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Abstract. We study the framework of Watanabe and Yasunaga (Asi-
acrypt 2021) that enables us to evaluate the bit security of cryptographic
primitives/games with an operational meaning. First, we observe that
their quantitative results preserve even if adversaries are allowed to out-
put the failure symbol in games. With this slight modification, we show
that their framework evaluates the advantage of adversaries more pes-
simistically than that of Micciancio and Walter (Eurocrypt 2018). Also,
we prove the optimality of the Goldreich-Levin hard-core predicate by
employing the reduction algorithm of Hast (J. Cryptology, 2004). These
two results resolve open problems that remained.
We demonstrate that all games we need to care about in their framework
are decision games. Namely, we show that for every search game G, there
is the corresponding decision game G′ such that G has λ-bit security if
and only if G′ has λ-bit security. The game G′ consists of the real and the
ideal games, where attacks in the ideal game are never approved. Such
games often appear in game-hopping security proofs. The result justifies
such security proofs because they lose no security. Finally, we provide a
distribution replacing theorem. Suppose that a game using distribution
Q in a black-box manner is λ-bit secure, and two distributions P and
Q are computationally λ-bit secure indistinguishable. In that case, the
game where Q is replaced by P is also λ-bit secure.

Keywords: Bit Security · Operational Approach · Goldreich-Levin The-
orem.

1 Introduction

Quantifying the security levels of cryptographic primitives is a significant task
both for theoreticians and practitioners around information security and cryp-
tography. The evaluations directly affect using cryptographic primitives in our
daily lives. We usually say that primitive P has λ-bit security (or security level
λ) if we need 2λ operations to break P . Although the statement is simple, we
encounter difficulties formalizing such security levels exactly.

For example, suppose that an encryption scheme Π is proven to be secure, as-
suming some computational assumption X and a secure signature scheme S. We
expect that if both X and S have λ-bit security, then Π also has λ-bit security.



In the cryptographic literature, we instead discuss the advantages of the primi-
tives, say advΠ ≤ advX+advS , where advΠ , advX , advS are the advantages of the
adversary for scheme Π, assumption X, and scheme S, respectively. However, we
have not paid much attention to the precise interpretation of these advantages.
While advS for signature scheme S is usually defined as the winning probability
in the forgery game, advΠ for encryption scheme Π is different from the winning
probability p in the IND-CPA game and is defined as advΠ = |2p − 1|. Hence,
even if we can suppose that advS ≤ 2−λ and advX ≤ 2−λ (thus advΠ ≤ 2−λ+1),
we cannot say that Π has λ-bit security because of λ-bit security of S and X.

The difficulty mentioned above stems from the unclarity of the interpretation
of advantage for decision games. In order to clarify the subtlety, let us consider
the following decision game to distinguish between the pseudorandom number
generator (PRG) and the true random number generator (TRG): the outcome
(y, z) of PRG consists of the image y = f(x) of a one-way permutation f over
{0, 1}n and its hard-core predicate z = h(x); the outcome (y, z) of TRG consists
of y = f(x) and a random bit z = σ that is independent of the seed x. For this
game, we can consider the following two possible attacks:

1. Linear test attack: For a prescribed binary vector v of length n + 1, the
adversary computes the inner product of v and (y, z); if the outcome is 0,
the adversary outputs 0 (PRG); and outputs 1 (TRG) otherwise. For such
an attack, the output distribution Au of the adversary A given u ∈ {0, 1}
(u = 0 for PRG and u = 1 for TRG) are A0 = (1/2 + ε1, 1/2 − ε1) and
A1 = (1/2, 1/2) for some bias ε1. How much bit security does the PRG have
against this attack? Note that the (standard) advantage of this attack is ε1.

2. Inversion attack: First, the adversary tries to invert the one-way permuta-
tion, which will succeed with probability ε2. If the inversion is successful
and h(x) coincides with z, the adversary outputs 0 (PRG); otherwise (the
inversion is unsuccessful or h(x) ̸= z), the adversary outputs 1 (TRG). For
such an attack, the output distribution of the adversary A given u ∈ {0, 1}
are A0 = (ε2, 1− ε2) and A1 = (ε2/2, 1− ε2/2). How much bit security does
the PRG have against this attack? Note that the (standard) advantage of
this attack is ε2/2.

It is known that, for an appropriately chosen vector v, the advantage of the
linear test can be ε1 ≥ 2−n/2 (cf. [1, 6]). Since we expect that the bit security of
PRG for seed length n is close to n, should we define the bit security for a given
level of advantage ε as log(1/ε2)? However, if we define the bit security as such,
then the bit security against the inversion attack would be 2n if ε2 ≃ 1/2n, i.e.,
random guess is the best possible strategy of the adversary; this is unnatural
since the seed length is n. Thus, these attacks suggest that the commonly used
notion of advantage may not be appropriate to evaluate bit security.

In order to circumvent the subtlety mentioned above in defining the bit se-
curity for decision games, Micciancio and Walter [15] introduced an alternative
definition of advantage (see (7)). Their notion of bit security was defined based
on this advantage. Even though the results obtained by their definition of bit
security match our intuition, the definition lacks an operational meaning.
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In [18], Watanabe and Yasunaga introduced a framework for evaluating the
security level of primitives with operational meanings. In their framework, there
are two types of adversaries attacking a security game G. The inner adversary
A plays a usual security game G. The outer adversary B invokes A sufficiently
many times to achieve the winning probability close to one. If the total compu-
tational cost needed to achieve this task is 2λ, game G is said to be λ-bit secure.
Notably, they characterized their notion by advantages. They showed that the bit
security of game G is approximated by minA{log2(TA/advA)}, where TA is the
computational cost of adversary A and advA is equal to the winning probability
of A in G for search games and is the Rényi advantage of A for decision games.
The Rényi advantage was introduced in [18] and is defined as the Rényi diver-
gence of order 1/2 between the output distributions of two cases in the decision
game. Their framework gives an operational interpretation of these advantages
in security games.

Several problems remained open in [18]. Regarding the Goldreich-Levin the-
orem [9, 8], they proved that a λ-bit secure one-way function gives a λ-bit secure
hard-core predicate against balanced adversaries. The balanced adversaries are
restricted such that the probability of outputting each value (0 or 1) must be at
least constant. An example is a linear test attack described above; when u = 1
(TRG), the test (adversary) outputs 0 and 1 with probability 1/2, a constant.
Such adversaries, however, may not be typical in security proofs. The inversion
attack described above is typical in many security proofs. Since the success prob-
ability of inversion is usually small and close to zero, the attack is not balanced.
Removing the balanced-adversary condition in the Goldreich-Levin theorem has
been an open problem. The result was in contrast to the framework of Miccian-
cio and Walter [15], where they showed that the Goldreich-Levin reduction [9,
8] was indeed optimal.

Another open problem was the relationship between the two frameworks [15,
18]. Although finding similar features in the two definitions seems compli-
cated, they mostly share the same quantitative results. The exception was the
Goldreich-Levin theorem as described above. Clarifying the relation is helpful
for researchers analyzing and evaluating concrete cryptographic primitives.

1.1 Our Results

In this work, we further study the framework of [18] and resolve open problems.
First, we observe that the results of [18] preserve even if inner adversaries for
decision games are allowed to output the failure symbol ⊥ as well as {0, 1}. See
Section 3 for the details. This slight modification reveals a relation between the
bit security notions of [18] and [15]. We show that the advantage of [15], which
we term conditional squared advantage (CS advantage), for decision games is
bounded above by that of [18] (Rényi advantage). In other words, the Rényi
advantage evaluates adversaries in a more “pessimistic” way than the CS advan-
tage. If decision primitive P has λ-bit security in [18], P also has λ-bit security
in [15]. The converse is not necessarily true (see Section 8). We also demon-
strate that several existing notions of advantages [14, 12, 15] can be captured in
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a unified way. Specifically, the three quantities in [14, 12, 15] are the same except
for a constant factor. Based on this equivalence, we show that the reduction
algorithm of Hast [12] gives a tight reduction of the Goldreich-Levin hard-core
predicate [9] to the hardness of one-way functions. Namely, we resolved another
open problem that remained in [18].

In addition to the above, we give several results regarding the framework
of [18]. We show that every search game can be replaced by a specific decision
game, named a canonical game. Specifically, we show that a search game has
λ-bit security if and only if the corresponding canonical game has λ-bit secu-
rity. In canonical games, while the adversary plays as usual in the real game,
attacks by the adversary will never be approved in the ideal game. This treat-
ment of adversaries often appears in game-hopping security proofs [17, 3]; e.g.,
the adversary may play a game where every forgery of the signature cannot be
approved. Our result may justify such a treatment in security proofs because
such game-hopping loses no security. We also provide a distribution replacing
theorem. Suppose that game GQ using black-box access to distribution Q is
λ-bit secure and two distributions P and Q are λ-bit secure indistinguishable.
The theorem asserts that game GP , where distribution Q is replaced by P , is
also λ-bit secure. This result is a generalization of [18, Theorem 9], where the
sufficient condition is that distributions P and Q are information-theoretically
close enough in the Hellinger distance. Our result relaxed the requirement into
the computational one. It guarantees that λ-bit secure indistinguishability is suf-
ficient for preserving the λ-bit security of games. As an instance, we apply the
theorem to the leftover hash lemma (LHL) [5, 13] and show that the seed of a
λ-bit secure randomness extractor using universal hash functions can be safely
replaced by the output of a λ-bit secure PRG. As a side result (and maybe im-
plicit from [18]), we show that the entropy loss in the LHL to preserve λ-bit
security in the framework of [18] is just λ.

1.2 Related Work

Micciancio and Walter [15] initiated the theoretical study of quantifying the
security level of cryptographic primitives. They proposed a framework for evalu-
ating the bit security based on the Shannon entropy and the mutual information.
A key novelty of their framework was allowing the adversary to output the fail-
ure symbol ⊥ in security games. They showed that their notion of bit security
could be characterized by the advantage introduced by Levin [14]. Levin’s no-
tion appeared in evaluating the security of the hard-core predicate of Goldreich
and Levin [9]. Hast [12] studied efficient reduction algorithms for improving the
Goldreich-Levin theorem against nearly one-sided adversaries.

Watanabe and Yasunaga [18] introduced another framework for quantifying
the bit security of games with an operational meaning. One of their contribu-
tions was characterizing the bit security using the Rényi advantage and giving
an operational interpretation of it. The usual advantage of |2p− 1| for the win-
ning probability p in decision games may behave differently from the Rényi
advantage, according to the discussion in [18]. Our study mainly relies on their
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framework to evaluate bit security. A small but crucial difference is that we al-
low the adversary to output the failure symbol in the game. The modification
enables us to unify several existing notions of advantages [14, 12, 15], reveal the
relation to the framework of [15], and give an optimal reduction algorithm for
the Goldreich-Levin theorem.

The entropy loss of randomness extractors is inevitable [16]. The LHL-based
extractors achieve an optimal entropy loss of 2 log(1/ε) for closeness ε to the
uniform distribution in the total variation distance. Barak et al. [2] studied the
possibilities of reducing the loss to log(1/ε) for several primitives. It is shown
in [19] that the same reduction of the entropy loss can be achieved for all prim-
itives when using the bit security framework of [15]. In other words, a λ-bit
entropy loss in LHL is sufficient to preserve λ-bit security in bit security of [15].
In this work, we explicitly state that the same thing also holds in the framework
of [18].

2 Preliminaries

In this section, we present several basic notions and their properties about prob-
ability distributions. Let P and Q be probability distributions over a finite set
Ω. For a distribution P over Ω and A ⊆ Ω, we denote by P (A) the probability
of event A, which is equal to

∑
x∈A P (x).

The total variation distance between P and Q is

dTV(P,Q) = max
A⊆Ω

|P (A)−Q(A)| = 1

2

∑
x∈Ω

|P (x)−Q(x)|.

The Hellinger distance between P and Q is

dHD(P,Q) =

√
1

2

∑
x∈Ω

(√
P (x)−

√
Q(x)

)2
=

√
1−

∑
x∈Ω

√
P (x) ·Q(x),

which takes values in [0, 1]. It holds that

dHD(P,Q)2 ≤ dTV(P,Q) ≤
√
2 · dHD(P,Q). (1)

The Rényi divergence of order 1/2 is

D1/2(P∥Q) = −2 ln
∑
x∈Ω

√
P (x)Q(x).

It holds that 1− 1/t ≤ ln t ≤ t− 1 for t > 0. By using this inequality, we have
that

dHD(P,Q)2 ≤ 1

2
·D1/2(P∥Q) ≤ dHD(P,Q)2

1− dHD(P,Q)2
≤ 2 · dHD(P,Q)2, (2)

where the last inequality holds if dHD(P,Q)2 ≤ 1/2. We have the following
lemma.
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Lemma 1. For given distributions P and Q, we have

D1/2(P∥Q) ≤ D(P∥Q) ≤ 2β−1
Q dTV(P,Q)2,

where βQ = minx∈X+ Q(x), X+ = {x : Q(x) > 0}, and D(P∥Q) =∑
x P (x) log(P (x)/Q(x)) is the KL-divergence.

Proof. The former inequality follows from the fact that the Rényi diver-
gence is monotonically non-decreasing with respect to α and D(P∥Q) =
limα→1Dα(P∥Q). For the latter inequality, see [11, Lemma 4.1]. ⊓⊔

3 Bit Security Framework of [18]

An n-bit game G = (X,R, {Oθ}θ), played by an inner adversary A and an outer
adversary B, consists of an algorithm X, a Boolean function R, and oracles
{Oθ}θ. The success probability of A is

εA = Pr
[
u

R←− {0, 1}n;x← X(u); a← A{Oθ(·)}θ (x) : R(u, x, a) = 1
]
.

We consider two types of games: decision games (n = 1) and search games
(n≫ 1). The success probability of the pair (A,B) is defined depending on the
game type. For decision games, the success probability of (A,B) is

εdecnA,B = Pr
[
u

R←− {0, 1}; b← BOdecn
A : b = u

]
, (3)

where Odecn
A is the oracle that, given the ith query, computes xi ← X(u) and

replies with ai ← A
{Oθ(·)}θ

i (xi). For search games, the success probability of
(A,B) is

εsrchA,B = Pr
[
{(j, aj)}j ← BOsrch

A : ∃i, (i, ai) ∈ b ∧R(ui, xi, ai) = 1
]
, (4)

where Osrch
A is the oracle that, given the ith query, chooses ui ∈ {0, 1}n uniformly

at random, computes xi ← X(ui), and replies with ai ← A
{Oθ(·)}θ

i (xi).
Let TA denote the computational complexity for running the experiment[

u
R←− {0, 1}n;x← X(u); a← A{Oθ(·)}θ (x)

]
. For simplicity, we call TA the com-

putational complexity (or cost) of A. The bit security of an n-bit game G =
(X,R, {Oθ}θ) for error probability µ is defined to be

BSµG := min
A,B
{log2(NA,B · TA) : εA,B ≥ 1− µ}

= min
A

{
log2 TA + log2 min

B
{NA,B : εA,B ≥ 1− µ}

}
,

where NA,B is the number of invocations to A made by the outer adversary B
and εA,B is εdecnA,B for n = 1, and is εsrchA,B for n≫ 1. We say G has λ-bit security
if BSµG ≥ λ.
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Roughly speaking, the bit security of the game is at least λ if the computa-
tional complexity of the adversary for achieving the success probability 1 − µ is
at least 2λ. The bit security is defined without taking into account the computa-
tional complexity of B. The reason is that the complexity of B can be relatively
small compared to the total computational complexity; See [18] for details.

In [18], the authors showed that the bit security of decision games could be
characterized by the Rényi advantage, which is defined as

AdvRenyi
G,A := D1/2(A0∥A1),

where Au is the output distribution of A in game G under the condition that
u ∈ {0, 1} is chosen in the game. For the case of search games, the bit security
is characterized by the winning probability of A as usual. When we want to
emphasize that Au is the conditional distribution of the output of A given secret
value U = u, we denote PA|U (·|u). We use Au and PA|U (·|u) interchangeably in
the rest of the paper.

In [18], the bit security was defined based on a game in which an inner ad-
versary outputs a ∈ {0, 1}n. However, the general results in [18, Section 3] do
not depend on the fact that a ∈ {0, 1}n. Thus, for the convenience of relating
the bit security defined in [18] with another one in [15], we allow an inner ad-
versary to output the abort symbol ⊥. However, we restrict our attention to
an inner adversary that aborts obliviously to the value of secret u ∈ {0, 1}n,
i.e., PA|U (⊥|u) does not depend on u. This assumption of oblivious abortion is
consistent with [15, Theorem 1]. To fix ideas, for a given one-way permutation
f(x), let us consider an adversary distinguishing whether the next bit is a hard-
core predicate z = h(x) of f(x), which corresponds to u = 0, or a random bit
z = σ that is independent of f(x), which corresponds to u = 1; see Section 5.1
for a more detailed description of the hard-core predicate game. Suppose that
the adversary first tries to invert f(x) to obtain x with success probability ν. If
the inversion is succeeded and h(x) = z, then the adversary outputs a = 0 as
an estimate of u; if the inversion is succeeded but h(x) ̸= z, then the adversary
outputs a = 1 as an estimate of u; if the inversion is failed, then the adversary
outputs ⊥. In this case, the adversary abort with probability 1 − ν obliviously
to the value of u.

4 Rényi Advantage and Conditional Squared Advantage

This section discusses the connection between the Rényi advantage and the ad-
vantage used in [15], which we term the conditional squared (CS) advantage. The
former was used in [18] to characterize their notion of bit security for decision
games; on the other hand, the latter was used in [15] to characterize their notion
of bit security for decision games.

7



Let ψ : {0, 1,⊥} → {1, 0,−1} be the function given by ψ(0) = 1, ψ(1) = −1,
and ψ(⊥) = 0. Then, we define (see also Appendix A)

AdvCS
A := E

[
ψ(A)√
E[ψ(A)2]

ψ(U)

]2
(5)

=

4

(
Pr(A = U)− 1

2 Pr(A ̸= ⊥)
)2

Pr(A ̸= ⊥)
(6)

= Pr(A ̸= ⊥)
(
2Pr(A = U |A ̸= ⊥)− 1

)2
. (7)

It can be verified that 0 ≤ AdvCS
A ≤ 1. Historically speaking, the expression

(5) was introduced by Levin in [14]; the expression (6) was introduced (up to
the constant factor of 4) by Hast in [12, Theorem 3] to characterize the success
probability of the modified Goldreich-Levin algorithm; Micciancio and Walter
introduced the expression (7) in [15, Theorem 1, Definition 10], and they initi-
ated the use of this quantity as an advantage to characterize their notion of bit
security.

By the oblivious abortion assumption, we have

δ := Pr(A ̸= ⊥) = Pr(A ̸= ⊥ | U = 0) = Pr(A ̸= ⊥ | U = 1).

Thus, denoting the conditional distribution of A given U and the event E =
{A ̸= ⊥} as PA|UE(a|u) = PA|U (a|u)/δ, we have

dTV(PA|U (·|0), PA|U (·|1)) = δdTV(PA|UE(·|0), PA|UE(·|1)). (8)

We also note that(
2Pr(A = U |A ̸= ⊥)− 1

)2
= dTV(PA|UE(·|0), PA|UE(·|1))2 (9)

For later use in Section 5.1, we provide a variant of (8) for the Rényi divergence
of order 1/2.

Lemma 2. It holds that

D1/2(PA|U (·|0)∥PA|U (·|1)) ≤ δD1/2(PA|UE(·|0)∥PA|UE(·|1)).

Proof. Note that

PA|U (a|u) = δPA|UE(·|0)1[a ̸= ⊥] + (1− δ)1[a = ⊥].

Thus, the claim follows from the joint convexity of the Rényi divergence of order
1/2; e.g., see [7, Theorem 11]. ⊓⊔

We close this section by presenting a connection between the Rényi advantage
and the CS advantage.
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Theorem 1. For an arbitrary adversary A for decision games, it holds that

AdvCS
A ≤ AdvRenyi

A .

Proof. From the leftmost inequality of (2), we have

AdvRenyi
A = D1/2(PA|U (·|0)∥PA|U (·|1)) ≥ 2dHD(PA|U (·|0), PA|U (·|1))2.

Here, note that

dHD(PA|U (·|0), PA|U (·|1))2 = 1−
∑

a∈{0,1,⊥}

√
PA|U (a|0)PA|U (a|1)

= 1− (1− δ)− δ
∑

a∈{0,1}

√
PA|UE(a|0)PA|UE(a|1)

= δdHD(PA|UE(·|0), PA|UE(·|1))2.

Furthermore, by using the right inequality of (1) and by noting (9), we have

2δdHD(PA|UE(·|0), PA|UE(·|1))2 ≥ δdTV(PA|UE(·|0), PA|UE(·|1))2

= AdvCS
A ,

which completes the proof. ⊓⊔

Theorem 1 implies that, up to a constant bit, if a decision game is λ bit
secure in [18], then it is also λ bit secure in the sense of [15]. It is not clear if
the opposite implication holds; however, in Section 5.1, we show the opposite
implication for a specific game of the hard-core predicate.

5 Hard-Core Predicate Game

5.1 Distinguisher and Predictor

For a one-way function f : {0, 1}n → {0, 1}m, a function h : {0, 1}n → {0, 1} is
termed a hard-core predicate if the value of h(x) cannot be predicted from the
function output f(x). When we discuss the security of the hard-core predicate,
there are two types of formulations: the prediction game and the distinguishing
game. Even though it is more common to define the security of the hard-core
predicate in terms of the prediction game, since the distinguishing game is more
suitable for our formulation of the bit security, we first introduce the distinguish-
ing game and later discuss the connection between the two formulations.

In the distinguishing game of hard-core predicate, when u = 0, an inner
adversary A observes (f(x), h(x)) for random x ∈ {0, 1}n; when u = 1, the inner
adversary A observes (f(x), σ), where σ is a random bit that is independent of
x. Based on the observation, the inner adversary A outputs an estimate a of u or
⊥. Then, the outer adversary B invokes the inner adversary NA,B times so that
the success probability εA,B of estimating u is at least 1−µ. The bit security of
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the hard-core predicate is defined as the minimum of log2(NA,B · TA) under the
constraint εA,B ≥ 1− µ, where TA is the cost of the inner adversary.

On the other hand, in the prediction game of hard-core predicate, a predictor
P observes f(x), and outputs an estimate of h(x) or⊥. Following the terminology
in [12], a predictor P is said to be an (ε, δ)-predictor if the rate is

δ = Pr(P(f(x)) ̸= ⊥)

and the advantage is

ε = Pr(P(f(x)) = h(x))− 1

2
Pr(P(f(x)) ̸= ⊥).

In other words, (ε, δ)-predictor P has CS advantage AdvCS
P = 4ε2

δ .
The following theorem connects the Rényi advantage of the distinguishing

game and the CS advantage of the prediction game.

Theorem 2. For a given one-way function f with hard-core predicate h, let A
be an inner adversary for the hard-core predicate distinguishing game. Then,
there exists a predictor P of the hard-core predicate that invokes A once and

AdvCS
P ≥ 1

2
AdvRenyi

A . (10)

Proof. Using adversary A, similarly to [12, Section 6], we construct a predictor
as follows. Let PA|U (·|u) be the distribution of the output of A given u, i.e.,

PA|U (a|0) = Pr(A(f(x), h(x)) = a),

PA|U (a|1) = Pr(A(f(x), σ) = a).

Since the inner adversary A aborts obliviously to the value of u, the probability
of no abortion satisfies

δ0 := PA|U (0|0) + PA|U (1|0) = PA|U (0|1) + PA|U (1|1)

For a, u ∈ {0, 1}, let

PA|UE(a|u) :=
PA|U (a|u)

δ0

be the conditional distribution of the inner adversary provided that it does not
abort. Without loss of generality, we can assume PA|UE(0|0) ≥ PA|UE(0|1).3 We
consider two cases separately.

When PA|UE(0|1) ≤ 1
2 : In this case, we consider the following predictor P. First,

we sample the uniform random bit σ. Second,

– If A(f(x), σ) = 0, then P outputs σ;

3 If not, we can flip the outputs 0 and 1 of A.
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– If A(f(x), σ) ∈ {1,⊥}, then P outputs ⊥.

The rate of this predictor is

δ = Pr(P(f(x)) ̸= ⊥)
= Pr(A(f(x), σ) = 0)

= PA|U (0|1).

On the other hand, the success probability of the predictor is

Pr(P(f(x)) = h(x)) = Pr(σ = h(x)) Pr(A(f(x), σ) = 0|σ = h(x))

= Pr(σ = h(x)) Pr(A(f(x), h(x)) = 0)

=
PA|U (0|0)

2
.

Thus, the advantage of this predictor is

ε = Pr(P(f(x)) = h(x))− 1

2
Pr(P(f(x)) ̸= ⊥)

=
PA|U (0|0)− PA|U (0|1)

2
.

From Lemmas 2 and 1, we have

D1/2(PA|U (·|0)∥PA|U (·|1)) ≤ δ0D1/2(PA|UE(·|0)∥PA|UE(·|1))
≤ 2δ0β

−1dTV(PA|UE(·|0), PA|UE(·|1))2 (11)

for β = min[PA|UE(0|1), PA|UE(1|1)] = PA|UE(0|1). By using (11) and by noting

dTV(PA|UE(·|0), PA|UE(·|1)) = PA|UE(0|0)− PA|UE(0|1),

we have

ε2

δ
=

(PA|U (0|0)− PA|U (0|1))2

4PA|U (0|1)

=
δ0(PA|UE(0|0)− PA|UE(0|1))2

4PA|UE(0|1)

=
δ0dTV(PA|UE(·|0), PA|UE(·|1))2

4β

≥ 1

8
D1/2(PA|U (·|0)∥PA|U (·|1)),

which implies (10).

When PA|UE(0|1) > 1
2 : In this case, we consider the following predictor. First,

we sample the uniform random bit σ. Second,

– If A(f(x), σ) ∈ {0,⊥}, then P outputs ⊥;

11



– If A(f(x), σ) = 1, then P outputs σ ⊕ 1.

The rate of this predictor is

δ = Pr(P(f(x)) ̸= ⊥)
= Pr(A(f(x), σ) = 1)

= PA|U (1|1).

On the other hand, the success probability of this predictor is

Pr(P(f(x)) = h(x)) = Pr(σ = h(x)⊕ 1, A(f(x), σ) = 1)

= Pr(A(f(x), σ) = 1)− Pr(σ = h(x), A(f(x), σ) = 1)

= PA|U (1|1)− Pr(σ = h(x)) Pr(A(f(x), σ) = 1|σ = h(x))

= PA|U (1|1)− Pr(σ = h(x)) Pr(A(f(x), h(x)) = 1)

= PA|U (1|1)−
PA|U (1|0)

2
.

Thus, the advantage of this predictor is

ε = Pr(P(f(x)) = h(x))− 1

2
Pr(P(f(x)) ̸= ⊥)

=
PA|U (1|1)− PA|U (1|0)

2
.

By using (11) for β = min[PA|UE(0|1), PA|UE(1|1)] = PA|UE(1|1) and by noting

dTV(PA|UE(·|0), PA|UE(·|1)) = PA|UE(1|1)− PA|UE(1|0),

we have

ε2

δ
=

(PA|U (1|1)− PA|U (1|0))2

4PA|U (1|1)

=
δ0(PA|UE(1|1)− PA|UE(1|0))2

4PA|UE(1|1)

=
δ0dTV(PA|UE(·|0), PA|UE(·|1))2

4β

≥ 1

8
D1/2(PA|U (·|0)∥PA|U (·|1)),

which implies (10). ⊓⊔

As a corollary of Theorem 2, we show that the CS advantage of the adversary
for the hard-core predicate (distinguishing) game can be bounded below by the
Rényi advantage (divided by eight). Namely, the converse of Theorem 1 holds
for the hard-core predicate games.

12



Corollary 1. For a given one-way function f with hard-core predicate h, let
A be an inner adversary for the distinguishing game. Then, there exists an ad-
versary A′ of the hard-core predicate distinguishing game that invokes A once
and

AdvCS
A′ ≥

1

8
AdvRenyi

A .

Proof. By Theorem 2, there exists an (ε, δ)-predictor P that invokes A once

and ε2

δ ≥
1
8Adv

Renyi
A . Let A′ be an adversary defined as follows for given input

(f(x), z):

– If P(f(x)) = z, then A′ outputs 0;
– If P(f(x)) = z ⊕ 1, then A′ outputs 1;
– If P(f(x)) = ⊥, then A′ outputs ⊥.

Obviously, the rate of this adversary is

Pr(A′(f(x), z)) ̸= ⊥) = Pr(P(f(x)) ̸= ⊥) = δ.

Furthermore, the advantage of this adversary is

Pr(A′(f(x), z) = U)− 1

2
Pr(A′(f(x), z) ̸= ⊥)

=
1

2
Pr(P(f(x)) = h(x)) +

1

2
Pr(P(f(x)) = σ ⊕ 1)− 1

2
Pr(A′(f(x), z) ̸= ⊥)

=
1

2
Pr(P(f(x)) = h(x)) +

1

2
Pr(P(f(x)) ̸= ⊥) · 1

2
− 1

2
Pr(A′(f(x), z) ̸= ⊥)

=
1

2
ε.

Thus, the CS advantage of this adversary is AdvCS
A′ = ε2

δ ≥
1
8Adv

Renyi
A . ⊓⊔

5.2 Reduction by Goldreich-Levin Algorithm

For a given one-way function f(x), let g(x, r) = (f(x), r) be a function from
{0, 1}n×{0, 1}n to {0, 1}m×{0, 1}n. Then, it is known that h(x, r) = x · r plays
a role in the hard-core predicate. This section aims to connect the bit security
of g(x, r) and the bit security of the hard-core predicate h(x, r). To that end,
we consider the reduction algorithm, the so-called Goldreich-Levin algorithm.
In order to evaluate the efficiency of the Goldreich-Levin algorithm, we use the
following result from [12].

Theorem 3 ([12]). Let P be a predictor of the hard-core h(x, r) = x · r with
cost TP . Define t = log(4/AdvCS

P ). Then, there exists an algorithm Inv that runs
in cost (expected time) (TP + t log n) · t · O(n2) and satisfies

Pr
x∈R{0,1}n

(
f(Inv(f(x)) = f(x)

)
= Ω

(
AdvCS

P

)
.

13



By combining Theorem 3 and Theorem 2, we have the following estimate
of the efficiency of the Goldreich-Levin algorithm in terms of the bit security,
which is a generalization of [18, Theorem 4] for adversary without β-balanced
assumption.

Theorem 4. Let f : {0, 1}n → {0, 1}m be a λ-bit secure one-way function.
Then, for a function g(x, r) = (f(x), r), the function h(x, r) = x · r is a (λ−α)-
bit secure hard-core predicate for g, where α = log

(
((λ + 2) log n) · (λ + 2) ·

O(n2)
)
+ log ln(1/µ) +O(1).

Proof. Assume for contradiction that h is not (λ − α)-bit secure hard-core for
g. Then, by [18, Theorem 2], there exists an inner adversary A (for the distin-
guishing game of the hard-core predicate) such that the cost is TA and the Rényi
advantage is

AdvRenyi
A >

TA
2(λ−α)

· ln(1/4µ).

By Theorem 2, there exists a predictor P of the hard-core predicate h with cost
TA such that

AdvCS
P >

TA
2(λ−α)+1

ln(1/4µ).

Then, by Theorem 3, there exists an inner adversary A′ of the OWF game
that run in cost TA′ = (TA + t log n) · t · O(n2) with success probability εA′ =
Ω(TA · 2−(λ−α)), where t = log(4/AdvCS

P ) ≤ λ+ 2. It follows from [18, Theorem
1] that the bit security of OWF game is bounded above by log TA′ +log(1/εA′)+
log ln(1/µ) + 1, which is at most4

λ− α+ log
(
((λ+ 2) log n) · (λ+ 2) · O(n2)

)
+ log ln(1/µ) +O(1).

By choosing α = log
(
((λ + 2) log n) · (λ + 2) · O(n2)

)
+ log ln(1/µ) + O(1), f

is not a λ bit secure one-way function, a contradiction. Hence, the statement
follows. ⊓⊔

6 Search Games as Decision Games

We show that every λ-bit secure search game can be formalized as a decision
game with (almost) λ-bit security. The search game is usually defined such that
the adversary’s success probability is small enough. Hence, it seems natural to
define the decision game where the adversary tries to distinguish the following
two cases of real and ideal games. While the real game is almost the same as
the original search game, the ideal game is an idealized one where the adver-
sary’s solution will never be approved. For example, the unforgeability game of
the signature scheme is usually defined as a search game. We may define the

4 We assume TA ≥ 1.
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corresponding ideal game such that the adversary cannot forge the signature.
Such games often appear in game-hopping security proofs. When a party gen-
erates a secure signature of a message in a security game, we usually consider
another game in which the forgery of the message is never approved. We realize
the approval of the solution of the search game by adding an oracle in a decision
game.

For an n-bit search game G = (X,R, {Oθ}θ), we define the canonical decision
game G′ of G such that G′ = (X,R′, O′) is a 1-bit game where the success
probability of an inner adversary A is

εA = Pr

[
u′

R←− {0, 1};u R←− {0, 1}n;

x← X(u); a′ ← AO′
(x)

: a′ = u′

]
,

where O′ = {Oθ}θ ∪Oaprv and Oaprv is an oracle that can be accessed only once
and is defined as

Oaprv(a) =

{
1 (R(u, x, a) = 1) ∧ (u′ = 0)

0 otherwise
.

The additional oracle Oaprv answers whether the given value a satisfies the re-
lation R only when u′ = 0. In the ideal game, where u = 1, the oracle always
answers 0, meaning that every valid solution a is never approved.

We show that the canonical game preserves the bit security of the underlying
search game. The result implies no bit-security loss in transforming original
games into such idealized games. It also justifies that every search game can be
defined as a decision game.

Theorem 5. If a search game G satisfies

BSµG ≥ λ+ log2
ln(1/µ)

ln(1/4µ)
+ 2,

then the corresponding canonical decision game G′ satisfies BSµG′ ≥ λ. Con-
versely, if G′ satisfies

BSµG′ ≥ λ+ log2
ln(1/2µ)

1− µ
+ 2,

then G satisfies BSµG ≥ λ.

Proof. Suppose that BSµG′ < λ. It follows from [18, Theorem 2] that there is an
inner adversary A with computational complexity TA for game G′ that satisfies

dHD(A0, A1)
2 >

TA · ln(1/4µ)
2λ+1

for λ ≥ log2 ln(1/4µ). By (1), we have

dTV(A0, A1) >
TA · ln(1/4µ)

2λ+1
.
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Since the only way that A obtains the information on u′ is to make queries to
Oaprv, the above inequality implies that A queries a value a to Oaprv satisfying
R(u, x, a) = 1 with probability more than TA · ln(1/4µ)/2λ+1. Hence, A can be
used as an inner adversary of the search game G. Namely, the inner adversary
simulates A and monitors the oracle queries of A. If A queries a to the oracle
Oaprv, the adversary outputs a. It follows from [18, Theorem 1] that

BSµG < log2 TA + λ+ 1− log2(TA · ln(1/4µ)) + log2 ln(1/µ) + 1

= λ+ log2
ln(1/µ)

ln(1/4µ)
+ 2,

a contradiction.
For the other direction, suppose that BSµ

G < λ. Theorem 2 of [18] implies
that there is an inner adversary A with computational complexity TA for game
G that satisfies the success probability

εA >
TA(1− µ)

2λ
.

Consider an inner adversary A′ of game G′ that simulates a← A and queries a
to Oaprv. Finally, A

′ outputs 0 if the answer from Oaprv is 1, and 1 otherwise.
The computational complexity of A′ is TA. Let A

′
u′ be the output distribution

of A′ when u′ ∈ {0, 1} is chosen as a secret. Then, Pr[A′
0 = 0] > TA(1− µ)/2λ

and Pr[A′
1 = 0] = 0. By using [18, Lemma 8] with q = 0, we have

D1/2(A
′
0∥A′

1) >
TA(1− µ)

2λ
.

Theorem 1 of [18] implies that

BSµG′ < log2 TA + λ− log2(TA(1− µ)) + log2 ln(1/2µ) + 2

= λ+ log2
ln(1/2µ)

1− µ
+ 2,

a contradiction. ⊓⊔

Theorem 5 implies that all the security games we need to discuss are decision
games if a constant difference of bit security can be ignored.

7 Distribution Replacing Theorem

Let G = (X,R, {Oi}i) be an n-bit security game. Suppose that G uses a prob-
ability distribution Q in a black-box manner. Namely, whenever some player
makes a query to Q, the player will receive a sample according to Q. We denote
the game by GQ for clarity. Let P be another distribution that is supposed to
be (computationally) close to Q. The question is, when GQ is λ-bit secure, to
what extent does Q need to be indistinguishable from P to preserve that GP is
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λ-bit secure. We prove a natural reduction showing that λ-bit secure indistin-
guishability is sufficient to replace the ideal distribution Q.

Before proving the theorem, we formally define the distribution indistin-
guishability game. For two distributions P and Q, let Gind

P,Q = (X,R,O) be a
1-bit security game such that X is empty, the oracle O outputs a sample from
P when u = 0, and Q otherwise, and R(u, x, a) = 1 ⇔ u = a. Namely, the
game is to discriminate between P and Q by oracle queries. For example, if
D1/2(P∥Q) ≤ 2−λ, the number of samples needed to distinguish P from Q must

be Ω(2λ), which is a standard result of the Bayesian hypothesis testing. Since
the number of samples is a lower bound of the computational complexity for the
discrimination with high probability, the bit security must be at least λ−O(1).

Due to Theorem 5, it is sufficient to prove the theorem for decision games.

Theorem 6. Let GQ be a 1-bit security game with black-box access to distri-
bution Q. Let P be a probability distribution such that game Gind

P,Q has λ-bit

security. If game GQ has λ-bit security, then game GP has (λ− α)-bit security
for α = 3 + log2(ln(1/2µ)/ ln(1/4µ)).

Proof. Suppose that GP is not (λ − α)-bit secure. By [18, Theorem 2], there is
an inner adversary A for game GP with computational complexity TA such that

dHD(A
P
0 , A

P
1 ) >

√
TA · ln(1/4µ)

2λ−α+1
(12)

for λ ≥ log2 ln(1/4µ), where A
P
u is the output distribution of A when u ∈ {0, 1}

is chosen in GP . We define AQ
0 and AQ

1 for the game GQ similarly.
For a 1-bit game G, we write G := (G0, G1), where Gu is the game G in

which the secret bit u ∈ {0, 1} is chosen. In other words, G is the game where a
secret bit u ∈ {0, 1} is randomly chosen and plays game Gu.

By following the above notation, we write GD = (GD
0 , G

D
1 ) for D ∈ {P,Q}.

Also, we define a new game GP,Q
u := (GP

u , G
Q
u ). Consider an inner adversary

A for the game GD. For u ∈ {0, 1} and D ∈ {P,Q}, let AD
u be the output

distribution of A in GD when u is chosen as the secret bit. Then, by definition,
we have

AdvRenyi
GD,A

= D1/2(A
D
0 ∥AD

1 ) and AdvRenyi

GP,Q
u ,A

= D1/2(A
P
u ∥AQ

u )

for u ∈ {0, 1} and D ∈ {P,Q}.
We show that the Rényi advantage of A in game GP,Q

u is bounded by that in
Gind

P,Q. We construct an inner adversary Ã for the game Gind
P,Q by using A. The

adversary Ã runs the game GP,Q
u in which A plays. Whenever the game makes

an oracle query, Ã replies with an answer obtained by querying to the oracle O.
By definition of Gind

P,Q, each answer from O is an independent sample according

to P if the secret bit ũ of Gind
P,Q is 0, and Q otherwise. Thus, Ã correctly simulates

A in the game GP
u when ũ = 0, and GQ

u otherwise. Finally, Ã outputs the same
value as those of A in GP,Q

u . Note that Ã is an inner adversary of Gind
P,Q and its
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computational complexity is TA. Since G
ind
P,Q has λ-bit security, it follows from

[18, Theorem 1] that

λ ≤ BSµ
Gind

P,Q

≤ log2

TA · ln(1/2µ)
AdvRenyi

Gind
P,Q,Ã

 , (13)

where AdvRenyi

Gind
P,Q,Ã

= D1/2(Ã
P ∥ÃQ), and ÃD is the output distribution of Ã in

game Gind
P,Q when the oracle outputs a sample according to D. Since Ã correctly

simulates A in the game GP,Q
u , we have

AdvRenyi

Gind
P,Q,Ã

= AdvRenyi

GP,Q
u ,A

= D1/2(A
P
u ∥AQ

u ). (14)

Thus, by (2), (13), and (14),

dHD(A
P
u , A

Q
u ) ≤

√
1

2
·D1/2(AP

u ∥A
Q
u ) ≤

√
TA · ln(1/2µ)

2λ+1
(15)

for u ∈ {0, 1}.
The triangle inequality of dHD and (15) implies that

dHD(A
P
0 , A

P
1 ) ≤ dHD(AP

0 , A
Q
0 ) + dHD(A

Q
0 , A

Q
1 ) + dHD(A

Q
1 , A

P
1 )

≤ dHD(AQ
0 , A

Q
1 ) +

√
TA · ln(1/2µ)

2λ−1
. (16)

It follows from (12) and (16) that

dHD(A
Q
0 , A

Q
1 ) >

√
TA · ln(1/4µ)

2λ−α+1
−
√
TA · ln(1/2µ)

2λ−1

≥
√

2TA · ln(1/2µ)
2λ

by assumption on α. Then, we have

advRenyi
A,GQ = D1/2(A

Q
0 ∥A

Q
1 ) ≥ 2dHD(A

Q
0 , A

Q
1 )

2 >
4TA · ln(1/2µ)

2λ
.

By [18, Theorem 1], the bit security of GQ is at most

log2 TA + log2

(
1

advRenyi
A,GQ

)
+ log2 ln(1/2µ) + 2 < λ,

a contradiction. Therefore, we have shown that GP is (λ− α)-bit secure. ⊓⊔

Theorem 6 is a generalization of [18, Theorem 9], where the condition is that
dHD(P,Q) ≤ 2−λ/2. The above theorem only requires a computational condition
that Gind

P,Q has λ-bit security.
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7.1 Application to Randomness Extraction

A randomness extractor is a procedure that converts a min-entropy source to
an almost uniform distribution. The min-entropy of distribution X over {0, 1}n
is defined as Hmin(X) = − log2 maxx∈{0,1}n PX(x). Here, we define a seeded
extractor through a 1-bit security game.

Definition 1. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to be a
(k, λ)-extractor if for every distribution X over {0, 1}n with Hmin(X) ≥ k, a
1-bit security game Gext

Ext,X := Gind
P,Q has λ-bit security for P = (Ext(X,S), S)

and Q = Um+d, where S = Ud.

The above is a definition of a computational extractor. We can define an
information-theoretic extractor as usual. Although the total variation distance
is usually used for the definition, the Rényi divergence of order 1/2 is a natural
choice for cryptographic purposes, as we have seen so far. We say Ext is a (k, ε)-
it-extractor if for every distribution X with Hmin(X) ≥ k,

D1/2((Ext(X,S), S)∥Um+d) ≤ ε.

We can see that if Ext is a (k, 2−λ)-it-extractor, then Ext is a (k, λ)-extractor.

It is well-known that a family of universal hash functions gives an
information-theoretic extractor. The claim is also known as the leftover hash
lemma (LHL) [5, 13]. Although the lemma usually says that the extractor’s
output is close to the uniform distribution in the total variation distance, we
need the closeness in the Rényi divergence of order 1/2. We have the following
strengthened version of the leftover hash lemma.

Lemma 3 (LHL for Rényi Divergence). Let H = {H : {0, 1}n → {0, 1}m}
be a universal family of hash functions; Namely, for any distinct x, x′ ∈ {0, 1}n,
PrH∼H(H(x) = H(x′)) ≤ 2−m. Suppose that |H| = 2d and m = k − λ − 1.
Then, function Ext : {0, 1}n × {0, 1}d → {0, 1}m defined by Ext(x,H) = H(x) is
a (k, 2−λ)-it-extractor.

Proof. It is shown in [19, Theorem 3] that the construction of Ext gives an
extractor for the Hellinger distance5. Namely, for the defined parameters, we
have that

dHD((Ext(X,S), S), Um+d) ≤ 2−(λ+2)/2.

By (2), it holds that

D1/2((Ext(X,S), S)∥Um+d) ≤ 4 · dHD((Ext(X,S), S), Um+d)
2 ≤ 2−λ.

Hence, the statement follows. ⊓⊔
5 The claim can also be recovered by combining the leftover hash lemma of [4] for the
KL divergence D and the relation that dHD(P,Q)2 ≤ D1/2(P∥Q) ≤ D(P∥Q).
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We apply Theorem 6 to the LHL. We consider replacing the seed of the
extractor with the output of a pseudorandom generator (PRG). Suppose that g :
{0, 1}d′ → {0, 1}d is a λ-bit secure PRG. In other words, the game Gind

g(Ud′ ),Ud
has

λ-bit security. Since the extractor of Lemma 3 is a (k, λ)-extractor, Theorem 6
guarantees that the seed of the LHL can be replaced by the output of g. Namely,
the distribution (H(X), g(S′)) is λ-bit secure indistinguishable from the uniform
distribution Um+d, where X is a source with Hmin(X) ≥ k, S′ = Ud′ , and H is
randomly chosen from a family of universal hash functions using the seed g(S′).6

Entropy Loss in LHL The entropy loss of (k, ε)-it-extractors Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is defined as k − m, which is the amount of entropy lost
for extracting randomness from entropy sources. It is proved in [16] that the
entropy loss of 2 log(1/ε) is necessary for constructing a (k, ε)-it-extractor where
the closeness ε is measured in the total variation distance. Large entropy loss is
critical for applications where the amount of entropy is limited, such as biometric
information. Barak et al. [2] showed that the loss could be reduced to log(1/ε) for
some applications, including several decision primitives and all search primitives.
It is shown in [19] that the same entropy loss can be achieved in the framework
of [15]. The entropy loss for preserving λ-bit security in the above lemma is λ+1.
Thus, the framework of [18] could reduce the entropy loss in LHL by half, as
similarly shown in [2, 19].

8 Discussion

In this paper, by investigating the relationship between the CS advantage and
the Rényi advantage, we clarified the relation between the notions of bit security
introduced in [15] and [18]. As demonstrated in Theorem 1, λ bit security in the
sense of [18] implies the same bit security (up to constant) in the sense of [15]. For
some games, such as the hard-core predicate distinguishing game, the converse
also holds (Corollary 1). However, the bit security of [15] may be overestimated
than that of [18].

Difference in Privately-Verifiable Primitives. As evidence, let us consider an
attack against a DDH (decision Diffie-Hellman) problem using an oracle for
a CDH (computational Diffie-Hellman) problem. Let G be a polynomial-time
group-generation algorithm that outputs a description of a cyclic group G of
prime order p and a generator g ∈ G. The CDH problem is to compute gxy from
(gx, gy) for random x, y ∈ Zp. The success probability of an adversary A′ for the
CDH game of G is defined by

εcdhA′ = Pr
[
(G, p, g)← G;x, y

R←− Zp; a← A(G, p, g, gx, gy) : a = gxy
]

6 Barak et al. [2] studied a similar but different problem. In [2, Section 4], they con-
sidered the problem trying to achieve that (Ext(X, g(S′)), S′) is close to the uniform
distribution. Namely, the seed S′ of the PRG g is revealed. In our case, g(S′) is
revealed but not S′.
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Table 1. Comparison of advantages for various types of attacks.

Attacks AdvTV AdvCS AdvRenyi

Balanced attack
A0 = (1/2 + δ, 1/2− δ)
A1 = (1/2, 1/2)

e.g.) Linear test attack for PRG

δ δ2 Θ(δ2)

Unbalanced attack with ⊥
A0 = (δ, 0, 1− δ)
A1 = (δ/2, δ/2, 1− δ)

e.g.) Inversion attack for PRG

δ/2 δ/2 Θ(δ)

Unbalanced attack without ⊥
A0 = (δ, 1− δ)
A1 = (δ/p, 1− δ/p)

e.g.) CDH oracle attack for DDH

(1− 1/p)δ (1− 1/p)2δ2 Θ(δ)

The Decisional Diffie-Hellman (DDH) problem is to distinguish (gx, gy, gz) from
(gx, gy, gxy) for random x, y, z ∈ Zp. The success probability of A for the DDH
game of G is defined by

εddhA = Pr

[
u

R←− {0, 1}; (G, p, g)← G;

x, y, z
R←− Zp; (g0, g1) = (gxy, gz)

: u← A(G, p, g, gx, gy, gu)

]
.

Let us consider the following adversary A for DDH invoking A′ as an oracle for
CDH. Given (gx, gy, gu), the adversary A invokes A′ with input (gx, gy) to obtain
a candidate w of gxy. Then, if w = gu, A outputs a = 0; otherwise, A outputs
a = 1. For this adversary, the output distribution Au of A given u is A0 =
(εcdhA′ , 1−εcdhA′ ) and A1 = (εcdhA′ /p, 1−εcdhA′ /p). Note that, for an adversary A that
does not output ⊥, the CS advantage coincides with the square of the standard
advantage (total variation distance). Thus, we have AdvCS

A = (1− 1/p)2(εcdhA′ )2.
On the other hand, using [18, Lemma 8], we can verify that the Rényi advantage

is AdvRenyi
A = Ω(εcdhA′ ). If εcdhA′ ≃ 2−λ, then the bit security of [15] against this

attack is roughly 2λ while the bit security of [18] against the same attack is
roughly λ. Note that, for the CDH, it is difficult for the adversary to verify
w = gxy and to outputs ⊥ in a manner oblivious to the value of u. Perhaps,
the security level evaluated using the framework of [15] may be higher than that
of [18] when the so-called privately-verifiable search problems [10], such as the
CDH, are involved.

Comparing Three Advantages. In Table 1, the standard advantage using the total
variation distance AdvTV, the CS advantage AdvCS, and the Rényi advantage
AdvRenyi are compared for three types of typical attacks: the balanced attack,
the unbalanced attack with ⊥, and the unbalanced attack without ⊥. For the
attack with ⊥, the distribution of adversary is Au = (Au(0), Au(1), Au(⊥)). For
all types of attacks, the standard advantage is roughly δ. The values of AdvTV

and AdvCS are computed by a straightforward calculation; the value of AdvRenyi
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can be derived by Lemma 1, [18, Lemma 8], and Theorem 1. Note that the
bit security of [15] is roughly log 1

AdvCS and that of [18] is roughly log 1
AdvRenyi .

From the table, we can find that the two notions of bit security coincide for the
balanced attack and the unbalanced attack with ⊥; however, as we discussed
in the previous paragraph, there is a discrepancy between the two notions for
the unbalanced attack without ⊥; perhaps, AdvCS may overestimate the bit
security. Even though it is not easy to reach a consensus on a good definition of
bit security, it seems that the definition of [18] does not have any defects so far.

A Equivalence of (5)-(7)

Note that

E[ψ(A)2] = Pr(A ̸= ⊥) (17)

and

E[ψ(A)ψ(U)] = Pr(A = U)− Pr(A ̸= ⊥, A ̸= U)

= Pr(A = U)−
(
Pr(A ̸= ⊥)− Pr(A ̸= ⊥, A = U)

)
= 2Pr(A = U)− Pr(A ̸= ⊥), (18)

where we used

Pr(A = U) = Pr(A ̸= ⊥, A = U) (19)

in the third equality. By substituting (17) and (18) into (5), we have (6). By
noting (19), (7) follows from (6).
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