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Abstract. Quantum computing is considered among the next big leaps in computer science. While a fully
functional quantum computer is still in the future, there is an ever-growing need to evaluate the security of the
secret-key ciphers against a potent quantum adversary. Keeping this in mind, our work explores the key recovery
attack using the Grover’s search on the three variants of AES (-128, -192, -256). In total, we develop a pool of 14
implementations per AES variant, by taking the state-of-the-art advancements in the relevant fields into account.
In a nutshell, we present the least Toffoli depth and full depth implementations of AES, thereby improving from
Zou et al.’s Asiacrypt’20 paper by more than 98 percent for all variants of AES. We show that the qubit count -
Toffoli depth product is reduced from theirs by more than 75 percent. Furthermore, we analyze the Jaques et
al.’s Eurocrypt’20 implementations in details, fix the bugs (arising from some problem of the quantum computing
tool used and not related to their coding) and report corrected benchmarks. To the best of our finding, our work
improves from all the previous works (including the Asiacrypt’22 paper by Huang and Sun) in terms of various
quantum circuit complexity metrics (such as, Toffoli depth, full depth, Toffoli depth - qubit count product, and so
on).
Equipped with the basic AES implementations, we further investigate the prospect of the Grover’s search. In that
direction, under the MAXDEPTH constraint (specified by NIST), the circuit depth metrics (Toffoli depth, T-depth
and full depth) become crucial factors and parallelization for often becomes necessary. We provide the least depth
implementation in this respect, that offers the best performance in terms of metrics for circuit complexity (like,
depth-squared - gate count product, depth-squared - qubit count product).
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1 Introduction

In the current situation in the world of cryptography, quantum computers are considered an upcoming major threat.
This is due to the innate nature of how the quantum computers can efficiently model and solve certain problems.
There is an overlap between the problems efficiently solvable by a functional quantum computer and those act as
the backbones to certain cryptographic systems. Those problems are hard to solve by a classical computer, hence
considered secure as of now, but the security of those systems may be threatened if quantum computers become viable
in the future. It is well-known that there will be severe consequence in the field of public key cryptography [34], still
the secret key counterpart will likely not be completely unscathed either. Depending on the structure, a secret key
cipher, too, can have severe security flaw against a quantum computer (refer to [25,44])3.

One serious way for this to manifest arises from the observation that, a lot of the post-quantum ciphers use some
secret key ciphers internally as a component in one way or the other (apart from the standalone usage of the secret key
ciphers). This is evident from the current portfolio of the Post-Quantum Cryptography (PQC) standardization4 being
organized by the US government’s National Institute of Standards and Technology (NIST). For example, the Public
Key Encryption & Key Encapsulation Mechanism (PKE & KEM) finalist CRYSTALS-KYBER [63] and the Digital
Signature (DS) finalist CRYSTALS-DILITHIUM [28] use SHA-3 in some form5. While the core components of ciphers

We thank Da Lin (Hubei University, Wuhan, PR China) for the kind support. An earlier version of this paper won the
grand award at the Cryptography Paper Competition (cryptography application and utilization category) organized by the
South Korean Government, 2022 (국가암호공모전 ).

3However, it is to be mentioned that the quantum computers are the nowhere near to be considered a serious generic threat
against the secret key ciphers (due to impractical resource requirement) as of yet, despite the paradigm growing in leaps and
bound in the past few years.

4https://csrc.nist.gov/projects/post-quantum-cryptography.
5Recently, we have also seen ASCON-SIGN [66], which uses hash function to provide quantum-secure signature.

https://kiisc.or.kr/bbs/nn/article/2147
https://csrc.nist.gov/projects/post-quantum-cryptography
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are based on a problem presumed to be quantum-safe, due to the usage of secret key ciphers, it may be possible for the
attacker to bypass the overall security claim (i.e., by exploiting only the secret key component). In other words, it may
just so happen that the secret key component becomes the security bottleneck of the a post-quantum cipher (despite
the core components being secure) against a potent quantum computer. Therefore, it is probably a commendable plan
to consider the quantum security of the secret key ciphers, to be on the safe side.

Ultimately, the NIST call for post-quantum ciphers specified five levels of security. Each of the levels are defined
over secret key ciphers (variants of AES for PKE & KEM, and variants of SHA-3 for DS). As noted in [43, Section
1], this essentially calls for a concrete and precise resource estimates that would be required by an attacker with a
quantum computer at disposal.

Therefore, finding the generic quantum security level for a secret key cipher is among the top research directions
(see Section 2.3 for related works). One of the main way an attacker with a functional quantum computer can try to
mitigate the security of the secret key ciphers is by running the Grover’s search algorithm [33]. As a rule of thumb, it
reduces the time complexity of exhaustive key search to nearly the square-root bound (with a high probability).

Our work makes a detailed and systematic attempt to estimate the search complexity on the AES family (AES-128,
AES-192 and AES-256) of block ciphers [19], thereafter finding the complexity for the Grover’s search [33]. In the
process, we revisit recent research works to incorporate state-of-the art advancements in various related areas (including
those which are reported recently like [50, 52, 53, 71, 74]). Our objective lies in reducing the cost in various metrics (see
Section 2.1 for an overview on the quantum gates); such as qubit count, gate count, circuit depth (Toffoli depth, full
depth) and/or cost-depth trade-off (Toffoli depth × qubit count, full depth × qubit count, among other options). In
the process, we carefully weigh and choose from a number of possible options.

Contribution and Organization

The prerequisite for this work is summarized in Section 2. In particular, the quantum gates are briefly described in
Section 2.1, Grover’s search in Section 2.2 and previous literary works in Section 2.3.

We discuss in detail about the considerations/choices that are made during design separately for AES in Section 3
and architecture for combined components in Section 4.

We observe that the implementation by [43] contains some Q# programming issue, which probably results in
underestimating the resources for non-linear components; although the linear components are not affected. We patch
the issues (such as impossible parallelism and inconsistencies from reported quantum resources) and estimate the
correct quantum gates and depth from the number of qubits in Section 5. It is to be noted that the same Q# issue was
reported in the Asiacrypt’20 [77], Asiacrypt’22 [36] and Indocrypt’22 [39] papers.

Main results are consolidated in Section 6 (cost of the implemented quantum circuits) and Section 7 (cost for
running the Grover’s search). Comparison of our implementations with respect to the previous works are shown in
Table 5 for the three variants of AES. Table 1 shows the overall performance gain of our work with respect to previous
AES implementations. It can be seen that we make significant improvement over the Asiacrypt’20 paper [77] (such as
our Toffoli depth TD (✦) is reduced by over 98% for AES-128) and also the bug-fixed version of the Eurocrypt’20
paper [43]. We also include the two implementations done in [36] for a quick comparison. In [36], the qubit count and
Toffoli depth of the AES quantum circuit are determined by the number of parallel S-box implementations which is
denoted by p (✝) — as p increases, the Toffoli depth (✦) decreases, but the number of qubits (❂) increases.

We develop multiple quantum implementations of the ciphers in the AES family (AES-128, AES-192 and AES-256),
and report the least full depth FD ❈ (with moderate number of qubits M ❂ and quantum gates G ❋) and cost-depth
trade-off (TD-M , ✦ × ❂; FD-M , ❈ × ❂; and FD-G, ❈ × ❋) implementations so-far. By increasing the number of
qubits by a less quantity, we reduce the full depth greatly, so that the overall produce is significantly reduced. Moreover,
this low depth is highly advantageous for reducing the cost when parallelization is required due to the depth limit in
Grover’s search (see Sections 2.2 and 2.4). Our quantum implementations offer the best trade-offs in terms of TD2-M
and FD2-M (see Table 5 for various results), which are major metrics when considering parallel search. Optimization
is done at three levels, namely individual component level (S-box, MixColumn etc.), architecture level (16 S-boxes
to make 1 SubBytes, 4 MixColumn to make 1 MixColumns, and so on), and finally by sharing of resources among
the modules. We present a pool of three implementations, each optimized for a specific objective (see Section 3.1 for
related discussion):

� The regular version uses the least qubit count and FD-M cost in our work, and reduces Toffoli circuit depth
compared to the previous works for all the 3 variants. The MixColumn implementation is taken from [74], which
allows zero ancilla/garbage qubit and incurs 92 CNOT gates.

$ The shallow version runs all parallel-executable parts of AES simultaneously, including reverse operations. The
depth of one round only counts SubBytes + MixColumns, which is optimal. The shallow version takes the least
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Toffoli depth and qubit count product (TD-M cost) with an improved pipeline architecture. According to [77], this
is an important notion of circuit complexity. Similar to the regular version, the MixColumn implementation is
taken from [74].

% Further, the shallow/low depth version looks for reducing the circuit depth by opting for a low quantum depth
implementation of MixColumn (which was found by the authors of [50]). This version is optimal when parallelization
of Grover’s search is unavoidable under the constraints of depth (related discussion is given in Section 2.4).

Orthogonal to three architectural choices, we also use two S-box implementations (from [36]) that incur the Toffoli
depth of 4 (✿) and 3 (❀) respectively. On top of that, we present two implementations of the bug-fixed version of
Eurocrypt’20 [43] in Section 5 for AES-128, AES-192 and AES-256 (❆). These two versions differ based on whether the
in-place MixColumn from [43] is used (✚) or the Maximov’s MixColumn implementation from [56] (✛) is used (both
were used in [43]). In order to keep the modification at minimum, we reuse the same design choices made in [43]. For
this reason, we reuse the S-box implementation as in [43], which was adopted from [16] (✜).

Table 1: Performance comparison of AES quantum implementations.

AES

Toffoli depth Qubit count TD-M cost Full depth FD-M cost

(TD) (M) (TD ×M) (FD) (FD ×M)

✦ ❂ ✦ × ❂ ❈ ❈ × ❂

1
2
8

GLRS [32] 12672 (99.76) 984 (−84.55) 12469248 (97.96) 110799 (99.13) 109026216 (94.39)

LPS [49] 1880 (98.41) 864 (−86.43) 1624320 (84.32) 28927 (96.68) 24992928 (75.54)

ZWSLW [77] 2016 (98.51) 512 (−91.96) 1032192 (75.32) · ·

HS [36]
✝ 18 820 (95.12) 492 (−92.27) 403440 (30.86) · ·
✝ 9 1558 (97.43) 374 (−94.13) 582692 (56.29) · ·

LXXZZ [51] 476 (91.60) 474 (−92.56) 225624 (−11.42) · ·
❆✳✚ 2394 (98.33) 1656 (−74.00) 3964464 (93.58) 33320 (97.12) 55177920 (88.92)

❆✲✛ 114 (64.91) 5088 (−20.10) 580032 (56.09) 1612 (40.45) 8201856 (25.46)

✿ 40$ % 6368$ 254720$ 960$ 6113280$

1
9
2

GLRS [32] 11088 (99.68) 1112 (−83.37) 12329856 (97.34) 96956 (98.81) 107815072 (92.85)

LPS [49] 1640 (97.81) 896 (−86.60) 1469440 (78.15) 25556 (95.49) 22898176 (66.35)

ZWSLW [77] 2022 (98.22) 640 (−90.43) 1294080 (75.19) · ·
LXXZZ [51] 572 (91.61) 538 (−91.96) 307736 (−4.14) · ·

❆✳✚ 2682 (98.21) 1976 (−70.45) 5299632 (93.94) 37328 (96.91) 73760128 (89.55)

❆✲✛ 138 (65.22) 5664 (−15.31) 781632 (58.93) 1936 (40.50) 10965504 (29.74)

✿ 48$ % 6688$ 321024$ 1152$ 7704576$

2
5
6

GLRS [32] 14976 (99.72) 1336 (−80.85) 20007936 (98.05) 130929 (98.97) 174921144 (94.61)

LPS [49] 2160 (98.06) 1232 (−82.34) 2661120 (85.32) 33525 (95.97) 41302800 (77.18)

ZWSLW [77] 2292 (98.17) 768 (−88.99) 1760256 (77.81) · ·
LXXZZ [51] 646 (91.33) 602 (−91.37) 388892 (−0.45) · ·

❆✳✚ 3306 (98.31) 2296 (−67.09) 7590576 (94.85) 46012 (97.06) 105643552 (91.08)

❆✲✛ 162 (65.43) 6240 (−7.97) 1010880 (61.35) 2264 (40.33) 14127360 (33.29)

✿ 56$ % 6976$ 390656$ 1351$ 9424576$

Parenthesized numbers show % (positive) improvement reported in this work.

✝: Choice of p.

�: Regular version (using Toffoli gate).

$: Shallow version (using Toffoli gate). ✿: S-box with Toffoli depth 4.

%: Shallow/low depth version (using Toffoli gate).

❆: Bug-fixed JNRV [43] (using Toffoli gate).

✳: Bug-fixed depth. ✚: In-place MixColumn [43].

✲: Bug-fixed qubit count. ✛: Maximov’s MixColumn [56].

In this work, we present 10 distinct implementations for each variant of AES:

� Regular version.
❀ 3 Toffoli depth S-box [36], MixColumn from [71].
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✿ 4 Toffoli depth S-box [36]. MixColumn from [71].
$ Shallow version.

❀ 3 Toffoli depth S-box [36], MixColumn [71].
✿ 4 Toffoli depth S-box [36], MixColumn [71].

% Shallow/low depth version.
❀ 3 Toffoli depth S-box [36], MixColumn [50].
✿ 4 Toffoli depth S-box [36], MixColumn [50].

❆ Bug-fixing of JNRV (Eurocrypt’20) [43].
(a) ✳ Fixed depth, ✜ S-box from [16], ✚ in-place MixColumn [43].
(b) ✳ Fixed depth, ✜ S-box from [16], ✛ Maximov’s MixColumn [56].
(c) ✲ Fixed qubit count, ✜ S-box from [16], ✚ in-place MixColumn [43].
(d) ✲ Fixed qubit count, ✜ S-box from [16], ✛ Maximov’s MixColumn [56].

As indicated, we consider two ways to fix the bug in the Eurocrypt’20 paper [43], fixed depth (✳) and fixed qubit
count (✲). Apart from that, all the 3 versions are all done for the Toffoli gate as well as the AND gate. Combining all,
we present 60 implementations altogether:

(i) Our own: 3 versions (�, $, %) × 2 S-box implementations × 3 AES variants × 2 gates (Toffoli and AND).
(ii) Bug-fixed JNRV (Eurocrypt’20): 3 AES variants × 2 MixColumn implementations × 2 ways (fixed depth ✳

and fixed qubit count ✲) × 2 gates (Toffoli and AND).

We collect basically several research contribution and combine those in once place. Our coverage of the literature
includes papers as recent as [74]. On top of that, we would like to note the following points about the novelty/new
building block introduced in this paper:

1. We optimize the depth of the components by using more ancilla sets (except in-place MixColumns) through
parallelization. We reduce the depth while conserving the number of qubits by allowing for many ancilla qubits
and reusing them in the next round through reverse operations.

2. We present a new idea for pipelining of operation (Figure 5(b)), which reduces the T-depth and full depth from the
previous works (as in Figure 5(a)). This involves combining the previous round’s reverse operation with the current
round’s operation by using two alternate ancilla sets.

3. We propose two new structures (shallow, shallow/low depth). The shallow/low depth version has the advantage
that the ancilla qubits for MixColumn can be taken for free (in the regular version, used in [43], ancilla qubits are
not free when the Q# bug is patched).

4. Although not counted explicitly, the bug-fixing of [43] is practically tantamount to two more architecture (see
Section 5.2 for more details). Indeed, the bug-fixed benchmark of [43] by us improves from the authors’ own
bug-fixed benchmark presented recently in [42].

As a consequence of our analysis, the state-of-the-art bounds of the quantum security level (Section 2.4) is updated
in Section 7. The cost for the Grover’s search for each implementation can be observed from Table 10 (Table 10(a) with
Toffoli and 10(b) with AND gates), and Table 11 shows a synopsis of bounds for quantum security levels. We conclude
in Section 8, where we present the other AES related quantum analysis with respect to the updated security level (refer
to Figure 7 for a quick view). Some additional information/discussion can be found in Appendices A (a short discussion
on the AES variants), B (detailed discussion on the Eurocrypt’20 [43] bug), and C (per-round break-up of quantum
resource requirement). Furthermore, an abridged update from the Crypto’23 submission is given in Appendix D.

Our source codes are written in ProjectQ6, which is a Python-based open-source framework for quantum computing.
All our relevant source codes can be accessed online as an open-source project7. Not directly relevant here, but our
idea can be applied to other ciphers as well, as it can be seen from [4,39].

2 Background

2.1 Quantum Gate Basics

Some of the classical gates have quantum counterpart. The X gate performs the classic NOT operation on a single
qubit: X (x) → (∼ x). The CNOT gate operates on two qubits (i.e., x and y) and performs the classic XOR operation:

6Homepage: https://projectq.ch/.
7https://github.com/starj1023/AES QC.

https://projectq.ch/
https://github.com/starj1023/AES_QC
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CNOT (x, y) → (x, x⊕ y). In CNOT (x, y), x is the control qubit and y is the target qubit, so x is XORed to y. The
Toffoli gate operates on three qubits and performs the classic AND operation: Toffoli (x, y, z) → (x, y, z ⊕ (x · y)). In
Toffoli (x, y, z), x and y are the control qubits and z is the target qubit, so the ANDed value of x and y (i.e., x · y) is
XORed to z.

Throughout this paper, we use the following shorthand notations: #NOT (reversible NOT gate count, ✱), #CNOT
(CNOT count, ✲), #Toffoli (Toffoli count, ✩), TD (Toffoli depth, ✦), #T (T-gate count, ✢), Td (T-depth, ✤), #1qCliff
as Clifford gate count (❁), #Measure (Measurement count, ✰), G (total gates, ❋), FD (full depth, ❈) and M (qubit
count, ❂). The full depth is related to the execution time of circuits [12]. The importance of depth is also noted in
NIST’s post-quantum security requirements. In estimating the complexity of quantum attacks, NIST used only the
number of gates and depth as metrics, not the number of qubits [58].

We optimize AES for quantum computers; keeping an eye on the qubit count (❂), Toffoli depth (✦) and full depth
(❈). Further, we also consider the Toffoli depth × qubit count (✦ × ❂), the TD-M cost, and full depth × qubit
count (❈ × ❂), the FD-M cost as metrics for trade-off. Our AES quantum circuits attain the least Toffoli (✦) and
full (❈) depths, TD-M (✦ × ❂) and FD-M (❈ × ❂) costs, significantly contributing to the advancement of the
state-of-the-art.

It can be stated that the Toffoli gate is decomposed in terms of the Clifford and T gates, the cost and depth of such
a decomposition varies based on the method [3, 35,64]. Further, a Clifford gate can refer to CNOT and 1qCliff gates.
Also, the T-depth, an important factor in error correction, is determined by T gates when Toffoli gate is decomposed.
After designing the quantum circuit, we need to decompose the Toffoli gates to estimate detailed quantum resources.
In this paper, when estimating detailed quantum resources, the Toffoli gate is decomposed into (8 Clifford gates + 7 T
gates), T-depth 4, and full depth 8 following one of the methods in [3].

Additionally, we adopt the quantum AND gates from [43]. This AND gate is decomposed into (11 Clifford gates +
4 T gates), T-depth 1, and full depth 8, and requires 1 ancilla qubit. The reverse of the AND gate which does the
un-compute operation (i.e., AND† gate) is designed according to the measured value of the target qubit of the AND†

gate. This AND† gate is counted as (7 Clifford gates + 1 Measurement gate) in resource estimation. Although not
adopted in our work, there is another version of the AND gate [31] that does not require an ancilla qubit, but has a
T-depth of 2.

We first use Toffoli gates to verify the simulation results of the implemented quantum circuit. Since ProjectQ allows
classical simulation of Toffoli gates, we can verify test vectors for large-scale quantum circuits. A Toffoli gate can be
simulated classically and decomposed only when estimating resources. On the other hand, classical simulation of AND
gates is not supported. Therefore, we adopt a method of verifying the implemented quantum circuit using Toffoli gates
and then replacing the top part with AND gates to estimate resources.

2.2 Quantum Key Search using Grover’s Algorithm

For a secret-key cipher using an k-bit key, 2k queries are required for the exhaustive key search. The Grover’s search [33]

is a well-known quantum algorithm that recovers the key with a high probability in about ⌊π4
√
2k⌋ queries. The

procedure can be briefly described as follows (some basic familiarity with the quantum notations/terminology is
assumed, one may refer to, e.g., [24, 57] for a more detailed description):

1. A k-qubit key (K) is prepared in superposition |ψ⟩ by applying the Hadamard gates. All states of qubits have the
same amplitude:

|ψ⟩ = H⊗k |0⟩⊗k
=

( |0⟩+ |1⟩√
2

)
=

1

2k/2

2k−1∑

x=0

|x⟩ (1)

2. The cipher (Enc) is implemented as a quantum circuit and placed in oracle. In oracle f(x), the plaintext (p) is
encrypted with the key in the superposition state. As a result, the ciphertexts for all key values are generated.
The sign of the solution key is changed to a negative by comparing it with the known ciphertext. The condition
(f(x) = 1) changes the sign to negative and applies to all states. For this phase flip, an n-qubit controlled Z gate is
utilized (n is the length of the ciphertext, c).

f(x) =

{
1 if EncK(p) = c

0 if EncK(p) ̸= c
(2)

Uf (|ψ⟩ |−⟩) =
1

2k/2

2k−1∑

x=0

(−1)f(x) |x⟩ |−⟩ (3)
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3. Lastly, the diffusion operator8 amplifies the amplitude of the negative sign state. Diffusion operator is implemented
with the following (H gates layer → X gates layer → k-qubit controlled Z gate → X gates layer → H gates layer).
In [61], a simple technique was introduced by which a constant number of X gates are used for the diffusion
operator. If a constant number of X gates are applied before the Hadamard gates in Step 1, the diffusion operator
is implemented as (H gates layer → k-qubit controlled Z gate → H gates layer).

The Grover’s search executes Equations (2), (3) and diffusion operator in a series to sufficiently increase the
amplitude of the solution and observes it at the end. For an k-bit key, the optimal number of iterations of the Grover’s
search algorithm is roughly ⌊π4

√
2k⌋ [17], which is about

√
2k. In the process, an exhaustive key search that requires

2k queries in a classic computer is reduced to roughly
√
2k queries in a quantum computer (this works with a high

probability).

In the exhaustive key search, r = ⌈k/n⌉ (plaintext, ciphertext) pairs are needed to recover a unique key that is not
a spurious key (see Section 7 for details). Figure 1 shows the Grover’s oracle of exhaustive key search. Encryption† is
defined as the reverse operation of encryption, which reverts to the state before encryption.

1

1 Qcircuit

|k⟩

Enc Enc†

|k⟩

|m⟩ |m⟩

|0⟩ • |0⟩

|−⟩ |−⟩

References

(a) Oracle for r = 1.

1

1 Qcircuit

|k⟩ •

Enc Enc†

• |k⟩

|m0⟩ |m0⟩

|0⟩ • |0⟩

|0⟩

Enc Enc†

|0⟩

|m1⟩ |m1⟩

|0⟩ • |0⟩

|−⟩ |−⟩

References

(b) Oracle for r = 2.

Figure 1: Schematic architecture for key search using Grover’s algorithm.

2.3 Related Work

Quantum analysis of secret-key ciphers with respect to the Grover’s search algorithm is one of the major research
direction now-a-days. Some of the prominent examples include, but not limited to, AES [14,43,49,77]9, SIMON [7],
SPECK [6,37], PRESENT and GIFT [40], SHA-2 and SHA-3 [2], FSR-based ciphers [5], ChaCha [11], SM3 [65,75],
RECTANGLE and KNOT [9], DEFAULT [38], ARIA [18], few Korean ciphers [41, 47], SPECK and LowMC [39],
CHAM [72].

However, this is not the only active direction of research; there are other avenues which try to find an efficient
quantum attack for a secret-key cipher. One may, for instance, refer to classical attacks that are ported to the quantum
realm [30,45], or specialized quantum attacks like [13,26,27]. These avenues, though important, are out-of-scope for
our current work.

Reflection on Huang and Sun (Asiacrypt’22) The content of this paper only revolves with AES-128, and can be
summarized as:

➠ Improve from the Asiacrypt’20 paper’s [77] qubit count and performance.

➠ Choose an improved S-box implementation atop the Eurocrypt’20 implementation [43] with proposal for a quick
fix for the qubit count.

8Since the diffusion operator is usually generic, it does not require any special technique for implementation.
9As far as we can tell, the authors of [14] only made some estimates but did not present any implementation.
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We think there is some scope for improvement on the patch done by [36] on the Eurocrypt’20 implementation (based on
the Q# code10). Also, the number of qubits was estimated manually in [36, Table 7] in the bug-fix of [43]. Not counting
the bug-fix, they only proposed two versions, for AES-128 in total (Toffoli depth 3 and 4 S-box implementations, both
using the MixColumn implementation from [71]), whereas we implemented eight versions.

In our paper the main contributions are, low depth implementations of AES and a thorough bug-fixing of the
Eurocrypt’20 implementations. In summary, in comparison with the recent work by Huang and Sun in Asiacrypt’22 [36],
we note the following points. Our approaches are mostly disjoint from that of [36] (note that we use the 28 quantum
depth MixColumn implementation from [74], as opposed to the 30 quantum depth implementation from [71]); and when
their S-box implementation is used in our implementation, our result outperforms theirs (thus we have the best-known
implementation so far). Reducing the Toffoli depth is a major focus in their work, which we pursue through our shallow
version. As it can be seen from Table 1, our results are indeed better than those are reported in [36]. Further, we cover
optimized quantum implementations of AES-192 and AES-256 as well.

2.4 NIST Security Levels

The following security levels were defined by NIST [58] to assess the post-quantum security:

① Level 1: Cipher is at least as hard to break as AES-128.
② Level 2: Cipher is at least as hard to break as SHA-256.
③ Level 3: Cipher is at least as hard to break as AES-192.
④ Level 4: Cipher is at least as hard to break as SHA-384.
⑤ Level 5: Cipher is at least as hard to break as AES-256.

It may be noted that, the security levels do not consider the key-dependent tag. Therefore, additional security
levels may be considered in the future scope [60, Section 2.3].

NIST recommended that a given cipher should achieve some minimum security level to provide sufficient security in
the post-quantum era. Based on the research available back then (probably the only such work was due to [32]), NIST
estimated used in [58] the following complexities: Level 1: 2170, Level 3: 2233, Level 5: 2298 (on a closer look, however,
it seems that complexity estimated in [32] for Level 1 was close to 2169). The complexity bounds were calculated as the
product of total number of decomposed gates and full depth (❈) required for the Grover’s key search circuit.

With the passage of time, as more research works on the AES family have been being reported, the complexity for
the security levels (1, 3 and 5) have been gradually reduced. In response to this, recently, NIST has made adjustments
to decrease the costs of Grover’s key search on the AES family [59]. Presently, NIST has defined new quantum attack
costs for AES-128, 192, and 256, based on the reported costs from [43], which are 2157, 2221, and 2285, respectively.
However, these costs are underestimated since there are some programming-related issues in their quantum circuit
implementation. In this paper, We analyze these issues from [43] and demonstrate that the reported costs are closely
achievable with our optimized AES quantum circuits.

A comprehensive synopsis of the notable works can be seen from Table 11, where we show the impact on our work
in reshaping the security levels. In particular, the following new bounds are achieved (see also Table 10(b)):

☞ Level 1: 2156.6452; with total Clifford, T and measurement gates (❁ + ✢ + ✰) = 282.4447; full depth (❈) = 274.2004.
☞ Level 3: 2221.9913; with total Clifford, T and measurement gates (❁ + ✢ + ✰) = 2115.5341; full depth (❈) =

2106.4573.
☞ Level 5: 2286.4834; with total Clifford, T and measurement gates (❁ + ✢ + ✰) = 2147.7983; full depth (❈) =

2138.6844.

Along with this, NIST proposed a parameter called MAXDEPTH to impose a limit on circuit depth. The bounds for
MAXDEPTH are not clearly stated, rather it is speculated that the following figures can be taken as good indicators:
240, 264 and 296; judging by the expected computation power of a quantum computer – in a year, or a decade, or
a millennium. Keeping that in mind, one would expect the depth of the quantum circuit for the Grover’s search is
not higher than 296 (i.e., the highest bound estimated for MAXDEPTH11). However, if it turns out that the depth
restriction is not within the stipulated bound, then the following approaches can be undertaken [46]:

1. Outer parallelization: Restrict depth at the ≤ 296 at the expense of lower success probability of key recovery.

10https://github.com/AES-quantum-circuit/AES-quantum-circuit.
11As the Grover’s search makes the circuit depth greater than 2k/2 for k-bit key (the quantum depth for the cipher

implementation × ⌊π
4
2k/2⌋ required for Grover’s iteration), the quantum depth is trivially greater two smaller MAXDEPTH

values for AES variants.

https://github.com/AES-quantum-circuit/AES-quantum-circuit
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2. Inner parallelization: Split the search space into multiple subspaces with shallow depth, where each circuit measures
the secret key with a lower success probability.

3. Cost is calculated as-is without considering MAXDEPTH (see, e.g., [46, Table 2]). It is worth noting that the
previous implementations like [1, 36,49,77] also did not appear to consider the MAXDEPTH limit.

The outer and inner parallelization methods lower the probability of measuring a solution by reducing the number
of iterations for the Grover oracle. Outer parallelization halts the Grover iterations at the depth limit, leading to the
measurement of suboptimal solutions with lower probabilities. Inner parallelization reduces the number of Grover
iterations by reducing the search space, which also lower the probablility of discovering a solution. However, parallelizing
the Grover’s search is highly inefficient due to the poor performance resulting from the analysis in [73], which indicates
that only a

√
S depth reduction can be achieved with S instances (operating in parallel) of the Grover oracle. Thus,

the optimal method is to perform as many iterations of the Grover oracle as possible within a limited depth. According
to the analysis in [43, Section 3.4], to minimize the TD-M (Toffoli depth and qubit count product, ✦ × ❂) and FD-M
(full depth and qubit count product, ❈ × ❂) costs under the parallelization of Grover’s search, it is necessary to
minimize the TD2-M (✦2 × ❂) and FD2-M (❈2 × ❂) costs. This is because reducing the depth (TD/FD) by

√
S

requires S instances of the Grover oracle, leading to a more significant increase in the total number of qubits (M)
required for parallelization.

Suppose the total depth of Grover’s search exceeds MAXDEPTH (i.e., FD > MAXDEPTH). To address this depth
limit, parallelization is required to reduce FD to match MAXDEPTH (FD → MAXDEPTH). FD should be reduced

by a factor of FD
MAXDEPTH (which is

√
S). To achieve this reduction, FD2

MAXDEPTH2 (which is S) Grover instances

need to operate in parallel. Consequently, FD is reduced by a factor of
√
S, leading to a reduction to MAXDEPTH.

On the other hand, M is increased by a factor of S, resulting in FD2

MAXDEPTH2 ·M . Finally, for the parallelization of

Grover’s search, the FD-M cost transforms into FD2·M
MAXDEPTH (i.e., FD√

S
× (M × S)). That is, the focus shifts to the

challenge of minimizing the FD2-M metric. In the same context, when considering TD-M cost, our goal should be
to minimize the TD2-M metric. Therefore, when parallelization due to depth limitation is inevitable, the primary
objective should be to minimize the depth.

In terms of the gate count G, S Grover instances are executed in paralllel, and the gate count of each instance is
decreased by a factor of

√
S. Thus, by the formula S · G√

S
, the total gate count sholud be G·FD

MAXDEPTH . This formular

mirrors NIST’s method for estimating the quantum attack cost for AES [58,59]. This is why we adopt G · FD as a
primary metric for estimating attack cost and our paper offers the best performance in terms of this metric (Level 1:
2156.6452, Level 2: 2221.9913, and Level 5: 2286.4834).

As of now, we remark that the depths (❈ and ✦) of our AES quantum circuits are the lowest when compared to
other quantum circuits available in the literature [1, 36,49,77]. Table 2 displays a quick view where the related works
(namely, GLRS [32] and LPS [49]) are compared with respect to our implementations in terms of full depth (❈). Note
that, only AES-128 satisfies the MAXDEPTH criterion (i.e., ≤ 296).

One may further note that the depth of quantum attack on AES-128 (i.e., Level 1) is within the permitted
MAXDEPTH limit (274.1609 using the AND gate; the same using the Toffoli gate is 274.2388). However, the same cannot
be stated for AES-192 and -256, since the full depth figures are respectively 2106.4179 and 2138.6452 (using the AND
gate; the same using the Toffoli gate are 2106.4957 and 2138.7225, respectively). In this work, we adopt the 3rd approach
for the sake of brevity and report the cost with considering the MAXDEPTH limit. As NIST gives quantum gate
counts for the Grover’s search on AES as So, we can identify the optimal parallelization strategy that strikes a balance
between adjusted cost – success probability trade-offs (Section 7). As described, the circuit depth metrics are the
primary factor determining performance in general.

3 Components for Quantum Circuits for AES

3.1 Regular, Shallow and Shallow/Low Depth Versions

Our quantum circuit implementations are divided into regular and shallow versions. The regular version offers high
parallelism while taking into account the trade-off of depth-qubit. The regular version (�) has the best performance for
FD-M cost (which is the full depth - qubit count product, ❈ × ❂)). The shallow version also considers the trade-off
of qubit-depth, but further reduces the depth (especially Toffoli depth) by burdening the use of ancilla qubits. The
shallow version ($) has the best performance in terms of Toffoli depth (✦), TD-M cost (which is the Toffoli depth
- qubit count product, ✦ × ❂), and TD2-M cost (which is the Toffoli depth2 - qubit count product, ✦2-❂). The
shallow/low depth version seems to achieve the lowest depth for quantum circuit implementation. The shallow/low
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Table 2: Summary of AES implementations with respect to MAXDEPTH.

AES
GLRS [32] LPS [49]

This work MAXDEPTH

❈ � $ % ❆ (Toffoli) ❆ (AND) (≤ 296)

128 281.2141 279.4751
✿: 274.7172 ✿: 274.4813 ✿: 274.2004 ✳✚: 279.6576 ✲✚: 275.5008 ✳✚: 279.0636 ✲✚: 275.4543

✓
❀: 274.7849 ❀: 274.4489 ❀: 274.1609 ✳✛: 279.7011 ✲✛: 275.3060 ✳✛: 279.1035 ✲✛: 274.7847

192 2113.4114 2111.2987
✿: 2106.9620 ✿: 2106.7450 ✿: 2106.4573 ✳✚: 2111.8395 ✲✚: 2107.7756 ✳✚: 2111.2271 ✲✚: 2107.7258

✗
❀: 2107.0328 ❀: 2106.7128 ❀: 2106.4179 ✳✛: 2111.8673 ✲✛: 2107.5703 ✳✛: 2111.2702 ✲✛: 2107.0464

256 2145.6508 2143.6871
✿: 2139.1890 ✿: 2138.9745 ✿: 2138.6844 ✳✚: 2144.1412 ✲✚: 2140.0098 ✳✚: 2143.5283 ✲✚: 2139.9553

✗
❀: 2139.2606 ❀: 2138.9426 ❀: 2138.6452 ✳✛: 2144.1679 ✲✛: 2139.7964 ✳✛: 2143.5701 ✲✛: 2139.2680

�: Regular version (using AND gate).
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version (using AND gate).

%: Shallow/low depth version (using AND gate).

❆: Bug-fixed JNRV [43] (using S-box from [16] ✜.)

✳: Bug-fixed depth. ✲: Bug-fixed qubit count.

✚: In-place MixColumn [43]. ✛: Maximov’s MixColumn [56].

version is the optimal choice when estimating the quantum attack cost for Grover’s key search, and parallelization
of the Grover’s search is essential due to the depth limit. The shallow/low version (%) has the best performance for
FD-G cost (which is the metric used by NIST to estmiate quantum attack cost, ❈×❋) and FD2-M cost (which is the
full depth2 - qubit count product, ❈2-❂).

All the three versions(�, $, %) employ the reverse operation (i.e., un-compute) to initialize/clean ancilla qubits.
Notably, if we allocate new qubits every time they are needed, both gate count and circuit depth can be reduced. However,
our design philosophy revolves around using reverse operations and attempting to develop optimal architectures for
AES quantum circuits, emphasizing the importance of maintaining the best balance between depth and qubit count
while aiming for the lowest possible depth.

The regular version (�) focuses on the parallelism within the round. To optimize the depth of the components
through parallelization, we utilize additional ancilla sets (except in-place MixColumns). It reduces the depth while
conserving the number of qubits by allowing for many ancilla qubits and reusing them in the next round through
reverse operation (Figure 2(b)). In this version, while the current round awaits, the previous round goes through the
reverse operation. In other words, the next round cannot start until the reverse operation on the current round is
complete. Simply put, parallelization of modules within a round, such as SubBytes, key schedule, and MixColumns, is
achieved, but parallelization between rounds is not attained.

On the other hand, the shallow version ($) manages to parallelize the processing for all the rounds. For this, we
present a new idea for pipelining of operation (Figure 5(b)), which reduces the Toffoli depth and full depth from the
previous works (as in Figure 5(a)). In this version, the reverse operation of the previous round is run simultaneously
with the current round, alternating between the even and the odd rounds (for instance, while the even rounds are at
compute operation, the odd rounds are at the un-compute operation). This version uses more qubits (❂), but offers
lower depths (✦ and ❈), because all the rounds of the parallelizable parts of the cipher run simultaneously. As a
consequence, it achieves lower circuit depth, as in this case the bottleneck of the depth is that of the SubBytes plus
MixColumns in every round (except for the last round where MixColumns depth is not counted).

That said, one may notice that the depth (❈) can be reduced if a different implementation of MixColumn is opted
for, though the Toffoli depth (✦) is unchanged. In our shallow version, we choose the MixColumn implementation
from [74], as it offers in-place implementation. As pointed out in Table 4, it is possible to lower the depth (❈) at the
expense of more qubits (❂), if the MixColumn implementation from [50] is chosen instead. Thus, everything else being
inherited from the shallow version ($), the shallow/low depth version (%) achieves lower full depth. One note-worthy
point is that the number of ancilla qubits required for the MixColumn implementation in the shallow/low version is
irrelevant. This is due to the utilization of idle ancilla qubits after their use in SubBytes (related explanation is given
in Section 3.7).

Although minimizing the depth for the Grover’s search is more effective, most papers implementing quantum
circuits for AES focus on reducing the usage of qubits [1, 32, 36,49,69, 77]. The serial circuit structure (which aims at
reducing the number of qubits) significantly increases the circuit depth (❈). As stated already, our quantum circuits
for AES attempt to find the lowest depth while maintaining the best possible balance between the number of qubits
required with its relation to increment of the circuit depth. Thanks to the careful choices, our AES quantum circuits
provide arguably the second best trade-offs in terms of TD-M cost by varying TD and M , where recall that TD is
the Toffoli depth (✦) and M is the number of qubits (❂) . This product is taken as the trade-off indicator for the
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quantum circuit in [77]. TD-M cost of our AES quantum circuits is slightly larger than AES quantum circuits from [51]
(which is the best). However, as stated in the NIST document [59], Grover’s algorithm requires a long-running serial
computation, which is difficult to implement in practice. That is, in real-world attack scenarios, it is unavoidable to
execute multiple smaller instances of the algorithm in parallel. Indeed, in this scenario (parallel search), the cost of
TD-M and is redefined as TD2-M (see Section 2.4 for the rationale). This product is taken as the trade-off indicator
for the quantum circuit in [43]. From Table 5, it can be observed that our TD-M is slightly larger than those in [51],
while TD2-M is significantly smaller than that in [51].

We also use the depth - qubits count product (❈ × ❂) in estimating the FD-M cost. This metric is also realistic
and is used primarily for evaluation. Our AES quantum circuit achieves the second best trade-offs in terms of FD-M
cost. However, in the same context as the TD-M cost, we achieve the best trade-offs in terms of the FD2-M cost.

3.2 Implementation of S-box (SubByte)

Table 3 shows the resources required for the implementations found by Boyar-Peralta [15,16] and the resources for
the S-boxes used by the previous authors [49,77]. Resource estimation is performed in ProjectQ and according to the
method of [3], one Toffoli gate is decomposed into (8 Clifford gates + 7 T gates), and T-depth (✤) of 4, and full depth
(❈) of 8. For the cost comparison and implementation details in Section 3, we use only the Toffoli gate. If we adopt
the AND gate instead of the Toffoli gate, an ancilla qubit is required, but it can be saved depending on the overall
structure. Thus, the cost of the AND gate version is estimated in Section 6 by replacing the Toffoli gates at the top of
the implemented AES quantum circuits with AND gates.

Note that the S-box implementation in [32] is based on a field inversion technique, while the rest are based
on some version of the Boyar-Peralta’s algorithm [15, 16]. Apart from these, another method which is a courtesy
of Dansarie [20, 21] exists. This is rather generic, as it can find implementation of an arbitrary 8-bit S-box (i.e.,
unlike [15, 16], this is not specific to the AES S-box), with respect to a user-provided set of logic gates. With the
publicly available source code12 we checked the implementation of the AES S-box. In total, we found 5 implementations
in which the number of lines in the C source files is in the ballpark of 400 (it contains AND, OR and NOT gates; and
sometime one line contains more than 1 gate). These are not used in this work due to high quantum cost (see Table 3
for the benchmarks).

Table 3: Comparison of quantum implementations of AES S-box.

Method
#CNOT

✲

#1qCliff

❁

#T

✢

TD

✦

M

❂

Full depth

❈

S-box [32] 1818 124 1792 88 40 951

S-box [15] 358 68 224 8 123 104

S-box [16] ✜ 392 72 238 6 136 85

S-box [49] 628 98 367 40 32 514

S-box [77] 437 72 245 55 22 339

S-box [20,21]

391 lines 1470 670 1218 66 399 640

406 lines 1507 548 1245 74 414 709

413 lines 1484 561 1169 62 421 591

409 lines 1483 574 1190 74 416 693

400 lines 2244 1006 2254 111 408 998

S-box [36]
✿ 418 72 238 4 136 72

❀ 824 160 546 3 198 69

✜: Reused in this work to fix [43] ❆.

✿: Used in this work (Toffoli depth 4).

❀: Used in this work (Toffoli depth 3).

If the Boyar-Peralta’s S-box implementations [15, 16] are directly ported to quantum, then the version of [16]
requires more ancilla qubits (120 ancilla qubits) than the quantum version of [15] (107 ancilla qubits), but attains
lower depth. JNRV adopted the implementation of the S-box of [16] on a quantum circuit [43] as-is.

12https://github.com/dansarie/sboxgates.

https://github.com/dansarie/sboxgates
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Recently, Huang and Sun reported an improved quantum implementation for the S-box of [43] in their Asiacrypt’22
paper [36]. They presented two quantum implementations of reduced Toffoli depth with new observations of the classical
implementation of the AES S-box as given in [16]. The first version reduced the Toffoli depth without increasing the
number of qubits, while the second version used more qubits to further reduce the Toffoli depth.

In [49, 77], the authors extended the first S-box implementation by Boyar-Peralta [15] and presented the S-box
quantum circuit with a reduced number of qubits. Consequently, it leaves us with a few of ways to choose from.

Considering the trade-off between the circuit depth and the number of qubits required for an S-box implementation,
we treat two cases. The first case is when the ancilla qubits have to be allocated per SubBytes, which is indeed sensitive
to the number of qubits. The second case is when the initially allocated ancilla qubits can be reused. In this case,
there is no need to allocate additional ancilla qubits for the next SubBytes. Therefore, the number of ancilla qubits
is maintained, but the depth and number of gates increase due to the reverse operations needed to reuse the ancilla
qubits. We choose the second case for our SubBytes implementation, since we believe the benefit of reducing the
number of qubits outweighs the cost saved by not performing additional reverse operations. In this case, only the initial
allocation is burdened because the ancilla qubits are reused. Thus, we use Huang and Sun’s [36] S-box implementations
with relatively high qubit count but low depth. In other words, we increase the initial burden and use fast (low depth)
S-boxes for free (without ancilla qubits) until the end. Additionally, we eliminate the depth overhead for the reverse
operation of SubBytes in new architectures (shallow, shallow/low depth). This will be explained in Section 4.2.

We found two reversible implementations of the AES S-box from [55, Appendices C and D]. However, those are
given in raster graphics format and quite difficult to read13.

One may note that the AES implementation in [77] required the implementation of the inverse S-box. In our case,
however, we do not use the inverse S-box.

3.3 Implementation of SubBytes

After we decide upon the implementation of S-box (SubByte, Section 3.2), this can be used to implement 16 S-boxes
(SubBytes). Regarding the implementation of SubBytes in AES, Figure 2(a) shows the method that uses the fewest
qubits. In this case, all S-boxes are executed sequentially, which causes a significant increase in depth, as shown in
Figure 2(a). On the other hand, we reduce the depth by allocating more ancilla sets initially. The notation S-box† is
described in Appendix A.3.

1

1 Qcircuit

|Ancillasi S-box • S-box† S-box • S-box† . . . S-box • S-box†

|u0⇠7i • • . . .

|s0⇠7i . . .

|u8⇠15i • • . . .

|s8⇠15i . . .

...

|u120⇠127i . . . • •

|s120⇠127i . . .

Fig. 1: temp1

References

(a) Using one ancilla set.

2

|Ancillasi S-box • S-box†

|u0⇠7i • •

|s0⇠7i

|Ancillasi S-box • S-box†

|u8⇠15i • •

|s8⇠15i

...

|Ancillasi S-box • S-box†

|u120⇠127i • •

|s120⇠127i

Fig. 2: Source code(b) Using multiple ancilla sets.

Figure 2: SubBytes implementation in quantum.

In one round, 16 S-boxes in SubBytes and 4 S-boxes in key schedule, a total of 20 S-boxes are operated, simultaneously.
Therefore, we allocate 20 × 120 ancilla qubits for S-boxes with Toffoli depth 4 (✿) and 20 × 182 ancilla qubits for
S-boxes with Toffoli depth 3 (❀) to run all S-boxes simultaneously. Figure 2(b) shows 16 S-boxes operation in parallel

13We contacted the authors for an easily readable format — currently we are awaiting their response.
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using multiple ancilla sets. After S-box operations, ancilla qubits are not in a clean state (i.e., not all ancilla is 0).
Initialization with 16 S-boxes† operation (i.e., returning to 0) is performed in parallel for the next round. Thanks to
this, we can reuse the initialized ancilla qubits in the next round of SubBytes. Of course, these reverse operations save
qubits, but increase depth. However, if we allocate ancilla qubits each time by skipping reverse operations, it is an
abuse of qubits. We consider these trade-offs carefully and the shallow version offsets this depth overhead from reverse
operations (this will be described in Section 4.2).

3.4 Implementation of Key Schedule

In the key schedule of AES, SubWord operates on rearranged 32-qubit. Out of the 20× (120 or 182) ancilla qubits
previously decided to use (refer to Section 3.3), 4 × (120 or 182) ancilla qubits are used to simultaneously operate
S-boxes for 32-qubit in the key schedule (16 × 120 or 16 × 182 ancilla qubits are used in SubBytes of round). For
rearranging the 32 qubits, quantum resources are not used by using logical swap that only changes the index of the
qubits.

In SubBytes, the outputs of S-boxes are stored in new qubits. On the other hand, in the key schedule, no additional
qubits are allocated because the outputs of the S-boxes are XORed (using CNOT gates) inside the key. Since SubWord
for 32-qubit operates in parallel with SubBytes of round, there is no depth overhead in our AES quantum circuit
implementation. This approach is already utilized in [43]. XORing the 8-bit round constant (RC) is implemented by
performing X gates to |k120∼127⟩ according to the positions where the bit value of the round constant is 1. Lastly, the
CNOT gates inside the key are performed. Figure 3 shows the quantum circuit for the AES-128 key schedule (see
Appendix A.3 for description of Rotation† and SubWord†).

All the S-boxes in key schedule and round function are designed to operate in parallel. That is, the depth is the
same as operating an 8-bit S-box once. Quantum implementation for S-box is required for key schedule and SubBytes,
and S-box occupies the most resources in AES quantum circuit. In [32], GLRS used Itoh–Tsujii inversion to implement
S-box of AES, which requires a lot of quantum resources. Recently, the hardware design for AES has been adopted to
implement an efficient S-box quantum circuit. In particular, S-box implementation techniques [15, 16] proposed by
Boyar-Peralta were frequently used. In [49], Langenberg et al. adopted the S-box implementation of [15] and converted
it to suit their purpose of reducing qubits. The S-box implementation of [15] was adopted and improved in [76].
ZWSLW [77] also used the S-box−1 implementation in designing a new architecture for AES that reduced number of
qubits. For the key schedule, an on-the-fly approach is adopted, and our AES quantum circuit implementation executes
the key schedule simultaneously with SubBytes in the round function.

|Ancilla⟩⊗4 set SubWord • SubWord† |Ancilla⟩⊗4 set

|k0∼31⟩ Rotation • • Rotation† |k0∼31⟩

|k32∼63⟩ • |k32∼63⟩

|k64∼95⟩ • |k64∼95⟩

|k96∼127⟩ X(RC) • |k96∼127⟩

Figure 3: AES-128 key schedule in quantum.

In most implementations of AES quantum circuits, the full depth and Toffoli depth of AES-128 are higher [32,43,49]
or similar [77] to those of AES-192. Although AES-128 has fewer rounds, this is due to differences in key schedule.
AES-128 requires 16 S-boxes for SubBytes and 4 S-boxes for key schedule in every round. On the other hand, some
rounds of AES-192 require only 16 S-boxes for SubBytes, since SubWord in the key schedule are not required. As a
result, AES-128 has a higher depth than AES-192.

Another interpretation of this is that there is a depth overhead for key schedule in implementing AES quantum
circuits. However, in our AES quantum circuits there is no depth overhead for key schedule (there is overhead for
gates and ancilla qubits). Our AES quantum circuit runs the key schedule in complete parallel, so we achieve the same
depth as if the key schedule was omitted. As a result, unlike other implementations, the quantum resources required
for our AES-128, -192, and -256 quantum circuits are strictly dependent on the number of rounds.
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3.5 Implementation of AddRoundKey and ShiftRows

The AddRoundKey operation, which XORs a 128-qubit round key, can be implemented simply by using 128 CNOT
gates. In the case of ShiftRows, it can be implemented using swap gates, but quantum resources are not used through
logical swap that changes the index of qubits. Since no special implementation technique is applied for AddRoundKey
and ShiftRows, this approach is mostly used in quantum circuit implementations.

3.6 Implementation of MixColumn

In [71], Xiang et al. presented a novel heuristic search algorithm to optimize the implementation of linear layers
based on factorization of binary matrices. When applied to the MixColumn of AES, their algorithm resulted in an
implementation using 92 XOR gates (with classical depth 6) in a classical circuit. A different implementation costing 92
XOR gates (with classical depth 6) was reported previously by [56]. These two were the least cost implementations in
classical circuits, until another implementation with 91 XOR gates (with classical depth 7) was found by [52]. Recently,
a new implementation of AES MixColumn was found thanks to [53], which managed to reduce the classical depth to 3
with 103 XOR gates (cf. 103 XOR/3 classical depth implementation from [10]). However, this work came as a tie with
another implementation from [50], albeit the latter required 105 XOR gates.

When it comes to quantum implementation, one may observe that the following implementations operate in-place
(i.e., of the form a← a⊕ b and require only 32 qubits14):

(a) PLU factorization in some form (used in [1, 32,43,77]);
(b) 92 XOR implementation reported in [71] (used in [36]).

Note from Table 4 that, the implementation by [71] requires the least number of XOR/CNOT gates. This hugely improves
from the previous in-place implementations based on the PLU factorization [32,43,77]. In contrast, implementations
like that of [52, 53, 56], do not work in-place, due to the require usage of temporary variables (i.e., ancilla/garbage
qubits) and/or depth (due to cleaning up qubits). On a different direction, the implementation from [50] appears to
have lower depth than that of [53] when converted to quantum circuits. Related discussion can be found in [62].

We port the implementation of MixColumn in [74] to quantum and use it in our AES quantum circuit. This
implementation is used in the regular (�) and shallow ($) versions. Additionally, in order to minimize the circuit
depth, we also use the MixColumn implementation from [50] in our shallow/low depth (%) version.

The authors of [10] presented two implementations (103 XOR/3 classical depth, and 95 XOR/6 classical depth). If
taken as-is, the 103 XOR/3 classical depth implementation yields 206 CNOT gates (✲), 135 #qubits (❂), with 11
quantum depth when ported. Thus, it is in theory possible to slightly improve our shallow/low depth version (%) by
switching to this implementation. Further, if the 95 XOR/6 classical depth implementation is ported as-is; it incurs
190 CNOT gates (✲) with 127 #qubits (❂) with depth 15; however we could not verify the results (probably due to an
encoding issue). Second, an implementation of 108 XOR count is mentioned in [29, Footnote 3/Page 42], but it is not
clear to us so far.

Apart from the specialized MixColumn implementations just narrated, it is perhaps worth noting that the näıve
quantum implementation (i.e., directly porting the binary matrix to quantum circuit, see [62]) was seemingly never
studied for whatever reason. With our implementations, one as a 4 × 4 matrix over GF(28), and the other as a
32 × 32 binary matrix; we notice from Table 4, the CNOT count being the same, that the depth varies – this is
probably due to the compiler’s inability to optimize for depth. In essence, we do not provide the binary matrix form,
rather give instruction to directly implement the GF(28) matrix.Interpreting a 4× 4 matrix over GF(28) results in an
implementation with units of 8 qubits, where the inputs (x0∼31) are mapped to outputs (y0∼7, y8∼15, y16∼23, y24∼31)
respectively. On the other hand, interpreting a 32× 32 matrix over GF(2) results in an implementation with units of 1
qubit, where the inputs (x0∼31) are mapped to outputs (y0∼31) respectively. Though the explicit form of the binary
matrix is not specified; the resulting binary matrix follows in the GF(2) version the same encoding as [71], while the
GF(28) version follows the same encoding as [15]. Consequently, the tool used to benchmark the implementations
receive different instructions, or same instructions but in different order. This can be compared to the situations
where the result from [32] (respectively, [10]) was not verified by [43] (respectively, us), or the reduction of quantum
depth in [74] from [71]). Also, in the Eurocrypt’20 paper [43], the authors remarked that they could not reproduce
the result from [32] although they used same technique. The reason [43] has a higher depth (full depth: 111) in the
implementation of MixColumn compared to [32] (full depth: 39), despite using same technique, is precisely because of
this.

14As noted in [62], Gauss-Jordan reduction also finds an in-place implementation of a binary matrix, but it is probably never
used as such (although it is used in [71] as the fallback algorithm of the A⋆ search).
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Table 4: Comparison of quantum implementations of AES MixColumn.

Method
#CNOT

✲

M

❂
Depth

MixColumn (Näıve)
GF(28) (Encoding [15])

184 64
25

GF(2) (Encoding [71]) 52

MixColumn [32,77]✟ 277 32 39

MixColumn [48] 194 129 15

MixColumn [1]✟ 275 32 200

MixColumn [56]✛ 188 126 13

MixColumn [43]✚✟ 277 32 111

MixColumn [67] 188 126 17

MixColumn [71]
92 32

30

MixColumn [74]� $ ✟ 28

MixColumn [52]✳ 182 123 16

MixColumn [53]✴ 206 135 13

MixColumn [54] 204 134 13

MixColumn [10]
103 XOR/3 depth 206 135 11

95 XOR/6 depth 190 127 15

MixColumn [50]✴ % 210 137 11

✛ ✚: Reused in this work to fix [43] ❆.

� $: Used in regular and shallow versions; in [36].

✳: Least XOR count in classical circuit.

✴: Least depth in classical circuit.

%: Used in shallow/low depth version.

✟: In-place implementation.

One may note from Table 4 that the depth for quantum circuit corresponding to the implementation by [71] is
30, whereas the same for the classical circuit is 6. Although this implementation operates in-place, it still reuses one
variable multiple times. In other words, the same variable appears multiple times in the right hand side. For example,
one may check that x31 appears more than once: x16 ← x16 ⊕ x31 (Line 15), x4 ← x4 ⊕ x31 (Line 29), x0 ← x0 ⊕ x31
(Line 56), and so on. This does not account for extra depth in a classical circuit (as multiple fan-outs are allowed).
However, in a quantum circuit where there is exactly one fan-out, this situation causes increase of quantum depth.
A recent work by [74] looked into this, and this is the first work to directly address the issue of quantum depth
optimization15 to the best of our finding. In particular, the authors in [74] took the 92 CNOT/30 quantum depth
implementation from [71], and managed to reduce the quantum depth to 28 (by keeping the same CNOT count). This
reduced quantum depth implementation is adopted in our case, for the regular (�) and shallow ($) versions.

3.7 Implementation of MixColumns

For the 128-bit MixColumns operation (i.e., 4 MixColumn operations), the MixColumn implementation can be scaled
up directly. As the MixColumn used in the regular (�) and the shallow ($) versions work in-place, we do not have to
consider the impact of ancilla qubits. This, however, is more complicated in case of the shallow/low depth version (%),
as described next.

In the shallow/low depth version (%), we need to account for the ancilla qubits (since the implementation [50] is
not in-place). This observation although hints that we need extra qubits (to work as ancilla), here we show how this is
not the case. Recall from the implementation of SubBytes (Section 3.2 and Section 3.3) the S-box implementation is
also not in-place, requiring ancilla qubits (20× 120 ✿ or 20× 182 ❀). However, when the combined SubBytes and
MixColumns is considered, because of efficient resource sharing, the total qubit count (❂) does not increase. Those
ancilla qubits are initialized as 0 after one SubBytes operation (to use in the next round), meaning that during the
MixColumns operations, those qubits are idle. By reusing those idle qubits as ancilla qubits for the MixColumns, only

15Recent optimizations relying on multi-input XOR gates (e.g., [8] are not quantum compatible.
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64 qubits are required to implement the MixColumn from [50] (32 as input qubits and 32 as output qubits). Thus,
even though the MixColumn implementation is not in-place, at the end, we do not need any extra qubit. So, the qubit
count (❂) does not increase when SubBytes is counted within the scope.

In other words, the total number of qubit requirement is 64 for any implementation in Table 4 (save for the
in-place implementations [1, 71, 74] where it is 32) when the non-standalone implementation of MixColumns (in which
MixColumn does not operate in-place) is considered.

4 Architecture of AES Quantum Circuits

Table 5: Comparison of quantum resources required for variants of AES.

AES

#CNOT

✲

#NOT

✱

#Toffoli

✩

TD

✦

#qubit

(M)

❂

TD-M cost

(TD ×M)

✦ × ❂

Full

depth

❈

TD2-M cost

(TD2 ×M)

✦2 × ❂

1
2
8

GLRS [32] 166548 1456 151552 12672 984 12469248 110799 158010310656

ASAM [1] 192832 1370 150528 · 976 · · ·
LPS [49] 107960 1570 16940 1880 864 1624320 28927 3053721600

ZWSLW [77] 128517 4528 19788 2016 512 1032192 · 2080899072

HS [36]
✝ 18 126016 2528 17888 820 492 403440 · 330820800

✝ 9 126016 2528 17888 1558 374 582692 · 907834136

LXXZZ [51] 77984 2224 19608 476 474 225624 · 107397024

� 84120 800 12920 76 3936 299136 1364 22734336

$ ✿ 81312 800 12240 40 6368 254720 960 10188800

% 90816 800 12240 40 7520 300800 799 12032000

� 138080 800 29640 57 5176 295032 1307 16816824

$ ❀ 132432 800 28080 30 8848 265440 930 7963200

% 141936 800 28080 30 10000 300000 769 9000000

1
9
2

GLRS [32] 189432 1608 172032 11088 1112 12329856 96956 136713443328

LPS [49] 125580 1692 19580 1640 896 1469440 25556 2409881600

ZWSLW [77] 152378 5128 22380 2022 640 1294080 · 2616629760

LXXZZ [51] 90832 2568 22800 572 538 307736 · 176024992

� 96112 896 14688 92 4256 391552 1627 36022784

$ ✿ 92856 896 14008 48 6688 321024 1152 15409152

% 104472 896 14008 48 8096 388608 955 18653184

� 157456 896 33696 69 5496 379224 1558 26166456

$ ❀ 151360 896 32136 36 9168 330048 1116 11881728

% 162976 896 32136 36 10576 380736 919 13706496

2
5
6

GLRS [32] 233836 1943 215040 14976 1336 20007936 130929 299638849536

LPS [49] 151011 1992 23760 2160 1232 2661120 33525 5748019200

ZWSLW [77] 177645 6103 26774 2292 768 1760256 · 4034506752

LXXZZ [51] 110688 3069 27816 646 602 388892 · 251224232

� 117704 1103 18088 108 4576 494208 1907 53374464

$ ✿ 113744 1103 17408 56 6976 390656 1351 21876736

% 127472 1103 17408 56 8640 483840 1118 27095040

� 193248 1103 41496 81 5816 471096 1826 38158776

$ ❀ 186448 1103 39936 42 9456 397152 1309 16680384

% 200176 1103 39936 42 11120 467040 1076 19615680

✝: Choice of p.

�: Regular version (using Toffoli gate).
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version (using Toffoli gate).

%: Shallow/low depth version (using Toffoli gate).
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A combined description of the AES quantum circuits for all the 3 versions (�, $, %) is presented here. There are
several architectures for designing quantum circuits of AES. The architectures differ in how they store the 128-qubit
output generated from SubBytes in each round. In [1, 32, 49], the basic zig-zag architecture (Figure 4(a)) was adopted
that uses 4 lines to save qubits by performing reverses on rounds. In [77], an improved zig-zag architecture that requires
only 2 lines of qubits (Figure 4(b)) was presented. By using a quantum circuit of S-box−1, they were able to achieve an
improved architecture using fewer qubits. The basic pipeline architecture allocates 128-qubits every round and does
not need reverses of rounds. Simply put, the zig-zag architecture requires reverse operations on rounds to save qubits,
significantly increasing depth and gates. The pipeline architecture allocates new qubits per round, but does not require
reverse operations, reducing depth and gates. It is a trade-off issue, but in a sense, a generic pipeline is probably the
most efficient architecture for implementing AES quantum circuits. We believe that it is much more efficient to allocate
a new 128-qubits per round than doubling the gates, depth by performing reverse operations on the rounds to save
qubits.

In our approach, where we have allocated many ancilla qubits already, the overhead of increasing the number of
qubits according to the architecture (128 qubits per round) is relatively low. Therefore, for our implementation, rather
than reducing the number of qubits with the zig-zag method, a pipeline architecture that can reduce the depth by
omitting the reverses is more suitable. Note that the reverse operation for ancilla qubits of SubBytes is still performed,
and it is entirely distinct from the reverse operation for output qubits of the round. Figure 5(a) shows the pipeline
architecture of our AES-128 quantum circuit in more detail for the regular version (�), and Figure 5(b) shows the
same for the shallow and shallow/low depth versions ($, %). To be more precise, each R1∼10 in Figure 4 represents the
full round, but each R1∼10 in Figure 5 does not contain SubBytes.

4.1 Regular Version

The regular version (�) focuses on parallelization in SubBytes, key schedule, and MixColumns. Additional ancilla qubits
(for parallelization) are allocated and subsequently reused in the next round through the reverse operation. In our
parallel design, the key schedule operates simultaneously with SubBytes and MixColumn operates simultaneously with
SubBytes†. Therefore, the circuit depth is determined by the number of serial operations of SubBytes and SubBytes†

(the depth of SubBytes† is larger than that of MixColumn). In this version, the SubBytes of the current round wait
until the SubBytes† of the previous round is completed.

As shown in Figure 5(a), SubBytes generates 128-qubit output and SubBytes† cleans the ancilla qubits. In total,
SubBytes runs 10 times and SubBytes† runs 9 times (as it is redundant to clean the last round SubBytes) serially, 19
times in total. Similarly, AES-192 operates 23 times (12 SubBytes plus 11 SubBytes†) and AES-256 operates 27 times
(14 SubBytes plus 13 SubBytes†).

In SubBytes, S-boxes operate simultaneously. The depth (✦) of SubBytes is 72 equal to the depth of S-box (with
Toffoli depth 4) once. Finally, when S-box with Toffoli depth 4 is used, our AES quantum circuits provide a depth of
1364 (about 72×19) for AES-128, 1627 (about 72× 23) for AES-256, and 1907 (about 72× 27) for AES-256.

4.2 Shallow Version and Shallow/Low Depth Version

Further, we propose a shallow version in which all possible parts of AES quantum circuits operate, simultaneously.
When S-box with Toffoli depth 4 is used, this can be achieved by using 2 sets of 20× 120 ancilla qubits. In the shallow
version, the first SubBytes in Figure 5(b) uses the first 20× 120 ancilla qubits. The second SubBytes uses the second
20× 120 ancilla qubits, and at the same time SubBytes† cleans the first 20× 120 ancilla qubits. That is, SubBytes†

operates simultaneously with the SubBytes of the next round. Conceptually, this can be thought as all SubBytes† in
Figure 5(a) are pushed one space to the right. This is possible because SubBytes and SubBytes† do not share any
ancilla qubit. The shallow version counts the depth for one round as SubBytes (72) + MixColumns (28), which is
the ideal depth. The circuit depth of AES-128 is 960 (about 9 rounds × 100 + 72), that of AES-192 is 1152 (about
11 rounds × 100 + 72), and the same for AES-256 is 1351 (about 13 rounds × 100 + 72). In the shallow version,
up to SubBytes† operates concurrently within one round, providing maximum parallelism. Finally, the shallow and
shallow/low depth versions ($) offer the least Toffoli depth (✦) of the S-box’s Toffoli depth × rounds and Toffoli depth
× qubit count (✦ × ❂).

The shallow/low depth version replaces only the MixColumn implementation from the shallow version to a
MixColumn which is a courtesy of [50]. The low depth version counts the depth for one round as SubBytes (72) +
MixColumns (11). The low depth version of AES (%) offers the least Toffoli depth (✦) and full depth (❈).
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Figure 4: Zig-zag architecture for AES-128 quantum circuit.

5 Bug-fixing JNRV (Eurocrypt’20) AES Implementation

In this part, we take a deeper look at the AES implementation and resource estimation by Jaques, Naehrig, Roetteler
and Virdia in Eurocrypt’20 [43]. It is already well-known the resource estimation in their paper was incorrect due to
some problem in Q# (unrelated to the coding of [43]), as already noted by at least two previous works [36, 77] as well
as acknowledged by the Eurocrypt’20 authors16 themselves17. Also, one may refer to Appendix B for supplementary
discussion on this topic. We fix the Q# bugs and report the corrected benchmarks for the resource requirement of [43]
by porting their codes to ProjectQ.

5.1 Issues with Q#

For a clearer context, we give a brief description of the cases where Q#’s ResourcesEstimator issues arise and how
those issues affect the quantum benchmarks given in the Eurocrypt’20 paper [43]. This was discovered when we tried
to cross-check their publicly available source codes18. Indeed, this was also noted in [77] as a bug; and this apparently
led to underestimation of gate count, qubit count and depth reported in [43] for the non-linear components (namely
the S-box and S-box† of AES)19.

To our understanding, some problems arise if the qubits are allocated by the using command in Q# (and it affects
the non-linear components). However more experiments are to be carried out in order to be completely certain about it.

Non-parallelizable SubBytes In their implementation, the S-box of [15] is adopted and ported to the quantum
domain. The quantum resources required for the S-box quantum circuit reported in the Eurocrypt’20 paper [43, Table
1] are only correct for the stand-alone S-box (except for T-depth, this will be described in Section 5.1). However, in the
case of SubBytes operating with 16 S-boxes, incorrect quantum resources are reported. This is a major cause of their
resource estimation issues.

According to the reported number of required qubits, only one ancilla set is used in their SubBytes implementation.
In other words, 16 S-boxes share one ancilla set. Thus, the arrangement of qubits in their SubBytes quantum circuit is
the serial structure of Figure 2(b). Since 16 S-boxes generate each output using one ancilla set, all S-boxes in a limited
space (one ancilla set) must be operated sequentially. However, in their report, the depth of the SubBytes is the same
as the depth for a stand-alone S-box (meaning all S-boxes operate in parallel). That is, it is an impossible quantum
circuit structure and the lower-bound depth is reported. The same error applies to the SubWord implementation of key
schedule.

16See https://github.com/microsoft/qsharp-runtime/issues/1037 and https://github.com/sam-jaques/

grover-blocks/tree/sjaques-version-update#issue-with-estimating-resources.
17The authors recently updated their own bug-fixing in [42].
18https://github.com/microsoft/grover-blocks.
19We are aware of the existence of their dummy S-box design; but it is just the authors’ speculation in [43] that Q#’s compiler

may have made a minor optimization, resulting in a slightly lower estimated T-depth. However, this still cannot explain the
drastic reduction in full depth.

https://github.com/microsoft/qsharp-runtime/issues/1037
https://github.com/sam-jaques/grover-blocks/tree/sjaques-version-update#issue-with-estimating-resources
https://github.com/sam-jaques/grover-blocks/tree/sjaques-version-update#issue-with-estimating-resources
https://github.com/microsoft/grover-blocks
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SB: SubBytes. SB†: Clean ancilla qubits used in preceding SubBytes.

R: MixColumns → ShiftRows → AddRoundKey (except for last round).
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Figure 5: Pipeline architecture of AES-128.

Issue with AND Gate This issue is also found in their use of AND gates. Suppose that 5 Toffoli gates are operated
in parallel during the S-box process. Toffoli gates (the method used in [3]) operate in parallel without any additional
work, providing one Toffoli depth and full depth for one Toffoli gate. On the other hand, in the AND gate of Figure
6(a), one garbage qubit (bottom line in Figure 6(a)) is used. Thus, if replaced with AND gates, 5 ancilla qubits for 5
AND gates must be allocated for parallel operation. Note that, the ancilla qubit of the AND gate is initialized to 0
after operation and can be reused in the next AND gate, but a sequential operation is forced.

In a nutshell, in their S-box (out of 137 qubits, 136 qubits for the S-box and 1 qubit for the AND gate application),
only one ancilla qubit is used for one AND gate. However, quantum resources for parallel operations are reported.
Technically speaking, the ancilla qubits required for the AND gates can be replaced with idle state qubits in the S-box
operation, but this was not considered in their implementation. In our bug-fixed versions, this technique (utilizing idle
state qubits) is applied.

Inconsistency and Underestimation of Full Depth In their AES quantum circuits using Maximov’s MixColumn,
the AES-192 quantum circuit offers the lowest full depth (see Table 7(b)), although the number of rounds of AES-192
(12 rounds) is higher than that of AES-128 (10 rounds). This case is observed in the zig-zag architecture [32, 49] since
the number of key schedules is less in AES-192. However, as a result of analyzing their quantum circuit design (e.g.,
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|a⟩ • T † • |a⟩

|b⟩ • T † • |b⟩

(Ancilla) |0⟩ H • • T • • H S |ab⟩ (Result)

(Ancilla) |0⟩ T |0⟩
(a) AND gate.

(b) AND† gate.

Figure 6: Quantum AND and AND† gates in JNRV (Eurocrypt’20).

pipeline and parallel structure) and quantum resources, the full depth should depend on the number of rounds because
the key schedule operates in parallel with SubBytes. In other words, in their AES quantum circuits, the full depth
should be independent of the number of key schedules. However, their AES-192 quantum circuit has a lower full depth
than their AES-128 quantum circuit. Moreover, their AES-256 (14 rounds) quantum circuit has a lower full depth than
their AES-128 quantum circuit.

Also, the full depth of their AES-192 and 256 quantum circuits cannot be derived. By analyzing full depth with the
quantum resources required for their SubBytes and MixColumn, we believe their report is underestimated. Let us
assume the following two things to estimate the full depth for their AES quantum circuit. All S-Boxes of SubBytes
operate in parallel (in this case the full depth of SubBytes is 101, see Table 7(a)) and the full depth of round is counted
only for SubBytes. Then, about 1212 (12 rounds × 101) should be the full depth of the AES-192 quantum circuit, and
the full depth of the oracle where the AES quantum circuit is operated twice should be about 2424 (12 rounds × 101
× 2). Even with these optimistic assumptions, the full depth of the oracle they estimate for AES-192 (1879 in Table
7(b)) cannot be derived. This underestimation also applies to the full depth of the oracle for AES-256, where they
estimated 1951 in Table 7(b) ̸= about 2828 (14 rounds × 101 × 2).

This inconsistency is also observed in AES quantum circuits using in-place MixColumn (full depth is 111, as shown
in Table 7(a)). To take one case, the full depth of oracle for AES-256 is 3353 (Table 7(b)). In the AES-256 quantum
circuit, MixColumns operates for 13 rounds excluding the last round. Then, even counting only MixColumns, the full
depth of oracle for AES-256 is 2886 (13 rounds × 111 × 2) even though SubBytes are not counted. If we consider the
full depth with SubBytes included (cannot be operated in parallel with MixColumns), the full depth 3353 is lower than
expected (i.e., underestimated in the reports of [43]).

5.2 Architecture Consideration

If we correct the Eurocrypt’20 implementation [43] while maintaining depth optimization, the architecture of the bug-fix
version (✲) is much similar to our regular version. In the regular version (�), there is a depth overhead associated with
the reverse operation for SubBytes and the key schedule (where S-box is used). However, due to the nature of the
AND gate, there is less overhead for the reverse operation. Therefore, when applying the AND gate to the bug-fixed
version (❆), the depth is significantly lower compared to using the Toffoli gate to fix the bug. Also, the architecture
of the bug-fix version uses out-of-place MixColumn implementation (✛) by Maximov [56], which reduces depth but
increases the qubit count. As a result, the bug-fix version using the AND gate and Maximov’s MixColumn offers a low
full depth, similar to our regular version (but with a higher number of qubits). One thing to note is that the cost of
their bug-fixed benchmark in [42] is higher than that of our bug-fix version.

Conceptually, we can think of the depth optimized bug-fix version (✲) as a regular/low version. In contrast, our
design philosophy for the regular version is to reduce depth while maintaining a balanced use of qubits. Thus, in
the regular version, we adopt an in-place MixColumn implementation [74] rather than an out-of-place MixColumn
implementation [50]. Even so, our regular version, using the improved S-box implementation, provides lower full depth
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compared to the bug-fix version (regular/low). Furthermore, since our regular version has lower Toffoli depth and qubit
count (except for the bug-fix version using in-place MixColumn (✚)), we provide improved TD-M and FD-M costs
compared to the bug-fix version.

5.3 Corrected Report

To our understanding, some problems arise if the qubits are allocated by the using command in Q# (and it affects the
non-linear components). However more experiments are to be carried out in order to be completely certain about it.

The using command automatically disposes when the function ends. If ancilla qubits to implement AES S-box are
allocated with the using command, the consistency between depth and qubits is lost. When 16 S-boxes are executed in
SubBytes, the ancilla qubits allocated by the using are counted only for the first S-box and not after. Also counts the
depth for executing 16 S-boxes simultaneously. In order to derive the correct result, the number of qubits or depth must
be increased. Q#’s ResourcesEstimator tries to find its own lower bound for depth and qubit. That is, to achieve
the qubits of the lower bound, the depth may have to be increased, and to achieve the depth of the lower bound, the
qubits may have to be increased.

Another problem is inconsistencies between quantum resources. We observe underestimation when cross-checking
the full depth of oracles, S-box and MixColumn they report. We could not pinpoint the exact cause, but we suspect
the problems were caused by the using command and the AND gate. As noted, these problems effectively construct
quantum circuits that are impossible. To patch the bug, we contribute in three major directions:

1. We reflect on the increasing depth in their number of qubits using only one ancilla set (✳ fixed depth). As shown in
Figure 2(a), since the ancilla set is shared, not only SubBytes but also S-boxes of SubWord of the key schedule are
operated sequentially. Also, we offer another version (✲ fixed qubit count) that increases the number of qubits while
approximating the depth reported in [43]. As shwon in Figure 2(b), 20 ancilla sets are allocated to operate S-boxes
for the SubBytes and the SubWord of the key schedule in parallel. According to the Eurocrypt’22 paper [43], the
authors’ design philosophy focuses on optimizing depth. Thus, we believe that this modification (✲ fixed qubit
count, increasing qubits to achieve low depth) aligns correctly with their intention.

2. We correct the implementation of MixColumns where the same issue occurs. In Eurocrypt’20 paper [43], two
MixColumn implementations were presented. The in-place method of MixColumn implementation (which uses
PLU decomposition, and derived by the authors themselves [43]) does not cause this issue. On the other hand,
similar to S-box, the same issue applies to the MixColumn implementation by Maximov [56], which requires ancilla
qubits, so this is also solved in the same way as the S-box.

3. We have modified the quantum circuits (SubBytes, key schedule and MixColumns) done by [43] and re-implemented
their algorithm on ProjectQ to bypass the Q# bug. Note that when AND gates are used in large-scale quantum
circuits, although resource estimation is possible, checking the test vector becomes infeasible (simulation is
impossible). Thus, to verify our bug-fixed implementations, we initially implement quantum circuits using Toffoli
gates (using the method from [3]) instead of directly applying AND gates (which could lead to some coding-related
issues) and verify the test vector (Toffoli version). After verification, we cautiously replace Toffoli gates with AND
gates in quantum circuits (AND version).

One way to correct the error is to estimate the correct depth by fixing the erroneous parallelism based on the
number of qubits reported, which is the fixed depth version (✳). Another way is to increase the number of qubits to
satisfy the excessively estimated parallelism, which is the fixed qubit count version (✲). We adopt both approaches
and report the modified number of qubits and depth.

In the fixed depth version (✳), when designing quantum circuits using the qubit count reported in [43], it demonstrates
how the depth is increased. Based on these reported qubit counts, it becomes apparent that not all S-boxes and
MixColumns (except for in-place) operations can be executed simultaneously. Consequently, the unattainable parallel
execution of quantum circuits, as presented in [43], is rectified by restructuring the operations to be carried out
sequentially within the confines of the reported qubit count. As a result of this sequential execution, there is a notable
increase in the overall depth of the quantum circuits.

In the fixed qubit count version (✲), the qubit count is increased to enable the simultaneous execution of all S-boxes
and MixColumns operations. This apprach embodies the design philosophy of minimizing depth by increasing the
qubit count, as outlined by the authors of [43], and conceptually aligns with our regular version (�).

Table 6(a) shows quantum resources for S-box and MixColumns reported in the Eurocrypt’20 paper. Quantum
resources in Table 6(a) include cleaning up of used ancilla qubits. Table 6(b) shows quantum resources for AES oracles
reported in the Eurocrypt’20 paper. Quantum resources are reported for an oracle rather than a single AES quantum
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Table 6: Reported benchmarks for JNRV (Eurocrypt’20) implementation of AES.
(a) AES-128 gate costs.

Method
S-box MixColumn implementations

(SubByte) In-place [43] ✚ Maximov [56] ✛

#CNOT ✲ 654 1108 1248

#1qCliff ❁ 184 0 0

#T ✢ 136 0 0

#Measure ✰ 34 0 0

T-depth ✤ 6 0 0

#qubits (M) ❂ 137 128 318

Full depth ❈ 101 111 22

(b) Oracles.

Method
In-place MixColumn [43] ✚ Maximov’s MixColumn [56] ✛

AES-128 AES-192 AES-256 AES-128 AES-192 AES-256

#CNOT ✲ 292313 329697 404139 294863 332665 407667

#1qCliff ❁ 84428 94316 116286 84488 94092 116062

#T ✢ 54908 61436 75580 54908 61436 75580

#Measure ✰ 13727 15359 18895 13727 15359 18895

T-depth ✤ 121 120 126 121 120 126

#qubits (M) ❂ 1665 1985 2305 2817 3393 3969

Full depth ❈ 2816 2978 3353 2086 1879 1951

circuit. In the oracle, since the AES quantum circuit operates twice, the estimation of quantum resources for a single
AES quantum circuit can be counted in half except for the number of qubits in Table 6(b).

Our results with the bug-fixed Eurocrypt’20 implementation can be found in Tables 7 and 8. Table 7 shows the
estimated resources (corrected) for SubBytes, key schedule, MixColumns, and one round where the issue occurs. Tables
7(a) (using Toffoli gate) and 7(c) (using AND gate) correspond to the versions with a fixed depth, while Tables 7(b)
(using Toffoli gate) and 7(d) (using AND gate) represent the versions with a fixed qubit count. The change in the
corrected depth or qubit count is relatively small for the MixColumns, but significant for the SubBytes. The resources
estimated in Table 7 include a reverse operation to clean ancilla qubits. At the end, Table 8 shows the corrected
quantum resources for AES quantum circuits, and it is confirmed that the depth or qubit count increases significantly
when maintaining the qubit count or depth. Just like Table 7, Tables 8(a) (using Toffoli gate) and 8(c) (using AND
gate) correspond to the versions with a fixed depth, while Tables 8(b) (using Toffoli gate) and 8(d) (using AND gate)
represent the versions with a fixed qubit count.

6 Performance of Quantum Circuits

In this part, we present the performance of our implementations of AES quantum circuits. We use the open-
source quantum programming tool ProjectQ to implement and simulate the quantum circuits. An internal library,
ClassicalSimulator, simulates quantum circuits and verifies test vectors. Quantum resources required to implement
quantum circuits are estimated using another library, ResourceCounter.

As for the results, Table 5 shows the quantum resources required to implement our AES quantum circuits and
previous AES quantum circuits. Although various decompositions exist for the Toffoli gate, Table 5 enables consistent
comparison with NCT (NOT, CNOT, Toffoli) level analysis. Table 5 only covers the version using the Toffoli gate, not
the version using the AND gate. In [1, 32], the Itoh–Tsujii-based inversion is implemented on a quantum circuit, so
many resources are used for SubBytes. In [49,77], more efficient quantum circuits are implemented by extending the
S-box of [15], but the circuit depth is increased due to the serial execution of S-boxes by concentrating on saving qubits.
On the other hand, our implementation focuses on minimizing circuit depth while considering the trade-offs for using
qubits. In [77], the TD-M cost metric (where TD is the Toffoli depth ✦, and M is the number of qubits ❂) was used
to measure the trade-off of quantum circuits. The TD-M cost evaluates the performance of the quantum circuit alone,
but in practice, due to depth limitations under the Grover’s search, parallelization is necessary. The TD2-M complexity
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Table 7: Corrected benchmarks for JNRV (Eurocrypt’20) implementation of AES-128 modules.
(a) Fixed depth (using Toffoli gate).

Method ✳
#CNOT #1qCliff #T T-depth #qubit Full depth

✲ ❁ ✢ ✤ ❂ ❈

SubBytes 12000 1220 7328 768 376 2672
Key schedule 3096 355 1832 192 248 669

MixColumns [56] ✛ 1248 0 0 0 318 88

One round✞ 16472 1507 9160 960 632 3417

(b) Fixed qubit count (using Toffoli gate).

Method ✲
#CNOT #1qCliff #T T-depth #qubit Full depth

✲ ❁ ✢ ✤ ❂ ❈

SubBytes 12000 7328 2240 48 2176 167
Key schedule 3096 559 1832 48 608 168

MixColumns [56] ✛ 1248 0 0 0 504 22

One round✞ 16472 2799 9160 48 2912 178

(c) Fixed depth (using AND gate).

Method ✳
#CNOT #1qCliff #T #Measure T-depth #qubit Full depth

✲ ❁ ✢ ✰ ✤ ❂ ❈

SubBytes 11136 4416 2176 544 96 376 1744
Key schedule 2880 1103 544 136 24 248 437

MixColumns [56] ✛ 1248 0 0 0 0 318 88

One round✞ 15392 5519 2720 680 120 632 2260

(d) Fixed qubit count (using AND gate).

Method ✲
#CNOT #1qCliff #T #Measure T-depth #qubit Full depth

✲ ❁ ✢ ✰ ✤ ❂ ❈

SubBytes 11136 4416 2176 544 6 2176 109
Key schedule 2880 1103 544 136 6 608 110

MixColumns [56] ✛ 1248 0 0 0 0 504 22

One round✞ 15392 5519 2720 680 6 2912 123

✳: Bug-fixed depth. ✲: Bug-fixed qubit count.

✛: Maximov’s MixColumn [56].

✞: One typical round (that includes MixColumn).

metric in Table 5 demonstrates that in the trade-off of parallelization under Grover’s search, the depth metric becomes
significantly more important (this is discussed in more detail in the next Section 7). In this work, all AES quantum
circuits with reduced depth and quantum gates using a reasonable number of qubits offer the best trade-off.

In [43], the quantum resources required to implement quantum circuits for AES were also estimated. However, there
seem to be some issues with Q#’s ResourcesEstimator20 used in their work, specially in implementing quantum
circuits for SubBytes. Therefore, the results of [43] are not used here. In the NCT level analysis, replacing Toffoli
gates with AND gates does not make much sense. As decomposition-based estimation is meaningful, we compare the
required quantum resources by decomposing Toffoli and AND gates. Similar to [77, Table 10], Table 9 shows the
detailed quantum resources by decomposing Toffoli gates (Table 9(a)) and AND gates taken from [43] (Table 9(b))
for the AES quantum circuits implemented in this work. The Toffoli gate is decomposed into (8 Clifford gates + 7 T
gates), and T depth 4, and full depth 8 following to one of the methods (described in Section 3.2) in [3]. The AND gate
requires 1 ancilla qubit and is decomposed into (11 Clifford gates + 4 T gates), and T depth 1, and full depth 8; and
the AND† gate (Figure 6(b)) is decomposed into (7 Clifford gates + 1 Measurement gate), and incurs full depth of 6.

To replace the AES quantum circuits that use the Toffoli gate with the AND gate, a number of ancilla qubits equal
to the maximum number of AND gates operating in parallel is required. However, the number of ancilla qubits needed
for AND gates can be minimized by utilizing idle ancilla qubits that are already allocated for S-boxes. As a result, for

20https://github.com/microsoft/qsharp-runtime/issues/192.

https://github.com/microsoft/qsharp-runtime/issues/192
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Table 8: Corrected benchmarks for JNRV (Eurocrypt’20) implementation of AES variants.
(a) Fixed depth (using Toffoli gate).

AES
#CNOT #1qCliff #T T-depth #qubit Full depth

✲ ❁ ✢ ✤ ❂ ❈

128
✳ ✚

161982 14400 91380 9576 1656 33320
192 182774 16128 102372 10728 1976 37328
256 224214 19871 126188 13224 2296 46012

128
✳ ✛

163242 14994 91380 9576 2808 33914
192 184314 16854 102372 10728 3384 38054
256 226034 20729 126188 13224 3960 46870

(b) Fixed qubit count (using Toffoli gate).

AES
#CNOT #1qCliff #T T-depth #qubit Full depth

✲ ❁ ✢ ✤ ❂ ❈

128
✲ ✚

155180 14400 87200 456 3936 1845
192 175972 16128 98192 552 4256 2232
256 217412 19871 122008 648 4576 2625

128
✲ ✛

156440 16776 87200 456 5088 1612
192 177512 19032 98192 552 5664 1936
256 219232 23303 122008 648 6240 2264

the AND gate version using the S-box with Toffoli depth 4, only 4 ancilla qubits are needed for replacement; while for
the version using the S-box with Toffoli depth 3, an additional 432 ancilla qubits are allocated for replacement.

7 Performance of Quantum Key Search

In this part, the corresponding costs for applying Grover’s search algorithm to exhaustive key search are estimated
based on the proposed quantum circuits for the three variants of AES. We estimate the cost of oracle, which accounts
for the largest portion of Grover’s search algorithm. The overhead for diffusion operator is negligible compared to
oracle and is not difficult to implement. For this reason, it is common to estimate the cost for oracle excluding the
diffusion operator [6, 32,49]. In the oracle, the target cipher’s quantum circuit encrypts a known plaintext with the key
in the superposition state. The generated ciphertext in the superposition state is compared with the known ciphertext
and a reverse operation is performed for Grover’s iterations. For comparison, an n-multi controlled NOT gate is used
to check that the generated ciphertext (n-qubit) is a known ciphertext. In Grassl et al. [32] and Langenberg et al.’s
AES paper [49], the authors added 32n− 84 T-gates to their estimate for the n-multi controlled NOT gate [70]. If we
estimate the cost of a 128-multi control NOT gate, only 4012 (= 128× 32− 84) T-gates increase. However, the total
number of gates to operate our AES-128 circuit in the oracle is already 532960 (the number of T gates is 180880).
However, there is no significant change in the number of gates. In contrast, the T-depth overhead is relatively high.
However, the increase in depth was also ignored in [32, 49]. Also in [43], the estimation of the n-multi controlled NOT
gate was totally ignored. So, for the n-multi controlled NOT gate, we estimate the number of T gates to be (32n− 84)
according to the decomposition method in [70] and T-depth is maintained.

In quantum exhaustive key search, to recover a unique key, not a spurious key, Grassl et al. in [32] estimated the
attack cost for r known (plaintext, ciphertext) pairs (r = 3, r = 4 and r = 5, respectively). Later in [49], Langenberg et
al. explained that r = ⌈k/n⌉ (key size/block size) is sufficient to successfully recover a unique key. The authors in [43]
also estimated the cost for the same r (plaintext, ciphertext) pairs in [49] through detailed computations. Following
this approach, we also estimate the cost of recovering a unique key for r = ⌈k/n⌉ (plaintext, ciphertext) pairs. When
r = 1, the quantum circuit of the target block cipher is serially executed twice in oracle. Thus, the cost of the oracle is
twice that required to implement a quantum circuit, excluding qubits. When r ≥ 2, r target block quantum circuits
are executed twice in parallel, and the following should be considered in cost estimation. Although r ≥ 2 plaintexts are
used, only one input key is used, so the cost for key schedule should be estimated only once. Finally, the complexity
of quantum exhaustive key search for the target block cipher is roughly the cost of oracle × ⌊π4

√
2k⌋ (where k is

the key size). The complexity figures are estimated at the (Clifford + T) level and computed as the number of total
decomposed gates × full depth (❋ × ❈).
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(c) Fixed depth (using AND gate).

AES
#CNOT #1qCliff #T #Measure T-depth #qubit Full depth

✲ ❁ ✢ ✰ ✤ ❂ ❈

128
✳ ✚

151540 55200 27200 6800 1200 1656 21801
192 171036 61824 30464 7616 1440 1976 24417
256 209668 76175 37536 9384 1680 2296 30085

128
✳ ✛

152800 55200 27200 6800 1200 2808 22413
192 172576 61824 30464 7616 1440 3384 25165
256 211488 76175 37536 9384 1680 3960 30969

(d) Fixed qubit count (using AND gate).

AES
#CNOT #1qCliff #T #Measure T-depth #qubit Full depth

✲ ❁ ✢ ✰ ✤ ❂ ❈

128
✲ ✚

151540 55200 27200 6800 60 3936 1786
192 171036 61824 30464 7616 72 4256 2156
256 209668 76175 37536 9384 84 4576 2528

128
✲ ✛

152800 55200 27200 6800 60 5088 1123
192 172576 61824 30464 7616 72 5664 1346
256 211488 76175 37536 9384 84 6240 1570

✳: Bug-fixed depth. ✲: Bug-fixed qubit count.

✚: In-place MixColumn [43]. ✛: Maximov’s MixColumn [56].

We show the cost of quantum key search by the Grover’s algorithm for AES-128, AES-192, AES-256; with the two
S-boxes (i.e., with Toffoli depth of 4 and 3) in Table 10(a) (using Toffoli gate) and Table 10(b) (using AND gate).
Based on Table 10, we can determine the optimal strategy for implementing the Grover’s search algorithm for each
AES variant while adhering to the depth constraint. For AES-128 (full depth ≤ 296), parallelization is not essential
since it does not fall under the MAXDEPTH limit. Thus, without considering parallelization, the shallow/low depth
version using S-box with Toffoli depth 4 has the lowest attack complexity (circuit size). However, when considering the
more realistic metric of FD-M cost, the regular version using S-box with Toffoli depth 4 shows the highest efficiency.
If the T-depth metric for error correction takes priority (i.e., Td-M cost), then the shallow version using S-box with
Toffoli depth 4 is the optimal choice (although it is not shown in Tables 10(a) and 10(b), it can be found in Tables
9(a) and 9(b)). In contrast to AES-128, AES-192 and AES-256 require parallelization of the Grover’ search due to the
MAXDEPTH limitation. As specified in Section 2.4, parallelizing Grover’s search is highly inefficient, and in such
cases, we should minimize FD2-M and Td2-M costs (i.e., Cost under MAXDEPTH in Table 10). Therefore, under the
MAXDEPTH limit, the shallow/low depth version using S-box with Toffoli depth 4 is the most efficient in terms of
attack complexity (FD2-G cost) and the realistic metric (FD2-M). If we consider the T-depth (Td2-M), then the
regular version using S-box with Toffoli depth 3 is the optimal choice here.

Additionally, a quick comparison of NIST’s security level21 (under the Grover’s search) of our work together with
the previous works is given in Table 11. As it can be seen, when compared with the current state-of-the-art security
bounds, we reduce the quantum complexity for running the Grover’s search on the AES family, thereby setting up
a new benchmark for the NIST security levels. The complexity is calculated in terms of the product of decomposed
(Clifford and T) gate count and full depth. Also, the MAXDEPTH constraint (see Section 2.4) is not considered in the
computation. For instance, the figure of 2156.97 corresponding to the shallow/low (%) version in Table 11 is computed
as the product of the total number of decomposed gates and the full depth for 264 (i.e., square-root bound of the
exhaustive case) searches (required to run Grover’s search). If the MAXDEPTH constraint is to be considered, one has
scale down the complexity figures by dividing by the MAXDEPTH constant.

8 Conclusion

In this work, we collate multiple research contributions, including the up-to-date optimizations on the building blocks
of the ciphers in one place; whence significantly reducing the quantum circuit complexity for the AES family of block

21One may note that the number of qubits was not included in NIST’s estimation, probably because NIST was more focused
on gates and depths that increase drastically with the number of serial steps needed in the Grover’s search.



25 of 36 [Title/§1 §2 §3 §4 §5 §6 §7 §8 §A §B §C §D/References]

Table 9: Quantum circuit resources required for variants of AES (this work).
(a) Using Toffoli gate.

AES

#CNOT

✲

#1qCliff

❁

#T

✢

T-depth

✤

#qubit

(M)

❂

Full depth

❈

Td-M cost

(Td×M)

✤ × ❂

FD-M cost

(FD ×M)

❈ × ❂

1
2
8

�

✿
161640 14400 90440 304 3936 1364 1196544 5368704

$ 154752 14400 85680 160 6368 960 1018880 6113280

% 164256 16832 85680 160 7520 799 1203200 6008480

�

❀
315920 32000 207480 228 5176 1307 1180128 6765032

$ 300912 32000 196560 120 8848 930 1061760 8228640

% 310416 33248 196560 120 10000 769 1200000 7690000

1
9
2

�

✿
182632 16128 101864 368 4256 1627 1566208 6924512

$ 175296 16128 97104 192 6688 1152 1284096 7704576

% 186912 19168 97104 192 8096 955 1554432 7731680

�

❀
356400 35840 233688 276 5496 1558 1516896 8562768

$ 340944 35840 222768 144 9168 1116 1320192 10231488

% 352560 37400 222768 144 10576 919 1522944 1522944

2
5
6

�

✿
226232 19871 126616 432 4576 1907 1976832 8726432

$ 218192 19871 121856 224 6976 1351 1562624 9424576

% 231920 23519 121856 224 8640 1118 1935360 9659520

�

❀
442224 44159 290472 324 5816 1826 1884384 10620016

$ 426064 44159 279552 168 9456 1309 1588608 12377904

% 439792 46031 279552 168 11120 1076 1868160 11965120

�: Regular version.
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version.

%: Shallow/low depth version.

ciphers. Among other results, we show the least Toffoli depth (✦) and full depth (❈) implementations of all variants
of AES (more than 98% and 95% improvement from [77] and [36] respectively). At the same time, we improve the
Toffoli depth - qubit count product (✦ × ❂) by more than 75% and 30%, and more than 84% and 99% in the Toffoli
depth-square - qubit count product compared to the respective papers. A bird’s-eye view can be seen from Figure 7,
where we show our work contributes in lowering the quantum circuit complexity (in terms of qubit count and full
depth) compared to GLRS [32] and LPS [49]. In total, we present 14 implementations per variant of AES (including
bug-fixing of [43]), each incorporating a special design idea/optimization.

Most recent papers about AES quantum implementations focus on reducing the number of qubits [1,32,49,68,69,77].
In our work, one of the major ways we lower the depth metrics is by allowing a relatively higher number of qubits, so
that the product terms (i.e., when the number of qubits is multiplied with the circuit depth metrics or decomposed
gate counts) becomes smaller. Having a lower circuit depth also makes it easier to maximize the number of iterations
(required to run the Grover’s search algorithm) and thus is a crucial factor in reducing the cost of evaluating the overall
quantum search complexity for exhaustive key search a cipher.

Finding optimizations for the cipher building blocks can be considered among the top priorities for the future
research works. As far as we can tell, there is a vacant niche for a tool that can efficiently find such implementation for
8× 8 S-boxes. The tools described in [20, 21, 22] can possibly be considered as starting points. Besides, the idea in [23]
can be used on top of our implementations to further reduce the cost for AES-192 and AES-256 (i.e., when r > 1); this
is kept as a follow-up work. Similarly, other decompositions of the Toffoli gate (e.g., [64]) can also be considered in the
future scope.

Other than that, one may also consider implementation of combined components (as one 128× 128 binary matrix),
such as; 4 combined MixColumn’s, 4 combined MixColumn’s with ShiftRow and T-table.

A Concise Description of AES Variants

The Advanced Encryption Standard (AES) [19] is an SPN block cipher family with a block of 128 bits. The state of
AES is arranged as a 4× 4 matrix of bytes. AES contains three specific variants denoted as AES-128, AES-192 and
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(b) Using AND gate.

AES

#CNOT

✲

#1qCliff

❁

#T

✢

#Measure

✰

T-depth

✤

#qubit

(M)

❂

Full depth

❈

Td-M cost

(Td×M)

✤ × ❂

FD-M cost

(FD ×M)

❈ × ❂

1
2
8

�

✿
147160 51800 27200 6120 40 3940 1071 157600 4219740

$ 142992 48400 27200 5440 40 6372 910 254880 5798520

% 152496 48400 27200 5440 40 7524 749 300960 5635476

�

❀
289760 117800 62400 14040 30 5608 1123 168240 6297784

$ 280992 110000 62400 12480 30 9280 890 278400 8259200

% 290496 110000 62400 12480 30 10432 729 312960 7604928

1
9
2

�

✿
166088 58424 30464 6936 48 4260 1270 204480 5410200

$ 161472 55024 30464 6256 48 6692 1092 321216 7307664

% 173088 55024 30464 6256 48 8100 895 388800 7249500

�

❀
326352 132872 69888 15912 36 5928 1334 213408 7907952

$ 317136 125072 69888 14352 36 9600 1068 345600 10252800

% 328752 125072 69888 14352 36 11008 871 396288 9587968

2
5
6

�

✿
205216 72775 37536 8704 56 4580 1486 256480 6805880

$ 199896 69375 37536 8024 56 6980 1281 390880 8941380

% 213624 69375 37536 8024 56 8644 1048 484064 9058912

�

❀
403752 165527 86112 19968 42 6248 1562 262416 9759376

$ 393832 157727 86112 18408 42 9888 1253 415296 12389664

% 407560 157727 86112 18408 42 11552 1020 485184 11783040

�: Regular version.
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version.

%: Shallow/low depth version.

AES-256 according to the key size. Schematic diagrams of AES-128 round function and key schedule can be found in
Figure 8.

A.1 Round Function

The round function of AES consists of AddRoundKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes, except for the last
round which misses the MixColumns operation.

SubBytes This operation substitutes each element by a predefined 8× 8 S-box.

ShiftRows This operation cyclically rotates the rth row of state to the left by i places, for i = 0, 1, 2, 3.

MixColumns The MixColumn operation pre-multiplies each of the state column with the right circulant matrix
(02, 03, 01, 01), over GF(28)[x] with modulus x4 + 1. Since the MixColumn operates on the state based on an entire
column, it can also be represented as a matrix over F2 with dimension 32× 32.

AddRoundKey The sub-key of each round is generated by the Key Expansion algorithm. Each call of AddRoundKey
XORs the 128-bit sub-key to the state.

The encryption procedure for different instances of AES family are somewhat similar, except the number of round
varies. For AES-128, AES-192 and AES-256, the round numbers are 10, 12, 14 respectively and all round functions are
identical except that there is no MixColumns operation in the last round. Note that there is an extra key addition
before the first round (also known as whitening).

A.2 Key Schedule

Similar to the state, the master key of AES is allocated to a 4× l grid of byte in order, where l = 4, 6 or 8 for AES-128,
AES-192 and AES-256, respectively. Generally, the generation of the round sub-keys are based on word (the entire
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Table 10: Quantum resources required for Grover’s search on AES (this work) and key costs for parallelization.
(a) Using Toffoli gate.

AES r

#qubit Total gates Full depth FD-G cost FD-M cost Cost under MAXDEPTH

(M) (G) (FD) (FD ×G) (FD ×M) FD2-M Td2-M

❂ ❋ ❈ ❈ × ❋ ❈ × ❂ ❈2 × ❂ ✤2 × ❂

1
2
8

�

✿

1

3,937 1.609 · 282 1.046 · 275 1.683 · 2157 1.005 · 287 1.051 · 2162 1.668 · 2157
$ 6,369 1.539 · 282 1.473 · 274 1.133 · 2157 1.145 · 287 1.687 · 2161 1.495 · 2156
% 7,521 1.611 · 282 1.226 · 274 1.974 · 2156 1.126 · 287 1.38 · 2161 1.765 · 2156
�

❀

5,177 1.670 · 283 1.002 · 275 1.674 · 2158 1.266 · 287 1.269 · 2162 1.235 · 2157
$ 8,849 1.592 · 283 1.427 · 274 1.136 · 2158 1.541 · 287 1.1 · 2162 1.166 · 2156

% 10,001 1.625 · 283 1.18 · 274 1.916 · 2157 1.441 · 287 1.7 · 2161 1.317 · 2156

1
9
2

�

✿

2

7,841 1.694 · 2115 1.248 · 2107 1.057 · 2223 1.195 · 2120 1.491 · 2227 1.22 · 2223
$ 12,193 1.622 · 2115 1.768 · 2106 1.434 · 2222 1.316 · 2120 1.163 · 2227 1.031 · 2222
% 15,009 1.71 · 2115 1.465 · 2106 1.252 · 2222 1.342 · 2120 1.966 · 2226 1.269 · 2222
�

❀

10,073 1.758 · 2116 1.195 · 2107 1.051 · 2224 1.469 · 2120 1.755 · 2227 1.759 · 2222
$ 16,657 1.694 · 2116 1.712 · 2106 1.45 · 2223 1.74 · 2120 1.489 · 2227 1.588 · 2221

% 19,473 1.733 · 2116 1.41 · 2106 1.222 · 2223 1.696 · 2120 1.182 · 2227 1.855 · 2221

2
5
6

�

✿

2

8,417 1.018 · 2148 1.463 · 2139 1.489 · 2287 1.503 · 2152 1.099 · 2292 1.8 · 2287
$ 12,737 1.967 · 2147 1.036 · 2139 1.019 · 2287 1.611 · 2152 1.669 · 2291 1.461 · 2286
% 16,065 1.036 · 2148 1.715 · 2138 1.776 · 2286 1.682 · 2152 1.442 · 2291 1.843 · 2286
�

❀

10,649 1.058 · 2149 1.401 · 2139 1.481 · 2288 1.821 · 2152 1.276 · 2292 1.28 · 2287
$ 17,201 1.021 · 2149 1.004 · 2139 1.025 · 2288 1.054 · 2153 1.058 · 2292 1.107 · 2286

% 20,529 1.0444 · 2149 1.65 · 2138 1.724 · 2287 1.034 · 2153 1.706 · 2291 1.322 · 2286
�: Regular version.

✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version.

%: Shallow/low depth version.

column in the grid) with the operations RotWord (cyclically rotating the bytes in a word to the left by one byte),
SubWord (operating the SubBytes of round function on each bytes in a word) and the XOR of Rcon[r] (the rth 32-bit
round constant).

The master key is loaded to the grid W0,W1, · · · ,Wi; where i is 3, 5 and 7 for AES-128, AES-192 and AES-256
respectively. In order to guarantee the encryption, 40, 46 and 52 words need to be provided by key expansion for those
three AES instances, respectively.

For AES-128, the word Wi is generated by

Wi =

{
Wi−4 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/4], if i ≡ 0 mod 4,

Wi−4 ⊕Wi−1, otherwise,

where i = 4, 5, · · · , 43.
For AES-192, the word Wi is generated by

Wi =

{
Wi−6 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/6], if i ≡ 0 mod 6,

Wi−6 ⊕Wi−1, otherwise,

where i = 6, 7, · · · , 51.
For AES-256, the word Wi is generated by

Wi =





Wi−8 ⊕ SubWord(RotWord(Wi−1)) ⊕ Rcon[i/8], if i ≡ 0 mod 8,

Wi−8 ⊕ SubWord(Wi−1), if i ≡ 4 mod 8,

Wi−8 ⊕Wi−1, otherwise,

where i = 8, 9, · · · , 59.
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(b) Using AND gate.

AES r

#qubit Total gates Full depth FD-G cost FD-M cost Cost under MAXDEPTH

(M) (G) (FD) (FD ×G) (FD ×M) FD2-M Td2-M

❂ ❋ ❈ ❈ × ❋ ❈ × ❂ ❈2 × ❂ ✤2 × ❂

1
2
8

�

✿

1

3,941 1.404 · 282 1.644 · 274 1.154 · 2157 1.582 · 286 1.3 · 2161 1.806 · 2151
$ 6,373 1.354 · 282 1.396 · 274 1.891 · 2156 1.086 · 287 1.516 · 2161 1.461 · 2152
% 7,525 1.411 · 282 1.149 · 274 1.622 · 2156 1.055 · 287 1.212 · 2161 1.725 · 2152
�

❀

5,609 1.456 · 283 1.723 · 274 1.254 · 2158 1.180 · 287 1.017 · 2162 1.478 · 2151

$ 9,281 1.406 · 283 1.365 · 274 1.92 · 2157 1.546 · 287 1.055 · 2162 1.222 · 2152
% 10,433 1.435 · 283 1.118 · 274 1.604 · 2157 1.424 · 287 1.592 · 2161 1.374 · 2152

1
9
2

�

✿

2

7,845 1.464 · 2115 1.948 · 2106 1.427 · 2222 1.865 · 2119 1.817 · 2226 1.315 · 2217
$ 12,197 1.422 · 2115 1.676 · 2106 1.191 · 2222 1.248 · 2120 1.046 · 2227 1.025 · 2218
% 15,013 1.491 · 2115 1.373 · 2106 1.024 · 2222 1.258 · 2120 1.727 · 2226 1.260 · 2218
�

❀

10,825 1.524 · 2116 1.023 · 2107 1.559 · 2223 1.352 · 2120 1.383 · 2227 1.012 · 2217

$ 17,409 1.473 · 2116 1.639 · 2106 1.207 · 2223 1.742 · 2120 1.427 · 2227 1.629 · 2217
% 20,225 1.507 · 2116 1.336 · 2106 1.007 · 2223 1.649 · 2120 1.102 · 2227 1.893 · 2217

2
5
6

�

✿

2

8,421 1.773 · 2147 1.14 · 2139 1.01 · 2287 1.172 · 2152 1.336 · 2291 1.9 · 2281
$ 12,741 1.722 · 2147 1.965 · 2138 1.692 · 2286 1.528 · 2152 1.501 · 2291 1.427 · 2282
% 16,069 1.804 · 2147 1.607 · 2138 1.45 · 2286 1.576 · 2152 1.266 · 2291 1.8 · 2282
�

❀

11,401 1.84 · 2148 1.198 · 2139 1.102 · 2288 1.667 · 2152 1.997 · 2291 1.437 · 2281

$ 17,953 1.788 · 2148 1.922 · 2138 1.718 · 2287 1.053 · 2153 1.012 · 2292 1.131 · 2282
% 21,281 1.829 · 2148 1.564 · 2138 1.43 · 2287 1.016 · 2153 1.589 · 2291 1.341 · 2282

�: Regular version.
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version.

%: Shallow/low depth version.

A.3 Notes

Singular Form and Plural Form The AES state is represented as a 4× 4 matrix and the operation on one column
of the matrix is denoted here as MixColumn. As described earlier, MixColumn corresponds to a matrix multiplication
over GF(28), which can equivalently be expressed as multiplication by a matrix of dimension 32× 32 over F2. In the
AES round function, the MixColumns operates on the whole block by applying MixColumn to every four bytes in
the state (i.e., one column in the 4 × 4 matrix). Thus, one MixColumns operation is equivalent to 4× MixColumn
operations on different columns in the matrix. Denoting the binary matrix corresponding to MixColumn as M with
size 32× 32, MixColumns can be represented as the diagonal matrix (M,M,M,M) of dimension 128× 128 over F2.

The bytes in each row of the matrix will be cyclically shifted to the left in each round and the shift operation on the
bytes in one row is denoted here as ShiftRow, in the step of ShiftRows, the ShiftRow will be operated on all the rows in
the matrix and shift the bytes in the ith row to the left by i bytes, where i = 1, 2, 3. Thus, one ShiftRows operation is
equivalent to 4× ShiftRow operations on different rows in the 4× 4 matrix with the shift parameter varies from 0 to 3.

The SubBytes in the round function updates every byte in the 4 × 4 matrix in the same way. The process of
applying the S-box to one byte in the AES state is denoted here as SubByte. In each round, the SubBytes updates all
the bytes in the 4× 4 matrix by replacing each byte by another one according to the predefined nonlinear map. Thus,
one SubBytes operation is equivalent to 16 SubByte operations on the bytes of the 4× 4 matrix.

S-box and S-box† in Quantum S-box in quantum denotes before storing values from ancilla qubits to output
qubits. Denote the reverse operation of S-box as S-box† and uses input qubits to clean up ancilla qubits.

SubBytes and SubBytes† in Quantum SubBytes of AES in quantum denotes parallel operation for 16 S-boxes.
Denote the reverse operation of SubBytes as SubBytes† and cleans up all used ancilla qubits in 16 S-boxes.
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Table 11: Comparison of NIST security levels based on AES variants.

Level
GLRS [32] NIST [58] LPS [49]

This work (using AND gate)

(AES) � $ % ❆

1
2168.6683 2170 2162.6093

✿: 2157.1283 ✿: 2156.8766 ✿: 2156.6452 ✚: 2162.3577

(128) ❀: 2158.2412 ❀: 2157.8867 ❀: 2157.6041 ✛: 2162.5641

3
2233.4645 2227.6491

✿: 2222.4457 ✿: 2222.2166 ✿: 2221.9913 ✚: 2227.5867

(192) ❀: 2223.5597 ❀: 2223.2265 ❀: 2222.9434 ✛: 2227.6260

5
2298.3467 2292.3100

✿: 2286.9351 ✿: 2286.7128 ✿: 2286.4834 ✚: 2292.1520

(256) ❀: 2288.0524 ❀: 2287.7268 ❀: 2287.4404 ✛: 2292.1900

�: Regular version (using AND gate).
✿: S-box with Toffoli depth 4.

❀: S-box with Toffoli depth 3.
$: Shallow version (using AND gate).

%: Shallow/low depth version (using AND gate).

❆: Bug-fixed JNRV [43] (using S-box from [16] ✜).

✳: Bug-fixed depth. ✲: Bug-fixed qubit count.

✚: In-place MixColumn [43]. ✛: Maximov’s MixColumn [56].

Rotation and Rotation† in Quantum Rotation of AES in quantum denotes the same RotWord. The reverse
operation of Rotation is denoted as Rotation†.

SubWord and SubWord† in Quantum SubWord of AES in quantum denotes parallel operation for 4 S-boxes. We
denote the reverse operation of SubWord as SubWord† (and clean up all used ancilla qubits in 4 S-boxes).

B Discussion about Q# Bug in JNRV (Eurocrypt’20)

Continuing from Section 5, we detail more about the Q# bug which affected the Eurocrypt’20 implementation [43]. We
encountered two issues. First (non-parallelizable) and second (issue with AND gate) problems analyzed in Section 5.1
can be solved by adjusting the number of qubits. If many ancilla qubits are used, over-parallelized depth may be
possible. However, the third problem (inconsistency and underestimation of full depth) in that Section 5.1 cannot be
solved that way. A well-observed case of this error is the depth of AES-256 using in-place MC reported in JNRV [43].
Only 234 should be derived as depth for SubBytes × 14 rounds. This depth margin, therefore, cannot be derived even
with excessive parallelization.

The Q# compiler finds non-trivial parallelism in the circuit, but according to our examples, this parallelism is
excessive in the Eurocrypt’20 paper [43]. In our case also, the estimated depth of the circuit is slightly reduced, rather
than being exactly equal to the product of the round number and the depth (which would indicate trivial parallelism).
MixColumns requires the result from SubBytes (i.e., it operates sequentially like this: SubBytes → MixColumns
→ SubBytes → MixColumns), so it cannot be estimated in parallel. There is a small degree of overlap between
the MixColumn operation in the current round and the SubBytes operation in the following round. However, as
demonstrated by our example, this overlap is excessive. The reported depth still seems impossible because the depth of
each round has to be counted independently (only slight reduction possible with trivial parallelization).

A well-observed case of this error is the depth of AES-256 using in-place MixColumn reported in [43]. The full
depth of their AES-256 (in-place MixColumn) oracle is 3353. Then about 1677 (half) would be the full depth of the
AES-256 circuit. However, the full depth of the in-place MixColumn is 111, so 13 rounds (excluding the last round) ×
111, the full depth is already 1443. Then only 234 (= 1677 − 1443) should be derived as depth for SubBytes × 14
rounds. Therefore, the full depth derived from Sbox in each round should be only about 17 (= 234÷ 14), which cannot
be derived even with excessive parallelization or omitting cleaning of ancilla qubits.

Additionally, if the full depth is estimated assuming all parallelization with bugs, the full depth for the AES variants
should depend on the number of rounds. However, the full depth of AES-192, -256 (Maximov’s MixColumn [56])
reported in JNRV [43] is even lower than AES-128. The lower depth of AES-192 is due to fewer key schedules
(corresponding to the zig-zag structure). However, if complete parallelism is assumed, depth should depend on the
number of rounds, since key schedule works in parallel with rounds (like ours).
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Figure 7: Comparison of quantum circuit complexities for AES variants.

C Further Result

Similar to [77, Table 6], we show the per-round benchmark for our implementations of the AES family in Table 12
(using the S-box implementation with Toffoli depth 3 and 4 in Table 12(a) and 12(b), respectively).
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Figure 8: Schematic of AES construction.

Table 12: Quantum resources required per round for variants of AES (this work).
(a) Using S-box with Toffoli depth 4.

AES #CNOT ✲ #NOT ✱ #Toffoli ✩ TD ✦

✿ Round � $ % � $ % � $ % � $ %

1
2
8

1≀ 8960 5064 6120 79 1360 680 8 4

2 8832 8960 10016 79 1360 1360 8 4

3 8832 8960 10016 81 1360 1360 8 4

4 8832 8960 10016 81 1360 1360 8 4

5 8832 8960 10016 81 1360 1360 8 4

6 8832 8960 10016 79 1360 1360 8 4

7 8832 8960 10016 79 1360 1360 8 4

8 8832 8960 10016 81 1360 1360 8 4

9 8832 8960 10016 80 1360 1360 8 4

10 4504 4568 4568 80 680 680 4 4

1
9
2

1≀ 9024 9056 10112 79 1360 1360 8 4

2 8896 8992 10048 79 1360 1360 8 4

3 7088 7152 8208 64 1088 1088 8 4

4 8896 8928 9984 81 1360 1360 8 4

5 8896 8992 10048 81 1360 1360 8 4

6 7088 7152 8208 64 1088 1088 8 4

7 8896 8928 9984 81 1360 1360 8 4

8 8896 8992 10048 79 1360 1360 8 4

9 7088 7152 8208 64 1088 1088 8 4

10 8896 8928 9984 79 1360 1360 8 4

11 8896 5032 6088 81 1360 680 8 4

12 3552 3552 3552 64 544 544 4 4

2
5
6

1≀ 7216 4048 5104 64 1088 544 8 4

2 8832 8040 9096 79 1360 1224 8 4

3 8832 8832 9888 80 1360 1360 8 4

4 8832 8832 9888 79 1360 1360 8 4

5 8832 8832 9888 80 1360 1360 8 4

6 8832 8832 9888 81 1360 1360 8 4

7 8832 8832 9888 80 1360 1360 8 4

8 8832 8832 9888 81 1360 1360 8 4

9 8832 8832 9888 80 1360 1360 8 4

10 8832 8832 9888 81 1360 1360 8 4

11 8832 8832 9888 80 1360 1360 8 4

12 8832 8832 9888 79 1360 1360 8 4

13 8832 8832 9888 80 1360 1360 8 4

14 4504 4504 4504 79 680 680 4 4

≀: Including initial key XOR.

�: Regular version.

$: Shallow version.

%: Shallow/low depth version.
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(b) Using S-box with Toffoli depth 3.

AES #CNOT ✲ #NOT ✱ #Toffoli ✩ TD ✦

❀ Round � $ % � $ % � $ % � $ %

1
2
8

1≀ 14640 7904 8960 79 3120 1560 6 3

2 14512 14640 15696 79 3120 3120 6 3

3 14512 14640 15696 81 3120 3120 6 3

4 14512 14640 15696 81 3120 3120 6 3

5 14512 14640 15696 81 3120 3120 6 3

6 14512 14640 15696 79 3120 3120 6 3

7 14512 14640 15696 79 3120 3120 6 3

8 14512 14640 15696 81 3120 3120 6 3

9 14512 14640 15696 80 3120 3120 6 3

10 7344 7408 7408 80 1560 1560 3 3

1
9
2

1≀ 14704 14736 15792 79 3120 3120 6 3

2 14576 14672 15728 79 3120 3120 6 3

3 11632 11696 12752 64 2496 2496 6 3

4 14576 14608 15664 81 3120 3120 6 3

5 14576 14672 15728 81 3120 3120 6 3

6 11632 11696 12752 64 2496 2496 6 3

7 14576 14608 15664 81 3120 3120 6 3

8 14576 14672 15728 79 3120 3120 6 3

9 11632 11696 12752 64 2496 2496 6 3

10 14576 14608 15728 79 3120 3120 6 3

11 14576 7872 8928 81 3120 1560 6 3

12 5824 5824 5824 64 1248 1248 3 3

2
5
6

1≀ 11760 6320 7376 64 2496 1248 6 3

2 14512 13152 14208 79 3120 2808 6 3

3 14512 14512 15568 80 3120 3120 6 3

4 14512 14512 15568 79 3120 3120 6 3

5 14512 14512 15568 80 3120 3120 6 3

6 14512 14512 15568 81 3120 3120 6 3

7 14512 14512 15568 80 3120 3120 6 3

8 14512 14512 15568 81 3120 3120 6 3

9 14512 14512 15568 80 3120 3120 6 3

10 14512 14512 15568 81 3120 3120 6 3

11 14512 14512 15568 80 3120 3120 6 3

12 14512 14512 15568 79 3120 3120 6 3

13 14512 14512 15568 80 3120 3120 6 3

14 7344 7344 7344 79 1560 1560 3 3

≀: Including initial key XOR.

�: Regular version.

$: Shallow version.

%: Shallow/low depth version.

For a clearer context, we give a brief description of the cases where Q#’s ResourcesEstimator issues arise and
how those issues affect the quantum benchmarks given in the Eurocrypt’20 paper [43]. This was discovered when
we tried to cross-check their publicly available source codes22. Indeed, this was also noted in [77] as a bug; and this
apparently led to underestimation of gate count, qubit count and depth reported in [43] for the non-linear components
(namely the S-box and S-box† of AES)23.

22https://github.com/microsoft/grover-blocks.
23We are aware of the existence of their dummy S-box design; but it is just the authors’ speculation in [43] that Q#’s compiler

may have made a minor optimization, resulting in a slightly lower estimated T-depth. However, this still cannot explain the
drastic reduction in full depth.

https://github.com/microsoft/grover-blocks
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To our understanding, some problems arise if the qubits are allocated by the using command in Q# (and it affects
the non-linear components). However more experiments are to be carried out in order to be completely certain about it.

D Updates from Crypto’23 Submission

An earlier version of our paper was submitted to Crypto 2023. In this version, we have updated the paper, the major
changes include:

(I) The fixed-qubit version for bug-fixing JNRV [43].
(II) The AND gate version for bug-fixing JNRV [43].
(III) The 28 quantum depth MixColumn implementation reported in [74].
(IV) Several write-ups in various places, including discussion/explanation about MAXDEPTH and the importance of

depth optimization.

These cover all the points raised by the reviewers as well as our new innovation (such as, the fixed-qubit version
for bug-fixing JNRV [43]) and recent development (such as, [74]). As far as we can tell, our work presents the
state-of-the-art results in the quantum implementation/analysis of AES-128/-192/-256, improving from the recent
works like Asiacrypt’22 [36] and the bug-fixing by the Eurocrypt’20 authors themselves [42].
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