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Abstract. We propose a new Diffie-Hellman-like Non-Interactive Key
Exchange that uses the Lattice Isomorphisms as a building block. Our
proposal also relies on a group action structure, implying a similar secu-
rity setup as in the Commutative Supersingular Isogeny Diffie-Hellman
(CSIDH) protocol where Kuperberg’s algorithm applies. We short label
our scheme as LIKE. As with the original Diffie-Hellman protocol, our
proposed scheme is also passively secure. We provide a proof-of-concept
constant-time C-code implementation of LIKE, and conservatively pro-
pose LIKE-1, LIKE-3, and LIKE-5 instances with equivalent asymp-
totic Kuperberg’s algorithm complexity than CSIDH-4096, CSIDH-6144,
and CSIDH-8192. Our experiments illustrate that LIKE-1 is about 3.8x
faster than CTIDH-512 (the current fastest variant of CSIDH-512), and
it is about 641.271x faster than CSIDH-4096 when deriving shared keys
(while LIKE-1 key generation is about 2.16x faster than CSIDH-4096);
oppositely, LIKE-1 public keys are 32.25x larger than CSIDH-4096.
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1 Introduction

The advent of quantum computation revealed that the computationally hard
mathematical problems employed in public-key cryptography today, could be
solved efficiently, thus undermining the security of cryptographic protocols. In
Shor’s seminal work [53], he introduced a quantum algorithm which solves the
Discrete Logarithm Problem (DLP) over finite fieds and elliptic curves, and the
Integer Factorization Problem (IFP) in polynomial time. This breakthrough re-
sult motivated the researchers to design cryptographic schemes which are secure
even in the presence of adversaries with quantum resources, commonly referred
to as post-quantum cryptography (PQC); and also to develop better attacks
and perform cryptanalysis of cryptographic schemes using quantum comput-
ing [38,20,39,12]. Since then, the research community started to look for new
quantum-secure hard problems to replace DLP and IFP.



Post-quantum cryptography has come a long way since its inception and ar-
guably will be the focus of cryptographic research in coming years as highlighted
by the NIST post-quantum cryptography standardization process [44]. PQC re-
search is rapidly developing quantum-secure alternatives to not only many exist-
ing cryptographic primitives such as public-key encryption schemes [50], digital
signatures [48,41,29,34,9], key encapsulation mechanisms (KEMs) [2,5,43,52,3],
proof-of-knowledge (PoK) systems [28,27,24,54,26,10]; but also additionally build-
ing advanced cryptographic primitives such as fully homomorphic encryption
(FHE) [15,13], functional encryption (FE) [51,11] etc. Another exciting aspect
of PQC is – the new designs are based on a diverse set of assumptions including
code-based cryptography [7,32,33], lattice-based cryptography [4,42,50], isogeny-
based cryptography [5,28,8].

Motivation Non-interactive key exchange (NIKE) is one of the most useful
cryptographic primitives which is embedded in modern communication over the
internet. Informally, NIKE scheme allows two parties that know each other’s
public key, to agree on a shared secret without requiring any interaction. The
Diffie-Hellman key exchange protocol [23], based on the conjectured hardness
of discrete logarithm problem (DLP), is probably the most known instance of
a NIKE. Surprisingly, designing quantum-secure NIKE scheme has been a chal-
lenging task with only a few post-quantum NIKE scheme [6,37] being designed
till date to the best of our knowledge. Instead, the PQC is focused on design of
key-encapsulation mechanisms (KEMs) as a solution for establishing a shared
secret. Both KEMs and NIKE output a shared, pseudo-random key as a result
of the local computation by the parties. The main difference between KEMs and
NIKE is that NIKE scheme “derive” the shared secret by combining the public
keys with local secret information, whereas in KEMs, one of the parties “en-
crypts” a message using other party’s public key and derives the shared secret
as part of the output of the encryption process, in addition to a ciphertext. This
ciphertext is sent to the other party (this is the only interaction between the
parties), which then “decrypts” the ciphertext and derives the same shared se-
cret as a result of the decryption process. As a consequence, KEMs are generally
more complex to design and implement.

In practice, this is undesirable since many existing real-world applications use
authenticated Diffie-Hellman key exchange protocol, and replacing it with post-
quantum KEMs can lead to major re-designing of infrastructure. Additionally,
deploying complex schemes also increases the risk of implementation errors by
developers who may not (and need not) be experts in cryptography. Another
important aspect is, due to the nature of the underlying assumptions (such as
noisy decoding is hard computational problem), many of the existing KEMs
need an additional reconciliation step to ensure that parties agree on the shared
secret. In fact this is true also of the NIKE scheme presented in [37] based on
lattice-based cryptography. This motivates the following question

Is it possible to construct a Diffie-Hellman-like quantum secure non-interactive
key exchange scheme that is efficient and easy to implement?
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As discussed next, we advance towards the construction of such schemes by
exploring the connections between lattice based computationally hard problems
and group actions on hard homogeneous spaces1. Looking ahead, we propose a
Lattice Isomorphism-based Key Exchange (LIKE) scheme based on the group
action related to computation of lattice isomorphism. We believe that the con-
ceptual simplicity, its similarity to the classical Diffie-Hellman Key Exchange,
and efficient group action computation are the attractive features of our pro-
posal. Similar to original Diffie-Hellman proposal our construction is also pas-
sively secure. We also implement a simple proof-of-concept (PoC) of our proposed
scheme.

1.1 Our results / Contribution

We propose a new Diffie-Hellman-like NIKE that uses group actions over quadratic
forms derived from lattices as building blocks. More specifically, we exploit the
connections between lattice isomorphism problem (LIP) and group actions. Our
construction is simple and conceptually close to the well-known Diffie-Hellman
key exchange protocol. This similarity in the structure of the scheme can lead
to a smoother transition and adaption of post-quantum cryptographic solutions.
Additionally, this also minimizes the re-design of other protocols which use key
exchange as means to establish secure connection.

Our main idea stems from the framework of [22] which generalizes the group-
theoretic computational hard problems, like discrete logarithm problem (DLP)
and computational Diffie-Hellman problem (CDH) based on actions of specific
groups on certain sets. The second important ingredient is the lattice isomor-
phism problem (LIP) which has been studied recently by Ducas and van Wo-
erden [24]. We define a novel group action based on the conjectured hardness
of the LIP, along with analogues of DLP, CDH, and decisional Diffie-Hellman
(DDH) problems related to quadratic forms of isomorphic lattices. We then pro-
pose a simple key exchange scheme based on the conjectured hardness of these
problems.

Theorem 1 (Informal). There exists an efficient, post-quantum secure non-
interactive key exchange scheme based on the (conjectured) hardness of lattice
isomorphism problem and analogues of DLP, CDH, and DDH in the quadratic
form setting.

Background on assumptions We first present some background on the as-
sumptions we use to prove the security of our scheme.

Lattice Isomorphism Problem. The lattice isomorphism problem (LIP) is a com-
putational problem in which, given two isomorphic lattices L,L′ the goal is to

1 Group action is mathematical generalization of computations performed in Diffie-
Hellman like scheme. See Subsection 1.1 and Subsection 2.3 for details.
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find the isomorphism between them. Recently, Ducas and van Woerden [24] stud-
ied this problem in the quadratic form setting, where the lattices are represented
by the quadratic form Q := BTB where B is a basis of L. The computational
problem translates into finding a unimodular matrix U such that Q′ = UTQU ,
where Q and Q′ are the quadratic forms of L and L′ respectively. In [24], the
authors conjectured this problem to be 2Θ(n) hard, where n is the dimension of
the lattice. In addition, they presented a security reduction that connects the
hardness of LIP to the hardness of the Shortest Independent Vector Problem
on a given lattice. In fact, the authors of [24] show an average-case to worst-
case reduction, where the average-case instances of the problem are computed
using a unimodular matrix U sampled according to the Gaussian form distri-
bution (See Definition 3). Looking ahead, in our construction we build our LIP
instances from unimodular matrices of the form W := Ua, where U is sampled
from the Gaussian form distribution and a is sampled uniform randomly from
ZN for some large N ∈ N. Despite our best efforts we cannot prove reduction
from our LIP instances to worst-case (or average-case) LIP, we therefore rely on
the following conjecture:

Conjecture 1. Solving the search LIP for given Q′ := WTQW ∈ [Q] where W is
a unimodular matrix of the form W := Ua, for uniform random a ∈ ZN and U
is the unimodular matrix for some Q′′ := UTQU sampled from Gaussian form
distribution, is computationally hard problem even in the presence of quantum
adversaries. 2

Group actions. The hardness of the Discrete logarithms problem (DLP) and
computational Diffie-Hellman problem (CDH) are well-studied assumptions serv-
ing as bedrock of the public-key cryptography for decades. In [22], Couveignes
generalizesd these problems by representing them in terms of a more general
algebraic framework. A group action is a map between a given group and set.
The group is said to act on the set if the map satisfies certain properties (See
Definition 5 for details). In this framework DLP and CDH are seen as specific
instances of two more general problems called vectorization and parallelization
problems respectively. Informally, let (G, ?) be a group and X be a set. Let
group action be a map α : G × X → X. The vectorization problem consists
of, given x, x′ ∈ X, finding the unique group element g such that α(g, x) = x′.
On the other hand, the parallelization problem consists of, given x := α(g, y),
x′ := α(h, y), and y ∈ X, finding z := α((g ? h), y). One can see that DLP and
CDH are particular instances of vectorization and parallelization respectively.

In this work, we define a group action based on quadratic forms of isomorphic
lattices. We then define the analogues of the DLP, CDH and decisional Diffie-
Hellman problem (DDH) in this setting. To the best of our knowledge, this is
the first work connecting LIP to group actions. The security of the scheme then
relies on the following conjecture

Conjecture 2. (Informal) The vectorization and parallelization problems are com-
putationally hard when the group action is instantiated with additive group

2 Clearly the problem is identical to the average-case sLIP when a = 1.
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(ZN ,+) and equivalence class of isomorphic quadratic forms ([Q]) as underlying
G and X respectively, and group action is defined as:

(a ∈ Zn, Q′ ∈ [Q])→ Q′′ := UaTQ′Ua,

where U is a unimodular matrix.

Lattice Isomorphism-based Key Exchange (LIKE) Assume Alice and
Bob are provided a public representative Q of an equivalence class [Q]. They

locally sample unimodular matrices U , U ′ and compute Qa = (U )
T
Q (U ) and

Qb = (U ′)
T
Q (U ′) respectively. Alice then sends Qa to Bob, and Bob sends Qb

to Alice. Both of them then locally compute Qab = (U )
T
Qb (U ) and Qba =

(U ′)
T
Qa (U ′). The shared secrets are Qab and Qba. Given that search version of

LIP (hereafter referred as sLIP) is computationally hard, neither Qa nor Qb leak
information about U and U ′ respectively. However, this simple construction lacks
of correctness since matrix multiplication is not commutative. In fact, UU ′ 6=
U ′U in general and, therefore Qab 6= Qba. Our solution to achieve correctness
consists of restricting the group from where the private keys U,U ′ are sampled
to a subgroup of the unimodular matrices in which commutativity is guaranteed.
Let U be a unimodular matrix and let 〈U〉 be the multiplicative group generated
by it. For any pair of positive integers a, b ∈ Z we have that Ua, U b ∈ 〈U〉, and
UaU b = Ua+b = U b+a = U bUa. With this solution to achieve commutativity in
private keys, we introduced the framework of group actions to quadratic forms.

Informally, let Q,Q′ be two equivalent quadratic forms (representing two iso-

morphic lattices) and let U be a unimodular matrix such that Q′ = (Ua)
T
Q (Ua),

for some positive integer a. The Discrete Logarithm Problem on Quadratic Forms
(DLP-QF) aims to find a given Q,Q′ and U . Similarly, one defines CDH and
DDH on quadratic forms (See Section 3 and Definition 15, Definition 16, and
Definition 17 for details). Based on the assumption that these problems are hard
to solve, the Lattice Isomorphism (non-interactive) Key Exchange (LIKE) pro-
tocol described in Figure 1 follows. One can see that the shared secrets coincide
as follows

Qab = (Ua)
T
Qb (Ua) =

(
Ua+b

)T
Q
(
Ua+b

)
=
(
U b
)T
Qa
(
U b
)

= Qba.

Our group action is easy to compute and involves only matrix multiplica-
tions and matrix exponentiations, both of these operations can be performed
efficiently. To compare the efficiency of our protocol against other post-quantum
NIKE schemes such as CTIDH-512 (the current fastest CSIDH-like variant) and
CSIDH-4096, we implemented a constant-time proof-of-concept of our scheme.
Despite being non-optimized (for exmaple, we use the simple school-book ma-
trix multiplication), our implementation shows a clear advantage in speed for
key-derivation against the other protocols (see Table 1).

1.2 Related Work

Isogeny-based primitives are currently in the eye to building a NIKE; they ensure
(sometimes) significantly shorter keys than the other quantum-secure primitives.
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security parameter λ ∈ Z
Public parameters: quadratic form Q

unimodular matrix U

Alice

Sample a
$←− J0 . . 2λ − 1K

Compute Qa ← (Ua)TQ (Ua)

Derive Qab ← (Ua)TQb (U
a)

Bob

Sample b
$←− J0 . . 2λ − 1K

Compute Qb ←
(
U b
)T
Q
(
U b
)

Derive Qba ←
(
U b
)T
Qa

(
U b
)

Qa

Qb

Key generation

Shared secret derivation

Fig. 1: Informal description of LIKE

Public-key size Running time (clock cycles)

CTIDH-512 CSIDH-4096 CTIDH-512 CSIDH-4096

LIKE-1 258x larger 32.25x larger 3.82x faster 641.271x faster

CSIDH-6144 LIKE-1

LIKE-3 48.25x larger 3.4x slower

CSIDH-8192 LIKE-1

LIKE-5 64.25x larger 8.2x slower

Table 1: Speedup and size factors concerning CTIDH-512 [6] and CSIDH-
[4096/6144/8192] [19] compared with LIKE-1, LIKE-3, and LIKE-5. We compare
the efficiency of our proposal of LIKE-3 and LIKE-5 with LIKE-1 to illustrate
the impact of increasing the security parameters.

Nevertheless, they come with a considerable latency that penalizes them when
compared with, for example, lattice-based primitives. In 2018, Castryck et al.
presented the first quantum-resistant NIKE based on group actions and isoge-
nies, named CSIDH [17]. In 2021, Banegas et al. [6] significantly improved the
efficiency of CSIDH’s group action by moving to a different private keyspace
and combining it with a Matryoshka trick on the isogeny computations; they
called their proposal CTIDH and illustrated a 2x speedup factor compared to
CSIDH. Following the path of isogenies, recently, Leroux proposed pSIDH as a
new NIKE relying on the suborder to ideal problem [40].

In 2018, Bor de Kock described a post-quantum NIKE based on ring-Learning
With Errors [37]. In 2019, Ji, Qiao, Song, and Yun analyzed post-quantum prim-
itives falling into group actions on 3-tensors [35]; their security relies on the
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3-tensor isomorphism problem, studied by Futorny, Grochow, and Sergeichuk
in [31]. Tang, Duong, Joux, Plantard, Qiao, and Susilo recently presented a sig-
nature scheme based on the 3-tensor isomorphism problem [55]. Lastly, Ducas
and van Woerden proposed a lattice-based KEM centered on the Lattice Iso-
morphism Problem (LIP) [24].

1.3 Organization of the Paper

The paper is organized as follows: We present the preliminaries and notation in
Section 2, followed by the background on lattice isomorphism along with the re-
lated definitions and lemmas in Subsection 2.1. We then present some important
properties of unimodular matrices in Subsection 2.2, and background, important
definitions, and lemmas related to group action in Subsection 2.3. The definition
of NIKE is given in Subsection 2.4. Our Section 3 focuses on the connections
between quadratic forms and group action based on QF along with DH like as-
sumptions. The main construction and security proof of LIKE is presented in
Section 4, followed by the cryptanalysis of our assumptions in Section 5. We
present the experimental data and implementation details in Section 6 and con-
clude with the conclusion in Section 7.

2 Preliminaries and Notation

Let N, Z, Q and R denote the sets of natural, integer, rational and real numbers
respectively. We denote vectors in boldface (e.g. x) and treat them as column
vectors by default. We denote matrices by uppercase letters (e.g. M). For a

vector x in Rn, define the `2 norm as ‖x‖2 :=
(∑

i∈[n] |xi|
2
) 1

2

, where |xi| is

the absolute value of the ith component of x. We write ‖x‖ to denote `2 norm
for simplicity. For a matrix B with columns b1, . . . ,bn, we denote its Gram-
Schmidt orthogonalization by B∗ with columns b∗1, . . . ,b

∗
n. We also denote the

matrix norm of B by ‖B‖ := maxi‖bi‖.
The set of all n× n invertible matrices with entries in ring R is denoted by

GLn(R) := {M ∈ Rn×n : det(M) 6= 0}. Similarly, the set of matrices with
determinant 1 and entries in ring R is denoted by SLn(R) := {U ∈ Rn×n :
det(U) = 1} ⊂ GLn(R).

The set of all orthonormal matrices with entries in field F is denoted by
On(F) := {O ∈ Fn×n : OOT = OTO = In and ‖oi‖ = 1∀i ∈ [n]} where In is
n × n identity matrix. A square matrix O is called orthonormal if and only if
its transpose OT is also its inverse and each column vector o1, . . . ,on has norm
exactly equal to 1. A matrix S ∈ Rn×n is called symmetric positive definite if
S = ST and xTSx > 0 for all x ∈ Rn \ {0}. The set of all symmetric positive
definite matrices over R is denoted by S>0

n .

2.1 Lattice Isomorphism and Quadratic Form

A full-rank n-dimensional lattice L = L(B) := B · Zn is generated by taking
all the possible integer combinations of the (linearly independent) columns of
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a basis B ∈ Rn×n. Denote with λ1(L(B)) = minx∈L\{0}‖x‖ the length of a
shortest non-zero vector of L, and let gh(L(B)) denote the Gaussian Heuristic
estimate for λ1(L(B)) defined as:

gh(L(B)) =

√
n

2πe
· det(B)1/n.

Two bases B and B′ generate the same lattice if and only if ∃U ∈ GLn(Z) such
that B′ = BU . Two lattice L, L′ are isomorphic if there exists an orthonormal
transformation O ∈ On(R) such that L′ = O · L.

Definition 1 (Search Lattice Isomorphism Problem (sLIP)). Given two
isomorphic lattices L, L′ ⊂ Rn find an orthonormal transform O ∈ On(R) such
that L′ = O · L.

The above problem can be rephrased as follows. Given the bases B, B′ ∈
GLn(R) for L and L′ respectively, find O ∈ On(R) along with U ∈ GLn(Z) such
that B′ = OBU . In practice, the real-valued entries of basis and orthonormal
matrices can be inconvenient to represent and result in inefficient computations.
However, this can be eased by considering an equivalent problem to the LIP by
taking the quadratic form of B, a.k.a Gram matrix Q := BTB.

Note that, the quadratic form Q is symmetric by definition. Moreover, since
B is a basis (and thus full-rank), Q is actually symmetric positive definite. Recall
that, since L(B) := B ·Zn, every lattice vector in L can be written as Bx, where
x ∈ Zn. In the quadratic form setting each lattice vector Bx is represented by its
integral basis coefficient x ∈ Zn. The norm of vector x can be naturally defined in
the quadratic form as ‖x‖2Q := xTQx. Similarly, the inner product with respect

to Q can be defined as 〈x, y〉Q := xTQy. We extend also the notation for the
shortest vector norm and heuristic to quadratic forms. Specifically, we define

λ1(Q) := min
x∈Zn\{0}

‖x‖Q,

and gaussian heuristic (heuristic estimate of λ1(Q)) as

gh(Q) ≈ (det(Q))
1/2n ·

√
n

2πe
.

In general, the ith minimum distance λi(Q) is the smallest radius r > 0, such
that {x ∈ Zn | ‖x‖Q ≤ r} contains i linearly independent vectors.

We can now rephrase the LIP problem in terms of quadratic forms. For L,L′
isomorphic lattices with respective basis B,B′, we have that B′ = OBU where
O ∈ On(R) is orthonormal and U ∈ GLn(Z) is unimodular, then we have,

Q′ := B′
T
B′ = UTBTOTOBU = UTBTBU = U tQU

where, Q := BTB is the quadratic form of B. We call Q,Q′ equivalent if such
U ∈ GLn(Z) exists. We also denote the equivalence class by [Q].

The following definition is referred to as the worst-case sLIP in quadratic
form formulation [24].
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Definition 2 (wc − sLIPQ, [24, Definition 2.2]). For a quadratic form Q ∈
S>0
n , the problem wc− sLIPQ is, given any quadratic form Q′ ∈ [Q], to find a

unimodular U ∈ GLn(Z) such that Q′ = UTQU .

Ducas and van Woerden provide a polynomial time algorithm Extract that,
on input a set of n linearly independent vectors Y and a quadratic form Q,
returns a pair (Q′, U) such that Q′ = UTQU [24, Lemma 3.1]. They also show
that Q′ is independent from the input class representative Q [24, Lemma 3.2].

Discrete Gaussians and Sampling For any quadratic form Q ∈ S>0
n , the

Gaussian function on Rn with parameter s > 0 and center c is defined by

∀x ∈ Rn, ρQ,s,c(x) := exp (−π‖x− c‖2Q/s
2).

The discreet Gaussian distribution is obtained by restricting the continuous
gaussian distribution to a discreet lattice. In the quadratic form setting, the
underlying lattice will always be Zn, but with the geometry induced by the
quadratic form. For any quadratic form Q ∈ S>0

n , parameter s > 0 and center
c, the discreet Gaussian distribution DQ,s,c is defined as

Pr
X∼DQ,s,c

[X = x] :=

{
ρQ,s,c(x)
ρQ,s,c(Zn) if x ∈ Zn,
0 otherwise

.

If the center c = 0, then we omit it.
Brakerski et al. [14, Lemma 2.3] showed how to sample from the discrete

gaussian distribution distribution efficiently.

Definition 3 (Gaussian form distribution, [24, Definition 3.3]). Given
a quadratic form equivalence class [Q] ⊂ S>0

n , the Gaussian form distribution
Ds ([Q]) over [Q] with parameter s > 0 is defined algorithmically as follows:

1. Fix a representative Q ∈ [Q].
2. Sample n vectors (y1,y2, . . .yn) := Y from DQ,s. Repeat until linearly inde-

pendent.
3. (R,U)←− Extract(Q,Y ).
4. Return R.

Definition 4 (ac − sLIPQ
s , [24, Definition 3.7]). For a quadratic form Q ∈

S>0
n and s > 0 the problem ac− sLIPQs is, given a quadratic form sampled as
Q′ ←− Ds ([Q]), to find a unimodular U ∈ GLn(Z) such that Q′ = UTQU .

In [24], the authors show that the worst-case and average-case problems
are equivalent (via reduction from worst-case to average-case). We report the
relevant lemma stating such reduction.

Lemma 1 (ac − sLIPQ
s ≥ wc − sLIPQ for large s, [24, Lemma 3.9]).

Given an oracle that solves ac− sLIPQs for some s ≥ 2Θ(n) · λn ([Q]) in time T0
with probability ε > 0, we can solve wc− sLIPQ with probability at least ε in
time T + poly(n, log s).
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For smaller values of s the authors of [24] give a reduction based on stronger
lattice reduction algorithms.

Lemma 2 (ac − sLIPQ
s ≥ wc − sLIPQ, [24, Lemma 3.10]). Given an ora-

cle that solves ac− sLIPQs for some s ≥ λn (Q) in time T0 with probability ε > 0,
we can solve wc− sLIPQ with probability at least 1

2 in time

T =
1

ε
(T0 + poly(n, log s)) + C

(
n,

s

λn(Q) ·
√

ln(2n+ 4)/π

)
,

where C(n, f) is the cost of solving the Shortest Independent Vector Problem
(SIVP,[50]) within approximation factor of f .

2.2 Properties of Unimodular Matrices

We give here some useful properties of unimodular matrices. Let n be a positive
integer, and Zp be the integers modulo a prime number p. We have that

#GLn(Zp) = (pn − 1) · (pn − p) ·
(
pn − p2

)
· · ·
(
pn − pn−1

)
.

Since the determinant function det : GLn(Zp)→ Z∗p is a surjective homomor-
phism with kernel being the subgroup SLn(Zp) ⊂ GLn(Zp), by the Fundamental
Isomorphism Theorem, we have that the quotient group GLn(Zp)/SLn(Zp) is
isomorphic to Z∗p and hence #GLn(Zp) = (p− 1) ·#SLn(Zp). In other words,

#SLn(Zp) =
(pn − 1) · (pn − p) ·

(
pn − p2

)
· · ·
(
pn − pn−1

)
p− 1

.

Moreover, the number of unimodular matrices (non-singular matrices with

determinant ±1) over Zp becomes
2·(pn−1)·(pn−p)·(pn−p2)···(pn−pn−1)

p−1 . On the

other hand, the group GLn(Zp) is generated by the following two matrices [56]:

σ1 = −


0 1

Idn−1 0

 and σ2 =


1 1
0 1

0

0 Idn−2

 .

If n is even, then −σ1, and σ2 generate the whole GLn(Zp); otherwise, −σ1,
and σ2 only generate SLn(Zp), and GLn(Zp) is isomorphic to SLn(Zp)×〈−Idn〉.
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2.3 Group Actions

We now present some definitions and computationally hard problems related to
mathematical objects and functions which are used as building blocks for our
construction and security proofs.

Definition 5. Let (G, ?) be a group with identity element e, and let X be a set.
A group action of G on X is a map from G×X to X, where the image of a pair
(g, x) is denoted with g ◦ x such that:

– (identity): e ◦ x = x, for all x ∈ X;
– (compatibility): (g1 ? g2) ◦ x = g1 ◦ (g2 ◦ x), for all g1, g2 ∈ G and for all
x ∈ X.

We say that G acts on X if there exist a group action of G on X.
A group action is said to be regular if the following two properties hold:

– (transitive): for each x, y ∈ X, there exists a g ∈ G such that g ◦ x = y;
– (free): if, for g ∈ G, there exists a x ∈ X such that x = g ◦ x, then g is the

identity.

Definition 6 (Principal Homogeneous Spaces (PHS)). Let (G, ?) be an
abelian group and let X be a set equipped with a regular group action of G. Then
X is said to be a Principal Homogeneous Space.

From now on, we will assume that the group operation ? of the group G is
efficient to compute.

Definition 7 (Vectorization Problem). Let X be a PHS under a group
(G, ?). Given x, x′ ∈ X, compute the unique g ∈ G such that x′ = g ◦ x.

Definition 8 (Parallelization Problem). Let X be a PHS under a group
(G, ?). Given y, x, x′ ∈ X such that x = g ◦ y and x′ = h ◦ y, compute z ∈ X
such that z = (g ? h) ◦ y.

Definition 9 (Hard Homogeneous Space (HHS)). Let X be a PHS under
a group (G, ?). If the group action ◦ is efficiently computable but the vectorization
and the parallelization problems are computationally hard to solve, then we say
that X is a Hard Homogeneous Space.

Looking ahead, our construction uses a specific type of group action (see
Section 3) and the security relies on the hardness of solving Hidden Shift Problem
defined below.

Definition 10 (Hidden Shift Problem). Let (G, ?) be a group. The Hidden
Shift Problem is to find s ∈ G, given two permutations f0, f1 : G→ G such that
for all x ∈ G, f1(x) = f0(x+ s).
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In the above, it is assumed that such s exists for given f0, f1. For G = ZN
and some set X with the associated group action ◦, the Vectorization Problem
(Definition 7) becomes an instance of the Hidden Shift Problem over G. First,
define f0 : g → g ◦ x and f1 : g → g ◦ x′. Then,

f1(g) = g ◦ x′ = g ◦ (s ◦ x) = (g + s) ◦ x = f0(g + s)

is a shifted version of f0. Finding s reduces to solving the Hidden Shift Problem
over G.

The hidden shift problem (Definition 10) is a special case of Hidden Subgroup
Problem (a well-studied computation problem, See Definition 12) on a related
group G (the G-dihedral group) 3.

We define the G-dihedral group and the Hidden Subgroup Problem (HSP)
below.

Definition 11 (G-dihedral group, [25]). Let G = ZN be the additive group of
integers modulo N . The G-dihedral group of order 2N is a regular N -sided poly-
gons symmetry group, including rotations and flips. We denote the G-dihedral
group by G. More precisely, G coincides with the semidirect product G o Z2

determined by the relation

o : ((g1, z1), (g2, z2)) 7→ ((g1 + φ(z1)(g2), z1 + z2))

where φ is an homomorphism defined as

φ : Z2 → Aut(G)

z 7→ φz : g 7→ (−1)
z
g,

and Aut(G) denotes the group of automorphisms on G.

Let H be a subgroup of G. We say that a function f : G → X hides the
subgroup H if, for all g1, g2 ∈ G, f(g1) = f(g2) if and only if g1H = g2H. In the
following, we assume f can be computed efficiently.

Definition 12 (Hidden Subgroup Problem). Let G be a group, H ⊆ G be a
subgroup and X be a set. Given a function f : G→ X that hides H, the Hidden
Subgroup Problem (HSP) is to find a generator of H.

The reduction from the hidden shift problem over G to the hidden subgroup
problem (HSP) over G is done by converting the image fz(g) for g ∈ G and
z ∈ Z2 to the element g := (g, z) ∈ Go Z2.

3 For a detailed read, we encourage the readers to check [38, §2] and [49,25].

12



2.4 Key Exchange Protocols

We define the non-interactive key exchange scheme in the public key setting
following the formal definitions given in [16], and [30].

Definition 13 (NIKE). A non-interactive key exchange (NIKE) scheme is a
tuple of algorithms

NIKE = (NIKE.Setup, NIKE.KeyGen, NIKE.SharedKey)

together with a shared keyspace K, where

– pp ←− NIKE.Setup(1λ): a setup algorithm takes the security parameter λ as
input and outputs the public parameters pp.

– (pk, sk) ←− NIKE.KeyGen(pp): a probabilistic polynomial time (PPT) algo-
rithm taking on input public parameters and returning a pair of public and
secret keys. Any user should be able to generate its own pair of keys from the
public parameters.

– k ←− NIKE.SharedKey(pp, pk1, sk2): given the public key of one party pk1,
and the secret key of another party sk2, along with the public parameters pp
as input, this algorithm returns a shared key k ∈ K

⋃
{⊥} among the two

parties.

Correctness: a NIKE scheme provides correctness if, for all honestly generated
public parameters pp, we get

NIKE.SharedKey(pp, pk1, sk2) = NIKE.SharedKey(pp, pk2, sk1)

where (pki, ski) ←− NIKE.KeyGen(pp) are honestly generated public and secret
keys for i ∈ {1, 2}.

Security: let pp ←− NIKE.Setup(1λ), and (pki, ski) ←− NIKE.KeyGen(pp) for i ∈
{1, 2}. We say that a NIKE scheme is (passively) secure if any PPT adversary
A cannot distinguish between the following to games:

– Game0: the adversary A receives a shared key

k ←− NIKE.SharedKey(pp, pk1, sk2)

along with the public parameters pp, and pk1, pk2.
– Game1: the adversary A receives a random key k ←− K along with the public

parameters pp, and pk1, pk2.

3 Diffie-Hellman over Quadratic Forms

Let Q ∈ S>0
n be a quadratic form of dimension n, and let U ∈ GLn(Zq) be an

unimodular matrix. Let N be the smallest positive integer such that UN is the
identity matrix Id. Such an N always exists because Zq is finite and, if U is
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idempotent, then U = Id4. In the following, we will assume N to be prime or a
power of a prime.

Definition 14 (Quadratic Form Group Action). Consider the additive group
ZN of integers modulo N . Define the set

XU,Q =
{

(Ug)
T
Q (Ug) : g ∈ ZN

}
and the map

α : ZN ×XU,Q → XU,Q
(g, x) 7→ α(g, x) := (Ug)

T
x (Ug) ,

where Ug denotes the matrix obtained by raising U to the power of g, and, by
convention, U0 = Id.

Proposition 1. For every choice of U ∈ GLn(Zq), the map α from Definition 14
is a group action of ZN on XU,Q.

Proof. Let U ∈ GLn(Zq). We need to prove that both the identity and com-
patibility properties of group actions hold. The first one is true since α(0, x) =(
U0
)T
x
(
U0
)

= x. Given g1, g2 ∈ ZN , we have that

α(g1, α(g2, x)) =
(
Ug1+g2

)T
x
(
Ug1+g2

)
= α(g1 + g2, x),

so the compatibility property holds too.

Remark 1. Note that, thanks to the commutativity of ZN , we have that

α(g1, α(g2, x)) = α(g1, (U
g2)

T
x(Ug2)) = (Ug1+g2)

T
x(Ug1+g2)

= α(g2, (U
g1)

T
x(Ug1)) = α(g2, α(g1, x))

Proposition 2. The group action defined in Definition 14 is regular.

Proof. We start proving the transitive property by construction. Let g1, g
′
2 ∈

ZN such that x = (Ug1)
T
Q (Ug1) and x′ = (Ug2)

T
Q (Ug2). Consequently, x′ =

(Ug2−g1)
T
x (Ug2−g1). We prove now the free property. If g = 0, then Ug = Id and

x = (Id)x(Id) = x. On the other hand, if x = α(g, x), then x = (Ug)
T
x (Ug) =

(Ug)
T

(Ug)
T
x (Ug) (Ug), and therefore (Ug) (Ug) = Ug. Since the the identity

matrix is the only non-singular idempotent matrix in Zq, we have that Ug = Id.
Hence, g = 0 coincides with the identity of ZN .

4 For a unimodular idempotent matrix U ∈ GLn(Zq), we have that Id = UU−1 =
U2U−1 = U .
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Proposition 2 implies that XU,Q is a Principal Homogeneous Space. The
group operation cost consists simply of an addition of integers modulo N . The
group action consists of raising the matrix U to a power g ∈ ZN , then perform
2 matrix multiplications. With an analogous approach to the one of Joye-Yen
for modular exponentiation [36], and given that a matrix squaring has the same
cost of matrix multiplication, the overall cost is reduced to be 2(log2(N) + 1)
matrix multiplications. For N = O(qn), for some q > 1 linear in n, the time
complexity to perform the group operation is reduced to be 2(n log2(q) + 1)
matrix multiplications. Using, for example, the school book algorithm for matrix
multiplication with a cost of n3 scalar multiplications, the overall cost of the
group action is therefore polynomial in n.

We give now a reformulation of the Vectorization and Parallelization prob-
lems for the XU,Q setting case respectively. These can be seen as the Discrete
Logarithm Problem (DLP) and Computational Diffie Hellman Problem (CDHP)
adapted to our study case. We will assume U ∈ GLn(Fq) unimodular and
Q ∈ S>0

n to be public.

Definition 15 (DLP on Quadratic Forms (DLP-QF)). Given Qa ∈ XU,Q,

with Qa = (Ua)
T
Q (Ua), for some secret a ∈ ZN , find a.

Definition 16 (CDHP on Quadratic Forms (CDHP-QF)). Given two el-

ements Qa, Qb ∈ XU,Q, with Qa = (Ua)
T
Q (Ua) and Qb =

(
U b
)T
Q
(
U b
)
, for

some secret a, b ∈ ZN , find Qs =
(
Ua+b

)T
Q
(
Ua+b

)
.

Conjecture 3. The set XU,Q is a Hard Homogeneus Space, that is, Vectorization
(DLP-QF) and Parallelization (CDHP-QF) problems are computationally hard.

We introduce another computational problem that can be seen as the anal-
ogous of the Decisional Diffie-Hellman Problem (DDHP) to our setting.

Definition 17 (DDHP on Quadratic Forms (DDHP-QF)). The Deci-
sional Diffie-Hellman Problem on Quadratic Forms is to distinguish with non-
negligible advantage between the distributions(

(Ua)
T
Q(Ua), (U b)

T
Q(U b), (Ua+b)

T
Q(Ua+b)

)
and (

(Ua)
T
Q(Ua), (U b)

T
Q(U b), (U c)

T
Q(U c)

)
,

where a, b, c are chosen uniformly at random from ZN .

Conjecture 4. We conjecture that the Decisional Diffie-Hellman Problem on Qua-
dratic Forms is computationally hard.

4 A New Non-Interactive Key Exchange

From the analysis in Section 3, we build the following non-interactive key ex-
change protocol. Figure 2 gives an explicit description of our proposal.
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Public parameters: Equivalence class [Q], security parameter λ ∈ Z,
U ∈ GL(Zn) unimodular and N ∈ Zq such that UN = Id and N > 2λ

Alice

Sample a
$←− J0 . . 2λ − 1K

Compute UA ← Ua

Calculate QA ← UA
TQUA

Derive QAB ← UA
TQBUA

Bob

Sample b
$←− J0 . . 2λ − 1K

Compute UB ← U b

Calculate QB ← UB
TQUB

Derive QBA ← UB
TQAUB

QA

QB

Key generation

Shared secret derivation

Fig. 2: Lattice Isomorphism based Key Exchange. We assume U comes from a
sample Q′ ←− Ds ([Q]) satisfying Q′ = UTQU , and N = O(qn).

Setup. Let q be a power of a prime number p, n be a positive integer, and
N = O(qn). Let Q ∈ S>0

n and U ∈ GLn(Zq) unimodular be public such that
UN = Id.

Key Generation. Both the public keys and the shared keys are elements of the set{
(Ug)

T
Q (Ug) : g ∈ ZN

}
. Each party samples a random secret residue d ∈ ZN ,

and compute its public key as Qd =
(
Ud
)T
Q
(
Ud
)
.

Key Derivation. Let Alice and Bob be the two parties of the key exchange, and
let Qa and Qb be their public keys respectively. Upon receiving Bob’s public
key, Alice computes her shared key as Qab = (Ua)

T
Qb (Ua). In parallel, Bob

computes his shared key Qba. Due to the commutativity of Zn (see Remark 1),
we have that Qab = Qba.

Theorem 2. Let
XU,Q =

{
(Ug)

T
Q (Ug) : g ∈ ZN

}
be a hard homogeneous space, and α : ZN × XU,Q → XU,Q defined as (g, x) 7→
α(g, x) := (Ug)

T
x (Ug), be a map, where Ug denotes the matrix obtained by

raising U to the power of g, and, by convention, U0 = Id. If Conjecture 1 and
Conjecture 4 hold true, then the scheme presented in Figure 2 is a passively
secure non-interactive key exchange (NIKE) scheme.

The correctness of the shared keys QAB = QBA follows from the fact that
the UA and UB commute.

Proof (Proof of security Theorem 2). In order to prove the security of the scheme
we need to show that any PPT(quantum) adversary cannot distinguish between
the shared key k := QAB = QBA and a given uniform random matrix Q′ ∈ [Q]
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when given along with the public parameters U,Q, s. This follows from Conjec-
ture 4 since (UAUB) = Ua+b is indistinguishable from U c. We also additionally
need to show that, the public values QA (resp. QB) do not leak any information
about the secret key a (resp. b) and secret unimodular matrices UA := Ua (resp.
UB := U b).

Note that recovering a (resp. b) from the public key QA (resp. QB) is exactly
the vectorization problem which is computationally hard assuming XU,Q is a hard
homogeneous space (See Conjecture 3 and Definition 15). Similarly, recovering
the shared keyQAB from the public keysQA andQB is exactly the parallelization
problem which is computationally hard assuming XU,Q is a hard homogeneous
space (See Conjecture 3 and Definition 16).

Finally, recovering the secret unimodular matrices UA (resp. UB) from the
public keys QA (resp. QB) is computationally hard assuming our LIP instances
to be hard, see Conjecture 1. This completes the proof of Theorem 2.

In section 5 we give details related to the conjectured hardness of the different
computational problems mentioned above.

4.1 Public parameters setting

From Subsection 2.2, we have σ1
n·2(n mod 2)

= Id and σ2
p = Id on GLn(Zp). We

suggest to set

Q = σ2
Tσ2,

which has order O(p). Heuristically, we noticed there are Q’s having order p+ 1
for some prime values of p. It seems the remaining cases satisfy Q has order
divisible by p−1. We propose to sample U coming from a sample Q′ ←− Ds ([Q])
satisfying Q′ = UTQU . The order of U is expected to be O(pn), so it is easy to
find a suitable unimodular matrix U .

Computational group action cost. Let a be a random positive integer
smaller than order N ≈ pn of U . Then, computing Qa = (Ua)

T
Q (Ua) requires

to calculate V = Ua and perform two matrix multiplications. A matrix multi-
plication approximately costs O(n2.8074) field operations employing Strassen’s
algorithm. Now, raising U to a requires 2 log2(N) ≈ 2n log2(p) matrix mul-
tiplications for a constant-time implementation. In practice, we fix a security
parameter λ and assume a is a random number of 2λ bits to reduce the ma-
trix exponentiation cost from 2n log2(p) into 4λ matrix multiplications. Table 2
summarizes the costs and bits concerning our NIKE proposal.

5 Cryptanalysis

This section lists potential attacks on our LIKE proposal and discusses public-
key validation by comparing it with CSIDH public-key validation.
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Private key Public key Shared secret

Runtime O(4λn2.8074) O(2n2.8074) O(2n2.8074)

Bitlength n2 log2(p) n(n+1) log2(p)
2

n(n+1) log2(p)
2

Table 2: Assuming a is fixed, we set as private key the unimodular matrix Ua

instead of a. We increase the private key size to make faster our group action.
Public keys (xa = a ∗ x) and shared secrets (b ∗ xa) requires two matrix multi-
plications, and they correspond with symmetric matrix implying we can store a
lesser number of coefficients than n2. We assume a has exactly 2λ bits.

5.1 Key-recovery attacks

We present here the known approaches to perform a key-recovery attack to our
protocol. The general setting is, given a public key Qa = (Ua)

T
Q (Ua), find either

a or Ua. We present in this section the known classical and quantum approaches
to perform this attack.

Bruteforce One computes Qc = U cTQU c, for every 0 < c < 2λ. If Qa = Qc,
then one sets a = c. The time complexity is O(2λ) and the space complexity is
O
(
n2
)
.

Meet-in-the-Middle attack. One can perform a meet-in-the-middle style at-
tack to retrieve the exponent a. The idea is to look for a1, a2 < 2λ/2 such that
a = a1 + a22λ/2. Let hλ/2 : S>0

n → {0, 1}λ/2 be a hash map. One stores the
following table in memory as linked list

T =
{(
hλ/2

(
(U c1)

T
Q (U c1)

)
, c1

)
: 0 ≤ c1 < 2λ/2

}
.

Then one computes, for every 0 ≤ c2 < 2λ/2, the binary string

hc2 := hλ/2

((
U−c22

λ/2
)T
Qa

(
U−c22

λ/2
))

.

If the memory cell of the table indexed hc2 is not empty, one checks, for each
corresponding element c1, whether the following equation holds(

U−c22
λ/2
)T
Qa

(
U−c22

λ/2
)

= (U c1)
T
Q (U c1) .

In case of success, then a1 = c1 and a2 = c2. Both space and time complexity
required to perform such attack are of the order O(2λ/2).
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Memory-limited scenario. As mentioned before, the MitM procedure has a space
complexity of 2λ/2 cells of memory. So, assuming we have a maximum number of
memory cells w, we trade space for time by ranging over a w-subset in the table
generation phase. At the same time, the enumeration phase will compare 2λ/2

elements vs. the w-subset to find a (possible) collision. If there is no collision, we
repeat the procedure with the next w-subset, and so on until getting a collision.
This memory-limited approach has a runtime of about

2λ/2

w

(
w + 2λ/2

)
= 2λ/2 +

2λ

w
= O

(
2λ

w

)
operations.

On the other hand, van Oorschot and Wiener provided an algorithm to find such
collision [46], which is unique over 〈U〉. More precisely, we can apply the golden
collision search procedure at the cost of

2.5

√
8
(
2λ/2

)3
√
w

≈ 7.2
23λ/2√
w

operations.

That is, van Oorschot and Wiener procedure becomes cheaper than MitM when
having a memory-limit; this is also the case for SIDH [1,21] and CSIDH [19].

Pohlig-Hellam attack. Let us assume we have a unimodular matrix U ∈
GLn(Zp) of order N = N1N2. Fix a public quadratic form Q. The idea is to em-
phasize the importance of commutativity and group structure in the operations
to apply the Chinese Remainder Theorem (CRT) 5. For example, finding s from
Vs = Us reduces the problem into solving it in small subgroups of sizes N1 and
N2 as follows:

V N2
s =

(
UN2

)s
, (1)

V N1
s =

(
UN1

)s
. (2)

Solving Equation 1 and Equation 2 give s1 = s mod N1 and finds s2 =
s mod N2, respectively. Then, CRT reconstructs s in terms of s1 and s2. However,
our construction keeps Vs = Us secret and makes public Qs = Vs

TQVs, which is
crucial to argue why (we believe) CRT does not reduce security. Let us analyse
the following two equations

QN2
s =

(
Vs

TQVs

)N2

, (3)

QN1
s =

(
Vs

TQVs

)N1

. (4)

Now, Qs has a different order Ns than N and Qes 6=
(
V es

TQeV es

)
for i = 1, 2

and any e ∈ Z \ {0,±1}. It is worth highlighting, Qes does not belong to XU,Q.

5 This is also the case for CSIDH as in both cases we work on an unstructured set [17].
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Furthermore, neither Equation 3 nor Equation 4 reduce the order of U , Q and
Qs at the same time. So, it seems there is no way to reduce into small subgroups
of order dividing N .

Hidden-Shift Problem. One can retrieve the secret key a from the public
key Qa = (Ua)

T
Q (Ua) by solving an Hidden Shift Problem instance (see Defi-

nition 10). Bonnetain and Schrottenloher provide in [12] concrete complexities
of three algorithms for solving the HSP over G = ZN . We next list the main
algorithms that solve the HSP, Table 3 presents their complexities:

1. A generic procedure relying on Kuperberg’s algorithm [38].
2. An approach based on the Regev’s work [49].
3. A revised Kuperberg’s algorithm [39].

Classical Quantum

time memory memory queries

[12, §3.2] 1.8
√
n+ 4.3 1.8

√
n+ 2.3 1.8

√
n+ 2.3 1.8

√
n+ 4.3

[12, §3.3] 0.291n+ log2(n) + 3 0.291n log2(n) 2 log2(n) + 3

[12, §3.4] 4
√

2n/3 + log2(n) + 3
√

2n/3 log2(n)
√

2n/3 + log2(n) + 3

Table 3: Classical and Quantum complexity of algorithms that solve HSP [12,
Table 4]

Solving sLIP approach. Another possible approach for a key recovery attack
is to solve the underlying sLIP instance in the public key. Let Qa = (Ua)

T
Q (Ua)

be a public key. Assume that, through the use of an LIP solver, one obtains Ua.
This would be enough to retrieve the private shared key by multiplying Ua in
both sides of the other’s party public key as follows

Qab = (Ua)
T
Qb (Ua) =

(
Ua+b

)T
Q
(
Ua+b

)
.

However, it is not guaranteed that the returned unimodular matrix by the LIP
solver would be exactly Ua. Indeed, any matrix of the form W := V Ua, where
V ∈ Aut(Q) is a solution of the underlying LIP instance, and the probability of
getting W := Ua depends on the size of Aut(Q). Conservatively, we assume that
given any solution W of the underlying LIP instance, it is easy to retrieve Ua.

Our public keys are constructed by sampling U coming from a sample Q′ ←−
Ds ([Q]) where Q′ = UTQU , and then raising U to the power of a random integer
a when computing Qa. We were not able to find a reduction from these LIP
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case instances to the average-case or worst-case sLIP. Intuitively, raising U to a
power amplifies the underlying Gaussian distribution. Furthermore, ac− sLIPQs
instances can be seen as a particular case of our instances for a = 1. Given that
an average-to-worst-case reduction exists ([24, Lemma 3.9]), we conjecture that
these instances as computationally hard to solve (Conjecture 1).

Typically, algorithms for solving sLIP consist of enumerating short vectors. In
this paper, we follow the complexity conjectured by Ducas and van Woerden [24,
sec 7.3]. Define the primal-dual gap to the Gaussian Heuristic as

gap(Q) = max

{
gh(Q)

λ1(Q)
,
gh(Q−1)

λ1(Q−1)

}
.

For any class of quadratic forms [Q] of dimension n such that gap(Q) ≤ poly(n),
wc− sLIPQ is 2Θ(n)-hard.

Note that retrieving Ua would allow us to solve the underlying CDHP-QF
instance too. Indeed, one exploits the commutativity of the multiplicative group
〈U〉 to apply Shor’s algorithm to the pair (U,Ua) and retrieve a.

5.2 Public-key validation: a comparison with CSIDH

Let assume we receive a public key Q′ = V TQV as in Figure 2. Now, [24,
Section 7] gives as fingerprint ari(Q) := {det(Q), gcd(Q),par(Q), [Q]Q,

(
[Q]Zp

)
p
}

that ensure an efficient procedure to decide whether two quadratic forms cannot
be equivalent. Now, we say Q′ is a valid public key if there is an integer s such
that V = Us. An honest entity, let’s say Alice, will share with us a valid public
key Q′, but if Alice is not honest, she could cheat us by sampling a random
unimodular matrix V that does not belong to 〈U〉. Ideally, we need a public-key
validation to check whether V ∈ 〈U〉. As far as we know, the unstructured set X
does not leak information whenever Q′ = V TQV with V 6∈ 〈U〉 is or not received.
The non-commutativity of matrix multiplications implies different shared secret
for V 6∈ 〈U〉.

In summary, we do not have public-key validation for our proposal, being
a disadvantage compared with CSIDH-like instantiations [18,19,6]. However, we
want to address that validating public keys on some recent large CSIDH-like
instantiations is easy to “cheat”. Let’s start with the original CSIDH-like of 512
bits to hint at why there is an issue. The private keyspace has 256 bits. The
public keyspace comprises all supersingular curves over a 512-bits prime field,
which is a 256-bits set. So, validation falls to verifying supersingularity of curves.

Recently, Chávez-Saab et al. suggested to reduce the private keyspace from
256 to 221 bits to get a faster group action evaluation [19], which was also taken
into consideration in [6]. The public keyspace remains the same, implying that
2256/2221 = 235 public keys do not come from a private key. We can easily
select one of those 235 keys by sampling outside the private-key range, and still
correctly pass the key validation. That issue extrapolates to large CSIDH-like
instantiations since the private keyspace has at most 512 bits, while the number
of supersingular curves is thousands of bits (≥ 1024 bits). Consequently, we can
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generate fake-valid public keys with preimage out from the private-key space
due to the significant difference in the size of public and private keyspaces. It
is worth highlighting that even using fake-valid public keys ensures the same
shared secret due to the commutativity of CSIDH-like schemes.

We do not think this (minor) issue on the public-key validation compromises
security for CSIDH-like constructions. In fact, further analysis is required, and
it is out of the scope of this work.

6 Experiments and implementation

This section focuses on the performance of our LIKE proposal. We provided
a constant-time proof-of-concept of LIKE in the C-language. Given a security
parameter λ, we implement

– schoolbook matrix multiplication at the cost of n3 field multiplications;
– matrices exponentiation through a constant-time Montgomery ladder [36].

We assume integer exponents of 2λ-bits. Then, each matrix exponentiation
has a cost of 4λ matrix multiplications; and

– the computation of V TQV by calculating R = QV (one matrix multipli-
cation), and then V TR utilizing the symmetric property (a saving of 50%
concerning one matrix multiplication).

Since LIP is 2Θ(n)-hard, we set as matrix dimension n = λ. To a fair com-
parison, we follow the suggestions in [19] concerning the group sizes; that is, We
work with the same group sizes N as in [19] and conservatively to choose:

– LIKE-1: N = #〈U〉 of 2048-bits (equivalent to CSIDH-4096),
– LIKE-3: N = #〈U〉 of 3072-bits (equivalent to CSIDH-6144),
– LIKE-5: N = #〈U〉 of 4096-bits (equivalent to CSIDH-8192)

to address close NIST security Level 1, 3, and 5, respectively. Table 4 lists the
cost of the revised Kuperberg’s algorithm concerning our instantiations.

We set q = 32771 as a 16-bit prime number. Table 5 illustrates private and
public keys sizes, and Table 6 draws our experiments. All our experiments were
run on a machine with 2.70GHz Intel Core i7-7500U CPU, 16 GB of RAM and
running Ubuntu 20.04. We used gcc 9.4.0 and clang 10.0.0. We replicated the
experiments of CITDH-512 [6] and CSIDH-4096 [19] by using their respective
public repositories 6. Our code is freely available at https://archive.org/details/
like-c.

Advantages: Concerning key derivation, LIKE has better performance than any
large CSIDH instantiation. For example, LIKE-1 is about 3.82x faster than
CTIDH-512. Also LIKE running time (and also key sizes) increase by a lin-
ear factor; LIKE-3 is 3.40x slower than LIKE-3, while LIKE-5 is 8.2x slower
than LIKE-1. Additionally, LIKE-1 key generation is about 2.16x faster than
CSIDH-4096.
6 We compared with the fastest CSIDH-style that use dummy operations and two

torsion points [45]
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Classical Quantum

N time memory memory queries

256 63.256 13.064 8.000 24.064

2048 161.802 36.950 11.000 50.950

3072 195.604 45.255 11.585 59.840

4096 224.023 52.256 12.000 67.256

Table 4: Classical and Quantum complexity of the revised Kuperberg’s algo-
rithms to solve HSP over ZN [12, §3.4]. All the entries are presented after taking
log2. Recall, N = #〈U〉 for our case, and it is compared with a CSIDH-(2 log2N)
instance.

Group bitlength Private key Public Key NIST security

2048 32.768 KB 16.512 KB Level 1

3072 73.728 KB 37.056 KB Level 3

4096 131.072 KB 65.792 KB Level 5

Table 5: Sizes concerning the subgroup generated by U (with coefficients in Zq
being q a 16-bits prime number). Matrix dimensions are n = 128, n = 192,
n = 256 for NIST security Level 1, 3, and 5, respectively. All group sizes are
given in log2 base.

Scheme Key generation Key Agreement NIST security

CTIDH-512 [6] 139.509609 144.022198 Level 1

CSIDH-4096 [19] 24184.504 24184.504 Level 1

LIKE-1 11197.063 37.713 Level 1

LIKE-3 57163.334 128.051 Level 3

LIKE-5 183199.131 307.322 Level 5

Table 6: Million of clock cycles. Matrix dimensions are n = 128, n = 192, n =
256 corresponding to LIKE-1, LIKE-3, and LIKE-5, respectively. Asymptotic
speaking, CTIDH-512 has smaller quantum security according to [12,47,19].

Disadvantages: Public CSIDH-keys are smaller than public LIKE-keys. More
precise, CSIDH-4096 has public keys of 512 bytes (LIKE-1 keys are 32.25 larger),
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CSIDH-6144 of 768 bytes (LIKE-3 keys are 48.25 larger), and CSIDH-8192 of
1024 bytes (LIKE-5 keys are 64.25 larger).

Remark 2. We point out that our implementation should be taken as a proof-
of-concept to hint the performance of our LIKE proposal. We leave as future
work an optimized constant-time implementation of LIKE protocol with the
appropriated unimodular public unimodular U .

7 Conclusions

We presented a new efficient NIKE scheme based on lattice isomorphisms and
group actions. The hardness assumption on which the security is based are ana-
logues to the ones of other quantum-secure NIKE schemes such as CTIDH and
CSIDH. Our non-optimized constant-time implementation shows a clear advan-
tage in key derivation against these schemes.

Future Research Directions. Our implementation has a lot of room for improve-
ments. For example, we use school-book matrix multiplication in key derivation.
However, one can exploit the fact that quadratic forms are symmetric, and that
the two other multiplicands are transpose to each other, in order to design a
much more efficient dedicate algorithm. In addition, more efficient algorithms
such as Strassen algorithm can be employed in combination with the above re-
mark, and in key generation.

To make our scheme even more competitive, one would want to reduce key
sizes. A deeper study on the hardness of solving the underlying LIP instance
of our public keys could lead to a reduction of the matrix sizes. Another hypo-
thetical approach could be to add a ring/module structure to LIP, analogously
to what has been already done with Learning With Errors, and then extend it
to LIKE. Finally, it remains to investigate about authenticated key exchange in
the LIKE framework.
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ments on an early version of this work, and Samuel Jaques for his thoughts on
quantum aspects related to this paper. Finally, we greatly thank Victor Mateu
for his advices and support.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J., Menezes, A., Rodŕıguez-
Henŕıquez, F.: On the Cost of Computing Isogenies Between Supersingular El-
liptic Curves. In: Cid, C., Jr., M.J.J. (eds.) Selected Areas in Cryptography -
SAC 2018 - 25th International Conference, Calgary, AB, Canada, August 15-17,
2018, Revised Selected Papers. Lecture Notes in Computer Science, vol. 11349, pp.
322–343. Springer (2018). https://doi.org/10.1007/978-3-030-10970-7 15, https:
//doi.org/10.1007/978-3-030-10970-7 15

24

https://doi.org/10.1007/978-3-030-10970-7\_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15


2. Aguilar Melchor, C., Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy,
O., Deneuville, J.C., Gaborit, P., Ghosh, S., Gueron, S., Güneysu, T., Misoczki,
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