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Abstract. The boomerang attack is a cryptanalysis technique that com-
bines two short differentials instead of using a single long differential. It
has been applied to many primitives, and results in the best known at-
tacks against several AES-based ciphers (Kiasu-BC, Deoxys-BC). In this
paper, we introduce a general framework for boomerang attacks with
truncated differentials.
While the underlying ideas are already known, we show that a careful
analysis provides a significant improvement over the best boomerang
attacks in the literature. In particular, we take into account structures
on the plaintext and ciphertext sides, and include an analysis of the key
recovery step. On 6-round AES, we obtain a structural distinguisher with
complexity 287 and a key recovery attack with complexity 261.
The truncated boomerang attacks is particularly effective against tweak-
able AES variants. We apply it to 8-round Kiasu-BC, resulting in the
best known attack with complexity 283 (rather than 2103). We also show
an interesting use of the 6-round distinguisher on TNT-AES, a tweakable
block-cipher using 6-round AES as a building block. Finally, we apply
this framework to Deoxys-BC, using a MILP model to find optimal trails
automatically. We obtain the best attacks against round-reduced versions
of all variants of Deoxys-BC.

Keywords: Truncated differential · Boomerang attack · AES · Kiasu ·
Deoxys · TNT-AES

1 Introduction

The AES [DR02] is the most widely used block cipher today, and we have a
good understanding of its security. Its round function is strongly byte-aligned;
this simplifies the analysis with the wide-trail strategy, and many cryptanalysis
techniques rely on truncated trails to take advantage of this property. After 20
years of analysis, we have a high confidence in the design, and many recent
proposals reuse the AES round function: the tweakable block ciphers Kiasu,
Deoxys, and TNT-AES use the AES round function with a modified tweak and
key schedule.

However, the additional tweak in these constructions allows an attacker
to introduce a difference in the state during the computation, so that they
must be evaluated in the related-tweak or related-key model. In this model,
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the boomerang attack is particularly effective because it can combine two short
high-probability differentials. In particular, the best known attacks against Kiasu
and Deoxys are boomerang attacks.

In this work, we carefully and systematically analyse the interaction between
truncated differentials and boomerang attacks. Our approach is similar to the
analysis of impossible differential attacks in [BLNS18]: our goal is to provide a
unified formula taking into account many details of a broad class of attacks. By
integrating a set of techniques proposed in different variants of the attack, we
obtain significant improvements of several attacks proposed in the literature.

Our results. We present a generic framework to describe boomerang attacks
based on truncated differentials (section 3). Instead of first building a boomerang
distinguisher and appending extra rounds for the key recovery, we consider the
truncated boomerang attack as a whole, including the key recovery thanks to
the first and last round transitions. The framework integrates and improves on
previous analyses, including structures of plaintexts and ciphertexts [BDK02],
and truncated differentials as introduced by Wagner [Wag99].

We first apply our framework to reduced AES (section 4). On 6-round AES,
we obtain a distinguisher with complexity 287, and a key-recovery attack with
complexity 261, improving the previous boomerang attack with complexity 271 [Bir04].

We adapt those results to 8-round Kiasu-BC (section 5), by revisiting a
previous boomerang attack with complexity 2103 [DL17]. Using structures of
ciphertexts, we obtain the best attack against Kiasu-BC, with complexity 283.

Boomerang properties can also threaten constructions using reduced-round
AES as a building block (section 6). Indeed, TNT-AES [BGGS20] uses 6-round
AES as an internal block cipher, and we build a marginal distinguisher with
complexity slightly below 2128. The attack is not competitive with generic attacks
against TNT, but as far we know this is the first property of 6-round AES that
can be used to target the full TNT-AES (or any construction using 6-round
AES).

Finally, we apply the framework to Deoxys-BC, using a MILP model to find
good parameters for the attack automatically (section 7). The MILP model al-
lows both fixed differences and truncated differences, and takes into account the
complexity of the key recovery, instead of just optimizing a boomerang distin-
guisher. We obtain improved attacks against most variants of Deoxys-BC.

The trails used in attacks on reduced AES (and KIASU-BC and TNT-AES),
and on Deoxys-BC are quite different, but the underlying analysis is the same.
In both cases, the improvement over previous works comes principally from the
use of structures of ciphertexts, which is made easy by following our framework.

Distinguishers and key-recovery. In this work we report dinstiguishers and key-
recovery attacks, with key-recovery typically having a lower complexity on the
same number of rounds. Obviously, a key-recovery attack can be used as a distin-
guisher, but we focus on structural distinguishers that only use statistical prop-
erties of the block cipher, without guessing subkey material (denoted as “inde-
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pendent of the secret key” in [GRR17]). Indeed, a series of recent works have pro-
posed complex distinguishers on 5-round [GRR17] and 6-round [RBH17,BR19,BGL20]
AES, and we obtain similar results with more simple techniques. This notion of
distinguisher is not clearly defined, but our distiguishers can be used with secret
S-Boxes, which is not the case for key-recovery attacks.

2 Preliminaries

2.1 The AES Round Function

AES (previously Rijndael) was designed in 1998 by Daemen and Rijmen and
won the NIST standardization competition in 2000 [DR02]. Three variants of
the cipher exist, for key sizes of 128, 196 and 256 bits, but we only consider
AES-128 in this paper. Since we do not exploit the AES key schedule, we only
describe the round function. AES-128 operates on a 128-bit state, represented as
a 4×4-byte array, and iterates 10 rounds, composed of the following operations:
– SubBytes: The AES S-Box is applied to each byte of the state.
– ShiftRows: The second row is shifted by 1 cell to the left, the third row by

2 cells, and the fourth row by 3 cells.
– MixColumns: Each column is multiplied by an MDS Matrix.
– AddRoundKey: Each byte is XORed with a byte of the round key.

There is one extra AddRoundKey operation before the first round, and the last
round omits the MixColumns operation.

Due to the popularity of the AES, and its availability in hardware on sev-
eral platforms, many constructions reuse its round function. In particular, Ki-
asu [JNP14b] and Deoxys [JNPS21] are two tweakable block ciphers that reuse
the AES round function, with a modified tweakey schedule (combining the key
and tweak) to compute the round (tweak)keys. Deoxys has been selected in the
CAESAR portfolio. TNT-AES [BGGS20] is another tweakable block cipher us-
ing the AES round function, where the tweak is only XORed to the internal
state twice.

Kiasu-BC tweakey schedule. Kiasu-BC has a 128-bit key and 64-bit tweak, with
10 rounds. The round tweakeys are computed as ki + t where ki is the round
key following the AES key schedule, and t is the tweak (encoded in the first two
rows). In particular, Kiasu-BC with the zero tweak is the same as the AES.

Deoxys-BC tweakey schedule. Deoxys-BC has two variants: Deoxys-BC-256 has
a 256-bit tweakey with 14 rounds, and Deoxys-BC-384 has a 384-bit tweakey
with 16 rounds. The tweakey material is composed of a variable length key and
tweak summing to 256 or 384; for simplicity, we assume that the key length is a
multiple of 128. The tweakey material is divided in words of 128 bits (denoted
TKi). Eventually, the round tweakey of round j is defined as:

STKj =
{
RCj + TK1

j + TK2
j For Deoxys-BC-256

RCj + TK1
j + TK2

j + TK3
j For Deoxys-BC-384
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Table 1. AES distinguisher and key recovery attacks with known and secret S-Boxes.
CP: chosen plaintexts / ACC: chosen plaintexts and adaptively-chosen ciphertexts

Rounds Type Data Time Ref

AES Distinguishers 5 Multiple-of-n 232 CP 236.6 [GRR17]
6 Yoyo 2122.8 ACC 2121.8 [RBH17]
6 Exchange attack 288.2 CP 288.2 [BR19]
6 Exchange attack 284 ACC 283 [Bar19]
6 Truncated differential 289.4 CP 296.5 [BGL20]

6 Truncated boomerang 287 ACC 287 subsection 4.1

AES Key-recovery 6 Square 232 CP 271 [DKR97]
6 Partial-sum 232 CP 248 [FKL+01]
6 Boomerang 271 ACC 271 [Bir04]
6 Mixture 226 CP 280 [BDK+20]
6 Retracing boomerang 255 ACC 280 [DKRS20]
6 Boomeyong 279.7 ACC 278 [RSP21]

6 Truncated boomerang 259 ACC 261 Appendix B

AES Secret S-Box KR 5 Square 240 CP 240 [TKKL15]
5 Multiple-of-n 253.3 CP 252.6 [Gra18]
5 Retracing boomerang 225.8 ACC 225.8 [DKRS20]
6 Square 264 CP 290 [TKKL15]

6 Truncated boomerang 294 ACC 294 subsection 4.3

Table 2. Boomerang (B) and rectangle (R) attacks against variants of Deoxys-BC.
Most attacks succeed with probability 1/2.

Previous New

Model Rnd Data Time Mem Ref Data Time Mem Ref

RTK1 8 B 282 282 281 Figure 7
9 B 2129 2168 2129 Figure 8

RTK2 8 B 228 228 227 [Sas18]a B 227 227 227 Figure 9
9 B 2112 298 217 [Sas18] B 255 255 255 Figure 10
10 B 298.4 2109.1 288 [ZDJ19] B 290 290 289 Figure 11
11 R 2122.1 2249.9 2128.2 [ZDJ19] B 2129 2218 2129 App. D

RTK3 10 B 222 222 217 [Sas18] B 219.4 219.4 218 Figure 12
11 B 2100 2100 217 [Sas18] B 232.7 232.7 232.7 Figure 13
12 B 298 298 264 [ZDJ19] B 267.4 267.4 265 Figure 14
13 R 2125.2 2186.7 2136 [ZDJM19] B 2126.4 2169.7 2126.4 Figure 2
14 R 2125.2 2282.7 2136 [ZDJM19] B 2129 2278.8 2129 Figure 15

a The probability of Sasaki’s trail is 2−56 with structures, thus we believe that the
complexity of the attack is actually 230 in data and time and 229 in memory.

4



Table 3. Attacks against Kiasu-BC and TNT-AES

Rounds Type Data Time Ref

Kiasu-BC 7 Square (KR) 243.6 CP 248.5 [DEM16]
8 Meet-in-the-Middle (KR) 2116 CP 2116 [TAY16]
8 Imposs. Diff (KR) 2118 CP 2118 [DL17]
8 Boomerang (KR) 2103 ACC 2103.1 [DL17]

8 Truncated boomerang (KR) 283 ACC 283 section 5

TNT-AES ∗-5-∗ Boomerang (dist.) 2126 ACC 2126 [BGGS20]
5-∗-∗ Impossible differential (KR) 2113.6 CP 2113.6 [GGLS20]
∗-∗-∗ Generic (dist.) 299.5 CP 299.5 [GGLS20]

∗-6-∗ Truncated boomerang (dist.) 2127.8 ACC 2127.8 section 6

TKi
j is the tweakey state, initialized as TKi

0 = TKi and updated with

TK1
j+1 = h(TK1

j ) TK2
j+1 = h(LFSR2(TK2

j )) TK3
j+1 = h(LFSR3(TK3

j ))

where h is a byte permutation, and LFSR2 and LFSR3 are LFSRs that operate
in parallel on each byte of the tweakey. This construction (the STK construc-
tion [JNP14b]) ensures that a byte of subtweakey may only cancel out up to
i− 1 times every 15 rounds if differences are introduced in i tweakey words.

Notations. We denote E a block cipher operating on a state of n bits. In a
4× 4 matrix, the bytes are numbered following the AES order:(

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

)
A diagonal is one of the four sets of bytes with positions (0, 5, 10, 15), (4, 9, 14, 3),
(8, 13, 2, 7), (12, 1, 6, 11) and the main diagonal is the first of the four. An anti-
diagonal is one of the four sets of bytes (0, 7, 10, 13), (1, 4, 11, 14), (2, 5, 8, 15),
(3, 6, 9, 12) and the main anti-diagonal is the first of the four.

When ki is a sub(twea)key, we denote keqi = MixColumns−1(ki).

2.2 Differentials and Truncated Differentials

We use + to denote the XOR operation (the addition in Fv2u). A differen-
tial is defined by an input difference ∆in ∈ {0, 1}n and an output difference
∆out ∈ {0, 1}n. We use the notation ∆in

p−→
E

∆out when a differential exists with
probability p, where p is defined as

p = Pr[∆in −→E ∆out] = Pr [E(P ) + E(P +∆in) = ∆out]

Since E is a permutation, we have Pr[∆in −→E ∆out] = Pr[∆out −−−→
E−1 ∆in].
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A truncated differential is defined by a set of input differences Din and a
set of output differences Dout. We use the notation Din

~p−→
E
Dout to denote the

existence of a truncated differential with probability ~p, defined as:

~p = Avg
∆in∈Din

Pr [E(P ) + E(P +∆in) ∈ Dout]

We also define the probability of the reverse truncated differential as

~p = Avg
∆out∈Din

Pr
[
E−1(P ) + E−1(P +∆out) ∈ Din

]
In general, the two probabilities are different, and related as follow:

~p

|Dout|
= ~p

|Din|
= Avg
∆in∈Din,∆out∈Dout

Pr [E(P ) + E(P +∆in) = ∆out]

Figure 1 gives an example of a truncated differential on 3 rounds of AES,
with respectively 4, 1, and 4 active S-Boxes in each round. On this truncated
differential, Din corresponds to the vector space of elements which have zeros on
all diagonals except the main one.Dout is the vector space of states which inverses
through the MixColumns operation have 0 values on every anti-diagonal except
the main one. Therefore, |Dout| = |Din| = 232. The probability of the truncated
differential is ~p = 2−24 and the reverse probability is ~p = 2−24.

2.3 Boomerang Attacks

Boomerang attacks, introduced by Wagner in 1999 [Wag99], use adaptive plain-
text and ciphertext queries to generate quartets with specific differences at an
intermediate state of the cipher. The attacker decomposes the full cipher E into
two subciphers E0 (the upper part) and E1 (the lower part), with E = E1 ◦E0,
with high probability differentials on E0 and E1 (of probabilities p and q), de-
noted ∆in

p−−→
E0

∆out and ∇in
q−−→
E1
∇out. The attack proceeds as follows:

1. Generate pairs of plaintext (Pi, P ′i ) such that Pi + P ′i = ∆in, and query the
corresponding ciphertexts (Ci, C ′i) = (E(Pi), E(P ′i )).

2. Shift the ciphertexts pairs into new pairs (Ci, C ′i) = (Ci +∇out, C
′
i +∇out)

and query their decryptions (Pi, P ′i ) = (E−1(Ci), E−1(C ′i)).
3. Look for pairs with Pi + P ′i = ∆in.

Analysis. We have E0(Pi) = E−1
1 (Ci) because E = E1 ◦ E0. In particular,

E0(P i) +E0(P ′i) = E0(Pi) +E0(P ′i ) +E−1
1 (Ci) +E−1

1 (Ci) +E−1
1 (C ′i) +E−1

1 (C ′i)

Moreover, the differentials in E0 and E1 imply that:

Pr[E0(Pi) + E0(P ′i ) = ∆out] = p

Pr[E−1
1 (Ci) + E−1

1 (Ci) = ∇in] = q

Pr[E−1
1 (C ′i) + E−1

1 (C ′i) = ∇in] = q
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When the three events are satisfied, we obtain E0(Pi)+E0(P ′i ) = ∆out and with
an additional probability p, P i +P

′
i = ∆in. Finally, assuming that all events are

independent, the relation Pi + P ′i = ∆in is verified with probability

pb = Pr
[
E−1(E(P ) +∇out) + E−1(E(P +∆in) +∇out) = ∆in

]
= p2 × q2

Figure 3 (page 33) shows the construction of a boomerang quartet. When p2 ×
q2 � 2−n, this gives a distinguisher for the cipher using O(p−2 × q−2) quartets
because the probability of detecting a quartet is 2−n for a random permutation.
In most cases, the distinguisher can be converted into a key recovery by exploiting
key dependencies in the distinguisher.

2.4 Improvements of the Boomerang Attack

Several variants and improvements of the boomerang attack have emerged since
Wagner’s original work.

Analysis of the Connection Probability. The analysis above assumes that
the four pairs involved in a boomerang quartet follow their corresponding differ-
entials independently. In practice, we usually obtain a probability higher than
p2q2, but it is also possible for the four events to be incompatible [Mur11]. Sev-
eral techniques have been proposed to improve this analysis.

Multiple Differentials. Since the differences ∆out and ∇in are not used by the
attacker, boomerang quartets can be detected with any internal difference, as
long as the same difference is obtained with both pairs. Following the analysis
of [Wag99,BDK01], this increases the probability to

pb = p̂2q̂2 p̂ =
√∑
∆out

Pr[∆in −−→E0
∆out]2 q̂ =

√∑
∇in

Pr[∇in −−→E1
∇out]2

The Sandwich Attack. Instead of splitting the cipher E into two parts E =
E1 ◦ E0, Dunkelman, Keller and Shamir [DKS10] proposed to split it in three
parts E = E1 ◦ Em ◦ E0 with a small Em in the middle. For the analysis, they
evaluate the probability of the boomerang using the connection probability r of
Em:

pb = Pr
[
P + P

′ = ∆in

]
= p2q2r

r = Pr
[
E−1
m (Em(X) +∇in) + E−1

m (Em(X +∆out) +∇in) = ∆out
]

The connection probability r can be evaluated experimentally, and some specific
choices of Em result in r = 1 (in particular, when Em is the identity, we fall
back to the standard analysis of boomerangs). The Boomerang Connectivity
Table (BCT) was later introduced [CHP+18] to analyze the case where Em is
an S-Box layer.
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Fig. 1. Example of a truncated differential trail on 3-round AES.

Plaintext-only Attacks. The amplified boomerang attack [KKS01] and the
rectangle attack [BDK01] are variants of the boomerang attack using only en-
cryption queries (without adaptively chosen decryption queries). The complexity
increases from (pq)−2 to 2n/2(pq)−1 (with the same condition that pq � 2−n/2).
In this paper, we focus on standard boomerang attacks.

Structures. Biham, Dunkelman and Shamir have introduced a variant of the
boomerang attack using structures for the key recovery [BDK02]. They start
from a boomerang distinguisher with fixed differences ∆in and ∇out, then they
add extra rounds at the beginning and at the end. By propagating the differences
∆in and ∇out, they obtain a set of possible input differences Din and output
differences Dout. In a typical SPN cipher, these sets are vector spaces.

The attacker builds a structure P + Din = {P + δ : δ ∈ Din}, and uses it
as starting point for the attack. A structure of |Din| elements defines |Din|2/2
pairs, and |Din|/2 of them lead to the fixed difference ∆in. Therefore, the use of
structures covers additional rounds without increasing the data complexity.

Structures can also be used on the ciphertext side, by shifting each ciphertext
with all differences in Dout. However, many later works do not use structures on
the ciphertext side.

3 Truncated Boomerang Attacks

We consider boomerang attacks with truncated differentials, as introduced by
Wagner in the original paper [Wag99]. We obtain a key-recovery attack, improv-
ing on the use of structures of Biham et al. [BDK02] by considering truncated
differentials for the full cipher, instead of starting from a shorter boomerang
distinguisher with fixed input/output differences and adding extra key-recovery
rounds. Some boomerang attacks of this type have been proposed on AES [Bir04]
and Kiasu-BC [DL17], but they only use structures on the plaintext side. Our
framework combines both ideas, with truncated differentials for E0 and E1, and
structures on both sides.
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3.1 Truncated Boomerang Distinguisher

Let us consider two truncated differentials D0
in

~p−−→
E0
D0

out and D1
in

~q−−→
E1
D1

out with
probabilities ~p, ~p and ~q, ~q on E0 and E1. We assume that D0

in is a vector subspace
of {0, 1}n and 0 /∈ D1

out. The truncated boomerang attack proceeds as follows:
1. Choose a random plaintext P0, and query the encryption oracle over the

structure P0 +D0
in; for each i ∈ D0

in, we define Pi = P0 + i and Ci = E(Pi).
2. For each ciphertext Ci, query the decryption oracle over the set Ci + D1

out:
for each j ∈ D1

out, we define Ci
j = Ci + j and Pi

j = E−1(Ci
j).

3. Count the number of pairs (Pi
j
, Pi′

j′) with Pi
j + Pi′

j′ ∈ D0
in (and i 6= i′).

This can be done efficiently by projecting the plaintext values on the orthog-
onal complement of D0

in in {0, 1}n, and looking for collisions.
4. If needed, repeat steps 1 to 3 with different plaintext structures.

Analysis. We consider a potential quartet (P, P ′, P , P ′) and the corresponding
ciphertexts (C,C ′, C, C ′), with P + P ′ ∈ D0

in and C + C,C ′ + C ′ ∈ D1
out. We

have:

Pr[E0(P ) + E0(P ′) ∈ D0
out] = ~p

Pr[E−1
1 (C) + E−1

1 (C) ∈ D1
in] = ~q

Pr[E−1
1 (C ′) + E−1

1 (C ′) ∈ D1
in] = ~q

Following the sandwich attack analysis (with Em = id), we define the connection
probability:

r = Pr

E0(P ) + E0(P ′) ∈ D0
out

∣∣∣∣∣∣∣
E0(P ) + E0(P ′) ∈ D0

out

E−1
1 (C) + E−1

1 (C) ∈ D1
in

E−1
1 (C ′) + E−1

1 (C ′) ∈ D1
in


If the four events hold, we have P + P ′ ∈ D0

in with an additional probability ~p.
This analysis of the truncated boomerang distinguisher is the same as proposed
by Wagner [Wag99], but our attack is more general with structures on both
sides.

In general, we have E−1
1 (C) + E−1

1 (C) and E−1
1 (C ′) + E−1

1 (C ′) in D1
in,

therefore they are equal with probability |D1
in|−1, which would imply E0(P ) +

E0(P ′) ∈ D0
out; hence r ≥ |D1

in|−1. Moreover, if D1
in is a vector subspace, then

Σ = E0(P ) + E0(P ′) + E0(P ) + E0(P ′) ∈ D1
in; in particular, Σ ∈ D0

out with
probability r = |D0

out ∩ D1
in|/|D1

in|, which would imply E0(P ) + E0(P ′) ∈ D0
out.

Assuming that all the events are independent, each quartet (Pi, Pi′ , Pi
j
, Pi′

j′),
defined by a pair (i, j), (i′, j′), follows the truncated boomerang with probability
pb, and randomly satisfies Pi

j + Pi′
j′ ∈ D0

in with probability p$ defined as:

pb = ~p · ~p · ~q2 · r r ≥ |D1
in|−1 (1)

p$ = |D0
in|/2n (2)
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We distinguish the cipher E from a random permutation when the expected
number of remaining quartets (quartets with Pi

j + Pi′
j′ ∈ D0

in) is significantly
higher for E than for a random permutation. We define the signal-to-noise ratio:

σ = pb/p$ (3)

When σ � 1, we obtain a distinguisher using Q = O(p−1
b ) quartets. More

precisely with Q = µ · p−1
b (µ a small constant) we expect µ remaining quartets

with the cipher E, versus µ ·σ−1 � 1 for a random permutation. A distinguisher
that detects the presence of at least one quartet has a success rate of 1− e−µ.

When σ is smaller, we need to collect a large number of quartets, and compare
the expected number of remaining quartets qb for E and q$ in the random case:

qb = Q× (p$ + pb) = Q× p$(1 + σ) q$ = Q× p$

Following the analysis of [MS02, Theorem 2], we can detect the bias with Q =
O(p−1

$ σ−2) = O(p−1
b σ−1) samples. Using Q = c× p−1

b σ−1 with a small constant
c and setting a threshold at Q×p$(1 +σ/2), the distinguisher has a success rate
of Φ(

√
c/2), with Φ the cumulative distribution function of the standard normal

distribution.
IfQ is smaller than the number of quartets in a full structure (|D0

in|2|D1
out|2/2),

we use a partial structure with only
√

2Q elements. Otherwise, we need N =
2Q×|D0

in|−2|D1
out|−2 structures of S = |D0

in||D1
out| elements. Finally, we obtain a

distinguisher with a constant probability of success with the following complexity
in number of quartets, time, data, and memory:

Q = O
(
max(p−1

b , σ−1 · p−1
b )
)

(4)

T = D = max(
√

2Q, 2Q× |D0
in|−1|D1

out|−1) (5)
M = min(D, |D0

in||D1
out|) (6)

Application to 6-round AES. To explain the truncated boomerang distin-
guisher in practice, we give a truncated boomerang on 6-round AES in figure 4
(page 34), using the trail of figure 1 twice. D0

in and D1
in are the sets of all states

that have zeros on all diagonals except the main one. D0
out is the same as the

output set of figure 1, and D1
out is active on the main anti-diagonal (it differs

because we omit the last MixColumns operation). We have

|D0
in| = |D0

out| = 232 ~p = 2−24 ~p = 2−24

|D1
in| = |D1

out| = 232 ~q = 2−24 ~q = 2−24

Since D0
out ∩ D1

in = {0}, we have r = |D1
in|−1, and the analysis above gives the

following parameters:

pb = ~p · ~p · ~q2 × |D1
in|−1 = 2−128 σ = 2−32

p$ = |D0
in|/2n = 2−96 Q = c · 2160
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Using c = 4 and the formulas of Equations (4), (5), and (6), we obtain a
distinguisher with complexity:

T = D = 299 M = 264

The full distinguisher is detailed in Algorithm 2 (page 34). It makes 267

encryption queries and 299 decryption queries, for a total data complexity of
D = 267 + 299 ≈ 299. In total, we have Q = 235 × 264 × 264/2 = 2162 quartets
(Pi, Pi′ , Pi

j
, Pi′

j′), so that the expected number of remaining quartets is:

q$ = Q× 2−96 = 266 qE = Q× (2−96 + 2−128) = 266 + 234

The distinguisher returns the correct answer with probability Φ(
√
c/2) ≈ 0.84.

This distinguisher is interesting because it is very generic: it does not re-
quire knowledge of the S-Box or the MDS matrix, and it can be considered as
“key-independent” in the sense of [GRR17]. As seen in Table 1, the complex-
ity is slightly higher than previous distinguishers with similar properties, but
the simplicity of this distinguisher makes it more likely to be applicable when
6-round AES is used as a building block in a more complex structure. Indeed,
in Section 6 we show an attack against TNT-AES based on this distinguisher,
while previous 6-round distinguishers do not seem applicable.

3.2 Truncated Boomerang Key-recovery Attack

We now consider key-recovery attacks. As opposed to typical differential or lin-
ear attacks, we do not add rounds on top of the distinguisher. Instead, we as-
sume that the truncated boomerang covers the full cipher, and we design a key-
recovery attack with smaller complexity than the corresponding distinguisher.

When σ ≥ 1, the truncated boomerang distinguisher is easy to turn into a
key-recovery attack, but we cannot reduce the complexity. Indeed, the bottleneck
of the distinguisher is to have enough data so that a boomerang quartet exists.
When a quartet with P +P ′ ∈ D0

in is found, it has a high probability of following
the boomerang, and standard methods can be used to recover key candidates.
Therefore, we focus on the case σ � 1, where the distinguisher requires multiple
quartets following the boomerang.

Given a candidate quartet with P +P ′ ∈ D0
in, we can extract some key infor-

mation assuming that it follows the boomerang. If this is the case, we have two
pairs of known plaintexts (P, P ′) and (P , P ′) following the truncated differential
D0

in
~p−−→
E0
D0

out, and two pairs of known ciphertexts (C,C) and (C ′, C ′) following
the truncated differential D1

in
~q−−→
E1
D1

out. Using standard techniques from differen-
tial cryptanalysis, we can usually extract partial information about the first and
last subkeys. We denote by κ the number of key bits that can be extracted, and
by ` the average number of κ-bit key candidates suggested by a quartet. Note
that the key information suggested by a quartet might be incompatible between
both pairs of plaintexts following the upper differential (or between both pairs of
ciphertexts following the lower differential), in this case the quartet is discarded.

11



We follow the standard approach to identify the most likely candidates for the
κ bits of key: we build a table of 2κ counters corresponding to key candidates,
and we increment the counters of each key suggested by each quartet. With
enough data, the right key is expected to be among the top 2κ−a counters (a
denotes the advantage of the attack).

Analysis. Following the previous analysis, we expect Q × (p$ + pb) quartets
with P + P ′ ∈ D0

in: Q × pb quartets following the boomerang (right quartets),
and Q × p$ false positives. For a right quartet, the correct key is among the
deduced key candidates, and for a wrong quartet, we expect that ` random key
candidates are deduced. Assuming that all the quartets behave independently,
the wrong counters follow the binomial distribution B(Q, (p$ + pb) × ` × 2−κ)
and the right counter follows the distribution B(Q, p$× `×2−κ+pb). We denote
the probabilities of suggesting a wrong key and the right key as:

pw = (p$ + pb)× `× 2−κ ≈ p$ × `× 2−κ (7)
p0 = p$ × `× 2−κ + pb ≈ pw + pb (8)

We obtain a higher signal-to-noise ratio σ̃ than previously:
σ̃ = pb/pw = σ × 2κ/` (9)

When σ̃ � 1, only a handful of right quartets are necessary to have the right
key ranked first, so that Q = O(p−1

b ).
When σ̃ � 1, the counters can be approximated by normal distributions, and

we use the work of Selçuk [Sel08, Theorem 3] to evaluate the number of samples
needed to have the right key among the top 2κ−a key candidates (depending on
the success rate). For a fixed value of a, we need Q proportional to p−1

b σ̃−1, and
the complexity increases linearly in a. Finally, the increased signal-to-noise ratio
σ̃ � σ reduces the data complexity to:

Q = O
(
max(p−1

b , σ̃−1 × p−1
b )
)

(10)

D = max(
√

2Q, 2Q× |D0
in|−1|D1

out|−1) (11)
The full attack is described in Algorithm 1 (page 33). The time complexity

is harder to evaluate; it can be bounded with TE the cost of an oracle call (by
convention, TE = 1), and TC the cost of deducing key candidates from a quartet:

T = D × TE +Q× p$ × TC (12)

When |D0
in|2|D1

out| × TC � 2n, we have Q× p$ × TC � D and the second term
is negligible; the cost of the attack is thus dominated by the oracle queries.
Otherwise, it is often possible to reduce the second term with more advanced
filtering, but this requires a dedicated analysis for each attack.

After recovering 2κ−a candidates for the κ-bit partial key, the full key can
be recovered by exhaustive search of the remaining bits with complexity 2n−a,
or by launching a variant of the attack on a different set of key bits.
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Success Probability. When σ̃ � 1, the average values of right and wrong
counters are high enough to approximate them with normal distributions. In
that case, the success rate can be evaluated using the formula given by [Sel08]:

PS = Φ

(√
µσ̃ − Φ−1(1− 2−a)√

σ̃ + 1

)
(13)

with µ = Q× pb the expected number of right quartets.
When σ̃ is high, the binomial distributions of right and wrong counters have

their average values respectively Q × pb ≈ 1 and Q × pw � 1. As discussed
in [Sel08, section 3.2.1], the normal approximation is inaccurate in this case;
instead, we approximate them by Poisson distributions to compute the success
probability.

Extracting Key Candidates. When the truncated differentials are described
by truncated trails (with a set of intermediate differences at each step), the
parameters ` and κ can often be deduced directly from the trail. We assume
that E0 starts with the addition of a subkey K0, followed by an S-Box layer SB,
and we denote the set of differences after the S-Box layer by D0

mid:

E0 = Ẽ0 ◦ SB ◦ AKK0

We also assume that D0
in is a vector subspace aligned with the S-Box layer (each

S-Box is either inactive, or active will all possible differences). D0
mid is a subset

of D0
in; typically it is constructed so that some parts of the state have fixed

differences after the linear layer. For instance, in the AES trail of Figure 1, D0
mid

corresponds to differences δ such that ShiftRows(MixColumns(δ)) is active only
on the first cell, with |D0

mid| = 28 and ~p0 = 2−24. In general, we have:

D0
in

~p0−→
SB
D0

mid ~p0 = |D0
mid|/|D0

in| D0
mid

~p1−−→̃
E0
D0

out ~p = ~p0 × ~p1 (14)

We consider a pair (P, P ′), and assume that it follows the truncated trail, i.e.
SB(P + K0) + SB(P ′ + K0) ∈ D0

mid. This constrains the partial subkey K0|D0
in

corresponding to the active S-Boxes in SB. More precisely, for each difference δ
in D0

mid, we expect on average 0.5 pairs (X,X ′) such that X + X ′ = P + P ′

and SB(X) + SB(X ′) = δ (restricted to the active bytes D0
mid). This pair can be

recovered efficiently after pre-computing the DDT of the S-Box, and we deduce
two possible keys X+P and X+P ′. Therefore, we have the following parameters
when extracting key candidates from a pair (P, P ′):

`0 = |D0
mid| κ0 = log2(|D0

in|) T 0
C = `0 = |D0

mid|

Starting from a candidate quartet, we have two different pairs (P, P ′) and
(P , P ′) assumed to follow the upper differential. Therefore, we expect only `02 =
|D0

mid|2/|D0
in| key candidates compatible with both pairs. We apply the same
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reasoning to the lower trail (using ciphertext pairs), and deduce the parameters
` and κ for a quartet in the general case:

` = |D0
mid|2 · |D1

mid|2 · |D0
in|−1 · |D1

out|−1 κ = log2(|D0
in| · |D1

out|) (15)
Using the probability ~p0 for the first round and ~q0 for the last round, we have
` · 2−κ = ~p0

2 · ~q0
2 (16)

For the lower trail, we only have to process a fraction |D0
mid|2/|D0

in| of the can-
didate quartets (with a key compatible with both pairs). In particular, when
|D0

mid|2 < |D0
in|, the time complexity is dominated by the first extraction step:

TC = |D0
mid|.

Application to 6-round AES. This attack can directly be applied to AES,
using the same 3-round trails as in the previous section (see Figure 4):

|D0
in| = |D0

out| = 232 |D0
mid| = 28 ~p = 2−24 ~p = 2−24

|D1
in| = |D1

out| = 232 |D1
mid| = 28 ~q = 2−24 ~q = 2−24

For the key extraction, we have

` = |D0
mid|2 · |D1

mid|2 · |D0
in|−1 · |D1

out|−1 = 2−32 κ = log2(|D0
in| · |D1

out|) = 64

Our analysis results in

pb = ~p · ~p · ~q2 × |D1
in|−1 = 2−128

pw = |D0
in| × 2−n × `× 2−κ = 2−192 σ̃ = 264

Since σ̃ � 1, we only need a few right quartets; with µ = 4 we obtain

Q = µ× p−1
b = 2130 D = 267

Time complexity. With these parameters, the attack complexity is dominated
by the oracle queries. We use 8 structures of 264 elements; in each structure we
detect 264 × 263 × p$ = 231 pairs with P + P

′ ∈ D0
in, resulting in 8 × 231 = 234

candidate quartets in total. Each quartet suggests on average 2−32 candidates
for 64 bits of key (for most of the quartets, there is no key compatible with both
sides of the quartet). Finally, we expect 22 suggestions of wrong keys (each key
is suggested 2−62 times on average), and µ = 4 suggestions for the correct key.
With high probability, the key with the most suggestions is the correct one.

We have implemented the attack on a reduced AES with 4-bit S-Boxes, and
it behaves as expected.

4 Optimized Boomerang Attacks on 6-round AES

As shown by Biryukov [Bir04], boomerang attacks on AES can be optimized
using multiple trails. We now present improved versions of our attacks using
this technique, including a 6-round key-recovery attack with complexity 261.
The improvement compared to the attack of Biryukov with complexity 271 is
due to the use of structures on the ciphertext side.
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4.1 Optimized distinguisher

Instead of only considering the trail of Figure 1 with fixed positions for all the
active bytes, we consider a collection of four different trails for upper part:{

, , ,

}

The collection can be considered as a truncated trail D0
in

~p−−→
E0
D0

out with

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234

Similarly, we consider four trails for the lower part:{
, , ,

}

Again, this can be considered as a truncated differential D1
in

~q−−→
E1
D1

out with

~q = 2−24 ~q = 2−22 |D1
in| = 234 |D1

out| = 232

The analysis of the previous sections can be applied as-is with these trails. We
obtain a better attack because we have increased ~p and ~q by a factor 4, even
though the increase of |D1

in| reduces the probability of the boomerang by a factor
4; we obtain pb = 2−124 instead of 2−128. The distinguisher is exactly the same
because D0

in and D1
out are the same, but this improved analysis shows that the

complexity of the distinguisher can be reduced to T = D = 291 (with c = 4,
σ = 2−28 and Q = 2154).

Larger set D1
out. We further improve the distinguisher using a collection of 16

trails with the following input and output sets for the lower trail:{
, , ,

}
→
{

, , ,

}

This collection can be considered as a truncated differential D1
in

~p−−→
E0
D1

out with

~q = 2−22 ~q = 2−22 |D1
in| = 234 |D1

out| = 234

This does not affect the probability pb, but generates larger structures; the com-
plexity is reduced to T = D = 289 with Q = 2154.

Different Set D0
in for Returning Pairs. Following Biryukov [Bir04], we use

a higher probability differential for the returning pair (P , P ′), different from for
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the initial pair (P, P ′), and with a larger set D0
in. We consider the same collection

of 16 trails as above, corresponding to a truncated differential D0
in

~̄p−−→
E0
D0

out with

~̄p = 2−22 ~p̄ = 2−22 |D0
in| = 234 |D0

out| = 234

This corresponds to keeping quartets with a single active diagonal in P + P ′,
but not necessarily the main one. We adapt our analysis to account for the two
distinct upper differentials and we obtain

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−122 σ = 2−28

p$ = |D0
in|/2n = 2−94 Q = 2152

Finally, we obtain a distinguisher with complexity T = D = 287 (with c = 4).

4.2 Optimized Key-recovery Attack

For a key-recovery attack, we use the trails above, but we keep the set D1
out

active only in the first column.

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234

~̄p = 2−22 ~p̄ = 2−22 |D0
in| = 234 |D0

out| = 234

~q = 2−24 ~q = 2−22 |D1
in| = 234 |D1

out| = 232

When extracting the key, we recover information about a diagonal of k0 from
(P, P ′), and information about an anti-diagonal of k6 from (C,C) and (C ′, C ′):

`0 = 210 κ0 = 32 `1 = 2−14 κ1 = 32 ` = 2−4 κ = 64

Therefore, we have the following parameters:

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−122

pw = |D0
in| × 2−n × `× 2−κ = 2−162 σ̃ = 240

Since σ̃ � 1, we only need a few right quartets; with µ = 4 we obtain

Q = µ× p−1
b = 2124 D = 263

Time complexity. The complexity is dominated by the oracle queries: for each
structure of 264 plaintexts/ciphertexts, we filter 264 × 263 × |D0

in| × 2−n = 233

candidate quartets, and the time to extract the key candidates is negligible.
After recovering a candidate for 64 bits of key (32 bits of k0 and 32 bits of

k6), we repeat the attack with D0
in in a different diagonal and use the partial

knowledge of k6 to increase the probability ~q (this has negligible complexity).
In Appendix B, we further reduce the complexity to D = 258.7, T = 260.8.
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4.3 Key-recovery with Secret S-Boxes

The techniques described in subsection 3.2 assume that the S-Box and MDS
matrix are known to the attacker in order to extract key information. However,
it is also possible to extract key information with an unknown S-Box under
some conditions. Following [GRR16], we assume that all S-Boxes in a column
are identical, and that the MDS matrix has two identical coefficients in each
row.

As a concrete example, we consider the AES MixColumns matrix

MC =
[

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

]
We consider a pair C,C following the truncated trail of Figure 4. According to
the trail, the difference before the last round (w4) is in a set of 28 differences; in
particular, the difference in cell 1 is equal to the difference in cell 2:

w4 + w4 ∈
{[

2δ 0 0 0
δ 0 0 0
δ 0 0 0
3δ 0 0 0

]
: δ ∈ {0, 1}8

}
=
{

MC ·
[
δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
: δ ∈ {0, 1}8

}
Moreover, we assume that the differences in cells 13 and 10 of the ciphertext are
equal (they are moved to cell 1 and 2 by ShiftRows)

C + C =
[
α 0 0 0
0 0 0 β
0 0 β 0
0 γ 0 0

]

In this case, S-Boxes 1 and 2 in the last round follow the same transition δ → β.
With high probability, this implies that the pairs of input/output are equal; in
particular {C[13]+k6[13], C[13]+k6[13]} = {C[10]+k6[10], C[10]+k6[10]}. This
suggests two key candidates:

k6[13] + k6[10] ∈
{
C[13] + C[10], C[13] + C[10]

}
In order to use this property in a truncated boomerang attack, we use the

multiple upper trails of subsection 4.1, and a single lower trail with a restricted
D1

out of size 224 to ensure that C + C and C ′ + C
′ have the required properties

for all quartets considered:

D1
out =

{[
a 0 0 0
0 0 0 b
0 0 b 0
0 c 0 0

]
: a, b, c ∈ {0, 1}8

}
The corresponding parameters are:

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234

~̄p = 2−22 ~p̄ = 2−22 |D0
in| = 234 |D0

out| = 234

~q = 2−32 ~q = 2−24 |D1
in| = 232 |D1

out| = 224
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For each quartet, the pair C,C suggests two values for k6[13]+k6[10], and C ′, C ′
also suggests two values. Therefore a quartet suggests on average ` = 2−6 values
for κ = 8 bits of key. Using the analysis of subsection 3.2, we obtain:

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−124 σ̃ = 2−16

pw = |D0
in| × 2−n × ` · 2−κ = 2−108 Q = O(2140)

To obtain a high probability of success we use Q = 2145, i.e. D = 290. Since
σ̃ � 1, the counter distribution of the right key can be approximated to the
normal distribution N (237 +221, 237) while wrong key counters distributions can
be approximated to N (237, 237). We expect the correct key to be ranked first
with very high probability (PS > 0.99 using the formula from [Sel08]).

The time complexity is dominated by the oracle queries: for each structure
of 256 plaintexts/ciphertexts, we filter 256 × 255 × |D0

in| × 2−n = 217 candidate
quartets with P + P

′ ∈ D0
in, and the time to extract the key candidates is

negligible. We can repeat the attack to recover up to 16 key bytes in different
positions, with a complexity of D = T = 294 (but only 12 recovered bytes are
linearly independent).

5 Application to 8-round Kiasu-BC

Kiasu-BC is an instance of the TWEAKEY framework [JNP14a,JNP14b], reusing
the AES round function in a tweakable block cipher. The 6-round boomerang
attack on the AES can be extended to 8-round Kiasu-BC by taking advantage
of the tweak input to cancel state differences in order to have one inactive round
in the upper and lower trails. Indeed, the best know attack on Kiasu-BC is an
8-round attack with complexity 2103 in data and time [DL17] following this idea;
the corresponding boomerang is represented in Figure 5 (page 35). Following our
framework, we improve this attack with a better use of structures.

Truncated Boomerang. Since we use a tweak difference ∆tw, we slightly
generalize our truncated differential framework to allow a set of tweak differences
Dtw. We start from a 4-round truncated trail (Din,Dtw) ~p−→

E
Dout, where Din is

the set of differences active on the main diagonal, Dout is the set of differences
δ such that MixColumns−1(δ) is active on the main anti-diagonal, and Dtw is
the set of differences active in the first cell of the tweak. Following the tweakey
schedule of Kiasu-BC, a tweak difference in Dtw results in a tweakey difference
in Dtw at each round.

The upper truncated trail is followed with probability 2−32: with probability
2−24 the difference at the end of the first round is active only on the first cell, and
with probability 2−8 it cancels with the tweakey difference. The same applies for
the bottom truncated trail.

As in the AES case, the final round omits the MixColumns operation, there-
fore, we use a slightly different trail in the lower part, where the set D1

out is active
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on the main anti-diagonal. We obtain an 8-round boomerang with two 4-round
differentials (Figure 5):

~p = 2−32 ~p = 2−32 |D0
in| = 232 |D0

out| = 232 |D0
tw| = 28

~q = 2−32 ~q = 2−32 |D1
in| = 232 |D1

out| = 232 |D1
tw| = 28

Following the analysis of the AES attack in subsection 3.2, we deduce on average
` = 2−32 candidates of κ = 64 key bits per quartet. Therefore, we obtain

pb = ~p · ~p · ~q2 × |D1
in|−1 = 2−160

pw = |D0
in|/2n × `× 2−κ = 2−192 σ̃ = 232

Since σ̃ � 1, we only need a few right quartets. Taking µ = 4, we obtain an attack
withQ = 2162 quartets. We take advantage of the tweak to build larger structures
(iterating over the tweak and data inputs), of size |D0

in|·|D0
tw|·|D1

out|·|D1
tw| = 280.

Thus we only need 8 structures, with data complexity D = 283. In each structure
of 280 elements, we keep only 263 quartets with P +P

′ ∈ D0
in, therefore the time

complexity for the key recovery is negligible, and T = D = 283.

Success Probability. There are 266 quartets with P + P
′ ∈ D0

in, suggesting on
average 2−32 key candidates each; hence a total of 234 candidates for 64 bits of
key. We keep key candidates whose counter reaches 2 or more. Modeling counters
for wrong keys with a Poisson distribution with λ = 2−30, the probability for a
specific wrong key counter to be at least 2 is 1− e−λ(1 +λ) ≈ 2−61; therefore we
expect to keep 8 wrong keys. On the other hand, the counter for the right key
follows a Poisson distribution with λ = 4. It reaches a value of 2 or more with
probability ≈ 0.9.

As in the AES attacks, we recover the full key by repeating the attack with
D0

in in a different diagonal. Taking advantage of the recovered values of the last
round key, this adds a negligible complexity.

6 Application to TNT-AES

TNT-AES is another tweakable block cipher reusing the AES round function
published at Eurocrypt 2020 [BGGS20]. It is part of the Tweak-aNd-Tweak
framework, building a tweakable block cipher Ẽ from a block cipher E:

ẼK0,K1,K2 : P, T 7→ C = EK2

(
T + EK1

(
T + EK0(P )

))
In order to improve its efficiency, TNT-AES uses a 6-round AES as building
block E. The designers of TNT proved its security up to 22n/3 queries, and
conjectured a higher security bound. Later work [GGLS20] proved the bound to
be at least O(23n/4) queries, and exhibited a distinguisher with O(

√
n · 23n/4)

queries.
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Truncated Boomerang. Our attack focuses on the middle cipher EK1 , be-
tween both tweak additions. In order to skip the initial and final ciphers EK0

and EK2 , we introduce differences in the tweak, instead of introducing them in
the plaintext and ciphertext. We fix a plaintext P , and consider four tweaks
T, T ′, T , T

′ to create quartets as follows:

1. Query C = Ẽ(P, T ) and C ′ = Ẽ(P, T ′)
2. Query P = Ẽ−1(C, T ) and P

′ = Ẽ−1(C ′, T ′)
3. Detect when P = P

′

We denote the inputs and outputs of EK1 as X and Y , with Y = EK1(X):

X = EK0(P ) + T X ′ = EK0(P ) + T ′ X = EK0(P ) + T X
′ = EK0(P ′) + T

′

Y = E−1
K2

(C) + T Y ′ = E−1
K2

(C ′) + T ′ Y = E−1
K2

(C) + T Y
′ = E−1

K2
(C ′) + T

′

When P = P
′, we have a boomerang quartet for EK1 with differences

X +X ′ = T + T ′ = ∆in X +X
′ = T + T

′ = ∆′in

Y + Y = T + T = ∇out Y ′ + Y
′ = T ′ + T

′ = ∇′out

When using a truncated boomerang (with a fixed P and a set of tweaks), there
are two important limitations compared to the previous attacks:

– We only detect when the difference X+X ′ matches exactly T+T ′, instead of
detecting a set of differences D0

in. This decreases the boomerang probability.
– We necessarily have ∆in+∆′in = ∇out+∇′out. For the 6-round AES truncated

boomerang of figure 4, this implies ∆in = ∆′in and ∇out = ∇′out. Therefore,
we cannot take advantage of structures on the ciphertext side.

Nonetheless, truncated boomerangs can be used with structures of tweaks on the
plaintext side, and the analysis of the middle rounds as truncated differentials
significantly reduces the complexity compared to the analysis of [BGGS20].

Upper Differential. We use the same collection of 4 upper trails as in our opti-
mized attack on AES:{

, , ,

}
We have the following parameters

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234

For the return trail, we must hit a fixed T + T ′ = ∆0
in:

~̄p = 2−22 ~p̄ = 2−56 |D0
in| = 20 |D0

out| = 234
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Lower Differential. Since we cannot use structures on the ciphertext side, we use
a fixed value ∆1

out to maximize the probability of the trail. We observe that in an
AES column, the transition δ → (∗, 0, 0, 0) through a layer of inverse S-Boxes fol-
lowed by inverse MixColumns happens with probability 2272/232 ≈ 2−20.85 with
δ = (L(β/2), L(β), L(β), L(β/3)), with L the linear transform inside the AES S-
Box (see subsection C.1). Therefore, we choose∆1

out = MixColumns(ShiftRows(δ)):

~q = 2−52.85 ~q = 2−20.85 |D1
in| = 232 |D1

out| = 20

Boomerang Probability. We obtain:

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−151.7 p$ = |D0

in|/2n = 2−128

As shown in section C, we obtain a slightly better probability pb by carefully
analyzing the boomerang, and correlation between the sides:

pb = 2−151.4

It is not possible to recover actual key material with this attack because X
is unkown. However, we can use EK0(P ) + K1 as an equivalent subkey if all
queries are made with the same P . Using the pair (X,X ′) we extract ` = 210

candidates for κ = 32 key bits. Unfortunately, we cannot use the pairs (Y, Y ′)
for filtering on the ciphertext side since the unkown value Y is different in each
quartet. Similarly, the pair (X,X ′) is unusable for key extraction. Therefore,

pb = 2−151.4

pw = p$ × `× 2−κ = 2−150 σ̃ = 2−1.4

With σ̃ < 1, we need Q = c · σ̃−1 · p−1
b with a small constant c; we take c = 64,

Q = 2158.8. Since we have structures of size 232, this corresponds to D = 2127.8.

Distinguisher. With 2127.8 queries we obtain a distinguisher between TNT-
AES (using 6-round AES as the building block) and a PRP (or TNT using a
PRP). This obviously does not threaten the security of TNT-AES, but we believe
that it is an interesting use case showing that a 6-round boomerang distinguisher
can be extended to a larger scheme, even if the attack is marginal.

In order to minimize the number of queries, we use the 255 possible values of
∆1

out = (L(β/2), L(β), L(β), L(β/3)) with β ∈ F256\{0}, so that each encryption
query is amortized: we obtain 2158.8 quartets with 2127.8/255 encryption queries
and 2127.8 decryption queries. After collecting the quartets, we expect that the
counter corresponding to the right key follows the distribution N (28.8+27.4, 28.8)
while counters for the wrong keys follow the distribution N (28.8, 28.8) (the dis-
tance between the expected values is 8 times the standard deviation).

We obtain a distinguisher by observing whether the maximum counter is
higher than a threshold t = 28.8 + 7× 24.4. The probability that all counters for
wrong keys are lower than t is Φ(7)232 ≈ 0.995, therefore the probability of false
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positive is 0.005. The probability that the counter for the right key is higher
than t is Φ(1) = 0.84 so the probability of false negative is 0.16.

Finally, we can increase the succes rate by running three attacks in parallel
using three input sets D0

in, D′0in, D′′0in on three different diagonals. Using super-
structures of 296 values, we run all three attacks with the same queries, and
generate counters for three sets of 232 equivalent keys. Using a threshold of
t = 28.8 +7.1×24.4, we keep the probability of false positive below 1%, while the
probability that at least one of the three counters corresponding to right keys is
higher than the threshold increases to 99%.

7 Application to Deoxys-BC using a MILP Model

Deoxys-BC is another tweakable block cipher using the AES round function and
the STK construction for the tweakey schedule [JNPS21], on which the best
known attacks are based on boomerangs [CHP+17,Sas18,ZDJ19,ZDJM19].

In the single tweakey model, we assume that the adversary has access to
Deoxys-BC with a fixed key and tweak. The analysis is similar to analysis of
AES, and the best known boomerang attack is given in section 4.

In the related tweakey model, the attacker can insert differences in some of
the tweakey words TKi. Depending on the tweak size and differences used, this
can be either a single-key attack with chosen tweaks, or a related-key attack. We
denote as RTKr a model with differences in r 128-bit states, corresponding to:

– RTK1: single-key attacks on any variant with at least 128 bits of tweak.
– RTK2: single-key attacks on Deoxys-BC-384 with 256 bits of tweak, or

related-key attacks on Deoxys-BC-256.
– RTK3: related-key attacks on Deoxys-BC-384.

Due to the larger tweak used in Deoxys-BC, the boomerangs given in the previous
sections do not give the best attacks; instead the best known boomerangs have
been found using a MILP modeling. In this section we revisit these attacks using
our framework for truncated boomerang.

7.1 Using a MILP Model to Search for Boomerang Characteristics

Mixed Integer Linear Programming (MILP) is a mathematical optimization tool
that minimizes a linear objective function of constrained variables. The variables
can be either discrete or continuous, and the constraints are given as linear
inequalities. In the last years, it has proven to be a useful tool to evaluate the
security of cryptographic primitives, due to the facility of encoding cryptographic
properties as MILP problems, and the availability of high performance solvers.
Differential trails can be modeled with a MILP program in order to obtain
bounds on the probability of trails (as first used on SIMD [BFL11]), or to search
for good trails (as first used by Mouha et al. [MWGP11]).

This method was applied to the search of boomerang distinguisher on Deoxys
by Cid et al. [CHP+17]. Their MILP model encodes the activity of each state
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byte with a binary variable that equals 1 if its corresponding byte is active and
0 if not, and that is constrained depending on the activity pattern of Deoxys
operations. In order to build a boomerang trail, their model includes two separate
differential trails with two overlapping rounds in the middle (in order to account
for the ladder switch and the BCT analysis). The objective function to minimize
is roughly the number of active S-Boxes, i.e. the sum of all variables representing
the activity of S-Box input (or output) bytes.

After generating the optimal boomerang template, they instantiate active
bytes with concrete differences that minimize Sbox transition probabilities, using
the DDT and BCT of the AES S-Box. An important contribution of their work
is an analysis of the degrees of freedom of the tweakey differences. Their MILP
model counts the number of linear relations between the tweakey differences and
ensures that at least one degree remains in the final trail, otherwise it is unlikely
to find concrete differences for the tweakey.

In 2019, Zhao et al. [ZDJ19,ZDJM19] improved this MILP model by adding
two extra rounds at the end of the lower trail, containing truncated differences.

7.2 MILP Model for Truncated Boomerang Attacks

We extend the MILP model of [CHP+17] to find good truncated boomerang
attacks. Previous works [Sas18,ZDJM19] have shown large differences between
the complexity of an attack and the probability of a boomerang distinguisher;
in particular, the best attack is not always obtained with the best distinguisher.
We follow the same high-level approach as in [QDW+21]: our main objective is
to cover the full boomerang attack with the MILP model. To do so, we ask the
MILP solver to minimize the formula for the data complexity of the attack given
in subsection 3.2. In addition, we improve the boomerang switch probability
estimation compared to [CHP+17] by modeling the ladder switch in the MILP
model.

On a high level, the model is given by a set of variables, a set of constraints,
and an objective function. Our model is not symmetric when switching plaintext
and ciphertext1, but for simplicity we only describe the attack starting from the
plaintext, though it works similarly the other way around.

State Variables. The model of Cid et al. considers only two types of internal
differences: either it is inactive with a zero difference, or it is active with a fixed
non-zero difference. In order to model truncated trails, we consider four types of
differences for all intermediate state variables:
– inactive, with a zero difference, denoted as ;
– active with a fixed non-zero difference, denoted as ;
– active with a an unknown (truncated) difference, denoted as .
– active with an equal (but unknown) difference for both pairs, denoted as ∗ .

For the tweakey schedule variables, we use only the first two types for simplicity.
1 The inverse AES round can be re-written with the same form as the encryption, but

this requires to use equivalent round keys, and interacts badly with the introduction
of sparse differences through the tweakey schedule.
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Table 4. Transition probability (DDT) and connection probability (BCT) for the AES
S-Box. For the transition probability of equal differences, we distinguish the first and
the second pair. We omit the cases where the probability is 0.

Legend

δ = 0
δ 6= 0 fixed
unknown δ

∗ equal δ

Transition probability 1st pair 2nd pair

Pr( → ) = 1 Pr( → ∗ ) 1= 1 Pr( → ∗ ) 2= 2−7

Pr( → ) = 2−6 Pr( → ∗ ) 1= 1 Pr( → ∗ ) 2= 2−8

Pr( → ) = 1 Pr( ∗ → ) 1= 2−8 Pr( ∗ → ) 2= 2−7

Pr( → ) = 2−8 Pr( ∗ → ) 1= 1 Pr( ∗ → ) 2= 1
Pr( → ) = 1 Pr( ∗ → ∗ ) 1= 1 Pr( ∗ → ∗ ) 2= 2−7

Boomerang connexion probability

Pr( → ) = 1 Pr( → ) = 1 Pr( → ) = 1 Pr( ∗ → ) = 1
Pr( → ) = 1 Pr( → ) = 2−6 Pr( → ) = 1 Pr( ∗ → ) = 2−8

Pr( → ) = 2−8 Pr( → ) = 2−8 Pr( → ) = 1 Pr( ∗ → ) = 2−8

Pr( → ∗ ) = 1 Pr( → ∗ ) = 2−8 Pr( → ∗ ) = 1 Pr( ∗ → ∗ ) = 2−8

Equal Differences. Bytes with equal differences encode relations between the
two different pairs that follow the same trail, rather than properties of a trail
by itself. This allows the MILP model to capture trails like the 6-round AES
boomerang of Figure 4; the model does not encode linear relations between active
bytes (e.g. the set of differences for w2 is active on all bytes but has size 232), but
using this type of constraint is sufficient in many cases because it is propagated
through the linear layer.

In terms of analysis, we treat them specially: for the first pair they are con-
sidered as truncated bytes, but for the second pair they are considered as fixed
differences (fixed to the value given by the first pair). Therefore, we explain the
rest of the MILP model assuming that each trail has been duplicated, and equal
differences have been replaced.

Constraints. We have constraints for each operation:
SubBytes. With truncated differences, the variables before and after the S-Box

layer do not necessarily have the same type. However, an S-Box output is
active (truncated or not) if and only if the input is active.

ShiftRows. ShiftRows only moves the bytes, so we have trivial equalities be-
tween the corresponding state variables.

MixColumns. The MixColumns operation operates on each column, multiply-
ing it with an MDS matrix. Because of the MDS property, each column is
either completely inactive, or has at least 5 active bytes (truncated or not)
on input and output. Moreover, we have the same property with truncated
bytes: either no byte is truncated, or at least 5 bytes are truncated.
We also reuse the constraints for the degree of freedom given in [CHP+17]
to avoid over-defining the fixed differences (for these constraints, the equal
bytes are not considered as fixed).
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AddTweaKey. The AddTweaKey operation is just a XOR with the subkey. In
our model, the subkey is not truncated, so it is either inactive, or active with
a fixed difference. Therefore, the input state is truncated if and only if the
output state is truncated. Otherwise, we use the constraints of Cid et al. to
model XOR for the active bytes and the activity of the tweakey bytes.

Key Schedule. We follow the approach of [CHP+17] to model the key schedule.
The permutation h just moves the bytes, and the LFSR construction ensures
that each byte is either completely inactive, or inactive in at most i−1 rounds
in the TKi model.

Additional Constraint. Without additional constraint, a silly truncated trail
with probability 1 is returned. To avoid that, we constrain the trail to have
at maximum 3 active truncated columns in a single state, except for the first,
middle, and last rounds.

Objective Function. Using the results from the previous sections, we estimate
the data complexity of an attack as:

D = max(
√

2Q, 2Q× |D0
in|−1 × |D1

out|−1) with
Q ≈ max(p−1

b , σ̃−1 × p−1
b ) σ̃ ≈ pb/(p$ × `× 2−κ)

pb = ~p · ~p · ~q1 · ~q2 × r p$ = |D0
in|/2n

Since all variables are represented logarithmically by the MILP model, these for-
mulas only involve additions and maximums, and are easily expressed in function
of the MILP variables:

– |D0
in| and |D1

out| are obtained by counting truncated input/output bytes;
– ~p, ~p, ~q1 and ~q2 are computed from S-Box and MixColumns transitions.

Due to the equal bytes, the probability of the lower trail is computed twice:
~q1 after replacing them with truncated bytes, and ~q2 after replacing them

with fixed bytes. Similarly ~p is computed after replacing them with truncated
bytes, and ~p after replacing them with fixed bytes (see Table 4);

– r is computed from the connection probability of each S-Box, in Table 4;
– `× 2−κ is estimated as ~p0

2 · ~q0
2 following section 3.2, where the probability

~p0 for the first round and ~q0 for the last round are evaluated from the trail.

Trail Probability. With truncated differences, both MixColumns and SubBytes
operations contribute to the probability of a trail. If at least one byte of a column
is truncated, the probability of a MixColumns transition is 2−8t where t is the
number of non truncated bytes (active or not) in the output of MixColumns.

The SubBytes probability is computed by multiplying the transition proba-
bility of all the S-Boxes, following the transition probabilities given in Table 4.

Boomerang Connection Probability. In section 3, we evaluated the connection
probability as r = |D1

in|−1. This worked well for AES boomerangs, but when tar-
geting Deoxys we usually have fixed differences in the middle of the cipher and we
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obtain better results using the Boomerang Connectivity Table (BCT) [CHP+18].
Instead of splitting the cipher in two parts E = E1 ◦E0, we split it in three parts
E = E1 ◦Em ◦E0 with Em an S-Box layer. Given fixed differences on both sides
of Em, the probability that the boomerang connects is given by multiplying
the BCT probabilities of each S-Box. In the more general context of our MILP
program, the probabilities are given in Table 4.

This analysis can be improved using the ladder switch [BK09]. Instead of
splitting the cipher with Em a full S-Box layer, we use the Super-Box repre-
sentation of the two middle rounds: from one S-Box layer to the next, the AES
round operates as four independent parallel transformations. Each of those four
transformations can independently be considered as part of the upper or lower
trail. We obtain E0 and E1 with partial rounds in the middle, and Em cor-
responds to S-Boxes of different rounds. We model the ladder switch using a
binary variable for each Super-Box in the middle, encoding whether it is part of
the upper trail or the lower trail. Depending on these variables, the S-Boxes and
MDS matrices in the middle are counted as part of E0, Em, or E1.

7.3 Results

We run the MILP solver with different parameters and retain the trails with
the lowest complexity among all the models with the same total length and
attacker model. For the search, we use gurobi with 96 threads on 2x AMD EPIC
7352, 24 cores, 2.3GHz and 256 GB of RAM. The solve time varies from several
minutes to several days, but the best trail is in general found much faster than
the optimality proof. Memory shortage (exceeding 256 GB) was an issue for
some of the largest models. After the MILP solving phase, we instantiate the
trail with concrete tweakey differences, and apply slight manual improvements.
For instance, for minor gains, we introduced state changing bytes: fixed on the
forward trail but truncated on the return trail.

General Remarks. The best attacks found are listed in Table 2. We explain
the parameters of a few attacks below and the rest are given in Appendix D.
The values of ` and κ mentionned on the figures are the one used in our attacks,
corresponding either to a 1-round or to a 2-round key-recovery. Each attack re-
covers a partial key, aiming for a success rate of 1/2, comparable to previous
analysis; we assume that the rest of the key can be recovered efficiently after-
wards. When σ̃ � 1, the number µ of right quartets required varies from 1 to 4.
In particular, if pb � ` · p$, we expect no wrong quartets and µ = 1 suffices, else
several right quartets are needed to get the correct key ranked first.

In the related-tweakey model, generating a structure of S elements requires
4S queries (under 4 tweakeys) and produces S2 quartets; but with structures on
both sides the encryption queries are amortized and only 2S queries are needed.

For 13-round Deoxys-BC in the RTK3 model and 10-round Deoxys-BC in
the RTK2 model, we selected a sub-optimal trail with a better time complexity.
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10-round Deoxys-BC in the RTK2 model (Figure 11). Query two full
structures of 288 ciphertexts, so that on average, µ = 2 · 288+88 · pb = 2 quartets
follow the trail. For each element of the structure, deduce on average 1 candidate
for 28 bits of key on the plaintext side: 1 candidate for tk0[5, 10] and 1 represen-
tant of the 4 possible candidates each for tk0[0] and tk0[15]2. In total, there are
on average 21+88+88−56−28 = 293 candidate quartets matching on the ciphertext
bytes with a known difference and on the key candidate.

For each quartet, retrieve 2−8 candidates for tk10[9] with 2 table accesses. For
each of the 293−8 = 285 remaining quartets, retrieve on average 2−32 candidates
of tk10[0, 1, 2, 3, 4, 5, 6, 7]. Finally, recover 2−16 candidates for tk9[4, 9]. There re-
mains 285−32−16 = 237 quartets with a 116-bit key candidate. The only candidate
suggested twice is expected to be the right candidate. The time complexity is
dominated by the generation of the quartets, thus (D,T,M) = (290, 290, 289).

13-round Deoxys-BC in the RTK3 model (Figure 2). Query a partial
structure of 2125.4 plaintexts. On average, µ = 2125.4 · 2125.4 · pb = 4 quartets
follow the trail.

1. For each element of the structure, retrieve the representant k of the 26 pos-
sible key values of tk13[13, 14, 15] that satisfy the transition y12 → x12. k
defines 18 key bits.

2. Guess the value of the tweakey material tk0[2, 7, 8, 13]. Set δ = 0xc4657e42
and δin = 0x00007a00, and look for collisions between:

v = y0[2, 7, 8, 13] ‖ y0[2, 7, 8, 13] ‖ P [0, 5, 10, 15] ‖ k
v′ = y′0[2, 7, 8, 13] + δ ‖ y′0[2, 7, 8, 13] + δ ‖ P ′[0, 5, 10, 15] + δin ‖ k′

This step costs 232 ·2 ·2125.4 = 2158.4 in time complexity. On average, 2125.4 ·
2125.4 ·2−114 = 2136.8 quartets remain for each tk0[2, 7, 8, 13] (2168.8 in total).

3. For each quartet, retrieve 27+7−32 = 2−18 values of tk0[3, 4, 9, 14]. In order
to minimize the complexity, first deduce the 27+7−8 = 26 pairs of column
differences compatible with a key candidate for tk0[3], by only checking the
first S-Box. Then, deduce the 26−8 = 2−2 pairs of columns compatible with
a key candidate for tk0[4] with the second S-Box. Finally deduce tk0[9, 14].
This step requires 28 + 27 = 28.6 table accesses per quartet, therefore a total
of 28.6+164.8 = 2177.4 accesses; and 232+136.8−18 = 2150.8 quartets remain.

4. For each quartet, retrieve 27+7−32 = 2−18 values of tk0[1, 6, 11, 12] and
224+24−32 = 216 key candidates for tk13[8, 9, 10, 11]. Recover x12[8, 9, 10, 11]
and the difference in y11[2, 7, 8]. Retrieve 2−24 candidates for tkeq12[2, 7, 8].
2150.8−18+16−24 = 2124.8 quartets remain.

5. For each quartet, recover the difference in x1[4, 14] and the value of w0[4, 14]
from the known key bytes of tk0. Retrieve 2 · 2 · 2−8 = 2−6 values of tk1[4]

2 S-Boxes 0 and 15 on the plaintext side each have two pairs (x, x + δ), (x′, x′ + δ)
following the transition fixed by the trail. Instead of listing four key candidates, we
identify one of the 26 cosets of 〈δ, x+ x′〉.
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Fig. 2. Truncated boomerang attacks on 13-round Deoxys-BC in the RTK3 model,
starting from the plaintext side. This attack succeeds with probability 0.76.
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and 2−6 values for tk1[14] (2 candidates are deduced per pair because the
differences are already compatible). 2124.8 · 2−12 = 2112.8 quartets remain.

6. Eventually, each of the 2112.8 quartets determines in average 1 candidate of
18 + 32 + 32 + 32 + 32 + 24 + 16 = 186 bits. We model a wrong counter
with a poisson distribution with λ = 2−73.2. The probability that any wrong
counter is at least 3 is (1 − e−λ(1 + λ + λ2/2)) · 2184 ≈ 2−35. The correct
counter follows the poisson distribution with λ = 4 and it is at least 3 with
probability 0.76. Therefore, the success probability of this attack is 0.76.

Complexity analysis. The time complexity is dominated by the 2177.4 table
accesses of step 3. An encryption of 13-round Deoxys-BC has 16 × 13 S-Boxes,
so the time complexity is equivalent to 2177.4/208 = 2169.7 encryption. Thus
(D,T,M) = (2126.4, 2169.7, 2126.4).
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A Additional Figures and Tables
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Fig. 3. Construction of a boomerang quartet.

Algorithm 1. Truncated boomerang key recover attack
Require: D0

in, D1
out

K ← InitKeyCounters()
for i← 1 to N do

P0 ← Rand()
P ← [P0 +∆in, for ∆in ∈ D0

in]
C ← [E(P ), for P ∈ P] . N × |D0

in| encryptions
P ← [E−1(C +∆out), for C ∈ C, ∆out ∈ D1

out] . N × |D0
in||D1

out| decryptions
H ← InitHashMap()
for P ∈ P do

Insert the projection of P on {0, 1}n/D0
in in H . |D0

in||D1
out| in memory

if a collision occurs in H between P and P
′ then

Track back to the corresponding P and P ′

if P 6= P ′ then . N(prand + ptrunc)|D0
in|2|D1

out|2/2 such quartets
for K in the ` key candidates induced by the quartet do

Increment the counter K in K
Recover the key material K of the maximal counter of K
Recover the rest of the key by performing the attack with a different subspace D0

in

33



Algorithm 2. Truncated boomerang distinguisher on 6-round AES
q ← 0
for 0 ≤ s < 235 do . 235 structures

P0 ← $
for i ∈ D0

in do . Iterate over the main diagonal
Ci ← E(P0 + i)
for j ∈ D1

out do . Iterate over the main anti-diagonal
Pi

j ← E−1(Ci + j)
Store Pi

j in a hash table indexed by three diagonals
Count collisions in the hash table, and increment q

if q > 266 + 233 then
return AES

else
return $
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B Optimized Key-recovery Attack

In the key-recovery attack, the key extraction provides an additional filter, so
we can use truncated boomerang characteristics with lower signal-to-noise ratios.
Following [Bir04], we modify the truncated trail on the returning side P , P ′ to
allow any combination of two active diagonals in input, leading to the following
parameters:

D0
in =

{
, , , , ,

}

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234 |D0
mid| = 210

~̄p = 2−46 ~p̄ = 6× 2−16 = 2−13.4 |D0
in| = 6× 264 |D0

out| = 234

~q = 2−24 ~q = 2−22 |D1
in| = 234 |D1

out| = 232 |D1
mid| = 210

When extracting the key, we recover information about the main diagonal of
k0 from (P, P ′), and information about the first anti-diagonal of k6 from (C,C)
and (C ′, C ′) (note that (P , P ′) is not necessarily active in the main diagonal).
Moreover, the key suggested by (C,C) and (C ′, C ′) must lead to the same active
byte in z4, so that

`0 = 210 κ0 = 32 `1 = 2−14 κ1 = 32 ` = 2−4 κ = 64

Using the previous analysis, we obtain

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−113.4

pw = |D0
in|2−n × `× 2−κ = 2−129.4 σ̃ = 216

Since σ̃ � 1, a few right quartets are sufficient for the success of this attack;
we use µ = 8, this corresponds to Q = 2116.4 and we use a partial structure of
D = 258.7 elements.

Success probability. We assume that the attacker keeps key candidates with
counter values of at least 5. With σ̃ � 1, we approximate the wrong key counters
by Poisson distributions with λ = Q× pw = 2−13, each of which equal 5 or more
with probability 1− e−λ(1 +λ+λ2/2 +λ3/6 +λ4/24) ≈ 2−71.9; we don’t expect
to keep any wrong keys. On the other hand, the counter for the right key follows
a Poisson distribution with λ = µ = 8. It reaches a value of 5 or more with
probability ≈ 0.9.

Time complexity. After recovering a candidate for 64 bits of key (32 bits of k0
and 32 bits of k6), we repeat the attack with D0

in in a different diagonal and
use the partial knowledge of k6 to increase the probability ~q. This step has a
negligible complexity.

The time complexity is balanced between oracle queries and extracting key
candidates. Indeed, we filter 258.7 × 257.7 × |D0

in| × 2−n = 255 candidates with
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P + P
′ ∈ D0

in using 6 hash tables indexed by each combination of two active
columns. The complexity TC to generate key candidates for a given quartet is
essentially 4 × 210 accesses to a small table; we approximate it as TC ≈ 25.4TE
(since one encryption has 6× 16 S-Boxes). Finally, the time complexity is

T = 258.7TE + 255TC ≈ 260.8TE

C Optimizing the TNT-AES Boomerang

We can slightly reduce the complexity of the TNT-AES distinguisher by carefully
analyzing the probability of the boomerang, and correlations between the sides.

In the lower trail, we have two pairs (C,C) and (C ′, C ′) and our analysis
assumes that if they both follow the trail, then the differences E−1

1 (C)+E−1
1 (C)

and E−1
1 (C ′)+E−1

1 (C ′) are equal with probability |D1
in|−1 = 2−32. Actually, the

differences are not uniformly distributed inD1
in, and this increases the probability

that the differences are equal.
Indeed, we can split this analysis into two disjoint cases: either the differences

in x4 are equal, or they are different. If they are equal, then the 4 active S-Boxes
in the fourth round have the same difference in y3 for both pairs; therefore there
are only 127 possible differences in x3.

Pr
[
E−1

1 (C) + E−1
1 (C) = E−1

1 (C ′) + E−1
1 (C ′)

]
= ~q2 ×

(
254
255 × 2−32 + 1

255 × 127−4
)

≈ ~q2 × 2−31.915

In the upper trail, there are similar effects. Our analysis assumes that the
pair (P , P ′) follows the truncated trail with probability ~p̄ independently of the
pair (P, P ′). However, both pairs have the same differences at the input and
output of the trail and the trail does not cover the sets D0

in and D0
out uniformly.

Let us consider a pair C,C ′ with E−1
1 (C) +E−1

1 (C ′) = E−1
1 (C) +E−1

1 (C ′). The
difference in y2 (after the S-Boxes of the third round) are the same for both
pairs; the truncated trail allows a set 255 differences in x2 (before the S-Boxes).
In general the probability of a transition through four active S-Boxes is 2−32, but
we know that one of the 255 differences was followed by the pair P, P ′, therefore
all differences are compatible, and the probability increases to 127−4.Finally the
probability of having a difference in x2 compatible with the trail is higher than
2−24:

1× 127−4 + 254× 2−32 ≈ 2−23.92

In the first round, we have the same analysis as in the lower trail, and the
probability to obtain the same difference as the pair P, P ′ is higher than 2−32

254
255 × 2−32 + 1

255 × 127−4 ≈ ×2−31.915
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Finally, we obtain

qb = 2−22 × 2−23.92 · 2−31.915 × 2−20.85×2 × 2−31.915 = 2−151.45

Multiple trails. The previous analysis uses a single trail for the lower part of the
cipher, with the active byte of z4 in the cell 0. We can also consider alternative
trails in cell 1, 2, or 3. With this active byte in cell 1, we have the transition
∆1

out → (0, ∗, 0, 0) through the layer of S-Boxes with probability ~q = 256/232 =
2−24 (instead of 2−20.85 for cell 0), and the probability is the same in other
positions.

Finally, we sum the probabilities of the four alternate boomerangs, and we
obtain:

qb = 2−151.45 + 2−157.75 + 2−157.75 + 2−157.75 ≈ 2−151.4

C.1 Choice of ∆1
out

We have to choose a value ∆1
out to maximize the probability of having a single

active byte in z4. Therefore we analyze the S-Box layer of the last round: the
output difference is equal to ShiftRows−1(MixColumns−1(∆1

out)), and we want
the input difference to be of one of the following types:

2α 0 0 0
α 0 0 0
α 0 0 0
3α 0 0 0

 ,

α 0 0 0
α 0 0 0
3α 0 0 0
2α 0 0 0

 ,

α 0 0 0
3α 0 0 0
2α 0 0 0
α 0 0 0

 ,


3α 0 0 0
2α 0 0 0
α 0 0 0
α 0 0 0


In particular, ShiftRows−1(MixColumns−1(∆1

out)) must be active only on the first
column. We experimentally tested all possible differences on the first column,
and counted the number of pairs satisfying the transition. More precisely, we
are interested in the joint probability that two different pairs reach an input
difference of the same type, therefore we count the number of quartets of each
type (using the DDT of the S-Box for each possible input and output difference).

We found that in the best case, there are 222.35 quartets that satisfy this
transition (with the same type for both pairs), compared to 218 quartets expected
on average (for each type of input difference, we expect on average one pair for
each of the 28 differences, therefore 28+8 quartets). The are 4 × 255 choices of
∆1

out reaching this maximum, and we found they they all have a special form:
ShiftRows−1(MixColumns−1(∆1

out)) is of one of the following types, with L the
linear transform inside the AES S-Box:

L(β/2) 0 0 0
L(β) 0 0 0
L(β) 0 0 0
L(β/3) 0 0 0

 ,

L(β) 0 0 0
L(β) 0 0 0
L(β/3) 0 0 0
L(β/2) 0 0 0

 ,

L(β) 0 0 0
L(β/3) 0 0 0
L(β/2) 0 0 0
L(β) 0 0 0

 ,

L(β/3) 0 0 0
L(β/2) 0 0 0
L(β) 0 0 0
L(β) 0 0 0


This special form can be explained by the structure of the AES S-Box; it

is defined as x 7→ L(x254), with L an invertible linear mapping. It implies the
following property:

38



Property 1. For any α, β 6= 0, DDT[α,L(β)] = DDT[αβ,L(1)].

Proof.

DDT[α,L(β)] =
∣∣{x : L

(
(x)254)+ L

(
(x+ α)254) = L(β)

}∣∣
=
∣∣{x : (x)254 + (x+ α)254 = β

}∣∣
=
∣∣{x : (βx)254 + (βx+ αβ)254 = 1

}∣∣
=
∣∣{x : (x)254 + (x+ αβ)254 = 1

}∣∣
=
∣∣{x : L

(
(x)254)+ L

(
(x+ αβ)254) = L(1)

}∣∣
= DDT[αβ,L(1)]

Because of this property, S-Box transitions of the form

(2α, α, α, 3α)→ (L(β/2), L(β), L(β), L(β/3))

have a higher probability than expected because the transition probability of
the S-Boxes are not independent: for a given α and β either all transitions are
possible simultaneously, or none of the transitions are possible.
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Fig. 6. Scheme of our boomerang attack on the full TNT-AES.
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D Truncated Boomerang and Attacks from the MILP
Model

8-round Deoxys-BC in the RTK1 model (Figure 7). Query two structures
of 280 elements. On average, µ = 2 · 280 · 280 · pb = 2 quartets follow the trail
and 2 · 280 · 280 · p$ = 281 random quartets are detected. For each element,
retrieve in average 1 value of tk8[8] in a few table accesses. Remove quartets
with incompatible candidates. 281 ·2−8 = 273 quartets remain. For each quartet,
retrieve 2−40 values of tk0[1, 6, 11, 12] and tk8[10]. For each of the 273 × 2−40 =
233 remaining quartets, deduce in average 1 key candidate for tk8[4, 5, 6, 7]. For
each of the 233 remaining quartets, increase the counter of the retrieved 80-
bit key candidate. Only the right counter is expected to be greater than 2.
The complexity is dominated by the encryption queries. This gives (D,T,M) =
(282, 282, 281).

9-round Deoxys-BC in the RTK1 model (Figure 8). Query one full struc-
ture of 2128 plaintexts. On average, µ = 2128 ·2128 ·pb = 4 quartets follow the trail.
For each element of the structure, deduce on average 1 candidate k for 38 bits
of key on the ciphertext side: 1 candidate for tk9[5, 6, 8, 10] and 1 representant
of the 4 possible candidates for tk9[7].

Guess 5 key bytes: tk0[0, 5, 10, 15] and tk1[1], so that w0[0, 1, 2, 3] and y1[1]
can be evaluated from each plaintext. Set δ = 0x9a000000‖0x000000‖0x000000‖
0x2d‖0x2d‖0 and look for collisions between:

v =
(
P [2, 7, 8, 13] ‖ w0[0, 2, 3] ‖ w0[0, 2, 3] ‖ y1[1] ‖ y1[1] ‖ k

)
v′ =

(
P
′[2, 7, 8, 13] ‖ w′0[0, 2, 3] ‖ w′0[0, 2, 3] ‖ y′1[1] ‖ y′1[1] ‖ k′

)
+ δ

Since we match on 134 bits, we expect 2128+128−134 = 2122 remaining quartets
for each guess, or 2162 in total, with a complexity of 2128+40 = 2168.

Extract more key information from the remaining quartets. First, retrieve
2−16 candidates for tk0[3, 4, 9, 14]; this requires about 29 table accesses per quar-
tet, which is much less than to 26 encryptions; 2144 quartet remain. Then retrieve
2−16 candidates for tk0[1, 6, 11, 12], and 2−16 candidates for tk1[7, 13]. We end
up with 2112 candidates for 158 bits of key.

We model the counters for wrong keys as a Poisson distribution with λ =
2−44; they reach 4 or more with probability 2−180.6, therefore the right key is
expected to be ranked first. This gives (D,T,M) = (2129, 2168, 2129).

8-round Deoxys-BC in the RTK2 model (Figure 9). Query a partial
structure of 225 ciphertexts. The only detected quartet is a right quartet. (D,T,M) =
(227, 227, 227).

9-round Deoxys-BC in the RTK2 model (Figure 10). Query a partial
structure of 254 ciphertexts. On average, µ = 254 · 254 · pb = 1 quartets follow
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the trail and 254 · 254 · p$ = 220 random quartets are detected. For each quartet,
retrieve 2−52 values of tk0[0, 5, 10, 15] and tk9[0, 1, 2, 3, 5]. This step is of neg-
ligible complexity, and with high probability no wrong quartet remains. Thus,
(D,T,M) = (255, 255, 255)

11-round Deoxys-BC in the RTK2 model. The MILP solver did not return
a pertinent trail for this key setting. Instead, we use the 10-round trail and
append a round at the beginning. First, query the full encryption codebook
with T , T

′ and store it. Then, guess the full tk0. Perform the 10-round attack,
by using the same ciphertext structure for each guess of tk0 and simulating
encryption queries with fetches in the codebook. We chose µ = 4 and for each
key guess, this gives 238 candidates for 116 bits. The probability that one of the
counters is at least 4 is 2−300.6+116+128 = 2−56.6, so in average, the correct key
is ranked first. This gives (D,T,M) = (2129, 2218, 2129).

10-round Deoxys-BC in the RTK3 model (Figure 12). Query 21.4 struc-
tures of 216 ciphertexts. The only detected quartet is a right quartet. (D,T,M) =
(219.4, 219.4, 218). This attack is equivalent to the attack given in [Sas18], but the
complexity was wrongly estimated as 222.

11-round Deoxys-BC in the RTK3 model (Figure 13). Query a par-
tial structure of 230.7 elements. The only detected quartet is a right quartet.
(D,T,M) = (232.7, 232.7, 232.7).

12-round Deoxys-BC in the RTK3 model (Figure 14). Query 22.4 struc-
tures of 264 ciphertexts. On average, µ = 22.4 ·264 ·264 ·pb = 2 quartets follow the
trail and 22.4 ·264 ·264 ·p$ = 258.4 random quartets are detected. For each quartet,
retrieve in average 2−32 key candidates for tk0[4] and tk12[0, 2, 3] in a few table
accesses. Then, for each of the 258.4 · 2−32 = 226.4 remaining quartets, deduce
in average 224 · 224 · 2−32 = 216 candidates for tk12[12, 13, 14, 15]. For each can-
didate, compute the values of x11[12, 13, 14, 15] and the differences in state y10.
From the transition x10 → y10, retrieve 2−24 key candidates for tkeq11[1, 11, 12].
Thus, 226.4 ·216 ·2−24 = 218.4 quartets remain with 1 average key candidate of 88
bits. For each remaining quartet, increase the counter of the corresponding key
candidate. Only the right counter is expected to be greater than 2. This gives
(D,T,M) = (267.4, 267.4, 265).

14-round Deoxys-BC in the RTK3 model (Figure 15). We did not man-
age to find a 14-round trail with the MILP solver, but the 13-round attack can
be extended by adding a round at the end, and guessing most of the last subkey.

We start by querying the decryption oracle over the full codebook with tweaks
T and T ′, and storing the results in memory. Then we guess 104 bits of the last
round key: k14[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
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This allows us to essentially simulate the 13-round attack using queries from
the 14-round oracle. Since 13 bytes of k14 are known, we can partially decrypt
the corresponding S-Boxes in the last round, and the MixColumns in the first
three columns (after replacing tk13 by an equivalent key). The 13-round trail is
slightly modified with pb = 2−252.8, in order to limit the ciphertext difference to
three columns.

We build the same type of structure as used in the 13-round attack. For each
plaintext Pi, we query Ci = E(Pi, T ) and we partially decrypt the final round.
Then we generate the set of 240 values with the required difference in y12, and
partially encrypt them to obtain the corresponding ciphertexts Cji . Finally, we
use the stored decryption values to obtain the corresponding P ji .

We start with a full structure of 2128 plaintexts, so that we expect µ =
2128+128 · pb = 23.2 good quartets. As in the 13-round attack (steps 1 and 2), we
match elements on 114 bits: we expect 2128+128−114 = 2142 candidate quartets
for each guess of 104 + 32 = 136 bits of key, or 2278 quartets in total.

Following the 13-round attack (steps 3,4, and 6), we extract on average 2−48

candidates for 80 additional key bits . Finally, we use the constraints of the
MixColumns operation of round 11: there are only 216 possible differences in
w11 from which we deduce 216+16−24 = 28 candidates for tkeq13[2, 5, 8]. We end up
with 2238 suggestions for 258 bits of key.

We keep all key candidates suggested at least 6 times. Modeling the counters
for wrong keys as following a Poisson distribution with λ = 2−20, we expect
wrong keys to be kept with probability 2−129.5. Finally we do an exhaustive
search over the 126 key bits remaining, for a cost of 2126+128.5 = 2254.5.

The bottleneck of the attack is the extraction of key candidates for 2278

quartets. Following the analysis of the 13-round attack, we estimate that it
requires about 28.6 table accesses, equivalent to 20.8 encryption. The full attack
has complexity (D,T,M) = (2129, 2278.8, 2129).
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Truncated bytes

Active bytes01

Switched bytes

01 State changing bytes

Truncated equal bytes∗

∆TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 00 00 00
00 00 00 00
00 01 00 00

⎤⎥⎥⎥⎥⎦ ∇TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 b9 00 00
00 00 00 00
00 00 00 dd

⎤⎥⎥⎥⎥⎦

⃗q = 2
−61

p⃗1 = 2
−32

p⃗2 = 2
−46

q⃗ = 2
−13

r = 2
−8

pb = 2
−160

p$ = 2
−80

κ = 80 ` = 2
−48

σ̃ = 2
48

µ = 2

∣Dup
in ∣∣Dlow

out ∣ = 2
80

D = 2
82

T = 2
82

M = 2
81

Fig. 7. Truncated boomerang attack on 8-round Deoxys-BC in the RTK1 model, start-
ing from the ciphertext side. This attack succeeds with probability 1/2.
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01 State changing bytes

Truncated equal bytes∗

∆TK1=⎡⎢⎢⎢⎢⎣
01 00 00 00
00 00 00 00
9a 00 00 00
00 00 00 00

⎤⎥⎥⎥⎥⎦ ∇TK1=⎡⎢⎢⎢⎢⎣
00 00 b9 00
00 00 00 00
00 00 dd 00
00 00 00 00

⎤⎥⎥⎥⎥⎦

p⃗ = 2
−104 ⃗q = 2

−57
⃗p = 2

−28
r = 2

−8
pb = 2

−254
p$ = 2

−32
κ = 158 ` = 2
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σ̃ = 2

52
µ = 4

∣Dup
in ∣∣Dlow

out ∣ = 2
128

D = 2
129

T = 2
168

M = 2
129

Fig. 8. Truncated boomerang attack on 9-round Deoxys-BC in the RTK1 model, start-
ing from the plaintext side. This attack succeeds with probability 1/2.
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Active bytes01

Switched bytes

01 State changing bytes

∆TK1=
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da 00 00 00
00 00 90 01
4a 00 00 00
00 00 da 00

]

∆TK2=

[
ed 00 00 00
00 00 48 40
a5 00 00 00
00 00 ed 00

]

∇TK1=

[
01 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

]

∇TK2=

[
a8 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

]

~q = 2
−38

~p = 2
−6

~q = 1 r = 1

pb = 2
−50

p$ = 2
−88

σ = 2
38

µ = 1

|Dup
in ||Dlow

out | = 2
32

D = 2
27

T = 2
27

M = 2
27

Fig. 9. Truncated boomerang attack on 8-round Deoxys-BC in the RTK2 model, start-
ing from the ciphertext side. This attack succeeds with probability 1/2.
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Truncated bytes

Active bytes01

Switched bytes

01 State changing bytes

∆TK1=
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00 00 00 00
00 00 00 00
00 00 00 00
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]

∆TK2=

[
00 00 00 00
00 00 00 00
00 00 00 00
00 00 40 00

]

∇TK1=

[
00 00 00 00
00 88 00 00
00 00 00 00
00 00 00 00

]

∇TK2=

[
00 00 00 00
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00 00 00 00
00 00 00 00
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−28

~q = 2
−6

r = 1

pb = 2
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κ = 72 ` = 2
−52

σ̃ = 2
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µ = 1

|Dup
in ||Dlow

out | = 2
56

D = 2
55

T = 2
55

M = 2
55

Fig. 10. Truncated boomerang attack on 9-round Deoxys-BC in the RTK2 model,
starting from the ciphertext side. This attack succeeds with probability 1/2.
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Active bytes01

Switched bytes

01 State changing bytes

Truncated equal bytes∗

∆TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
01 00 00 00
00 00 00 00
00 00 00 00

⎤⎥⎥⎥⎥⎦

∆TK2=⎡⎢⎢⎢⎢⎣
00 00 00 00
40 00 00 00
00 00 00 00
00 00 00 00

⎤⎥⎥⎥⎥⎦

∇TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 99 00 00
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00 00 00 00

⎤⎥⎥⎥⎥⎦

∇TK2=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 0f 00 00
00 00 00 2d
00 00 00 00

⎤⎥⎥⎥⎥⎦

⃗q = 2
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p⃗ = 2
−28

q⃗ = 2
−27

r = 2
−8

pb = 2
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p$ = 2
−56

κ = 116 ` = 2
−84

σ̃ = 2
76

µ = 2

∣Dup
in ∣∣Dlow

out ∣ = 2
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D = 2
90

T = 2
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M = 2
89

Fig. 11. Truncated boomerang attack on 10-round Deoxys-BC in the RTK2 model,
starting from the ciphertext side. This attack succeeds with probability 1/2.
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Truncated bytes

Active bytes01

Switched bytes

01 State changing bytes

∆TK1=⎡⎢⎢⎢⎢⎣
00 00 bb 00
00 00 00 8f
8f 00 00 00
00 34 00 00

⎤⎥⎥⎥⎥⎦

∆TK2=⎡⎢⎢⎢⎢⎣
00 00 25 00
00 00 00 de
de 00 00 00
00 fb 00 00

⎤⎥⎥⎥⎥⎦

∆TK3=⎡⎢⎢⎢⎢⎣
00 00 b6 00
00 00 00 d4
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00 62 00 00

⎤⎥⎥⎥⎥⎦

∇TK1=⎡⎢⎢⎢⎢⎣
01 00 00 00
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⎤⎥⎥⎥⎥⎦

∇TK2=⎡⎢⎢⎢⎢⎣
99 00 00 00
00 00 00 00
00 00 00 00
00 00 d1 00

⎤⎥⎥⎥⎥⎦
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⎤⎥⎥⎥⎥⎦

⃗q = 2
−16

p⃗ = 2
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q⃗ = 1 r = 2
−5.4

pb = 2
−33.4

p$ = 2
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σ = 2
78.6

µ = 1

∣Dup
in ∣∣Dlow

out ∣ = 2
16

D = 2
19.4

T = 2
19.4

M = 2
18

Fig. 12. Truncated boomerang attack on 10-round Deoxys-BC in the RTK3 model,
starting from the ciphertext side. This attack succeeds with probability 1/2.
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Truncated bytes

Active bytes01

Switched bytes

01 State changing bytes

∆TK1=

[
01 00 00 00
00 80 00 00
00 00 80 00
00 00 00 81

]

∆TK2=

[
3f 00 00 00
00 9f 00 00
00 00 9f 00
00 00 00 a0

]

∆TK3=

[
f8 00 00 00
00 fc 00 00
00 00 fc 00
00 00 00 04

]

∇TK1=

[
00 00 00 00
00 00 00 00
00 00 00 40
00 ed 00 00

]

∇TK2=

[
00 00 00 00
00 00 00 00
00 00 00 e6
00 24 00 00

]

∇TK3=

[
00 00 00 00
00 00 00 00
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00 37 00 00

]

~q = 2
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~p = 2
−6

~q = 1 r = 2
−5.4

pb = 2
−61.4

p$ = 2
−80

σ = 2
18.6

µ = 1

|Dup
in ||Dlow

out | = 2
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D = 2
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T = 2
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M = 2
32.7

Fig. 13. Truncated boomerang attack on 11-round Deoxys-BC in the RTK3 model,
starting from the ciphertext side. This attack succeeds with probability 1/2.
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Truncated bytes

Active bytes01

Switched bytes

01 State changing bytes

∆TK1=

[
07 00 00 00
00 63 00 00
00 00 64 00
00 00 00 64

]

∆TK2=

[
bf 00 00 00
00 77 00 00
00 00 c8 00
00 00 00 c8

]

∆TK3=

[
e8 00 00 00
00 f5 00 00
00 00 1d 00
00 00 00 1d

]

∇TK1=

[
00 00 00 00
00 9e 00 00
6d 00 00 00
00 00 00 2a

]

∇TK2=

[
00 00 00 00
00 e4 00 00
f4 00 00 00
00 00 00 61

]

∇TK3=

[
00 00 00 00
00 46 00 00
6c 00 00 00
00 00 00 ff

]

~q = 2
−75

~p = 2
−8

~q = 2
−19

r = 2
−19.4

pb = 2
−129.4

p$ = 2
−72

κ = 88 ` = 2
−40

σ̃ = 2
70.6

µ = 2

|Dup
in ||Dlow

out | = 2
64

D = 2
67.4

T = 2
67.4

M = 2
65

Fig. 14. Truncated boomerang attack on 12-round Deoxys-BC in the RTK3 model,
starting from the ciphertext side. This attack succeeds with probability 1/2.
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Truncated bytes

Active bytes01

Switched bytes

01 State changing bytes

Irrelevant bytes (key guessed)

∆TK1=⎡⎢⎢⎢⎢⎣
00 00 a9 00
00 00 00 00
00 00 8c 00
3c 00 00 00

⎤⎥⎥⎥⎥⎦

∆TK2=⎡⎢⎢⎢⎢⎣
00 00 53 00
00 00 00 00
00 00 4f 00
82 00 00 00

⎤⎥⎥⎥⎥⎦

∆TK3=⎡⎢⎢⎢⎢⎣
00 00 8f 00
00 00 00 00
00 00 b9 00
44 00 00 00

⎤⎥⎥⎥⎥⎦

∇TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 53 00 00
00 7b 00 00
00 28 00 00

⎤⎥⎥⎥⎥⎦

∇TK2=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 34 00 00
00 c8 00 00
00 fc 00 00

⎤⎥⎥⎥⎥⎦

∇TK3=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 d4 00 00
00 32 00 00
00 e6 00 00

⎤⎥⎥⎥⎥⎦

p⃗ = 2
−96 ⃗q = 2

−73
⃗p = 1 r = 2

−10.8
pb = 2
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p$ = 2

−32
κ = 154 ` = 2

−90
σ̃ = 2

23.2
µ = 2

3.2

∣Dup
in ∣∣Dlow

out ∣ = 2
128

D = 2
129

T = 2
278.8

M = 2
129

Fig. 15. Truncated boomerang attack on 14-round Deoxys-BC in the RTK3 model,
starting from the plaintext side.
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