
Kevlar: Transparent, Efficient, Polynomial
Commitment Scheme with Logarithmic

Verification and Communication Costs on
Efficient Groups

Frank Y.C. Lu

UniYin

Abstract. We introduce a new efficient, transparent setup, polynomial
commitment scheme that runs on efficient groups with logarithmic ver-
ifier and communication costs. Existing group based polynomial com-
mitment schemes must run on costly groups such as class groups with
unknown order [6] or pairing based groups [8] to achieve transparency
(no trusted setup), making them slow in practice, and non-group based
schemes such as Reed-Soloman based schemes has its own set of pros
and cons compared to group based schemes.
We offer the first group based polynomial commitment scheme that does
not rely on expensive pairing based groups or class groups with unknown
order to achieve transparency while still providing logarithmic verifier
and communication costs. While the asymptotic performance of our pro-
tocol is comparable to the current state of art, its concrete verifier and
communication costs are about one order of magnitude more efficient
than the current state of art schemes.
The asymptotic costs of our new transparent scheme is dominated by
3nG exponential prover cost, 3 log nG exponential verifier cost and 3
log nG communication cost. Running with one thread and evaluating a
polynomial of n = 220 degree terms, the verifier cost of our protocol is
≈ 2.5ms, and the communication cost is ≈ 2KB, giving approximately
11X and 9X improvement over the current state of art.

Keywords: Polynomial commitment · Zero-Knowledge · SNARK · pub-
lic key cryptography.

1 Introduction

Zero-knowledge succinct arguments of knowledge (zkSNARKs) is a subject of
great research interest in the field of cryptography, and polynomial commitment
schemes is arguably the most important core element of recent zero-knowledge
systems. The popular constructs of zkSNARKs such as Groth16 [13], Sonic [21],
PLONK [20], Spartan [22] and more recently Gemini [10] can be generally de-
scribed in two steps: first, reduce a satisfying assignment to evaluation of a
polynomial commitment. Second, apply some polynomial commitment scheme
to validate the soundness of the commitment created in step one.

2 Frank Y.C. Lu

Non-transparent polynomials schemes such as KATE [16] offers great verifier
performance low communication cost. Since verifier cost and communication
cost are usually valued more importantly than prover cost due to applications
on blockchain, KATE is usually the protocol of choice and used by many popular
zkSNARKs [20] [13].

However, transparent polynomial commitment schemes are the ones that
attract the most research interest as of late. A popular class of logarithmic
communication complexity discrete log-based work (LCC-DLOG) is based on
Bootle et al. [2], which is the bases of later work in Bulletproofs [5] and Hyrax
[15], and then later further optimized by Spartan [22]. Halo [14] introduced the
idea of amortization of verifier computation through recursive composition of
proof, which is later generalized by Bunz et al. [3].

These protocols generally require Ω (n1/2)G verify time. More recently, the
development of DARK [6] and Dory [8] provide the best optimization till date
and finally achieved logarithmic verifier cost without trusted setup. Dory im-
proved verify time to log n GT . However, the exponential operation on GT is
more than 10X costlier that of G and the communication cost of GT is 6X
that of G, leaving plenty of room for further improvement if we can move the
computation to G.

Another class of transparent schemes are based on the use of Interactive
Oracle Proofs on Reed-Solomon codes (RS-IOP) to prove that a polynomial is of
bounded degree, such schemes are adopted by Ligero [17], Aurora [1], Virgo [23]
and Fractal [9]. RS-IOP schemes are plausible post quantum and generally offers
decent concrete cost even though its asymptotic cost is less optimal. However,
soundness error is high and the performance advantage diminishes when running
required number of repetitions to reach provable 120bit+ security [9].

Finally, in recent years a new class of polynomial commitments schemes based
on groups of unknown order to construct Diophantine Arguments of Knowledge
(DARK-GUO) proofs for polynomial evaluations over fields is introduced by
DARK [6] and recently expanded by [4]. Unfortunately, group operations on
these type of groups with transparent setup are significantly slower than that on
curves in implementation [7] [8].

1.1 Summary of Contributions

We introduce a new efficient transparent polynomial commitment scheme that
offers linear prover cost, logarithmic verifier cost and logarithmic communication
cost. Our protocol does not rely on expensive pairing or controversial group of
unknown order groups and offers significant performance gains over the current
state of art. Besides allowing polynomial commitment scheme to achieve higher
concrete performance for the polynomial commitment scheme itself, running on
efficient groups such as Curve25519 could result in further concrete performance
gains on the Polynomial IOPs that uses it.

After a brief review of bulletproof, which our protocol is inspired from, we
first introduce the base version of our protocol in section 3. The base version
gives 3log n verifier cost for group exponential operations but would still require

Title Suppressed Due to Excessive Length 3

O(n) field operation. We found the base version is efficient for small to medium
sized polynomials but would be less efficient for large polynomials with degree
≥ 215.

In section 4 we introduce a math trick to bring down the total verifier cost
to O(log n). In summary, The prover cost of our protocol is dominated by 3nG
group exponentials, the verifier cost is dominated by 3 log nG group exponen-
tials, and the communication cost is dominated by 3 log nG.

In section 5, we benchmark our protocol against the reported numbers from
Dory paper [8]. Although the concrete cost of Dory is comparable to some of
the highly optimized implementations such as the one in Spartan [8] [22] for
polynomials with lower degree, we consider it the current state of art due to its
asymptotic efficiency and concrete efficiency for large polynomials.

For large polynomials with n = 220 degree terms, our protocol’s verifier eval-
uation cost is ≈ 2.5ms (≥ 11X improvement), the communication cost is ≈ 2KB
(≈ 9X improvement), and the commitment size is mere 32bytes (3X improve-
ment). The only down side is our protocol’s prover cost is on the expensive side,
≈ 60s (6X more expensive) for the same polynomial. However, our prover would
still be more efficient than that of Dory for smaller polynomials with degree
≤ 212.

2 Preliminaries

2.1 Assumptions

Definition 1. (Discrete Logarithmic Relation) For all PPT adversaries A and
for all n ≥ 2 there exists a negligible function negl(λ) s.t.

Pr

[
G = Setup(1λ), g0, ..., gn−1

$←− G ∃ ai 6= 0 ∧
∏n−1
i=0 g

ai
i = 1

a0, ..., an−1 ∈ Zp ← A(g0, ..., gn−1)

]
≤ negl(λ)

The Discrete Logarithmic Relation assumption states that an adversary can’t
find a non-trivial relation between the randomly chosen group elements g0, ..., gn−1 ∈
Gn, and that

∏n−1
i=0 g

ai
i = 1 is a non-trivial discrete log relation among g0, ..., gn−1.

2.2 Zero-Knowledge Argument of Knowledge

Interactive arguments are interactive proofs in which security holds only against
computationally bounded provers. In an interactive argument of knowledge for a
relationR, a prover convinces a verifier that it knows a witness w for a statement
x s.t. (x,w) ∈ R without revealing the witness itself to the verifier. When we say
knowledge of an argument, we imply that the argument has witness-extended
emulation.

Definition 2. (Interactive Argument) Let’s say (P,V) denotes a pair of PPT
interactive algorithms and Setup denotes a non-interactive setup algorithm that

4 Frank Y.C. Lu

outputs public parameters pp given a security parameter λ that both P and V
have access to. Let 〈P(pp, x, w),V(pp, x)〉 denote the output of V on input x after
its interaction with P, who has knowledge of witness w. The triple (Setup,P,V)
is called an argument for relation R if for all non-uniform PPT adversaries A
the following properties hold:

• Perfect Completeness

Pr

[
(pp, x, w) /∈ R or pp← Setup(1λ)

〈P(pp, x, w),V(pp, x)〉 = 1 (x,w)← A(pp)

]
= 1

• Computational Soundness

Pr

[
∀w(pp, x, w) /∈ R∧ pp← Setup(1λ)

〈A(pp, x, s),V(pp, x)〉 = 1 (x, s)← A(pp)

]
≤ negl(λ)

• Public Coin All messages sent from V to P are chosen uniformly at random
and independently of P’s messages

Definition 3. (Witness-extended emulation) [11] [18] [6] Given a public-coin
interactive argument tuple (Setup,P,V) and arbitrary prover algorithm P∗, let
Recorder (P∗, pp, x, s) denote the message transcript between P∗ and V on
shared input x, initial prover state s, and pp generated by Setup. Furthermore,
let E Recorder (P , pp, x, s) denote a machine E with a transcript oracle for
this interaction that can rewind to any round and run again with fresh verifier
randomness. The tuple (Setup,P,V) has witness-extended emulation if for ev-
ery deterministic polynomial time P there exists an expected polynomial time
emulator E such that for all non-uniform polynomial time adversaries A the
following condition holds:

Pr

[
pp← Setup(1λ)

A(tr) = 1 (x, s)← A(pp)
tr ← Recorder(P∗, pp, x, s)

]
≈

Pr

[A(tr) = 1∧ pp← Setup(1λ)
tr accepting =⇒ (x,w) ∈ R (x, s)← A(pp)

(tr, w)← ERecorder(P∗,pp,x,s)(pp, x)

]

Generalized Special Soundness We follow the presentation first introduced
in Bootle et al. [2] and later enhanced by Bulletproofs [5] and also found in
DARK [6] and Dory [8]. Consider a public-coin interactive argument with f
rounds and (n1, ..., nf) tree of accepting transcripts with challenges sampled
from a large message space. The tree has depth f with its root labelled with
the statement x. Each node at depth i < f has ni children, and each children is
labelled with a distinct value for the ith challenge. Every path from the root to
a leaf corresponds to an accepting transcript, and there are a total of

∏f
i=1 ni

distinct accepting transcripts.

Title Suppressed Due to Excessive Length 5

Lemma 1. (Generalized Forking Lemma) [5] [6] [2] Let (P,V) be an f -round
public-coin interactive argument system for a relation R. Let T be a tree-finder
polynomial time algorithm that has access to a Recorder() with rewinding
capabilities outputs an (n1, ..., nf)-tree of accepting transcripts. Let X be a de-
terministic polynomial time extractor that use T ’s outputs compute a witness
w for the statement x with overwhelming probability. Then (P,V) has witness-
extended emulation.

Definition 4. (Perfect Special Honest Verifier Zero Knowledge for Interactive
Arguments) An interactive proof is (Setup,P,V) is a perfect special honest
verifier zero knowledge (PSHVZK) argument of knowledge for R if there exists
a probabilistic polynomial time simulator S such that all pairs of interactive
adversaries A1,A2 have the following property for every (x,w, σ) ← A2(pp) ∧
(pp, x, w) ∈ R, where σ stands for verifier’s public coin randomness for challenges

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← 〈P(pp, x, w),V(pp, x)〉

]
=

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← S(pp, x, σ)

]
Above property states that adversary chooses a distribution over statements x
and witnesses w but is not able to distinguish between the simulated transcripts
and the honestly generated transcripts for a valid statement/witnesses pair.

2.3 Commitment Schemes

Our definitions are based on the polynomial commitments from [6].

Definition 5. (Commitment scheme) A commitment scheme C is a tuple C =
(Setup,Commit,Open) of PPT algorithms where:

• Setup(1λ) → pp generates public parameters pp.
• Commit(pp;x) → (C;φ) takes a secret message x and produces a public

commitment C with a secret opening hint φ.
• Open(pp, C, x, φ) → b ∈ {0, 1} verifies the opening of commitment C to the

message x provided with the opening hint φ.

Pr


pp← Setup(1λ)

b0 = b1 6= 0∧ : (P, x0, x1, φ0, φ1)← A(pp)
x0 6= x1 b0 ← Open(pp, P, x0, φ0)

b1 ← Open(pp, P, x1, φ1)

 ≤ negl(λ)

Definition 6. (Polynomial Commitment) A polynomial commitment scheme is
a tuple of protocols C = (Setup,Commit,Open,Eval) where (Setup,Commit,Open)
is a binding commitment scheme for a message space R[X] of polynomials over
some ring R, and function Eval is defined as:

6 Frank Y.C. Lu

• Eval(pp, C, z, y, n; f(X), φ) → b ∈ {0, 1} is an interactive public-coin proto-
col between a PPT prover P and verifier V. Both P and V have a input
commitment C, points z, y ∈ Zp, and a degree n ≥ deg(f(X)). The prover
additionally knows the opening of C to a secret polynomial f(X) ∈ R[X].
The protocol convinces the verifier that f(z) = y.

REval(pp) =

{
〈(C, z, y, n), (f(X), φ)〉 : f ∈ R[X] ∧ deg(f(X)) ≤ n ∧ f(z) = y

∧ Open(pp, C, f(X), φ) = 1

}

Knowledge Soundness : In the Eval protocol, provers must know a polyno-
mial f(X) such that f(z) = y and C is a commitment to f(X). Since Eval is
a public-coin interactive argument, we say this knowledge property as a special
case of witness-extended emulation for Eval, and that a commitment scheme C
has witness-extended emulation if Eval has witness-extended emulation as an
interactive argument for REval(pp).

Zero Knowledge : tuple (Gen,Commit,Open,Eval) is a perfect special
honest-verifier zero-knowledge, extractable polynomial commitment scheme for
polynomials f(X) ∈ R[X]. If (Gen,Commit,Open) is a commitment scheme
for f(X) ∈ R[X] then Eval is an PSHVZK interactive argument of knowledge
for REval(pp).

2.4 Notations

Let G denote any type of secure cyclic group of prime order p, and let Zp denote
an integer field modulo p. We use capital letters to denote group elements in G
except for base elements ~g, h, u ∈ G. A commitment is a group element denoted
by capital letter. e.g. C = ga00 ga11 ...g

an−1

n−1 h
φ ∈ G is a commitment committing

to vector ~a. A group element B ∈ G is also a group element denoted by capital
letter. For base elements used to compute other group elements in our protocol,
such as ~g, h, u ∈ G, we use lower case letters to denote them. Greek letters are
used to label hidden key values. e.g. φ is the blinding key for commitment C on
base element h ∈ G.

We use standard vector notation ~v to denote vectors. i.e. ~a ∈ Znp is a list of
n integers ai for i = {0, 1, ..., n− 1}.

~a ◦ ~z = (a0 · zo, ..., an−1·n−1) ∈ Fn is the Hadamard product of two vectors.

〈~a · ~z〉 =
∑n−1
i=0 ai · zi ∈ Zp is the inner product of two vectors, and ~a · z =

(a0 · z, ..., an−1 · z) ∈ Znp is the entry wise multiplication such that every element
of the first vector ai is multiplied by the second integer z.

Let ~a || b denote the concatenation of the second element to the first vector
and return a new vector with lengh |~a|+ 1. e.g. ~a || b→ (a0, ..., an−1, b) and the
new list will have length n + 1. For 0 ≤ l ≤ n, we use the following format to
represent a vector divided into two slices:

~a[:l] = {a0, ..., al−1} ∈ Fl, ~a[l:] = {al, ..., an−1} ∈ Fl

Title Suppressed Due to Excessive Length 7

When there is only one number inside the bracket in subscript, it stands for
the index number. e.g. ~e[i] = ei Finally, ~0n indicates a vector with n zeros. e.g.
~0n = {01, ..., 0n}.

3 Transparent Polynomial Commitment Protocol That
Supports Standard Groups

In this section, we will start with a quick review on Bulletproofs’ inner product
argument. In the follow up sub-sections, we will introduce a new protocol that
offers logarithmic verifier cost for group exponential operations. In section 4,
we will introduce a computation trick to allow our protocol to achieve true
asymptotic logarithmic verifier cost and communication cost.

3.1 Bulletproofs’ Inner Product Argument Revisited

Let H denote a function that takes four vector inputs and outputs a single
element in G. e.g.:

H(~v1, ~v2, ~v3, ~v4, y) = ~g ~v1[:n′]~g
~v2
[n′:]

~h~v3[:n′]
~h~v4[n′:] · u

y ∈ G

Before the protocol runs, the prover initialize element P using two committed
vectors and their inner product y s.t.:

P = H(~a[:n′],~a[n′:],~b[:n′],~b[n′:], y) = ~g
~a[:n′]
[:n′] ~g

~a[n′:]
[n′:]

~h
~b[:n′]
[:n′]

~h
~b[n′:]
[n′:] · u

y ∈ G

In each round of the recursion, the prover compute and send L,R to the
verifier to enable the verifier to logarithmically reduce the vector size of P :

L = H(~0, ~a[:n′], ~b[n′:], ~0, 〈~a[:n′],~b[n′:]〉) = ~g
~a[:n′]
[n′:]

~h
~b[n′:]
[:n′] · u

〈~a[:n′],~b[n′:]〉 ∈ G

R = H(~a[n′:], ~0, ~0, ~b[:n′], 〈~a[n′:],~b[:n′]〉) = ~g
~a[n′:]
[:n′]

~h
~b[:n′]
[n′:] · u

〈~a[n′:],~b[:n′]〉 ∈ G

The new computed P ′ for the next round is computed from L,R provided by
the prover and the challenge x of each round is chosen by the verifier s.t.

P ′ = Lx
2 · PRx−2

= ~g ′~a
′~h ′

~b′ · uy′ ∈ G

Both the prover and the verifier compute ~g ′ and ~h ′ s.t. ~g ′ = ~g x
−1

[:n′] ◦ ~g
x
[n′:]

and ~h ′ = ~h x[:n′] ◦ ~h
x−1

[n′:] . Only the prover can compute ~a′ and ~b ′ s.t. ~a ′ =

~a[:n′] · x+ ~a[n′:] · x−1 and ~b ′ = ~b[:n′] · x−1 +~b[n′:] · x.

We know for a fact that y′ = 〈~a ′,~b ′〉 = y+〈~a[:n′],~b[n′:]〉·x2+〈~a[n′:],~b[:n′]〉·x−2.

If the prover can provide correct openings ~a ′,~b ′, then the verifier can validate
the inner product argument by checking whether P ′ computed from L,R, P can

8 Frank Y.C. Lu

be opened from the verifier computed base elements ~g ′,~h ′, u. In the recursion
algorithm introduced by Bulletproofs, the prover only provide the openings when
the size of group vectors (|~g ′| and |~h ′|) reach 1(through recursion).

The key contribution of bulletproofs’ recursion mechanism is that it offers
a way to achieve logarithmic communication cost. However, the verifier cost is
still linear due to computation associated with computing ~g,~h in each round.

In many occasions Bulletproofs’ inner product argument has been used as
polynomial commitments until recently when some highly optimized curve based
polynomial commitment schemes come to surface [8]. However, we noticed the
logarithmic reduction approach still has potential if we can make it achieve
logarithmic verification cost.

3.2 Transparent Polynomial Commitment Protocol Definition

The definition of polynomial commitment we will be using is defined in definition
6. In our protocol, coefficients a0, ..., an−1 of a polynomial f(X) is committed
into a group element C = ga00 , ..., g

an−1
n hφ. Upon providing z, y ∈ Zp the prover

creates proof for f(z) = y. Note that g0, ..., gm ∈ Gm where m ≥ n are public
parameters generated before the system is initialized.

We now update the relation REval defined in definition 6 with the inputs we
will be using to construct our polynomial commitment scheme in the following
format: R = {〈(Public Inputs) , (Witnesses)〉 : Relation}.

{〈(~g ∈ Gn, h, u, C ∈ G, z, y, n ∈ Zp), (~a ∈ Znp , φ ∈ Z)〉 : C = ~g ~ahφ ∧ f(z) = y}

Instead of requiring both the prover and the verifier process two committed
vectors for evaluation, we should only require the prover and the verifier to
process the vector that has polynomial coefficients committed in C ∈ G, as
it should be for polynomial commitments. Halo uses similar technique in its
implementation of polynomial commitment scheme.

In our protocol we define and work on a new group element P ∈ G created
from vector commitment C of polynomial f(X) and the result y on evaluation
point z s.t. f(z) = y .

P = C · uy // equivalent to ~g ~ahφuy (1)

Like that of bulletproofs, we also define a function H to help explaining our
protocol. H takes coefficients ~a and value y = f(z) as inputs and convert them
into a single group element as the following equation shows:

H(~a[:n′],~a[n′:], y) = ~g
~a[:n′]
[:n′] · ~g

~a[n′:]
[n′:] · u

y ∈ ~G (2)

Let ~z = {z0, z1, ..., zn−1}. Using the function H, we define three group elements
L,R, P ∈ G to enable verifiers to validate f(z) = y. Note that P computed from
function H match the element we get from equation 1.

L = H(~0n
′
, ~a[:n′], 〈~a[n′:], ~z[:n′]〉) (3)

Title Suppressed Due to Excessive Length 9

R = H(~a[n′:], ~0n
′
, 〈~a[:n′], ~z[n′:]〉) (4)

P = H(~a[:n′], ~a[n′:], y) · hφ // equivalent to C · uy (5)

Both the prover and the verifier use inputs C, y to compute P . L,R are computed
by the prover and sent to the verifier. Upon receiving L,R from the prover, the
verifier will perform the following steps to compute P ′:

1 Verifier generates a random challenge xj ← Zn′p and then send it to the prover.

2 Prover computes ~a ′ = ~a[:n′] + ~a[n′:]xj ∈ Zn′p and and send ~a′ to the verifier

3 Both prover and verifier compute ~z ′ = ~z[:n′] + ~z[n′:]x
−1
j ∈ Zn′p

4 With L,R, ~z ′, the verifiers can compute P ′ = Lx
−1
j PRxj , and outputs ”ac-

cept” if and only if:

P ′ = H(~a ′, ~a ′x−1, 〈~a ′, ~z ′〉) (6)

Note that P ′ is the P value in the next round of the recursion, which we will
explain in the next sub-section.

One noticeable difference between our protocol and that of Bulletproofs’ and
its derivatives is how we compute a′ and z′. Instead of multiplying both left and
right sets by the challenge xj and its inverse, we only multiply the challenge or
its inverse to the right slice of each vector. This simplification has no security
implication since ~a ′ = ~a[:n′]xj +~a[n′:]x

−1
j in bulletproof can be trivially factored

to ~a ′ · x−1j = ~a[:n′] + ~a[n′:]x
−2
j by the verifier (the challenge is only applied

to the right slice of ~a ′), and the same applies to vector ~z ′. This simplification
provides marginal reduction of one group exponential operation when computing
g′i = gi · gx

−1

n′+i for i = {0, ..., n− 1} in our protocol instead of g′i = gx
−1

i · gxn′+i in
that of bulletproofs and its derivatives.

3.3 Recursive Evaluation

Similar to the inner product argument used in Bulletproofs, we can shrank the
polynomial commitment being evaluated here through recursion. Instead of send-
ing ~a ′ ∈ Zn′ , the prover and the verifier can engage in a recursive protocol to
reduce the transcript size by half in each round, until |~a| = 1 in the final round.
The full recursion algorithm is shown in Protocol VerifyPC 1/2. Note that the
right hand side of equation 6 is the same as:

P ′ = ~g ~a
′

[:n′] · ~g
x−1
j ·~a

′

[n′:] · u〈~a
′,~z ′〉 · hφ = (~g[:n′] ◦ ~g

x−1
j

[n′:])
~a ′ · uy · hφ (7)

(~g[:n′] ◦ ~g
x−1
j

[n′:]) is a list of n′ base elements for round j + 1 in the recursion, and

each a′i is the exponent of base g′i = (~gi · ~g
x−1
j

n′+i) in the next round.
In the final round j = f , |~g| = 1 ∧ ~g = B, we have |~a| = 1, |~z| = 1, and

P = Bahφua·z. We use a generalized Shnorr’s protocol similar to that used in
Halo [14] to perform the final check of the protocol. That is, the verifier will
validate the statement f(z) = y if the prover can prove it has the knowledge of
exponents of B, h, u in P . The final validation steps are described as below:

10 Frank Y.C. Lu

1. The prover generates random secrets δ, ε ∈ Zp and compute R = (B ·uz)δ ·hε ∈
G

2. The prover sends R to the verifier, upon receive R, the verifier sample a
random challenge c and send it back to the prover

3. The prover applies challenge c and witnesses a, φ to compute s1, s2 s.t. s1 =
a · c+ δ ∈ Zp, s2 = φ · c+ ∈ Zp and sends s1, s2 to the verifier.

4. The verifier uses committed values P,R, transcripts s1, s2, group bases B, h, u,
and z to compute the left and right hand sides of the equality below and
passes the validation if the equality holds.

P c ·R ?
= (g · uz)s1 · hs2 ∈ G

Note that Bulletproofs’ inner product protocol requires verifiers to compute
all base elements ~g ′ for every round, an expensive task and the primary reason
why it would require O(n) group exponential verifier cost.

3.4 Prover Assisted Logarithmic Computation of Base Element

The most costly operation for the verifier in Bulletproofs’ inner product argu-
ment is the task of computing base elements ~g ′,~h ′ in each round of a recursion.
Although subsequent protocols such as Halo [14] doesn’t need the verifier to

compute the second vector ~h ′, computing ~g ′ in each round is still expensive and
require the verifier to perform n group exponential operations.

We note that the opening check on recursively computed base element is only
performed in the final round j = f , therefore it would be a waste for verifiers
to compute every base element for every round. With this knowledge in mind,
we define the following steps to reduce the verifier’s computation cost to 3 log n
group exponential operations:

1. During the setup phase, both the prover and the verifier compute B =∏n−1
i=0 gi. Note that since gi for i = {0, ..., n − 1} are known during the

protocol initialization phase, this step can be performed before the protocol
is put in use.

2. In round j, the prover compute BR =
∏n′−1
i=0 gn′+i and send it to the verifier.

3. In round j, the verifier compute B′ for round j+1 using challenge xj generated

for this round s.t. B′ = (B/BR) · (BR)x
−1
j ∈ G and that B/BR =

∏n′−1
i=0 gi.

B′ = (B/BR) ·Bx
−1
j

R (8)

4. In round j + 1, both the prover and the verifier set B of rond j + 1 to B′ of
the earlier round j, and restart from step 2.

Note that if a dishonest prover altered BR to B∗R = BR ·D for some D ∈ G
in round j, then using the equation above the B of round j + 1 will become

B∗ = B ·Dx−1
j −1. It would contradict the discrete log relation if the dishonest

Title Suppressed Due to Excessive Length 11

prover can find ~a on new ~g ∗ 6= ~g in round j + 1 s.t. B∗ =
∏n−1
i=0 g

∗
i and still pass

the validation in the final round (See Theorem 1 and Appendix A).
Instead of computing n′ new bases for the following round each time, the

steps above only require verifiers to perform one group exponential operation for
each round. However, we have to prove that doing so would not give a dishonest
prover a chance to attack the protocol. This is necessary in proving the witness
extended emulation of Kevlar protocol in corollary 1 and theorem 2

Theorem 1. (Prover Assisted Logarithmic Computation of Base Element). Sound-
ness is preserved in the logarithmic computation of the final base element intro-
duced in this section or we find a non-trivial discrete log relation among ~g.

Proof: Our protocol requires the prover to honestly compute BR for each
round j = {1, ..., f−1}, where f = log n. The prover’s behavior is only validated
in the final round j = f , where the prover is required to prove it knows the
opening a on the final base B or Bf (we use subscript here to indicate this is the
B in round f) s.t. P = Bahφua·z. We need to show that if a computationally
bounded dishonest prover didn’t follow the protocol and forced the verifier to
compute B∗ 6= B in the final round by sending B∗R 6= BR in any round, then
it can’t find an opening a∗ s.t. B∗a

∗
= Ba or obtain a non-trivial discrete log

relation among ~g. We will explain our proof in two possible cases.

In the first case we show that if the BR sent in round j = f − 1 is invalid,
then the prover is unable to provide a valid opening a in round f . In the second
case, we will demonstrate that if the BR sent in round 1, ..., f −2 is invalid, then
the prover is also not able to provide a valid opening a in round f .

In round j = f − 1, if the prover sent altered value B∗R,f−1 6= BR,f−1 (sub-
script f−1 represent the round number j = f−1) to the verifier implies the base
element in the final round is B∗f (or B′∗f−1) 6= Bf . If we say B∗R,f−1 = BR,f−1 ·D
for some element D ∈ G chosen by a dishonest prover, the verifier will compute
a forged B′∗f−1 6= B′f−1 using challenge xj(j = f − 1) with equation 8 s.t.:

B′∗f−1 = (Bf−1/(B
∗
R,f−1)) · (B∗R,f−1)x

−1
j = B′f−1 ·D(x−1

j −1) (9)

To pass the validation step defined in the last round, the dishonest prover
need to find an opening s 6= a (a is the exponent on final base Bf in the final
round j = f) s.t. it can satisfy the equality below:

(B′f−1 ·D(x−1
j −1))s = (Bf)a (10)

We know that B′f−1 in round f − 1 is Bf in round f . We now reduce the

equation above to D(x−1
j −1)·s = (Bf)a−s, and then further simplify it to that in

equation 11. We can now observe that in order to compute s, the discrete log
relation between D and Bf must be known:

D(x−1
j −1)s·(a−s)

−1

= Bf (11)

12 Frank Y.C. Lu

However, D is computed in round j = f − 1 and sent to the verifier before
the challenge xj is ever made available.

Let t be the discrete log relation between D and Bf . We know for a fact

that |~g| = 2 in round j = f − 1. To compute D s.t. Dt = g1 · g2x
−1
j (or D =

gt
−1

1 · g2x
−1
j t−1

) for some t in round f − 1 (or to find such a t in round f), the
dishonest prover either know the the discrete log relation between g1, g2, which
contradicts the discrete log relation among ~g, u (since g1, g2 in round f − 1 are
created from ~g in public parameter and challenges of each round), or make the
correct guess on xj so D can be created as a factor of accurately guessed Bf ,
which only happens for a negligible probability in a large field.

In the second case we have one or more B∗R sent in earlier rounds where
j < f − 1. In such case the base element in the round j = f − 1 is equivalent to
B∗f−1 = Bf−1 + E for some E ∈ G computed along the way. We can therefore
rewrite equation 8 to:

B′∗f−1 = (Bf−1 · E)/BR,f−1 · (BR,f−1)x
−1
j (12)

Once the process reach the final round f , the dishonest prover need to provide
an opening s 6= a (the exponent of base B in the final round) s.t. the right hand
side of equality 12 (after simplification the right hand side of equation 12 is Bf ·E
) can satisfy the equality below :

(Bf · E)s = (Bf)a (13)

The equality above can be reduced to (E)s = (Bf)a−s and then to:

Es(a−s)
−1

= Bf (14)

This implies to find such s, the prover must find the discrete log relation
between E and Bf , which contradicts discrete log relation since it implies the
discrete log relation among ~g can be extracted (because Bf is constructed from
~g) and challenges xj in each round j, or challenge xj can be accurately predicted
by the dishonest prover which is negligible in a large field.

Finally, we extend the 2nd case further to test the scenario whether a dis-
honest prover can some how find such s by using a forged B∗R,f−1 = BR,f−1 ·D
for some D ∈ G in round f − 1. Under such scenario the equality defined in 12
can be rewritten to :

B′∗f−1 = (Bf−1 · E)/(BR,f−1 ·D) · (BR,f−1 ·D)x
−1
j (15)

After performing some reduction calculation, we can simplify the equation
15 as follows (note that B∗f = B′∗f−1):

B∗f = Bf · E ·Dx−1
j −1

Title Suppressed Due to Excessive Length 13

As in the first case, the dishonest prover need to find an opening s 6= a s.t.:

(Bf · E ·D(x−1
j −1))s = Bf

a

The above equality can be trivially simpelfied to:

(E ·D(x−1
j −1))s(a−s)

−1

= Bf

We can observe that to find such s, the dishonest prove must know the discrete

log relation between (E · D(x−1
j −1)) and Bf . To make it easier to observe we

make an assumption that the dishonest prover know the relation between E,D
s.t. E = Dw for some w, we therefore can rewrite the equality above to:

D(s(x−1
j −1)+ws)(a−s)

−1

= Bf (16)

As explained in the first case, knowing the discrete log relation between D
and Bf implies either discrete log relation among ~g can be extracted, which con-
tradicts the discrete log relation, or challenge xj can be accurately predicted by
the dishonest prover so that s/he can compute D from predicted B′f−1(or Bf),
which has a negligible probability in a large field.

3.5 The Complete Protocol With Logarithmic Verification Cost on
Group Exponential Operations

The protocol that satisfies the first relation defined in this section is illustrated
in Protocol VerifyPC 1, which calls Protocol VerifyPC 2 to recursively run down
the statement until we get to n = 1 (number of degree terms in a polynomial),
where the verifier will perform the final check to decide whether the statement
f(z) = y is valid or not.

Input :(~g ∈ Gn, h, u, C ∈ G, z, y, n ∈ Zp;~a ∈ Znp , φ ∈ Zp)
P ′s input : (~g, h, u, C, z, y, n;~a, φ)

V ′s input : (~g, h, u, C, z, y, n)

V computes :

x
$←− Zp

V → P : x

P ′ = C · ux·y ∈ G

B =

n−1∏
i=0

gi ∈ G // initial B, should be pre-computed

~z = z0, z1, ..., zn−1 ∈ Znp
call VerifyPC 2(~g, h, ux, P ′, B, ~z, y, n; ~a, φ)

Protocol VerifyPC 1

14 Frank Y.C. Lu

Protocol VerifyPC 1 initialize all input parameters of our protocol and then
calls Protocol VerifyPC 2 to recursively evaluate committed polynomial C.

Input :(~g ∈ Gn, h, u, P,B ∈ G, ~z ∈ Znp , y, n ∈ Zp;~a ∈ Znp , φ ∈ Zp)
P ′s input : (~g, h, u, P,B, ~z, y, n; ~a, φ)

V ′s input : (~g, h, u, P,B, ~z, y, n)

if n = 1 :

V computes :

if ! ShnorrV erify(P,B, z; a, φ); reject

else : accept

else :

if n is not even :

n = n+ 1 ∈ Zp; ~a = ~a || 0; ~z = ~z || 0 //append 0 to ~a , ~z

P computes :

n′ = n/2 ∈ Zp

cL =

n′−1∑
i=0

aizn′+i ∈ Zp, cR =

n′−1∑
i=0

an′+izi ∈ Zp

L =

n′−1∏
i=0

ga
i

n′+i · ucL ∈ G, R =

n′−1∏
i=0

ga
n′+i

i · ucR ∈ G

BR =

n′−1∏
i=0

gn′+i ∈ G

P → V : L,R,BR

V computes :

xj
$←− Zp

V → P : xj

P computes :

~g ′ = ~g[:n′] ◦ (~g[n′:])
x−1
j ∈ Gn

′

~a ′ = ~a[:n′] + ~a[n′:] · xj ∈ Zn
′

p

V computes :

B′ = (B/BR) · (BR)x
−1
j ∈ G

~z ′ = ~z[:n′] + ~z[n′:] · x−1j ∈ Zn
′

p

P,V computes :

P ′ = Lx
−1
j · P ·Rxj

call VerifyPC 2(~g, h, u,B′, P ′, U, ~z ′, y, n′; ~a, φ)

Title Suppressed Due to Excessive Length 15

Protocol VerifyPC 2

Protocol VerifyPC 2 calls protocol ShnorrCheck to perform the final check by
validating knowledge of exponents on B, h, u match that on P .

Input :(P,B ∈ G, z ∈ Zp; a, φ ∈ Zp)
P ′s input : (P,B ∈ G, z ∈ Zp; a, φ ∈ Zp)
V ′s input : (P,B ∈ G, z ∈ Zp)
P computes :

δ, ε
$←− Zp

R = (B · uz)δ · hε ∈ G
P → V : R

V computes :

c
$←− Zp

V → P : c

P computes :

s1 = a · c+ δ ∈ Zp
s2 = φ · c+ ε ∈ Zp

P → V : s1, s2

V validates :

if P c ·R ?
= (g · uz)s1 · hs2 ∈ G

return true

else return false

Protocol ShnorrCheck

Corollary 1. (Polynomial Commitment Evaluation). The scheme presented in
Protocol VerifyPC1 has perfect completeness, honest verifier zero knowledge, and
witness-extended-emulation for either extracting a non- trivial discrete logarithm
relation between ~g, h, u or extracting a valid witness ~a.

The proof of corollary 1 is defined in theorem 2, which is an extension of
corollary 1.

4 Full Protocol with Complete Logarithmic Verification
Cost

The protocol introduced in section 3 achieved logarithmic verifier cost for group
exponential operations. However, the asymptotic verification cost it is still linear

16 Frank Y.C. Lu

because the verifier needs to compute ~z ′ for every iteration. Although field oper-
ations are usually considered cheap, they add up when the polynomial gets large
(e.g. when the number of degree terms ≥ 215). In this section we will introduce
a computation trick that will bring the asymptotic verification cost to O(log n).

4.1 Achieving Logarithmic Verification Cost for Field Operations

As the degree of a polynomial grows toward and beyond 220, the concrete verifier
cost will increasingly get dominated by 1n + log n field multiplications and 1n
field additions in protocol VerifyPC 1/2. Furthermore, if ~z is computed by the
verifier from z as in the case of protocol VerifyPC 1, it would require another
1n field multiplication operations in Zp. While allowing the verifier to compute
input vector ~z for each zi will give the protocol the flexibility to evaluate multi-
variate/linear polynomials, we are more interested in the univariate case which
is easier to standardized and has more room for improvement. In sum, there
are a total of 2n + log n field multiplications the verifier needs to perform in
protocol VerifyPC 1/2 and we would like to make it sublinear.

To bring down the asymptotic verifier cost we need a mechanism to make
aforementioned field operations logarithmic as well. In this section we will in-
troduce a computation trick to reduce the verifier field computation cost from
2n+ log n in protocol VerifyPC 1/2 to O(log n).

In each round of the recursion process we see in Protocol VerifyPC2, the
verifier needs to compute z′i for i = {0, 1, ..., n′−1}. Computing |~z ′| = n′ elements
require n′ field addition and n′ field multiplication operations. Each z′i is defined
as:

z′0 = z0 + zn′+0 · x−1j (17)

z′1 = z1 + zn′+1 · x−1j (18)

... (19)

... (20)

z′n′−1 = zn′−1 + zn−1 · x−1j (21)

If we divide the vector ~z ′ to left and right sets s.t. left set = z′0, ..., z
′
n′/2−1

and right set = z′n′/2, ..., z
′
n′−1. We observe that we can compute the right set

from the left set by multiplying zn′/2 s.t.

z′n′/2+0 = z′0 · zn′/2 (22)

z′n′/2+1 = z′1 · zn′/2 (23)

... (24)

... (25)

z′n′−1 = z′n′/2−1 · zn′/2 (26)

This implies we would only need the verifier in the round j − 1 to compute
n/2 = n′ inputs z0, ..., zn′/2−1, zn′ , ..., zn′+n′/2, instead of n inputs z0, ..., zn−1,

Title Suppressed Due to Excessive Length 17

therefore halve the computation cost in the previous round (j − 1). If this pro-
cedure can be applied recursively, we can reduce the total field operations to
O(log n).

In our new setting, we define zl, zr to represent the leading element of left
and right sets before the recursion starts as follows:

zl = z0 (27)

zr = zl · zn/2 (28)

z0 is also “1”, referencing the constant term in f(x). In each of the subsequent
rounds, new z′l, z

′
r are computed from inputs zl, zr sent from the previous round

j − 1 s.t.:

z′l = zl + zr · x−1j (29)

z′r = z′l · zn
′/2 (30)

In the equations above, z′l in round j is computed from two inputs (zl, zr)
of the previous round j − 1, and z′r in each round is computed from z′l in the

same round and zn
′/2. This implies that: 1) In each round only one element z′l

is computed using inputs of the previous round. 2) In each round there are only
two values the verifier needs to compute for the following round.

In round j = f − 1, the verifier compute the final z′l from two inputs (zl, zr)
of the earlier round (j = f−2). As we reverse back the recursion we can trivially
observe that in each round the verifier only needs to compute two values z′l, z

′
r for

the final zl to be computed in round j = f − 1 (this value matches the trivially
computed value z in protocol VerifyPC 2) . We can visually observe this process
in table 1. Note the table doesn’t include a column for the final round f or j = 5,
where the prover provide the knowledge proof to the verifier.

Instead of computing powers for all terms in f(X) e.g. zi for i = {z0, z1..., zn−1}
as in protocol VerifyPC 2, the updated protocol only need the verifier to com-
pute one value zn

′/2 for each round. These values can be computed and stored
in ~e during the initialization phase using equations below:

e1 = z ∈ Zp (31)

ei+1 = e2i ; for i = {1, ..., log n} ∈ Zlog n
p (32)

Using table 1 we can visual an example of the recursion process: we use
subscript j to indicate the round number s.t. zj,i is element zi in round j. Bold
symbol zj,0 is z′l in round j, and underlined zj,n′/2 is z′r of round j. One can

easily observe that each zj,n′/2 = zj,0 · zn
′/2

as equation 29 specified.

To make table 1 easier to discern, we don’t show the negative exponent on
each xj (e.g. xj means x−1j in table 1)

18 Frank Y.C. Lu

Table 1: Logarithmic Computation of z
Recursive Iterations to compute z

j = 0; j = 1 j = 2 j = 3 j = 4

z0 = z0 z′
1,0 = z0 + z8x1 z′

2,0 = z′
1,0 + z′

1,4x2 z′
3,0 = z′

2,0 + z′
2,2x3 z4,0 = z′

3,0 + z′
3,1x4

z1 = z1 z′1,1 = z1 + z9x1 z′2,1 = z′1,1 + z′1,5x2 z′3,1 = z′2,1 + z′2,3x3

z2 = z2 z′1,2 = z2 + z10x1 z′2,2 = z′1,2 + z′1,6x2

z3 = z3 z′1,3 = z3 + z11x1 z′2,3 = z′1,3 + z′1,7x2
z4 = z4 z′1,4 = z4 + z12x1

z5 = z5 z′1,5 = z5 + z13x1
z6 = z6 z′1,6 = z6 + z14x1
z7 = z7 z′1,7 = z7 + z15x1
z8 = z8

z9 = z9

z10 = z10

z11 = z11

z12 = z12

z13 = z13

z14 = z14

z15 = z15

n′1 = 8 n′2 = 4 n′3 = 2 n′4 = 1

By observing table 1, we can visually see how “missing” values from an earlier
round are eventually captured in the final computation of zl in the final round:

In round j = 1, we only computed z′1,0 as z′l and z′1,4 as z′r (or z1,n′/2). How-
ever, the rest of the un-computed elements of this round z′1,1, z

′
1,2, z

′
1,3, z

′
1,5, z

′
1,6, z

′
1,7

will be counted to the computation of the final value in subsequent rounds.
In round j = 2, computing z′r(z

′
2,2) from z′l(z

′
2,0) will count z′1,2, z

′
1,6 (z1,(n′2/2),

z1,(n′2/2)+n′2) to the computation.
In round j = 3, computing z′r(z

′
3,1) will count z′1,1, z

′
1,3, z′1,5, z′1,7 (z1,(n′3/2),

z1,(n′3/2)+1·n′3 , z1,(n′3/2)+2·n′3 , z1,(n′3/2)+3·n′3) to the recursive computation, which
is then used to compute z4,0 in the next round (j = 4). z4,0 is the final zl we
use in the final round (n = 1) to validate the relation y = f(z).

We are now ready to define the complete protocol in FullVerifyPC 1/2 in the
next subsection, and define theorem 2 as follows:

Theorem 2. (Polynomial Commitment Evaluation with Logarithmic Verifica-
tion Cost). The argument presented in Protocol FullVerifyPC 1/2 has perfect
completeness, perfect special honest verifier zero knowledge, and witness-extended-
emulation for either extracting a non-trivial discrete logarithm relation between
~g, h, u or extracting a valid witness ~a.

The proof of theorem 2 is in Appendix A

4.2 Full Protocol with Complete Logarithmic Verification Cost

We now present the full protocol for polynomial evaluation with asymptotic
logarithmic verifier cost. Note that prover’s work is identical to that defined in

Title Suppressed Due to Excessive Length 19

protocol VerifyPC 1/2.

Input :(~g ∈ Gn, h, u, C ∈ G, z, y, n ∈ Zp;~a ∈ Znp , φ ∈ Zp)
P ′s input : (~g, h, u, C, z, y, n;~a, φ)

V ′s input : (~g, h, u, C, z, y, n)

V computes :

e1 = z ∈ Zp
ei+1 = e2i ; for i = {1, ..., log n} ∈ Zlog n

p

zl = z ∈ Zp
zr = zl · ~e[log n] ∈ Zp

x
$←− Zp

V → P : x, zl, zr, ~e

P,V computes :

P = C · ux·y ∈ G

B =

n−1∏
i=0

gi ∈ G

call FullVerifyPC 2(~g, h, ux, B, P,~e, zl, zr, y, n, 1; ~a, φ)

Protocol FullVerifyPC 1

Protocol FullVerifyPC 1 initializes parameters of our protocol using its inputs
and then calls Protocol FullVerifyPC 2 to recursively evaluate committed poly-
nomial C at evaluation point z s.t. y = f(z).

20 Frank Y.C. Lu

Input :(~g ∈ Gn, h, u,B, P ∈ G, ~e ∈ Zlog n
p , zl, zr, y, n, j ∈ Zp;~a ∈ Znp , φ ∈ Zp)

P ′s input : (~g, h, u,B, P,~e, zl, zr, y, n, j; ~a, φ)

V ′s input : (~g, h, u,B, P,~e, zl, zr, y, n, j)

if n = 1 :

V computes :

if ! ShnorrV erify(P,B, z; a, φ); reject

else : accept

else :

if n is not even :

n = n+ 1 ∈ Zp ~a = ~a || 0; //append 0 to ~a ,

P computes :

n′ = n/2 ∈ Zp

cL =

n′−1∑
i=0

aizn′+i ∈ Zp, cR =

n′−1∑
i=0

an′+izi ∈ Zp

L =

n′−1∏
i=0

ga
i

n′+i · ucL ∈ G, R =

n′−1∏
i=0

ga
n′+i

i · ucR ∈ G

BR =

n′−1∏
i=0

gn′+i ∈ G

P → V : L,R,BR

V computes :

xj
$←− Zp

V → P : xj

P computes :

~g ′ = ~g[:n′] ◦ (~g[n′:])
x−1
j ∈ Gn

′

~a ′ = ~a[:n′] + (~a[n′:])xj ∈ Zn
′

p

V computes :

B′ = (B/BR) · (BR)x
−1
j ∈ G

z′l = zl + zr · x−1j ∈ G
if n′ 6= 1 :

z′r = z′l · ~e[log n−j] ∈ Zp
j′ = j + 1 ∈ Zp // keeping track of recursion rounds

P,V computes :

P ′ = Lx
−1
j · P ·Rxj

call FullVerifyPC 2(~g ′, h, u,B′, P ′, ~e, zl
′, zr

′, y, n′, j′; ~a, φ)

Title Suppressed Due to Excessive Length 21

Protocol FullVerifyPC 2

4.3 Batching

A common technique to improve the evaluation performance and lower the com-
munication cost of evaluating l polynomials is batching. Our polynomial com-
mitment scheme can be processed in batch similar to the method defined in Sonic
[21] and adopted by various zero-knowledge schemes using polynomial commit-
ments [20] [16] [8]. See Appendix B for the detailed description of this technique.
Batching technique is not used in our benchmark testing detailed in the next
section.

5 Complexity Analysis and Benchmark

The biggest advantage of our polynomial commitment scheme is that it does not
need to use expensive pairing based or group of unknown order groups to achieve
transparency while still providing logarithmic verifier cost and communication
cost. While the asymptotic performance of our protocol is comparable to the
current state of art, its concrete verifier and communication costs is almost one
order of magnitude more efficient than the current state of art schemes.

Techniques we use can be easily configured to support batch proof as men-
tioned earlier, and be used to improve the inner product argument in Bullet-
proofs’ Zero Knowledge Range Proof and therefore significantly improve the
verifier performance of Bulletproofs’ ZKRP.

Table 2: Performance Comparison with Other Polynomial Commitment Schemes
Scheme Transparent Prover Verfier Proof Size

DARK • O(n log n)Gu exp O(n log n)Gu exp O(log n)Gu

Bulletproofs • O(n)G exp O(n)G exp O(log n)G
KATE ◦ O(n)G1 exp 2 Pairing O (1)G1

RS-IOP • O (λn) H O (λ log2n) H O(λ log2n) H

Dory • O(n1/2)P O(log n)GT exp O (log n)GT

This Work • O(n)G exp O(log n)G exp O(log n)G

The symbol Gu denotes a group of unknown order, G1, G2, and GT are
the first, second, and third group of a bilinear map (pairing), and H is either
the size of a hash output, or the time it takes to compute a hash based on
context. Compared to G (curve25519 implementation) that our protocol uses, GT
is approximately 6 times more expensive in size and 10 times more expensive in
group exponential operation, and GU is approximately 20+ times more expensive
in size and 600+ times more expensive in group exponential operation [8]. We
neglect the impact of Pippenger style savings in the comparison table.

22 Frank Y.C. Lu

The concrete cost of our protocol is dominated by 3nG exponential prover
cost, 3 log nG exponential verifier cost, and 3 log nG communication cost.

10−2

10−1

100

101

102

103

104

210 212 214 216 218 220 222 224

Polynomial Degree

T
im

e(
s)

Kevlar

Dory

(a) Prover Cost

100

101

102

210 212 214 216 218 220 222 224

Polynomial Degree

T
im

e(
m

s)

(b) Verifier Cost

29 212 215 218 221 224
100

101

102

Polynomial Degree

K
il

o
B

y
te

s(
K

B
)

(c) Communication Cost

29 212 215 218 221 224
101

102

103

Polynomial Degree

B
y
te

s

(d) Commitment Size

Now we show the result of our benchmark testing. The test is performed
on a Intel(R) Core(TM) i7-9750H CPU @2.60GHz. We wanted to test against
Dory (which we believe is the current state of art) but we couldn’t find any
open sourced code for Dory. Instead we copied the benchmark numbers from
Dory paper and marked them with red dashed line. While Dory’s benchmark
is performed on multilinear polynomials, the concrete cost is the same for both
multilinear and univariate polynomials in Dory is 9m+O(1)GT s.t.m = 1

2 log n+
O(1) in verifier cost [8], communication cost is both at 6 log nGT [8], and prover
cost is both dominated by n1/2P [8].

Please note that since Dory’s benchmark numbers are presented in graphs
so we have to do our best approximation here, and we don’t believe the error
gap is significant enough to impact our analysis. Also note that Dory’s test is

Title Suppressed Due to Excessive Length 23

performed on an AMD Ryzen 5 3600 CPU @3.60Ghz. Since both tests are run
in single thread mode, we believe the differences in processing power should be
minor and not impacting our analysis.

Our test shows Kevlar (blue line) is better in almost all categories except
the prover cost for large circuits n > 212. This is expected since Dory offer
square root asymptotic prover cost. However, kevlar offers consistent ≥11X im-
provement on verifier cost, ≈9X improvement on communication cost, and ≈3X
improvement on commitment size.
≥11X improvement on verifier cost is comparable to the difference between

9m + O(1)GT of Dory for univariate polynomial and 3 log n + 2G of Kevlar.
(assuming the group exponential cost of GT is ≥ 10X the group exponential cost
of G in curve25519, Kevlar is about 16X more efficient than Dory).
≈9X improvement on communication cost is strictly constant to the differ-

ence between (6m + 7)GT + (3m + 3)(G2 + G1) + 8F of Dory for univariate
polynomial and (3 log n+ 1)G + 2F of Kevlar,

Finally, the ≈3X commitment size saving is exactly the size differences be-
tween G and Gt.

References

1. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for R1CS, 2019.

2. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete
log setting. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 327–357. Springer, 2016.

3. Benedikt Bünz and Alessandro Chiesa and Pratyush Mishra and Nicholas
Spooner. Proof-Carrying Data from Accumulation Schemes. Cryptology ePrint
Archive, Report 2020/499, 2020. https://eprint.iacr.org/2020/499.

4. A. R. Block, J. Holmgren, A. Rosen, R. D. Rothblum, and P. Soni. Time- and
space-efficient arguments from groups of unknown order. Springer-Verlag, 2021.

5. Benedikt B¨unz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE
Computer Society Press, May 2018.

6. B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from DARK compilers.
IACR Cryptology ePrint Archive, 2019:1229, 2019.

7. S. Dobson, S. D. Galbraith, and B. Smith. Trustless groups of unknown order
with hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196, 2020.

8. J. Lee. Dory: Efficient, Transparent arguments for Generalised Inner Products
and Polynomial Commitments. Cryptology ePrint Archive, Report 2020/1274.
2020.

9. A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. Cryptology ePrint Archive, Report 2019/1076,
2019.

10. Jonathan Bootle and Alessandro Chiesa and Yuncong Hu and Michele Orrù.
Gemini: Elastic SNARKs for Diverse Environments. Cryptology ePrint Archive,
Paper 2022/420, 2022, https://eprint.iacr.org/2022/420.

24 Frank Y.C. Lu

11. Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for correctness
of a shuffle. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 379–396. Springer, Heidelberg, April 2008.

12. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof-systems (extended abstract). In 17th ACM STOC, pages
291–304. ACM Press, May 1985.

13. J. Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II, pages 305–326, 2016.

14. S. Bowe, J. Grigg, and D. Hopwood. Recursive proof composition without a
trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.

15. R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-efficient
zkSNARKs without trusted setup. In SP, 2018.

16. A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to
Polynomials and Their Applications”. In: Proceedings of the 16th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity. ASIACRYPT ’10. 2010, pp. 177–194.

17. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In CCS, 2017.

18. Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party com-
putation. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
171–189. Springer, Heidelberg, August 2001.

19. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zksnarks with univer-
sal and updatable srs. Cryptology ePrint Archive, Report 2019/1047, 2019.
https://eprint.iacr.org/2019/1047.

20. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations
over lagrangebases for oecumenical noninteractive arguments of knowledge. Cryp-
tology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

21. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge snarks from linear-size universal and updatable struc-
tured reference strings. Cryptology ePrint Archive, Report 2019/099, 2019.
https://eprint.iacr.org/2019/099.

22. S. T. V. Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup”. In: 40th Annual International Cryptology Conference. CRYPTO
’20. 2020, pp. 704–737.

23. J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent polynomial delegation and
its applications to zero knowledge proof. In SP, 2020.

Appendiex

A. Proof for Theorem 2

Proof. Perfect completeness follows because Protocol FullVerifyPC 1 is an in-
stance for the relation REval defined in definition 6 and refined in section 3.2
that calls Protocol FullVerifyPC 2 to recursively process the polynomial f(X)
and evaluation point z, which is trivially complete.

Title Suppressed Due to Excessive Length 25

To prove PSHVZK, we define a simulator S to prove that it can simulate
all transcripts indistinguishable from that created by a valid prover. We also
define another simulator SDL to simulate transcripts for Proof of Discrete Log
protocol, which we use Schnorr’s protocol to implement in our system.

Once the recursion starts, simulator S randomly generates proof elements
L,R,BR ∈ G for each round regardless of what challenge xj received from the
verifier and doesn’t need to do anything special such as rewinding.

Once the process reach the final round when n = 1, the simulator first sends
some random R to the verifier to receive the challenge c and then rewind. Using
challenge c the simulator to obtain Rd, Re from randomly generated s1, s2 s.t.

Rd = (B · uz)s1/(B · uz)a·c ∈ G
Re = hs2/hφ·c ∈ G

Rd is equivalent to (B · uz)δ for some unknown δ and Re is equivalent to hε for
some unknown ε. The simulator then reconstructs new R∗ = Rd · Re and send
it to the verifier. The verifier then use R∗ to pass the validation test since:

P c ·R∗ = (B · uz)ac+δ · hφc+ε ∈ G

With challenge c known we can simulate transcripts R∗, s1, s2 indistinguish-
able from any real prover, we therefore conclude Protocol FullVerifyPC 1/2 is
PSHVZK.

To prove knowledge soundness, we first construct an extractor Xp for Protocol
FullVerifyPC2 (would also apply to Protocol FullVerifyPC2 since the prover work
on two protocols are identical) and show that it either extract witnesses ~a, φ or
discovers a non-trivial discrete log relation among ~g, h, u. For each recursive step
we demonstrate that on inputs (~g, h, u, P), the extractor can either efficiently
extract witness ~a from the prover, or show a non-trivial discrete log relation
among ~g, h, u.

In the final round of the recursion when |~g| = 1 ∧ n = 1, the process reaches
protocol ShnorrVerify. After receiving R from the prover, the extractor Xp gen-
erates challenges c1 and gets the first pair s11, s12 from the prover and then
rewinds to get the second pair s21, s22 from the prover using the second chal-
lenge c2. It is trivial to retrieve witness a using challenges c1, c2 and transcripts
s11, s21 since s11−s21 = (ac1 +δ)− (ac2 +δ) = a(c1−c2), and to extract witness
φ from c1, c2 and s12, s22 since s12 − s22 = (φc1 + ε) − (φc2 + ε) = φ(c1 − c2).
With a, φ we can just check if the equality holds:

P = Bahφua·z

If it is not true then we get a non-trivial discrete log relation among B, h, u.

For each of the recursive step, the extractor Xp communicates with the prover
and get L,R,BR in each round. By rewinding the prover four times with four
different challenges xj1, xj2, xj3, xj4 in which xji 6= xjk for 1 ≤ i < k ≤ 4, the

26 Frank Y.C. Lu

extractor obtains four pairs of ~a ′i ∈ Zp that satisfies the equation:

Lx
−1
ji · P ·Rxji =

n′−1∏
i=0

(~g[:n′] ◦ ~g
x−1
ji

[n′:])~a
′
· u〈~a, ~z〉 · hφ (33)

we can use the first three challenges xj1, xj2, xj3 to compute w1, w2, w3 ∈ Zp

v1 =

3∑
i=1

wi · x−1ji = 1, v2 =

3∑
i=1

wi = 0 v3 =

3∑
i=1

wi · xji = 0 (34)

taking the linear combination of w1, w2, w3 and transcripts L,R received from
the protocol, the extractor can computer ~aL and cL s.t. L = ~g ~aLucL . From
equation 3, we see that ~aL = (~0n

′ ||~a[:n′]). With different choices of w1, w2, w3

for v1 = 0, v2 = 1, v3 = 0 and v1 = 0, v2 = 0, v3 = 1, the extractor also get ~aR, cR
and ~aP , cP s.t. R = ~g ~aRucR , and P = ~g ~aP ucP hφ. With equation 3, we see that:

~aL = (~0n
′
|| ~a[:n′])

~aR = (~a[n′:] || ~0n
′

)

~aP = (~a[:n′] || ~a[n′:])

We now rewrite the equation above to:

~g ~aL·x
−1
j +~aP+~aR·xj · ucL·x

−1
j +cP+cR·xj · hφ = ~g ~a

′

[:n′]~g
x−1
j ·~a

′

[n′:] · u〈~a
′, ~z ′〉 · hφ (35)

The exponents of the right hand side of equation 35 is :

~a ′ = ~aL,[:n′] · x−1j + ~aP,[:n′] + ~aR,[:n′] · xj
~a ′ · x−1j = ~aL,[n′:] · x−1j + ~aP,[n′:] + ~aR,[n′:] · xj
〈~a ′, ~z ′〉 = cL · x−1j + cP + cR · xj

(36)

The first line of equation 36 is the exponents of base ~g[:n′], the second line is

the exponents of base ~g
x−1
ji

[n′:] , and the third line is the exponent of base u, all of

which are the bases of the equation on the right hand side of equality 35. If any
of these equalities do not hold, then we obtain a non-trivial discrete logarithm
relation among generators (g0, ..., gn−1, u).

The base elements on the right hand side of the equation 35 must also satisfy:

BR =

n′−1∏
i=0

~g[n′:] , B/BR =

n′−1∏
i=0

~g[:n′] (37)

Plugging the equalities above to equation 33 implies the base element inside
prentice of equation 33 is:

B/BR ·B
x−1
j

R =

n′−1∏
i=0

(~g[:n′] ◦ ~g
x−1
j

[n′:]) (38)

Title Suppressed Due to Excessive Length 27

If a dishonest prover sent B∗R = BR · D for some element D, then the element

in parentheses of equation 33 must be equivalent to (~g[:n′] ◦ ~g
x−1
j

[n′:] · D
x−1
j −1). If

a corresponding a ′i can still be extracted from bases g′i = (gi ◦ g
x−1
j

n′+i · D
x−1
j −1)

for i = {0, 1, ..., n′ − 1} s.t. the equality specified in the equation 33 can still be
satisfied, then we also obtain a non-trivial discrete logarithm assumption between
the generators (g0, ..., gn−1, u), or the dishonest prover made the correct guess
on challenge xj s.t. s/he can compute D from predicted ~g ′ which has a negligible
probability in a large field. While the opening check on B is only validated when
n = 1, this shows sending B∗R 6= BR by dishonest prover in any round will fail
the validation or contradict the discrete log relation assumption.

From the first two lines of equations 36, we can conclude that for each chal-
lenge xj ∈ {xj1, xj2, xj3, xj4} that:

~aL,[:n′] · x−1j + (~aR,[:n′] −~aP,[n′:]) · xj + (~aP,[:n′] −~aL,[n′:]) +~aR,[n′:] · x2j = 0 (39)

The only way for the equality in 35 to hold for all challenges xj1, xj2, xj3, xj4 ∈ Zp
is if:

~aL,[:n′] = ~aR,[n′:] = 0

~aR,[:n′] = ~aP,[n′:]

~aP,[:n′] = ~aL,[n′:]

(40)

By applying the relations above to the first equality defined in 35 , we can see
that for every xj ∈ {xj1, xj2, xj3, xj4} that ~a ′ = ~aP,[:n′] + ~aP,[n′:] · xj .

Using these values we see that the last equality of 35 can be represented as:

cL · x−1j + cP + cR · xj = 〈~a ′, ~z ′〉
=〈~aP,[:n′], ~z[:n′]〉+ 〈~aP,[n′:], ~z[n′:]〉+ x · 〈~aP,[n′:], ~z[:n′]〉

+ x−1j · 〈~aP,[:n′], ~z[n′:]〉
=〈~aP , ~z〉+ xj · 〈~aP,[n′:], ~z[:n′]〉+ x−1j · 〈~aP,[:n′], ~z[n′:]〉

This equation holds for all xj ∈ {xj1, xj2, xj3, xj4}, and we can conclude that
〈~aP , ~z〉 = cP = 〈~a, ~z〉, or we obtain a non-trivial discrete logarithm relation
among generators (g0, ..., gn−1, u).

Finally, we show that using Protocol FullVerifyPC 1 we can construct an
extractor X that uses extractor Xp of Protocol FullVerifyPC 2. The behavior of X
is similar to that of Bulletproofs [5]. On inputs (~g, h, u, C, z, y, n;~a, φ) X runs the
prover with a challenge x1 and then uses the extractor Xp to extract witness ~a1, φ
such that C · ux1·y = ~g ~a1hφux1·y. Rewinding the prover with a new challenge x2
and run the extractor Xp again to extract a second witness ~a2 such that C·ux2·y =
~g ~a2hφux2·y. The soundness implies that we can either compute u(x1−x2)·y =
~g ~a1−~a2ux1·y−x2·y Or we get a non-trivial discrete logarithmic relation among ~g
and u, or we get u(x1−x2)·y such that y = 〈~a, ~z〉. Therefore ~a is a valid witness of
the relation. The extractorX is efficient because it only uses extractor Xp twice,

28 Frank Y.C. Lu

therefore we can conclude that the protocol has witness extended emulation
based on the forking lemma.

B. Batch Evaluation of Polynomial Commitment

Suppose that the prover is required to open l commitments s.t.

C1, ...Cl ∈ Gl

It would be pretty inefficient to evaluate each Ci commitment l times. In-
stead, after commitments are received by the verifier, we can use a random
coin γ to join l commitments into one commitment, so the protocol would
only need to perform one evaluation on l commitments.

P → V : C1, ..., Cl

V computes :

z
$←− Zp

V → P : z

P computes :

yi = fi(z) for i = {1, ..., l} ∈ Zlp
P → V : y1, ..., yl

V computes :

γ
$←− Zp

V → P : γ

P computes :

φ =

l∑
i=1

φi · γi ∈ Zp

~a =

l∑
i=1

~ai · γi ∈ Znp

P,V computes :

C =

l∏
i=1

Ci ∈ G

y =

l∑
i=1

yi ∈ Zp

call FullyVerifyPC 1(~g, h, u, C, z, y, n;~a, φ)

Protocol Batch Evaluation

Title Suppressed Due to Excessive Length 29

It is trivial to observe that the probability of a random γ s.t.

l∑
i=1

yi · γi =

l∑
i=1

fi(z) · γi ∧ yi 6= fi(z)

is negligible in a sufficiently large field.

	Kevlar: Transparent, Efficient, Polynomial Commitment Scheme with Logarithmic Verification and Communication Costs on Efficient Groups

