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Abstract. In CRYPTO’03, Patarin conjectured a lower bound on the
number of distinct solutions (P1, . . . , Pq) ∈ ({0, 1}n)q satisfying a system
of equations of the form Xi⊕Xj = λi,j such that P1, P2, . . ., Pq are pair-
wise distinct. This result is known as “Pi⊕Pj Theorem for any ξmax” or
alternatively as Mirror Theory for general ξmax, which was later proved
by Patarin in ICISC’05. Mirror theory for general ξmax stands as a pow-
erful tool to provide a high-security guarantee for many blockcipher-(or
even ideal permutation-) based designs. Unfortunately, the proof of the
result contains gaps that are non-trivial to fix. In this work, we present
the first complete proof of the Pi⊕Pj theorem for a wide range of ξmax,
typically up to order O(2n/4/

√
n). Furthermore, our proof approach is

made simpler by using a new type of equation, dubbed link-deletion
equation, that roughly corresponds to half of the so-called orange equa-
tions from earlier works. As an illustration of our result, we also revisit
the security proofs of two optimally secure blockcipher-based pseudoran-
dom functions, and n-bit security proof for six round Feistel cipher, and
provide updated security bounds.

Keywords: Mirror Theory · system of affine equations · PRP · PRF ·
beyond-birthday-bound security

1 Introduction

Pseudorandom Function (PRF) and Pseudorandom Permutation (PRP) are two
fundamental cryptographic objects in symmetric key cryptography. Extensive
use of pseudorandom functions in designing cryptographic schemes e.g., authen-
tication protocols, encryption schemes, hash functions, etc. makes it a valuable
object from the cryptographic perspective. However, practical candidates for
PRF are very scarce. On the other hand, PRP or blockciphers are available in
plenty in practice. One can consider a blockcipher to be a pseudorandom func-
tion, but due to the PRP-PRF switching lemma, it comes at the cost of birthday-
bound security, i.e., if the block size of the blockcipher is n-bits, then one can
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consider the blockcipher to be a secure PRF until the number of queries reaches
2n/2. Such a bound is acceptable when n is moderately large, e.g., 128 bits. How-
ever, due to the ongoing trend of lightweight cryptography, several lightweight
blockciphers have been designed with smaller block size e.g., 64 bits. In such a
situation, a blockcipher is not considered to be a good PRF as birthday-bound
security is not adequate with 64 bit block size. Therefore, the natural question
arises:

Can we design a pseudorandom function out of lightweight blockciphers that
guarantees security beyond the birthday bound?

It turns out that over the past several years researchers have
invested a lot of effort in designing such pseudorandom func-
tions [3,20,22,10,19,45,46,47,34,14,13,23]. Out of several such designs, xor
of two pseudorandom permutations, XOR2(x) := Ek1(x) ⊕ Ek2(x) 5, and its
single-keyed variant XOR1(x) := Ek(0‖x) ⊕ Ek(1‖x), are the most popular
ones. In a series of papers [39,40,42], Patarin claimed that XOR construction
(i.e., both XOR1 and XOR2) is secure up to O(2n) queries. Following Patarin’s
analysis, XOR2 construction yields the following system of bivariate affine
equations:

Eλ = {P1 ⊕ P2 = λ1, P3 ⊕ P4 = λ2, . . . , P2q−1 ⊕ P2q = λq},

where q ≥ 1 and λ := (λ1, . . . , λq) is a tuple of n-bit binary strings (similarly the
XOR1 construction yields the same system of equations with the additional re-
quirement that λ1, . . . , λq are non-zero n-bit binary strings). The entire security
analyses for both the constructions rely on finding a good lower bound on the
number of solutions (P1, . . . , P2q)

6 to Eλ where (i) for XOR1 construction, we
require that Pi 6= Pj for i 6= j, while (ii) for XOR2 construction, we require that
Pi 6= Pj for i 6= j, such that i, j are either both odd or both even. During the
process of finding the solutions to Eλ, assigning values to a variable Pi in Eλ fixes
the value of exactly two variables (which are Pi and Pi+1 if i is odd and Pi−1,
Pi otherwise) in Eλ. However, for a generic bivariate system of affine equations,
assigning value to a single variable Pi can fix the values of k ≥ 2 variables in the
set of equations. Patarin [40] named this notion as block maximality in a system
of bivariate affine equations, denoted as ξmax. It is natural to see that the block
maximality of the system of equations Eλ is 2 and thus the security analysis of
the XOR construction is reduced to establishing the following result.

“For a given system of bivariate affine equations over a finite group with
non-equalities among the variables and ξmax = 2, the number of distinct
solutions is always greater than the average number of solutions.”

Patarin named this result as Theorem Pi ⊕Pj for ξmax = 2 [37] (and later
in [40], named Mirror theory the study of sets of linear equations and linear non-
equations in finite groups). This result was stated as a conjecture in [35] and an

5 Here, Ek1 and Ek2 denote two n-bit independent pseudorandom permutations
6 Abusing the notation, we use the same symbol to denote the variables and the

solution of a given system of equations.
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incomplete and at times unverifiable proof is given in [37]. The result has been
acknowledged in the community as a potentially strong approach to establish the
optimal security of XOR constructions (i.e., XOR1 and XOR2). Beside this result,
Patarin [37] also claimed that the number of distinct solutions to a system of q
bivariate affine equations with 2 < ξmax � 2n/2 and with non-equality among the
variables is always larger than the average number of solutions provided q � 2n.
Patarin named this result the Theorem Pi ⊕Pj for any ξmax. This result was
stated as a conjecture [35, Conjecture 8.1] in the context of analysing the security
of the Feistel cipher. Only a couple of years later, this result was articulated in
many follow-up works for analysing the security of the xor of two permutations,
and it took a few articles [37,39,40,42] for his result and security argument
to evolve. Later, in 2017, this work culminated in a book [32] called Feistel
Ciphers: Security Proofs and Cryptanalysis by Nachef et al. Unfortunately, some
important results were either hard to verify, or stated without proof, which
has been reported in multiple works [7,11,15,25,29]. While this has led to some
innovations such as the development of the aforementioned χ2 technique, this
state of affairs is unsatisfactory as Mirror Theory is an essential tool for provable
security in symmetric cryptography.

1.1 Main Result and Our Contribution

In this paper, our goal is to give a complete and easily verifiable proof of the
Pi ⊕ Pj Theorem with any ξmax. From a high level, this amounts to lower-
bounding the number of solutions of a system of equations of the form Pi⊕Pj =
λij , such that the Pi variables are pairwise distinct.

This result has seen several applications in proving the optimal security
bound for several blockcipher and tweakable blockcipher-based schemes such as
optimally-secure PRFs, XORP [21,22] and 2k-HtmB-p2 [7] [See Sect. 4]. This re-
sult is also applied in the optimal security proof of the Feistel scheme [36,32,41].
The significance of the last application is due to the wide-ranged use of this
scheme. Feistel scheme has been classically used to design many blockciphers
(like DES [1], Lucifer [44] etc.), which has the prime advantage over the alter-
native, substitution permutation networks, of being invertible even if the round
functions are not. The Feistel scheme has also been used in format preserving
encryption, an important example being the Thorp shuffle [4], which is but an
unbalanced Feistel cipher [43]. Along with giving a verifiable proof of the Pi⊕Pj
Theorem with any ξmax, we also provide updated security bounds for these three
constructions using our main result, along with proof sketches, to illustrate the
impact of the Pi ⊕ Pj Theorem with any ξmax.

Notations. For integers a ≤ b, the set {a, a + 1, · · · , b} is denoted as [a..b] (or
simply [b], when a = 1). We write X←$S to mean that X is sampled uniformly
from S and independent of all random variables defined so far. Similarly, we
write X1, . . . ,Xs←$S to mean that X1, . . . ,Xs are uniformly and independently
distributed over S. We write Xq to denote a q-tuple (X1, . . . , Xq). For x ∈ S, we
write S \x to mean S \ {x}. We use AtB to denote the disjoint union of A and
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B (which implicitly means that A and B are disjoint). We consider the vector
space {0, 1}n over the field {0, 1}, endowed with the two binary operations, ⊕
(i.e., addition modulo 2) and multiplication modulo 2. We denote by N := 2n,
the number of elements in {0, 1}n. For a positive integer e ≤ N , we write Ne :=
N(N − 1) · · · (N − e+ 1).

A multiset γ is a collection of elements that can repeat. In other words,
multiset is an unordered version of a tuple. For S ∈ γ, we write γ−S to denote
the multiset formed by removing S from γ. We similarly write γ+T to denote the
multiset formed by adding an element T to γ. For S ∈ γ, we also write γ−S+T
to denote the resulting multiset after deleting S and adding T to γ. We say that
γ is a set-system if it is a multiset of sets. When we want to emphasize an
ordering of the elements of γ, we also write the set-system as γ[α] = (γ1, . . . , γα),
which is an enumeration of the sets in γ. In this paper, we consider set-systems
γ of non-empty subsets of {0, 1}n.

System of Difference Equations. Consider a system of difference equations AX =
Λ over the vector space {0, 1}n, where A = (Aij)i∈[m],j∈[p] is a m×p matrix with
full row rank (and hence consistent), such that each row contains exactly two
1’s, and remaining zeros, X is a p× 1 vector of variables and Λ ∈ ({0, 1}n)m. As
the column sum is zero, we must have m < p 7. Note that each equation in the
above system is of the form Xj ⊕Xk = λi for some i, j, k with j 6= k. A solution
Xp ∈ ({0, 1}n)p of the above system is called a pairwise distinct solution, or in
short a p.d. solution if Xj 6= Xk for j 6= k ∈ [p]. The number of solutions of
the system of equations is exactly Np−m which can quite easily be shown by
using elementary linear algebra. However, counting the number of p.d. solutions
to this system of equations is quite involved. The main aim of this paper is to
provide a good lower bound to the number of p.d. solutions.

Graph Theoretic Representation of the System. With every matrix A as de-
scribed above in the system of difference equations, we can associate a labeled
directed graph G = (V := [p], E, L) where the edge set E = {(j, k) ∈ V 2 | ∃i ∈
[m] such that Aij = Aik = 1} and L(j, k) = λi if Aij = Aik = 1. So, whenever
there is an edge between j and k, we have directed edges in both directions.
Thus, every connected component is strongly connected (there are edges in both
directions between two connected vertices). The full row rank of A also implies
that the graph G is acyclic and hence is a forest. If the graph G has q compo-
nents then we must have |E| = |V | − q, or m = p− q. Given a directed path P
from j to k, the equation Xj ⊕Xk =

⊕
e∈P L(e) is a dependent equation (i.e.,

it can be obtained by adding a set of equations from the system). So, one can
equivalently represent the system of difference equations AX = Λ such that the
corresponding graph has only star graphs as components. In other words, the

7 This is because, the column sum is zero, which implies that the all-1 vector belongs
to the kernel of the matrix, implying that it is non-invertible, and since it is already
assumed to have full row rank, it cannot possibly have full column rank, hence
m = rank(A) < p.
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system of equations corresponding to a component is of the form

Xj1 ⊕Xjξ = λi1 , . . . , Xjξ−1
⊕Xjξ = λiξ−1

.

We call such a system of difference equations standard system of difference equa-
tions.

Definition 1. A system of difference equations AX = Λ is called p.d.-consistent
if λ′i 6= 0 for all i ∈ [m] and for all i 6= i′ in the same component, λ′i 6= λ′i′ , where
A′X = Λ′ := λ′m is a standard form for the system.

To have a p.d. solution, p.d.-consistency is a necessary condition. The fol-
lowing theorem provides a lower bound on the number of p.d. solutions for any
p.d.-consistent system of difference equations.

Theorem 1 (Main Result). Let G be the associated graph of a p.d.-consistent
system Am×pX = Λ, of equations over {0, 1}n. Suppose the number of vertices

in the largest component of G is ξmax. If p ≤
√
N or

√
N ≥ ξ2max log2N + ξmax,

and 1 ≤ p ≤ N/12ξ2max, then the number of p.d. solutions of the system AX = Λ
is at least (N)p/Nm.

Remark 1. Note that, in most cryptographic applications (where N ≥ 264), ξmax

is either a small constant, or can be shown to be smaller than log2N with over-
whelming probability. Typically, this is sufficient to prove that the cryptographic
scheme is secure as long as the number q of adversarial queries is upper bounded
by N/12ξ2max, as (log2N)3 ≤

√
N for N ≥ 230.

1.2 Applications of Theorem Pi ⊕ Pj for any ξmax

Over the years, the Theorem Pi ⊕ Pj for any ξmax has been proven to
be a significant result in the context of analysing security bounds of nu-
merous cryptographic designs. Apart from the stand-alone value of XOR2

or XOR1 constructions, they are used as a major component in many
important blockcipher and tweakable blockcipher-based designs that in-
cludes [45,46,47,34,14,13,24,28,21,18,23,33,27]. However, the security proofs of
most of these designs, done by application of the H-Coefficient technique [38],
involve fixing the outputs, which in turn determines the inputs, thus getting
rid of the adaptive nature of the adversary, and we cannot assume distinct-
ness of these outputs of internal primitives because that would lead to the sub-
optimal birthday-bound, rendering the Pi ⊕ Pj Theorem for ξmax = 2, useless
for these security proofs. Instead, these security proofs require (by application
of the H-Coefficient technique [38]) a good lower bound on the number of dis-
tinct solutions to a system of bivariate affine equations with a general ξmax and
therein comes the role of the result “Theorem Pi ⊕ Pj for any ξmax”. It has
also been used in proving the beyond-birthday-bound security of many nonce-
based MACs including [15,16,18,31,5]. Mennink [30] showed the optimal security
bound of EWCDM using this result as the primary underlying tool, and Iwata
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et al. [22] also used it to show the optimal security bound of CENC. Despite the
debate in the community regarding the correctness of the proof of “Theorem
Pi ⊕ Pj for any ξmax” [37,40], several authors have used this result to derive an
optimal bound for some constructions such as [22,30,48]. This triggers the need
for a correct and verifiable proof of these two results, which will eventually help
to correctly establish the security proof of the above constructions and improve
their security.

1.3 Related Work

Beside the applicability of the Theorem Pi ⊕ Pj for general ξmax, the more
restricted result of “Theorem Pi ⊕ Pj for ξmax = 2” has already been linked
to different cryptographic constructions. In particular, equations of the form
P2i−1 ⊕ P2i = λi, which correspond to a simple variant of the systems we con-
sider in this work, have been considered to prove the security of the XORP[2] con-
struction [37,40,32,17,9]. In [42], [8] and [17], systems of the form ⊕kj=1Pi,j = λi,
where the values (Pi,j)i have to be pairwise distinct for j = 1, . . . , k, have been
studied to prove the security of the sum of permutations. Recently, a similar
problem in the tweakable setting has been examined in [25], with an applica-
tion to the security of the CLRW2 construction 8. Mirror Theory has also been
considered for nonce-based MACs that rely on an underlying blockcipher or
tweakable blockciphers, such as in [15,16,18,31,26]. In that case, constraints also
include inequalities of the form Pi ⊕ Pj 6= λi,j , which also have to be taken into
account. Despite the extensive use of the result, its correctness was subject to
debate [11]. In [26], Kim et al. have given a verifiable proof of the mirror theory
when the number of equations is below the bound 23n/4. Datta et al. [12] have
extended this result for a system of bivariate affine equations and non-equations.
Recently, Dutta et al. [17] and Cogliati and Patarin [9] have independently given
a verifiable proof of the “Pi ⊕ Pj theorem” for ξmax = 2.

Organization. In Sect. 2, we prove an equivalent formulation of our main result
through a probability of an event involving disjointness of some random sets,
modulo a Proposition, proof of which is postponed to Sect. 3. We give an overview
of our proof strategy and a brief comparison with previous proofs in Sect. 3.2.
The proof of the Proposition requires a recursive inequality lemma, proof of
which is deferred in Sect. A.2. Then, Sect. 4 briefly revisits several proofs that
rely on the Pi ⊕ Pj Theorem with any ξmax, and provides the corresponding
updated security bounds. Finally, we outline possible extensions of our work in
Sect. 5.

8 CLRW2 or cascading LRW2 is a tweakable blockcipher, defined as
CLRW2((k1, k2, h1, h2), t,m) = LRW2((k2, h2), t, LRW2((k1, h1), t,m)), with
LRW2((k, h), t,m) = E(k,m⊕ h(t))⊕ h(t), where E is a block cipher, k is the block
cipher key, and h is an XOR universal hash function
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2 Probability of Disjointness: An Equivalent Formulation

In order to streamline the proof of Theorem 1, we will operate two distinct
changes. First, note that, in order to have solutions, the system has to be p.d.
consistent, which corresponds to two distinct conditions: λ′i 6= 0 for all i ∈ [m],
and for all i 6= i′ in the same component, λ′i 6= λ′i′ . While easy to manipulate,
both conditions have to be handled in a different way, which complicates the
proof. The simplest fix is to introduce, for every component, an additional λ′

value that can be thought to be 0n. Second, in order to avoid powers of N
in our formulas, we prefer switching to a probabilistic formulation where, for
every component, we simply sample uniformly at random a value in {0, 1}n, and
consider a disjointness event that is derived from the system of equalities.

More formally, given a set-system γ = {γi : i ∈ [α]}, we define the following
event:

Disj(γ) := γ1 ⊕ R1, . . . , γα ⊕ Rα are disjoint 9

along with the following probability:

P(γ) = Pr
Rα

(Disj(γ)),

where R1, . . . ,Rα←$ {0, 1}n. In words, the event says that a random and in-
dependent translation of sets from a collection are disjoint. We write ‖γ‖ :=∑α
i=1 |γi| and ‖γ‖max = maxi |γi|. It is easy to see that the probability of dis-

jointness is invariant under any translation of the sets, i.e., P(γ) = P(γ′) where
γ′i = γi ⊕ ai for a1, . . . , aα ∈ {0, 1}n.

Theorem 1 can be rephrased in the following way.

Theorem 1’ (Equivalent Formulation) Let γ be a set-system of elements of
{0, 1}n such that ξmax = ‖γ‖max. If ‖γ‖ ≤

√
N or

√
N ≥ ξ2max log2N + ξmax,

and 1 ≤ ‖γ‖ ≤ N/12ξ2max, then

P(γ) ≥ (N)‖γ‖

N‖γ‖
.

The equivalence between both statements is proven in Sect. 2.1. From a high
level, the proof of Theorem 1’ works in two steps:

1. if γ is small (‖γ‖ ≤
√
N), then simple calculations show that Theorem 1’

holds;
2. otherwise, we prove that, for a well-chosen a ∈ T ∈ γ, one has

P(γ) ≥
(

1− ‖γ‖ − 1

N

)
P(γ′),

where γ′ is a set system containing exactly the same sets as γ, except that
the set T has been replaced with T \{a}; clearly, applying point 2 repeatedly
until ‖γ‖ ≤

√
N allows us to conclude the proof of Theorem 1’.

9 For a set A ⊆ {0, 1}n and a n-bit number x ∈ {0, 1}n, x⊕A := {x⊕ a | a ∈ A}
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Intuitively, the element that we remove from γ is the one that appears, in the
associated system of equations, with maximum multiplicity.

More formally, given z ∈ {0, 1}n \ {0n}, and a set S, we define δS(z) as the
number of 2-subsets {a, b} of S with a⊕ b = z. For a set-system γ, we define

δγ(z) :=
∑
S∈γ

δS(z), ∆γ := max
z∈{0,1}n

δγ(z).

Clearly, for any set-system γ, ∆γ ≥ 1. The underlying statement behind the
second point of our proof strategy is the following one.

Proposition 1. Let λ be a set-system with
√
N ≤ ‖λ‖ ≤ N/12ξ2max where

ξmax = ‖λ‖max satisfies the bound given in Theorem 1’, i.e.,
√
N ≥ ξ2max log2N+

ξmax. Suppose the maximum ∆λ is attained for a⊕ b with {a, b} ⊆ T ∈ λ. Then,

P(λ) ≥
(

1− ‖λ‖ − 1

N

)
· P(λ−a|T )

where λ−a|T = λ−T+T\a (i.e. replacing the element T by T \ a).

The proof of Proposition 1 is given in Section 3, and we explain how to derive
Theorem 1’ from Proposition 1 in Section 2.2.

2.1 Proof of Equivalence

Here we prove why Theorem 1’ is an equivalent statement of our main theorem.
First, we establish a one-to-one relationship between the number of disjoint
favorable solutions rq with the number of p.d. solutions of systems of equations.

Let AX = Λ be a system of difference equations in standard form, and G be
its associated graph. For every component C, let LC be the set of all labels. By
definition of p.d.-consistency, all elements of LC are distinct (and hence it is a
set of size ξC−1, where ξC is the number of vertices in C) nonzero elements. Let
iC denote the center of the star component. Thus, for all other j ∈ C, we have
an equation of the form Xj⊕XiC = λk for some k. Now we consider a set-system
γ containing all sets of the form SC := LC ∪ {0}. Thus, ‖γ‖ =

∑
C |C| = e and

|γ| = q. Let C1, . . . , Cq, denote the components (written in some order) and let
ij := iCj . Now consider a map f , mapping a p.d. solution xe of the system to
rq, where rj = xij for all j ∈ [q]. It is easy to see that SCj ⊕ rj are disjoint sets
(as these represent all x values). Moreover, f is clearly injective as a solution is
uniquely determined by the tuple (xi1 , . . . , xiq ). So, f is an injective function.
Conversely, for any rq with disjoint SCj ⊕ rj ’s, we can define xe consisting of
all values from the set tj(SCj ⊕ rj) in an appropriate order (with xij = rj).
Clearly, this map is f−1 and so f is a bijective function. Hence, the number
of p.d. solutions for AX = Λ is same as the number of solutions of rq so that
Disj(γ) holds. Second, we note that Theorem 1’ can be simply restated as the
number of solutions r|γ| so that (γi ⊕ ri)’s are disjoint for all i ∈ [q] is at least

(N)‖γ‖

N‖γ‖−|γ|
=

(N)e

Ne−q ,
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where p − q = m corresponds to the number of equations in the system AX =
Λ. This proves the equivalence between our main theorem and the equivalent
formulation.

2.2 Proof of Theorem 1’

We first prove the statement when ‖γ‖ ≤
√
N . In this case we remove elements

from γ one by one until we end up with a single element. We first note that

P(γ) = P(γ−S)×
(

1− ‖γ‖ − 1

N

)
if |S| = 1 (1)

P(γ) ≥ P(γ−S)×
(

1− |S| × ‖γ−S‖
N

)
if |S| ≥ 2 (2)

where S ∈ γ. The above relations are easy to verify (by looking at the restriction
imposed on R which translates the set S). Indeed, let us assume S = γ1. Then,
using the independence of the (Ri)i=1,...,|γ| random variables, once R2, . . . ,R|γ|
are chosen such that the equations from Disj(γ−S) are satisfied, Disj(γ) adds the
following restrictions on R1:

R1 ⊕ x 6= Ri ⊕ y for all x ∈ S, i 6= 1, y ∈ γi.

Hence, if |S| = 1, R1 has to be different from exactly ‖γ‖ − 1 values, while, if
|S| 6= 1, it has to avoid at most |S| × ‖γ−S‖ group elements.

Let us write Wi := (1 − i
N ), so that

∏k−1
i=1 Wi = (N)k/Nk. Now we claim

that, for ‖γ‖ ≤
√
N ,

(
1− |S| × ‖γ−S‖

N

)
≥
‖γ‖−1∏
i=‖γ−S‖

Wi (3)

and hence P(γ) ≥ P(γ−S)×
∏‖γ‖−1
i=‖γ−S‖Wi. After repeatedly removing an element

one by one, we have P(γ) ≥
∏‖γ‖−1
i=1 Wi which proves the theorem. Now we prove

Eq. (3). It is sufficient to show that

1− ar

N
≥
(

1− a

N

)
· · ·
(

1− a+ r − 1

N

)
where a+ r ≤

√
N . This can be easily shown by induction on r. For r = 1, it is

obvious. Now by applying induction hypothesis for r, we obtain

(
1− a

N

)
· · ·
(

1− a+ r − 1

N

)(
1− a+ r

N

)
≤
(

1− ar

N

)(
1− a+ r

N

)
≤ 1− ar + a

N
− r

N

(
1− a(a+ r)

N

)
≤ 1− ar + a

N
.
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For the last inequality we use the fact that a+ r + 1 ≤
√
N .

For the next case, we assume that
√
N ≤ ‖γ‖ ≤ N/12ξ2max, i.e. ‖λ‖ is within

the required bounds for which Proposition 1 holds. We can create a sequence of
nested set-systems {γ(i)}σi=0, with

γ(0) := γ, ‖γ(i+1)‖ = ‖γ(i)‖ − 1, ∀i ∈ [σ − 1], ‖γ(σ)‖ ≤
√
N,

in the following manner: Let {xi, yi} ⊆ Si ∈ γ(i) such that xi ⊕ yi attains the
highest multiplicity in γ(i), ∆γ(i) . We choose one arbitrarily if there exists more

than one choice. We define γ(i+1) := γ
(i)
−xi|Si . Now for every i ∈ [σ−1], if |Si| = 1

we apply Eq. (1), and if |Si| ≥ 2, we apply Proposition 1, to obtain

P(γ) ≥ P(γ(σ))

σ∏
i=1

(
1− ‖γ‖ − i

N

)
.

We already have shown the result for γ(σ) that P(γ(σ)) ≥ (N)‖γ
(σ)‖/N‖γ

(σ)‖,
which completes the proof.

3 Proof of Proposition 1

Notations and Conventions. In the Proposition statement, {a, b} ⊆ T ∈ λ and
∆λ =

∑
S∈λ δS(a ⊕ b). Let λ = {λi : i ∈ [q]} and we write |λi| = ξi, ξmax =

maxi ξi and σ :=
∑
i ξi. We also write ∆ to denote ∆λ. Throughout the section

we follow this notation. Moreover, we use the notation γ to denote a set-system
such that γ ⊆ λ (as a multiset).

3.1 Initial Condition

Note that, after applying Eq. (2) repeatedly (or by applying induction on |λ\γ|)
for γ ⊆ λ, we have

P(λ)

P(γ)
≥
(

1− qξ2max

N

)|λ\γ|
. (4)

We call this an initial condition that would be used later to prove Proposition 1.

3.2 Link-deletion Equation and Proof Overview

Link-deletion Equation. Let x ∈ S ∈ γ ⊆ λ. Let us write

γ = {γ1, . . . , γα}

using an arbitrary ordering of the multiset γ, and let us assume S = γ1 and
x = γ1,1. Then, the event Disj(γ) corresponds to the fact that all the Ri ⊕ γi,j
values are pairwise distinct, and the event Disj(γ−x|S) corresponds to the same
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event, where the conditions involving R1 ⊕ γ1,1 are ignored. Hence, one has
Disj(γ) ⇒ Disj(γ−x|S). Suppose Disj(γ−x|S) ∧ ¬Disj(γ) holds. Then, there must
exist y ∈ S′ ∈ γ−γ1 such that S′ = γi for some integer i 6= 1, and y⊕Ri = x⊕R1.
As (S \ x)⊕R1 is disjoint from S′⊕Ri (same as S′⊕ (x⊕ y⊕R1)), S \ x should
be disjoint from S′ ⊕ x⊕ y. Let

I := {(x⊕ y, S′) : y ∈ S′ ∈ γ−S , S′ ⊕ (x⊕ y) is disjoint with S \ x}.

· · · · · ·
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· · ·
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1
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·γ

i−
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i−
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· · ·
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,1
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γ
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1
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1

s
k+

1
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`
+
1

· · · · · ·

···

· · ·

γ1
,1

··
·

γ
1,ξ

1

γ i
−1
,1

··
·γ

i−
1,ξ
i−

1

γ i
+
1,
1

··
·γ

i+
1,ξ
i+

1

γα
,1

··
·

γ
α
,ξ
α

s
1

s 2

sk−
1

s
k+

1

s
`
+
1

δ
⊕
γ
i
,1

· · ·
δ⊕

γi,ξi

γ :

γ−sk|S :

γδ,S′ :

Fig. 3.1: Graphical depiction of the link-deletion operation. Here, we have represented
graphs corresponding to the three types of terms appearing in the link-deletion equa-
tion, with x = sk, y = γi,j , δ = sk ⊕ γi,j , S = {s1, . . . , s`+1}, and S′ = γi. Central
vertices correspond to the R1, . . . ,Rα,R random variables.

Note that simultaneously R1 ⊕ x = Ri ⊕ y = Rj ⊕ y′ for some y′ ∈ γj ∈ γ−S
cannot hold. Since otherwise, the disjointness of γ−x|S cannot hold. Thus, we
have established a useful relation, called link-deletion equation.

P(γ) = P(γ−x|S)− 1

N

∑
(δ,S′)∈I

P(γδ,S′) (5)

where γδ,S′ = γ−S−S′+S1 and S1 = (δ ⊕ S′) t (S \ x). This is because, the
probability P (γ−x|S) can be divided in two disjoint events:

– either adding x as a link to the set S does not create any collision (this
happens with probability P(γ)), or
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– a collision is created; all those collision events are disjoint, and correspond to
a unique element from the set I. For every (δ, S′) ∈ I, the probability that
such a collision occurs (while keeping all the other disjointness conditions), is
exactly P(γδ,S′)/N , as this event corresponds to the event, Disj(γδ,S′)∧(R1 =
Ri ⊕ δ), where the sub-event R1 = Ri ⊕ δ occurs with probability 1/N
independently of Disj(γδ,S′) (because γδ,S′ does not involve S′ and hence
Ri).

Proof Strategy. In order to prove Proposition 1, we will prove that |P(γδ,S′) −
P(γ−x|S)| is small enough in front of P(γ−x|S), for all (δ, S′) ∈ I. This will be
done in the following steps.

1. Upper bound the size of the set I (in Section 3.3).
2. Establish a recursive inequality between the maximum difference between

terms of the form P(γ′−x|S), and terms of the form P(γ′δ,S′), with γ′−S ⊂ λ,

and S an arbitrary set of some fixed size (in Section A.2). This will be done
by applying the link-deletion equation to the two probabilities that maximize
the difference term, thus introducing new difference terms and an error term.

3. After applying this inequality a logarithmic number of times along with
simple bounds on the probability ratios, prove that remaining terms become
sufficiently small thanks to the geometric reduction offered by the recursive
inequality (Sections 3.5 and A.2).

Comparison with Previous Proofs. The main difference with previous proof
strategies is centered around the link-deletion equation. Indeed, previous works
started with the introduction of the so-called orange equation, which can be seen
as two consecutive applications of the link-deletion equations. Hence, instead of
always merging a single set S′ ∈ γ with the final set S, this could be seen as
merging two distinct sets S′, S′′ ∈ γ, which leads to a more complicated analysis.

3.3 Size Lemma

We also write the above set I as Ix|S to emphasize that I depends on x, S.
Clearly, for all x ∈ S ∈ γ, |I| ≤ ‖γ‖. However, we establish an improved upper
bound for the size of Ia|T where a and T are described in the statement of the
Proposition.

Lemma 1 (size lemma). For a given a ∈ T ∈ λ as described in the Proposition
statement, we have |Ia|T | ≤ ‖λ‖ −∆− |T |/2.

Proof. Take any S ∈ λ−T . Note that there are δS(a⊕b) many 2-sets {w1, w2} ⊆ S
such that w1 ⊕ w2 = a ⊕ b and hence b = w2 ⊕ (a ⊕ w1) ∈ S ⊕ (a ⊕ w1). So,
(a⊕ w1, S) 6∈ Ia|T . So,

|Ia|T | ≤
∑

S∈λ\T

(|S| − δS(a⊕ b)) = (‖λ‖−|T |)−∆λ+δT (a⊕b) ≤ ‖λ‖−∆λ−|T |/2,
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as δT (a⊕ b) ≤ |T |/2. Indeed, for every element, x ∈ T , there exists at most one
element y in T such that x⊕ y = a⊕ b. In the case where it exists, then neither
x nor y can be part of a different 2-set. ut

3.4 Recursive Inequality of D-Terms

In this section, we introduce D-terms, which correspond to the maximum dif-
ference between the two types of terms that can appear in the link-deletion
equation. Formally, one has the following definition.

Definition 2. τ = γ+U with γ ⊆ λ where |γ| = α and |U | = ` + 1. For any
S ∈ γ disjoint with U , let τ ′ := γ−S+(StU) (same as τ−S−U+StU , i.e., we merge
two disjoint elements of τ). We define

D(α, `) = max
γ,U,S

∣∣P(τ)− P(τ ′)
∣∣, (6)

where the maximum is taken over all choices of γ ⊆ λ of size α, S ∈ γ and a set
U of size `+ 1 disjoint with S. For all ` < 0, we define D(α, `) = 0.

Now we state and prove the Recursive Inequality for D-terms:

Lemma 2 (Recursive Inequality of D-Terms). Let α ≤ q ≤ N
12ξ2max

, ` ≥ 0.

We write β := ξmax/N . Then,

D(α, `) ≤ D(α, `− 1) +
ξmax

N

q∑
i=1

D(α− 1, `+ ξi − 1) +
2∆ξmax · P(λ)

N (1− qξ2max/N)
q−α .

(7)

Note, for q ≤ ‖λ‖ ≤ N/12ξ2max, ξmax

N(1−qξ2max/N) ≤ (4ξeq)−1. Denoting β :=

ξmax/N , and ad,` = βd

2P(λ)D(q − d, `) we have,

ad,` ≤ ad,`−1 +

q∑
i=1

ad+1,`+`i + β∆ (4eξmaxq)
−d
,

where `i = ξi − 1.

The proof of this Lemma is postponed to Appendix A.1.

Remark 2. Note that the r.h.s. of the inequality contains three types of terms:

– D(α, ` − 1) which will disappear after ` − 1 applications of the recursive
inequality,

– terms of the form D(α − 1, ` + ξi − 1) which involve a smaller set-system,
but a larger U set; however, those terms are multiplied by ξmax

N , which will
ensure their geometric reduction,

– a parasite term that, as we will see, is small enough not to cause an issue
after a logarithmic number of iterations.
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Besides, in addition to the above recursive inequality, we also have the following
bound, which follows from Eq. (4):

D(α, `) = |P(τ)− P(τ ′)| ≤ 2P(λ)

(1− q · ‖λ‖2max/N)
|λ\γ|

and so

ad,` =
βd

2P(λ)
D(q − d, `) ≤

(
ξmax

N (1− qξ2max/N)

)d
≤ 1/(4eξmaxq)

d

3.5 Final Wrap up of Proof

We can conclude the proof of Proposition 1 using Lemmas 1, 2, along with the
following result that will be proven in Appendix A.2.

Lemma 3 (Recursive Inequality Lemma). Suppose ad,` ≥ 0 such that: (i)
ad,k := 0 for all k < 0, and (ii) for all 0 ≤ d ≤ ξn and 0 ≤ `i ≤ ξ− 1 for i ∈ [q],
we have

ad,` ≤ (4ξeq)−d (initial bound) (8)

ad,` ≤ ad,`−1 +

q∑
i=1

ad+1,`+`i + C · (4ξeq)−d (recursive inequality) (9)

for some C > 0. Then, for every ` ∈ [ξ − 2],

a0,` ≤
4

N
+ 4Cξ.

Let a, b, T, λ be as in the statement of Proposition 1, and let λ0 = λ−T . Note
that one has ξ2maxn ≤

√
N − ξmax ≤ ‖λ0‖ ≤ N/12ξ2max. Moreover, let q = |λ0|.

Similarly, one has ξmaxq ≥ ‖λ0‖ ≥ ξ2maxn, which means that q ≥ ξmaxn. We are
going to apply Lemma 3 to λ0 as follows.

Let us take, ξ = ξmax, C = β∆ = ∆λξmax/N in the statement of the above

Lemma 3. From the definition of ad,` = βd

2P(λ0)
D(q − d, `), we must ensure that

q ≥ d in order to apply Lemma 3. This can easily be seen to be true as q ≥ ξn
and d ≤ ξn. Then, for (δ, S) ∈ Ia|T , we have

|P(λδ,S)− P(λ−a|T )| ≤ D(q, |T | − 2) ≤2P(λ0)a0,|T |−2 ≤
8P(λ0)

N
(∆ξ2max + 1).

Note that one has

P(λ−a|T ) ≥ P(λ0)

(
1− ‖λ0‖ξmax

N

)
≥ P(λ0)

(
1− 1

12ξmax

)
≥ P(λ0)

23

24
.
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Thus, one has

P(λδ,S) ≤ 8P(λ0)

N
(∆ξ2max + 1) + P(λ−a|T ) ≤

(
8P(λ0)(∆ξ2max + 1)

N · P(λ−a|T )
+ 1

)
P(λ−a|T )

≤
(

24 · 8
23 ·N

(∆ξ2max + 1) + 1

)
P(λ−a|T ) ≤

(
C ′∆

N
+ 1

)
P(λ−a|T ),

where C ′ = 9(ξ2max + 1), as ∆ ≥ 1. Using this bound in the appropriate link
deletion equation we have:

P(λ) = P(λ−a|T )− 1

N

∑
(δ,S)∈Ia|T

P(λδ,S) (From Eq. (5))

≥ P(λ−a|T )− 1

N

∑
(δ,S)∈Ia|T

P(λ−a|T )(1 + C ′∆/N)

≥ P(λ−a|T )

(
1− ‖λ‖ −∆− |T |/2

N

(
1 +

C ′∆

N

))
(From Lemma 1)

≥ P(λ−a|T )

(
1− ‖λ‖ − 1

N
+
∆

N

(
1− C ′(‖λ‖ −∆− 1)

N

))
≥ P(λ−a|T )

(
1− ‖λ‖ − 1

N

)
.

The last inequality follows as C ′‖λ‖ ≤ N , for ‖λ‖ ≤ N/12ξ2max, which con-
cludes our proof of Proposition 1. ut

Remark 3. Note that the initial bound ensures only that a0,` ≤ 1. However, the
presence of recursive inequality forces the value of a0,` to be very small.

4 Cryptographic Applications

In order to give an overview of how Mirror Theory can be used, and to illustrate
the importance of the “Pi⊕Pj theorem” for any ξmax, we provide security proofs
for a diverse set of constructions. Note that we focus on the parts of the proof
that involve system of bivariate equations and omit the other parts, for which
we cite the relevant results in the literature. We felt the need to add this section
mainly to motivate the readers on the importance of the proof of this result.

4.1 The H coefficients technique

In this section, we consider one of the main applications of Theorem 1, which
is proving the security of a pseudorandom function (PRF) F , or a pseudoran-
dom permutation, P , based on a secret random primitve. Formally, for any
information-theoretical adversary A that is allowed at most q oracle queries, we
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define its advantage in distinguishing F from a truly uniformly random oracle,
denoted $, as follows:

Advprf
F (A) :=

∣∣∣Pr (AF = 1
)
− Pr

(
A$ = 1

)∣∣∣ .
Whereas, for any information-theoretical adversary A that is allowed at most q
forward and backward oracle queries, we define its advantage in distinguishing
P from a truly uniformly random permutation oracle, denoted $$, as follows:

Advsprp
P (A) :=

∣∣∣Pr (AP = 1
)
− Pr

(
A$$ = 1

)∣∣∣ .
One way of upper-bounding the prf-advantage of A is to use the H coefficients

technique, which is tightly linked to Mirror Theory. To use this method, we
summarize the interaction of A with its oracle in what we refer to as a transcript

τ = {(X1, Y1), . . . , (Xq, Yq)},

where, for each pair (xi, yi), A made a query xi and received yi as an answer (or
made a query yi and received xi as an answer, in case of backward queries). We
also introduce two random variables Treal and Tideal which correspond to the
value of τ when A interacts respectively with the real world (the construction F
or P ) and the ideal world (resp., $ or $$). We say that a transcript τ is attainable
if it satisfies Pr (Tideal = τ) > 0. The set of all attainable transcripts is written
T. One has the following result.

Lemma 4 ([38]). Let Tgood ⊂ T be a subset of the set of all attainable tran-
scripts. Assume that, for every τ ∈ Tgood, one has

Pr (Treal = τ)

Pr (Tideal = τ)
≥ 1− ε.

Then, one has
Advprf

F (A) ≤ Pr (Tideal ∈ T \Tgood) + ε.

Mirror Theory is generally used when computing the lower bound of the ratio
Pr (Treal = τ) /Pr (Tideal = τ) by providing a lower bound for the number of in-
termediate values for the underlying random primtive. We now illustrate this
technique by revisiting existing security proofs using Theorem 1.

4.2 The XORP Construction

In [21], Iwata introduced CENC, a beyond-birthday-bound secure mode of oper-
ation which uses an underlying permutation-based PRF dubbed XORP which is
defined as follows:

XORP[w] : {0, 1}n−s −→ {0, 1}wn

x 7−→ ‖wi=1π (〈0〉s‖x)⊕ π (〈i〉s‖x) ,
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where s = dlog2(w+ 1)e, and π is a uniformly random secret n-bit permutation.
Later, Iwata, Mennink, and Vizár [22] made the link between XORP and Mirror
Theory explicit, and proved optimal security for the construction, using [40, The-
orem 6]. We revisit their proof by applying Theorem 1 in order to demonstrate
the following result10.

Theorem 2. Let A be an adversary against the prf-security of XORP[w], which
is allowed at most q queries. If q ≤ 2n/12(w + 1)2, one has

Advprf
XORP[w](A) ≤ wq

2n
+

w2q

2n+1
.

Proof. We are going to rely on the H coefficients technique. Let us fix an adver-
sary A against the prf-security of XORP[w], which is allowed at most q queries.
We assume without loss of generality that A is deterministic (as it is time-
unbounded), never repeats queries, and always makes exactly q queries. The
transcript τ of the interaction of A with its oracle can be written as

τ = {(X1, Y1,1‖ . . . ‖Y1,w), . . . , (Xq, Yq,1‖ . . . ‖Yq,w)},

where, for i = 1, . . . , q and j = 1, . . . , w, one has |Yi,j | = n. We say that an
attainable transcript τ is bad if at least one of those conditions is satisfied:

– there exists (i, j) ∈ (q]× (w] such that Yi,j = 0n;
– there exists (i, j, j′) ∈ (q]× (w]× (w] such that j 6= j′ and Yi,j = Yi,j′ .

The set Tgood consists in all attainable transcripts which are not bad. Since the
Yi,j values are uniformly random and independent in the ideal world, it is easy
to see that one has

Pr (Tideal ∈ T \Tgood) ≤
wq

2n
+

w2q

2n+1
. (10)

Let us fix any good transcript τ . By taking X ′i,j = π (〈j〉s‖Xi), the event Treal =
τ can easily be turned into the following system of bivariate affine equations:

X ′1,0 ⊕X ′1,1 = Y1,1 X ′1,0 ⊕X ′q,1 = Yq,1
... . . .

...
X ′1,0 ⊕X ′1,w = Y1,w X ′1,0 ⊕X ′q,w = Yq,w

Since τ is a good transcript, the corresponding graph clearly has q components,
of size w + 1, and the sum of labels of edges of any path in the graph is not 0n.
Let us denote N the number of pairwise distinct solutions of this system. Then
the probability that X ′i,j = π (〈j〉s‖Xi) for all pairs (i, j) is exactly 1/(2n)(w+1)q.
Hence, one has

Pr (Treal = τ)

Pr (Tideal = τ)
≥ N (2n)wq

(2n)(w+1)q
≥ 1, (11)

where the last inequality results from the application of Theorem 1. Combining
Lemma 4 with Eqs (10) and (11) ends the proof of Theorem 2.
10 We do not claim novelty for this Theorem, but we present its proof for illustration

purpose.
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4.3 Optimally Secure Variable-Input-Length PRFs

In [7], Cogliati, Jha and Nandi propose several constructions to build opti-
mally secure variable-input-length (VIL) PRFs from secret random permuta-
tions. Those schemes combine a diblock almost collision-free universal hash func-
tion with a finalization function based on the Benes construction [2]. The most
efficient variant, whose representation can be found in Figure 4.1, relies on two
independent permutations, and its security proof [7, Theorem 7.3] involves the
use of Mirror Theory for a single permutation.

First, let us recall the necessary definition for keyed hash function. A
(K,X,Y)-keyed function H is said to be ε-almost universal (AU) hash function
if for any distinct X,X ′ ∈ X, we have

PrK←$K (HK(X) = HK(X ′)) ≤ ε. (12)

Let us fix a non-empty set X ⊂ {0, 1}∗, and let H be a (K,X,Y)-keyed func-
tion that processes its inputs in n-bit blocks. H is said to be (q, σ, ε)-Almost
θ-Collision-free Universal (or ACUθ) if, for every Xq ∈ (X)q such that Xq

contains at most σ blocks, one has Pr[C ≥ θ] ≤ ε, where

C := |{(i, j) : 1 ≤ i < j ≤ q, HK(Xi) = HK(Xj)}|.

Finally, we say that a pair H = (H1, H2) of two (K,X,Y)-keyed hash functions
H1, H2 is (q, σ, ε2, ε1)-Diblock ACUq (or DbACUq) if H is (q, σ, ε2)-AU and H1,
H2 are (q, σ, ε1)-ACUq.

M

L R

⊕⊕⊕ ⊕⊕⊕

⊕⊕⊕
S

H1 H2

π1(0‖·) π1(1‖·)

π2(0‖·) π2(1‖·)

Fig. 4.1: Representation of the 2k-HtmB-p2[H] based on two uniformly random and
independent n-bit permutations π1, π2. An edge (u, v) with label g denotes the mapping
v = g(u). Unlabelled edges are identity mapping. The inputs to the functions πi(j‖·)
are first truncated before the application of πi.

Having defined the required security notion for the underlying hash function,
the following result holds.
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Theorem 3. For ε1, ε2, σ ≥ 0, q ≤ 2n/12n2, and (q, σ, ε2, ε1)-DbACUq hash
function H instantiated with key K ←$K, the prf-advantage of any distinguisher
A that makes at most q queries against 2k-HtmB-p2[H] is given by

Advprf
2k-HtmB-p2[H](A) ≤ 128q2

23n
+

136q2

22n
+

8q

2n
+ ε2 + 2ε1.

The complete proof of this result is exactly the same as the one of [7, Theorem
7.3] where [40, Theorem 6] is replaced with Theorem 1.

Proof Sketch. Let us denote with Mi, for i = 1, . . . , q, the inputs from A.
We introduce several random variables: Li = H1(Mi), Ri = H2(Mi), Xi =
truncn−1(π1(0‖Li)⊕Ri) and Yi = truncn−1(π1(1‖Ri)⊕ Li), so that

Si = π2(0‖Xi)⊕ π2(1‖Yi).

Additionally, at the end of the interaction of A with its oracle, we release the
values of the Lis, Ris,Xis, and Yis. In the real world, we release the actual
values, while in the ideal world we simply draw uniformly random keys for H1

and H2, along with a lazily sampled uniformly random π1. Note that this can
only increase the advantage of an adversary, so this can be done without loss of
generality.

In order to apply Theorem 1, we need to make sure that the system (S)
consisting of the q equations

Si = π2(0‖Xi)⊕ π2(1‖Yi)

satisfies the initial conditions. We recall that an alternating trail of length k is
a sequence (i1, . . . , ik+1) such that either Xij = Xij+1 or Yij = Yij+1 for j =
1, . . . , k, and consecutive equalities do not involve the same family of variables
(i.e. an equality in X should be followed with an equality in Y ). Moreover, an
alternating cycle is a special type of alternating trail of even length, such that
ik+1 = i1. We say that a transcript τ is bad if at least one of the following
conditions hold:

– τ contains an alternating cycle;
– τ contains an alternating trail (i1, . . . , ik+1) such that ⊕k+1

j=1Sij = 0;

– the largest block of equalities contains at least n+ 1 variables.11

In [7], the authors prove that

Pr (Tideal ∈ T \Tgood) ≤
128q2

23n
+

136q2

22n
+

8q

2n
+ ε2 + 2ε1. (13)

Moreover, for any good transcript τ , one has

Pr (Treal = τ)

Pr (Tideal = τ)
=

s2nq

(2n)qX+qY
≥ 1, (14)

11 We say that two variables are in the same block of equalities if there exists an
alternating trail involving both variables.
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where s denotes the number of p.d. solutions to the system (S) of equations, and
qX (resp. qY ) the number of pairwise distinct Xi (resp. Yi) values, and the last
inequality results from the application of Theorem 1. Combining Lemma 4 with
Equations (13) and (14) ends the proof of Theorem 3.

4.4 Feistel schemes

In [41], Patarin introduced the study of beyond-birthday-bound security of bal-
anced and unbalanced Feistel schemes using Mirror Theory. Since our work has
improved upon the bounds of the ‘Pi⊕Pj Theorem for any ξmax’ used by Patarin,
we present here the proof sketch of security analysis of six-round balanced Feistel
scheme with our new improved bounds.

Defintion of ψk. Suppose Funcn is the collection of all n-bit functions from
{0, 1}n to itself, and Perm2n be the collection of all permutations on {0, 1}2n.
Then for f ∈ Funcn and L,R ∈ {0, 1}n, ψ(f) ∈ Perm2n is defined as follows:

ψ(f)[L,R] := [R,L⊕ f(R)]

In general, for f1, · · · , fk ∈ Funcn, ψk(f1, · · · , fk) ∈ Perm2n is defined as,

ψk(f1, · · · , fk) := ψ(fk) ◦ · · · ◦ ψ(f1).

The permutation ψk(f1, · · · , fk) is called a balanced Feistel scheme with k
rounds. When f1, · · · , fk are randomly and independently chosen in Funcn,
ψk(f1, · · · , fk) is called a random Feistel scheme with k rounds.

To analyse the PRP security of k-round Feistel scheme via the H-coefficient
technique, given a transcript containing q query-response pairs

τ := {([Li, Ri], [Si, Ti]) : Li, Ri, Si, Ti ∈ {0, 1}n, i ∈ [q]},

we would like to find out the probability of realizing this transcript in the real
world,

Pr(Treal = τ) = Pr
(f1,··· ,fk)
←$ Funckn

(
ψk(f1, · · · , fk)[Li, Ri] = [Si, Ti] ∀i ∈ [q]

)
=

Hk(τ)

|Funcn|k

where,

Hk(τ) :=
∣∣∣{(f1, · · · , fk) ∈ Funckn : ψk(f1, · · · , fk)[Li, Ri] = [Si, Ti] ∀i ∈ [q]}

∣∣∣
Note that, here, irrespective of whether the transcript was realized in the real
or the ideal world, we will have that [Li, Ri], i ∈ [q] are pairwise distinct, and
[Si, Ti], i ∈ [q] are pairwise ditinct. There are no bad trancripts in the following
analysis.

In Fig. 4.2 we have denoted the outputs of the successive rounds as follows:

[Li, Ri]
ψ(f1)−→ [Ri, Xi]

ψ(f2)−→ [Xi, Yi]
ψ(f3)−→ [Yi, Zi]

ψ(f4)−→ [Zi, Ai]
ψ(f5)−→ [Ai, Si]

ψ(f6)−→ [Si, Ti]
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f1 f2 f3 f4 f5 f6

Li

Ri
Xi Yi Zi Ai

Si

Ti

Fig. 4.2: Balanced Feistel scheme with 6 rounds

Viewing 6-round Feistel as ψ6(f1, · · · , f6) = ψ(f1) ◦ ψ4(f2, · · · , f5) ◦ ψ(f6),
we can write

H6(τ) =
∑

f1,f6∈Funcn

H4(τ ′) (15)

where

τ ′ = {([Ri, Xi], [Ai, Si]) : Xi := Li ⊕ f1(Ri), Ai := Ti ⊕ f6(Si), i ∈ [q]}

Frameworks for ψ4. To calculate H4(τ ′) we define a ‘framework’ as collec-
tion of equations of the form Yi = Yj or Zi = Zj . We will say that two
frameworks are equal if they imply exactly the same set of equalities in Y
and Z. Let F be a framework. We will denote by weight(F) the number of
(Yi, Zi) ∈ ({0, 1}n)2, i ∈ [q] that satisfy F. If we denote yF (resp., zF) the num-
ber of independent equalities of the form Yi = Yj (resp., of the form Zi = Zj) in
F, then obviously we have weight(F) = (N)q−yF · (N)q−zF

Note that, for a given framework F, Yi = Yj ∈ F =⇒ f3(Yi) = f3(Yj),
which is equivalent to saying Xi ⊕ Zi = Xj ⊕ Zj . Similarly, Zi = Zj ∈ F =⇒
Yi⊕Ai = Yj⊕Aj . Moreover, Xi = Xj =⇒ f2(Xi) = f2(Xj) which is equivalent
to saying Ri ⊕ Yi = Rj ⊕ Yj . Similarly, Ai = Aj =⇒ Zi ⊕ Si = Zj ⊕ Sj .

Let x be the number of independent equalities of the form Xi = Xj , i 6= j
and a be the number of independent equalities of the form Ai = Aj , i 6= j. Then
by simple alegbraic manipulation we have the following result.

Lemma 5 (exact formula for H4(τ ′)).

H4(τ ′) = |Funcn|4
∑
F

[#Y q satisfying (C1)] · [#Zq satisfying (C2)]

N4q−x−yF−zF−a
(16)

where

(C1) :

Xi = Xj =⇒ Yi ⊕ Yj = Ri ⊕Rj
Zi = Zj ∈ F =⇒ Yi ⊕ Yj = Ai ⊕Aj
The only equations Yi = Yj , i < j, are exactly those implied by F

(C2) :

Ai = Aj =⇒ Zi ⊕ Zj = Si ⊕ Sj
Yi = Yj ∈ F =⇒ Zi ⊕ Zj = Xi ⊕Xj

The only equations Zi = Zj , i < j, are exactly those implied by F

The summation on the r.h.s. of Eq. (16) is taken over all possible frameworks
F.
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A we can see (C1) yeilds a system of difference equations in the variables Y q, and
(C2) a system of difference equations in Zq. To find the number of solutions to
these systems of equations using Theorem 1, we have to ensure: (1) the systems
are p.d.-consistent, (2) the conditions specified in the theorem, like the bound on
the maximum component size, and that on the number of variables, is satisfied
by the concerned systems.

Now the systems will be p.d. consistent if there is no cycle of non-zero label
sum. To be on the safe side, we eliminate the possibility of any cycle whatsoever.
Note that, there will be a cycle in the graph representing the system of difference
equations in (C1) (resp., (C2)) only if there is a ‘circle in X,ZF’ (resp., ‘circle
in A, YF’), by which we mean that, for some k ≥ 3, there is a cyclic tuple of
indices (i1, · · · , ik), with i1, · · · , ik−1 pairwise distinct and ik = i1, such that for
all j ∈ [k − 1], either we have Xij = Xij+1

or we have Zij = Zij+1
∈ F. We

define a circle in A, YF similarly.
Following the same arguments there will be component of size ξ in the graph

representing the system of difference equations in (C1) (resp., (C2)) only if
there is a ‘line in X,ZF’ (resp., ‘line in A, YF’) of length ξ, by which we mean
that, there are ξ + 1 distinct indices i1, · · · , iξ+1 such that for all j ∈ [ξ], either
Xij = Xij+1

or Zij = Zij ∈ F. We define a line in A, YF similarly.

Good Framework. We call a framework for ψ4, F, a good framework, if it does
not result in any of the following:

1. a circle in X,ZF

2. a circle in A, YF
3. a line in X,ZF of length ≥ n
4. a line in A, YF of length ≥ n

From elaborate probability calculations done in Appendix C of [41] we have the
following result:

Lemma 6 ([41]). For a realizable trancript τ = {([Li, Ri], [Si, Ti]) : i ∈ [q]},
when f1, f6←$Funcn and F is randomly chosen (i.e., with probability propor-
tional to weight(F)), then

Pr[F is a good framework] ≥ 1− 8q

N
.

If a good framework F is chosen, then the systems of difference equations
in (C1) and (C2) are p.d.-consistent and satisfy the conditions of Theorem 1
with ξmax ≤ n. Now the system of difference equations in (C1) (resp., C2)
has x + zF equations in q − yF variables (resp., a + yF equations in q − zF
variables) and hence by Theorem 1 has at least (N)q−yF/Nx+zF solutions (resp.,
(N)q−zF/Na+yF solutions) if q ≤ N/12(log2N)2. Then from Eq. (15) and Eq.
(16) we get that

H6(τ) ≥ |Funcn|
4

N4q

∑
f1,f6∈Funcn

∑
good F

(N)q−yF · (N)q−zF︸ ︷︷ ︸
weight(F)

(?)

≥ |Funcn|
6

N2q

(
1− 8q

N

)
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where (?) follows from Lemma 6 and the fact that
∑

F weight(F) = N2q. Thus,
we have a for a realizable transcipt τ

Pr[Treal = τ ]

Pr[Tideal = τ ]
=

1
N2q

(
1− 8q

N

)
1/(N2)q

≥ 1− 8q

N
− q2

N2
.

Summarizing we have the following result.

Theorem 4. If q ≤ 2n

12n2 , then for every CPCA-2 adversary 12 A with q adap-
tive chosen plaintext or chosen ciphertext queries, we have

Advsprp
ψ6(f1,··· ,f6)(A) ≤ 8q

2n
+

q2

22n
.

where f1, · · · , f6←$Funcn.

4.5 A comparative study of the security bounds

First we consider the security bounds attainable for the above constructions
without using Mirror Theory.

1. There exists another proof of optimal n-bit security for the XORP[w] con-
struction [6], that does not rely on Mirror Theory. Instead, it uses the so-
called χ2 technique [11].

2. In [7] Cogliati et al proposes several VIL PRF constructions from secret ran-
dom permutations using the Hash-then-modified-Benes method. To obtain
optimal security without using Mirror Theory they proposed the candidate
2k-HtmB-p1[H], which requires 6 secret random permutations. In compar-
ision 2k-HtmB-p2[H] only needs 4 secret random permutations (obtained
from domain separating two random permutations) to attain n-bit security.
However, the only existing security proof of the latter depends crucially on
Mirror Theory.

3. Six-round Feistel construction can only be shown to be birthday-bound se-
cure without using Mirror Theory, no better security proof is known.

Also, the optimal n-bit security bounds for the above three constructions,
are obtained in [22], [7] and [41], respectively, by using the following conjectured
version of Mirror Theory [40, Theorem 6], whose proof is incomplete:

“Theorem Pi ⊕ Pj” for any ξmax. Let (A) be a set of a equation Pi⊕Pj = λk
with α variables such that:

1. We have no circle in P in the equations (A).
2. We have no more than ξmax indices in the same block.
3. By linearity from (A) we cannot generate an equation Pi = Pj with i 6= j.

12 CPCA-2 adversary here means an adversary that adaptively queries Chosen Plain-
texts and Chosen Ciphertexts.
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Then: if ξ2maxα � 2n, we have Hα ≥ Jα. More precisely the fuzzy condition
ξ2maxα� 2n can be written with the explicit bound: (ξmax − 1)2α ≤ 2n/67.

In the above theorem conditions 1 and 3 correspond to the p.d.-consistency
condition of this paper, and condition 2 correspond to the condition that the
maximum component size of the corresponding graph is ξmax. α in the above
theorem is replaced by p in Theorem 1 of this paper. Also using the notation
of [40], Hα ≥ Jα translates to: the number of p.d. solutions of the system of
equations (A) is ≥ (2n)α/2nm = (N)α/Nm, which is exactly the bound obtained
in this paper. However we notice the following important differences:

1. The above theorem is for any ξmax, while Theorem 1 of this paper works for
ξmax of the order O(N1/4).

2. The bound on α or p in the above theorem is N/67(ξmax−1)2, while the one
attained in Theorem 1 of this paper is N/12ξ2max, which is slightly better.

5 Conclusion and Future Work

In this work, we present the first complete and verifiable proof of the Pi ⊕ Pj
Theorem with any ξmax. Our proof builds on the previous works on this subject
by reusing the overall strategy. However, our core novelty is the use of the link-
deletion equation, which allows a better proof by induction that introduces a
much smaller number of terms. This improvement leads to a shorter proof and a
slightly better bound, as long as ξmax is of the order O(N1/4). As an application,
we give proofs of n-bit security for the XORP and 2k-HtmB-p2 constructions, thus
confirming the results from [22] and [7]. Theorem 1 is also used to revisit the
security proofs of balanced Feistel schemes [41,32] and prove the optimal secu-
rity of six rounds Feistel scheme [41,32]. Moreover, using our result, one can also
show an asymptotically optimal security bound for DWCDM [15,16] construc-
tion. In fact, the H coefficients technique can be used to transform many crypto-
graphic security proofs into Mirror Theory problems. However, these problems
may sometimes be more general than the one we target in this work. For exam-
ple, in this work we deal with pairwise distinctness of the solution to a system of
equations, which is same as finding solutions to the given system of equations,
along with a system of non-equations of the form Xj ⊕Xk 6= 0n for all j 6= k.
However, when dealing with constructions like the Feistel cipher where the round
functions are permutations, we find that in addition to the conditions of the form
(C1) obtained in Lemma 5, we also get that Xi 6= Xj =⇒ Yi⊕Yj 6= Ri⊕Rj , i.e.
non-equations with non-zero labels. This indicates to the following more general
problem, that is yet to be solved:

Open Problem 1. Find the lower bound to the number of solutions to a system
of equations and a possibly non-homogeneous system of non-equations.

Studying variants of Theorem 1, as the one mentioned above, would help to
improve security bounds for current and future cryptographic constructions:
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Open Problem 2. Generalize Theorem 1 for groups of exponent 6= 2. Then it
can be used for security proof of Feistel network whose operator is modular
addition, and not ⊕ (which is important for Format-Preserving Encryption).

Open Problem 3. Generalize Theorem 1 for ξmax > O(2n/4/
√
n). This might

be used for optimal security proof of nonce misuse resistant MAC scheme
nEHtM. Note that the bound does not always hold when ξmax gets close to
2n/2. A counterexample can be found in [32, page 225].

Open Problem 4. Generalize Theorem 1 for the case when the solutions
are chosen from a proper subset of {0, 1}n. This is applicable for ideal-
permutation-based keyed constructions. As an adversary can make direct
queries to the ideal permutation P , some inputs and outputs are fixed be-
forehand.

Open Problem 5. Generalize for systems of equations having more than just
two variables, for example, say, X1 ⊕ X2 ⊕ X3 ⊕ X4 = 0. This will prove
optimal security for constructions like the ones mentioned in [8].

Also, there are two other conjectured Mirror-Theory-like results [32, Conjecture
14.1 & 14.2] about the number of permutations g and h such that g ∗ h is equal
to a given function f , for any commutative group law ∗.
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A Postponed Proofs

A.1 Proof of Lemma 2

We fix S ∈ γ ⊆ λ where |γ| = α and a set U with |U | = ` + 1 disjoint with S.
Let τ := γ+U and τ ′ := γ−S+(StU). In words, γ is a set-system that is included
in λ, U is any subset of G of size ` + 1, and S is an element of γ. Then, τ
corresponds to the γ ∪ {U}, while τ ′ corresponds to τ after S and U have been
merged. Looking back at Fig. 3.1, τ and τ ′ would correspond respectively to the
second and third graphs. We assume that γ, U, S are chosen in such a manner
that |P(τ)− P(τ ′)| = D(α, `). Now we prove the inequality in two cases.
Case |U | = 1. In this case, let U = {x}. Then P(τ) = P(γ) · (1− ‖γ‖/2n) from
Eq. (1). Also τ ′−x|StU = γ. Hence from link deletion equation, Eq. (5),

P(τ ′) = P(γ)−N−1
∑

(δ,S′)∈I

P(τ ′δ,S′)

where I := Ix,S = {(δ, S′) : x ⊕ δ ∈ S′ ∈ γ−S , S
′ ⊕ δ is disjoint with S}. For

z′ ∈ S′ ∈ γ−S , (x ⊕ z, S′) 6∈ I if and only if there exists y ∈ S and w ∈ S′
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such that x ⊕ y = z ⊕ w. Thus |I| ≥
∑
S′∈γ−S

(
|S′| −

∑
y∈S 2δS′(x⊕ y)

)
=

‖γ‖ − |S| −
∑
y∈S 2δγ−S (x⊕ y) ≥ ‖γ‖ − ‖γ‖max · 2δγ . Hence

D(α, 0) = |P(τ)− P(τ ′)| =

∣∣∣∣∣∣‖γ‖N P(γ)−N−1
∑

(δ,S′)∈I

P(τ ′δ,S′)

∣∣∣∣∣∣
(?)

≤ N−1
∑

(δ,S′)∈I

|P(γ)− P(τ ′δ,S′)|+
2∆γ‖γ‖max · P(λ)

N
(

1− ‖λ\γ‖max×‖γ‖
N

)|λ\γ|
≤ ‖γ−S‖max

N

∑
S′∈γ\S

D(α− 1, |S′| − 1) +
2∆γ‖γ‖max · P(λ)

N
(

1− ‖λ\γ‖max×‖γ‖
N

)|λ\γ| ,
where the last term in (?) is obtained from the initial condition Eq. (4).

Case |U | ≥ 2. Fix x ∈ U . By link-deletion equation, we have

P(τ) = P(τ−x|U )− 1

N

∑
(δ,S′)∈I

P(τδ,S′)

P(τ ′) = P(τ ′−x|StU )− 1

N

∑
(δ,S′)∈I′

P(τ ′δ,S′),

where

I := Ix|U = {(δ, S′) : x⊕ δ ∈ S′ ∈ γ, S′ ⊕ δ is disjoint with U \ x},
I ′ := Ix|StU = {(δ, S′) : x⊕ δ ∈ S′ ∈ γ−S , S′ ⊕ δ is disjoint with S t U \ x}.

It is easy to see that I ′ ⊆ I. If (δ, S′) ∈ I \ I ′, then,

– either S′ = S and δ = x⊕ y for some y ∈ S, such that S⊕ (x⊕ y) is disjoint
with U \ x or

– S′ ∈ γ \ S and δ = x⊕ z for some z ∈ S′, such that S′ ⊕ (x⊕ z) is disjoint
with U \ x but not disjoint with S t (U \ x).

The first case can contribute at most |S|. The second case will happen if for
some z, w ∈ S′, and y ∈ S, z ⊕ w = x⊕ y. Thus

|I \ I ′| ≤ |S|+
∑
y∈S

δγ−S (x⊕ y) ≤ ‖γ‖max · 2∆γ .

Hence, we have the following:
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D(α, `) = |P(τ)− P(τ ′)|

≤
∣∣P(τ−x)− P(τ ′−x)

∣∣+N−1
∑

(δ,S′)∈I′

∣∣P(τδ,S′)− P(τ ′δ,S′)
∣∣+

∑
(δ,S′)∈I\I′

P(τδ,S′)/N

≤ D(α, `− 1) +
‖γ−S‖max

N

∑
S′∈γ−S

D(α− 1, `+ |S′| − 1) +
2∆γ‖γ‖max · P(λ)

N
(

1− ‖λ\γ‖max×‖γ‖
N

)|λ\γ| .
(17)

The last inequality follows from the observation that τδ,S′ and τ ′δ,S′ are considered
when we take maximum to compute D(α− 1, `+ |S′| − 1). Moreover, from our
initial condition Eq. (4),

P(τδ,S′) ≤ P(γ) ≤ P(λ)/

(
1− ‖λ \ γ‖max × ‖γ‖

N

)|λ\γ|
Now, taking upper bounds of the total size terms, and adding some positive

terms in the middle sum, and noting that ∆γ ≤ ∆λ
13, the inequality, Eq. (17)

can be easily modified to the theorem statement, Eq. (7).

A.2 Proof of Recursive Inequality Lemma

Let us denote by an ordered tuple of integers from [q], as ik := (i1, · · · , ik) ∈ [q]k.

Note that, for all positive integer j, ej ≥ jj

j! and so 1/j! ≤ (e/j)j , and we have(
m

j

)
≤ mj

j!
≤ (em/j)j . (18)

This inequality will be frequently used for the proof of this lemma. We also use

the following fact extensively: for r < 1,
∑
j≥i r

j ≤ ri

1−r .

We state the following claim, which follows from iterated applications of the
recursive inequality.

Claim 1. For any 0 ≤ d ≤ ξn, and 0 ≤ ` < ξ − 1 we have

a0,` ≤
d∑

k=d d−`ξ e

(
d

k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−d

+ C

d−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j . (19)

13 Since γ ⊆ λ, we have
∑
S∈γ δS(z) ≤

∑
S′∈λ δS′(z) for every z ∈ {0, 1}n, since every

S ∈ γ is subset of some S′ ∈ λ. So taking maximum over all z ∈ {0, 1}n, on both
sides would give us ∆γ ≤ ∆λ.
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Proof of the Claim. We prove the claim by induction on d. The result holds
trivially for d = 1 (by applying d = ` = 0 in Eqn. (9)). Now we prove the
statement for d0 + 1, assuming it true for d0. Therefore, we have

a0,` ≤
d0∑

k=d d0−`ξ e

(
d0
k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−d0

+ C

d0−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j

≤
d0∑

k=d d0−`ξ e

(
d0
k

) ∑
ik∈[q]k

 ∑
ik+1∈[q]

ak+1,k+1+
∑k+1
j=1 `ij−(d0+1) + C · (4ξeq)−k


+

d0∑
k=d d0−`ξ e

(
d0
k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−(d0+1) + C

d0−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j

≤
d0+1∑

k=d d0+1−`
ξ e

(
d0

k − 1

) ∑
ik−1∈[q]k−1

∑
ik∈[q]

ak,k+
∑k
j=1 `ij−(d0+1)

+

d0+1∑
k=d d0+1−`

ξ e

(
d0
k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−(d0+1) + C

d0∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j .

The range of the first and second summations has deliberately been taken to start
from d(d0 + 1− `)/ξe ≤ d(d0 − `)/ξe + 1, because if k < d(d0 + 1− `)/ξe, then

k +
∑k
j=1 `ij − (d0 + 1) ≤ kξ − (d0 + 1) < 0 and hence ak,k+

∑k
j=1 `ij−(d0+1) = 0.

Now we can see that the coefficient of
∑
ik∈[q]k ak,k+

∑k
j=1−(d0+1) in the above

summation is bounded by
(
d0
k−1
)

+
(
d0
k

)
=
(
d0+1
k

)
. This concludes the proof of the

claim. ut

Proof of Lemma 3. Let us take d = ξn. In that case, Claim 1 becomes

a0,` ≤
ξn∑

k=d ξn−`ξ e

(
ξn

k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−ξn

+ C

ξn−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j .

We are going to upper bound both terms of the sum in subsequent turns. For
the first term, note that one has k ≥ n− `

ξ > n− 1 since ` < ξ− 1 by definition.
This implies that (

ξn

k

)
≤
(
eξn

k

)k
≤
(
eξn

n− 1

)k
≤ (2eξ)k.

Hence, using the initial bound, one has

ξn∑
k=d ξn−`ξ e

(
ξn

k

) ∑
ik∈[q]k

ak,k+
∑k
j=1 `ij−ξn

≤
ξn∑

k=d ξn−`ξ e
(2eξ)kqk(4ξeq)−k ≤ 4

2n
≤ 4

N
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As for the second term, we make the following observation: For ξk < i ≤ ξ(k+1),
k ∈ (n− 1], j ≥ d i−`ξ e ≥ k, and hence

(
i

j

)
≤
(
ei

j

)j
≤
(
eξ(k + 1)

k

)j
≤ (2eξ)j .

For 0 ≤ i ≤ ξ and j ≥ 1,
(
i
j

)
≤
(
ei
j

)j
≤ (eξ)j . Thus, we are going to break the

sum into two parts:

ξn−1∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j =

ξ∑
i=0

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j +

ξn−1∑
i=ξ+1

i∑
j=d i−`ξ e

(
i

j

)
(4ξe)−j

≤ ξ + 1 +

ξ∑
i=0

i∑
j=1

(eξ)j(4eξ)−j +

ξn−1∑
i=ξ+1

i∑
j=di/ξe−1

(2eξ)j(4eξ)−j

≤ ξ + 1 +
ξ + 1

3
+ 4

ξn−1∑
i=ξ+1

1

2di/ξe

(1)

≤ 4

3
(ξ + 1) + 2ξ

(2)

≤ 4ξ,

where the last inequality follows from the fact that ξ ≥ 2.
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