 2019/1245 (2019)
https://eprint.iacr.org/2019/1245.

60. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of
AES with fewer qubits. In Moriai, S., Wang, H., eds.: Advances in Cryptology –
ASIACRYPT 2020, Cham, Springer International Publishing (2020) 697–726

https://eprint.iacr.org/2019/833
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://eprint.iacr.org/2023/617
https://eprint.iacr.org/2023/617
https://eprint.iacr.org/2021/668
https://arxiv.org/abs/2109.12354
https://arxiv.org/abs/2109.12354
https://eprint.iacr.org/2019/1245

34

A Concise Description of AES Variants

The Advanced Encryption Standard (AES) [16] is an SPN block cipher family
with a block of 128 bits. The state of AES is arranged as a 4× 4 matrix of bytes.
AES contains three specific variants denoted as AES-128, AES-192 and AES-256
according to the key size. Schematic diagrams of AES-128 round function and
key schedule can be found in Figure 7.

A.1 Round Function

The round function of AES consists of AddRoundKey ◦ MixColumns ◦ ShiftRows
◦ SubBytes, except for the last round which misses the MixColumns operation.

SubBytes This operation substitutes each element by a predefined 8× 8 S-box.

ShiftRows This operation cyclically rotates the rth row of state to the left by i
places, for i = 0, 1, 2, 3.

MixColumns The MixColumn operation pre-multiplies each of the state column
with the right circulant matrix (02, 03, 01, 01), over GF(28)[x] with modulus x4+1.
Since the MixColumn operates on the state based on an entire column, it can
also be represented as a matrix over F2 with dimension 32× 32.

AddRoundKey The sub-key of each round is generated by the Key Expansion
algorithm. Each call of AddRoundKey XORs the 128-bit sub-key to the state.

The encryption procedure for different instances of AES family are somewhat
similar, except the number of round varies. For AES-128, AES-192 and AES-256,
the round numbers are 10, 12, 14 respectively and all round functions are identical
except that there is no MixColumns operation in the last round. Note that there
is an extra key addition before the first round (also known as whitening).

A.2 Key Schedule

Similar to the state, the master key of AES is allocated to a 4× l grid of byte
in order, where l = 4, 6 or 8 for AES-128, AES-192 and AES-256, respectively.
Generally, the generation of the round sub-keys are based on word (the entire
column in the grid) with the operations RotWord (cyclically rotating the bytes
in a word to the left by one byte), SubWord (operating the SubBytes of round
function on each bytes in a word) and the XOR of Rcon[r] (the rth 32-bit round
constant).

The master key is loaded to the grid W0,W1, · · · ,Wi; where i is 3, 5 and
7 for AES-128, AES-192 and AES-256 respectively. In order to guarantee the
encryption, 40, 46 and 52 words need to be provided by key expansion for those
three AES instances, respectively.

35

For AES-128, the word Wi is generated by

Wi =

{
Wi−4 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/4], if i ≡ 0 mod 4,

Wi−4 ⊕Wi−1, otherwise,

where i = 4, 5, · · · , 43.
For AES-192, the word Wi is generated by

Wi =

{
Wi−6 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/6], if i ≡ 0 mod 6,

Wi−6 ⊕Wi−1, otherwise,

where i = 6, 7, · · · , 51.
For AES-256, the word Wi is generated by

Wi =





Wi−8 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/8], if i ≡ 0 mod 8,

Wi−8 ⊕ SubWord(Wi−1), if i ≡ 4 mod 8,

Wi−8 ⊕Wi−1, otherwise,

where i = 8, 9, · · · , 59.

A.3 Notes

Singular Form and Plural Form The AES state is represented as a 4×4 matrix
and the operation on one column of the matrix is denoted here as MixColumn.
As described earlier, MixColumn corresponds to a matrix multiplication over
GF(28), which can equivalently be expressed as multiplication by a matrix of
dimension 32× 32 over F2. In the AES round function, the MixColumns operates
on the whole block by applying MixColumn to every four bytes in the state (i.e.,
one column in the 4× 4 matrix). Thus, one MixColumns operation is equivalent
to 4× MixColumn operations on different columns in the matrix. Denoting the
binary matrix corresponding to MixColumn as M with size 32× 32, MixColumns
can be represented as the diagonal matrix (M,M,M,M) of dimension 128× 128
over F2.

The bytes in each row of the matrix will be cyclically shifted to the left in
each round and the shift operation on the bytes in one row is denoted here as
ShiftRow, in the step of ShiftRows, the ShiftRow will be operated on all the
rows in the matrix and shift the bytes in the ith row to the left by i bytes,
where i = 1, 2, 3. Thus, one ShiftRows operation is equivalent to 4× ShiftRow
operations on different rows in the 4× 4 matrix with the shift parameter varies
from 0 to 3.

The SubBytes in the round function updates every byte in the 4× 4 matrix
in the same way. The process of applying the S-box to one byte in the AES
state is denoted here as SubByte. In each round, the SubBytes updates all the
bytes in the 4 × 4 matrix by replacing each byte by another one according to
the predefined nonlinear map. Thus, one SubBytes operation is equivalent to 16
SubByte operations on the bytes of the 4× 4 matrix.

36

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

SubBytes

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ShiftRows MixColumns
⊕

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

AddRoundKey

(a) Round function of encryption (except last round which skips MixColumns).

k1
0,0

k1
1,0

k1
2,0

k1
3,0

k1
0,1

k1
1,1

k1
2,1

k1
3,1

k1
0,2

k1
1,2

k1
2,2

k1
3,2

k1
0,3

k1
1,3

k1
2,3

k1
3,3

k0
0,0

k0
1,0

k0
2,0

k0
3,0

k0
0,1

k0
1,1

k0
2,1

k0
3,1

k0
0,2

k0
1,2

k0
2,2

k0
3,2

k0
0,3

k0
1,3

k0
2,3

k0
3,3

Rotword

SubWord

Rcon

Rotword

SubWord

Rcon

⊕

⊕

...

⊕

⊕

...

⊕

⊕

...

⊕

⊕

...

kr
i,j represents the i

th byte in the jth word of the rth round key

(b) Key schedule for encryption.

Fig. 7: Schematic of AES construction.

S-box and S-box† in Quantum S-box in quantum denotes before storing
values from ancilla qubits to output qubits. Denote the reverse operation of S-box
as S-box† and uses input qubits to clean up ancilla qubits.

SubBytes and SubBytes† in Quantum SubBytes of AES in quantum denotes
parallel operation for 16 S-boxes. Denote the reverse operation of SubBytes as
SubBytes† and cleans up all used ancilla qubits in 16 S-boxes.

Rotation and Rotation† in Quantum Rotation of AES in quantum denotes
the same RotWord. The reverse operation of Rotation is denoted as Rotation†.

SubWord and SubWord† in Quantum SubWord of AES in quantum denotes
parallel operation for 4 S-boxes. We denote the reverse operation of SubWord as
SubWord† (and clean up all used ancilla qubits in 4 S-boxes).

37

B Quantum Key Search using Grover’s Algorithm

For a secret-key cipher using an k-bit key, 2k queries are required for the exhaustive
key search. The Grover’s search [25] is a well-known quantum algorithm that

recovers the key with a high probability in about ⌊π4
√
2k⌋ queries. The procedure

can be briefly described as follows (some basic familiarity with the quantum
notations/terminology is assumed, one may refer to, e.g., [20, 44] for a more
detailed description):

1. A k-qubit key (K) is prepared in superposition |ψ⟩ by applying the Hadamard
gates. All states of qubits have the same amplitude:

|ψ⟩ = H⊗k |0⟩⊗k
=

(|0⟩+ |1⟩√
2

)
=

1

2k/2

2k−1∑

x=0

|x⟩ (1)

2. The cipher (Enc) is implemented as a quantum circuit and placed in oracle.
In oracle f(x), the plaintext (p) is encrypted with the key in the superposition
state. As a result, the ciphertexts for all key values are generated. The sign
of the solution key is changed to a negative by comparing it with the known
ciphertext. The condition (f(x) = 1) changes the sign to negative and applies
to all states. For this phase flip, an n-qubit controlled Z gate is utilized (n is
the length of the ciphertext, c).

f(x) =

{
1 if EncK(p) = c

0 if EncK(p) ̸= c
(2)

Uf (|ψ⟩ |−⟩) =
1

2k/2

2k−1∑

x=0

(−1)f(x) |x⟩ |−⟩ (3)

3. Lastly, the diffusion operator11 amplifies the amplitude of the negative sign
state. Diffusion operator is implemented with the following (H gates layer
→ X gates layer → k-qubit controlled Z gate → X gates layer → H gates
layer). In [46], a simple technique was introduced by which a constant number
of X gates are used for the diffusion operator. If a constant number of X
gates are applied before the Hadamard gates in Step 1, the diffusion operator
is implemented as (H gates layer → k-qubit controlled Z gate → H gates
layer).

The Grover’s search executes Equations (2), (3) and diffusion operator in
a series to sufficiently increase the amplitude of the solution and observes it
at the end. For an k-bit key, the optimal number of iterations of the Grover’s
search algorithm is roughly ⌊π4

√
2k⌋ [14], which is about

√
2k. In the process, an

exhaustive key search that requires 2k queries in a classic computer is reduced to
roughly

√
2k queries in a quantum computer (this works with a high probability).

11Since the diffusion operator is usually generic, it does not require any special
technique for implementation.

38

In the exhaustive key search, r = ⌈k/n⌉ (plaintext, ciphertext) pairs are
needed to recover a unique key that is not a spurious key (see Section 7 for
details). Figure 8 shows the Grover’s oracle of exhaustive key search. Encryption†

is defined as the reverse operation of encryption, which reverts to the state before
encryption.

|kÍ
Enc Enc†

|kÍ
|mÍ |mÍ

|0Í • |0Í
|≠Í |≠Í

Figure 15: temp1

47

=

(a) Oracle for r = 1.

D Issue with Q# A�ecting Eurocrypt’20 Implementations952

In this part, we give a brief explanation of the cases where Q#’s ResourcesEstimator issues953

arise and how those issues a�ect the Eurocrypt 2020 paper’s [JNRV20] quantum benchmarks.954

As noted in [ZWS+20] and in Section 7.2, this apparently leads to underestimation of gate955

count, qubit count and depth reported in [JNRV20] for both AES (S-box, S-box≠1) and956

LowMC (S-box). This was discovered when we tried to cross-check their publicly available957

source codes10.958

To our understanding, some problems arise if the qubits are allocated by the using959

command in Q# (and it a�ects the non-linear components). However more experiments960

are to be carried out in order to be completely certain about it.961

The using command automatically disposes when the function ends. If ancilla qubits962

to implement AES S-box are allocated with the using command, the consistency between963

depth and qubits is lost. When 16 S-boxes are executed in SubBytes, the ancilla qubits964

allocated by the using are counted only for the first S-box and not after. Also counts the965

depth for executing 16 S-boxes simultaneously. In order to derive the correct result, the966

number of qubits or depth must be increased. To be modified, the number of qubits must967

be increased or the depth must be increased. Q#’s Resources Estimator tries to find its968

own lower bound for depth and qubit. That is, to achieve the qubits of the lower bound,969

the depth may have to be increased, and to achieve the depth of the lower bound, the970

qubits may have to be increased.971

Another problem is that ancilla qubits allocated by using command are always prepared972

in a clean state. After S-box operation, ancilla qubits are not in a clean state(i.e. not all973

zeros), so they cannot be used in the next S-box as it is. However, the qubits allocated by974

the using command are always set to 0, the impossible S-box operation becomes possible.975

This is possible if new ancilla qubits are allocated for every S-box, but the qubits do not976

increase in resource estimation. This issue leads to returning a lower bound on the number977

of gates because the reverse operation is ignored. These issues are not problematic for978

single estimates (e.g cost for one S-box). For this reason we only use a few of the results979

reported in [JNRV20] with caution. However, in the current version, these issues seem to980

be resolved11.981

These issues allow designing quantum circuit structures that are impossible. For982

example, encryption can be performed without a cleaning up operation in S-boxes. It983

seems di�cult to estimate after solving the issues in [JNRV20], since apparently there984

is no quick fix and hence a considerable e�ort to change the design structure is to be985

made. Therefore, we skip reporting the correct estimate of [JNRV20] after the Q# patch986

is applied, rather keep it as a future work.987

|kÍ •
Enc Enc†

• |kÍ
|m0Í |m0Í

|0Í • |0Í
|0Í

Enc Enc†

|0Í
|m1Í |m1Í

|0Í • |0Í
|≠Í |≠Í

Figure 14: temp1

10https://github.com/microsoft/grover-blocks.
11https://github.com/microsoft/qsharp-runtime/pull/404.

46

=

(b) Oracle for r = 2.

Fig. 8: Schematic architecture for key search using Grover’s algorithm.

C NIST Security Levels

The following security levels were defined by NIST [45] to assess the post-quantum
security:

① Level 1: Cipher is at least as hard to break as AES-128.
② Level 2: Cipher is at least as hard to break as SHA-256.
③ Level 3: Cipher is at least as hard to break as AES-192.
④ Level 4: Cipher is at least as hard to break as SHA-384.
⑤ Level 5: Cipher is at least as hard to break as AES-256.

NIST recommended that a given cipher should achieve some minimum security
level to provide sufficient security in the post-quantum era. Based on the research
available back then (probably the only such work was due to [24]), NIST estimated
used in [45] the following complexities: Level 1: 2170, Level 3: 2233, Level 5: 2298

(on a closer look, however, it seems that complexity estimated in [24] for Level
1 was close to 2169). The complexity bounds were calculated as the product of
total number of decomposed gates and full depth required for the Grover’s key
search circuit.

With the passage of time, as more research works on the AES family have
been being reported, the complexity for the security levels (1, 3 and 5) have been
gradually reduced. A comprehensive synopsis of the notable works can be seen
from Table 8, where we show the impact on our work in reshaping the security
levels. In particular, the following new bounds are achieved (see also Table 7(b)):

39

☞ Level 1: 2156.6452; with total Clifford, T and measurement gates = 282.4447;
full depth = 274.2004.

☞ Level 3: 2221.9913; with total Clifford, T and measurement gates = 2115.5341;
full depth = 2106.4573.

☞ Level 5: 2286.4834; with total Clifford, T and measurement gates = 2147.7983;
full depth = 2138.6844.

Along with this, NIST proposed a parameter called MAXDEPTH to impose a
limit on circuit depth. The bounds for MAXDEPTH are not clearly stated, rather
it is speculated that the following figures can be taken as good indicators: 240,
264 and 296; judging by the expected computation power of a quantum computer
– in a year, or a decade, or a millennium. Keeping that in mind, one would expect
the depth of the quantum circuit for the Grover’s search is not higher than 296

(i.e., the highest bound estimated for MAXDEPTH12). However, if it turns out
that the depth restriction is not within the stipulated bound, then the following
approaches can be undertaken [36]:

1. Outer parallelization: Restrict depth at the ≤ 296 at the expense of lower
success probability of key recovery.

2. Inner parallelization: Split the search space into multiple subspaces with
shallow depth, where each circuit measures the secret key with a lower success
probability.

3. Cost is calculated as-is without considering MAXDEPTH (see, e.g., [36, Table
2]). It is worth noting that the previous implementations like [1, 28, 39, 60]
also did not appear to consider the MAXDEPTH limit.

The outer and inner parallelization methods lower the probability of mea-
suring a solution by reducing the number of iterations for the Grover oracle.
Outer parallelization halts the Grover iterations at the depth limit, leading to
the measurement of suboptimal solutions with lower probabilities. Inner paral-
lelization reduces the number of Grover iterations by reducing the search space,
which also lower the probablility of discovering a solution. However, parallelizing
the Grover’s search is highly inefficient due to the poor performance resulting
from the analysis in [56], which indicates that only a

√
S depth reduction can be

achieved with S instances (operating in parallel) of the Grover oracle. Thus, the
optimal method is to perform as many iterations of the Grover oracle as possible
within a limited depth. According to the analysis in [34, Section 3.4], to minimize
the FD-G (full depth and gate count product), TD-M (Toffoli depth and qubit
count product), and FD-M (Toffoli depth and qubit count product) costs under
the parallelization of Grover’s search, it is necessary to minimize the FD2-G,
TD2-M and FD2-M costs. This is because reducing the depth by

√
S requires

S instances of the Grover oracle, leading to an increase in the total number of

12As the Grover’s search makes the circuit depth greater than 2k/2 for k-bit key
(the quantum depth for the cipher implementation × ⌊π

4
2k/2⌋ required for Grover’s

search), the quantum depth is trivially greater two smaller MAXDEPTH values for
AES variants.

40

gates and qubits required for parallelization. Therefore, when parallelization due
to depth limitation is inevitable, the primary objective should be to minimize
the depth.

As of now, we remark that the depths of our AES quantum circuits are
the lowest when compared to other quantum circuits available in the literature
[1, 28, 39, 60]. Table 9 displays a quick view where the related works (namely,
GLRS [24] and LPS [39]) are compared with respect to our implementations in
terms of full depth. Note that, only AES-128 satisfies the MAXDEPTH criterion
(i.e., ≤ 296).

One may further note that the depth of quantum attack on AES-128 (i.e.,
Level 1) is within the permitted MAXDEPTH limit (274.2388 using the AND
gate; the same using the Toffoli gate is 274.2940). However, the same cannot be
stated for AES-192 and -256, since the full depth figures are respectively 2106.4957

and 2138.7225 (using the AND gate; the same using the Toffoli gate are 2106.5509

and 2138.7782, respectively). In this work, we adopt the 3rd approach for the sake
of brevity and report the cost with considering the MAXDEPTH limit. So, we
can identify the optimal parallelization strategy that strikes a balance between
adjusted cost – success probability trade-offs (Section 6). As described, the circuit
depth metrics are the primary factor determining performance in general.

Table 9: Summary of AES implementations with respect to MAXDEPTH.

AES GLRS [24] LPS [39]
This work MAXDEPTH

� $ % ❆ (≤ 296)

128 281.2141 279.4751
✿: 275.0649 ✿: 274.5859 ✿: 274.2940 ✚: 279.6576

✓
❀: 275.0029 ❀: 274.5400 ❀: 274.2388 ✛: 279.7011

192 2113.4114 2111.2987
✿: 2107.3196 ✿: 2106.8488 ✿: 2106.5509 ✚: 2111.8395

✗
❀: 2107.2570 ❀: 2106.8041 ❀: 2106.4957 ✛: 2111.8673

256 2145.6508 2143.6871
✿: 2139.5489 ✿: 2139.0786 ✿: 2138.7782 ✚: 2144.1412

✗
❀: 2139.4865 ❀: 2139.0342 ❀: 2138.7225 ✛: 2144.1679

�: Regular version (using AND gate).
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version (using AND gate).

%: Shallow/low depth version (using AND gate).

❆: Bug-fixed JNRV [34] (using S-box from [13]; using Toffoli gate).

✚: in-place MixColumn [34]. ✛: Maximov’s MixColumn [43].

D Depth of Sequential XOR: Classical vs. Quantum

One may note from Table 3 that the depth for quantum circuit corresponding
to the implementation by [54] is 30, whereas the same for the classical circuit
is 6. Although this implementation operates in-place, it still reuses one variable
multiple times. In other words, the same variable appears multiple times in the

41

right hand side. For example, one may check that x31 appears more than once:
x16 ← x16 ⊕ x31 (Line 15), x4 ← x4 ⊕ x31 (Line 29), x0 ← x0 ⊕ x31 (Line 56),
and so on. This does not account for extra depth in a classical circuit (as multiple
fan-outs are allowed). However, in a quantum circuit where there is exactly one
fan-out, this situation causes increase of quantum depth. Relevant discussion on
quantum depth can be found in [57].

E Discussion about Q# Bug in JNRV (Eurocrypt’20)

Continuing from Section 5, we detail more about the Q# bug which affected
the Eurocrypt’20 implementation [34]. We encountered two issues. First (non-
parallelizable) and second (issue with AND gate) problems analyzed in Section 5.1
can be solved by adjusting the number of qubits. If many ancilla qubits are used,
over-parallelized depth may be possible. However, the third problem (inconsistency
and underestimation of full depth) in that Section 5.1 cannot be solved that way.
A well-observed case of this error is the depth of AES-256 using in-place MC
reported in JNRV [34]. Only 234 should be derived as depth for SubBytes ×
14 rounds. This depth margin, therefore, cannot be derived even with excessive
parallelization.

The Q# compiler finds non-trivial parallelism in the circuit, but according
to our examples, this parallelism is excessive in the Eurocrypt’20 paper [34].
In our case also, the estimated depth of the circuit is slightly reduced, rather
than being exactly equal to the product of the round number and the depth
(which would indicate trivial parallelism). MixColumns requires the result from
SubBytes (i.e., it operates sequentially like this: SubBytes → MixColumns →
SubBytes→ MixColumns), so it cannot be estimated in parallel. There is a small
degree of overlap between the MixColumn operation in the current round and
the SubBytes operation in the following round. However, as demonstrated by
our example, this overlap is excessive. The reported depth still seems impossible
because the depth of each round has to be counted independently (only slight
reduction possible with trivial parallelization).

A well-observed case of this error is the depth of AES-256 using in-place
MixColumn reported in [34]. The full depth of their AES-256 (in-place Mix-
Column) oracle is 3353. Then about 1677 (half) would be the full depth of the
AES-256 circuit. However, the full depth of the in-place MixColumn is 111, so 13
rounds (excluding the last round) × 111, the full depth is already 1443. Then
only 234 (= 1677− 1443) should be derived as depth for SubBytes × 14 rounds.
Therefore, the full depth derived from Sbox in each round should be only about
17 (= 234÷ 14), which cannot be derived even with excessive parallelization or
omitting cleaning of ancilla qubits.

Additionally, if the full depth is estimated assuming all parallelization with
bugs, the full depth for the AES variants should depend on the number of rounds.
However, the full depth of AES-192, -256 (Maximov’s MixColumn [43]) reported
in JNRV [34] is even lower than AES-128. The lower depth of AES-192 is due to
fewer key schedules (corresponding to the zig-zag structure). However, if complete

42

parallelism is assumed, depth should depend on the number of rounds, since key
schedule works in parallel with rounds (like ours).

F Further Result

Similar to [60, Table 6], we show the per-round benchmark for our implementations
of the AES family in Table 10 (using the S-box implementation with Toffoli
depth 3 and 4 in Table 10(a) and 10(b), respectively).

43

Table 10: Quantum resources required per round for variants of AES (this work).
(a) Using S-box with Toffoli depth 4.

AES #CNOT #NOT #Toffoli TD

Round � $ % � $ % � $ % � $ %

1
2
8

1≀ 8960 5064 6120 79 1360 680 8 4

2 8832 8960 10016 79 1360 1360 8 4

3 8832 8960 10016 81 1360 1360 8 4

4 8832 8960 10016 81 1360 1360 8 4

5 8832 8960 10016 81 1360 1360 8 4

6 8832 8960 10016 79 1360 1360 8 4

7 8832 8960 10016 79 1360 1360 8 4

8 8832 8960 10016 81 1360 1360 8 4

9 8832 8960 10016 80 1360 1360 8 4

10 4504 4568 4568 80 680 680 4 4

1
9
2

1≀ 9024 9056 10112 79 1360 1360 8 4

2 8896 8992 10048 79 1360 1360 8 4

3 7088 7152 8208 64 1088 1088 8 4

4 8896 8928 9984 81 1360 1360 8 4

5 8896 8992 10048 81 1360 1360 8 4

6 7088 7152 8208 64 1088 1088 8 4

7 8896 8928 9984 81 1360 1360 8 4

8 8896 8992 10048 79 1360 1360 8 4

9 7088 7152 8208 64 1088 1088 8 4

10 8896 8928 9984 79 1360 1360 8 4

11 8896 5032 6088 81 1360 680 8 4

12 3552 3552 3552 64 544 544 4 4

2
5
6

1≀ 7216 4048 5104 64 1088 544 8 4

2 8832 8040 9096 79 1360 1224 8 4

3 8832 8832 9888 80 1360 1360 8 4

4 8832 8832 9888 79 1360 1360 8 4

5 8832 8832 9888 80 1360 1360 8 4

6 8832 8832 9888 81 1360 1360 8 4

7 8832 8832 9888 80 1360 1360 8 4

8 8832 8832 9888 81 1360 1360 8 4

9 8832 8832 9888 80 1360 1360 8 4

10 8832 8832 9888 81 1360 1360 8 4

11 8832 8832 9888 80 1360 1360 8 4

12 8832 8832 9888 79 1360 1360 8 4

13 8832 8832 9888 80 1360 1360 8 4

14 4504 4504 4504 79 680 680 4 4

≀: Including initial key XOR.

�: Regular version.

$: Shallow version.

%: Shallow/low depth version.

44

(b) Using S-box with Toffoli depth 3.

AES #CNOT #NOT #Toffoli TD

Round � $ % � $ % � $ % � $ %

1
2
8

1≀ 14640 7904 8960 79 3120 1560 6 3

2 14512 14640 15696 79 3120 3120 6 3

3 14512 14640 15696 81 3120 3120 6 3

4 14512 14640 15696 81 3120 3120 6 3

5 14512 14640 15696 81 3120 3120 6 3

6 14512 14640 15696 79 3120 3120 6 3

7 14512 14640 15696 79 3120 3120 6 3

8 14512 14640 15696 81 3120 3120 6 3

9 14512 14640 15696 80 3120 3120 6 3

10 7344 7408 7408 80 1560 1560 3 3

1
9
2

1≀ 14704 14736 15792 79 3120 3120 6 3

2 14576 14672 15728 79 3120 3120 6 3

3 11632 11696 12752 64 2496 2496 6 3

4 14576 14608 15664 81 3120 3120 6 3

5 14576 14672 15728 81 3120 3120 6 3

6 11632 11696 12752 64 2496 2496 6 3

7 14576 14608 15664 81 3120 3120 6 3

8 14576 14672 15728 79 3120 3120 6 3

9 11632 11696 12752 64 2496 2496 6 3

10 14576 14608 15728 79 3120 3120 6 3

11 14576 7872 8928 81 3120 1560 6 3

12 5824 5824 5824 64 1248 1248 3 3

2
5
6

1≀ 11760 6320 7376 64 2496 1248 6 3

2 14512 13152 14208 79 3120 2808 6 3

3 14512 14512 15568 80 3120 3120 6 3

4 14512 14512 15568 79 3120 3120 6 3

5 14512 14512 15568 80 3120 3120 6 3

6 14512 14512 15568 81 3120 3120 6 3

7 14512 14512 15568 80 3120 3120 6 3

8 14512 14512 15568 81 3120 3120 6 3

9 14512 14512 15568 80 3120 3120 6 3

10 14512 14512 15568 81 3120 3120 6 3

11 14512 14512 15568 80 3120 3120 6 3

12 14512 14512 15568 79 3120 3120 6 3

13 14512 14512 15568 80 3120 3120 6 3

14 7344 7344 7344 79 1560 1560 3 3

≀: Including initial key XOR.

�: Regular version.

$: Shallow version.

%: Shallow/low depth version.

	Quantum Analysis of AES

