
Rate-1 Incompressible Encryption from Standard Assumptions

Pedro Branco1, Nico Döttling2, and Jesko Dujmović2,3

1Johns Hopkins University
2Helmholtz Center for Information Security (CISPA)

3Saarland University

Abstract

Incompressible encryption, recently proposed by Guan, Wichs and Zhandry (EUROCRYPT’22), is
a novel encryption paradigm geared towards providing strong long-term security guarantees against
adversaries with bounded long-term memory. Given that the adversary forgets just a small fraction of
a ciphertext, this notion provides strong security for the message encrypted therein, even if, at some
point in the future, the entire secret key is exposed. This comes at the price of having potentially very
large ciphertexts. Thus, an important efficiency measure for incompressible encryption is the message-to-
ciphertext ratio (also called the rate). Guan et al. provided a low-rate instantiation of this notion from
standard assumptions and a rate-1 instantiation from indistinguishability obfuscation (iO). In this work,
we propose a simple framework to build rate-1 incompressible encryption from standard assumptions.
Our construction can be realized from, e.g. the DDH and additionally the DCR or the LWE assumptions.

1 Introduction

Incompressible Cryptography Incompressible cryptography [Dzi06b, DGO19, GLW20, MW20, GZ21,
GWZ22] is a flourishing paradigm trying to leverage memory limitations of adversaries to achieve strong
security goals. While traditionally, the goal of cryptography in the bounded storage model [Mau93] is to
minimize the need for computational assumptions or even obtain information-theoretically secure construc-
tions, incompressible cryptography is geared more toward mitigating the consequences of key exfiltration and
key exposure attacks. In this work, we focus on the notion of incompressible encryption [Dzi06b, GWZ22] 1

recently coined by Guan et al. [GWZ22]. An incompressible encryption scheme produces large, incompress-
ible ciphertexts and guarantees that any adversary who forgets even a small fraction of the ciphertext data
will learn nothing about the encrypted data, even if he is later given the corresponding secret key!

One motivation for incompressible encryption is to hamper adversaries conducting a mass-surveillance
operation by forcing them to store massive amounts of ciphertext data even if they are just interested in
a tiny fraction of the encrypted data. In a similar scenario, an adversary trying to exfiltrate information
encrypted under an incompressible encryption scheme from a data-center will have to exfiltrate massive
amounts of data, even if his exfiltration target is just a small piece of information.

Notions orthogonal to incompressible encryption are encryption in the bounded-retrieval model [Dzi06a,
DLW06, ADW09, ADN+10, HLWW13, BKR16, BD17, MW20] where the goal is to make the secret key large
and incompressible (to make it hard to exfiltrate) while keeping all other system parameters small, such as
the sizes of public keys and ciphertexts, as well as the overhead of encryption and decryption.

Encryption with High Rate. An important efficiency measure of encryption schemes is their ciphertext
expansion or rate. The rate of an encryption scheme is the ratio between plaintext size and ciphertext
size. The closer the rate is to 1, the more efficient a scheme manages to pack information into a ciphertext.

1Dziembowski [Dzi06b] introduced this concept under the name forward-secure storage in the symmetric key setting.

1

Conversely, the closer the rate is to 0, the less information is encoded in potentially large ciphertexts. For
incompressible encryption, achieving a high rate (ideally converging to 1), especially if we think of the data
center application above, where a small rate would also put a massive burden on the data center.

Guan et al. [GWZ22] provided two constructions of incompressible encryption.

• A construction from the minimal assumption of public-key encryption which has ciphertext-rate ap-
proaching 0.

• A construction from indistinguishability obfuscation (iO) [BGI+01, GGH+13, JLS21] which achieves
ciphertext-rate approaching 1.

We remark that their rate-1 construction relies on non-black-box techniques and iO, which gives this result
a strong feasibility flavor.

Given this state of affairs, this work is motivated by the following question:

Can we build a rate-1 incompressible encryption scheme based on standard assumptions while only making
black-box use of cryptographic primitives?

1.1 Our Results

In this work, we build a rate-1 incompressible encryption scheme from standard assumptions while only
using black-box techniques. Our result uses what we call programmable hash proof systems (HPS) (which
are a variant of standard HPS [CS98, CS02] with some additional properties), plain-model incompressible
encodings [MW20] and a pseudorandom generator (PRG). In particular, we prove the following theorem.

Theorem 1 (Informal). Let S be the storage capacity of the adversary and let n be the size of the encrypted
messages. Assuming programmable HPS, incompressible encodings and PRGs exist, there is an incompress-
ible encryption scheme fulfilling the following properties:

1. Ciphertexts are of size n+ nε · poly(λ) for some ε > 0.

2. The public key is of size nε′ · poly(λ) for some ε′ > 1/2.

3. Moreover, the size of ciphertexts is only slightly larger than the adversary’s storage space, that is,
S + poly(λ).

The ciphertext rate n/(n+nε ·poly(λ)) approaches 1 for large enough messages. Additionally, the public
key is sublinear in the size of the encrypted message.

In terms of assumptions, incompressible encodings can be based on either decisional composite residuosity
(DCR) or learning with errors (LWE). The PRG can be based on any one-way function. We also show that
programmable HPS can be instantiated from the decisional Diffie-Hellman (DDH) assumption by tweaking
the famous HPS by Cramer and Shoup [CS02]. Consequently, our final incompressible encryption scheme
can be based solely on standard assumptions.

Post-quantum construction. In our main construction we crucially use the DDH assumption. It is well-
known that DDH can be broken by quantum adversaries, so our construction is prone to quantum attacks
[Sho94].

To overcome this issue, we show that the HPS construction of [ADMP20], which is based on isogeny-based
assumptions, is also a programmable HPS. The drawback of this construction is that it has large public keys.
That is, the public key size grows linearly with the size of the message.

Recall that isogeny-based assumptions are presumably post-quantum secure. By plugging this HPS
into our main construction, we obtain a classically secure incompressible encryption scheme only based on
post-quantum assumptions.

This does not necessarily mean that our construction is secure against quantum adversaries as we only
allow the adversary to compress into classical (non-quantum) memory. While we think limiting the adversary

2

to classical long-term storage is reasonable as long-term quantum storage seems to be even harder to achieve
than quantum computation the scheme could still be insecure against quantum adversaries as demonstrated
the cocurrent work of [LMQW22].

Streaming encryption. Streaming encryption/decryption is a property of incompressible encryption
schemes which allows the honest encryptor/decryptor to perform operations with very low storage capacity.
It is easy to see that streaming decryption is an inherently conflicting property with high rate ciphertexts
[GWZ22]. This is because the honest decryptor needs storage at least as large as the size of the message. Oth-
erwise, an adversary can essentially mimic the decryptor and learn something about the encrypted message
(e.g., the most significant bit).

However, we note that our scheme has stream encryption, i.e., the honest encryptor does not need much
space to perform encryption. This follows from the fact that the incompressible encodings construction of
[MW20] has stream encoding.

Extension to CCA security. In the security experiment for incompressible encryption presented in
[GWZ22] the adversary is never allowed to query a decryption oracle. In other words, their work only
considered IND-CPA incompressible encryption. In this work, we also give the adversary access to an
decryption oracle extending incompressible encryption to IND-CCA2 incompressible encryption. We stress
that IND-CCA2 security is usually considered the right security definition to use in practice. We show that
our construction is, in fact, is IND-CCA2 incompressible secure.

Focus on the Plain Model. We demonstrate a concretely and asymptotically more efficient construction
in the random oracle model (ROM). However, we also show that incompressible encryption, which is secure in
the ROM, might be prone to attacks as soon as we instantiate the random oracle by a specific hash function.
Similarly to [CGH04, Den02, GK03, BBP04, MRH04, Bla06, BFM15, GKW17], we construct scheme that
can be proven secure in the ROM. However, when we instantiate the random oracle, the scheme turns out
to be insecure. These observations support our focus on the plain model.

1.2 Comparison with Previous Work

As mentioned previously, incompressible encryption was introduced in [GWZ22] where two schemes are
presented. The first one is based only on the minimal assumption of PKE. However, the ciphertext rate is
very far from 1. The second one achieves rate-1 but is based on iO. We compare these schemes in Table 1.

Ciphertext
Rate

Public key
Size

Hardness
Assumption

Security

[GWZ22] 1/poly(λ) poly(λ) PKE IND-CPA
[GWZ22] 1 poly(λ) iO IND-CPA

Our result 1 nε′ · poly(λ) DDH +
{DCR,LWE} IND-CCA2

Our result 1 n · poly(λ) isogeny-based +
{DCR,LWE} IND-CCA2

Our result 1 nϵ′ · ω(polylog(λ)) LWE IND-CPA

Table 1: Comparison with previous work. Here, n denotes the size of the encrypted messages and ε′ is any
constant between 1/2 and 1.

Other related work. Some recent works made significant progress in the area of incompressible cryptog-
raphy. The works of [DGO19, GLW20, MW20] proposed constructions for incompressible encodings either

3

in the random oracle model or in the CRS model. The work of [GZ21] used the BSM together with com-
putational assumptions to propose constructions of primitives that are not known just from computational
assumptions, such as virtual grey-box obfuscation.

Incompressible cryptography is closely related to the bounded storage model (BSM) [Mau92]. However,
most works in the BSM (e.g. [CM97, AR99, Raz17, GZ19, DQW21]) focus on achieving unconditional security
for primitives that are already known from computational assumptions such as public-key encryption and
oblivious transfer.

Open Problems. We leave the open problem of developing an incompressible encryption scheme that
combines concretely short public keys with small ciphertexts. A possible approach for this would be to find
a programmable hash proof system where the size of the public key is essentially independent of the size of
the encapsulated key.

It might also be interesting if our construction only using post-quantum assumption is post-quantum
secure. If this is not the case, a construction that is also post-quantum secure is of interest.

Acknowledgement. We would like to thank Stefan Dziembowski for discussions and comments. We would
also like to thank Daniel Wichs for comments and pointing out the LWE HPS.

Pedro Branco: Part of this work was done while at IST University of Lisbon.
Funding statement for Nico Döttling: Funded by the European Union. Views and opinions expressed

are however those of the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union nor the granting authority can
be held responsible for them. (ERC-2021-STG 101041207 LACONIC)

2 Technical Overview

In this technical overview, we sketch the main techniques to build an IND-CPA incompressible scheme. We
later argue how these techniques can be tweaked to obtain a scheme that is IND-CCA2 incompressible secure.

Security Notion The syntax and correctness notions for incompressible encryption are identical to stan-
dard public-key encryption (PKE). The main difference is in the security definition. Since the security notion
of incompressible encryption is relatively new, we will briefly detail its security experiment here. Consider
the following security game between a challenger C and a 3-stage PPT adversary A = (A1,A2,A3).

1. C creates a pair of public and secret keys pk, sk.

2. Given pk, the first stage A1 chooses two messages m0,m1.

3. C chooses b←$ {0, 1} uniformly at random and encrypts ct← Enc(pk,mb).

4. Given the ciphertext ct and the state of A1, the second stage A2 produces a state st of size S < |ct|.
That is, the state st should be somewhat smaller than ct.

5. Now, the third stage A3 receives as input the state st (produced by A2) and the secret key sk. The
goal of A3 is to guess the bit b.

We say that an incompressible encryption is secure if, for any adversary, A the advantage of winning the
following game is negligible in the security parameter λ.

4

2.1 The Scheme of GWZ

Before we provide an outline of our construction, we will briefly discuss the underlying ideas of the low-
rate incompressible encryption scheme constructed in [GWZ22]. At the very core is the following idea:
The ciphertext essentially consists of a very long truly random random string R and a short payload part
c = (c1, c2), where c1 is an encryption of a seed k for a randomness extractor Ext, and c2 = Ext(k,R)⊕m is
essentially a one-time-pad encryption of the message m under the key Ext(k,R). Clearly, if c1 was not part
of the ciphertext, then security of this scheme follows routinely by the following observations:

• In the view of the third stage A3 of the adversary R has high min-entropy, as R is uniformly random
and the state st is significantly shorter than R.

• Furthermore, as we assume c1 is not part of the ciphertext, st is independent of k

• Hence by the extraction property of Ext the string Ext(k,R) is uniformly random in the adversary’s
view, and therefore mb is statistically hidden.

Now, the main idea of [GWZ22] to make this approach work even though c1 is part of the ciphertext is
to encrypt k in such a way that c1 can be made independent of the extractor seed k. This is achieved by
choosing a suitable encryption scheme for which c1 can be chosen independently of k, and a suitable secret
key which decrypts c1 to k can be chosen after the fact, i.e. after the leakage st has been computed. [GWZ22]
provide an elegant construction of such a scheme from non-compact single-key functional encrytion, which
can be built from any public key encryption scheme [GVW12].

2.2 The Big Picture

While our construction departs significantly from the blueprint of [GWZ22] we use the same high-level
concept of an encryption scheme that allows delaying secret-key generation in the security proof. Rather
than constructing incompressible PKE directly, we first tackle the intermediate and simpler task of realizing a
rate-1 incompressible symmetric-key encryption. In a second step, we will then transform any incompressible
SKE scheme into an incompressible PKE scheme in a rate-preserving way. It turns out that even constructing
a rate-1 incompressible SKE from standard assumptions is a non-trivial task and does not follow, e.g. from
the (low-rate) public-key construction of [GWZ22].

Since our two steps are independent of one another, improvements of either in future work will lead to
better incompressible encryption schemes. For simplicity, in the following outline, we will focus only on CPA
security, whereas in the main body, we present a CCA secure construction.

LWE

DCR

Rate-1
Incompressible
Encodings

Rate-1
Incompressible
SKE

Programmable HPS (Sec.5)

Rate-1
Incompressible
PKE

[MW20]

[MW20]

Sec.4 Sec.6

Figure 1: Overview of the results in this work, bold arrows are contributions of this work.

2.3 Rate-1 Incompressible Symmetric-Key Encryption

In the symmetric-key setting, the syntax and correctness of incompressible SKE are pretty much that of
standard symmetric-key encryption, whereas the security notion is similar to that of incompressible PKE,

5

just with the difference that the first stage A1 of the adversary is not given a public key (as there is none).
Thus, the security notion we consider here is the incompressible encryption-analogue of security against an
eavesdropper (IND-EAV).

Failed Naive Attempts. As a (failed) very first attempt, one may try ”make work” an incompressible
SKE construction from the One-Time-Pad (OTP), i.e. the secret key k is a random bit-string as long as the
message m and the ciphertext is c = k ⊕ m. However, the obvious issue with this is that such a ciphertext
c decomposes into many one-bit ciphertexts ci = ki ⊕ mi, and it is enough for A2 to leak a few bits of c
to enable A3 to partially decrypt c and thus distinguish encryptions of m0 from encryptions of m1. As a
next idea, one may try the following: Encryption chooses a (fresh) pseudorandom generator (PRG) seed s,
encrypt m into m̂ = m⊕PRG(s), use k to encrypt the seed s into a header ciphertext c, i.e. the encryption of
m is (Enc(k, s),m⊕ PRG(s)). While this approach does look promising, we observe that it is stuck at either
leakage-rate 1/2 or ciphertext-rate 1/2, that is as soon as A3 learns Enc(k, s) in its entirety and a few bits of
mb ⊕ PRG(s), he will be able to distinguish encryptions of m0 from m1.

Introducing Circularity. Clearly, we need some kind of mechanism to glue the two ciphertexts compo-
nents together, i.e. we want to make it such that if some parts of m̂ are missing, then c will be useless (and
vice versa). As a first, heuristic ”hands-on” approach to achieve this, we can try to use m̂ as a source of
randomness from which we extract a key to mask the seed s. Thus, let Ext(·, ·) be a seeded randomness
extractor. We compute a ciphertext (c, m̂) by first computing m̂ = m ⊕ PRG(s) for a random seed s as
before, but then encrypt s into c via c = s ⊕ Ext(k, m̂), i.e. we use k as an extractor seed to extract a one-
time-pad key Ext(k, m̂) from m̂. Clearly, given k and a ciphertext (c, m̂), we can decrypt by first computing
s = c⊕ Ext(k, m̂) and then m = m̂⊕ PRG(s). The rationale for why we hope this construction to be secure
is that as soon as a significant fraction of the bits of m̂ are lost, the output of the extractor Ext(k, m̂) should
look uniform, and thus m̂ = m ⊕ PRG(s) should hide m by the pseudorandomness of PRG. However, this
circularity backfires when trying to establish security of this construction just from the pseudorandomness
of PRG and the randomness-extraction property of Ext: In order to use pseudorandomness of PRG, we first
need to remove the s from the view of the adversary, but c = s⊕ Ext(k, m̂) is correlated with s given k. On
the other hand, in order to use the randomness extraction property of Ext we need that m̂ has high entropy
given st. But all the entropy of m̂ = m⊕PRG(s) comes from the seed s, which is very small. Hence ≈ λ bits
of m̂ suffice to information-theoretically determine s.

Consequently, while heuristically, this construction seems secure, it seems unlikely the individual security
properties of PRG and Ext suffice to prove this construction secure.

Breaking Circularity Hence, what we need is a mechanism to break the circularity, which we have just
introduced. Looking at where establishing security of the above construction gets stuck, a natural point to
start is to make it such that m̂ looks like it has a large amount of real entropy once a few bits of m̂ are
missing, i.e. L(m̂) being computationally indistinguishable from L(r̂) for a high-entropy distribution r̂ for
any efficiently computable leakage function L(·) 2.

Incompressible encodings. Fortunately, an encoding mechanism achieving this notion called incompress-
ible encodings was just recently introduced and constructed by Moran and Wichs [MW20]. As a technical
tool, they introduced the notion of HILL-entropic encoding in their work, which will be sufficient, if not to
say ideally suited for our construction. Such a scheme consists of an encoding algorithm En and a decoding
algorithm De, both of which rely on a (large) common random string crs←$ {0, 1}t:

• The encoding algorithm Encrs(m) is a randomized algorithm which takes a message m and produces an
encoding m̂

• The decoding algorithm Decrs(m̂) is a deterministic algorithm which takes an encoding m̂ and returns
a message m.

2In our case the leakage function L is described by the adversary’s second stage A2

6

In terms of correctness, one naturally requires that encoding followed by decoding leads to the original
message. Security-wise, we require that there exists a simulator Sim which on input a message m produces
a pair (crs′, m̃), which is computationally indistinguishable from a real pair of crs and encoding of m, i.e.

(crs,Encrs(m)) ≈c Sim(m),

where crs←$ {0, 1}t. Additionally, we require that if (crs′, m̃) ← Sim(m), then m̃ has almost full true min-
entropy given crs′, i.e. H̃∞(m̃|crs′) ≥ (1− ϵ)n, where H̃∞ is the average conditional min-entropy. The (very)
high level idea how this can be achieved is that in simulation the common random string and the encoded
message switch roles, in the sense that the simulated common random string crs′ encodes the message m,
whereas the encoding m̃ now has room to have (very) high entropy.

Moran and Wichs [MW20] provide two instantiations of their construction, one from DCR and one from
LWE. These constructions achieve rate-1, i.e., the encoding is only slightly larger than the encoded message.
The conceptual idea behind the construction is rather elegant: The encoding function Encrs(m) generates
a pair of public key and trapdoor (pk, td) of preimage-sampleable surjective lossy function F (for which we
have efficient constructions from DCR or LWE) and sets x to be a randomly sampled preimage of m⊕ crs,
i.e. x = F−1td (m⊕ crs), and sets m̂ = (pk, x). To decode m̂, one computes m = Fpk(x)⊕ crs. The simulator

Sim chooses a highly lossy public key p̃k, chooses x uniformly at random, and sets crs′ = m ⊕ Fp̃k(x) and

m̃ = (p̃k, x). Given that Fpk is regular for surjective keys pk, meaning that if x is uniform then Fpk(x) is
also (statisticalluy close to) uniform, we can routinely establish that real pairs (crs, m̂) are computationally
indistinguishable from simulated (crs′, m̃) using the indistinguishability of surjective public keys pk and
highly lossy public keys p̃k. Moreover, for simulated pairs (crs′ = m ⊕ Fp̃k(x), m̃ = (p̃k, x)) we can easily
argue that x (and hence m̃) has high min-entropy given crs′ = m⊕ Fp̃k(x), as Fp̃k is highly lossy and hence
x has high min entropy given Fp̃k(x).

Moran and Wichs [MW20] go on to show that for any incompressible encoding/HILL-entropic encoding,
the common random string crs must be as long as the message, if one wants to establish security from a
falsifiable assumption [Nao03] under a black-box reduction.

The Full Construction. We will now provide our complete construction of incompressible SKE and
sketch the security proof. For our scheme, the secret key K is a uniformly random bit-string of suitable
length which will be parsed as K = (crs, k), where crs is the common random string for a HILL-entropic
encoding (En,De), and k is the seed for a randomness extractor Ext. Encryption and decryption work as
follows.

• Enc(K = (crs, k),m): Choose a uniformly random PRG seed s←$ {0, 1}λ and compute m̂ = Encrs(m⊕
PRG(s)). Compute c = s⊕ Ext(k, m̂) and output the ciphertext ct = (c, m̂).

• Dec(K = (crs, k), ct = (c, m̂)): Compute s = c⊕ Ext(k, m̂) and output m = Decrs(m̂)⊕ PRG(s).

Correctness of this scheme follows routinely.
Security of this scheme is established along the following lines. First we rely on the security of the HILL-

entropic encoding to replace (crs, m̂) with a simulated pair (crs′, m̃) = Sim(m⊕ PRG(s)). By the security of
the HILL-entropic encoding, this modification is (computationally) unnoticeable to the adversary. However,
now the encoding m̃ has true high min-entropy given crs′. Thus, using a min-entropy chain rule (e.g.
by [DORS08]) we can argue that m̃ still has sufficiently high min-entropy given both crs′ and a leak L(m̃).
Hence, the randomness extraction property guarantees that Ext(k, m̃) will extract uniform randomness (given
crs′ and L(m̃)). To establish this we need a mild extra property of the extractor Ext that given a (uniformly
random) extractor output y and m̃ we can sample a key k′ after the fact such that (k′, y) ≈ (k,Ext(k, m̃)).
Hence in the next hybrid modification, we can thus replace c = s⊕ Ext(k, m̃) with a uniformly random and
independent string c′. Now that c′ is independent of s, we can use the pseudorandomness property of PRG to
replace m⊕PRG(s) in (crs′, m̃) = Sim(m⊕PRG(s)) with a uniformly random string u, i.e. (crs′, m̃) = Sim(u).
We have finally arrived at an experiment where the ciphertext ct = (c′, m̃) is independent of the message m,
and hence the adversary’s advantage is 0.

7

Concerning the rate of this scheme, note that a ciphertext ct = (c, m̂) has rate 1, as c is just of size
poly(λ) (independent of the message length n), and the HILL-entropic encoding m̂ is rate 1.

2.4 From Symmetric-Key to Public-Key Incompressible Encryption via Hash
Proof Systems

Now that we have a construction of incompressible SKE, we need a way to establish a long key K between the
sender and receiver. This is a job for a key encapsulation mechanism (KEM) [CS03]. A key-encapsulation
mechanism consists of:

• A key-encapsulation mechanism consists of a key-generation algorithm KeyGen which produces a pair
of public and secret keys (pk, sk).

• An encapsulation algorithm which takes a public key pk and produces a symmetric key K and a
ciphertext header c0 encapsulating K.

• A decapsulation algorithm Dec which takes a secret key sk and a ciphertext header c0 and outputs a
key K.

The correctness requirement is the obvious one, whereas the standard security requirement is that K is
pseudorandom given pk and c0. A symmetric key K generated via a KEM can now be used to encrypt a
message m into a payload ciphertext c1 using a symmetric key encryption scheme. The full ciphertext is
c = (c0, c1).

However, to transform an incompressible SKE into an incompressible PKE not just any key encapsulation
mechanism will do. The simple reason is that in the incompressible (public key) encryption security game,
the adversary gets to see the secret key sk in the end, which will allow him to decapsulate the (short)
ciphertext header c0 into the symmetric key K. But the standard security notion of KEMs discussed above
does not require that the encapsulated key K follows a uniform distribution. Indeed, e.g. for simple PRG-
based KEMs, the encapsulated key is statistically far from uniform. However, recall that in our construction
of incompressible SKE above, we made critical use of the fact that the key K follows a uniform distribution
and that the security reduction can program it in a suitable way.

Thus, we need a KEM which we can switch into a mode in which the ciphertext header c0 encapsulates a
truly uniform key K. As we need the ciphertext header c0 to be substantially shorter than the encapsulated
key K, the entropy of K in this mode must come from the secret key sk.

Enter Hash proof systems. This is where hash proof systems (HPS) [CS02] come into play 3. Recall
that HPS are defined relative to an NP-language L ⊆ {0, 1}k. We have a key-generation algorithm KeyGen
which generates a public or projected key pk, and a secret or hashing key sk. The hashing or decapsulation
algorithm Decap takes the secret key sk and any x ∈ {0, 1}k and produces a hash value K. The restricted
hashing or encapsulation algorithm Encap takes a public key pk, an x ∈ L and a witness w (with respect to
a fixed NP-relation for L) for membership of x in L and produces a hash-value K.

In terms of correctness or completeness, we require that Decap and Encap agree on L, i.e. if x ∈ L and
w is a valid witness for x, then it holds that Decap(sk, x) = Encap(pk, x, w).

In terms of security, we require smoothness, namely given that x /∈ L, it holds that Decap(sk, x) is
statistically close to uniform given pk.

HPS are especially useful for sparse pseudorandom languages L, such as the decisional Diffie-Hellman
(DDH) language) [CS02]. We define this language with respect to a pair of (randomly chosen) generators
g, h ∈ G, where G is a cryptographic group of prime order p. A pair x = (g′, h′) is in L, if there exists an
r ∈ Zp such that g′ = gr and h′ = hr. The DDH assumption states that a random element in L, i.e. a pair
(gr, hr) is computationally indistinguishable from a pair of uniformly random group elements (u, v) 4

3HPS have been instrumental in many prior works on leakage resilience cryptography e.g. [ADN+10, HLWW13]
4Note that such a pair is not in L, except with negligible probability 1/p.

8

In the Cramer-Shoup [CS02] scheme, the secret key sk = (α, β) consists of two uniformly random values
α, β ∈ Zp, and the public key pk is computed as pk = gαhβ . Given a public key pk an instance c0 = (gr, hr)
with witness r, we compute a key K = pkr. Given a secret key sk = (α, β) and an instance c0 = (g′, h′) we

compute a key K = g′
α
h′

β
. It follows routinely that encapsulation and decapsulation agree on L. Moreover,

for a (g∗, h∗) /∈ L it holds K∗ = g∗αh∗β is uniformly random given pk = gαhα by a simple linear algebra
argument.

Hash Proof Systems, and in particular the Cramer-Shoup HPS (almost) give us a KEM with the desired
properties. Namely, given pk and (g, h), to encapsulate a key k we choose a uniformly random r ∈ Zp and
compute c0 = (gr, hr) and K = pkr. To decapsulate K from c0 = (g′, h′) given sk = (α, β), we compute

K = g′
α
h′

β
.

A typical proof-strategy using HPS lets a reduction compute the encapsulated key (on the sender’s side)
via the decapsulation algorithm using the secret key. Correctness of the HPS ensures that this does not
change K. Hence this modification will not be detected by an adversary. Now we don’t need the witness r
anymore. We can replace c0 with a uniformly random c′0 and argue that this modification is computationally
undetectable by the adversary, thanks to the DDH assumption. Since now c′0 is outside of L w.o.p, it holds
that K is uniform even given pk, as desired.

However, this is still not enough to make our security reduction go through. It turns out we not only have
to ensure that K is uniform given pk, but also that for any given K and fixed pk and c0 we can find a secret
key sk (compatible with pk) such that Decap(sk, c0) = K. Realizing this property using the Cramer-Shoup

HPS directly seems hard, as in order to sample an sk = (α, β) with K = g′
α
h′

β
we would need to compute a

discrete logarithm of K.

Programmable Hash Proof Systems For this purpose, we will consider a notion of programmable hash
proof systems, which obey a stronger smoothness notion. In short, such an HPS has the following property.
Given a public key pk, a (fake) ciphertext header c∗0 (not in L) and secret auxiliary information aux depending
on both pk and c0, we can sample a uniformly random secret key sk∗ such that Decap(sk∗, c∗0) = K, for which
it holds that (pk, c∗0, sk

∗) ≈s (pk, c
∗
0, sk) if K is chosen uniformly random.

Our idea to achieve this is simple: We will concatenate Decap (and also Encap) with a balanced small
range hash function HC : G→ {0, 1}, i.e. we have Decap′(sk, c0) = HC(Decap(sk, c0)) and Encap′(pk, c0, r) =
HC(Encap(pk, c0, r)). Here balanced means that if h ∈ G is a uniformly random group element, then HC(h) is
statistically close to a uniformly random bit. While there exist deterministic constructions of such extractors
for certain groups (e.g. [CFPZ09]) we can find such an HC for any group via the leftover-hash lemma [HILL99].
For such a hash function, we can efficiently sample a uniformly random pre-image h ∈ G of K for which we
do know the discrete logarithm (with respect to a generator g ∈ G). We achieve this via rejection sampling:
Given a bit K ∈ {0, 1}, choose a uniformly random z ∈ Zp and test whether HC(gz) = K (which happens
with probability 1/2), and reject and resample if the test fails.

Now let h = gy, pk = gt and c∗0 = (g′ = gr, h′ = gs) be a public key and (fake) ciphertext, for which the
auxiliary information is (y, t, r, s), i.e. the discrete logarithms of pk and c∗0. Given a key K ∈ {0, 1}, we first
sample a uniformly random z ∈ Zp such that HC(gz) = K. Now we have 2 linear constraints (over Zp) on
sk = (α, β) ∈ Z2

p, namely
t = α+ β · y

from pk = gα · hβ and
z = αr + βs

from HC(gz) = HC(g′α · h′β). Since we now have two equations and two unknowns α and β, we can solve
for α and β using basic linear algebra.

We do pay a price to get programmability: Instead of getting log(|G|) key bits per public key pk, we
only get a single bit. Naturally, this can be improved up to log(λ) key-bits while keeping the above rejection
sampling procedure expected polynomial time.

9

The Full Construction We are now ready to present our fully-fledged construction. This construction
will have a large public key. We will later discuss how the size of the public key can be reduced.

Assume thus that (Enc,Dec) is an incompressible SKE scheme, and that (KeyGen,Encap,Decap) is a
programmable HPS for a decision-membership-hard language L, for concreteness assume the DDH language.
Our incompressible PKE construction is given by the following algorithms.

• The key-generation algorithm KeyGen′ generates random group elements g, h ∈ G and n pairs of public
and secret keys (pk1, sk1), . . . , (pkn, skn) using KeyGen (on g, h) and set PK = (g, h, pk1, . . . , pkn) and
SK = (sk1, . . . , skn).

• The encryption algorithm Enc′ proceeds as follows, given a public key PK = (g, h, pk1, . . . , pkn) and a
message m. First, generate a random DDH instance c0 = (g′ = gr, h′ = hr) using a random r←$Zp.
Now compute the key-bits K1 = Encap(pk1, c0, r), . . . ,Kn = Encap(pkn, c0, r) and set K = (K1, . . . ,Kn).
Next, we use K to encrypt m using the incompressible SKE scheme, i.e. we compute c1 = Enc(K,m)
and output the ciphertext c = (c0, c1).

• The decryption algorithm Dec′ takes a secret key SK = (sk1, . . . , skn) and a ciphertext c = (c0, c1), and
proceeds as follows. First, it decapsulates the key K = (K1, . . . ,Kn) by computing K1 = Decap(sk, c0),
. . . , Kn = Decap(skn, c0). Next, it decrypts c1 to m via m = Dec(K, c1).

Correctness of this scheme follows routinely from the correctness of its components.
Note that if the incompressible SKE scheme (Enc,Dec) is rate-1, then so is our public-key scheme

(KeyGen′, Enc′, Dec′), as the only additional information in ciphertexts c = (c0, c1) is the header c0, which
consists of just two group elements. On the other hand, note that the size of the public key of this scheme
scales with the size n of the symmetric key K, which in our symmetric-key construction scales with the size
of the message m.

Security of the Full Construction We will now turn to sketching the security proof for the main
construction. In the first hybrid step (somewhat expectedly), we use the HPS Decap algorithm instead of
the Encap algorithm to compute the key-bits Ki in the encryption of the challenge ciphertext. That is, in
the encryption of the challenge ciphertext we replace Ki = Encap(pki, c0, r) with Ki = Decap(ski, c0) for all
i = 1, . . . , n. Due to the correctness property of the HPS, this modification does not change the distribution
of K. Hence this hybrid change goes unnoticed by the adversary. In the second hybrid step, since we don’t
need r anymore, we replace c0 = (gr, hr) with a uniformly random c′0. We can use the DDH assumption to
argue that this modification goes unnoticed.

The next hybrid step is the critical one: We choose g, h, the pki and c′0 with auxiliary information,
i.e. together with their discrete logarithms with respect to g, choose K←$ {0, 1}n uniformly at random
and sample each ski such that Ki = Decap′(ski, c

′
0) using the programming algorithm of the programmable

HPS. We can argue statistical indistinguishability using the programmability property of HPS. The crucial
observation now is that the public key PK = (g, h, pk1, . . . , pkn) and the ciphertext header c0 are computed
independently of K and SK, and in fact we choose SK depending on K, i.e. we can choose SK after everything
else.

This now allows us to turn an adversary A with non-negligible advantage in this hybrid experiment into
an adversary A′ with the same advantage against the incompressible SKE scheme. A′ first generates PK as
in the hybrid experiment and provides PK to the first stage A1 of A, which will output m0,m1. Now the
second stage A′2 gets to see a symmetric-key encryption c1 of mb, and turns this into a public-key encryption
by setting c = (c0, c1), where c0 computed as in the hybrid experiment. This ciphertext c is then given A2,
which outputs a state/leak st, and A′2 outputs the same state st.

Finally, A′3 given a symmetric key K and the state st proceeds as follows. Using the auxiliary information
aux5. and the key K, it samples a secret key SK = (sk1, . . . , skn) such that for all i = 1, . . . , n it holds that

5There is a technical subtlety in the security definition of incompressible SKE which we omitted before: We allow the first
stage A′

1 of a symmetric-key adversary A′ to produce a large state (i.e. scaling with the message size), which is provided to

10

Ki = Decap′(ski, c0), as in the hybrid experiment. Then, A′3 runs A3 on SK and st and outputs whatever A3

outputs.
It is not hard to see that from the view of A, A′ simulates the hybrid experiment perfectly. Hence,

the advantage of A′ against the incompressible symmetric-key security experiment is the same as that of A
against the hybrid experiment, and we derive the desired contradiction.

Reducing the Public-Key-Size. As mentioned above, the construction we discussed in the last two
paragraphs has a near-optimal ciphertext size (i.e. increasing the size of the symmetric-key ciphertext only
by two group elements). In contrast, it has a very large public key which scales linearly with the size of the
encrypted messages/the ciphertexts.

We will now discuss a tradeoff which achieves a better balance between ciphertext size and public key
size. Concretely, we will provide a tradeoff which achieves a ciphertext size of n+nϵpoly(λ) for an 0 < ϵ < 1
and public key size nϵ′poly(λ) for an 1/2 < ϵ′ < 1. I.e. we achieve ciphertext rate 1 − nϵ−1poly(λ), which
approaches 1 for sufficiently large n, while having a key of sublinear size.

In order to declutter the presentation, we will switch from multiplicative notation of group operations in
G to additive notion in the following discussion. That is we will denote group elements gx by [x], and write
α · [x] instead of (gx)α. Furthermore, we will consider vectors and matrices of group elements, i.e. if x ∈ Zk

p

is a vector, then [x] is its element-wise encoding in the group G. Likewise, we write an encoding of a matrix
A ∈ Zk×l

p as [A].
In our discussion above we considered a HPS for the two-dimensional DDH language, i.e. the language

consisting of all r · [v] given two [v], where v ∈ Z2
p is a randomly chosen 2-dimensional vector over Zp.

Thus let v ∈ Zk
p be a randomly chosen k-dimensional vector. The goal of the k-dimensional DDH

problem is to distinguish ([v], t · [v]) from ([v], [u]), where v and u are chosen uniformly random from Zk
p

and r is chosen uniformly from Zp. It follows routinely via a standard rerandomization argument that the
k-dimensional DDH problem is hard, given that the 2-dimensional DDH problem is hard.

We can construct an HPS for k-DDH analogously to the 2-dimensional case: Fix a vector [v] ∈ Gk. The
secret key sk is a random vectorααα ∈ Zk

p, whereas the public key is given by [pk] = ααα⊤[v], i.e. the inner product
of ααα and [v]. Given a vector [w] = r · [v] and a witness r, the Encap algorithm computes [K] = r · [pk]. On
the other hand, given any vector [w] ∈ Gk and a secret key sk = ααα, the Decap algorithm computes ααα⊤ · [w].
Arguing correctness and smoothness are again simple exercises in linear algebra. Furthermore, this HPS
satisfies a stronger notion of k − 1-smoothness: Given uniformly random [w1], . . . , [wk−1], it holds that

(pk,ααα⊤[w1], . . . ,ααα
⊤[wk−1]) ≈s (pk, [u1], . . . , [uk−1]),

where the [u1], . . . , [uk−1] are uniformly random in G. Establishing this is again routine linear algebra.
We will first briefly discuss how the HPS can be made programmable. In essence, we follow the same

idea as above: We take a balance function HC : G → {0, 1} and define the Decap algorithm to compute
HC(ααα⊤[w]). We claim this construction is k− 1-programmable. That is, given [v], [pk] = [t], uniformly ran-
dom [w1], . . . [wk−1] together with the witnesses v, t and w1, . . . ,wk−1, and a random K = (K1, . . . ,Kk−1) ∈
{0, 1}k−1, we can efficiently sample a uniformly random ααα ∈ Zk

p such that t = ααα⊤v and Ki = HC(ααα⊤[wi])
for i = 1, . . . , n. We proceed as above: First we choose uniformly random zi ∈ Zp such that Ki = HC([zi])
for all i. Then we get the linear equation system

ααα⊤v = t

ααα⊤w1 = z1

...

ααα⊤wk−1 = zk−1.

both A′
2 and A′

3. This is to communicate a potentially large public key PK from A1 to A3 without putting a burden on the
leakage-budget of the leaker-stage A′

2. One could consider an alternative definition where this communication from A′
1 to A′

3
is not allowed. In such a setting we could still prove our construction secure by compressing the auxiliary information aux from
which PK and c0 are generated using a PRG

11

Since the wi are chosen uniformly random, this system has full rank w.o.p., and hence we can find a matching
secret key ααα via simple linear algebra.

Now, plugging this programmable HPS into our construction of incompressible PKE, we obtain the
following parameters.

• A single public pk consisting of one group element can be used to encapsulate k key bits. Hence, to
encapsulate n key bits we need n/k public keys amounting to n/k group elements.

• The ciphertext header now contains k · (k− 1) ≤ k2 group elements (in the above notation the vectors
[w1], . . . , [wk−1]).

Hence, if we want to strike a balance where the (additive) ciphertext overhead is of the same size as the
public key, we obtain the relation

n

k
= k2,

which yields to k = n1/3. Hence, for this choice of parameters the public key consists of a n2/3 group elements
(which is sublinear), and the size of the ciphertext is n + n2/3 log(|G|) = n(1 − n−1/3 log(|G|)) bits, which
approaches rate 1.

2.5 Extension to CCA security

The scheme described so far achieves IND-CPA incompressible security. This work also considers an IND-
CCA2 incompressible security definition where the adversary gets oracle access to a decryption oracle.

To achieve IND-CCA2 security, we follow the framework of [CS02]. We add a second hash proof system
that acts as integrity proof for ciphertexts. The second hash proof system does not need to be programmable
but universal2 [CS02] or 2-smooth [ABP15]. It allows the decryption oracle to only answer queries to honestly
generated ciphertexts. This mechanism ensures that the decryption oracle does not give up entropy of the
programmable HPS’s secret key.

In the main body of this work, we provide the full construction that achieves this level of security.

2.6 Incompressible Encryption in the ROM

Finally, we present a scheme that is secure in the ideal cipher model (proven to be equivalent to ROM) but
insecure when we use a concrete hash function. The scheme is a simple hybrid encryption scheme where the
symmetric encryption is one huge block cipher.

More concretely, the public key is composed of a pk of an IND-CPA scheme. To encrypt a message, we
first sample two strings r, k of size λ and compute c′ ← Enc(pk, k). Then we compute d = Pk((r,m)) where
P is modelled as an ideal cipher oracle.

The scheme is secure in the ROM by observing that: i) The adversary cannot query the ideal cipher
oracle with key k before receiving the secret key as it would break the IND-CPA security of the underlying
PKE scheme; and ii) Given the secret key, the last stage adversary cannot query the ideal cipher oracle P−1k

on d because the limitations of the state size make sure d has high min-entropy. The adversary can also not
query Pk on (r,m) as it would have to guess r. Therefore, the adversary has almost no information about
the message.

However, if we use a fully-homomorphic encryption (FHE) scheme as a PKE and if we instantiate the
ideal cipher oracle with a specific block cipher P, it is the scheme becomes breakable. The key idea is that
as soon as the ideal cipher oracle is instantiated with a block cipher P, the adversary has access to the code
of P and can thus run it homomorphically under the FHE. Concretely, the adversary chooses two messages
m0,m1 and, after receiving the challenge encryption of mb, it can unmask mb inside the FHE and compare
it with m0,m1. The resulting evaluated ciphertext contains a single bit which is much smaller than the
original ciphertext. After receiving the secret key, it can decrypt b and break the IND-CPA incompressible
security of the scheme.

12

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this work, λ denotes the security
parameter. By negl(λ), we denote a negligible function in λ, that is, a function that vanishes faster than any
inverse polynomial in λ. Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we denote by
y ← A(x) the output y after running A on input x. If S is a (finite) set, we denote by x←$S the experiment
of sampling uniformly at random an element x from S. If D is a distribution over S, we denote by x←$D
the element x sampled from S according to D.

For two probability distributions X,Y , we use the notation X ≈s Y to state that the distributions are
statistically indistinguishable and X ≈c Y to state that the distributions are computationally indistinguish-
able.

For ease of notation, in any of our constructions we assume public parameters p are known to every
algorithm and every secret key sk also contains the corresponding public key pk.

We present some information-theoretical notions and results that will be instrumental throughout this
work.

Definition 1 (Average Min-Entropy [DORS08]). For two jointly distributed random variables (X,Y), the
average min-entropy of X conditioned on Y is defined as

H̃∞(X|Y) = −log(Ey ←$Y [maxx Pr[X = x|Y = y]]).

Lemma 1 (Lemma 2.2 b) of [DORS08]). For random variables X,Y, Z where Y is supported over a set of
size T , we have

H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y)|Z)− log(T) ≥ H̃∞(X|Z)− log(T).

Definition 2 (Average-Case Extractor [DORS08]). Let n, d,m ∈ N. A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ϵ) strong average-case min-entropy extractor if, for all random variables (X,Y) where X
takes values in {0, 1}n and H̃∞(X|Y) ≥ k, we have that (Ud,Ext(X,Ud), Y) is ϵ-close to (Ud, Um, Y), where
Ud and Um are independent uniformly random strings of length d and m respectively.

Lemma 2 (Generalized Leftover Hash Lemma 2.4 of [DORS08]). Let n,m ∈ N. Let {Hr : {0, 1}n →
{0, 1}m}r∈R be a family of universal hash functions, then Ext(x, r) 7→ Hr(x) is an average-case (k, ϵ)-strong
extractor whenever m ≤ k − 2log(1ϵ) + 2.

Definition 3 (Pseudorandom Generator). Let n,m = poly(λ). A function G : {0, 1}n → {0, 1}m is a
pseudorandom generator if, for uniformly random s←$ {0, 1}n and r←$ {0, 1}m, we have

G(s) ≈c r.

Definition 4 (Collision-Resitant Hash Function). Let n,m, l = poly(λ). A collision-resistant hash function

is a seeded function CRHF : {0, 1}n × {0, 1}m → {0, 1}l with the property that for all PPT adversaries A,
random seed s ∈ {0, 1}n we have A(s) outputs x,x′ with x ̸= x′ and CRHFs(x) = CRHFs(x

′) with negligible
probability.

3.1 Decisional Diffie-Hellman assumption

In the following, let G be a (prime-order) group generator, that is, G is an algorithm that takes as an input
a security parameter 1λ and outputs (G, p, g), where G is the description of a multiplicative cyclic group, p
is the order of the group which is always a prime number unless differently specified, and g is a generator of
the group. Sometimes we denote the size of the group by |G|.

We denote by [a] be value ga. Similarly, if A ∈ Zn×m
p is a matrix with entries ai,j then [A] denotes the

matrix where each (i, j)-entry is the value gai,j . Note that given x ∈ Zn
p , y ∈ Zm

p and [A], we can compute

xT [A] = [xTA] and [A]y = [Ay].
In the following we state the decisional version of the Diffie-Hellman (DDH) assumption.

13

Definition 5 (Decisional Diffie-Hellman Assumption). Let (G, p, g)←$G(1λ). We say that the DDH as-
sumption holds (with respect to G) if for any PPT adversary A

|Pr[1← A((G, p, g), ([a], [b], [ab]))]− Pr[1← A((G, p, g), ([a], [b], [c]))]| ≤ negl(λ)

where a, b, c←$Zp.

3.2 Public-Key Encryption

Definition 6 (Public-Key Encryption). A public-key encryption (PKE) scheme is a triple of PPT algorithms

(pk, sk)← KeyGen(1λ): Given the security parameter λ the key-generation algorithm outputs a public key pk
and a secret key sk.

c← Enc(pk,m): Given a public key pk and a message m encryption outputs a ciphertext c.

m← Dec(sk, c): Given a secret key sk and a ciphertext c decryption outputs a message m.

Correctness. For all λ, S ∈ N, messages m and (pk, sk) in the range of KeyGen we have that m =
Dec(sk,Enc(pk,m)).

IND-CPA security. For all λ ∈ N and all adversaries A = (A1,A2) we have that

Pr

b← A2(st, c) :

(pk, sk)← KeyGen(1λ)
(m0,m1, st)← A1(pk)

b←$ {0, 1}
c← Enc(pk,mb)

 ≤ 1

2
+ negl(λ).

We now provide the definition of fully-homomorphic encryption.

Definition 7 (Fully-Homomorphic Encryption). A fully-homomorphic encryption (FHE) scheme is PKE
scheme with the following additional algorithm:

c← Eval(pk, C, (c1, . . . , cℓ): Given public key pk, a circuit C and ciphertexts (c1, . . . , cℓ) the evaluation algo-
rithm outputs a new ciphertext c.

IND-CPA is defined in a analogous way as for PKE. We now present the definitions of homomorphic
correctness and compactness.

Homomorphic correctness. For all λ, S ∈ N, messages m, any circuit C : {0, 1}ℓ → {0, 1} (pk, sk) in the
range of KeyGen we have that

b = Dec(sk,Eval(pk, C, (Enc(pk, b1), . . . ,Enc(pk, bℓ)))))

where b← C(b1, . . . , bℓ).

Compactness. There exists a polynomial p such that for all λ ∈ N, all circuits C, all inputs b1, . . . , bℓ, all
(sk, pk) in the support of KeyGen(1λ), and all ci in the support of Enc(pk, bi) it holds that |Eval(pk, C, (c1, ..., cℓ))| =
p(λ, |C(b1, ..., bℓ)|).

14

3.3 HILL-Entropic Encodings

We recall the notion of HILL-entropic encodings from [MW20].

Definition 8 (HILL-Entropic Encodings [MW20]). An (α, β)-HILL-entropic encoding scheme with selective
security in the CRS setting consists of two PTT algorithms:

• c ← Encrs(1
λ,m): An encoding algorithm that takes a common random string crs and a message m

producing an encoding c.

• m ← Decrs(c): A decoding algorithm that takes a common random string crs and an encoding c and
produces a message m.

Correctness. There is some negligible µ such that for all λ ∈ N and all m ∈ {0, 1}∗ we have

Pr[Decrs(Encrs(1
λ,m)) = m] = 1− µ(λ).

α-Expansion. For all λ, k ∈ N and all m ∈ {0, 1}k we have |Encrs(1λ,m)| ≤ α(λ, k).

β-HILL-Entropy. There exists an algorithm SimEn s.t. for any polynomial k = k(λ) and any ensamble
of messages m = {mλ} of length |mλ| = k(λ), consider the following ”real” experiment:

• crs←$ {0, 1}t(λ,k)

• c← Encrs(1
λ,mλ)

and let CRS,C denote the random variables for the corresponding values in the ”real” experiment. Also
consider the following ”simulated” experiment:

• (crs′, c′)← SimEn(1λ,mλ)

and let CRS′, C ′ denote the random variables for the corresponding values in the ”simulated” experiment.
We require that (CRS,C) ≈c (CRS′, C ′) and H̃∞(C ′|CRS′) ≥ β(λ, k).

We call a (α,β)-HILL-entropic encoding good if α(λ, k) = k(1 + o(1)) + poly(λ) and β(λ, k) = k(1 −
o(1))− poly(λ). Moran and Wichs [MW20] provide good HILL-entropic encodings from DCR [Pai99, DJ01]
or LWE [Reg05] in the CRS model. They also show that the CRS must be as big as the encoded message.

3.4 Random Oracle Model

In our constructions we use the ideal cipher model, which can be dated back to Shannon [Sha49] and proven
to be indifferentiable from the random oracle model [BR93, HKT11].

For any n ∈ N the ideal cipher model provides oracle access a keyed permutation P : {0, 1}λ × {0, 1}n →
{0, 1}n, which for each key k we have Pk is an independent random permutation.

4 Incompressible Symmetric-Key Encryption

In this section, we define incompressible symmetric-key encryption (SKE) and give a construction from
entropic encodings.

15

4.1 Definition

First, we recall the notion of forward-secure storage [Dzi06b] under the name of incompressible symmetric-
key encryption. For our purposes we only need IND-EAV style security but this could be extended similar
to what we did with incompressible public-key encryption.

Definition 9 (Incompressible SKE). An incompressible symmetric-key encryption scheme is a tuple of PPT
algorithms using uniformly random keys k

c← Enc(k,m): Given a symmetric key k and a message m encryption it outputs a ciphertext c.

m← Dec(sk, c): Given a symmetric key k and a ciphertext c decryption it outputs a message m.

We require size of message space, size of key space, and size of ciphertext space to be polynomials over the
security parameter λ and the space bound S; that is, n = n(λ, S), k = k(λ, S), and l = l(λ, S) respectively.

Correctness For all λ, S ∈ N, messages m and keys k ∈ {0, 1}k we have that m = Dec(k,Enc(k,m))

Security For security parameter λ and space bound S, a symmetric-key encryption scheme (Enc,Dec)
has incompressible SKE security if for all PPT adversaries A = (A1,A2,A3) the probability of winning the
following experiment is ≤ 1

2 + negl(λ).

DistIncomSKE
A,Π (λ, S) Experiment :

• Run the adversary (m0,m1, st1)← A1(1
λ) to receive two messages m0 and m1

• Sample a bit b←$ {0, 1} uniformly at random

• Sample k←$ {0, 1}n(λ,S)
uniformly at random

• Run c← Enc(k,mb) to encrypt mb

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1)

• The adversary wins if b = b′

4.2 Construction

Now we show how to build incompressible symmetric-key encryption using HILL-entropic encodings, extrac-
tors, and pseudorandom generators.

Construction 1. Let λ be the security parameter, S be the space bound of the adversary and n be the size

of the message space. Let (En,De) be an (α, β)-HILL-entropic encoding, Ext : {0, 1}α(λ,n) × {0, 1}d(λ) →
{0, 1}λ be a (β(λ, n)− S, negl(λ)) strong average-case min-entropy extractor where d(λ) is a polynomial and

G : {0, 1}λ → {0, 1}n be a PRG.

Enc(k,m):

• Parse k = (k1, k2, crs).

• Sample s←$ {0, 1}λ uniformly at random.

• Let c1 ← Encrs(1
λ, G(s)⊕m).

• Let c2 ← s⊕ Ext(c1, k1)⊕ k2.

• Return c = (c1, c2).

Dec(k, c):

16

• Parse k = (k1, k2, crs).

• Parse c = (c1, c2).

• Let s← Ext(c1, k1)⊕ c2 ⊕ k2.

• Return Decrs(c1)⊕G(s).

Parameters. The ciphertexts are of size λ+α(λ, n). The keys are of size d(λ)+t(λ, n), where t(λ, n) is the

size of the encoding’s crs. Notice that the extractor exists if β(λ, n)− S − 2 log
(

1
negl(λ) + 2

)
≥ λ according

to Lemma 2. So, the adversary is allowed a leakage of size S ≤ β(λ, n)− λ− 2 log
(

1
negl(λ) + 2

)
.

Therefore, if we choose a ”good” entropic encoding we get a rate of n
n(1+o(1))+poly(λ) , allowed leakage of

S = n(1− o(1))− poly(λ), and keysize of k = n(1 + o(1)) + poly(λ).

Correctness. By the correctness of the entropic encoding Decrs(Encrs(1
λ, G(s)⊕m)) = G(s)⊕m. Since Ext

is deterministic under a fixed key k1 then Ext(c1, k1)⊕ c2 ⊕ k2 = Ext(c1, k1)⊕ s⊕ Ext(c1, k1) = s. Therefore,
Decrs(c1)⊕G(s) = m.

Theorem 2 (Security). The incompressible SKE presented in Construction 1 has incompressible SKE se-
curity if (En,De) is an (α, β)-HILL-entropic encoding, Ext is a (β(λ, n) − S, negl(λ)) strong average-case
min-entropy extractor, and G is a pseudorandom generator each with the listed parameters.

Proof. We prove security via hybrids. First we list the hybrid and then argue their indistinguishability. In
each hybrid we highlight the changes compared to the previous one.

H0 :

• Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k←$ {0, 1}n uniformly at random.

• Run c← Enc(k,mb) to encrypt mb.

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H1 we explicitly represent what happens in Enc.

H1 :

• Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k1←$ {0, 1}d(λ,n) uniformly at random.

• Sample k2←$ {0, 1}λ uniformly at random.

• Sample crs←$ {0, 1}t(λ,n) uniformly at random.

• Sample s←$ {0, 1}λ uniformly at random.

• Let c1 ← Encrs(1
λ, G(s)⊕mb).

• Let c2 ← s⊕ Ext(c1, k1)⊕ k2.

17

• Let c← (c1, c2) and k← (k1, k2, crs).

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1).

• The adversary wins if b = b′

In H2 we switch the entropic encoding to the simulated code that has a lot of entropy.

H2 :

• Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k1←$ {0, 1}d(λ,n) uniformly at random.

• Sample k2←$ {0, 1}λ uniformly at random.

•

• Sample s←$ {0, 1}λ uniformly at random.

• Let (crs, c1)← SimEn(1λ, G(s)⊕mb).

• Let c2 ← s⊕ Ext(c1, k1)⊕ k2.

• Let c← (c1, c2) and k← (k1, k2, crs).

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1).

• The adversary wins if b = b′.

I H3 we switch the order in which we sample c2 and k2.

H3 :

• Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k1←$ {0, 1}d(λ,n) uniformly at random.

•

• Sample s←$ {0, 1}λ uniformly at random.

• Let (crs, c1)← SimEn(1λ, G(s)⊕mb).

• Sample c2←$ {0, 1}λ uniformly at random.

• Let c← (c1, c2) .

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

• Let k2 ← c2 ⊕ Ext(c1, k1)⊕ s.

• Let k← (k1, k2, crs).

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H4 we replace the output of the extractor Ext by a uniformly random value.

18

H4 :

• Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k1←$ {0, 1}d(λ,n) uniformly at random.

• Sample s←$ {0, 1}λ uniformly at random.

• Let (crs, c1)← SimEn(1λ, G(s)⊕mb).

• Sample c2←$ {0, 1}λ uniformly at random.

• Let c← (c1, c2).

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

• Sample k2←$ {0, 1}λ uniformly at random.

• Let k← (k1, k2, crs).

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1).

• The adversary wins if b = b′.

Finally we replace the output of G(s) by a uniformly random value.

H5 :

• Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k1←$ {0, 1}d(λ,n) uniformly at random.

• Sample s←$ {0, 1}λ uniformly at random.

• Sample r←$ {0, 1}n uniformly at random.

• Let (crs, c1)← SimEn(1λ, r).

• Sample c2←$ {0, 1}λ uniformly at random.

• Let c← (c1, c2).

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

• Sample k2←$ {0, 1}λ uniformly at random.

• Let k← (k1, k2, crs).

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1).

• The adversary wins if b = b′.

H0 ≈ H1 :
The differences between H0 and H1 are purely syntactical. In H1 we just show more detail of Enc.

H1 ≈c H2 :
Instead of sampling the common random string for the entropic encoding uniformly at random and
then encoding G(s) ⊕ m we simulate both steps using SimEn. Assume there exists a PPT adversary
A = (A1,A2,A3) that can distinguish the two hybrids H1 and H2 with a non-negligible advantage
of ϵ. From this we construct a PPT adversary A′ = (A′1,A′2) that can break the β-HILL-entropy of
(En,De) with advantage ϵ.

A′1(1λ) :

19

• Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1

• Sample bit b←$ {0, 1} uniformly at random

• Sample k1←$ {0, 1}d(λ,n) uniformly at random

• Sample s←$ {0, 1}λ uniformly at random

• Return G(s)⊕mb

A′2(crs, c1) :

• Let c2 ← s⊕ Ext(c1, k1)

• Let c← (c1, c2)

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1)

• Return b′

If A can distinguish H1 from H2 then A′ can distinguish a uniformly random crs←$ {0, 1}t(λ,n) and
c1 ← En(1λ, G(s)⊕mb) from (crs, c1)← SimEn(1λ, G(s)⊕mb) as it perfectly simulates H2 in the case
that (crs, c1)← SimEn(1λ, G(s)⊕mb) and perfectly simulates H1 in the other case.

H2 ≈ H3 :
In H3 we switch the order in which we sample c2 and k2. From the view of the adversary this is
statistically identical.

H3 ≈s H4 :
Let C1, C2, CRS, K1, K2, and ST2 denote the random variables for the corresponding values in the
experiment and Uλ independent uniform randomness of length λ. By the β-HILL entropy of the entropic
encoding we know that H̃∞(C1|CRS) ≥ β. Using Lemma 1 we deduce that H̃∞(C1|(CRS,K2, ST2, C2)) ≥
β − 2λ− log(S). Therefore, the extractor gives us that (K1,K2, CRS, ST2, Uλ) is statistically close to
(K1,K2, CRS, ST2,Ext(C1,K1)) which is exactly the view of A3.

H3 ≈c H4 :
In H4 we encode a uniformly random string instead of G(s)⊕mb. Assume there exists a PPT adversary
A = (A1,A2,A3) that can distinguish the two hybrids H3 and H4 with a non-negligible advantage
of ϵ. From this we construct a PPT adversary A′ that can break the pseudorandomness of G with
advantage ϵ.

A′(r′) :

• Run the adversary m0,m1, st1 ← A1(1
λ) to receive two messages m0 and m1

• Sample bit b←$ {0, 1} uniformly at random

• Sample k1←$ {0, 1}d(λ,n) uniformly at random

• Sample s←$ {0, 1}λ uniformly at random

• Sample r ← r′ ⊕mb uniformly at random

• Let (crs, c1)← SimEn(1λ, r)

• Sample c2←$ {0, 1}λ uniformly at random

• Let c← (c1, c2)

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S

• Run the final adversary b′ ← A3(k, st1, st2,m0,m1)

• Return b′

If A can distinguish H3 from H4 then A′ can distinguish G(s) with uniformly random s←$ {0, 1}λ from
uniformly random r′←$ {0, 1}n as it perfectly simulates H3 in the case that r′ ← G(s) and perfectly
simulates H4 in the other case.

20

H4 :
In H4 the winning probability of the adversary is 1

2 as it gets no information about b at all.

5 Programmable Hash Proof Systems

In this work we think of a hash proof systems as a key encapsulation mechanism where the encapsulated
key is independent of the public key and the ciphertext under certain conditions. This allows us to later
resample the secret key in the incompressibility experiments.

For our construction we need two different hash proof systems. One that is Y -programmable and one
that is 2-smooth both using the same language.

5.1 Definitions

First we define hash proof system that we will use as a mask in our encryption scheme.

Definition 10 (Y -Programmable Hash Proof System [CS02, Kal05]). A Y -programmable hash proof system
is defined over a NP language L ⊂ X, where each element x in the language L has a witness w. Additionally
there exist a subset Y ⊂ X \L and efficient ways to sample a language L with a corresponding trapdoor tdL,
an x ∈ L with its witness w and an x ∈ Y with a corresponding trapdoor tdx

• (p, tdL) ← Gen(1λ, 1k): Given the security parameter λ, the encapsulated key size k the language
generation algorithm that outputs public parameters p defining a language L and a trapdoor tdL to that
language.

• (x ∈ L, w) ← sampL(p): Given the public parameters, it outputs an element x ∈ L with the corre-
sponding witness w.

• (x ∈ Y, tdx) ← sampY (p, tdL): Given the public parameters and a trapdoor tdL, it outputs x ∈ Y and
the corresponding trapdoor tdx.

The hash proof system itself consists of these algorithms:

• (pk, sk)← KeyGen(p): Given the public parameters, the key generation algorithm outputs a public key
pk and a secret key sk.

• k ← Encap(pk, x, w): Given the public lye pk, en element x and a witness w. the key encapsulation
algorithm outputs an encapsulated key k.

• k← Decap(sk, x): Given the secret key sk and any x ∈ X, the key decapsulation algorithm outputs an
encapsulated key. k. Notice x can be outside L.

• sk′ ← Program(tdL, tdx, sk, x, k) Given two trapdoors tdL, tdx, a secret key sk, an element x ∈ Y , and
an encapsulated key k, the programming algorithm outputs a new secret key sk′.

Correctness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the range of KeyGen(p),
x ∈ L and for k← Encap(pk, x, w), we have k = Decap(sk, x) with |k| = k.

Language Indistinguishability. For all λ, k ∈ N if we sample (p, tdL)← Gen(1λ, 1k), L ∋ x← sampL(p),
and (x∗ ∈ Y, tdx∗)← sampY (p, tdL), we have the computational indistinguishability: x ≈c x

∗.

Programmability. For all λ, k ∈ N, (p, tdL) in the range of sampL(1λ, 1k), (pk, sk) in the range of
KeyGen(p), k ∈ {0, 1}m, and for (x, tdx) in the range of sampY (p, tdL), sk

′ ← Program(tdL, tdx, sk, x, k),
we have Decap(sk′, x) = k.

21

Y -Programmable Smoothness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the
range of KeyGen(p), (x, tdx) in the range of sampY (p, tdL), k ∈ {0, 1}m, and sk′ ← Program(tdL, tdx, sk, x, k)
we have statistical indistinguishability (pk, sk, x) ≈s (pk, sk

′, x).
Notice, if Y = X \ L then Y -programmable smoothness implies smoothness.

Next we recall 2-smooth hash proof systems with our adjusted notation.

Definition 11 (2-Smooth Hash Proof System [CS02, ABP15]). A 2-smooth hash proof system is defined
over a NP language L ⊂ X as above The hash proof system itself consists of the following algorithms:

• (pk, sk)← KeyGen(p): Given the public parameters, the key generation algorithm that outputs a public
key pk and a secret key sk.

• k ← Encap(pk, x, w, τ): Given public key pk, an element of the language x ∈ L, its witness w, and a
tag τ , the key encapsulation algorithm outputs an encapsulated key k.

• k← Decap(sk, x, τ): Given the secret key sk, any x ∈ X, and a tag τ . the key decapsulation algorithm
outputs an encapsulated key k. Notice x can be outside L.

Correctness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the range of KeyGen(p),
x ∈ L, tags τ , and for k← Encap(pk, x, w, τ), we have k = Decap(sk, x, τ) with |k| = k.

Language Indistinguishability. Exactly as above.

2-Smoothness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), x, x′ ∈ X \L, two tags τ, τ ′ such that

(x, τ) ̸= (x′, τ ′), let (pk, sk)← KeyGen(p) and sample k←$ {0, 1}k we have computational indistinguishability
between (pk,Decap(sk, x, τ),Decap(sk, x′, τ ′)) and (pk,Decap(sk, x, τ), k).

5.2 Programmable Hash Proof System from DDH

In our protocols we need programmable HPS with a big encapsulated key space (for classic notation [CS02]
this would be called the hash space).

Some smooth hash proof systems are easily transformed into programmable HPS with big encapsulated
keys by generating more public keys and using them on the same x ∈ X. These HPS include the one from
weak pseudorandom effective group actions [ADMP20]. That transformation causes the public key size to
scale linearly with the size of the encapsulated key and leave the size of the ciphertext indepent of the
encapsulated key size.

We present a variant of the original [CS02] HPS with an interesting trade off. Here both public key size
and ciphertext size scale in the 2/3-power with k, the size of the encapsulated key.

Construction 2. Let HC : G × {0, 1}log(|G|) → {0, 1} denote a 1-bit randomness extractor over a group
element; if this function is applied over a matrix of group elements, then it means that the function is
applied entry-wise with the same randomness. In the following let ℓ, s ∈ N such that ℓ · s = k. We get an
interesting tradeoff for our application when ℓ = k1/3 and s = k2/3.

Gen(1λ, 1k) :

• (G, p, g)←$G(1λ).
• Sample h←$Zℓ

p \ {0} uniformly at random.

• Return p = (G, p, g, [h]) and tdL = h.

sampL(p) :

• Parse p = (G, p, g, [h]).

22

• Sample y←$Zℓ−1
p uniformly at random.

• Return x = [y] and w = y.

sampY (p, tdL) :

• Parse p = (G, p, g, [h]).

• Let tdL = h.

• Sample E←$Zℓ×(ℓ−1)
p such that

(
h E

)
is invertible uniformly at random.

• Return x = [E] and w = E.

KeyGen(p):

• Parse p = (G, p, g, [h]).

• Sample r←$ {0, 1}log(|G|) the public randomness for a extractor.

• Sample A←$Zs×ℓ
p uniformly at random.

• Return pk = (A[h], r) and sk = A.

Encap (pk, c = [hyt] , w = y):

• Parse p = (G, p, g, [h] ∈ Gℓ).

• Parse pk = ([f] ∈ Gs, r).

• Let K← HC([f]yt, r) the component-wise extractor of the outer product between f and y.

• Return k = K.

Decap (sk, x = [E] ∈ Gℓ×(ℓ−1)):

• Parse pk = ([f], r)

• Parse sk = A ∈ Zs×ℓ
p .

• Let K← HC(A[E], r) the component-wise extractor of the product between A and [E].

• Return k = K.

Program(tdL, tdx, sk, x, k):

• Parse pk = ([f], r), tdL = h ∈ Zℓ
p, tdx = E ∈ Zℓ×(ℓ−1)

p , sk = A, and k = K ∈ {0, 1}s×(ℓ−1).
• For each i ∈ [ℓ−1], j ∈ [s] sample Bi,j ←$Zp such that Ki,j = HC([Bi,j], r) via rejection sampling.

• Set B = (B)i,j. Let A′ ←
(
Ah B

) (
h E

)−1
.

• Return sk′ = A′.

Correctness. For any (p = (G, p, g, [h]),tdL) in the range of Gen, (pk = ([Ah], r),sk = A) in the range of
KeyGen, and [hyt] ∈ L we have Encap(pk, [hyt]) outputs k = HC([Ah]yt, r) = HC([Ahyt], r). Decapsulation
then outputs k = HC(A[hyt], r) = HC([Ahyt], r).

Programmability. Since we choose h and E s.t.
(
h E

)
is invertible Program always outputs a matrix

A′ with the property that A′E = B and k = HC([B], r).

23

Programmable Smoothness. If we first sample k uniformly random and then program for the key k
Program(tdL, tdx, sk, x, k) the resulting distribution over B will be uniformly random. And because

(
h E

)
is invertible then A′ is a uniformly random under the condition that A′h = Ah. The same holds for A.
Therefore, (pk, sk = A, x) and (pk, sk′ = A′, x) are identically distributed.

Theorem 3 (Language Indistinguishability). If DDH is hard for G then elements from L = {[h]yt|y ∈ Zℓ−1
p }

and Y = {[E]|E ∈ Zℓ×(ℓ−1)
p ∧

(
h E

)
is invertible} of construction 2 are indistinguishable.

Proof. We prove security via hybrids. First we list the hybrids and then argue their indistinguishability. In
each hybrid we highlight the changes compared to the previous one.

H0 :

• Let (p, tdL)← Gen(1λ, 1k).

• Let (pk, sk)← KeyGen(p).

• Let (x,w)← sampL(p).
• Let k← Encap(pk, x, w).

• Run the adversary A(pk, sk, x).

H1 :

• Sample a group (G, p, g)←$G(1λ) .

• Sample r←$ {0, 1}log(|G|) the randomness for the extractor .

• Sample h←$Zℓ
p \ {0} uniformly at random .

• Sample A←$Zs×ℓ
p uniformly at random .

• Let p = (G, p, g, [h]) .

• Let pk = ([Ah], r) and sk = A .

• Sample y←$Zℓ−1
p uniformly at random .

• Let x = [hyt] = [C] .

• Run the adversary A(pk, sk, x).

H2,i :

• Sample a group (G, p, g)←$G(1λ).

• Sample r←$ {0, 1}log(|G|) the randomness for the extractor.

• Sample h←$Zℓ
p \ {0} uniformly at random.

• Sample A←$Zs×ℓ
p uniformly at random.

• Let p = (G, p, g, [h]).

• Let pk = ([Ah], r) and sk = A.

• Sample y←$Zℓ−1
p uniformly at random.

• Let [C] = [hyt].

• Sample E←$Zl×(l−1)
p uniformly at random .

24

• Replace the first i entries of [C] by the first i entries in [E] .

• Let x = [C].

• Run the adversary A(pk, sk, x).

H3 :

• Sample a group (G, p, g)←$G(1λ).

• Sample r←$ {0, 1}log(|G|) the randomness for the extractor.

• Sample h←$Zℓ
p \ {0} uniformly at random.

• Sample A←$Zs×ℓ
p uniformly at random.

• Let p = (G, p, g, [h]).

• Let pk = ([Ah], r) and sk = A.

• Sample E←$Zl×(l−1)
p uniformly at random such that

(
h E

)
is invertible .

• Let x = [E].

• Run the adversary A(pk, sk, x).

H0 ≈ H1 :
The differences between H0 and H1 are purely syntactical. In H1 we just show more detail of Gen and
Encap.

H1 ≈ H2,0 :
The differences between H1 and H2,0 are purely syntactical.

H2,i ≈c H2,i+1 :
In H2,i+1 we replace the n+1st element of C by a random one. Assume there exists a PPT adversary
A that can distinguish the two hybrids H2,i and H2,i+1 with a non-negligible advantage of ϵ. From
this we construct a PPT adversary A′ that can break DDH with advantage ϵ.

A′ ((G, p, g), ([a], [b], [ρ])):

• Let u← i mod l

• Let v ← ⌊i/l⌋
• Sample r←$ {0, 1}log(|G|) the randomness for the extractor

• Sample h←$Zℓ
p \ {0} uniformly at random

• Replace [xu] by [a]

• Sample A←$Zs×ℓ
p uniformly at random

• Let p = (G, p, g, [h])

• Let pk = ([Ah], r) and sk = A

• Sample y←$Zℓ−1
p uniformly at random

• For u′ ∈ [l] and v′ ∈ [l − 1] let Cu′,v′ ←


[ρ] if u′ = u, v′ = v

[b]xu′ if u′ ̸= u, v′ = v

[xu′]yv′ else

• Sample E←$Zl×(l−1)
p

• Replace the first i entries of [C] by the first i entries in [E]

• Let x = [C]

• Run the adversary b′ ← A(pk, sk, x)
• Return b′

25

If A distinguishes between H2,i and H2,i+1 then A′ distinguishes between ρ = ab and ρ being uniformly
random as A′ perfectly simulates H2,i in the case that ρ = ab and H2,i+1 if r is uniformly random.

H2,m ≈s H3 :
H2,m is statistically close to H3 because with probability 1− negl(λ) we have

(
h E

)
is invertible.

Parameters. For an encapsulated key of size k this scheme roughly gets us public parameters of size
k1/3 · poly(λ), public key of size k2/3 · poly(λ) and elements from X of size k2/3 · poly(λ).

5.3 2-Smooth Hash Proof System from DDH

The above hash proof system only is programmable if x ∈ Y . To make our encryption scheme CCA secure
we need a efficient way to check whether x ∈ L or x ∈ X \ L. To do this we construct the 2-smooth hash
proof system below that is defined over the same language.

Construction 3. We construct a 2-smooth hash proof system with a output size of λ using an extractor
Ext : Gℓ−1×{0, 1}p → {0, 1}λ and a collision resistant hash function CRHF that maps into Zp. As a language
description we use the same as in Construction 2.

KeyGen(p):

• Parse p = (G, p, g, [h]).

• Sample r←$ {0, 1}log(|G|) uniformly at random.

• Sample s←$ {0, 1}λ uniformly at random.

• Sample a,b←$Zℓ
p uniformly at random.

• Return pk = (at[h],bt[h], r, s) and sk = (a,b).

Encap (pk, x = [hyt] ∈ Gℓ×(ℓ−1), w = y ∈ Zℓ−1
p , τ):

• Parse p = (G, p, g, [h] ∈ Gℓ) and pk = ([f], [f ′] ∈ G, r, s).

• Let [d] = ([f]y) + (CRHFs(x, τ)[f
′]y).

• Return k = Ext([dt], r).

Decap (sk, x = [E] ∈ Gℓ×(ℓ−1), τ):

• Parse p = (G, p, g, [h] ∈ Gℓ) and pk = ([f], [f ′] ∈ G, r, s).

• Parse sk = (a ∈ Zℓ
p,b ∈ Zℓ

p).

• Parse x = [E] ∈ Gℓ×(ℓ−1).

• Return k = Ext(at[E] + CRHFs(x, τ)b
t[E], r).

Correctness. For any (p = (G, p, g, [h]),tdL) in the range of Gen, (pk = (at[h],bt[h], r, s),sk = (a,b)) in
the range of KeyGen, and [hyt] ∈ L we have Encap(pk, [hyt]) outputs

k = Ext
(
(([f]y) + ([f]CRHFs(x, τ)y))

t
, r
)
= Ext

(
[(ath)yt + CRHFs(x, τ)(b

th)yt], r
)
.

On the other hand, decapsulation outputs

k = Ext(at[hyt] + CRHFs(x, τ)b
t[hyt], r) = Ext

(
[(ath)yt + CRHFs(x, τ)(b

th)yt], r
)

26

Language Indistinguishability. Since we use the same language as in construction 2 the language in-
distinguishability holds by the same argument.

2-Smoothness. For all λ, n ∈ N, (p, tdL) in the range of Gen(p), x, x′ ∈ X \ L, two tags τ, τ ′ such
that (x, τ) ̸= (x′, τ ′), let (pk, sk) ← KeyGen(p) and sample k←$ {0, 1}m. Let γ ← CRHFs(x, τ) and γ′ ←
CRHFs(x

′, τ ′). Using (x, τ) ̸= (x′, τ ′) and the collision resistance of CRHF we can assume that γ ̸= γ′.
In the following let d = at[E]+γbt[E] (computed in Decap(sk, x, τ)) and d′ = at[E′]+γ′bt[E′] (computed

in Decap(sk, x′, τ ′)). Then the following equation holds:

(
f f ′ dt d′

t) = (
at bt

)(h 0 E E′

0 h γE γ′E′

)
If x, x′ ∈ X \L then there exists a column z with index i in E s.t. z is linearly independent of h and z′ with
index i′ in E′ s.t. z′ is l.i. of h. Then the following equation also holds:

(
f f ′ di d′i′

)
=

(
at bt

)(h 0 z z′

0 h γz γ′z′

)

Now, we argue that the matrix on the right side has rank 4. We have that

(
h
0

)
and

(
0
h

)
are linearly

independent. Moreover,

(
z
γz

)
is outside the span of

(
h
0

)
and

(
0
h

)
because h and z are linearly independent.

Finally,

(
z′

γ′z′

)
is outside the span of

(
z
γz

)
,

(
h
0

)
, and

(
0
h

)
. To see this, assume that this is not the case,

i.e., that there exists a linear combination(
z′

γ′z′

)
= c1

(
z
γz

)
+ c2

(
h
0

)
+ c3

(
0
h

)
.

Assume there exist c1,c2,c3 ∈ N+ such that z′ = c1z+ c2h and γ′z′ = c1γz+ c3h. Then we replace z′ in the
second equation

γ′(c1z+ c2h) = c1γz+ c3h

⇔ (γ′ − γ)c1z = (c3 − γ′c2)h

This however can only be true if γ′ − γ = 0 because z is linearly independent of h.
Since a and b are chosen uniformly at random then so are f ,f ′, di, and d′i. If di and d′i are uniformly

random then Decap(sk, x, τ) = Ext(dt, r) and Decap(sk, x′, τ ′) = Ext(d′t, r) are statistically close to uniformly
random by the extractor property.

Parameters. For the same language as in Construction 2 with public parameters of size k1/3 · poly(λ)
and elements of k2/3 · poly(λ) construction 3 roughly results in public keys of size 2k1/3 · poly(λ) and an
encapsulated key of size λ.

6 Incompressible PKE from Incompressible SKE and HPS

First we extend the incompressible encryption security notion [GWZ22] to the chosen ciphertext scenario
and then we show a new construction paradigm using hash proof systems and incompressible symmetric-key
encryption.

27

6.1 CCA Incompressible Encryption

We use the definition of incompressible encryption by Guan et al.[GWZ22]. It defines a public-key encryption
scheme where the adversary has to know most of the ciphertext to decrypt it even with access to the secret
key.

Definition 12 (Incompressible PKE). An incompressible public-key encryption scheme is a triple of PPT
algorithms

(pk, sk)← KeyGen(1λ, 1S): Given the security parameter λ and a space bound S the key-generation algorithm
outputs a public key pk and a secret key sk.

c← Enc(pk,m): Given a public key pk and a message m the encryption algorithm outputs a ciphertext c.

m← Dec(sk, c): Given a secret key sk and a ciphertext c the decryption algorithm outputs a message m.

Both size of message space and size of ciphertext space are polynomials over security parameter λ and
space bound S, that is, n = n(λ, S) and l = l(λ, S) respectively.

Correctness. For all λ, S ∈ N, messages m and (pk, sk) in the range of KeyGen we have that m =
Dec(sk,Enc(pk,m)).

CCA Incompressible Security. Similar to standard IND-CCA (sometimes referred to as IND-CCA2)
security we extend incompressible encryption such that the adversary has access to an encryption oracle.

For security parameter λ and space bound S, a public key encryption scheme (KeyGen,Enc,Dec) has
incompressible CCA PKE security if for all PPT adversaries A = (A1,A2,A3) wins the following experiment
with probability ≤ 1

2 + negl(λ).

DistCCAIncomPKE
A,Π (λ, S) Experiment :

• Run key generation algorithm KeyGen(1λ, 1S) to obtain (pk, sk).

• Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·) to

receive two messages m0, m1 and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Run c← Enc(pk,mb) to encrypt mb.

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c to

produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

Rate We define the rate by |m|
|Enc(pk,m)| the size of a message divided by a ciphertext encrypting the message.

We say a scheme has rate-1 when the rate is 1− o(1).

6.2 Construction

We construct a encryption scheme that very much resembles the classic Cramer-Shoup [CS02] scheme.
Instead of masking the ciphertext with the randomness that comes out of the hash proof system we use it
as a key for an incompressible symmetric-key encryption scheme.

28

Construction 4 (Incompressible PKE). Given security parameter λ, space bound S, and message length n
let (KeyGen′, Encap′, Decap′, Program′) be a Y -programmable hash proof system for a language L ⊂ X (where
you can sample x with according witness from L and sample x with according trapdoor from Y) where the
representation size of X is p(λ, S, n) and encapsulated keys of size k(λ, Ssym, n), (KeyGen

′′, Encap′′, Decap′′)
is a 2-smooth hash proof system for the same language with encapsulation key size of λ and public key size
p′(λ, S, n), and (Encsym, Decsym) be an incompressible SKE with messages of size n, keys of size k(λ, Ssym, n)
and ciphertexts of size l(λ, Ssym, n) with incompressible SKE adversary being allowed to leak a state of size
Ssym = S + p(λ, S, n) + p′(λ, S, n).

KeyGen(1λ, 1S):

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let (pk′′, sk′′)← KeyGen′′(p).

• Return pk = (pk′, pk′′) and sk = (sk′, sk′′).

Enc(pk,m):

• Parse pk = (pk′, pk′′)

• Let (x,w)← sampL(p).
• Let k← Encap′(pk′, x, w).

• Let csym ← Encsym(k,m).

• Let π ← Encap′′(pk′′, x, w, csym).

• Return c = (x, csym, π).

Dec(sk, c):

• Parse sk = (sk′, sk′′).

• Parse c = (x, csym, π).

• If π = Decap′′(sk′′, x, csym)

– Let k← Decap′(sk′, x)

– Return m = Decsym(k, csym).

• Return ⊥.

Parameters. (KeyGen,Enc,Dec) is an incompressible PKE with messages of size n, ciphertexts of size
l(λ, Ssym, n)+p(λ, S, n)+p′(λ, S, n), the adversary is allowed a leak of size S = Ssym−p(λ, S, n)−p′(λ, S, n),
and the public key is of size p(λ, S, n) + p′(λ, S, n).

When instantiating the two hash proof systems with constructions 2,3 and the incompressible SKE with
construction 1 then (KeyGen,Enc,Dec) is an incompressible PKE with messages of size n, ciphertexts of size
(n+n2/3poly(λ))(1+ o(1)), the adversary is allowed a leak of size S = n(1− o(1))− poly(λ)(n(1+ o(1)))2/3,
the public key is of size n2/3(1 + o(1))poly(λ), and the secret key is of size n(1 + o(1))poly(λ).

Correctness. Follows from the correctness of (KeyGen′, Encap′, Decap′, Program′), (KeyGen′′, Encap′′,
Decap′′), and (Encsym, Decsym).

Theorem 4 (Security). The PKE construction 4 has incompressible CCA PKE security if (KeyGen′, Encap′,
Decap′, Program′) is a programmable hash proof system with the listed parameters, (KeyGen′′, Encap′′,
Decap′′) is a 2-smooth hash proof system with the listed parameters, and (Encsym, Decsym) is an incom-
pressible secure SKE with the listed parameters.

29

Proof. We prove security via hybrids. First we list the hybrids and then argue their indistinguishability. In
each hybrid we highlight the changes compared to the previous one.

H0(λ, S) :

• Run key generation algorithm KeyGen(1λ, 1S) to obtain (pk, sk).

• Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·) to

receive two messages m0, m1 and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Run c← Enc(pk,mb) to encrypt mb.

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c to

produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H1 we explicitly represent what happens in KeyGen and Enc.

H1(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let (pk′′, sk′′)← KeyGen′′(p).

• Let pk = (pk′, pk′′) and sk = (sk′, sk′′).

• Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·) to

receive two messages m0, m1 and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x,w)← sampL(p).

• Let k← Encap′(pk′, x, w).

• Let csym ← Encsym(k,mb).

• Let π ← Encap′′(pk′′, x, w, csym).

• Let c = (x, csym, π).

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c to

produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H2 we use the decapsulation mechanisms to encrypt the challenge message instead of encapsulation.

H2(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let (pk′′, sk′′)← KeyGen′′(p).

30

• Let pk = (pk′, pk′′) and sk = (sk′, sk′′).

• Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·) to

receive two messages m0, m1 and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x,w)← sampL(p).

• Let k← Decap′(sk′, x).

• Let csym ← Encsym(k,mb).

• Let π ← Decap′′(sk′′, x, csym).

• Let c = (x, csym, π).

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c to

produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H3 we sample x from Y ⊂ X \ L instead of L.

H3(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let (pk′′, sk′′)← KeyGen′′(p).

• Let pk = (pk′, pk′′) and sk = (sk′, sk′′).

• Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·) to

receive two messages m0, m1 and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x, tdx)← sampY (p, tdL).

• Let k← Decap′(sk′, x).

• Let csym ← Encsym(k,mb).

• Let π ← Decap′′(sk′′, x, csym).

• Let c = (x, csym, π).

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c to

produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H4 we change the behaviour of the decryption oracle.

H4(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let (pk′′, sk′′)← KeyGen′′(p).

• Let pk = (pk′, pk′′) and sk = (sk′, sk′′).

31

• Define an inefficient decryption algorithm Dec′.

Dec′(c):

– Parse c = (x, csym, π).

– If x ∈ L
∗ Let w be the witness for x.

∗ Let k← Encap(pk′, x, w).

∗ Return Decsym(k, csym).

– Else

∗ Return ⊥.

• Run the adversary m0,m1, st1 ← ADec′

1 (pk) on public key pk with oracle access to Dec′ to receive
two messages m0, m1 and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x, tdx)← sampY (p, tdL).

• Let k← Decap′(sk′, x).

• Let csym ← Encsym(k,mb).

• Let π ← Decap′′(sk′′, x, csym).

• Let c = (x, csym, π).

• Run the adversary st2 ← ADec′

2 (pk, c, st1) with oracle access to Dec′ for all inputs but c to produce
a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H5 we program the secret key given to the adversary to decapsulate the ciphertext to the randomly chosen
key k.

H5(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let (pk′′, sk′′)← KeyGen′′(p).

• Let pk = (pk′, pk′′) and sk = (sk′, sk′′).

• Define an inefficient decryption algorthim Dec′.
Dec′(c):

– Parse c = (x, csym, π).

– If x ∈ L
∗ Let w be the witness for x.

∗ Let k← Encap(pk′, x, w).

∗ Return Decsym(k, csym).

– Else

∗ Return ⊥.
• Run the adversary m0,m1, st1 ← ADec′

1 (pk) on public key pk with oracle access to Dec′ to receive
two messages m0, m1 and state st1.

32

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x, tdx)← sampY (p, tdL).

• Sample k←$ {0, 1}k(λ,Ssym,n).

• Let csym ← Encsym(k,m).

• Let π ← Decap′′(sk′′, x, csym).

• Let c = (x, csym, π).

• Run the adversary st2 ← ADec′

2 (pk, c) with oracle access to Dec′ for all inputs but c to produce a
state st2 smaller than S.

• Let sk′prog ← Program(tdL, tdx, sk
′, x, k).

• Run the final adversary b′ ← A3(sk = (sk′prog , sk′′), st1, st2,m0,m1).

• The adversary wins if b = b′.

In H6 we switch the decryption oracle back to the original behaviour.

H6(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let (pk′′, sk′′)← KeyGen′′(p).

• Let pk = (pk′, pk′′) and sk = (sk′, sk′′).

• Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·) to

receive two messages m0, m1 and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x, tdx)← sampY (p, tdL).

• Sample k←$ {0, 1}k(λ,Ssym,n).

• Let csym ← Encsym(k,m).

• Let π ← Decap′′(sk′′, x, csym).

• Let c = (x, csym, π).

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c to

produce a state st smaller than S.

• Let sk′prog ← Program(tdL, tdx, sk
′, x, k).

• Run the final adversary b′ ← A3(sk = (sk′prog, sk
′′), st1, st2,m0,m1).

• The adversary wins if b = b′.

H0 ≈ H1 :
The differences between H0 and H1 are purely syntactical. In H1 we just show more detail of KeyGen
and Enc.

H1 ≈ H2 :
In H2 we merely change how the challenge ciphertext is calculated. By the correctness of the hash
proof system these two hybrids look identical to the adversary.

33

H2 ≈c H3 :
In H3 sample x from Y ⊂ X \L instead of L. These two hybrids are computationally indistinguishable
by the language indistinguishability. Assume there exists a PPT adversary A = (A1,A2,A3) that can
distinguish the two hybrids H2 and H3 with a non-negligible advantage of ϵ. From this we construct
a statistical adversary A′ that can break language indistinguishability of the HPS with advantage ϵ.

A′(p, x) :

• Let (pk′, sk′)← KeyGen′(p).

• Let (pk′′, sk′′)← KeyGen′′(p).

• Let pk = (pk′, pk′′) and sk = (sk′, sk′′).

• Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·)

to receive two messages m0, m1 and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let k← Decap′(sk′, x).

• Let csym ← Encsym(k,mb).

• Let π ← Decap′′(sk′′, x, csym).

• Let c = (x, csym, π).

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c

to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

If A can distinguish H2 from H3 with advantage ε then the advantage of A′ of distinguishing a x
sampled from L and sampling x from Y ⊂ X \ L is also ϵ as it perfectly simulates H2 in the case that
x ∈ L and perfectly simulates H3 in the other case.

H3 ≈s H4 :
According to 2-smoothness of (KeyGen′′,Encap′′,Decap′′) in the decryption oracle for c = (x, csym, π)
if x /∈ L the decryption oracle fails with 2−λ probability even when the adversary has access to the
challenge ciphertext (x∗, c∗sym, π

∗) where x∗ ∈ X \ L. Simply not answering the query if x ∈ X \ L is

statistically close to answering with probability 2−λ.

H4 ≈s H5 :
According to programmable smoothness of (KeyGen′,Encap′,Decap′) if x /∈ L then (pk′, sk′, x) is sta-
tistically close to (pk′,Program(tdL, tdx, sk

′, x, k), x) for uniformly random k. Because this is exactly
what we switch we get that H4 and H5 are statistically close.

H5 ≈c H6 :
Again, According to 2-smoothness of (KeyGen′′,Encap′′,Decap′′) in the decryption oracle for c =
(x, csym, π) if x /∈ L the decryption oracle fails with 2−λ probability even when the adversary has
access to the challenge ciphertext (x∗, c∗sym, π

∗) where x∗ ∈ X \ L. Simply not answering the query if

x ∈ X \ L is statistically close to answering with probability 2−λ.

H6 ≈ DistIncomSKE
A′,Πsym

:
Finally, given an adversary A = (A1,A2,A3) that wins experiment H6(λ, S) with probability ϵ we
construct an adversary A′ = (A′1,A′2,A′3) that wins the DistIncomSKE

A′,Πsym
(λ, S + p(λ) + p′(λ)) experiment

with probability ϵ.

A′1(1λ, 1S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

34

• Let (pk′′, sk′′)← KeyGen′′(p).

• Let pk = (pk′, pk′′) and sk = (sk′, sk′′).

• Run the adversary m0,m1, st1 ← A
Decsk
1 (pk) on public key pk with oracle access to Dec(sk, ·)

to receive two messages m0, m1 and state st1.

• Let st′1 ← (pk, sk, tdL, st1).

• Return m0, m1, and st′1

A′2(st′1, csym) :

• Parse st′1 = (pk, sk, tdL, st1)

• Let (x, tdx)← sampY (p, tdL)

• Let π ← Decap′′(sk′′, x)

• Let c← (x, csym, π)

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) with oracle access to Dec(sk, ·) for all inputs but c

to produce a state st2 smaller than S

• Return state st′2 ← (x, tdx, st2) smaller than Ssym = S + p(λ) + p′(λ)

A′3(k, st′1, st′2,m0,m1) :

• Parse st1 = (pk, sk = (sk′, sk′′), tdL, st
′
1)

• Parse st2 = (x, tdx, st
′
2)

• Program sk′prog ← Program(tdL, tdx, sk
′, x, k)

• Run the final adversary b′ ← A3(pk, (sk
′
prog, sk

′′), st2,m0,m1)

• Return b′

A′ wins DistIncomSKE
A′,Πsym

(λ, S + p(λ)) iff A wins in H6(λ, S) because A′ perfectly simulates H6 from the
perspective of A.

7 The Dangers of Using the ROM in Incompressible Encryption

In this section, we show that there is a very simple incompressible encryption scheme that is secure in the
ROM. However, as soon as we instantiate the random oracle with a specific hash function, the scheme is
not secure anymore. Through this we demonstrate a proof in the ROM might be meaningless and extra
precautions must be taken before designing schemes in the ROM. This provides a fairly natural example on
the uninstantiability of a random oracle. The technique has similarities to observations by [DM04] about
inital key generation for the bounded storage model.

7.1 Construction

The construction we present in this work is secure in the ideal cipher model. The ideal cipher model
provides a oracle to a keyed function P such that for every key k we have that Pk is an independent random
permutation. It is proven to be equivalent to the random oracle model [HKT11].

Construction 5. Let (KeyGen′,Enc′,Dec′) be an IND-CPA encryption scheme with a secret key size p(λ)
and Pk : {0, 1}µ → {0, 1}µ be a random permutation indexed by k modeled as an ideal cipher, where µ =
p(λ) + λ+ S.

KeyGen(1λ):

• Compute (pk, sk)← KeyGen′(1λ).

• Return pk and sk.

35

Enc(pk,m ∈ {0, 1}S):

• Sample k←$ {0, 1}λ

• Encrypt c′ ← Enc′(pk′, k).

• Sample r←$ {0, 1}λ uniformly at random

• Let d← Pk((r,m)).

• Return c = (c′, d).

Dec(sk, c):

• Parse c = (c′, d)

• Decrypt k← Dec′(sk′, c′).

• Compute (r,m) = P−1k (d).

• Output m.

Correctness Correctness follows trivially from the correctness of the underlying PKE and by the fact that
P−1k (Pk(r,m)) = (r,m). We now analyze the security of the scheme.

Theorem 5. The scheme presented in Construction 5 has incompressible PKE security in the random oracle
model.

Proof. We prove the theorem via the following hybrids.

H0 : This is the incompressible PKE security game.

• Run key generation algorithm KeyGen′(1λ) to obtain (pk, sk).

• Run the adversary m0,m1, st1 ← A1(pk) to receive two messages m0 and m1 with oracle access to
P and P−1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k←$ {0, 1}λ.

• Encrypt c′ ← Enc′(pk, k).

• Sample r←$ {0, 1}λ uniformly at random.

• Compute d← Pk(r,mb).

• Let c = (c′, d).

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S with oracle access to P
and P−1.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1) with oracle access to P and P−1.

• The adversary wins if b = b′.

In this hybrid, the experiment aborts if Pk is ever queried by the first stage adversary.

H1 :

• Run key generation algorithm KeyGen′(1λ) to obtain (pk, sk).

• Run the adversary m0,m1, st1 ← A1(pk) to receive two messages m0 and m1 with oracle access to
P and P−1.

36

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k←$ {0, 1}λ.
• Encrypt c′ ← Enc′(pk, k).

• Sample r←$ {0, 1}λ uniformly at random.

• Compute d← Pk(r,mb).

• Let c = (c′, d).

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S with oracle access to P
and P−1.

• If Pk is queried by A1 or A2, abort.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1) with oracle access to P and P−1.

• The adversary wins if b = b′.

In this hybrid, the experiment aborts if the final stage adversary ever queries P−1k on the value d.

H2 :

• Run key generation algorithm KeyGen′(1λ) to obtain (pk, sk).

• Run the adversary m0,m1, st1 ← A1(pk) to receive two messages m0 and m1 with oracle access to
P and P−1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k←$ {0, 1}λ.
• Encrypt c′ ← Enc′(pk, k).

• Sample r←$ {0, 1}λ uniformly at random.

• Compute d← Pk(r,mb).

• Let c = (c′, d).

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S with oracle access to P
and P−1.

• If Pk is queried by A1 or A2 abort.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1) with oracle access to P and P−1.

• If A3 queries P−1k (d) before ever querying Pk((r,mb)) abort.

• The adversary wins if b = b′.

In this hybrid, the experiment aborts if the adversary queried Pk on (r,mb). This removes almost all
information about mb.

H3 :

• Run key generation algorithm KeyGen′(1λ) to obtain (pk, sk).

• Run the adversary m0,m1, st1 ← A1(pk) to receive two messages m0 and m1 with oracle access to
P and P−1.

• Sample bit b←$ {0, 1} uniformly at random.

• Sample k←$ {0, 1}λ.
• Encrypt c′ ← Enc′(pk, k).

• Sample r←$ {0, 1}λ uniformly at random.

37

• Compute d← Pk(r,mb).

• Let c = (c′, d).

• Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S with oracle access to P
and P−1.

• If Pk is queried by A1 or A2, abort.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1) with oracle access to P and P−1.

• If A3 queries P−1k (d) before ever querying Pk((r,mb)) abort.

• If A3 queries Pk((r,mb)) abort.

• The adversary wins if b = b′.

We now show indistinguishability of hybrids.

H0 ≈c H1 :
The hybrids are identical except for the abort condition. The experiment aborts the protocol if the
ideal cipher Pk is ever queried by A1 or A2. We argue that the winning probability in H0 and H1 are
negligibly close if (KeyGen′, Enc′, Dec′) is an IND-CPA secure PKE.

Assume there is an adversary A1, A2 that queries k with probability ε. From this, we construct an
adversary A′1, A′2 that breaks the IND-CPA security of the encryption scheme (KeyGen′, Enc′, Dec′).

A′1(pk) :

• Sample k0, k1←$ {0, 1}λ.
• Also call k0 = k.

• Run the adversary m0,m1, st1 ← A1(pk) to receive two messages m0 and m1 with oracle access
to P and P−1.

• Return k0 and k1.

A′2(pk, c′) :

• Sample r←$ {0, 1}λ uniformly at random.

• Sample b′←$ {0, 1} uniformly at random.

• Let d← Pk((r,mb′)).

• Let c = (c′, d).

• Run the adversary st2 ← A2(st1, c) with oracle access to P and P−1.

• If A1 or A2 ever queried Pk return 0 else 1.

If b = 0 then (A′1, A′2) outputs 0 with probability ε as this perfectly simulates H0 to the adversary
(A1, A2).

If b = 1 then (A′1, A′2) will output 1 with probability 1− negl(λ) as c contains no information about k
beyond d = Pk((r,mb′)).

Combining the two cases the probability of winning A′ winning the IND-CPA experiment is 1
2ε+

1
2 (1−

negl(λ)). Which is a non-negligible advantage if ε is non-negligible.

H1 ≈ H2 :
The hybrids are identical except for the new abort condition. We argue that the winning probability
in H1 and H2 are negligibly close if the adversary can only polynomially many queries q(λ).

Let D, SK, ST2 be the random variables that reflect the occurrence of d, sk, st2 in the execution of
the experiment.

We know that H∞(D) = S + λ + p(λ) because without access to the permutation Pk (which A1 and
A2 don’t have) we have d is a uniformly random string.

38

We are going to show that H̃∞(D|SK,ST2) ≥ λ. We have that

H̃∞(D|SK,ST2) ≥ H∞(D)− p(λ)− S

≥ S + λ+ p(λ)− p(λ)− S = λ

where the first inequality follows from Lemma 1 and the last step follows from the fact that D is a
uniform vector over µ = S + λ+ p(λ).

Hence the adversary with q(λ) queries can at most query P−1k on d with probability q(λ)/2λ. Therefore,

the winning probability of H1 only be better than that of H2 by q(λ)/2λ.

H2 ≈ H3 :
The only difference betweenH2 andH3 is additional abort condition ifA3 queries Pk((r,mb)). We argue
that the winning probability in H2 and H3 are negligibly close if the adversary can only polynomially
many queries q(λ).

The abort condition, however, can only be reached if previous abort conditions are not met. So the
adversary needs to guess r, which is uniformly random in {0, 1}λ. Therefore, if the adversary has q(λ)
queries to the random oracle, she has at most reached the new abort condition of querying Pk((r,mb))
with probability of q(λ)/2λ.

H3 :
In H3 the adversary learns no information about mb because it can never query Pk((r,mb)) or P

−1
k (d)

and all other queries are uniformly random subject to being different from all other queries and
Pk((r,mb)) = d.

7.2 Attack

We instantiate the ideal cipher with a specific keyed permutation P. Moreover, the only condition we
have on the underlying PKE is that it is IND-CPA secure. Hence, we can instantiate it with an FHE
scheme (KeyGen′,Enc′,Eval′,Dec′). The idea of the attack is that, as soon as the ideal cipher is a specific
permutation Pk, the adversary can make non-black-box use of the permutation. It homomorphically evaluates
the permutation inside the FHE allowing it to compress the ciphertext into an encryption of a single bit.

We now provide the description of the adversary A = (A1,A2,A3).

A1(pk) : Output any distincit two messages m0,m1.

A2(c) :

• Parse c = (c′, d).

• Consider the circuit C(x) = C(x)P,d,m0
which does the following:

1. Evaluate w = P−1k (d).

2. If w = m0, output 0. Otherwise, output 1.

• Compute c̃← Eval′(pk, C, c′).
• Output st = c̃.

A3(st, sk) : Compute b′ ← Dec′(sk, c̃). Output b′.

We can establish that b′ = b by the homomorphic correctness of the FHE.

39

Size of st. The state st of the adversary is composed by a single FHE ciphertext encrypting one bit. Hence,
by the compactness of the FHE |st| = poly(λ).

Remark 1. Notice encrypting the key of any (plain model) incompressible encryption scheme in an FHE
and adding this to the public key removes the incompressibility by the same argument. This observation
demonstrates the dangers of using the ROM in incompressible encryption and that incompressible encryption
is a fairly delicate notion.

References

[ABP15] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash proof sys-
tems: New constructions and applications. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Com-
puter Science, pages 69–100, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[ADMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group
actions and applications. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes in Computer Science, pages 411–439,
Daejeon, South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs. Public-
key encryption in the bounded-retrieval model. In Henri Gilbert, editor, Advances in Cryptology
– EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 113–134,
French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 36–54, Santa Barbara, CA, USA,
August 16–20, 2009. Springer, Heidelberg, Germany.

[AR99] Yonatan Aumann and Michael O. Rabin. Information theoretically secure communication in
the limited storage space model. In Michael J. Wiener, editor, Advances in Cryptology –
CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 65–79, Santa Barbara,
CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-oracle-
model scheme for a hybrid-encryption problem. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Sci-
ence, pages 171–188, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[BD17] Mihir Bellare and Wei Dai. Defending against key exfiltration: Efficiency improvements for big-
key cryptography via large-alphabet subkey prediction. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer
and Communications Security, pages 923–940, Dallas, TX, USA, October 31 – November 2,
2017. ACM Press.

[BFM15] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Random-oracle uninstantiability from
indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer
Science, pages 428–455, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, Advances
in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 1–18,
Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

40

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric encryption: Resisting
key exfiltration. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science, pages 373–402,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[Bla06] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash func-
tion. In Matthew J. B. Robshaw, editor, Fast Software Encryption – FSE 2006, volume 4047 of
Lecture Notes in Computer Science, pages 328–340, Graz, Austria, March 15–17, 2006. Springer,
Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93: 1st Conference on Computer and Communications
Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. Optimal
randomness extraction from a Diffie-Hellman element. In Antoine Joux, editor, Advances in
Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
572–589, Cologne, Germany, April 26–30, 2009. Springer, Heidelberg, Germany.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J.
ACM, 51(4):557–594, jul 2004.

[CM97] Christian Cachin and Ueli M. Maurer. Unconditional security against memory-bounded adver-
saries. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of
Lecture Notes in Computer Science, pages 292–306, Santa Barbara, CA, USA, August 17–21,
1997. Springer, Heidelberg, Germany.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25, Santa Barbara,
CA, USA, August 23–27, 1998. Springer, Heidelberg, Germany.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64, Amster-
dam, The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg, Germany.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226,
2003.

[Den02] Alexander W. Dent. Adapting the weaknesses of the random oracle model to the generic group
model. In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of
Lecture Notes in Computer Science, pages 100–109, Queenstown, New Zealand, December 1–5,
2002. Springer, Heidelberg, Germany.

[DGO19] Ivan Damg̊ard, Chaya Ganesh, and Claudio Orlandi. Proofs of replicated storage without timing
assumptions. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Science, pages 355–380,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[DJ01] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001: 4th International
Workshop on Theory and Practice in Public Key Cryptography, volume 1992 of Lecture Notes in
Computer Science, pages 119–136, Cheju Island, South Korea, February 13–15, 2001. Springer,
Heidelberg, Germany.

41

[DLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password pro-
tocols in the bounded retrieval model. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd
Theory of Cryptography Conference, volume 3876 of Lecture Notes in Computer Science, pages
225–244, New York, NY, USA, March 4–7, 2006. Springer, Heidelberg, Germany.

[DM04] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the bounded-storage
model. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 126–137, Interlaken,
Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

[DQW21] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember little: Cryptography
in the bounded storage model, revisited. Cryptology ePrint Archive, Report 2021/1270, 2021.
https://eprint.iacr.org/2021/1270.

[Dzi06a] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In Shai Halevi and
Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume 3876 of Lecture
Notes in Computer Science, pages 207–224, New York, NY, USA, March 4–7, 2006. Springer,
Heidelberg, Germany.

[Dzi06b] Stefan Dziembowski. On forward-secure storage (extended abstract). In Cynthia Dwork, editor,
Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science,
pages 251–270, Santa Barbara, CA, USA, August 20–24, 2006. Springer, Heidelberg, Germany.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In
44th Annual Symposium on Foundations of Computer Science, pages 102–115, Cambridge, MA,
USA, October 11–14, 2003. IEEE Computer Society Press.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans,
editor, 58th Annual Symposium on Foundations of Computer Science, pages 612–621, Berkeley,
CA, USA, October 15–17, 2017. IEEE Computer Society Press.

[GLW20] Rachit Garg, George Lu, and Brent Waters. New techniques in replica encodings with client
setup. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptogra-
phy Conference, Part III, volume 12552 of Lecture Notes in Computer Science, pages 550–583,
Durham, NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 162–179, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg,
Germany.

[GWZ22] Jiaxin Guan, Daniel Wichs, and Mark Zhandry. Incompressible cryptography. In Orr Dunkelman
and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, Part I, volume
13275 of Lecture Notes in Computer Science, pages 700–730, Trondheim, Norway, May 30 –
June 3, 2022. Springer, Heidelberg, Germany.

42

https://eprint.iacr.org/2021/1270

[GZ19] Jiaxin Guan and Mark Zhandry. Simple schemes in the bounded storage model. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part III, volume
11478 of Lecture Notes in Computer Science, pages 500–524, Darmstadt, Germany, May 19–23,
2019. Springer, Heidelberg, Germany.

[GZ21] Jiaxin Guan and Mark Zhandry. Disappearing cryptography in the bounded storage model. In
Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th Theory of Cryptography Conference,
Part II, volume 13043 of Lecture Notes in Computer Science, pages 365–396, Raleigh, NC, USA,
November 8–11, 2021. Springer, Heidelberg, Germany.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the random oracle
model and the ideal cipher model, revisited. In Lance Fortnow and Salil P. Vadhan, editors, 43rd
Annual ACM Symposium on Theory of Computing, pages 89–98, San Jose, CA, USA, June 6–8,
2011. ACM Press.

[HLWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient cryptogra-
phy from minimal assumptions. In Thomas Johansson and Phong Q. Nguyen, editors, Advances
in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
160–176, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In STOC, pages 60–73. ACM, 2021.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 78–95, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg,
Germany.

[LMQW22] Alex Lombardi, Ethan Mook, Willy Quach, and Daniel Wichs. Post-quantum insecurity from
lwe. Cryptology ePrint Archive, 2022.

[Mau92] Ueli Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Jornal of
Cryptology, 5(1):53–66, Jan 1992.

[Mau93] Ueli M. Maurer. Protocols for secret key agreement by public discussion based on common
information. In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740
of Lecture Notes in Computer Science, pages 461–470, Santa Barbara, CA, USA, August 16–20,
1993. Springer, Heidelberg, Germany.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700–718, Cambridge,
UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility re-
sults on reductions, and applications to the random oracle methodology. In Moni Naor, editor,
TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in Com-
puter Science, pages 21–39, Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg,
Germany.

[MW20] Tal Moran and Daniel Wichs. Incompressible encodings. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part I, volume 12170 of Lecture
Notes in Computer Science, pages 494–523, Santa Barbara, CA, USA, August 17–21, 2020.
Springer, Heidelberg, Germany.

43

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor,
Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 96–109, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture
Notes in Computer Science, pages 223–238, Prague, Czech Republic, May 2–6, 1999. Springer,
Heidelberg, Germany.

[Raz17] Ran Raz. A time-space lower bound for a large class of learning problems. In Chris Umans,
editor, 58th Annual Symposium on Foundations of Computer Science, pages 732–742, Berkeley,
CA, USA, October 15–17, 2017. IEEE Computer Society Press.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of Com-
puting, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
35th Annual Symposium on Foundations of Computer Science, pages 124–134, Santa Fe, NM,
USA, November 20–22, 1994. IEEE Computer Society Press.

A Programmable Hash Proof System from wPR-EGA

We show that the hash proof system based on weak pseudorandom effective group actions of [ADMP20] is
programmable. Weak pseudorandom effective group actions can be instantiated from isogeny based assump-
tions.

A.1 Cryptographic Group Actions

We quickly recap what group actions are to understand our notation. We had to slightly modify the notation
of [ADMP20] to match our group notation.

Definition 13 (Group Action). A group G is said to act on a set X if there is a map ⋆ : G× X → X that
satisfies the following two properties:

Identity : If [0] is the identity element of G, then for any x ∈ X , we have [0] ⋆ x = x

Compatibility : For any [g], [h] ∈ G and any x ∈ X , we have ([g] + [h]) ⋆ x = [g] ⋆ ([h] ⋆ x)

In the following construction the require the group action to be regular and to be a weakly pseudorandom
effective group action. The details about these properties can be found in [ADMP20].

A.2 Construction

Construction 6. Using weak pseudorandom effective group actions and a randomness extractor Ext : X λ×
{0, 1}λ → {0, 1} we get a programmable hash proof system with an encapsulated key size of 1 bit.

Gen(1λ) :

• Sample x0←$X uniformly at random

• Sample [z]←$G uniformly at random

• Let x1 ← [z] ⋆ x0

44

• Return p = (x0, x1) and tdL = [z]

sampL(p) :

• Parse p = (x0, x1)

• Sample [g]←$G uniformly at random

• Let (x0, x1)← ([g] ⋆ x0, [g] ⋆ x1)

• Return x = (x0, x1) and witness w = ([g])

sampY (p) :

• Parse p = (x0, x1)

• Sample [g0]←$G uniformly at random

• Sample [g1]←$G \ {[g0]} uniformly at random

• Let (x0, x1)← ([g0] ⋆ x0, [g1] ⋆ x1)

• Return x = (x0, x1) and trapdoor tdx = ([g0], [g1])

KeyGen(p) :

• Sample [h]←$Gλ uniformly at random

• Sample b←$ {0, 1}λ uniformly at random

• Sample s←$ {0, 1}λ

• Let sk← ([h],b)

• Let pk← ([h1] ⋆ xb1 , . . . , [hλ] ⋆ xbλ , s)

• Return pk and sk

Encap (pk, x = ([x0], [x1]), w = [g]):

• Parse pk = (y1, . . . , yl)

• Let k← Ext(([g] ⋆ y1, . . . , [g] ⋆ yλ), s)

• Return k

Decap (sk, x = ([x0], [x1])):

• Parse sk = ([h],b)

• Let k← Ext(([h1] ⋆ xb1 , . . . , [hλ] ⋆ xbλ), s)

• Return k.

Program(tdL, tdx, sk, x, k) :

• Parse tdL = [z], tdx = ([g0], [g1]), and sk = ([h],b)

• Repeat

– Sample b′←$ {0, 1}λ uniformly at random

– Let ([h′1], . . . , [h
′
λ])← ((b1 ⊕ b′1)[z] + [h1], . . . , (bλ ⊕ b′λ)[z] + [hλ])

– Let sk′ ← (b′, [h′])

• Until k = Decap(sk′, x)

• Return sk′

45

Correctness and Language Indistinguishability Correctness and language indistinguishability remain
exactly the same as in [ADMP20].

Programmability and Programmable Smoothness Because the programming is just rejection sam-
pling a secret key in exactly the same way as the original sampling but under the condition that Decap(sk′, x) =
k this follows from correctness and smoothness of the original scheme. Rejection sampling is efficient because
the key k only has size 1.

Beyond one bit To encapsulate a key of size k one can simply generate k public-key-secret-key pairs and
then encapsulation, decapsulation, and programming is done bitwise. This modification makes public and
secret keys k times as big while leaving the language elements unchanged.

B Programmable Hash Proof System from LWE

We present a programmable hash proof system using lattice the trapdoors by [MP12] and rounding.

B.1 Preliminaries

Gaussian Distribution For any σ ∈ R>0 let ρσ(x) = exp(−π||x||2/σ2) be the Gaussian function on Rm

with deviation σ. Let χm
σ be the discrete Gaussian distribution over Zm with deviation σ.

Definition 14 (LWE). The LWE assumption states that for A←$Zn×m
q , s←$Zm

q , and b←$Zn
q being

uniformly random and e← χn
σ being sampled from a small gaussian distribution. We have that

(A,As+ e) ≈c (A,b)

Definition 15 (Lattice Trapdoor). A lattice trapdoor consists of two PPT algorithms

• (A,T)← TrapSamp(1n, 1m, q) on inputs n,m, q ∈ N outputs matrices A ∈ Zn×m
q ,T ∈ Zm×m

q

• r← SampleD(A,T,u, s) on inputs A ∈ Zn×m
q , T ∈ Zm×m

q , u ∈ Zn
q , s ∈ and outputs r ∈ Zm

q

For any n ≥ 1, q ≥ 2, sufficiently large m = Ω(n log(q)), and sufficiently large σ = Ω(
√
n log(q)) these two

distributions producing (A,T,u, r) are statistically close.

• (A,T)← TrapSamp(1n, 1m, q); u← Zn
q ; r← SampleD(A,T,u, σ).

• (A,T)← TrapSamp(1n, 1m, q); r← χm
σ ; u← Ar.

Also, A is statistically close to uniformly random.

B.2 Construction

Construction 7. We construct a programmable hash proof system that is secure assuming LWE with su-
perpolynomial modulus-to-noise ratio.

Gen(1λ) :

• Sample matrix

(
A
B

)
← TrapSamp(12n, 1m, q) with lattice trapdoor T and A,B ∈ Zn×m

q .

• Return p = A and tdL = (B,T).

sampL(p) :

• Parse p = A.

46

• Sample S←$ {0, 1}v×n uniformly from the binary matrices.

• Sample E← χv×m with small gaussian entries.

• Return x = SA+E and w = (S,E).

sampY (p, tdL) :

• Parse tdL = (B,T).

• Return x = B and tdx = ().

KeyGen(p) :

• Parse p = A.

• Sample R←$χm×u
σ with small gaussian entries.

• Return pk = AR and sk = R

Encap(pk, x, w) :

• Parse pk = AR and w = (S,E).

• Let k← ⌈SAR⌋.
• Return k.

Decap(sk, x) :

• Parse sk = R and x = SA+E.

• Let k← ⌈(SA+E)R⌋.
• Return k.

Program(tdL, tdx, sk, x, k) :

• Parse sk = R.

• Sample K ∈ Zv×u
q uniformly at random conditioned on ⌈K⌋ = k.

• Sample short R∗ ← SampleD(

(
A
B

)
,T,

(
AR
K

)
, σ)

• Return sk′ = R∗.

Statistical Correctness With A,S,E and R as in the construction, we have that Encap(pk, x, w) =
⌈SAR⌋ which is statistically close to ⌈(SA+E)R⌋ = ⌈SAR+ER⌋ = Decap(sk, x) when using a superpoly-
nomial modulus-to-noise ratio.

Language Indistinguishability By LWE assumption SA+E is indistinguishable from uniformly random.
The trapdoored matrix B is statistically close to uniform. Therefore, language indistinguishability follows
from LWE.

Programmability Using the correctness of the lattice trapdoor we have that Program(tdL, tdx, sk, x, k)
returns a key sk′ s.t. ⌈BR∗⌋ = k.

Programmable Smoothness sk = R are sampled from χm×u
σ with small gaussian entries and R∗ is

statistically close to being sampled from χm×u
σ conditioned on ⌈BR∗⌋ = k where k is uniformly random.

Therefore, sk′ is statistically close to sk.

47

B.3 Incompressible Encryption

Since we do not have a 2-smooth hash proof system for the same language as the above LWE programmable
HPS, we do not achieve CCA incompressible PKE but only CPA incompressible PKE. The transfromation
stays almost the same as in the CCA case.

Below we give the transfromation for CPA incompressible PKE.

Construction 8 (Incompressible PKE). Given security parameter λ, space bound S, and message length
n let (KeyGen′, Encap′, Decap′, Program′) be a Y -programmable hash proof system for a language L ⊂ X
(where you can sample x with according witness from L and sample x with according trapdoor from Y) where
the representation size of X is p(λ, S, n) and encapsulated keys of size k(λ, Ssym, n), and (Encsym, Decsym) be
an incompressible SKE with messages of size n, keys of size k(λ, Ssym, n) and ciphertexts of size l(λ, Ssym, n)
with incompressible SKE adversary being allowed to leak a state of size Ssym = S + p(λ, S, n).

KeyGen(1λ, 1S):

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Return pk = pk′ and sk = sk′.

Enc(pk,m):

• Parse pk = pk′

• Let (x,w)← sampL(p).
• Let k← Encap′(pk′, x, w).

• Let csym ← Encsym(k,m).

• Return c = (x, csym).

Dec(sk, c):

• Parse sk = sk′.

• Parse c = (x, csym).

• Let k← Decap′(sk′, x)

• Return m = Decsym(k, csym).

Correctness Follows from the correctness of (KeyGen′, Encap′, Decap′, Program′) and (Encsym, Decsym).
The security proof is similar but simpler than the CCA case.

Theorem 6 (Security). The PKE construction 4 has incompressible PKE security if (KeyGen′, Encap′,
Decap′, Program′) is a programmable hash proof system with the listed parameters and (Encsym, Decsym) is
an incompressible secure SKE with the listed parameters.

Proof. We prove security via hybrids. First we list the hybrids and then argue their indistinguishability. In
each hybrid we highlight the changes compared to the previous one.

H0(λ, S) :

• Run key generation algorithm KeyGen(1λ, 1S) to obtain (pk, sk).

• Run the adversary m0,m1, st1 ← A1(pk) on public key pk to receive two messages m0, m1 and
state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Run c← Enc(pk,mb) to encrypt mb.

48

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H1 we explicitly represent what happens in KeyGen and Enc.

H1(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let pk = pk′ and sk = sk′.

• Run the adversary m0,m1, st1 ← A1 on public key pk to receive two messages m0, m1 and state
st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x,w)← sampL(p).

• Let k← Encap′(pk′, x, w).

• Let csym ← Encsym(k,mb).

• Let c = (x, csym).

• Run the adversary st2 ← A2(pk, c, st1) to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H2 we use the decapsulation mechanisms to encrypt the challenge message instead of encapsulation.

H2(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let pk = pk′ and sk = sk′.

• Run the adversary m0,m1, st1 ← A1(pk) on public key pk to receive two messages m0, m1 and
state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x,w)← sampL(p).

• Let k← Decap′(sk′, x).

• Let csym ← Encsym(k,mb).

• Let c = (x, csym).

• Run the adversary st2 ← A
Decsk
2 (pk, c, st1) to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H3 we sample x from Y ⊂ X \ L instead of L.

H3(λ, S) :

49

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let pk = pk′ and sk = sk′.

• Run the adversary m0,m1, st1 ← A1(pk) on public key pk to receive two messages m0, m1 and
state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x, tdx)← sampY (p, tdL).

• Let k← Decap′(sk′, x).

• Let csym ← Encsym(k,mb).

• Let c = (x, csym).

• Run the adversary st2 ← A2(pk, c, st1) to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

In H4 we program the secret key given to the adversary to decapsulate the ciphertext to the randomly chosen
key k.

H4(λ, S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let pk = pk′ and sk = sk′.

• Run the adversary m0,m1, st1 ← A1 on public key pk to receive two messages m0, m1 and state
st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let (x, tdx)← sampY (p, tdL).

• Sample k←$ {0, 1}k(λ,Ssym,n).

• Let csym ← Encsym(k,m).

• Let c = (x, csym).

• Run the adversary st2 ← A2(pk, c) to produce a state st2 smaller than S.

• Let sk′prog ← Program(tdL, tdx, sk
′, x, k).

• Run the final adversary b′ ← A3(sk = sk′prog , st1, st2,m0,m1).

• The adversary wins if b = b′.

H0 ≈ H1 :
The differences between H0 and H1 are purely syntactical. In H1 we just show more detail of KeyGen
and Enc.

H1 ≈ H2 :
In H2 we merely change how the challenge ciphertext is calculated. By the correctness of the hash
proof system these two hybrids look identical to the adversary.

50

H2 ≈c H3 :
In H3 sample x from Y ⊂ X \L instead of L. These two hybrids are computationally indistinguishable
by the language indistinguishability. Assume there exists a PPT adversary A = (A1,A2,A3) that can
distinguish the two hybrids H2 and H3 with a non-negligible advantage of ϵ. From this we construct
a statistical adversary A′ that can break language indistinguishability of the HPS with advantage ϵ.

A′(p, x) :

• Let (pk′, sk′)← KeyGen′(p).

• Let pk = pk′ and sk = sk′.

• Run the adversary m0,m1, st1 ← A1(pk) on public key pk to receive two messages m0, m1

and state st1.

• Sample bit b←$ {0, 1} uniformly at random.

• Let k← Decap′(sk′, x).

• Let csym ← Encsym(k,mb).

• Let c = (x, csym).

• Run the adversary st2 ← A2(pk, c, st1) to produce a state st2 smaller than S.

• Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).

• The adversary wins if b = b′.

If A can distinguish H2 from H3 with advantage ε then the advantage of A′ of distinguishing a x
sampled from L and sampling x from Y ⊂ X \ L is also ϵ as it perfectly simulates H2 in the case that
x ∈ L and perfectly simulates H3 in the other case.

H3 ≈s H4 :
According to programmable smoothness of (KeyGen′,Encap′,Decap′) if x /∈ L then (pk′, sk′, x) is sta-
tistically close to (pk′,Program(tdL, tdx, sk

′, x, k), x) for uniformly random k. Because this is exactly
what we switch we get that H3 and H4 are statistically close.

H4 ≈ DistIncomSKE
A′,Πsym

:
Finally, given an adversary A = (A1,A2,A3) that wins experiment H4(λ, S) with probability ϵ we
construct an adversary A′ = (A′1,A′2,A′3) that wins the DistIncomSKE

A′,Πsym
(λ, S + p(λ)) experiment with

probability ϵ.

A′1(1λ, 1S) :

• Generate language and corresponding trapdoor (p, tdL)← Gen(1λ, 1n).

• Let (pk′, sk′)← KeyGen′(p).

• Let pk = pk′ and sk = sk′.

• Run the adversary m0,m1, st1 ← A1(pk) on public key pk to receive two messages m0, m1

and state st1.

• Let st′1 ← (pk, sk, tdL, st1).

• Return m0, m1, and st′1

A′2(st′1, csym) :

• Parse st′1 = (pk, sk, tdL, st1)

• Let (x, tdx)← sampY (p, tdL)

• Let c← (x, csym)

• Run the adversary st2 ← A2(pk, c, st1) to produce a state st2 smaller than S

• Return state st′2 ← (x, tdx, st2) smaller than Ssym = S + p(λ)

A′3(k, st′1, st′2,m0,m1) :

• Parse st1 = (pk, sk = sk′, tdL, st
′
1)

51

• Parse st2 = (x, tdx, st
′
2)

• Program sk′prog ← Program(tdL, tdx, sk
′, x, k)

• Run the final adversary b′ ← A3(pk, sk
′
prog, st2,m0,m1)

• Return b′

A′ wins DistIncomSKE
A′,Πsym

(λ, S + p(λ)) iff A wins in H4(λ, S) because A′ perfectly simulates H4 from the
perspective of A.

52

	Introduction
	Our Results
	Comparison with Previous Work

	Technical Overview
	The Scheme of GWZ
	The Big Picture
	Rate-1 Incompressible Symmetric-Key Encryption
	From Symmetric-Key to Public-Key Incompressible Encryption via Hash Proof Systems
	Extension to CCA security
	Incompressible Encryption in the ROM

	Preliminaries
	Decisional Diffie-Hellman assumption
	Public-Key Encryption
	HILL-Entropic Encodings
	Random Oracle Model

	Incompressible Symmetric-Key Encryption
	Definition
	Construction

	Programmable Hash Proof Systems
	Definitions
	Programmable Hash Proof System from DDH
	2-Smooth Hash Proof System from DDH

	Incompressible PKE from Incompressible SKE and HPS
	CCA Incompressible Encryption
	Construction

	The Dangers of Using the ROM in Incompressible Encryption
	Construction
	Attack

	Programmable Hash Proof System from wPR-EGA
	Cryptographic Group Actions
	Construction

	Programmable Hash Proof System from LWE
	Preliminaries
	Construction
	Incompressible Encryption

