
Proof of Mirror Theory for any ξmax
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Abstract. In CRYPTO’03, Patarin conjectured a lower bound on the
number of distinct solutions (P1, . . . , Pq) ∈ ({0, 1}n)q satisfying a system
of equations of the form Xi ⊕ Xj = λi,j such that X1, X2, . . ., Xq are
pairwise distinct is either 0 or greater than the average over all λi,j values
in {0, 1}n. This result is known as “Pi⊕Pj for any ξmax” or alternatively
as Mirror Theory for general ξmax, which was later proved by Patarin
in ICISC’05. Mirror theory for general ξmax stands as a powerful tool to
provide a high security guarantee for many block cipher-(or even ideal
permutation-) based designs. Unfortunately, the proof of the result con-
tains gaps which are non-trivial to fix. In this work, we present the first
complete proof of the Pi ⊕ Pj for any ξmax theorem. As an illustration
of our result, we also revisit the security proofs of two optimally secure
blockcipher-based pseudorandom functions, and provide updated secu-
rity bounds. Our result is actually more general in nature as we consider
equations of the form Xi ⊕Xj = λk over a commutative group G under
addition, and of exponent 2.

1 Introduction

Pseudorandom Function (PRF) and Pseudorandom Permutation (PRP) are two
fundamental cryptographic objects in symmetric key cryptography. An enor-
mous use of pseudorandom functions in designing cryptographic schemes e.g.,
authentication protocols, encryption schemes, hash functions etc. make it a valu-
able object from the cryptographic view points. However, practical candidates
of PRF are very scarce. On the other hand, PRP or block ciphers are available
in plenty in practice. One can consider a block cipher to be a pseudorandom
function, but due to the PRP-PRF switching lemma, it comes at the cost of
birthday bound security, i.e., if the block size of the block cipher is n-bits, then
one can consider the block cipher to be a secure PRF until the number of queries
reaches to 2n/2. Such a bound is acceptable when n is moderately large, e.g., 128
bits. However, due to the ongoing trend of lightweight cryptography, a number
of lightweight block ciphers have been designed with smaller block size e.g., 64
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bits. In such a situation, a block cipher is not considered to be a good PRF as
birthday bound security is not adequate with 64 bit block size. Therefore, the
natural question arises that

Can we design a pseudorandom function out of lightweight block ciphers that
guarantees security beyond the birthday bound?

It turns out that over the past several years researchers have invested a lot of
effort in designing such pseudorandom functions [3,19,21,9,18,43,44,45,35,13,12,22].
Out of several such designs, xor of two pseudorandom permutations is the most
popular one, where the output of two pseudorandom permutations on the same
input is xored together to produce the output. We refer to this construction as
Sum function.

History of Sum function: In [3], Bellare et al. have first proposed the
sum function in the name of Luby-Rackoff backwards, defined as: XOR2(x) :=
Ek1(x)⊕ Ek2(x). 6 However, the authors of [3] did not give the security analysis
of XOR2 and its single-keyed variant XOR1(x) := Ek(0‖x) ⊕ Ek(1‖x). Popular-
ity of these constructions have started gaining attention in the cryptographic
community in the last few years due to their use in many important block
cipher and tweakable block cipher-based designs that includes constructions
like [43,44,45,35,13,12,23,27,20,17,22,34,26]. In an unpublished work [2], Bellare
et al. first showed that XOR1 is a secure PRF up to 2n/n queries. In [28], Lucks
proved that XOR2 achieves 2n/3 bit PRF security. Afterwards, in a series of
papers [40,41,42], Patarin claimed that XOR construction (i.e., both XOR1 and
XOR2) is secured up to O(2n) queries. In 2017, Dai et al. [10] have shown that
XOR1 and XOR2 are optimally secure PRFs using the χ2-method. In a related
work, Cogliati et al. [7] have shown that XORk, i.e., xor of k independent per-
mutations, for k ≥ 2, achieves kn/(k + 1)-bit PRF security.

Following Patarin’s analysis, XOR2 (resp. XOR1) construction yields the fol-
lowing system of bivariate affine equations:

Eλ = {P1 ⊕ P2 = λ1, P3 ⊕ P4 = λ2, . . . , P2q−1 ⊕ P2q = λq},

where q ≥ 1 and λ := (λ1, . . . , λq) is a tuple of n-bit binary strings (for the XOR1

construction, we additionally require that λ1, . . . , λq are non-zero n-bit binary
strings). The entire security analyses for both the constructions stand on finding
a good lower bound on the number of solutions (P1, . . . , P2q)

7 to Eλ such that
(i) for XOR1 construction, we require that Pi 6= Pj for i 6= j, while (ii) for XOR2

construction, we require that (a) Pi 6= Pj for i 6= j, where i, j both are odd,
and (b) Px 6= Py for x 6= y, where x and y both are even. During the process
of finding the solutions to Eλ, assigning values to a variable Pi in Eλ fixes the
value of exactly two variables (which are Pi and Pi+1 if i is odd and Pi−1, Pi
otherwise) in Eλ. However, for a generic bivariate system of affine equations,

6 Here, Ek1 and Ek2 denote two n-bit independent pseudorandom permutations
7 Abusing the notation, we use the same symbol to denote the variables and the

solution of a given system of equations.
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assigning value to a single variable Pi can fix the values of k ≥ 2 variables in the
set of equations. Patarin [41] named this notion as block maximality in a system
of bivariate affine equations, denoted as ξmax. It is natural to see that the block
maximality of the system of equations Eλ is 2 and thus the security analysis of
the XOR construction is reduced to establish the following result.

“For a given system of bivariate affine equations over a finite group with
non-equalities among the variables and ξmax = 2, the number of distinct
solutions is always greater than the average number of solutions.”.

Patarin named this result as Theorem Pi ⊕ Pj for ξmax = 2 [38] (and
later in [41], named Mirror theory the study of sets of linear equalities and non-
equalities in finite groups). This result was stated as a conjecture in [36] and
proved in [38]. The result has been acknowledged in the community as a potential
and a strong approach to establish the optimal security of XOR constructions
(i.e., XOR1 and XOR2) [10]. Informally, the result Theorem Pi ⊕Pj for ξmax = 2
states the following: let q ≤ 2n/134 and λ1, . . . , λq be non-zero n-bit strings.
Then, the number of solutions of distinct values to P1, . . . , P2q satisfying the

bivariate affine equations Eλ is at least (2n)2q

2nq , where ab := a(a−1) · · · (a− b+1)
for two positive integers a ≥ b. Patarin [40] also showed that for any choice of
n-bit strings λ1, λ2, . . . , λq, the number of solutions to the system of bivariate
affine equations Eλ such that P1, P3, . . . , P2q−1 are distinct and P2, P4, . . . , P2q

are distinct is at least (2n)q
)2
/2nq × (1 − O(q/2n)). Beside these two results,

Patarin [38] also claimed the generic result for a general ξmax > 2, that the
number of distinct solutions to a system of q bivariate affine equations with
ξmax > 2 and with non-equality among the variables is always larger than the
average number of solutions provided q ≤ 2n/67.(ξmax − 1). Patarin named this
result the “Theorem Pi⊕Pj for any ξmax”. This result was stated as a conjecture
(Conjecture 8.1 of [36]) in the context of analysing the security of the Feistel
cipher. Only a couple of years later, this result was articulated in many follow-
up works for analysing the security of the xor of two permutations, and it took a
few articles [38,40,41,42] for his result and security argument to evolve. Later, in
2017, this work culminated in a book [32] called Feistel Ciphers: Security Proofs
and Cryptanalysis by Nachef et al. Unfortunately, some important results were
either hard to verify, or stated without proof, which has been recently reported
in multiple works [6,10,14,24,29]. While this has led to some innovations such
as the development of the aforementioned χ2 technique, this state of affairs
is unsatisfactory as Mirror Theory is an essential tool for provable security in
symmetric cryptography.

1.1 Main Result and Our Contribution

In this paper, our goal is to give a complete and easily verifiable proof of the Pi⊕
Pj Theorem with any ξmax. From a high level, this amounts to lower-bounding
the number of solutions of a system of equations of the form Pi⊕Pj = λij , such



4 B. Cogliati and A. Dutta and M. Nandi and J. Patarin and A. Saha

that the Pi variables are pairwise distinct. This result has seen several applica-
tion in proving the optimal security bound for Feistel schemes [37,33], and sev-
eral blockcipher and tweakable blockcipher-based schemes such as XORP [20,21],
EDM [9,30], or 2k-HtmB-p2 [6]. Along with giving a verifiable proof of the Pi⊕Pj
Theorem with any ξmax, we also provide updated security bounds for the last
three constructions using our main result, along with proof sketches, to illustrate
the impact of the Pi ⊕ Pj Theorem with any ξmax.

Notations. For integers a ≤ b, the set {a, a+ 1, · · · , b} is denoted as [a..b] (or
simply [b], when a = 1). We write X←$S to mean that X is sampled uniformly
from S and independent to all random variables defined so far. Similarly, we
write X1, . . . ,Xs←$S to mean that X1, . . . ,Xs are uniformly and independently
distributed over S. We write Xq to denote a q-tuple (X1, . . . , Xq). For x ∈ S, we
write S \x to mean S \ {x}. We use AtB to denote the disjoint union of A and
B (which implicitly means that A and B are disjoint). Let G be a commutative
group under addition + with 0 as the additive identity. Additionally, we requireG
to be of exponent 2. This means that all the elements of G are their own inverses,
and that the operations + and − are equivalent. We chose to differentiate them
(instead of replacing them by a common symbol such as ⊕) in order to emphasize
more clearly why this condition is needed in our proof. We denote |G| = N and
dlog2Ne = n. For a positive integer e ≤ N , we write Ne := N(N − 1) · · · (N −
e+ 1).

A multiset γ is a collection of elements that can repeat. In other words,
multiset is an unordered version of a tuple. For S ∈ γ, we write γ−S to denote
the multiset by removing S from γ. We similarly write γ+T to denote the multiset
by adding an element T to γ. For S ∈ γ, we also write γ−S+T to denote the
resulting multiset after deleting S and adding T to γ. We say that γ is a set-
system if it is a multiset of sets. When we want to emphasize an ordering of
the elements of γ, we also write the set-system as γ[α]. In this paper we consider
set-system γ of non-empty subsets of G.

1.1.1 System of Difference Equations Consider a system of difference
equations AX = Λ over the group G, where A = (Aij)i∈[m],j∈[e] is a m × e
matrix with full row rank (and hence consistent), such that each row contains
exactly one +1, one −1 and remaining zeros, X is a e × 1 vector of variables
and Λ ∈ Gm. As the column sum is zero, we must have m < e. Note that each
equation in the above system is of the form Xi −Xj = λk for some i, j, k with
i 6= j. A solution xe ∈ Ge of the above system is called a pairwise distinct
solution, or in short a p.d. solution if xi 6= xj for i 6= j ∈ [e]. The number of
solutions of the system of equations is exactly Ne−m which can quite easily be
shown by using elementary linear algebra. However, counting the number of p.d.
solutions to this system of equations is quite involved. The main aim of this
paper is to provide a good lower bound to the number of p.d. solutions. When
we consider G = {0, 1}n under bitwise xor operation, this leads to the classical
mirror theory widely used in cryptography.
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Graph Theoretic Representation of the System. With every matrix A
as described above in the system of difference equations, we can associate a
labeled directed graph G = (V := [e], E, L) where the edge set E = {(j, k) ∈
V 2 | ∃i ∈ (m] 3 |Aij | = |Aik| = 1} and L(j, k) = λi ifAjk = 1, or L(j, k) = −λi if
Ajk = −1. So, whenever there is an edge between j and k, we have directed edges
in the both directions. Thus, every connected component is strongly connected
(there are edges in both directions between two connected vertices). The full row
rank of A also implies that the graph G is acyclic and hence is a forest. If the
graph G has q components then we must have |E| = |V |−q, or m = e−q. Given
a directed path P from j to k, the equation Xj−Xk =

∑
e∈P L(e) is a dependent

equation (i.e., it can be obtained by adding a set of equations from the system).
So, one can equivalently represent the system of difference equations AX = Λ
such that the corresponding graph has only star graphs as components. In other
words, the system of equations corresponding to a component is of the form

Xi1 −Xiξ = λj1 , . . . , Xiξ−1
−Xiξ = λjξ−1

.

We call such a system of difference equations standard system of difference equa-
tions.

Definition 1. A system of difference equations AX = Λ is called p.d.-consistent
if λ′i 6= 0 for all i ∈ [m] and for all i 6= i′ in the same component, λ′i 6= λ′i′ , where
A′X = Λ′ := λ′m is a standard form for the system.

To have a p.d. solution, p.d.-consistency is a necessary condition. The fol-
lowing theorem provides a lower bound on the number of p.d. solutions for any
p.d.-consistent system of difference equations.

Theorem 1 (Main Result). Let G be a commutative group under addition
of order |G| = N , and of exponent 2. Let G be the associated graph of a
p.d.-consistent system Am×eX = Λ, of equations over G. Suppose the num-
ber of vertices in the largest component of G is ξmax. If e ≤

√
N or

√
N/ ≥

ξ2max log2N + ξmax, and 1 ≤ e ≤ N/12ξ2max, then the number of p.d. solutions of
the system AX = Λ is at least (N)e/Nm.

Remark 1. Note that, in most cryptographic applications (where N ≥ 264), ξmax

is either a small constant, or can be shown to be smaller than log2N with over-
whelming probability. Typically, this is sufficient to prove that the cryptographic
scheme is secure as long as the number q of adversarial queries is upper bounded
by N/12ξ2max, as (log2N)3 ≤

√
N for N ≥ 230.

1.2 Applications of Theorem Pi ⊕ Pj for any ξmax

Over the years, the Theorem Pi⊕Pj for any ξmax has been proven to be a signifi-
cant result in the context of analysing security bounds of numerous cryptographic
designs. Apart from the stand-alone value of XOR2 or XOR1 constructions, they
are used as a major component in many important block cipher and tweakable
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block cipher-based designs that includes [43,44,45,35,13,12]. However, the secu-
rity proofs of most of these designs require a degeneration of the final outputs to
get rid of the adaptive nature of the adversary. Hence the proof cannot use the
fact that the sum function is a PRF. Instead, these security proofs require (by
application of the H-Coefficient technique [39]) a good lower bound on the num-
ber of distinct solutions to a system of bivariate affine equations with a general
ξmax and therein comes the role of the result “Theorem Pi⊕Pj for any ξmax”. It
has also been used in proving the beyond birthday bound security of many nonce
based MACs including [14,15,17,31,4]. Mennink [30] showed the optimal security
bound of EWCDM using this result as the primary underlying tool, and Iwata
et al. [21] also used it to show the optimal security bound of CENC. Despite the
debate in the community regarding the correctness of the proof of “Theorem
Pi⊕Pj for any ξmax” [38,41], several authors have used this precarious result to
derive an optimal bound for some constructions such as [21,30,46]. This triggers
the need for a correct and verifiable proof of these two results, which will even-
tually help to correctly establish the security proof of the above constructions
and improve their security.

1.3 Related Work

Besides the applicability of the Theorem Pi ⊕ Pj for general ξmax in crypto-
graphic paradigms, the result of “Theorem Pi ⊕ Pj for ξmax = 2” have already
been linked to different cryptographic constructions. In particular, equations of
the form P2i−1 ⊕ P2i = λi, which correspond to a simple variant of the sys-
tems we consider in this work, have been considered to prove the security of
the XORP[2] construction [38,41,33,16,8]. In [42], [7] and [16], systems of the
form ⊕kj=1Pi,j = λi, where the values (Pi,j)i have to be pairwise distinct for
j = 1, . . . , k, have been studied to prove the security of the sum of permuta-
tions. Recently, a similar problem in the tweakable setting has been examined
in [24], with an application to the security of the CLRW construction. Mirror
Theory has also been considered for nonce-based MACs that rely on an under-
lying blockcipher or tweakable blockciphers, such as in [14,15,17,31,25]. In that
case, constraints also include inequalities of the form Pi ⊕ Pj 6= λi,j , which also
have to be taken into account. Despite of the enormous use of the result, its
correctness was a subject to debate [10]. In [25], Kim et al. have given a veri-
fiable proof of the mirror theory until the number of equations falls below the
bound 23n/4. Datta et al. [11] have extended this result for a system of bivariate
affine equations and non-equations. Recently, Dutta et al. [16] and Cogliati and
Patarin [8] have independently given a verifiable proof of the mirror theory for
ξmax = 2.

Organization. In Sect.2, we have proved an equivalent formulation of our
main result through a probability of an event involving disjointness of some
random sets, modulo a Proposition, proof of which is postponed to Sect.3. We
give an overview of our proof strategy and a brief comparison with previous
proofs in Section 3.1. The proof of the Proposition requires a recursive inequality
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lemma, proof of which is deferred in Sect.A.2. Then, Section 4 briefly revisits
several proofs that rely on the Pi⊕Pj Theorem with any ξmax, and provides the
corresponding updated security bounds. Finally, we outline possible extensions
of our work in Section 5.

2 Probability of Disjointness: An Equivalent Formulation

In order to streamline the proof of Theorem 1, we will operate two distinct
changes. First, note that, in order to have solutions, the system has to be p.d.
consistent, which corresponds to two distinct conditions: λ′i 6= 0 for all i ∈ [m],
and for all i 6= i′ in the same component, λ′i 6= λ′i′ . While easy to manipulate,
both conditions have to be handled in a different way, which complicates the
proof. The simplest fix is to introduce, for every component, an additional λ′

value that can be thought to be 0n. Second, in order to avoid powers of N
in our formulas, we prefer switching to a probabilistic formulation where, for
every component, we simply sample uniformly at random a value in {0, 1}n, and
consider a disjointness event that is derived from the system of equalities.

More formally, given a set-system γ = {γi : i ∈ [α]}, we define the following
event:

Disj(γ) := γ1 + R1, . . . , γα + Rα are disjoint

along with the following probability:

P(γ) = Pr
Rα

(Disj(γ)),

where R1, . . . ,Rα←$G. In words, the event says that a random and independent
translation of sets from a collection are disjoint. We write ‖γ‖ :=

∑α
i=1 |γi|

and ‖γ‖max = maxi |γi|. It is easy to see that the probability of disjointness is
invariant under any translation of the sets, i.e., P(γ) = P(γ′) where γ′i = γi + ai
for a1, . . . , aα ∈ {0, 1}n.

Theorem 1 can be rephrased in the following way.

Theorem 1’ (Equivalent Formulation) Let G be a commutative group un-
der addition of order |G| = N , and of exponent 2. Let γ be a set-system of ele-
ments of G such that ξmax = ‖λ‖max. If ‖γ‖ ≤

√
N or

√
N ≥ ξ2max log2N+ξmax,

and 1 ≤ ‖γ‖ ≤ N/12ξ2max, then

P(γ) ≥ (N)‖γ‖

N‖γ‖
.

The equivalence between both statements is proven in Section 2.1. From a high
level, the proof of Theorem 1’ works in two steps:

1. if λ is small (‖λ‖ ≤
√
N), then simple calculations show that Theorem 1’

holds;
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2. otherwise, we prove that, for a well-chosen a ∈ T ∈ λ, one has

P(λ) ≥
(

1− ‖λ‖ − 1

N

)
P(λ′),

where λ′ corresponds to λ, where the set T has been replaced with T \ {a};
clearly, applying point 2 repeatedly until ‖λ‖ ≤

√
N allows us to conclude

the proof of Theorem 1’.

Intuitively, the element that we remove from λ is the one that corresponds,
in the associated system of equations, to the λ′i that appears with maximum
multiplicity.

More formally, given z ∈ G \ 0, and a set S, we define δS(z) as the number
of 2-subsets {a, b} of S with a− b = z. For a set-system γ, we define

δγ(z) :=
∑
S∈γ

δS(z), ∆γ := max
z∈G

δγ(z).

Clearly, for any set-system γ, ∆γ ≥ 1. The underlying statement behind the
second point of our proof strategy is the following one.

Proposition 1. Let λ be a set-system with
√
N ≤ ‖λ‖ ≤ N/12ξ2max where

ξmax = ‖λ‖max. Suppose the maximum ∆λ is attained for a − b with {a, b} ⊆
T ∈ λ. Then,

P(λ) ≥
(

1− ‖λ‖ − 1

2n

)
· P(λ−a|T )

where λ−a|T = λ−T+T\a (i.e. replacing the element T by T \ a)

The proof of Proposition 1 is given in Section 3, and we explain how to derive
Theorem 1’ from Proposition 1 in Section 2.2.

2.1 Proof of Equivalence

Here we prove why Theorem 1’ is an equivalent statement of our main theorem.
First, we establish a one-to-one relationship between the number of disjointness
favorable solutions rq with the number of p.d. solutions of systems of equations.

Let AX = Λ be a system of difference equations in standard form, and G be
its associated graph. For every component C, let LC be the set of all labels. By
definition of p.d.-consistency, all elements of LC are distinct (and hence it is a
set of size ξC−1, where ξC is the number of vertices in C) nonzero elements. Let
iC denote the center of the star component. Thus, for all other j ∈ C, we have
an equation of the form Xj−XiC = λk for some k. Now we consider a set-system
γ containing all sets of the form SC := LC ∪ {0}. Thus, ‖γ‖ =

∑
C |C| = e and

|γ| = q. Let C1, . . . , Cq, denote the set of all components (written in some order)
and let ij := iCj . Now consider a map f , mapping a p.d. solution xe of the system
to rq, where rj = xij for all j ∈ [q]. It is easy to see that SCj +rj are disjoint sets
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(as these represent all x values). Moreover, f is clearly injective as a solution is
uniquely determined by the tuple (xi1 , . . . , xiq ). So, f is an injective function.
Conversely, for any rq with disjoint SCj + rj ’s, we can define xe consisting of
all values from the set tj(SCj + rj) in an appropriate order (with xij = rj).
Clearly, this map is f−1 and so f is a bijective function. Hence, the number
of p.d. solutions for AX = Λ is same as the number of solutions of rq so that
Disj(γ) holds. Second, we note that Theorem 1’ can be simply restated as the
number of solutions r|γ| so that (γi + ri)’s are disjoint for all i ∈ [q] is at least

(N)‖γ‖

N‖γ‖−|γ|
=

(N)e

Ne−q ,

where e − q = m corresponds to the number of equations in the system AX =
Λ. This proves the equivalence between our main theorem and the equivalent
formulation.

2.2 Proof of Theorem 1’

We first prove the statement when ‖γ‖ ≤
√
N . In this case we remove elements

from γ one-by-one until we end up with a single element. We first note that

P(γ) = P(γ−S)×
(

1− ‖γ‖ − 1

2n

)
if |S| = 1 (1)

P(γ) ≥ P(γ−S)×
(

1− |S| × ‖γ−S‖
2n

)
if |S| ≥ 2 (2)

where S ∈ γ. The above relations are easy to verify (by looking at the restriction
imposed on R which translates the set S). Indeed, let us assume S = γ1. Then,
using the independence of the (Ri)i=1,...,|γ| random variables, once R2, . . . ,R|γ|
are chosen such that the equations from Disj(γ−S) are satisfied, Disj(γ) adds the
following restrictions on R1:

R1 ⊕ x 6= Ri ⊕ y for all x ∈ S, i 6= 1, y ∈ γi.

Hence, if |S| = 1, R1 has to be different from exactly ‖γ‖ − 1 values, while, if
|S| 6= 1, it has to avoid at most |S| × ‖γ−S‖ group elements.

Note that, after applying the Eq. 2 repeatedly (or by applying induction on
|λ \ γ|) for γ ⊆ λ, we have

P(λ)

P(γ)
≥
(

1− qξ2max

N

)|λ\γ|
. (3)

We call this an initial condition that would be used later to prove Proposition 1.
Let us write Wi := (1− i

N ). Now we claim that

(
1− |S| × ‖γ−S‖

2n

)
≥
‖γ‖−1∏
i=‖γ−S‖

Wi (4)
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and hence P(γ) ≥ P(γ−S)×
∏‖γ‖−1
i=‖γ−S‖Wi. After repeatedly removing an element

one by one, we have P(γ) ≥
∏‖γ‖−1
i=1 Wi which proves the theorem. Now we prove

the Eq. 4. It is sufficient to show that

(1− ar

N
) ≥ (1− a

N
) · · · (1− a+ r − 1

N
)

where a+ r ≤
√
N . This can be easily shown by induction on r. For r = 1, it is

obvious. Now by applying induction hypothesis for r, we obtain

(1− a

N
) · · · (1− a+ r − 1

N
) ≤ (1− ar

N
)(1− a+ r

N
)

≤ (1− ar + a

N
)

For the last inequality we use the fact that a+ r + 1 ≤
√
N .

Now we assume that
√
N ≤ ‖λ‖ ≤ N/12ξ2max. We can create a sequence of

nested set-systems {γ(i)}σi=0, with

γ(0) := γ, ‖γ(i+1)‖ = ‖γ(i)‖ − 1, ∀i ∈ [σ − 1], ‖γ(σ)‖ ≤
√
N,

in the following manner: Let {xi, yi} ⊆ Ti ∈ γ(i) such that xi − yi attains the
highest multiplicity in γ(i), ∆γ(i) . We choose one arbitrarily if there exists more

than one choice. We define γ(i+1) := γ
(i)
−xi|Si . We now apply Proposition 1 for

every i ∈ [σ − 1] and obtain

P(γ) ≥ P(γ(σ))

σ∏
i=1

(
1− ‖γ‖ − i

2n

)
.

We already have shown the result for γ(σ) that P(γ(σ)) ≥ (N)‖γ
(σ)‖/N‖γ

(σ)‖,
which completes the proof.

3 Proof of Proposition 1

Notations and Conventions. In the Proposition statement, {a, b} ⊆ T ∈ λ
and ∆λ =

∑
S∈λ δS(a− b). Let λ = {λi : i ∈ [q]} and we write |λi| = ξi, ξmax =

maxi ξi and σ :=
∑
i ξi. We also write ∆ to denote ∆λ. Throughout the section

we follow this notation. Moreover, we use the notation γ to denote a set-system
such that γ ⊆ λ (as a multiset).

3.1 Link-deletion Equation and Proof Overview

Link-deletion Equation. Let x ∈ S ∈ γ ⊆ λ. Let us write

γ = {γ1, . . . , γα}
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using an arbitrary ordering of the multiset γ, and let us assume S = γ1 and
x = γ1,1. Then, the event Disj(γ) corresponds to the fact that all the Ri ⊕ γi,j
values are pairwise distinct, and the event Disj(γ−x|S) corresponds to the same
event, where the conditions involving R1 ⊕ γ1,1 are ignored. Hence, one has
Disj(γ) ⇒ Disj(γ−x|S). Suppose Disj(γ−x|S) ∧ ¬Disj(γ) holds. Then, there must
exist y ∈ S′ ∈ γ−γ1 such that S′ = γi for some integer i 6= 1, and y+Ri = x+R1.
As (S \ x) +R1 is disjoint from S′+Ri (same as S′+ (x− y+R1)), S \ x should
be disjoint from S′ + x− y. Let

I := {(x− y, S′) : y ∈ S′ ∈ γ−S , S′ + (x− y) is disjoint with S \ x}.

Note that simultaneously R1 + x = Ri + y = Rj + y′ for some y′ ∈ γj ∈ γ−S
cannot hold. Since otherwise, the disjointness of γ−x|S cannot hold. Thus, we
have established a useful relation, called link-deletion equation.

P(γ) = P(γ−x|S)− 1

N

∑
(δ,S′)∈I

P(γδ,S′) (5)

where γδ,S′ = γ−S−S′+S1 and S1 = (δ + S′) t (S \ x). The factor 1/N appears
as R1 = Ri + δ needs to hold which is independent of disjointness of γ−S−S′+S1

(which does not involve S′ and hence Ri). Note that, in previous proof strategies,
the first recursive equation to be introduced was the so-called orange equation.
Roughly speaking, this corresponds to 2 applications of our link-deletion equa-
tion, which is why we can also refer to Equation (5) as the half-orange equation.

Proof Strategy. In order to prove Proposition 1, we will prove that |P(γδ,S′)−
P(γ−x|S)| is small enough in front of P(γ−x|S), for all (δ, S′) ∈ I. This will be
done in the following steps.

1. Upper bound the size of the set I (in Section 3.2).
2. Establish a recursive inequality between the maximum difference between

terms of the form P(γ′−x|S), and terms of the form P(γ′δ,S′), with γ′−S ⊂ λ,

and S is an arbitrary set of some fixed size (in Section A.2). This will be
done by applying the link-deletion equation to the two probabilities that
maximize the difference term, thus introducing new difference terms and an
error term.

3. After applying this inequality a logarithmic number of times along with
simple bounds on the probability ratios, prove that remaining terms become
sufficiently small thanks to the geometric reduction offered by the recursive
inequality (Sections 3.4 and A.2).

Comparison with Previous Proofs. The main difference with previous
proof strategies is centered around the link-deletion equation. Indeed, previous
works started with the introduction of the so-called orange equation, which can
be seen as two consecutive applications of the link-deletion equations. Hence,
instead of always merging a single set S′ ∈ γ with the final set S, this could be
seen as merging two distinct sets S′, S′′ ∈ γ, which lead to a more complicated
analysis.
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Fig. 3.1: Graphical depiction of the link-deletion operation. Here, we have represented
graphs corresponding to the three types of terms appearing in the link-deletion equa-
tion, with x = sk, y = γi,j , δ = sk − γi,j , S = {s1, . . . , s`+1}, and S′ = γi,j . Central
vertices correspond to the R1, . . . ,Rα,R random variables.

3.2 Size Lemma

We also write the above set I as Ix|S to emphasize that I depends on x, S.
Clearly, for all x ∈ S ∈ γ, #I ≤ ‖γ‖. However, we establish an improved upper
bound for the size of Ia|T where a and T are described in the statement of the
Proposition.

Lemma 1 (size lemma). For a given a ∈ T ∈ λ as described in the Proposition
statement, we have #Ia|T ≤ ‖λ‖ −∆− |T |/2.

Proof. Take any S ∈ λ−T . Note that there are δS(a−b) many 2-sets {w1, w2} ⊆ S
such that w1 − w2 = a − b and hence b = w2 + (a − w1) ∈ S + (a − w1). So,
(a− w1, S) 6∈ Ia|T . So,

|Ia|T | ≤
∑

S∈λ\T

(|S| − δS(a− b)) = (‖λ‖−|T |)−∆λ+δT (a−b) ≤ ‖λ‖−∆λ−|T |/2,

as δT (a− b) ≤ |T |/2. Indeed, for every element x ∈ T , there exists at most one
element y in T such that x− y = y− x = a− b. In the case where it exists, then
neither x nor y can be part of a different 2-set. ut

Remark 2. Note that this is where we use the hypothesis that G is of exponent 2.
We exhibit a simple counter-example when this is not the case. Take for example
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G = Z/6Z, and T = {0, 2, 4}. Then one has δT (2) = 3 = |T |. Note that, as we
will see in Section 3.4, the condition δT (a− b) ≤ |T | − 1 is required to conclude
the proof of Proposition 1. This hints that either the case where the exponent of
G is greater than 3 is fundamentally different from our case, or that our current
proof strategy can still be tightened.

3.3 Recursive Inequality of D-Terms

In this section, we introduce D-terms, which correspond to the maximum differ-
ence between the two type of terms that can appear in the link-deletion equation.
Formally, one has the following definition.

Definition 2. τ = γ+S with γ ⊆ λ where |γ| = α and |S| = ` + 1. For any
S ∈ γ disjoint with S, let τ ′ := γ−S+(StS) (same as τ−S−S+StS, i.e., we merge
two disjoint elements of τ). We define

D(α, `) = max
γ,S,S

∣∣P(τ)− P(τ ′)
∣∣, (6)

where the maximum is taken over all choices of γ ⊆ λ of size α, S ∈ γ and a set
S of size `+ 1 disjoint with S. For all ` < 0, we define D(α, `) = 0.

Now we state and prove the Recursive Inequality for D-terms:

Lemma 2 (Recursive Inequality of D-Terms). Let α ≤ q ≤ N
12ξ2max

, ` ≥ 0.

We write β := ξmax/N . Then,

D(α, `) ≤ D(α, `− 1) +
ξmax

N

q∑
i=1

D(α− 1, `+ ξi − 1) +
2∆ξmax · P(λ)

N (1− qξ2max/N)
q−α .

(7)

Note, for q ≤ ‖λ‖ ≤ N/12ξ2max, ξmax

N(1−qξ2max/N) ≤ (4ξeq)−1. Denoting β :=

ξmax/N , and ad,` = βd

2P(λ)D(q − d, `) we have,

ad,` ≤ ad,`−1 +

q∑
i=1

ad+1,`+`i + β∆ (4eξmaxq)
−d
,

where `i = ξi − 1.

The proof of this Lemma is postponed to Appendix A.1.

Remark 3. Note that the r.h.s. of the inequality contains three types of terms:

– D(α, ` − 1) which will disappear after ` − 1 applications of the recursive
inequality,

– terms of the form D(α − 1, ` + ξi − 1) which involve a smaller set-system,
but a larger S set; however, those terms are multiplied by ξmax

N , which will
ensure their geometric reduction,
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– a parasite term that, as we will see, is small enough not to cause an issue
after a logarithmic number of iterations.

Besides, in addition to the above recursive inequality, we also have the following
initial bound:

D(α, `) = |P(τ)− P(τ ′)| ≤ 2P(λ)

(1− q · ‖λ‖2max/N)
|λ\γ|

and so

ad,` =
βd

2P(λ)
D(q − d, `) ≤

(
ξmax

N (1− qξ2max/N)

)d
≤ 1/(4eξmaxq)

d

3.4 Final Wrap up of Proof

We can conclude the proof of Proposition 1 using Lemmas 1, 2, along with the
following result that will be proven in Appendix A.2.

Lemma 3 (Recursive Inequality Lemma). Suppose ad,` ≥ 0 such that ad,k :=
0 for all k < 0 and for all 0 ≤ d ≤ ξn and 0 ≤ `i ≤ ξ − 1 for i ∈ [q], we have

ad,` ≤ (4ξeq)−d ‘ (initial bound) (8)

ad,` ≤ ad,`−1 +

q∑
i=1

ad+1,`+`i + C · (4ξeq)−d (recursive inequality) (9)

for some C > 0. Then, for every ` ∈ [ξ − 2],

a0,` ≤
4

N
+ 4Cξ.

Let a, b, T, λ be as in the statement of Proposition 1, and let λ0 = λ−T . Note
that one has ξ2maxn ≤

√
N − ξmax ≤ ‖λ0‖ ≤ N/12ξ2max. Moreover, let q = |λ0|.

Similarly, one has ξmaxq ≥ ‖λ0‖ ≥ ξ2maxn, which means that q ≥ ξmaxn. We are
going to apply to λ0 as follows.

Let us take, ξ = ξmax, C = β∆ = ∆λξmax/N in the statement of the above

Lemma 3.4. From the definition of ad,` = βd

2P(λ0)
D(q− d, `), we must ensure that

q ≥ d in order to apply Lemma 3.4. This can easily be seen to be true as q ≥ ξn
and d ≤ ξn. Then, for (δ, S) ∈ Ia|T , we have

|P(λδ,S)− P(λ−a|T )| ≤ D(q, |T | − 2) ≤2P(λ0)a0,|T |−2 ≤
8P(λ0)

N
(∆ξ2max + 1).

Note that one has

P(λ−a|T ) ≥ P(λ0)

(
1− ξmax‖λ0‖ξmax

N

)
≥ P(λ0)

(
1− 1

12ξmax

)
≥ P(λ0)

23

24
.
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Thus, one has

|P(λδ,S)− P(λ−a|T )| ≤P(λ−a|T ) ≤ 24× 8× P(λ0)

23×N
(∆ξ2max + 1) ≤ C ′∆

N
,

where C ′ = 9(ξ2max + 1), as ∆ ≥ 1. Hence P(λδ,S) ≤ (1 + C ′∆/N)P(λ−a|T ).
Using this bound in the appropriate link deletion equation we have:

P(λ) = P(λ−a|T )− 1

N

∑
(δ,S)∈Ia|T

P(λδ,S) (From Eq. (5))

≥ P(λ−a|T )− 1

N

∑
(δ,S)∈Ia|T

P(λ−a|T )(1 + C ′∆/N)

≥ P(λ−a|T )

(
1− ‖λ‖ −∆− |T |/2

N

(
1 +

C ′∆

N

))
(From Lemma 1)

≥ P(λ−a|T )

(
1− ‖λ‖ − 1

N
+
∆

N

(
1− C ′(‖λ‖ −∆− 1)

N

))
≥ P(λ−a|T )

(
1− ‖λ‖ − 1

N

)
.

The last inequality follows as C ′‖λ‖ ≤ N , for ‖λ‖ ≤ N/12ξ2max, which con-
cludes our proof of Proposition 1. ut

Remark 4. Note that the initial bound ensures only that a0,` ≤ 1. However, the
presence of recursive inequality forces the value of a0,` to be very small.

4 Cryptographic Applications

4.1 The H coefficients technique

In this section, we consider one of the main applications of Theorem 1, which
is proving the security of a pseudorandom function (PRF) F , based on a secret
random permutation π. Formally, for any information-theoretical adversary A
that is allowed at most q oracle queries, we define its advantage in distinguishing
F from a truly uniformly random oracle, denoted $, as follows:

Advprf
F (A) :=

∣∣∣Pr (AF = 1
)
− Pr

(
A$ = 1

)∣∣∣ .
One way of upper-bounding the prf-advantage of A is to use the H coefficients
technique, which is tightly linked to Mirror Theory. To use this method, we
summarize the interaction of A with its oracle in what we refer to as a transcript

τ = {(X1, Y1), . . . , (Xq, Yq)},

where, for each pair (xi, yi), A made a query xi and received yi as an answer.
We also introduce two random variables Treal and Tideal which correspond to the
value of τ when A interacts respectively with F and $. We say that a transcript τ
is attainable if it satisfies Pr (Tideal = τ) > 0. The set of all attainable transcripts
is written T. One has the following result.
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Lemma 4 ([39]). Let Tgood ⊂ T be a subset of the set of all attainable tran-
scripts. Assume that, for every τ ∈ Tgood, one has

Pr (Treal = τ)

Pr (Tideal = τ)
≥ 1− ε.

Then, one has
Advprf

F (A) ≤ Pr (Tideal ∈ T \Tgood) + ε.

Mirror Theory is generally used when computing the lower bound of the ratio
Pr (Treal = τ) /Pr (Tideal = τ) by providing a lower bound for the number of in-
termediate values for the underlying random permutation π. We now illustrate
this technique by revisiting existing security proofs using Theorem 1.

4.2 The XORP Construction

In [20], Iwata introduced CENC, a beyond-birthday-bound secure mode of oper-
ation which uses an underlying permutation-based PRF dubbed XORP which is
defined as follows:

XORP[w] : {0, 1}n−s −→ {0, 1}wn

x 7−→ ‖wi=1π (〈0〉s‖x)⊕ π (〈i〉s‖x) ,

where s = dlog2(w+ 1)e, and π is a uniformly random secret n-bit permutation.
Later, Iwata, Mennink, and Vizár [21] made the link between XORPand Mirror
Theory explicit, and proved optimal security for the construction, using [41, The-
orem 6]. We revisit their proof by applying Theorem 1 in order to demonstrate
the following result8.

Theorem 2. Let A be an adversary against the prf-security of XORP[w], which
is allowed at most q queries. If q ≤ 2n/12(w + 1)2, one has

Advprf
XORP[w](A) ≤ wq

2n
+

w2q

2n+1
.

Proof. We are going to rely on the H coefficients technique. Let us fix an adver-
sary A against the prf-security of XORP[w], which is allowed at most q queries.
We assume without loss of generality that A is deterministic (as it is time-
unbounded), never repeats queries, and always makes exactly q queries. The
transcript τ of the interaction of A with its oracle can be written as

τ = {(X1, Y1,1‖ . . . ‖Y1,w), . . . , (Xq, Yq,1‖ . . . ‖Yq,w)},

where, for i = 1, . . . , q and j = 1, . . . , w, one has |Yi,j | = n. We say that an
attainable transcript τ is bad if at least one of those conditions is satisfied:

8 We do not claim novelty for this Theorem, but we present its proof for illustration
purpose.
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– there exists (i, j) ∈ (q]× (w] such that Yi,j = 0n;
– there exists (i, j, j′) ∈ (q]× (w]× (w] such that j 6= j′ and Yi,j = Yi,j′ .

The set Tgood consists in all attainable transcripts which are not bad. Since the
Yi,j values are uniformly random and independent in the ideal world, it is easy
to see that one has

Pr (Tideal ∈ T \Tgood) ≤
wq

2n
+

w2q

2n+1
. (10)

Let us fix any good transcript τ . By taking X ′i,j = π (〈j〉s‖Xi), the event Treal =
τ can easily be turned into the following system of bivariate affine equations:

X ′1,0 ⊕X ′1,1 = Y1,1 X ′1,0 ⊕X ′q,1 = Yq,1
... . . .

...
X ′1,0 ⊕X ′1,w = Y1,1 X ′1,0 ⊕X ′q,w = Yq,w

Since τ is a good transcript, the corresponding graph clearly has q components,
of size w + 1, and the sum of labels of edges of any path in the graph is not 0n.
Let us denote N the number of pairwise distinct solutions of this system. Then
the probability that X ′i,j = π (〈j〉s‖Xi) for all pairs (i, j) is exactly 1/(2n)(w+1)q.
Hence, one has

Pr (Treal = τ)

Pr (Tideal = τ)
≥ N (2n)wq

(2n)(w+1)q
≥ 1, (11)

where the last inequality results from the application of Theorem 1. Combining
Lemma 4 with Eqs (10) and (11) ends the proof of Theorem 2.

Remark 5. Note that there exists another proof of optimal security for the XORP
construction [5], that does not rely on Mirror Theory. Instead, it uses the so-
called χ2 technique [10].

4.3 Optimally Secure Variable-Input-Length PRFs

In [6], Cogliati, Jha and Nandi propose several constructions to build opti-
mally secure variable-input-length (VIL) PRFs from secret random permuta-
tions. Those schemes combine a diblock almost collision-free universal hash func-
tion with a finalization function based on the Benes construction [1]. The most
efficient variant, whose representation can be found in Figure 4.1, relies on two
independent permutations, and its security proof [6, Theorem 7.3] involves the
use of Mirror Theory for a single permutation.

First, let us recall the necessary definition for keyed hash function. A (K,X,Y)-
keyed function H is said to be ε-almost universal (AU) hash function if for any
distinct X,X ′ ∈ X, we have

PrK←$K (HK(X) = HK(X ′)) ≤ ε. (12)
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Let us fix a non-empty set X ⊂ {0, 1}∗, and let H be a (K,X,Y)-keyed func-
tion that processes its inputs in n-bit blocks. H is said to be (q, σ, ε)-Almost
θ-Collision-free Universal (or ACUθ) if, for every Xq ∈ (X)q such that Xq

contains at most σ blocks, one has PrC ≥ θ ≤ ε, where

C := |{(i, j) : 1 ≤ i < j ≤ q, HK(Xi) = HK(Xj)}|.

Finally, we say that a pair H = (H1, H2) of two (K,X,Y)-keyed hash functions
H1, H2 is (q, σ, ε2, ε1)-Diblock ACUq (or DbACUq) if H is (q, σ, ε2)-AU and H1,
H2 are (q, σ, ε1)-ACUq.

M

L R

⊕⊕⊕ ⊕⊕⊕

⊕⊕⊕
S

H1 H2

π1(0‖·) π1(1‖·)

π2(0‖·) π2(1‖·)

Fig. 4.1: Representation of the 2k-HtmB-p2[H] based on two uniformly random and
independent n-bit permutations π1, π2. An edge (u, v) with label g denotes the mapping
v = g(u). Unlabelled edges are identity mapping. The inputs to the functions πi(j‖·)
are first truncated before the application of πi.

Having defined the required security notion for the underlying hash function,
the following result holds.

Theorem 3. For ε1, ε2, σ ≥ 0, q ≤ 2n/12n2, and (q, σ, ε2, ε1)-DbACUq hash
function H instantiated with key K ←$K, the prf-advantage of any distinguisher
A that makes at most q queries against 2k-HtmB-p2[H] is given by

Advprf
2k-HtmB-p2[H](A) ≤ 128q2

23n
+

136q2

22n
+

8q

2n
+ ε2 + 2ε1.

The complete proof of this result is exactly the same as the one of [6, Theorem
7.3] where [41, Theorem 6] is replaced with Theorem 1.

Proof Sketch: Let us denote with Mi, for i = 1, . . . , q, the inputs from A.
We introduce several random variables: Li = H1(Mi), Ri = H2(Mi), Xi =
truncn−1(π1(0‖Li)⊕Ri) and Yi = truncn−1(π1(1‖Ri)⊕ Li), so that

Si = π2(0‖Xi)⊕ π2(1‖Yi).
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Additionally, at the end of the interaction of A with its oracle, we release the
values of the Lis, Ris,Xis, and Yis. In the real world, we release the actual
values, while in the ideal world we simply draw uniformly random keys for H1

and H2, along with a lazily sampled uniformly random π1. Note that this can
only increase the advantage of an adversary, so this can be done without loss of
generality.

In order to apply Theorem 1, we need to make sure that the system (S)
consisting of the q equations

Si = π2(0‖Xi)⊕ π2(1‖Yi)

satisfies the initial conditions. We recall that an alternating trail of length k is
a sequence (i1, . . . , ik+1) such that either Xij = Xij+1 or Yij = Yij+1 for j =
1, . . . , k, and consecutive equalities do not involve the same family of variables
(i.e. an equality in X should be followed with an equality in Y ). Moreover, an
alternating cycle is a special type of alternating trail of even length, such that
ik+1 = i1. We say that a transcript τ is bad if at least one of the following
conditions hold:

– τ contains an alternating cycle;
– τ contains an alternating trail (i1, . . . , ik+1) such that ⊕k+1

j=1Sij = 0;

– the largest block of equalities contains at least n+ 1 variables.9

In [6], the authors prove that

Pr (Tideal ∈ T \Tgood) ≤
128q2

23n
+

136q2

22n
+

8q

2n
+ ε2 + 2ε1. (13)

Moreover, for any good transcript τ , one has

Pr (Treal = τ)

Pr (Tideal = τ)
=

N2nq

(2n)qX+qY
≥ 1, (14)

where N denotes the number of p.d. solutions to the system (S) of equations,
and qX (resp. qY ) the number of pairwise distinct Xi (resp. Yi) values, and the
last inequality results from the application of Theorem 1. Combining Lemma 4
with Equations (13) and (14) ends the proof of Theorem 3.

5 Conclusion and Future Work

In this work, we present the first complete and verifiable proof of the Pi ⊕ Pj
Theorem with any ξmax. As an application, we give proofs of n-bit security for
the XORP and 2k-HtmB-p2 constructions, thus confirming the results from [21]
and [6]. Theorem 1 could also be used to revisit the security proofs of bal-
anced Feistel schemes [33] and prove the optimal security of six rounds Feistel

9 We say that two variables are in the same block of equalities if there exists an
alternating trail involving both variables.
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scheme [33]. However, the H coefficients technique can be used to transform cryp-
tographic security proofs into Mirror Theory problems that can be more general
than the one we target in this work. As a consequence, studying generalizations
of Theorem 1 would help to improve security bounds for current and future
cryptographic constructions. Moreover, using our result, one can also show an
asymptotically optimal security bound for DWCDM [14,15] construction albeit
the analysis of some more complicated bad events like bounding an alternating
path of length more than ξ or a valid cycle of length more than ξ etc., where ξ
is a predefined threshold.
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A Postponed Proofs

A.1 Proof of Lemma 2

We fix S ∈ γ ⊆ λ where |γ| = α and a set S with |S| = ` + 1 disjoint with S.
Let τ := γ+S and τ ′ := γ−S+(StS). In words, γ is a set-system that is included
in λ, S is any subset of G of size ` + 1, and S is an element of γ. Then, τ
corresponds to the γ ∪ {S}, while τ ′ corresponds to τ after S and S have been
merged. Looking back at Fig. 3.1, τ and τ ′ would correspond respectively to the
second and third graphs. We assume that γ,S, S are chosen in such a manner
that |P(τ)− P(τ ′)| = D(α, `). Now we prove the inequality in two cases.

Case |S| = 1. In this case, let S = {x}. Then P(τ) = P(γ) · (1− ‖γ‖/2n) from
Eq. (1). Also τ ′−x|StS = γ. Hence from link deletion equation, Eq. (5),

P(τ ′) = P(γ)−N−1
∑

(δ,S′)∈I

P(τ ′δ,S′)

where I := Ix,S = {(δ, S′) : x − δ ∈ S′ ∈ γ−S , S
′ + δ is disjoint with S}. For

z′ ∈ S′ ∈ γ−S , (x − z, S′) 6∈ I if and only if there exists y ∈ S and w ∈ S′

such that x − y = z − w. Thus |I| ≥
∑
S′∈γ−S

(
|S′| −

∑
y∈S 2δS′(x− y)

)
=
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‖γ‖ − |S| −
∑
y∈S 2δγ−S (x− y) ≥ ‖γ‖ − ‖γ‖max · 2δγ . Hence

D(α, 0) = |P(τ)− P(τ ′)|

=

∣∣∣∣∣∣‖γ‖N P(γ)−N−1
∑

(δ,S′)∈I

P(τ ′δ,S′)

∣∣∣∣∣∣
(?)

≤ N−1
∑

(δ,S′)∈I

|P(γ)− P(τ ′δ,S′)|+
2∆γ‖γ‖max · P(λ)

N
(

1− ‖λ\γ‖max×‖γ‖
N

)|λ\γ|
≤ ‖γ \ S‖max

N

∑
S′∈γ\S

D(α− 1, |S′| − 1) +
2∆γ‖γ‖max · P(λ)

N
(

1− ‖λ\γ‖max×‖γ‖
N

)|λ\γ| ,
where the last term in (?) is obtained from Eq. (3).

Case |S| ≥ 2. Fix x ∈ S. By link-deletion equation, we have

P(τ) = P(τ−x|S)− 1

N

∑
(δ,S′)∈I

P(τδ,S′)

P(τ ′) = P(τ ′−x|StS)− 1

N

∑
(δ,S′)∈I′

P(τ ′δ,S′),

where

I := Ix|S = {(δ, S′) : x+ δ ∈ S′ ∈ γ, S′ + δ is disjoint with S \ x},
I ′ := Ix|StS = {(δ, S′) : x+ δ ∈ S′ ∈ γ − S, S′ + δ is disjoint with S tS \ x}.

It is easy to see that I ′ ⊆ I. If (δ, S′) ∈ I \ I ′, then,

– either S′ = S and δ = x− y for some y ∈ S, such that S+ (x− y) is disjoint
with S \ x or

– S′ ∈ γ \ S and δ = x− z for some z ∈ S′, such that S′ + (x− z) is disjoint
with S \ x but not disjoint with S t (S \ x).

The first case can contribute at most |S|. The second case will happen if for
some z, w ∈ S′, and y ∈ S, z − w = x− y. Thus

|I \ I ′| ≤ |S|+
∑
y∈S

δγ−S (x− y) ≤ ‖γ‖max · 2∆γ .

Hence, we have the following:
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D(α, `) = |P(τ)− P(τ ′)|

≤
∣∣P(τ−x)− P(τ ′−x)

∣∣+N−1
∑

(δ,S′)∈I′

∣∣P(τδ,S′)− P(τ ′δ,S′)
∣∣

+
∑

(δ,S′)∈I\I′
P(τδ,S′)/N

≤ D(α, `− 1) +
‖γ \ S‖max

N

∑
S′∈γ\S

D(α− 1, `+ |S′| − 1)

+
2∆γ‖γ‖max · P(λ)

N
(

1− ‖λ\γ‖max×‖γ‖
N

)|λ\γ| . (15)

The last inequality follows from the observation that τδ,S′ and τ ′δ,S′ are considered
when we take maximum to compute D(α− 1, `+ |S′| − 1). Moreover, from our
initial bound,

P(τδ,S′) ≤ P(γ) ≤ P(λ)/

(
1− ‖λ \ γ‖max × ‖γ‖

N

)|λ\γ|
Now, taking upper bounds of the total size terms, and adding some positive
terms, the inequality, Eq. (15) can be easily modified to the theorem statement,
Eq. (7).

A.2 Proof of Recursive Inequality Lemma

Let us denote by an ordered tuple of integers from [q], as ik := (i1, · · · , ik) ∈ [q]k.

Note that, for all positive integer j, ej ≥ jj

j! and so 1/j! ≤ (e/j)j , and we have(
m

j

)
≤ mj

j!
≤ (em/j)j . (16)

This inequality will be frequently used for the proof of this lemma. We also use

the following fact extensively: for r < 1,
∑
k≥i r

k ≤ ri

1−r .

We state the following claim, which follows from iterated applications of the
recursive inequality. A proof of the claim is deferred to the end of this section.

Claim 1. For any 0 ≤ d ≤ ξn, and 0 ≤ ` < ξ − 1 we have

a0,` ≤
d∑

k=d d−`ξ e

(
d

k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−d

+ C

d−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j . (17)
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Proof of Lemma 3.4: Let us take d = ξn. In that case, Claim 1 becomes

a0,` ≤
ξn∑

k=d ξn−`ξ e

(
ξn

k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−ξn

+ C

ξn−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j .

We are going to upper bound both terms of the sum in subsequent turns. For
the first term, note that one has k ≥ n− `

ξ > n− 1 since ` < ξ− 1 by definition.
This implies that (

ξn

k

)
≤
(
eξn

k

)k
≤
(
eξn

n− 1

)k
≤ (2eξ)k.

Hence, using the initial bound, one has

ξn∑
k=d ξn−`ξ e

(
ξn

k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−ξn

≤
ξn∑

k=d ξn−`ξ e
(2eξ)kqk(4ξeq)−k ≤ 4

2n
≤ 4

N

As for the second term, we make the following observation: For ξk < i ≤ ξ(k+1),
k ∈ (n− 1], j ≥ d i−`ξ e ≥ k, and hence(

i

j

)
≤
(
ei

j

)j
≤
(
eξ(k + 1)

k

)j
≤ (2eξ)j .

For 0 ≤ i ≤ ξ and j ≥ 1,
(
i
j

)
≤
(
ei
j

)j
≤ (eξ)j . Thus, we are going to break the

sum into two parts:

ξn−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j =

ξ∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j +

ξn−1∑
i=ξ+1

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j

≤ ξ + 1 +

ξ∑
i=0

i∑
j=1

(eξ)j(4eξ)−j

+

ξn−1∑
i=ξ+1

i∑
j=di/ξe−1

(2eξ)j(4eξ)−j

≤ ξ + 1 +
ξ + 1

3
+ 4

ξn−1∑
i=ξ+1

1

2di/ξe

(1)

≤ 4

3
(ξ + 1) + 2ξ

(2)

≤ 4ξ,

where the last inequality follows from the fact that ξ ≥ 2.

Proof of the Claim : We prove the claim by induction on d. The result holds
trivially for d = 1 (by applying d = ` = 0 in Eqn. (9)). Now we prove the
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statement for d0 + 1, assuming it true for d0. Therefore, we have

a0,` ≤
d0∑

k=d d0−`ξ e

(
d0
k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−d0

+ C

d0−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j

≤
d0∑

k=d d0−`ξ e

(
d0
k

) ∑
ik∈[q]k

 ∑
ik+1∈[q]

ak+1,k+1+
∑k+1
j=1 `ij−(d0+1) + C · (4ξeq)−k


+

d0∑
k=d d0−`ξ e

(
d0
k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−(d0+1) + C

d0−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j

≤
d0+1∑

k=d d0+1−`
ξ e

(
d0

k − 1

) ∑
ik−1∈[q]k−1

∑
ik∈[q]

ak,k+
∑k
j=1 `ij−(d0+1)

+

d0+1∑
k=d d0+1−`

ξ e

(
d0
k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−(d0+1)

+ C

d0∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j .

The range of the first and second summations has deliberately been taken to start
from d(d0 + 1− `)/ξe ≤ d(d0 − `)/ξe + 1, because if k < d(d0 + 1− `)/ξe, then

k +
∑k
j=1 `ij − (d0 + 1) ≤ kξ − (d0 + 1) < 0 and hence ak,k+

∑k
j=1 `ij−(d0+1) = 0.

Now we can see that the coefficient of
∑
ik∈[q]k ak,k+

∑k
j=1−(d0+1) in the above

summation is bounded by
(
d0
k−1
)

+
(
d0
k

)
=
(
d0+1
k

)
. This concludes the proof of the

claim. ut
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