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Abstract

In theory, Fully Homomorphic Encryption schemes allow to compute any
operation over encrypted data. However in practice, one of the major dif-
ficulties lies into determining secure cryptographic parameters that reduce
the computational cost of evaluating a circuit. In this paper, we propose a
framework of optimization to solve this open problem. Even though it mainly
focuses on TFHE, the method is generic enough to be adapted to any FHE
scheme. As an application, this framework allows us to design solutions to
efficiently increase the precision initially supported by the TFHE scheme to
large integers. Beyond the classical radix encoding of plaintexts, we propose
an alternative representation making use of the Chinese Remainder Theo-
rem, which is particularly suited for parallel computation. We show how to
evaluate operations on these new ciphertext types, from basic arithmetic op-
erations, to more complex ones, such as the evaluation of a generic look-up
table. The latter relies on a new efficient way to evaluate a programmable
bootstrapping. Finally, we propose a plethora of applications of the optimiza-
tion framework, such as true comparisons between bootstrapping operators,
i.e. not only on the computation time but also on the amount of output error
and more importantly the probability of failure all at once.

https://zama.ai/
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1 Introduction

Fully Homomorphic Encryption (FHE) refers to an encryption scheme that allows to
perform a potentially unlimited amount of computations over encrypted data. FHE
schemes have attracted a lot of attention in the last decade. Indeed, they could
solve many real world applications on which the privacy of the data manipulated
has to be preserved. The ones that are mainly studied nowadays are based on hard
problems over lattices: LWE [Reg05], and its variant RLWE [LPR10, SSTX09].
We can mention the following schemes: BGV [BGV12], B/FV [Bra12, FV12],
HEAAN [CKKS17], GSW [GSW13], FHEW [DM15] and TFHE [CGGI20].

One of the main problems of FHE schemes is to find parameters that are both
secure and that make the operations as efficient as possible, in terms of both com-
putational cost and memory. Solving this problem is fundamental if we plan for
a large scale adoption of FHE schemes. Regarding the security constraints, the
LWE/Lattice-estimator [APS15] is the main tool to evaluate the security of the pa-
rameters for an LWE-based cryptosystem. However, it does not help finding efficient
parameters for a given context. Finding the optimal parameter set is even harder
and no solution has been proposed yet.

In this paper, we mainly focus on the TFHE scheme [CGGI20]. The latter is
particularly interesting because it offers a bootstrapping technique that is able to
reduce the noise of ciphertexts and, at the same time, to evaluate a function on
the input, expressed as a Look-Up Table (LUT). This is often called programmable
bootstrapping (PBS). Unfortunately, in practice, the bootstrapping takes as input a
single LWE ciphertext encrypting a small message (say at most 8 bits). To evaluate
operations on large precision messages, the only way is to split the message in
many ciphertexts and then build the circuit to evaluate as a combination of linear
operations and ciphertexts. The solutions presented until now, however, are not
very efficient.

Our contributions We introduce the first optimization framework for FHE
computations in Section 3. Roughly speaking, it is a generic approach taking as
input a graph of mathematical operators, such as additions, multiplications or LUT
evaluations. Integer values across this graph have some metadata regarding their
precision and attributes distinguishing data that should be encrypted. The output
is an optimal graph of FHE operators along with the optimal parameter set for this
graph.

We started to instantiate our framework for many applications that are also
described in this paper. Indeed, to the best of our knowledge, we propose the first
actual solution to optimize TFHE-like scheme parameters, automatizing a crucial
process to see FHE adopted massively. It also allows to compare different algorithms
executed with their optimal parameters in a fair way, because it takes into account
the probability of failure and the output noise.

As one application of the optimizer, we also propose to overcome one of the major
limitation of the TFHE scheme: efficiently extending homomorphic computations
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over inputs of precision larger than 8 bits (Section 4). We start by defining a new
representation of small precision ciphertexts (smaller than 8 bits) so that it includes
a carry buffer. This allows to efficiently compute leveled operation without having to
compute bootstraps after each one of them. Then, we build new extended ciphertext
types: one based on a classical radix decomposition, and another one based on the
CRT decomposition of plaintexts. As far as we know, the latter strategy has never
been described before, particularly for the TFHE scheme. We additionally propose
a new WoP-PBS technique (PBS without bit of padding) allowing to evaluate LUTs
on these new type of ciphertexts. We show that this approach is better than the
already existing ones when the precision becomes larger, such as the one in [LMP21].

Finally, we present a number of practical applications that benefit from our
new optimization framework, including experiments on our new ciphertext types, or
the comparison between homomorphic operators (Section 5).

Related works on optimization In the literature, a few compilers for FHE
schemes have been proposed: their major optimization goal is in terms of circuit
shape, i.e. they try to change the order and type of operations to make execution
more efficient. When it comes to finding parameters for TFHE, existing compil-
ers [CMG+18, CDS15] do not look for the best parameter set, they always use the
same ones and focus on optimizing the Boolean circuit instead.

For schemes such as B/FV or CKKS, that have the tendency to avoid boot-
strapping and favor leveled operations, the existing compilers do this parameter
selection. For TFHE-like schemes, the circuits evaluated by these compilers are bi-
nary circuits, using gate bootstrapping, with hard-coded parameters. We suggest
this paper [VJH21] for more information and for comparisons on all existing FHE
compilers. To the best of our knowledge, no one has ever presented a result on
optimization of parameters for an FHE scheme (including bootstrapping) with a
flexibility for multi-precision plaintexts.

Related works on homomorphic integers Apart from the binary approach
proposed in FHEW [DM15] and TFHE [CGGI20], encrypting the binary represen-
tation of the input one bit per ciphertext, the idea of splitting a message into multi-
ple ciphertexts has already been proposed in [BST20], [GBA21], [KO22], [CZB+22],
[LMP21] and [CLOT21]. However, none of them takes advantage of carry buffers to
make the computations more efficient between multi-ciphertext encrypted integers
and to avoid bootstrappings. In [GBA21] they propose two approaches to evaluate
the PBS over these multi-ciphertexts inputs, called tree-based and chained-based ap-
proaches (that we shorten by TreePBS and ChainedPBS). The ChainedPBS method
is generalized in [CZB+22] to any function in exchange of a larger plaintext space.
In [CLOT21], the authors propose for the first time a WoP-PBS technique, i.e., a
PBS that does not require a bit of padding. After them, two different WoP-PBS
were proposed in [LMP21] and [KS21].

Even if in the literature there exist many solutions that use a CRT approach on
ciphertexts to improve computations for BGV, B/FV and HEAAN, to the best of
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our knowledge no work in the state of the art has ever studied a CRT based solution
for plaintexts.
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2 Notations & Background

In this paper we use the following acronyms: AP refers to atomic pattern, BR to
blind rotation, BSK to bootstrapping key, CDF to cumulative distribution function,
CRT to Chinese remainder theorem, DAG to directed acyclic graph, DP to dot
product, FHE to fully homomorphic encryption, KS to key switch, KSK to key
switching key, MS to modulus switching, MSB to most significant bit(s), LSB to least
significant bit(s), LUT to lookup table, PBS to programmable bootstrapping, SE to
sample extraction, and WoP-PBS to without padding programmable bootstrapping.

We start with background about probabilities and homomorphic encryption.

Definition 1 (Standard score) Let A ←↩ 𝒩(µ, σ2) (normal distribution), let perr
be an error probability and let Φ be the CDF of A. We define the standard score z∗

for perr as z∗(perr) = Φ−1(1− perr
2
) = −Φ−1(perr

2
) and we have: P(A ̸∈ [µ− z∗σ, µ+

z∗σ]) < perr.

Theorem 1 (Confidence Interval of a Centered Normal Distribution) Let
A ←↩ 𝒩(0, σ2), t ∈ R and perr ∈ [0, 1]. Let z∗(perr), the standard score for perr, we
have: z∗(perr)σ < t⇒ P(A ̸∈ [−t, t] < perr).

The security of TFHE-like schemes is based on the hardness of the LWE problem
and its variants. There are several types of ciphertexts used in TFHE. We start by
defining the encoding function that we use in this entire paper for LWE ciphertexts.

Definition 2 (GLWE Encode & Decode) Let q ∈ N be a ciphertext modulus,
and let p ∈ N an integer for the message modulus, and π ∈ N the number of bit of
padding. We have 2π · p ≤ q and 2π · p is the plaintext modulus. Let m ∈ Zp be a
message and let ∆ = q

2π ·p ∈ Q be the scaling factor. We define the encoding of m

as: m̃ = Encode (m, 2π · p, q) = ⌊∆ ·m⌉ ∈ Zq. To decode, we compute the following
function: m = Decode (m̃, 2π · p, q) =

⌊
m̃
∆

⌉
∈ Z2π ·p.

Note that p and q do not have to be powers of two and that we overload these
functions for polynomials: R̃ = Encode(R, 2π · p, q) =

∑N−1
i=0 Encode(ri, 2

π · p, q) ·X i

where R =
∑N−1

i=0 ri ·X i and it works the same for Decode.

We recall below the definition of GLWE, RLWE and LWE ciphertexts.

Definition 3 (GLWE Ciphertext) Given a message M ∈ Rq = Zq[X]/(XN +1)

and a secret key S⃗ = (S1, · · · , Sk) ∈ Rk
q , with coefficients either sampled from a

uniform binary, uniform ternary or Gaussian distribution, a GLWE ciphertext of
M under the secret key S⃗ is defined as the tuple:

CT =

(
A1, · · · , Ak, B =

k∑
i=1

Ai · Si + M̃ + E

)
= CTS⃗(M̃) ∈ Rk+1

q
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such that {Ai}ki=1 are polynomials in Rq with coefficients sampled from the uniform
distribution in Zq, E is a noise (error) polynomial in Rq, with coefficients sampled
from a Gaussian distributions χσ, and with M̃ = Encode (M, p, q). The parameter
k ∈ Z>0 represents the number of polynomials in the GLWE secret key. To simplify
notations, we sometimes define Sk+1 as −1.

A GLWE ciphertext with N = 1 is called LWE ciphertext: in this case we
note the size of the secret key by n = k, and we note both the ciphertext and the
secret with a lower case, e.g. ct and s⃗. A GLWE ciphertext with k = 1 and N > 1
is called RLWE ciphertext.

In TFHE-like schemes, another type of ciphertext is used, and it is called GGSW
(Generalized GSW [GSW13]). A GGSW ciphertext is composed of (k + 1)ℓ GLWE
ciphertexts, encrypting the same message times elements of the secret key with some
redundancy. The redundancy is defined by a decomposition base β and a number of
levels ℓ in the decomposition. GGSW ciphertexts are used for bootstrapping keys
and in the circuit bootstrapping, later described.

In FHE schemes, the technique used to reduce the noise is called bootstrapping. In
TFHE-like schemes, bootstrapping is also able to evaluate a LUT at the same time.
For this reason it is often called programmable bootstrapping [CGGI20, CJL+20,
CJP21], orPBS in short. The PBS is composed of 3 sequential operators: a modulus
switching (MS), a blind rotation (BR) and a sample extraction (SE). A PBS, takes as
input a LWE ciphertext ctin encrypting a message m under a secret uniform binary
key s⃗ ∈ Zn, a bootstrapping key BSK encrypting the bits of s⃗ as GGSW ciphertexts
under a secret key S⃗ ′ ∈ Rk, and a polynomial PL encoding a r-redundant LUT
for x 7→ L[x]. The PBS returns a LWE ciphertext ctout encrypting L[m] under the

secret key s⃗′, extracted form S⃗ ′, with smaller noise (if the parameters are chosen
appropriately). There is however a probability of failure where the output is actually
L[m+ ϵ] with ϵ ̸= 0. The signature of the PBS is: ctout ← PBS(ctin,BSK, PL).

Two additional parameters can be used in the PBS to obtain a generalized PBS
as in [CLOT21]: (κ, ϑ). These two parameters define the exact part of the plaintext
that is extracted by modulus switching during the PBS.

An LWE-to-LWE key switching is an homomorphic operator allowing to
switch the secret key as well as a few parameters, and details can be found
in [CGGI20, CLOT21]. It takes as input a LWE ciphertext ctin encrypting a mes-
sage m under a secret key s⃗′ ∈ Zn′ , and a key switching key KSK encrypting s⃗′

with redundancy under another LWE secret key s⃗ ∈ Zn. It returns a LWE cipher-
text ctout encrypting m under the secret key s⃗, with a larger noise. Its signature is
ctout ← KS(ctin,KSK). To simplify notation, we note ctout ← KS-PBS(ctout,PUB, Pf )
where PUB = (BSK,KSK) when a KS is followed by a PBS.

In 2017, Chillotti et al. [CGGI20] proposed an operator called circuit boot-
strapping, transforming a LWE ciphertext into a GGSW ciphertext. It consists
in performing some PBS followed by LWE-to-GLWE KS. The later operator con-
verts an LWE ciphertext encrypting m into a GLWE ciphertext encrypting the
constant polynomial m. The authors also proposed two operators to evaluate LUTs
in a leveled way, called horizontal and vertical packing. They both take as
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input a d-bit message msg, encrypted as a list of d GGSW ciphertexts encrypting
one of its bits. They also take in input α LUTs L0 = [l0,0, · · · , l0,2d−1], . . . Lα−1 =
[lα−1,0, · · · , lα−1,2d−1]: the goal is to compute the result of the evaluation of the LUTs
on the input message, i.e., return encryptions of l0,msg, . . . , lα−1,msg. Both operators
use CMux gates, either as a tree or in a blind rotation) to compute the LWE re-
sult (that can be a GLWE in horizontal packing). Horizontal packing is interesting
when many LUTs should be evaluated in parallel, while vertical packing is interest-
ing when a single (large) LUT needs to be evaluated. They are two extremes of a
trade-off for the evaluation of homomorphic LUTs: in [CGGI20], a mixed solution
has been proposed generalizing them.

In this paper, especially for the optimization part, we will require a few higher
level definition. For instance, we formalize what a FHE operator is.

Definition 4 (FHE & Plain Operator) Any FHE operator 𝒪 is an implemen-
tation of an FHE algorithm, on a given piece of hardware, taking as input some
ciphertexts and/or plaintexts and returning one or more ciphertexts. A plain oper-
ator is a function mapping several integers into an output list of integers.

Definition 5 (Noise & Cost Model) FHE operators are associated with a noise
model, a cost model and an plain operator. A noise model is often a formula used
to model the noise evolution across 𝒪. The cost model is a surrogate for the metric
one wants to minimize, it could be the execution time, the power consumption, or
the price. A cost is written Cost (·).

Noise formula for a given homomorphic operator takes as input the variance of
the input ciphertexts noise, some cryptographic parameters involved in the operator
computation, as well as the plaintexts values used in the operator.

In this paper we will always consider the cost model to approximate the running
time on a single thread.

The noise of a freshly encrypted ciphertext is a random (small) integer
drawn from a given distribution χ (σ), where σ2 is its variance. Variances help us
quantifying noise in ciphertext, so whenever it is written that a ciphertext contains
more noise than another, we mean that the noise inside the first ciphertext is drawn
from a normal distribution with a bigger variance than the second one.

The security of a GLWE-based scheme depends on the distribution of the secret
key (for example binary, ternary or Gaussian), the product between the GLWE
dimension and the polynomial size (i.e. k · N), the noise distribution, and the
ciphertext modulus (often written q). To estimate the security level offered by some
given parameters one can use the LWE/Lattice-estimator. As a general rule of
thumb, increasing the product k · N decreases the minimal noise needed inside a
ciphertext while keeping the same level of security.

As there is a link between the GLWE dimension, the polynomial size, the variance
of the Gaussian noise and the level of security, one of these variables can be computed
from the other ones. In the rest of this paper, we assume that, for each possible
distributions of the secret key, we have access to an oracle that, given the product
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k ·N and a level of security λ, outputs the minimal noise variance σ2
min required in

a ciphertext to achieve the required level of security.
We know that to decrease the minimal noise, while keeping the same level of

security, we need to increase other parameters such as the polynomial size or the
GLWE dimension. As almost every FHE operator has a cost that depends on both
of them, we have a clear trade-off between noise and cost. We want the noise to be
small enough to guarantee the correctness of the computation but at the same time,
having a smaller noise than needed, is costly because parameters are bigger.
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3 Optimization Framework

We introduce in this section the first optimization framework for homomorphic com-
putations based on TFHE. It allows to solve the problem of finding cryptographic
parameters, figuring out an encoding for a given data set and picking the best al-
gorithms for a given use-case, which is known to be extremely hard. We designed a
framework modeling this problem, and we started to use it in many different con-
texts. We first need to define two types of Directed Acyclic Graphs (DAG) that are
required in the framework.

Definition 6 (Plain DAG) Let 𝒢 =
(
V ,E

)
be a DAG of plain operators. We

define V =
{
𝒪i

}
1≤i≤α as the set of vertices, each of them being a plain operator that

can be additions, multiplications, subtractions, LUT evaluation, and many others.
We define E as the set of edges, each of them associated with the precision p of the
message as well as a label which is either “private” or “public”. When E is not
needed, we will simply write 𝒢 = V .

Definition 7 (FHE DAG) Let 𝒢 = (V,E) be a DAG of FHE operators. We
define V = {𝒪i}1≤i≤α as the set of vertices, each of them being an FHE Operator.
We define E as the set of edges, each of them associated with the modulus p of the
encrypted message. When E is not needed, we will simply write 𝒢 = V .

We note 𝒮FHE

(
𝒢
)
the set of all possible FHE graphs computing the same func-

tionality than 𝒢, a plain DAG. We note Cost (𝒢, x) the cost of running the FHE
graph 𝒢 with the parameter set x.

The optimization framework takes as input a plain DAG 𝒢, a level of security,
and a correctness probability. It outputs an FHE DAG 𝒢 as well as a parameter
set x for 𝒢. Remember that most of the FHE operators in 𝒢 introduce some
cryptographic parameters, for instance a local polynomial size N ∈ N or a local base
β ∈ N. It implies that the total number of possible parameter sets is exponentially
huge and we want x to be the best of them all. Also remember that for a same
plain operator, for instance an homomorphic multiplication, there are many possible
strategies to translate it into an FHE sub-graph. It contributes to increasing the
number of possible different topology of 𝒢, which also expends the space where the
best solution lies. Our optimization framework guarantees that using the output
parameter set x in the graph 𝒢 one has:

(i) the desired level of security,

(ii) the correctness of the computation, up to the given probability.

(iii) the FHE DAG computes the plain functionality described in the plain DAG.

(iv) the cost of the graph is minimized under some hypothesis.
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3.1 Foundations of Our Framework

We start by explaining the core ideas to ensure the three mentioned above guaran-
tees. Then we will define the objects that are manipulated during the optimization
process.

Definition 8 (Noise Bound) We call noise bound a threshold related to the noise
inside a given ciphertext. It is an integer value tα(π, p) ∈ N, that depends on some
context parameters: p is the message modulus for encrypted messages, π is the
number of bits of padding and α ∈ [0, 1] ⊂ R is the probability of failure. This
function is not restricted to the mentioned inputs, for instance it could take the
degree of fullness later defined in this paper. Note that sometimes we omit π and α
when there is no ambiguity.

For security reasons, the exact noise value has to be kept secret, however the
variance of its distribution is publicly known. To guarantee the correctness of the
homomorphic computation, we want P (|e| > tα (π, p)) ≤ α for a given probability α.

Guarantee (i)We deal with this guarantee with the minimal noise oracle which
takes as input the product k · N (i.e. the GLWE dimension times the polynomial
size) and the desired level of security λ. It returns the minimal encryption noise
required to achieve the desired level of security.

By not considering the encryption noise as a variable of the optimization problem
but rather as an output of this oracle, we are sure that the level of security will be
at least the requested one.

Guarantee (ii) Regarding the second guarantee about the correctness of the
homomorphic computation, one must recall that if the noise grows above the noise
bound, the decryption algorithm won’t output a correct result with more probability
than expected. This threshold can be either given as input of the optimization
problem or computed from the ciphertext metadata (such as the number of bits to
represent the message) and the probability of success of the decryption we want to
achieve as described above. The tightness of the noise model to the real life behavior
is crucial to correctly solve the problem.

Guarantee (iii) To guarantee the exact same computation between the two
graphs, we have, for each plain operator, a list of FHE sub-graphs computing this
very mathematical operation (if correctly parameterized).

Guarantee (iv) This framework ends its optimization process with a solver
that finds the optimal solution with respect to the cost model. The more realistic
the cost model is, the better the solution will be in practice.

As mentioned before, we deal with an immense search space and a smaller space
of parameters that do not cross over the noise bounds which is extremely hard to
compute. Let us formalize those sets.

Definition 9 (Search Spaces) For a given FHE DAG 𝒢, all the cryptographic
parameters that we need to optimize make the set of possible parameters exponentially
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huge. We call this set the search space ℰ𝒢 for a given graph 𝒢 and it is the Cartesian
product of the search spaces of all the operators in the graph. We will omit the 𝒢
and simply note it ℰ if there is no ambiguity on the graph.

We want to optimize parameters for practical use-cases, so we defined the search
space of each operators as the range supported by the FHE library targeted. For
example, in our case, we restrict polynomial sizes up to ≤ 214.

Definition 10 (Noise Feasible Set) The noise feasible set is the set verifying the
noise constraints: 𝒮N (𝒢) = {x ∈ ℰ|∀i,N𝒪i

(x) ≤ t (pi)
2} ⊂ ℰ with N𝒪i

(x) the noise
of the output ciphertext of 𝒪i. It can also be expressed as: 𝒮N (𝒢) =

⋂
i∈I 𝒮N (𝒪i).

As we defined the feasible set for the noise, we can also define other feasible sets
for other constraints, for instance to limit the size of the public keys, ciphertexts or
even to add some constraints between parameters, etc. To be generic, we will refer
to these additional feasible sets as one unique feasible set (intersection of all of these
feasible sets) named 𝒮other (𝒢).

Formally what we want to compute is:

argmin
𝒢,x

Cost (𝒢, x)

{
𝒢 ∈ 𝒮FHE

(
𝒢
)

x ∈ 𝒮other (𝒢)
⋂
𝒮N (𝒢)

with 𝒮FHE

(
𝒢
)
, all the possible plain graph translations, and 𝒮other (𝒢)

⋂
𝒮N (𝒢), all

the possible parameters satisfying the noise constraints as well as the other defined
constraints.

Another essential notion in the optimization framework is the categories to sort
any FHE operator according to the way they alter the noise. We describe them in
the following definition.

Definition 11 (FHE Operator Categories) We divide the FHE Operators into
three categories regarding their respective noise formulae:

(i) an operator which outputs a noise independent of the input noise, such as the
PBS in our context;

(ii) an operator which adds to the input noise an independent noise, such as a KS
or a modulus switching;

(iii) an operator which outputs ciphertexts with noise depending on the input noise
(but not linearly), such as an homomorphic dot product or a tensor product.

Indeed, any FHE operator using the FFT does not exactly follow its theoretical
noise formula because of the noise added by the floating point representation. In
particular, simply by casting from a u64 to a f64 some of the LSB are lost. Similarly,
the error grows all along computations due to the floating point arithmetic. To
correct the formula accordingly, one solution is to collect data regarding the noise

13 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap



Parameter Optimization & Larger Precision for (T)FHE

in many different parameter settings and use them to deduce a corrective formula
that takes into account the FFT-induced error.

Before trying to solve the optimization problem, we want to simplify it, otherwise
it might take too much time to find the best solution. Only then, we can use the
well known branch-and-bound algorithm to find the optimal parameters.

3.2 Pre-Optimization & Graph Transformations

Any sequences composed of ciphertext-ciphertext additions and ciphertext-plaintext
additions/multiplication can be fused into a single homomorphic dot product (DP)
between a vector of ciphertexts, with noise independent values, and a vector of
plaintexts. The noise growth during a ciphertext-plaintext DP is simple to estimate
as long as the noises in each ciphertext are independents from one another. In
fact, the output variance of an homomorphic DP is the input variance multiplied by
ν2 =

∑α
i=1w

2
i where ν is the 2-norm of the plaintext vector (w1, · · · , wα). In this

paper, we will always group a sequence composed of the operators above-mentioned
into an homomorphic DP whenever one happens in a graph.

We now introduce the notion of atomic patterns (AP) and their associated AP
types. They will play an important role to boost the resolution of the optimization
problem.

Definition 12 (Atomic Pattern Type) An AP type 𝒜(·) corresponds to a sub-
graph of FHE operators.

An AP A is a particular instance of an AP type 𝒜(·). Two AP from the same
type will correspond to the same FHE DAG, but they may have different parameters.

When we instantiate A ∈ 𝒜(·) with a parameter set x, we write A (x). An
important feature of A (x), is that we can estimate its amount of noise at any edge
of its FHE sub-graph and we can also estimate its total cost using the cost model.

Given a graph of homomorphic operators, we want to transform it into a graph
of AP, i.e. splitting it into sub-graphs corresponding to some AP types. Then the
noise feasible set 𝒮N becomes an intersection of the noise feasible sets of all the AP
in the graph.

Some APs of the same type can be compared prior to the optimization and we
can simplify the computation of 𝒮N by only keeping the feasible sets of the AP that
are not included in others. We described the method on 𝒮N but the same can be
done on 𝒮other

We introduce the notion of domination between AP. An AP A dominates A′ if
any x satisfying the noise constraints (and the others) of A′ also satisfies constraints
of A. For all AP types, for all APs of this type, we will only keep the ones that are
not dominated by any other AP. Indeed, we can discard the APs that are dominated
because their constraints will be satisfied if the constraints of a dominant AP are
satisfied.
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Theorem 2 (AP Domination) Let’s consider A1, A2 ∈ 𝒜(·) two AP of a type that
include an homomorphic DP, ν1, ν2 two 2-norms such that ν1 ≤ ν2 and t1, t2 two
noise bounds where t2 ≤ t1. We have: 𝒮N (A2(ν2, t2)) ⊂ 𝒮N (A1(ν1, t1)).

Proof 1 (Sketch) A1 and A2 share the same type. When decreasing the noise
bound, i.e. going from t1 to t2, we have less possible solutions x, but all the ones that
satisfy t2 will satisfy t1. The same reasoning works for the 2-norms. By increasing
the 2-norm, i.e. going from ν1 to ν2, there are less possible solutions x, but all the
solutions satisfying ν2 will satisfy ν1. □

It is then possible to build a graph of dependencies between AP. It is very useful
for efficiently removing many APs and also find faster strategies to work with the
APs that are not dominated.

3.3 Implemented AP Types

In this paper we will define a few AP types, explore relationships between them and
compare them.

Definition 13 (Instantiated AP Types) They all have an identifier and they
correspond to different FHE sub-graphs:

• A ∈ 𝒜(1) is composed of a DP, followed by a KS and a final PBS (i.e. a MS,
a BR and a SE) as in [CJP21];

• A ∈ 𝒜(2) is composed of a KS, followed by a DP and a final PBS (i.e. a MS,
a BR and a SE) as in [CGGI20];

• A ∈ 𝒜(3) is composed of a DP, followed by a KS and a final many-LUT PBS
introduced in [CLOT21];

• A ∈ 𝒜(4) is composed of a DP, followed by a KS and a final multi-value PBS
introduced in [CIM19];

• A ∈ 𝒜(5) is composed of a DP, followed by a KS and a final WoP-PBS which
comes from Liu et al [LMP21]. This AP type does not require a bit of padding
in plaintext encoding;

• A ∈ 𝒜(6) has the exact same sequence of homomorphic operators than AP type
#1 and the same cost. However, it is an imaginary AP type in the sense that
we suppose that the FFT involved in the PBS does not add any noise, i.e. have
an infinite precision, or at least enough to avoid it.

• A ∈ 𝒜(7) is composed of a DP, followed by a KS and a final new WoP-PBS
that we introduced in this paper (Section 4.1). This AP type does not require
a bit of padding in plaintext encoding;
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Figure 1: Noise evolution in an atomic pattern of type #1. The variance in a
ciphertext after a PBS is noted σ2

PBS.

• A ∈ 𝒜(8) is composed of a DP, followed by a final PBS (i.e. a MS, a BR and
a SE);

• A ∈ 𝒜(10) is composed of a DP, a KS and the tree-PBS algorithm [GBA21];

Figure 1 shows the noise evolution across an AP of type 1. Input ciphertexts
of such an AP come with a minimal noise of variance σ2

PBS, i.e. the variance after
the PBS. We see that during the DP, the KS and the MS, the noise keeps growing
and when parameters are correctly picked, the amount does not cross over the noise
bound. Then the BR operates over a bootstrapping key composed of fresh cipher-
texts, to output a GLWE ciphertext with a noise variance of σ2

PBS. The SE does
not change the amount of noise and output an LWE ciphertext.

As the noise grows with each operator inside the AP until reaching its peak after
the Modulus Switching, it is enough to only check that the noise after this operator
is below the noise bound.

Any FHE operators, except the ones of type (i), increase the noise inside the
ciphertext. However, operators of type (iii) increase the noise depending on the
input noise, hence the following theorem.

Theorem 3 (Relation Between 𝒜(1) and 𝒜(2)) We consider two 2-norms
ν1, ν2 ∈ R+ such that ν1 ≤ ν2, two noise bounds t1, t2 ∈ N such that t2 ≤ t1 and two
AP: A1 ∈ 𝒜(1) and A2 ∈ 𝒜(2). We have 𝒮N (A2 (ν2, t2)) ⊆ 𝒮N (A1 (ν1, t1)).

Proof 2 Let’s start with the observation that 𝒜(1) and 𝒜(2) share the same search
space ℰ because they are built with the same operators. For a parameter set x ∈ ℰ,
the maximum noise variance in an AP of type 1 is σ2

out,1 (x) = σ2
in (x) ·ν2+σ2

KS (x)+
σ2
MS (x) where σ2

KS (x) is the noise added by the KS and σ2
MS (x) is the noise added

by the MS. Similarly, the maximum noise variance in an AP of type 2 is σ2
out,2 (x) =

(σ2
in (x) + σ2

KS (x)) · ν2 + σ2
MS (x).

We consider x̄ ∈ 𝒮N (A2 (ν2, t2)), so we have σ2
2 (x̄) = (σ2

in (x̄) + σ2
KS (x̄)) · ν2

2

and σ2
out,2 (x̄) < t22. The simplest non-trivial DP possible is when we only have one
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input ciphertext multiplied by 1, so we have 1 ≤ ν. Since variances are positive and
1 ≤ ν1 ≤ ν2, we have:

t21 ≥ t22 > σ2
out,2 (x̄) = σ2

in (x̄) · ν2
2 + σ2

KS (x̄) · ν2
2 + σ2

MS (x̄)

≥ σ2
in (x̄) · ν2

2 + σ2
KS (x̄) + σ2

MS (x̄) ≥ σ2
in (x̄) · ν2

1 + σ2
KS (x̄) + σ2

MS (x̄) = σ2
out,1 (x̄)

So we have t21 ≥ σ2
out,1 (x̄), meaning that x̄ ∈ 𝒮N (A1 (ν1, t1)), so 𝒮N (A2 (ν2, t2)) ⊆

𝒮N (A1 (ν1, t1)). □

This theorem is easily generalized to any couple of AP types where the difference
is an order inversion between two operators of type (ii) and type (iii) and where the
noise is monotonically non-decreasing (cf Section 5.4).

Dealing with several public keys increases a lot the complexity of the optimization
problem, but may speed up the execution. The following theorems introduce a way
to, prior to the optimization, characterize the optimal solutions, reducing the size
of the search space.

Theorem 4 (Optimal KSK) Let KSK0 and KSK1 two KS keys obtained through
the resolution of the optimization problem. W.l.o.g., let us assume that a KS using
KSK0 adds strictly less noise than the one using KSK1, then the KS with KSK0 will
be slower than the KS with KSK1.

Proof 3 The two keys must have different parameters for the base and/or the num-
ber of level, because the noise added is different by hypothesis. If the optimization
has selected two distinct keys it means that they both satisfy a different cost/noise
trade-off. Then, if a KS with KSK1 is slower than a KS with KSK0 and generates
more noise, KSK1 will always be worse (both in terms of noise and cost) than KSK0

which contradict the hypothesis that they are both optimal solutions. □

Theorem 5 (Several KSK) Let 𝒢 = {A (νi, t)}0≤i<Y an FHE graph only com-
posed of AP type #1 such that ν0 < ν1 < ν2 < · · · < νY . We consider that we can
have several possible KSK. The optimal δ⃗ = (δ0, · · · , δY−1) has the property that for
all 0 ≤ i < Y − 1 there is δi ≥ δi+1.

Proof 4 (Sketch) Following the same logic as in the toy example above, it is easy
to prove this theorem. □

Another interesting approach in the optimization, is to automatically insert PBS
during a DP operator wherever it is interesting with regards to the cost model.
Indeed, as the PBS is the most costly operator, inserting PBS can increase the total
cost of the computation. But on the other hand, if the 2-norm of a DP operator is
high, the parameters must be large enough to still guarantee the correctness of the
computation. Those large parameters will have an impact on the cost and so we
need our framework to choose whether it is interesting to split the DP operator or
not.

The following theorem explores this approach.
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Theorem 6 (DP Splitting) Let A (ν, t) be an AP of noise bound t and including

a DP of 2-norm ν. Let Ã (ν, t, d) the same AP than A but where its DP is split into
d + 1 sub-DP of approximately the same 2-norm and connected together with PBS.
It actually breaks an AP into d+ 1 AP of the same type organised in two layers (d
followed by a last one connecting them all).

Let 𝒢 = {A (νi, t)}0≤i<Y such that ν0 < ν1 < ... < νY−1. Let d⃗∗ = (d∗0, · · · , d∗Y−1)
and d⃗ =

(
d′0, · · · , d′Y−1

)
be two possible splitting solutions. We define the following

two FHE graphs: 𝒢∗ =
{
Ã (νi, t, d

∗
i )
}

0≤i<Y
and 𝒢′ =

{
Ã (νi, t, d

′
i)
}

0≤i<Y
.

If every coordinates of d∗ is inferior or equal (coordinate wise) to the ones from

d̃ and 𝒮N (𝒢∗) = 𝒮N

(
𝒢
)
, then, d̃ cannot be the optimal solution.

Proof 5 (Sketch) As before, we use the fact that the noise feasible set of those two
DAG is the same and the cost of one DAG is higher than the other as it contains
more PBS. □

We came up with a few AP types, but many others could be studied. We believe
that this framework could include other GLWE-based schemes and that we start a
generic and versatile approach to automatically find cryptographic parameters.
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4 Homomorphic Integers

In this section we introduce a new procedure to compute a WoP-PBS, i.e. a PBS
where the input ciphertext does not need a bit of padding in the MSB of the plain-
text. Then, we propose new ways to encrypt and work on large modular integers.
Those constructions can be based on traditional TFHE PBS or on our new WoP-
PBS or even other variants of the PBS. We conclude this section by explaining how
to compute LUT evaluations on the large modular integers we described.

4.1 New WoP-PBS

The WoP-PBS, i.e., a PBS which does not require a bit of padding, was introduced
for the first time by Chillotti et al. [CLOT21]. It takes as input an LWE ciphertext
with or without bits of padding in the MSB, a public key called bootstrapping key,
and a LUT L. It outputs the homomorphic evaluation of the LUT on the input
message, i.e. an LWE encryption of L[m]. At least one bit of padding is required
in the original TFHE-like PBS algorithms for an encrypted message m that is not
a bit.

We improve the state of the art when it comes to WoP-PBS. Indeed, our new
algorithm is able to take as input not only one LWE ciphertext but several, and the
complexity scales well in the number of LWE ciphertexts. It is also able to round
(or truncate or more) each of the input messages to a given precision. Finally, it can
be used to compute several LUT on the same set of inputs at the cost of (about) a
single LUT.

Our method is based on two building blocks: the circuit bootstrapping and
the mixed packing from [CGGI20]. We provide the details of the technique (using
vertical packing in this case) in Algorithm 1.

Remark 1 (Circuit Bootstrapping Optimizations) The second step of the
circuit bootstrapping which is the packing functional key switchings can be improved
by following a similar footstep as a technique proposed in [CCR19]. We perform an
initial LWE-to-GLWE KS (not functional) to each of the outputs of the PBS, and
then, as already done in [CCR19], we perform an external product times the GGSW
encryption of the GLWE secret key to obtain the remaining GLWE ciphertexts. This
allows us to reduce the size of public evaluation keys. Furthermore, increasing the
GLWE dimension k allows to reduce the degree N of the GLWE polynomials. One
can keep the same security level and, at the same time, work with smaller polyno-
mials, making the FFT faster. Obviously, reducing N reduces the precision of the
PBS, but we only bootstrap one bit in a circuit bootstrapping here.

Remark 2 (Algorithm 1 Optimizations) The KS-PBS performed in Line 5 of
Algorithm 1 is a Generalized PBS, as described in [CLOT21], so the modulus switch-
ing directly reads the next bit to be extracted. The sign function is evaluated and in
order to re-scaled the bit at the right scaling factor.
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Figure 2: Plaintext binary representation with a base β = 4 = 22 (green), a carry
subspace (cyan), and a carry-message modulo p = 16 = 22+2 (cyan+green) such that
0 < β < p. A bit of padding is displayed in the MSB (dark blue). So the plaintext
modulo is 32 = 22+2+1. This means that we have 2 bits in the carry subspace (set
to 0 in a fresh ciphertext), that will contain useful data when one computes leveled
operations.

The circuit bootstrappings used in Lines 8 and 9 are also instantiated with a Gen-
eralized PBS. If we chose a value of ϑ > 0 we could improve the circuit bootstrappings
with a PBSmanyLUT, as described in [CLOT21].

We can also observe that one of the PBS of the circuit bootstrappings used in
Line 8 could be avoided thanks to the KS-PBS in Line 5, that might already provide
the bit extracted at the right re-scaling factor.

4.2 Advanced Modular Arithmetic with a Single LWE Ci-
phertext

In this section we describe an advanced mode for evaluating operations on modular
integers. It is built in a parametrizable manner enabling many optimizations. The
core idea is to allow room in a ciphertext encrypting integers modulo β ∈ N to
store big enough carries coming from leveled operations. We introduce a metadata
keeping track of the worst case message in each ciphertext to guarantee correctness
of all the described algorithms and optimize the computation.

Plaintext Space Format We describe here a framework to compute homomor-
phic operations on modular integers. Let β ∈ Z be the previous mentioned modulus.
We split the traditional plaintext space into three different parts: the message sub-
space storing an integer modulo β (we call β the base), the carry subspace containing
information overlapping β, and a bit of padding (or more) often needed for boot-
strapping. In this context, we refer to the carry-message modulo as the subspace
including both the message subspace plus the carry subspace, and we note it p ∈ N.
Figure 2 shows a visual example.

We introduce a metric called degree of fullness that is associated to an LWE
ciphertext and represents the largest message that this ciphertext can contain.

Definition 14 (Degree of Fullness) Let q ∈ Z be the ciphertext modulus, let p ∈
Z be the carry-message modulus such that p < q. Let ct be a LWE ciphertext
encrypting a message 0 ≤ m < p. Let µ be the known worst case for m, i.e., the
biggest integer that m can be. We have 0 ≤ m ≤ µ < p and we consider that there
either one bit of padding or none: π ∈ {0, 1}.
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We define the degree of fullness of ct ∈ LWEs⃗ (m̃) with m̃ = Encode (m, 2π · p, q)
as the following number: deg (ct) = µ

p−1 ∈ Q. To ensure correctness, the degree of

fullness should always be a quantity included between 0 and 1, where deg (ct) = 1
means that the carry-message subspace is full in the worst case. It is required when
using a traditional PBS or when the amount overlapping p is needed to properly
decode.

We take advantage of the carry subspace to compute leveled operations and to
avoid bootstrapping. In practice, the carry subspace acts as a buffer to contain the
carry information derived from homomorphic operations and the degree of fullness
acts as a measure that reveals when the buffer cannot support additional operations:
once this limit is reached the carry subspace is emptied by bootstrapping. To be
able to perform a leveled operation between two LWE ciphertexts of that type, they
need to have the same base β, carry-message p and ciphertext modulus q. Addition
and multiplication by small constants can be performed as usual in TFHE. The
computation of the opposite requires a correction term and the subtraction is a
combination of opposite and addition operations. Univariate functions can still be
computed with PBS.

We provide more details on these operations in Supplementary Material A, and
we also provide details on how to build a LUT and evaluate the PBS on ciphertexts
having p different from a power of 2.

Thanks to the carry buffer, when they are empty enough, we can evaluate multi-
variate functions. The idea is to concatenate two messages m1 and m2 (or more)
respectively encrypted in ct1 and ct2 by rescaling the first one with constant mul-
tiplication and add it to ct2 and finally compute a PBS on the concatenation. We
multiply ct1 by µ2 + 1, where µ2 is the worst possible value that can be reached by
the m2. These strategy is possible if the obtained ciphertext (before PBS) respect
the conditions on the degrees and on the noise. Once the two messages are con-
catenated in a single ciphertext, the bivariate LUT L can be simply evaluated as a
univariate LUT L′ on the concatenation ofm1 andm2. A visual example is proposed
in Figure 13 in Supplementary Material H. This concept can be easily extended to
multivariate functions.

We use this approach to compute homomorphic multiplication, both in the LSB

(i.e. m1 ·m2 mod β) and in the MSB (i.e.
⌊
m1·m2

β

⌋
). If instead we want to compute

the multiplication without any modular reduction, we can use well known techniques
in TFHE literature such as in [CJL+20].

The last operations we need to describe enable to extract the carry or the
message when the degree of fullness has reached a limit (or whenever one needs
to extract them). We call these operations carry and message extract: they both
are performed as a PBS. We provide details on multiplications and on carry and
message extractions in Supplementary Material A.

Generally with FHE one has to monitor noise growth. However, in this paper,
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we chose parameters such that the noise is always under a certain level if the degree
of fullness has not reached the maximal value allowed. When we approach this value
for the degree, a bootstrapping operation is performed and the noise is reduced at
the same time. We give more details in Section 5.1.

4.3 Radix-Based Large Integers

We extend the approach proposed in previous section to larger messages encrypted as
multiple ciphertexts. We introduce a first generic method to perform homomorphic
computations modulo a larger integer Ω ∈ N.

Any homomorphic modular integer we describe here is a list of κ ∈ N blocks
(LWE ciphertexts), along with a list of radix-bases βi with 0 ≤ i < κ, and we call
them radix-based modular integers. With such a list of ciphertexts, we are able to
represent a large integer modulo Ω =

∏κ−1
i=0 βi. For each block, we actually need a

couple (βi, pi) ∈ N2 of parameters to be defined, which respectively corresponds to
the message subspace and the carry-message subspace involved with the modular
arithmetic described in Section 4.2. In Figure 12 in Supplementary Material H, we
give a visual representation out of a toy example of a radix-based modular integer.

In practice, the restriction for Ω is that it has to be a product of small basis.
Indeed, TFHE-like schemes do no scale well when one is increasing the precision,
so the good practice is to keep pi ≤ 28. We describe later a more refined procedure
enabling the use of any Ω ∈ N.

To encode a message msg ∈ ZΩ and encrypt it as a radix-based modular integer,
one needs to know the list of integer parameters {βi, pi}0≤i<κ such that Ω =

∏κ−1
i=0 βi,

and for all 0 ≤ i < κ we have 2 ≤ βi ≤ pi. The first step is to decompose

msg into a list of {mi}κ−1i=0 such that msg = m0 +
∑κ−1

i=1 mi ·
(∏i−1

j=0 βi

)
. Then we

can independently call the Encode function (Definition 2) on each mi so we have
m̃i = Encode (mi, 2

π · pi, q) with π the number of bit of padding. Finally we can
encrypt each m̃i into an LWE ciphertext. To decode, we simply recompose the
integer from the mi values.

Arithmetic Operations We can now describe the operators that we are able to
compute over radix-based modular integers. Note that those operators are allowed
as long as both radix-based modular integers are encoded and encrypted with the
same parameters {(βi, pi)}0≤i<κ ∈ N2κ and ciphertext modulus q.

For the computation of addition we use a schoolbook approach, and keep ev-
erything correct thanks to the degree of fullness storing the worst message for each
block. To compute the negation, we start by negating the least significant block
and by adding a correction term. Then, we repeat the operation for the following
blocks. We provide a toy example in Supplementary Material B. To compute the
subtraction we simply combine an opposite computation with an addition. To com-
pute the multiplication we use a schoolbook approach, as for addition. We provide a
toy example to better understand in Supplementary Material B. To compute a mul-
tiplication between a ciphertext and a constant c ∈ ZΩ, we use a similar approach
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as the schoolbook multiplication, combining PBS and leveled additions. There are
several approaches that can be used to compute a generic LUT over a radix-based
modular integer. We describe them in Section 4.5.

Buffers for carries are limited in each block. This is why we often need to make
room. To keep the encoding coherent, we have to propagate the carry of a block
into the next one.

A simple method is to compute both the carry extraction and the message ex-
traction for the least significant block, and then adding the extracted carry to the
second block, and keep doing it until emptying all the carry buffers. Note that the
most significant block’s carry buffer can be thrown away, i.e. only computing the
message extraction for this block is required.

Generalization to Any Ω Until now we have used a modular integer Ω that is
equal to the product of the bases, i.e., Ω =

∏κ−1
i=0 βi. In this section we take away

the restriction on Ω and we generalize the techniques presented in this section to a
more generic base

∏κ−2
j=0 βj < Ω <

∏κ−1
j=0 βj.

All the algorithms stay the same, with the exception of the modular reduction
which is trickier to compute. We propose two methods to perform this modular
reduction. There is no best method though, both of their efficiency depend on Ω
and the product of the basis selected.

We propose a first method consisting in performing multiple LUT evaluations
in the most significant block to reduce it modulo Ω. Suppose we have κ blocks
as input, we take the MSB block ctκ−1 which is supposed to have an almost full
degree (otherwise one does not need to call this procedure yet). Remember that
this block stores a “small” value mκ−1 < pκ−1 but it represents a “big” value with
this encoding: mκ−1 ·

∏κ−2
i=0 βi. We generate κ new blocks to store its modular

reduction in the defined radix-bases. The final step is to add this to the k − 1 left
input blocks to end up with the desired result. We provide a detailed description of
the method in Algorithm 4 in Supplementary Material D.

We propose a second method which is more convenient when Ω and the bases
(β0, . . . , βκ−1) respect a certain condition. The idea is based on the shape of
−
∏κ−2

h=0 βh reduced modulo Ω. We look at its radix decomposition:

−
κ−2∏
h=0

βh mod Ω = ν0 + ν1 · β0 + ν2 · β0β1 + . . .+ νκ−1 ·
κ−2∏
j=0

βj.

If νκ−1 = 0 and the other elements of the decomposition, i.e. ν0, ν1, . . . , νκ−2, are
small integers (ideally many of them set to 0), then this method is very useful.

Indeed, when these conditions are respected, the idea is to replace the MSB
block by multiplying it to the non-zero constants νj and subtracting the results to
the j-th input block. Some multiplications with positive constant are needed and
might require some carry propagation prior to them depending on the degrees of
fullness. This method is detailed in Algorithm 5 in Supplementary Material D.
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4.4 CRT-Based Large Integers

In this section we propose a new way to build encryption of large modular integers
based on TFHE-like schemes and exploiting the CRT. In FHE schemes, the CRT is
often used to speed up computations on the integers composing a ciphertext. Here
we use the CRT at the encoding level, i.e. before encryption.

We introduce a hybrid approach that include radix-based decomposition inside
the CRT representation, to overcome some of the limitations inherent to the CRT-
only approach.

The idea is to use several LWE ciphertexts to encrypt sub-messages, modulo the
considered CRT residues. To encode a message msg ∈ ZΩ and encrypt it as a CRT-
based modular integer, one needs to know the list of integer parameters {βi, pi}0≤i<κ

such that Ω =
∏κ−1

i=0 βi, for all 0 ≤ i < κ we have 2 ≤ βi < pi and because of the
CRT we need each couple βi and βj ̸=i of bases to be co-primes. The first step is
to compute the CRT on msg ∈ ZΩ so it is split into a list of {mi}κ−1i=0 such that
msg = mi mod βi for all 0 ≤ i < κ, then to encode and encrypt. To decode, we
simply need to compute the modular reduction modulo the bases βi and compute
the inverse of the CRT.

With this CRT encoding, we have to empty the carry buffers when they are
(almost) full. Indeed, the quantity overlapping the base βi is not needed to maintain
correctness but when using TFHE PBS, the bit of padding needs to be preserved.
We need to only call the message extraction algorithm, described in Section 4.2
when needed.

Arithmetic operations such as additions, subtractions, multiplication between
two encrypted integers, or between an encrypted integer and a known constant, or
even computing an opposite can be easily done with data encoded with a CRT. We
can use all the operators described in Section 4.2.

Homomorphic LUT evaluation is possible with some heavy computation tak-
ing into account the entire encrypted message (see Section 4.5). However, if the
LUT is more friendly to our CRT encoding, one can compute it faster. For in-
stance, the best case scenario is when we can describe L as EncodeCRT (L (msg)) =
(L0 (m0) , · · · , Lκ−1 (mκ−1)) where EncodeCRT = (m0, · · · ,mκ−1). This kind of LUT
only requires one LUT evaluation per sub-message mi. We can imagine less friendly
functions but can still be sped up in the same manner, EncodeCRT (L (msg)) =
(L0 (m0) , · · · , Lα (mα) , L

′ (mα+1, · · · ,mκ−1)) where EncodeCRT = (m0, · · · ,mκ−1),
where some of the computations can be done independently and the computed with
the generic approach.

Advantages & Limitations As explained above, with the CRT encoding, there
is no need to propagate carries to the next block, avoiding a lot of computation and
make the computation faster. We actually exploit the room we have in the carry
buffer in each block to have more leveled operations computed between two message
extractions (to empty the carry). Another advantage of this encoding is that it
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enables a parallel execution of the operators at the block level, whereas with the
radix approach, the carry propagation or carry reduction mostly implies sequential
operations.

This CRT encoding is very efficient but suffers from the CRT requirements, i.e.
co-prime bases, and the precision limitation we have in practice with TFHE. Indeed,
there are a limited number of primes between 2 and 128. It means that this approach
is good when Ω is composed of small enough co-prime factors but for the rest of the
possible Ω we need other solutions.

Remark 3 (Hybrid Approach) To overcome the above-mentioned limitations,
we propose a new homomorphic hybrid representation: the idea is to use the CRT
approach (from Section 4.4), and to represent the larger CRT residues by using
radix-based modular integers (from Section 4.3) when needed. In practice, with this
new hybrid approach, we do not have any restriction on Ω. We provide more details
in Supplementary Material C.

4.5 Discrete Function Evaluation

In this section we describe a new method to homomorphically evaluate a discrete
function over data encrypted in the various ways described in this paper. The
PBS takes as input a single LWE ciphertext and it is able to evaluate the LUT on
the encrypted message. However, when the message is encoded in multiple LWE
ciphertexts, a single PBS is not enough.

Two techniques could be used to evaluate a LUT over a large integer. The
first one is the TreePBS method proposed in 2021 by Guimarães, Borin and
Aranha [GBA21], which enables to evaluate a large look-up table over many in-
put ciphertexts. Since this technique is not new, we provide details about how to
use it for our large homomorphic integers in Supplementary Material D.1.

The second technique we use relies on the new WoP-PBS, introduced in Sec-
tion 4.1 to evaluate some univariate (or multivariate) functions on radix-based,
CRT-based and hybrid modular integer ciphertexts: the idea is to extract all the
bits from one or more of the modular integers, up to their degree of fullness, and
then evaluate the desired LUTs. Because we might have non-empty carry buffers,
different possible inputs encode the same value. Hence the LUT L needs to contain
some kind of redundancy. If the goal is to compute the discrete function f , one needs
to compute the L as L[(m0, · · · ,mκ−1)] = Encode (f (Decode (m0, · · · ,mκ−1))).

This approach is also very convenient for particular LUT such as the ReLU
function in the radix mode. Indeed, we only need to use the MSB, so the CMux tree
(in the WoP-PBS) is greatly simplified and becomes linear in the number of blocks.
It is even better for the sign function, we can settle for CMux in the Cmux tree.
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Figure 3: In this figure, we compare the cost of AP type #7 and type #5. The first
one corresponds to DP-KS followed by our new WoP-PBS (Section 4.1), and the
second one to DP-KS followed by the WoP-PBS from [LMP21].

5 Applications of Our Optimization Framework

One can address many FHE use-cases with TFHE. For instance to homomorphically
compute the inference of some neural network [CJP21], only a few FHE operators
are required: ciphertext/ciphertext and ciphertext/plaintext additions, ciphertext/-
plaintext multiplications, KS and PBS. It can be represented with AP of type #1
or AP of type #7.

In this section we instantiate our optimization framework in different ways so we
can find the best FHE parameters for the defined AP types. For instance, we look
for the best parameters for TFHE when messages are not Boolean and for many
different precisions or DP’s 2-norms. This will enable fast computation with the
new integer types introduced in Section 4. We will also be able for the first time,
to fairly compare different FHE strategies and algorithms for bootstrapping and/or
LUT evaluation and many other useful applications.

As explained in Section 3.2, we have to provide for each plain operator a list of
FHE sub-graphs computing it leading to Guarantee (iii). To simplify the optimiza-
tion we only provide a single sub-graph for each plain operator, i.e.

∣∣𝒮FHE

(
𝒢
)∣∣ = 1.

With all the AP types that we define in this paper, we make the assumption
that the cost of a DP is negligible compared to the other FHE operators.

We also assume that the inputs of an AP are some outputs of another PBS.
This assumption enables to compare different bootstrapping algorithms that have a
different impact on the noise as they both need to satisfy the same correctness.
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Regarding the confidence interval for the noise, we will use the same value
z∗(perr) = 4 in all the following applications. It means that each PBS has a failure
probability of at most 2−13.9. We added a corrective term to the FFT-less noise
formula given in [CLOT21] which is custom for FFTW [Pad11].

5.1 Optimal Parameters For Exact Non-Boolean TFHE

In this application, we demonstrate that we can use our optimization framework
to find optimal parameters in different precision/2-norm contexts. We start with
the advanced modular arithmetic use-case, explained in Section 4.2. We can find
parameters whether we use TFHE’s PBS or the WoP-PBS introduced in the paper,
we will however focus on AP type #1 in this application.

We also make the following important hypothesis, once again to speed the op-
timization up, but also to limit the size of the public material needed to run the
FHE DAG. We restrict ourselves to having up to one public key per FHE operators.
This means that the cryptographic parameters for each AP will be the same, so the
only differences between APs Ai(νi, ti) of type #1 is their 2-norm ν, and their noise
bound t(p) only.

Using Theorem 2, we are able to remove many APs. Then, instead of having to
check the constraints of as many feasible sets as we have atomic patterns in 𝒢, we
only need to check the constraints of the remaining APs. After this simplification,
there is at most as many AP as there is different noise bounds. With our selection
of TFHE operators, it means 8 APs maximum.

As we neglected the cost of the DP, the only parameters impacting the total cost
of an AP are the cryptographic parameters. So instead of having to compute the
cost of the whole graph, we can settle for the cost of one AP.

We provide an extensive list of parameters for AP type #1 in Section I.3 in Sup-
plementary Material, for precision up to 8 bits and their respective highest possible
2-norms. Using the message modulus p, the ciphertext modulus q = 264, z∗ (perr) = 4
i.e. the probability of error perr ≈ 2−13.9 and one bit of padding (i.e. π = 1), we can
compute the noise bound (definition 8) as t (p, π = 1) = q

2π+1·p·z∗(perr) .

5.2 WoP-PBS Comparison

A few WoP-PBS constructions have been proposed in the literature. Some
works [KS21, LMP21] tried to compare them. Our optimization framework en-
ables to truly compare such techniques together. We will work with AP of type #7
ending with the WoP-PBS introduced in this paper, and AP of type #5 ending with
the WoP-PBS introduced by Liu et al [LMP21].

In Figure 3, we plot the results we obtained: each point correspond to an optimal
parameter set found for a given AP type, precision and 2-norm.

Note that AP type #5 has to bootstrap the entire message, and above 8 bits
of precision polynomials bigger than 214 are needed. To fairly compare, we had to
increase this limit even though the library could not support such big polynomials.
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Figure 4: This figure compares the cost of AP type #7, #1, and #4. The first
one corresponds to DP-KS followed by our new WoP-PBS, the second one to DP-
KS-PBS, and the last one to DP-KS followed by a multi-value PBS introduced
in [CIM19]. Precision is fixed to 8 bits and the 2-norm to 6 bits.

As we can see, the WoP-PBS introduced in this paper is faster with precisions
above 8-bits, making it the best known way to deal with bigger precisions in TFHE-
like schemes. When one has to work with smaller precision, they want to use the
algorithm from [LMP21].

5.3 MISD-PBS Comparison

In this application we compare the Multiple Instructions, Single Data (MISD) op-
erators that we have at our disposal for homomorphic LUT evaluation.

We compare three techniques: the naive one (baseline) where one computes α
PBSs on the same input to get the α desired evaluations, a second one using the
WoP-PBS introduced in this paper (Section 4.1), and a last one using the multi-value
PBS introduced in [CIM19].

Figure 4 plots the cost of the optimal found parameters for the three different
AP types and different number of functions to evaluate. We can see that both the
WoP-PBS and the multi-value PBS scale well in the number of LUT to evaluate
over the same input.

This figure does not mean that the WoP-PBS is better than the multi-value,
it is indeed better in some particular settings like this one, with a precision of 8
bits and a 2-norm of 6 bits. Figure 10 in Supplementary Material, shows this same
experiment in a setting where the multi-value is better.

From this experiment, we concluded that it is better to use the WoP-PBS for
precisions above 8 bits and with high 2-norms.
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5.4 KS Before or After PBS? No KS at All?

In TFHE [CGGI20], the KS is generally computed right after the PBS (type #2),
as instance in gate bootstrapping, and not the other way around as in the AP type
#1. This application aims to compare the two approaches and to answer which one
is better. It also investigates what would happen if we were to remove entirely the
KS with the AP type #8. To simplify, we fixed the GLWE dimension k to 1, i.e.,
we use RLWE ciphertexts.

Figure 5 plots the cost of the optimal parameter sets for the three AP types we
mentioned, for an increasing precision and for several 2-norms of the DP. Sometimes
there exists no parameter sets. We see that without any KS, it’s impossible to find
parameters when one increases the 2-norm or the precision. We also see that having
the KS right before the PBS is more efficient than having it right after, as predicted
by the theory. To conclude, one wants to always compute the KS right before the
PBS as in AP #1.

Figure 5: In this figure, we compare AP of type #1, type #2 and type #8. The
first one corresponds to DP-KS-PBS, the second one to KS-DP-PBS and the last
one to DP-PBS.

5.5 Multi-Input LUT Evaluation

In this application, we investigate the scalability of algorithms dedicated to the
LUT evaluation over an input message split among several LWE input ciphertexts.
We have implemented two algorithms, one base on our WoP-PBS, described in
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Section 4.1, and the TreePBS algorithm [GBA21]. The two AP types that we
consider are #7 and #10.

We plot in figure 6 the comparison with two input ciphertexts. Each point corre-
sponds to the best possible parameter sets found with the optimization framework
according to the context. We can see that when the precision increases, the TreePBS
does not scale well and eventually no parameters can be found anymore (on this fig-
ure we allow polynomial sizes to be above the one supported in practice, i.e. 214 for
the TreePBS).

We have in figures 8 and 9 in Supplementary Material, the same experiments
but for 3 and 4 LWE ciphertext inputs. We observed that when the number of input
increases, once again the TreePBS approach does no scale well and it becomes even
harder to find parameters.

Figure 6: In this figure, we evaluate a LUT over 2 encrypted inputs, with on the
one hand the WoP-PBS introduced in this paper, AP type #7 and on the other
hand with the TreePBS [GBA21], AP type #10.

5.6 Other Applications

In this section we describe a few more applications offered by the optimization frame-
work. A simple yet useful is the capability of exploring the correctness/efficiency
spectrum. Indeed, the framework takes as input the LUT evaluation’s probabil-
ity of error so it is easy to go from more efficient parameters with a greater error
probability to less efficient ones with a smaller error probability.
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Consensus-Friendly TFHE & Blockchain Application Two implementa-
tions of the same FHE algorithm that does not involve the FFT will output the
same result as long as it operates over the same inputs (same ciphertexts and same
public materials). For instance, different implementation of a DP or an LWE-to-
LWE KS will produce the same outputs.

However, implementations that leverage the FFT output different ciphertexts
depending on the FFT algorithm involved. To highlight this, we made an experi-
ment with the traditional parameter set of TFHE-lib for the bootstrapping. We use
the same secret keys, the same bootstrapping key and the same input ciphertexts,
but two different implementations of the PBS with their respective FFT implemen-
tations.

We computed the difference on the resulting ciphertexts for the two different
implementations, we call this value the error of the ciphertexts, which is different
from the noise needed for security in the plaintext. We observed that the ciphertexts
had the same most significant bits but their least significant bits were different.
We also re-run the experiment with different parameters: more levels and bigger
polynomials in the bootstrapping key. The messages encrypted were still correct
but the ciphertexts were completely different.

From those experiments, we can conclude that for a given parameter set and a
ciphertext with a given input error, the PBS with a given FFT either resets the error
to a minimal level or outputs the maximum amount of error, i.e., a re-randomization
of the ciphertext. It means that an FHE circuit containing a DP, a KS and a PBS
will not output the exact same ciphertext if it is run on the same inputs with different
implementations. This is not compatible with use-cases where one actually needs to
guarantee reproducibility across different implementations.

Thankfully, it is possible to ensure the reproducibility by tweaking a bit our
optimization framework as well as the PBS algorithm. The idea is to use a new AP
type that is identical to type #1 but with an extra rounding step at the end (right
after the PBS). This rounding procedure aims to remove the LSB of the ciphertexts
that are different from an implementation to the other. This rounding increases the
noise in the plaintext and it adds a new parameter to optimize: the location of the
rounding. The higher in the MSB we round the more noise we add, but also the more
error we remove. Note that this rounding will either keep the same amount of error
(when the output error is maximal, i.e., the ciphertexts are completely different) or
cancel it entirely depending on the parameter for the rounding and the input error.

We can add to the optimization framework a new constraint related to the
maximum error of the FFT we want to consider. We can do that easily with
the additional feasible set 𝒮other (𝒢). The condition could be represented as:
𝒮other (𝒢) = {x ∈ ℰ|∀i,E𝒪i

(x) = 0} ⊂ ℰ, with E𝒪i
(x) the error of the output

ciphertext coefficients of 𝒪i after the rounding. This approach relies on the fact
that we have a model for the error in the output of the PBS in terms of ciphertext
coefficients.

Some cryptographic observations can help reducing the size of the parameter
space. In particular, we must have: q

2β
ℓPBS
PBS

> errorFFT (x).
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This optimization enables to set a limit in terms of error in the ciphertext co-
efficients that an implementation of the FFT introduces. Then, we can optimize
for a given FFT error model, some noise model, and some cost model targeting a
common architecture for instance. The result of the optimization can be used to
compute the same circuit on the same ciphertexts with the same public keys, but
with different implementation of the same FHE algorithms and we will end up with
the exact same ciphertext in output.

This feature enables many miners in a blockchain for instance, to compute the
same circuit on the same inputs and have a consensus without a need to decrypt
anything. It guarantees that the result came out of the desired FHE DAG and not
another designed by an attacker.

Optimization for Several Public Keys In previous applications, we assumed
that we have only one public material per FHE operator for the whole FHE DAG.

Restricting the number of public keys helps to have a small quantity of public
material. It also has an impact on the complexity of the optimization problem
because as a result, parameters are shared across the entire FHE DAG. The down
side is that we cannot speed up parts of the FHE DAG that have a bigger noise bound
or less leveled operations (smaller 2-norm) with smaller and faster parameters.

In this section we describe a simple optimization problem: one LWE secret key
s⃗ and one GLWE secret key S⃗ ′ (for the PBS) that can be viewed as a bigger LWE
secret key s⃗′, along with X different key switching keys going from s⃗′ to s⃗. These
key switching keys can use a different base β and/or a different number of levels ℓ.
We consider a graph 𝒢 of Y APs of type #1.

There are many ways to solve this problem. A naive solution is to consider
different parameters for each KS and to let every KS to have its own (β, ℓ) and to
add the constraint that they can have at most X values. This approach increases
exponentially the search space of the optimization problem, so we will not consider
it.

A second solution, which is straightforward though not the most efficient one, is
to introduce a new variable δ for each KS. This value δ stores the associated KSK
identifier. This is a new parameter to optimize for each KS: ∀i ∈ [1, Y ] δi ∈ [1, X].
So our additional search space, defined by the problem of finding which KSK is
used by which KS, is of size XY .

We designed a third solution to solve the problem. Starting now, we will sort our
KSK (KSK0,KSK1, · · ·) such that a KS with KSKi adds less noise than using KSKi+1

for all 0 ≤ i. Let’s consider the following toy example: t ∈ N is a noise bound and
𝒢 = {A0 (ν0, t) , A1 (ν1, t) , A2 (ν2, t)} is an FHE DAG such that ν0 < ν1 < ν2. This
graph has the same noise bound t for each AP and they are all of type #1.

Let us illustrate this method with three APs and two possible keyswitching keys
and let us assume that δ⃗ = (δ0, δ1, δ2) = (0, 1, 0) is the optimal solution, we will
show that it cannot be so. We can use Theorem 3 to infer that 𝒮N (A (ν2, t)) ⊆
𝒮N (A (ν1, t)) ⊆ 𝒮N (A (ν0, t)), and Theorem 4 to infer that a KS with KSK1 is faster
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than a KS with KSK0. It is then straightforward to see that if (0, 1, 0) is a solution,
then (1, 1, 0) is also a solution but a faster one. This example can be extended to
an arbitrary number of AP sharing the same noise bound.

To speed up the optimization problem, as pre-computation, we sort the AP
according to their 2-norm νi. We will also define each indexes γi of δ⃗ where we stop
to have one of the possible KSK, i.e. for all 0 ≤ i ≤ X−1 we have a γi ∈ {0, · · · , Y }
such that δγi < i and δγi−1 ≥ i. It enables to have less variables to optimize: instead
of Y variables, one for each keyswitch, we only have X variables the number of
authorized KSK.

We can consider an FHE DAG with different noise bounds, and apply what we
just described for each of the different noise bounds. The same approach works to
enable several BSK in the optimization. Indeed, BSK can also be sorted by amount
of noise they offer in their output ciphertexts.

Faster Computation from Split DP In this application we introduce another
strategy to end up with faster computations. The idea is to enable to break DP
operators into several smaller DPs by inserting some PBS between them.

We consider a graph 𝒢 = {A(νi, t)}0≤i<α composed of AP of type #1 which
involves a DP operator. We introduce a new AP type and translate every AP of
type #1 into this new AP type A∗ ∈ 𝒜(1∗) which has the exact same sub-graph than
AP type #1 except that the DP is split into several sub-DP connected with PBS as
explained in Theorem 6. This AP has a new parameter di describing the splitting
of the DP for the i-th AP, i.e., how many sub-DP we will have. Note that a graph
𝒢∗ with fixed values di can be viewed as a graph 𝒢∗ of AP type #1.

Formally, the problem can be written this way: argmind⃗∈𝒟 Cost
(
𝒢∗

d⃗
, x∗
)
where

𝒢∗
d⃗
= {A∗(νi, t, di)}0≤i<α , and x∗ is the optimal solution obtained as in the Sec-

tion 5.1 over the d⃗-split graph 𝒢∗, i.e. x∗ = argminx∈ℰ Cost
(
𝒢∗, x

)
and x ∈

𝒮N

(
𝒢∗
)
where ℰ is the search space of 𝒢∗.

Several ways can be imagined to split a DP. One could be to group public weights
of the DP into di sets such that their 2-norm is approximately the same. This will
yield the best result if we keep neglecting the cost of the DP. Inserting a PBS adds
extra operations to perform, but it will also reduce the 2-norm of the initial DP.
This may lead to noisier parameters, but faster and still as correct. To sum up,
this method allows to optimally insert PBS during leveled operations, here a dot
product.

We describe a few other applications in Supplementary Material because of
lack of space. In particular we explain how to optimize with our framework when
we mix different AP types (Supplementary Material E.2). We also investigate the
impact that has the FFT in an FHE operator, with the example of the PBS in
Supplementary Material E.3.
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6 Conclusion & Future Work

Finding parameters that are correct, secure and efficient is a hard problem that
hinders large scale adoption of FHE. In this paper, we proposed the first optimization
framework that allows to efficiently select the best FHE parameters for TFHE-like
schemes given a plain graph, a cost and a noise models. It allowed us to compare
several of the bootstrapping algorithms described in the literature and a new WoP-
PBS (PBS without padding) in diverse scenarios. As a result, we know for each of
them, the contexts where they are suited the most. This knowledge will be useful to
accelerate an optimization process that has many choices in terms of bootstrapping
algorithms.

We also proposed new types of ciphertexts, combining several LWE encryptions
to encode large precision messages by using a radix-based and/or as a CRT-based
decomposition. We used our new optimization framework to provide optimal param-
eters, for those large homomorphic integers as well as for other practical applications.

Future Work An interesting future work would be to extend the optimization to
more than the cryptographic parameters. For instance, many new parameters comes
with the large homomorphic integer representation we introduced in this paper, such
as the moduli or the number of blocks, and they could also be optimized. A second
example is to optimize the topology of the graph of FHE operators by offering to the
optimization many different options. Another future work would be to use our new
optimization framework to find optimal parameters for more FHE schemes, other
than the TFHE-like ones.
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Supplementary Material

A Details on Advanced Modular Arithmetic from

Single LWE Ciphertexts

In this section we provide more details on the advanced modular arithmetic opera-
tions from Section 4.2.

A.1 Arithmetic Operators

Thanks to the carry subspace, we can compute leveled operations such as homomor-
phic additions or multiplications with a known constant. Let’s consider two LWE
ciphertexts ct1 and ct2 encrypting respectively m1 and m2 with respective degrees
of fullness deg1 and deg2. From the degree of fullness one can infer respective worst
case messages µ1 and µ2 (Definition 14). The following operations are allowed as
long as both ciphertexts share the same base β, carry-message modulus p and cipher-
text modulus q. Our plaintext format does not allow any native modular reduction
modulo β, i.e. the carry subspace will contain the quantity overlapping β and we
cannot have a degree of fullness greater than 1 at any time for correctness reason.

Addition To compute the addition m1+m2 modulo β one can use the traditional
LWE addition. With this approach, the necessary condition to guarantee correctness
is deg1+deg2 ≤ 1 and the output ciphertext will have a degree equal to deg1+deg2.

Multiplication To compute a multiplication between ct1 (as defined above) and
an integer constant 0 ≤ c one can use the trivial multiplication between an LWE
ciphertext and a positive integer. With this approach, the necessary condition to
guarantee correctness is c · deg1 ≤ 1 and the output ciphertext will have a degree
equal to c · deg1.

Opposite To compute the opposite of m1 modulo β we can use the trivial algo-
rithm where we compute the opposite of every elements of the LWE ciphertext ct1.
However, without a correction, this will lead to an encoding of a message that is no

more between 0 and p − 1. This is why one must add the correction term β ·
⌈
µ1

β

⌉
after computing the opposite of the each coefficients of the ciphertext. With this

approach, the necessary condition to guarantee correctness is β ·
⌈
µ1

β

⌉
≤ p − 1 and

the output degree of fullness is β ·
⌈
µ1

β

⌉
· 1
p−1 .
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Subtraction To compute the subtraction m1 − m2 modulo β one starts by ho-
momorphically compute the opposite of ct2 and then compute the homomorphic
addition with ct1. Both the condition and the output degree of fullness can be
infered from the descriptions of the previous operations.

LUT Evaluation The PBS is an operation that allows to evaluate a uni-variate
function on the input at the same time as it reduces the noise. It is then easy to
compute l(m1) homomorphically from ct1 with l a LUT. The requirement is that
deg1 ≤ 1, and the output degree is µl

p−1 where µl is the biggest possible output of
the LUT.

A.1.1 PBS with p Not a Power of Two

No details, nor analysis have been provided yet in the literature about computing
programmable bootstrapping when the plaintext space is not a power of two. It is
required to have a bit of padding when one wants to compute a traditional PBS
evaluating a non-negacyclic function, which forces the plaintext space to be even.
However the algorithm works the same with an odd p, the only difference lies in
the way the r-redundant LUT is build. This also brings a slight modification in the
evaluation of the error probability when computing such PBS.

Recall that such LUT are encoded in the polynomial plaintext L̃ =
Encode(L, p′, q) of a GLWE ciphertext and L contain redundancy. We call mega-
cases each block of successive redundant values. In a generic manner, if the LUT
we want to compute is defined as L : Zp → Zp′ , x 7→ yx, we define the polynomial L
as:

L = X−⌊
N
2·p⌉ ·

(
N−1∑
i=0

y⌊ i·pN ⌋ ·X
i

)

Proof 6 (Sketch) With such a LUT, and p not a power of 2, we end up 2 possi-

ble sizes for the mega-cases of the r-redundant LUT: either
⌊
N
p

⌋
or
⌈
N
p

⌉
. For the

correctness study, we will take the worst case scenario, i.e. considering
⌊
N
p

⌋
. The

encoding function (Definition 2) enables to have messages centered in the mega-cases
when it comes to PBS, it means that the probability of going into the wrong mega-
case during a PBS in the worst case scenario is when the error eMS is bigger in

absolute value than
⌊
N
p

⌋
where eMS is the error in the PBS after the modulus switch

and before the blind rotation. It is easy to estimate eMS as a variance, thanks to
noise formulae. Since it is close to a Gaussian distribution, we can use a confidence
interval to infer the probability to get into the wrong mega-case. □

A.2 Multiplications

To compute the addition m1 · m2 we can use a combination of leveled operations
and PBS. Here, we propose three types of multiplication:
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(i) the multiplication of the two inputs without any modular reduction return-
ing m1 · m2 (requiring that µ1 · µ2 < p). The output degree of fullness is
deg1 · deg2 · (p− 1);

(ii) the multiplication in the LSB, returning an LWE encryption of m1 · m2

mod β. The output degree of fullness is the minimum between β−1
p−1 and

deg1 · deg2 · (p− 1);

(iii) the multiplication in the MSB, returning an LWE encryption of
⌊
m1·m2

β

⌋
. The

output degree of fullness is
⌊
µ1

β

⌋
·
⌊
µ2

β

⌋
;

The first method can be used to compute a multiplication of type (ii), and is
known in the TFHE literature (see as instance [CJL+20]) and consists in computing

the multiplication by observing that x · y = (x+y)2

4
− (x−y)2

4
modulo β. Then, we

compute m1+m2 and m1−m2 in a leveled fashion, and we use two KS-PBS with the

LUT computing the uni-variate function
⌊
x2

4

⌋
mod β to compute (m1+m2)2

4
mod β

and (m1−m2)2

4
mod β. We finally subtract the two results and perform another

KS-PBS with LUT computing x mod β to get the right result.
The second method we propose is using the ChainedPBS. It can be used to

compute multiplications of type (i), type (ii) and type (iii), and requires the use
of the technique presented in one of the previous paragraphs and illustrated in
Figure 13.

We evaluate the multiplication of type (ii), as a bi-variate function, by shifting
one of the two ciphertexts, adding to the other one and by performing a KS-PBS

with LUT computing the function (x mod (µ1 + 1)) ·
(⌊

x
µ1+1

⌋
mod β

)
mod β.

We evaluate the multiplication of type (iii) in the same manner. The
only difference is that the KS-PBS evaluates a LUT computing the function⌊

(x mod (µ1+1))·
(⌊

x
µ1+1

⌋
mod β

)
β

⌋
. We evaluate the multiplication of type (i) in the

same manner. The only difference is that the KS-PBS evaluates a LUT computing

the function (x mod (µ1 + 1)) ·
⌊

x
µ1+1

⌋
.

The third method can be use to compute the multiplication of type (i). It
consists on using a BFV GLWE multiplication as introduced in [CLOT21] for the
TFHE context.

A.3 Carry & Message Extractions

As we observed in previous sections, after performing homomorphic operations the
degree of fullness increases and the carry subspace might need to be emptied. To do
so, we propose two operations: the carry extract operation, that allows to extract

the carry
⌊
m1

β

⌋
of m1 overlapping β into a new LWE ciphertext (one or more),

and message extract operation, which allows to extract m1 mod β into a new LWE
ciphertext.
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Both operations use a PBS (along with key switching in order to come back
to the original secret key, if necessary), taking as input the same LWE cipher-
text and the same public material (i.e., the bootstrapping and key switching keys),
but different LUT. The carry extract uses Pcarry-ext : a r-redundant LUT for x →⌊
x
β

⌋
. The output degree of fullness is

⌊
µ1

β

⌋
. The message extract uses Pmsg-ext :

a r-redundant LUT for x → x mod β. The output degree of fullness is the min-
imum between β−1

p−1 and deg1. If the carry subspace is larger than the message
subspace, more than one PBS might be required to empty it all along with slightly
different LUTs.

B Example on Radix-Based Integers

In this section we give more detail about the homomorphic large integers introduced
in this paper.

Multiplication Let’s use a toy example to describe how a multiplication between
two encrypted radix-based modular integers. We will use κ = 2, β0 = 3, β1 = 5 and
Ω = 15. We will multiply msg = msg1 ·msg2 modulo 15 with msg1 = 10 = 3 · 3 + 1,
msg2 = 5 = 1 · 3 + 2 and msg = m1 · 3 +m0. What we do in clear is m0 = 1 · 2 = 2
and m1 = 3 · 2 + 3 · 1 · 3 + 1 · 1 = 16 = 1 because it lives modulo β1 = 5.

We now need to compute this homomorphically between two radix-based mod-
ular integers. We will set p = 32. We have four (two for each integers) ciphertexts

encrypting modular integers: ct
(1)
1 encrypting 3 under (β1, p) with degree 4/31, ct

(1)
0

encrypting 1 under (β0, p) with degree 2/31, ct
(2)
1 encrypting 1 under (β1, p) with

degree 4/31, ct
(2)
0 encrypting 2 under (β0, p) with degree 2/31.

We want to produce a radix-based modular integer that will be composed of
two ciphertexts encrypting modular integers: ct

(out)
1 under (β1, p) and ct

(out)
0 under

(β0, p). The computation will be the following: ct
(out)
0 ← Mul

(
ct

(1)
0 , ct

(2)
0

)
and:

ct
(out)
1 ← Mul

(
ct

(1)
0 , ct

(2)
1

)
+Mul

(
ct

(1)
1 , ct

(2)
0

)
+ LUT-Eval

(
x 7→ β0 · x mod β1,Mul

(
ct

(1)
1 , ct

(2)
1

))
Note that Mul refers to the multiplication of type (i), and that LUT-Eval refers

to the LUT evaluation in the same section and its first input is a description of
the LUT to evaluate. The degree of fullness of ct

(out)
0 is 4/32, and the degree of

ct
(out)
1 is 8/32 + 8/32 + 4/32 = 20/32. They will encrypt respectively 1 · 2 = 2 and

1 · 1 + 3 · 2 + (3 · 1 · 3 mod 5) = 11 which when decoding will lead to the expected
value.

We could definitely have computed the same functionality, i.e. msg1 · msg2,
from the other two types of multiplication, and it would have only changed a few
details in the algorithm. Also note that we computed LUT-Eval instead of using
a simple multiplication with a constant so the output degree does not become too
big. Here again there are many different combination of parameters and algorithms
that would have produced the desired result. We provide details on this technique
in Algorithm 3 in Supplementary Material D.
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Opposite For the negation, we can use msg1 defined above. We start by com-

puting the opposite of the MSB block, i.e. ct
(1)
1 , so we end up with the message

5 − 3 = 2. Then we need to compute the opposite of the LSB block, i.e. ct
(1)
1 , so

we end up with the message 3− 1 = 2, and finally compensate this LSB opposite by
subtracting 1 to the MSB block. It means that we will end up with 2 + (5− 1) = 6
encrypted in the MSB block. After decoding, it will output the expected value.

LUT Evaluation There are many examples of univariate functions (such as the
inverse). These functions could be computed with the techniques we just described
and then, by using a similar method than the one we used to compute the multipli-

cation, it is also possible to compute an homomorphic division of the form
⌊
m1

m2

⌉
.

C Details on the Hybrid Approach

As we explained above, the CRT-only approach has some limitations. To overcome
them, we create a new homomorphic hybrid representation that mixes the CRT-
based approach (Section 4.4) with the radix-based approach (Section 4.3), in order
to take advantage of the best of both worlds. The idea is to use the CRT approach
as the top layer in the structure, and to represent the CRT residues by using radix-
based modular integers when needed: with this approach we do not have any more
restrictions on Ω.

Let (Ω0, · · · ,Ωκ−1) be integers co-primes to each other, i.e., (Ωi,Ωj) co-primes
for all i ̸= j, and let Ω =

∏κ−1
i=0 Ωi.

Encode To encode a message msg ∈ ZΩ, as we do in the CRT-only approach, we
split into a list of {msgi}

κ−1
i=0 such that msgi = msg mod Ωi for all 0 ≤ i < κ. At

this point, for each message msgi for i ∈ J0, κ−1K, we apply the same encoding used
for radix-based modular integers, as in Section 4.4 (Encode from Definition 2). It
means that any CRT residue Ωi have its own list of radix bases: (βi,κi−1, · · · , βi,0) and
more generally its parameters {(βi,j, pi,j)}0≤j<κi

∈ N2κi . Figure 11 in Supplementary
Material H gives a visual representation.

Decode The decoding is done in two steps: first, we decode each indepen-
dent radix-based modular integer to obtain the independent residues modulo
Ω0, . . . ,Ωκ−1, and then we invert the CRT to retrieve the message modulo Ω.

The hybrid approach can be seen as a generalization of both the CRT-only
approach (if κi = 1 for all 0 ≤ i < κ) and the pure radix-based modular integer
approach (if κ = 1). It also covers the mixed cases where some of the κi are equal
to 1 and the others are greater.

We say that two hybrid ciphertexts are compatible to perform homomorphic
operations if they are defined under the same CRT residues and for each residue,
the same parameters. To perform any homomorphic operation, we have to perform
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the computation on each radix component independently, as shown for the CRT-
only approach. The only difference here is that, instead of manipulating a single
LWE ciphertext (as in Section 4.2), we manipulate radix-based modular integers (as
in Section 4.4).

D Detail about Algorithms

In this section we provide algorithms that are used in the main body of this paper.
Let β⃗ = (β0, . . . , βκ−1) and p⃗ = (p0, . . . , pκ−1). We need to define recursively the

quantities qi,β⃗, ri,β⃗ and γβ⃗, for i ∈ Z≥−1, which are useful in these algorithms, as:

• qi,β⃗(x) =

{
x, if i = −1⌊
q
i−1,β⃗

(x)

βi

⌋
, if i ≥ 0

• ri,β⃗(x) = qi−1,β⃗(x)− qi,β⃗(x) · βi, i ≥ 0

• γβ⃗(x) =

{
min(i ∈ Ω), Ω = {i < |β⃗|, qi,β⃗(x) = 0}
|β⃗| if Ω = ∅.

The first algorithm we need is the Decomposition algorithm: we give details in
Algorithm 2.

The second tool we need is a padding algorithm, which allows to change the size
of a radix-based large integer encryption (Section 4.3) from κ to κout. To do so, we
complete the ciphertext with trivial encryptions of zero. This is useful when we use
the Decomp Algorithm 2 since the output ciphertext might not be of length κ.

The signature of the algorithm is:

(
c′0, . . . , c

′
κout−1

)
← Pad

(
(c0, . . . , cκ−1) , α, p⃗out, β⃗out

)
We give details on the multiplication operation for radix-based modular integers

in Algorithm 3.
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Algorithm 3:
(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
← Mult

((
ct

(1)
0 , . . . , ct

(1)
κ1−1

)
,
(
ct

(2)
0 , . . . , ct

(2)
κ2−1

)
, PUB

)

Context:



(q, pj,i, βj,i,degj,i) : paremathers of ct
(j)
i

µj,i := degj,i ·(pj,i − 1) + 1, j ∈ J1, 2K, i ∈ J0, κj − 1K
β⃗j := (βj,0, . . . , βj,κj−1), p⃗j := (pj,0, . . . , pj,κj−1)

β⃗j,i := (βj,i, . . . , βj,κj−1), p⃗j,i := (pj,i, . . . , pj,κj−1)

γh,k := γ−→
β 2,k

((µ1,h − 1) · (µ2,k − 1))

{P
i,rk,

−−→
β2,j
}0≤i≤κ1−1, 0≤j≤κ2−1, 0≤k≤γi,j

: a LUT for

x→ r
k,
−→
β 2,j

(
(x mod µ2,i) ·

⌊
x

µ2,i

⌋)
· q
2·p2,k+j

Input:

{(
ct

(i)
0 , . . . , ct

(i)
κi−1

)
: encrypting msgi under s⃗, i ∈ J1, 2K

PUB: public material for KS-PBS

Output:
(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
encrypting msg1 ·msg2 under s⃗

1 for i ∈ J0;κ1 − 1K do
/* Put the block to the right basis */

2 cttmp ← LweBasisChange(ct(1)i, p2,0, β2,0,PUB)
/* Compute the multiplication-decomposition */

3

(
ct

(tmp)
0 , . . . , ct

(tmp)
κ−1

)
← OneBlockMul

(
cttmp,

(
ct

(2)
0 , . . . , ct

(2)
κ2−1

)
,PUB

)
/* Add the results of the multiplications together */

4

(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
← Add(

(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
,
(
ct

(tmp)
0 , . . . , ct

(tmp)
κ−1

)
)

5 end

6 return
(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
We report details on the two methods we propose for the modular reduction in

Algorithm 4 and Algorithm 5.
Observe that the κ KS-PBS in Line 2 of Algorithm 4 could be replaced by op-

timized procedures evaluating several different LUT on the same input ciphertext.
A few constructions have been proposed in the literature, such as the PBS many-
LUT [CLOT21] or the multi-value bootstrapping [CIM19].

D.1 Tree PBS approach on Radix-Based Modular Integers

In this section, we give more details on how to apply the TreePBS technique
by [GBA21] to our new radix-based modular integers.

In [GBA21] the plaintext integers are all encrypted under the same basis β:
we offer here the possibility to evaluate a large look-up table with integers set in
different basis (β0, . . . , βκ−1).

Let Ω =
∏κ−1

i=0 βi, and let L = [l0, l1, · · · , lΩ−1] be a LUT with Ω elements. We
want to evaluate this LUT on a radix-based modular integer encrypting a message
msg = m0 +

∑κ−1
i=1 mi

∏i−1
j=0 βj.

Then, to evaluate the new multi-radix tree-PBS we performs the following steps:

1. We note as B = {βi|i ∈ J0, κ − 1K} and as ϑ(βi) the component mi of msg
associated to βi.

2. We define βmax = max(β ∈ B).
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3. We split the LUT L into ν =
∏

βi∈B
βi

βmax
smaller LUTs (L0, . . . , Lν−1) that each

contain βmax different elements of L.

4. We compute a PBS on each of the ν LUTs using the ciphertext encrypting
ϑ(βmax) as a selector.

5. We build a new large look-up table L by packing, with a key switching, the
results of the ν iterations of the PBS in previous step.

6. We remove βmax from B: B = B − βmax.

7. We repeat the steps from 2 to 6 until B is empty.

The generalized multi-radix tree-PBS takes as input a radix-based modular
integer ciphertext, a large look-up table L and the public material required for
the PBS and key switchings and returns a LWE ciphertext. The signature is:
ctout ← Tree-PBS((ct0, . . . , ctκ−1),PUB, L).

For the CRT-only and hybrid approaches, the multi-radix tree-PBS works in the
same way.

E Details on Optimization

In this section we give more detail about the optimization framework.

E.1 AP Splitting

To split a DP in three it translates into the following: minwi,1,Λ1,Λ2 max(ν1, ν2, ν3)
such that wi = wi,1Λ1 + wi,2Λ2 + wi,3 for all j ∈ {1, 2}, PGCD (wi,j,Λj) = 1 and for

all j ∈ {1, 2}, νj =
√∑

i w
2
j,1. This is easy to generalize.

Let wi ∈ [−2p, 2p] the weights of the DP. If they follows a uniform distribution,
we have a trivial way yet very efficient (regarding the noise) to split this DP. We
can radix-decompose all the DP weights with the level being equal to d+1 and the
log2 of the base β is equal to p+1

d+1
. Here each Λi is equal to a power of β.

E.2 Mixing Different AP Types in an FHE Graph

We consider an FHE graph 𝒢 containing two types of AP: type #1 and type #2.
We can apply what we did previously independently on every AP types. At the end
of this procedure, we end up with a few AP of type #1 and a few AP of type #2. In
practice we have at most as many as we have different noise bounds for both types
of AP type.

We can reduce the number of AP needed to compute the noise feasible set 𝒮N (𝒢)
by comparing AP even when they do not share the same type thanks to Theorem 3.
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E.3 Study of the FFT’s Impact on Parameters

The FFT makes the PBS computation fast in the TFHE context. However, it adds
some error, due to the (double) floating points representation and the very nature
of the Fourier domain. We know that it is not negligible when we work with larger
precisions but it was never investigated. Our optimization framework enables to
understand the impact to use the FFT in an FHE operator. In this application we
will focus on the PBS: we want to see what happens to the cost of AP type #1,
with and without the additional noise brought by the FFT, and while assuming the
same cost in both cases. AP type #6 is needed. It is an imaginary concept since it
is exactly AP type #1 but without its additional FFT noise and still as fast.

Figure 7: In this figure, we look at the AP of type #1 and type #6. They both follow
se same sequence of FHE operators, but the first one has the traditional TFHE PBS
(with FFT over f64), and the second one has an imaginary TFHE PBS (with an
FFT as costly but with infinite precision). GLWE size is fixed to k = 1.

Our results are plotted in Figure 7. We can see that whatever the considered
precision is, at some point, the costs of the two AP types diverge when we increase
the 2-norm involved in the DP. With high 2-norms, the cost of the AP increases
much faster than if our FFT was noiseless. There is a second important observation
to make and it is about the existence of parameters. Indeed, for high 2-norms,
sooner than with our imaginary FFT, we stop finding possible solutions. To sum
up, the higher the precision, the sooner the following phenomenon is observed: not
only because of the noise of the FFT there is no solutions for some high 2-norms,
the last one possible cost way more.
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F Some Benchmarks

In this section, we provide a few benchmarks. The specifications of the machine are:
Intel(R) Core(TM) i5-1135G7@2.40GHz, with 16GB of RAM.

G More Optimization Figures

In this section we provide more figures obtained thanks to our optimization frame-
work.

Figure 8: In this figure, we evaluate a LUT over 3 encrypted inputs, with on the
one hand our new WoP-PBS (Section 4.1), AP type #7 and on the other hand with
the tree-PBS [GBA21], AP type #10.
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Figure 9: In this figure, we evaluate a LUT over 4 encrypted inputs, with on the
one hand our new WoP-PBS (Section 4.1), AP type #7 and on the other hand with
the tree-PBS [GBA21], AP type #10.

Figure 10: In this figure, we compare AP of type #7, #1, and #4. The first one
corresponds to DP-KS followed by our new WoP-PBS (Section 4.1), the second one
to DP-KS-PBS, and the last one to DP-KS followed by a multi-value PBS introduced
in [CIM19]. Precision is fixed to 8 bits and the 2-norm to 2 bits.
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H More Homomorphic Integer Related Figures

In this section, we provide extra figures related to our homomorphic large integers.

msg mod Ω 7→



msg0 = msg mod Ω0 7→


{m0,j}κ0−1

j=0 s.t.

msg0 = m0,0 +
∑κ0−1

j=1 m0,j ·
(∏j−1

k=0 β0,k

)
and m̃0,j = Encode (m0,j , p0,j , q)

∀0 ≤ j < κ0

...

msgκ−1 = msg mod Ωκ−1 7→


{mκ−1,j}

κκ−1−1

j=0 s.t.

msgκ−1 = mκ−1,0 +
∑κκ−1−1

j=1 m0,j ·
(∏j−1

k=0 βκ−1,k

)
and m̃κ−1,j = Encode (mκ−1,j , pκ−1,j , q)

∀0 ≤ j < κκ−1

Figure 11: Hybrid approach visualisation combining CRT representation on the top
level and radix representation below.

∅
0

p0

0 0

β0

· · ·
e0

ct0 = LWE(m̃0)

∅
0

p1

0 0

β1

· · ·
e1

ct1 = LWE(m̃1)

∅
0

p2

0 0

β2

· · ·
e2

ct2 = LWE(m̃2)

msg = m0 +m1 · β0 +m2 · β0 · β1

Figure 12: Plaintext representation of a fresh radix-based modular integer of length
κ = 3 working modulo Ω = (22)3. The symbol ∅ represents the padding bit needed
for the PBS. For each block we have m̃i = Encode (mi, pi, q). For all 0 ≤ i < κ we
have βi = 4, pi = 16, κ = 3 and Ω = 43.

Inputs:

∅

0 0 0

β ∅

0 0 0

β

Shift: 0 0 0 0 0 0

Addition: 0

Result LUT: 0 0 0

×β

+

KS-PBS

.

Figure 13: Example of a bi-variate LUT evaluation with shift and PBS.
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I Details on Crypto Parameters

In this section we provide parameters obtained with our optimization framework.

I.1 Parameters for Radix-Based Integers

I.2 Parameters for CRT-Based Integers

We used ΩCRT,16 bits = 23 · 32 · 11 · 13 · 7 and we have log2 (ΩCRT,16 bits) =
16.137151260278305. We used ΩCRT,32 bits = 43 · 47 · 37 · 72 · 29 · 41 and we have
log2 (ΩCRT,32 bits) = 32.02054981586955.
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I.3 Parameter Table for AP#1
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Algorithm 1: ctout ← WoP-PBS((ct0, . . . , ctκ−1),PUB, L)

Context:



∆i : scaling factor for the ciphertext cti

δi : bits occupied by message in ciphertext cti starting from ∆i

Ω = 2
∑κ−1

i=0 δi

(βCB, ℓCB) : the base and level of the output GGSW

ciphertexts to the circuit bootstrapping

(κ, ϑ) ∈ N× N defining the modulus switching in the

generalized PBS [CLOT21]

Input:


(ct0, . . . , ctκ−1) encrypting msg = (m0, . . . ,mκ−1)

with for all 0 ≤ i < κ, Decode (Decrypt (cti)) = mi

PUB : public keys required for the whole algorithm

L = [l0, l1, · · · , lΩ−1] : a LUT, s.t. lh ∈ Zω

Output: ctout encrypting lmsg

1 for i ∈ J0;κ− 1K do

2 for j ∈ J0; δi − 2K do

/* Extract from the LSB of the message (use generalized PBS

from [CLOT21]) */

3 αi,j =
∆i·2j

2
4 Li,j = [−αi,j , · · · ,−αi,j ]
5 ci ← KS-PBS (cti + (0, · · · , 0, αi,j) ,PUB, Li,j , (κ=log2(∆i)+j,ϑ=0))
6 c′i ← ci − (0, · · · , 0, αi,j)

/* Subtract the extracted bit from the original ciphertext */

7 cti ← Sub(cti, c
′
i)

/* Circuit bootstrap [CGGI20] the extracted bit into a GGSW */

8 Ci,j ← CircuitBootstrap(c′i,PUB, (βCB, ℓCB), (κ = log2 (∆i) + j, ϑ = 0))

/* Circuit bootstrap [CGGI20] the last bit into a GGSW */

9 Ci,j ← CircuitBootstrap(cti,PUB, (βCB, ℓCB), (κ = log2 (∆i) + δi − 1, ϑ = 0))

/* Vertical Packing LUT evaluation [CGGI20] */

10 ctout ← VPLut

({
Ci,j

}j∈J0;δi−1K

i∈J0;κ−1K
, L

)
11 return ctout
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Algorithm 2: (ctj)j∈J0,γK ← Decomp
(
ctin, β⃗, p⃗,PUB

)

Context:



(q, p,deg) : parameters of ctin

µ := deg ·(p− 1)

γ := γβ⃗(µ)

s⃗ ∈ Zn : the secret key

Pi,β⃗ : a LUT for x→ ri,β⃗(x) ·
q

2·pi
, i ∈ J0, κ− 1K

Input:


ctin : LWE encryption of a message m

(p⃗, β⃗) ∈ Nκ2

PUB: public material for KS-PBS

Output: (ctj)j∈J0,γK encrypting the message m

1 for j ∈ J0, γK do
2 ctj ← KS-PBS(ctin,PUB, Pi)

3 with ctj LWE encryption with parameters
(
q, βj , pj ,deg = min(

βj−1
pj−1 ,

q
j−1,β⃗

(µ)

pj−1 )
)

4 end
5 return (ctj)j∈J0,γK

Algorithm 4: (ct′0, . . . , ct
′
κ−1)← ModReduction1((ct0, . . . , ctκ−1),PUB)

Context:

{
Pj : κ r-redundant LUT for x ∈ Zpκ−1

→ Decompj

(
x ·
∏κ−2

h=0 βh mod Q
)

Decompj is the j-th element in the decomposition in base (β0, . . . , βκ−1)

Input:


(ct0, . . . , ctκ−1), encrypting msg = m0 +

∑κ−1
i=1 mi ·

(∏i−1
j=0 βi

)
s.t. cti encrypts message mi with parameters (βi, pi)

PUB: public material for KS-PBS

Output: (ct′0, . . . , ct
′
κ−1), encrypting msg = m0 +

∑κ−1
i=1 mi ·

(∏i−1
j=0 βi

)
mod Ω

/* Decompose message in block κ− 1 with respect to base (β0, . . . , βκ−1) */

1 for j ∈ J0;κ− 1K do
2 cj ← KS-PBS(ctκ−1,PUB, Pj)

/* Add (as in Section 4.2) decomposition to all the blocks up to κ− 2 */

3 for j ∈ J0;κ− 2K do
4 ct′j ← Add(ctj , cj)

/* Replace κ− 1 block with κ− 1 element in decomposition */

5 ct′κ−1 ← cκ−1

6 return (ct′0, . . . , ct
′
κ−1)
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Algorithm 5:
(
ct′0, . . . , ct

′
κ−1
)
← ModReduction2((ct0, . . . , ctκ−1),PUB)

Context:

{
ν⃗ = (ν0, ν1, . . . , νκ−1) be a convenient decomposition s.t.∏κ−2

h=0 βh mod Q = ν0 + ν1β0 + ν2β0β1 + . . .+ νκ−2

∏κ−3
j=0 βj

Input:

{
(ct0, . . . , ctκ−1) , encrypting msg = m0 +

∑κ−1
i=1 mi

(∏i−1
j=0 βi

)
s.t. cti encrypts message mi with parameters (βi, pi)

Output:
(
ct′0, . . . , ct

′
κ−1

)
encrypting msg = m0 +

∑κ−1
i=1 mi

(∏i−1
j=0 βi

)
mod Ω

/* Copy input and set the κ− 1 block to zero (trivial encryption) */

1

(
ct′0, . . . , ct

′
κ−1

)
← (ct0, . . . , ctκ−2, 0)

2 for j ∈ J0;κ− 2K do
/* Multiply block κ− 1 times νj, Multiplication with a Positive

Constant as in Section 4.2 */

3 if νj < 0 then
4 cj ← ScalarMul(ctκ−1,−νj)
5 else
6 cj ← ScalarMul(ctκ−1, νj)

/* Decompose (as in Supplementary Material D) cj block starting from

the βj */

7 (cj,0, . . . , cj,κ−j−1)← Decomp
(
cj , (βi)i∈Jj,κ−1K , (pi)i∈Jj,κ−1K ,PUB

)
/* Pad (as in Supplementary Material D) the carry to fit with the

output */

8

(
c′j,0, . . . , c

′
j,κ−1

)
← Pad

(
(cj,0, . . . , cj,κ−j−1) , j, (βi)i∈J0,κ−1K , (pi)i∈J0,κ−1K

)
/* Update the output, addition and subtraction as in Section 4.3 */

9 if νj < 0 then

10

(
ct′0, . . . , ct

′
κ−1

)
← Add

((
ct′0, . . . , ct

′
κ−1

)
,
(
c′j,0, . . . , c

′
j,k−1

))
11 else

12

(
ct′0, . . . , ct

′
κ−1

)
← Sub

((
ct′0, . . . , ct

′
κ−1

)
,
(
c′j,0, . . . , c

′
j,k−1

))
13 return

(
ct′0, . . . , ct

′
κ−1

)
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Parameters Radix Operators
Message Carry Ω κ Crypto ID × Full Propagate +

21 21 216 16 1 3.75 s 0.457 s 5.92 µs
22 22 216 8 2 1.81 s 0.457 s 5.26 µs
23 23 216 6 3 2.89 s 0.961 s 7.94 µs
24 24 216 4 4 8.29 s 3.67 s 26.6 µs

Parameters Parallel CRT Operators
Message Carry Ω κ Crypto ID × Clean Carries +

≈ 24 ≈ 24 ΩCRT,16 bits > 216 5 4 0.629 s 0.473 s 2.91 µs

Table 1: Benchmarks for homomorphic additions, full propagate, and additions, for
16 bit homomorphic integers based on radix and CRT approaches. The paralleliza-
tion is done with κ threads.

Parameters Radix Operators
Message Carry Ω κ Crypto ID × Full Propagate +

21 21 232 32 5 15.6 s 0.957 s 13.3 µs
22 22 232 16 6 7.56 s 0.913 s 11.9 µs
23 23 232 11 7 9.60 s 1.75 s 16.1 µs
24 24 232 8 8 29.7 s 7.71 s 78.1 µs

Parameters Parallel CRT Operators
Message Carry Ω κ Crypto ID × Clean Carries +

≈ 26 ≈ 22 ΩCRT,32 bits > 232 6 8 2.21 s 0.473 s 4.28 µs

Table 2: Benchmarks for homomorphic additions, full propagate, and additions, for
32 bit homomorphic integers based on radix and CRT approaches. The paralleliza-
tion is done with κ threads.

Param
n k N σLWE σGLWE βPBS ℓPBS βKS ℓKSSet ID

1 585 1 210 9.141776004202573 e-5 2.989040792967434 e-8 28 22 22 25

2 720 1 211 7.747831515176779 e-6 2.2148688116005568 e-16 223 21 24 25

3 829 1 212 1.0562341599676662 e-6 2.168404344971009 e-19 223 21 22 211

4 953 1 214 1.0945755939288365 e-7 2.168404344971009 e-19 215 22 24 25

5 585 1 210 9.141776004202573 e-5 2.989040792967434 e-8 28 22 28 22

6 720 1 211 7.747831515176779 e-6 2.2148688116005568 e-16 223 21 24 25

7 829 1 212 1.0562341599676662 e-6 2.168404344971009 e-19 223 21 22 211

8 953 1 214 1.0945755939288365 e-7 2.168404344971009 e-19 215 22 24 25

Table 3: Optimized parameters for AP type #1 designed for radix or CRT ap-
proaches.
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log2 (p) log2 (ν) k N n βPBS ℓPBS βKS ℓKS σ2
LWE σ2

GLWE
1 0 3 9 552 1 19 3 3 10−6 · 0.027930383996509764 10−22 · 0.06620333228945383
1 1 3 9 552 1 19 3 3 10−6 · 0.027930383996509764 10−22 · 0.06620333228945383
1 2 3 9 553 1 19 3 3 10−6 · 0.02692759962065487 10−22 · 0.06620333228945383
1 3 3 9 553 1 19 3 3 10−6 · 0.02692759962065487 10−22 · 0.06620333228945383
1 4 3 9 555 1 19 3 3 10−6 · 0.025028747135636498 10−22 · 0.06620333228945383
1 5 3 9 564 1 19 3 3 10−6 · 0.01801049806180883 10−22 · 0.06620333228945383
1 6 3 9 552 2 12 3 3 10−6 · 0.027930383996509764 10−22 · 0.06620333228945383
1 7 3 9 552 2 12 3 3 10−6 · 0.027930383996509764 10−22 · 0.06620333228945383
1 8 3 9 553 2 12 3 3 10−6 · 0.02692759962065487 10−22 · 0.06620333228945383
1 9 3 9 553 2 12 3 3 10−6 · 0.02692759962065487 10−22 · 0.06620333228945383
1 10 3 9 556 2 12 3 3 10−6 · 0.024130140207139664 10−22 · 0.06620333228945383
1 11 3 9 572 2 12 3 3 10−6 · 0.013442857673012663 10−22 · 0.06620333228945383
1 12 3 9 525 3 9 5 2 10−6 · 0.07495784109939463 10−22 · 0.06620333228945383
1 13 3 9 528 3 9 5 2 10−6 · 0.0671706071403963 10−22 · 0.06620333228945383
1 14 3 9 540 3 9 5 2 10−6 · 0.04331397985304483 10−22 · 0.06620333228945383
1 15 2 10 563 2 16 3 3 10−6 · 0.018681209388186886 10−28 · 0.0004905643852600863
1 16 2 10 565 2 16 3 3 10−6 · 0.017363867279360456 10−28 · 0.0004905643852600863
1 17 2 10 571 2 16 3 3 10−6 · 0.01394346997530633 10−28 · 0.0004905643852600863
1 18 2 10 567 2 16 5 2 10−6 · 0.01613942013229083 10−28 · 0.0004905643852600863
1 19 2 10 533 3 12 5 2 10−6 · 0.05594779144460059 10−28 · 0.0004905643852600863
1 20 2 10 534 3 12 5 2 10−6 · 0.05393909829053424 10−28 · 0.0004905643852600863
1 21 2 10 540 3 12 5 2 10−6 · 0.04331397985304483 10−28 · 0.0004905643852600863
1 22 2 10 535 4 10 5 2 10−6 · 0.05200252323233927 10−28 · 0.0004905643852600863
1 23 2 10 542 4 10 5 2 10−6 · 0.040259609636662636 10−28 · 0.0004905643852600863
1 24 2 10 535 5 8 5 2 10−6 · 0.05200252323233927 10−28 · 0.0004905643852600863
1 25 2 10 546 5 8 5 2 10−6 · 0.03478183562885413 10−28 · 0.0004905643852600863
1 26 2 10 549 6 7 5 2 10−6 · 0.031168413902818075 10−28 · 0.0004905643852600863
1 27 2 10 554 7 6 5 2 10−6 · 0.02596081820503799 10−28 · 0.0004905643852600863
1 28 2 10 564 9 5 5 2 10−6 · 0.01801049806180883 10−28 · 0.0004905643852600863
1 29 2 10 582 11 4 6 2 10−6 · 0.009326075940779933 10−28 · 0.0004905643852600863
1 30 2 10 540 22 2 10 1 10−6 · 0.04331397985304483 10−28 · 0.0004905643852600863
1 31 2 10 577 46 1 11 1 10−6 · 0.011196834888467916 10−28 · 0.0004905643852600863
2 0 3 9 622 1 19 3 4 10−6 · 0.002160370983179862 10−22 · 0.06620333228945383

Table 4: Optimal parameters for AP type #1.
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log2 (p) log2 (ν) k N n βPBS ℓPBS βKS ℓKS σ2
LWE σ2

GLWE
2 1 3 9 622 1 19 3 4 10−6 · 0.002160370983179862 10−22 · 0.06620333228945383
2 2 3 9 623 1 19 3 4 10−6 · 0.0020828071993001362 10−22 · 0.06620333228945383
2 3 3 9 625 1 19 3 4 10−6 · 0.001935933965817729 10−22 · 0.06620333228945383
2 4 3 9 633 1 19 3 4 10−6 · 0.001444961970375682 10−22 · 0.06620333228945383
2 5 3 9 572 2 12 5 2 10−6 · 0.013442857673012663 10−22 · 0.06620333228945383
2 6 3 9 572 2 12 5 2 10−6 · 0.013442857673012663 10−22 · 0.06620333228945383
2 7 3 9 572 2 12 5 2 10−6 · 0.013442857673012663 10−22 · 0.06620333228945383
2 8 3 9 573 2 12 5 2 10−6 · 0.012960218850609696 10−22 · 0.06620333228945383
2 9 3 9 576 2 12 5 2 10−6 · 0.011613805255056805 10−22 · 0.06620333228945383
2 10 3 9 609 2 12 4 3 10−6 · 0.0034750318096968095 10−22 · 0.06620333228945383
2 11 3 9 573 3 9 5 2 10−6 · 0.012960218850609696 10−22 · 0.06620333228945383
2 12 3 9 576 3 9 5 2 10−6 · 0.011613805255056805 10−22 · 0.06620333228945383
2 13 3 9 612 3 9 4 3 10−6 · 0.003114017067007133 10−22 · 0.06620333228945383
2 14 2 10 580 2 16 5 2 10−6 · 0.010033616049745533 10−28 · 0.0004905643852600863
2 15 2 10 582 2 16 5 2 10−6 · 0.009326075940779933 10−28 · 0.0004905643852600863
2 16 2 10 604 2 16 4 3 10−6 · 0.004172103857230115 10−28 · 0.0004905643852600863
2 17 2 10 639 2 16 4 3 10−6 · 0.0011603281414930846 10−28 · 0.0004905643852600863
2 18 2 10 581 3 12 5 2 10−6 · 0.009673379204836097 10−28 · 0.0004905643852600863
2 19 2 10 583 3 12 5 2 10−6 · 0.008991241903316682 10−28 · 0.0004905643852600863
2 20 2 10 593 3 12 5 2 10−6 · 0.00623773656107317 10−28 · 0.0004905643852600863
2 21 2 10 583 4 10 5 2 10−6 · 0.008991241903316682 10−28 · 0.0004905643852600863
2 22 2 10 584 4 10 6 2 10−6 · 0.00866842940989359 10−28 · 0.0004905643852600863
2 23 2 10 584 5 8 5 2 10−6 · 0.00866842940989359 10−28 · 0.0004905643852600863
2 24 2 10 588 5 8 6 2 10−6 · 0.007488991811303548 10−28 · 0.0004905643852600863
2 25 2 10 591 6 7 6 2 10−6 · 0.006710974054971522 10−28 · 0.0004905643852600863
2 26 2 10 597 7 6 6 2 10−6 · 0.005389022142076735 10−28 · 0.0004905643852600863
2 27 2 10 608 9 5 6 2 10−6 · 0.0036044420673303845 10−28 · 0.0004905643852600863
2 28 2 10 653 11 4 7 2 10−9 · 0.6954583264270033 10−28 · 0.0004905643852600863
2 29 2 10 594 22 2 6 2 10−6 · 0.006013783150159641 10−28 · 0.0004905643852600863
3 0 3 9 676 1 19 3 4 10−9 · 0.29994940803916013 10−22 · 0.06620333228945383
3 1 3 9 677 1 19 3 4 10−9 · 0.28918032659845455 10−22 · 0.06620333228945383
3 2 3 9 681 1 19 3 4 10−9 · 0.249834081294375 10−22 · 0.06620333228945383
3 3 3 9 707 1 19 3 4 10−9 · 0.09655856098411474 10−22 · 0.06620333228945383
3 4 3 9 646 2 12 4 3 10−9 · 0.8983094496825333 10−22 · 0.06620333228945383
3 5 3 9 646 2 12 4 3 10−9 · 0.8983094496825333 10−22 · 0.06620333228945383
3 6 3 9 646 2 12 4 3 10−9 · 0.8983094496825333 10−22 · 0.06620333228945383
3 7 3 9 647 2 12 4 3 10−9 · 0.8660574519678933 10−22 · 0.06620333228945383
3 8 3 9 652 2 12 4 3 10−9 · 0.7213572091207377 10−22 · 0.06620333228945383
3 9 3 9 701 2 12 5 3 10−9 · 0.12024482001850952 10−22 · 0.06620333228945383
3 10 3 9 647 3 9 4 3 10−9 · 0.8660574519678933 10−22 · 0.06620333228945383
3 11 3 9 653 3 9 4 3 10−9 · 0.6954583264270033 10−22 · 0.06620333228945383
3 12 2 10 641 2 15 4 3 10−6 · 0.0010785053275048299 10−28 · 0.0004905643852600863
3 13 2 10 641 2 16 4 3 10−6 · 0.0010785053275048299 10−28 · 0.0004905643852600863
3 14 2 10 643 2 16 4 3 10−6 · 0.0010024524096774556 10−28 · 0.0004905643852600863
3 15 2 10 648 2 16 4 3 10−9 · 0.8349633974953653 10−28 · 0.0004905643852600863
3 16 2 10 675 2 16 7 2 10−9 · 0.31111953029906904 10−28 · 0.0004905643852600863
3 17 2 10 642 3 12 4 3 10−6 · 0.001039783758484037 10−28 · 0.0004905643852600863
3 18 2 10 643 3 12 4 3 10−6 · 0.0010024524096774556 10−28 · 0.0004905643852600863
3 19 2 10 652 3 12 4 3 10−9 · 0.7213572091207377 10−28 · 0.0004905643852600863
3 20 2 10 619 4 10 6 2 10−6 · 0.0024108274700341565 10−28 · 0.0004905643852600863
3 21 2 10 630 4 10 6 2 10−6 · 0.0016124795409948046 10−28 · 0.0004905643852600863

Table 5: Optimal parameters for AP type #1.
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Parameter Optimization & Larger Precision for (T)FHE

log2 (p) log2 (ν) k N n βPBS ℓPBS βKS ℓKS σ2
LWE σ2

GLWE
3 22 2 10 620 5 8 6 2 10−6 · 0.0023242715487072445 10−28 · 0.0004905643852600863
3 23 2 10 636 5 8 6 2 10−6 · 0.0012948474958906167 10−28 · 0.0004905643852600863
3 24 2 10 641 6 7 6 2 10−6 · 0.0010785053275048299 10−28 · 0.0004905643852600863
3 25 2 10 652 7 6 6 2 10−9 · 0.7213572091207377 10−28 · 0.0004905643852600863
3 26 2 10 668 9 5 7 2 10−9 · 0.4018668026944385 10−28 · 0.0004905643852600863
3 27 2 10 664 14 3 7 2 10−9 · 0.4651566057367625 10−28 · 0.0004905643852600863
3 28 2 10 644 22 2 7 2 10−9 · 0.966461368018728 10−28 · 0.0004905643852600863
4 0 2 10 750 1 22 3 4 10−9 · 0.02004390690003296 10−28 · 0.0004905643852600863
4 1 2 10 750 1 22 3 4 10−9 · 0.02004390690003296 10−28 · 0.0004905643852600863
4 2 2 10 750 1 22 3 4 10−9 · 0.02004390690003296 10−28 · 0.0004905643852600863
4 3 2 10 750 1 23 3 4 10−9 · 0.02004390690003296 10−28 · 0.0004905643852600863
4 4 2 10 751 1 23 3 4 10−9 · 0.019324270654682565 10−28 · 0.0004905643852600863
4 5 2 10 722 1 24 4 3 10−9 · 0.05579583808395868 10−28 · 0.0004905643852600863
4 6 2 10 703 1 24 5 3 10−9 · 0.11176552076720861 10−28 · 0.0004905643852600863
4 7 1 11 718 1 23 5 3 10−9 · 0.06458309689518306 10−28 · 0.0004905643852600863
4 8 2 10 696 2 15 5 3 10−9 · 0.1443652619268929 10−28 · 0.0004905643852600863
4 9 2 10 696 2 15 5 3 10−9 · 0.1443652619268929 10−28 · 0.0004905643852600863
4 10 2 10 696 2 15 5 3 10−9 · 0.1443652619268929 10−28 · 0.0004905643852600863
4 11 2 10 696 2 16 5 3 10−9 · 0.1443652619268929 10−28 · 0.0004905643852600863
4 12 2 10 697 2 16 5 3 10−9 · 0.13918211696567154 10−28 · 0.0004905643852600863
4 13 2 10 699 2 16 5 3 10−9 · 0.12936741708920493 10−28 · 0.0004905643852600863
4 14 2 10 710 2 16 5 3 10−9 · 0.08652726747166614 10−28 · 0.0004905643852600863
4 15 2 10 696 3 12 5 3 10−9 · 0.1443652619268929 10−28 · 0.0004905643852600863
4 16 2 10 697 3 12 5 3 10−9 · 0.13918211696567154 10−28 · 0.0004905643852600863
4 17 2 10 700 3 12 5 3 10−9 · 0.12472273964338219 10−28 · 0.0004905643852600863
4 18 2 10 719 3 12 5 3 10−9 · 0.06226437043159755 10−28 · 0.0004905643852600863
4 19 2 10 674 4 10 7 2 10−9 · 0.3227056281467179 10−28 · 0.0004905643852600863
4 20 2 10 700 4 10 7 2 10−9 · 0.12472273964338219 10−28 · 0.0004905643852600863
4 21 2 10 676 5 8 7 2 10−9 · 0.29994940803916013 10−28 · 0.0004905643852600863
4 22 2 10 677 6 7 7 2 10−9 · 0.28918032659845455 10−28 · 0.0004905643852600863
4 23 2 10 679 7 6 7 2 10−9 · 0.2687882088636564 10−28 · 0.0004905643852600863
4 24 2 10 682 9 5 7 2 10−9 · 0.2408642900695438 10−28 · 0.0004905643852600863
4 25 2 10 687 11 4 7 2 10−9 · 0.20062086142970575 10−28 · 0.0004905643852600863
4 26 2 10 698 15 3 7 2 10−9 · 0.13418506242073496 10−28 · 0.0004905643852600863
4 27 2 10 688 44 1 14 1 10−9 · 0.19341797208391668 10−28 · 0.0004905643852600863
5 0 1 11 736 1 22 5 3 10−9 · 0.03344198833748049 10−28 · 0.0004905643852600863
5 1 1 11 736 1 22 5 3 10−9 · 0.03344198833748049 10−28 · 0.0004905643852600863
5 2 1 11 736 1 23 5 3 10−9 · 0.03344198833748049 10−28 · 0.0004905643852600863
5 3 1 11 737 1 23 5 3 10−9 · 0.032241320870590756 10−28 · 0.0004905643852600863
5 4 1 11 739 1 23 5 3 10−9 · 0.02996776091285743 10−28 · 0.0004905643852600863
5 5 1 11 748 1 23 5 3 10−9 · 0.021564575202778857 10−28 · 0.0004905643852600863
5 6 1 11 736 2 15 5 3 10−9 · 0.03344198833748049 10−28 · 0.0004905643852600863
5 7 1 11 736 2 15 5 3 10−9 · 0.03344198833748049 10−28 · 0.0004905643852600863
5 8 1 11 736 2 15 5 3 10−9 · 0.03344198833748049 10−28 · 0.0004905643852600863
5 9 1 11 736 2 15 5 3 10−9 · 0.03344198833748049 10−28 · 0.0004905643852600863
5 10 1 11 737 2 15 5 3 10−9 · 0.032241320870590756 10−28 · 0.0004905643852600863
5 11 1 11 738 2 15 5 3 10−9 · 0.03108376095913402 10−28 · 0.0004905643852600863
5 12 1 11 742 2 16 5 3 10−9 · 0.026854464664819797 10−28 · 0.0004905643852600863

Table 6: Optimal parameters for AP type #1.
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Parameter Optimization & Larger Precision for (T)FHE

log2 (p) log2 (ν) k N n βPBS ℓPBS βKS ℓKS σ2
LWE σ2

GLWE
5 13 1 11 789 2 16 5 3 10−9 · 0.004816050476899806 10−28 · 0.0004905643852600863
5 14 1 11 737 3 12 5 3 10−9 · 0.032241320870590756 10−28 · 0.0004905643852600863
5 15 1 11 738 3 12 5 3 10−9 · 0.03108376095913402 10−28 · 0.0004905643852600863
5 16 1 11 745 3 12 5 3 10−9 · 0.02406460310902449 10−28 · 0.0004905643852600863
5 17 1 11 715 4 9 7 2 10−9 · 0.07207035518761245 10−28 · 0.0004905643852600863
5 18 1 11 725 4 9 7 2 10−9 · 0.049999309812526317 10−28 · 0.0004905643852600863
5 19 1 11 716 5 8 7 2 10−9 · 0.06948281374337448 10−28 · 0.0004905643852600863
5 20 1 11 732 5 8 7 2 10−9 · 0.038708750461228824 10−28 · 0.0004905643852600863
5 21 1 11 738 6 7 7 2 10−9 · 0.03108376095913402 10−28 · 0.0004905643852600863
5 22 1 11 737 7 6 8 2 10−9 · 0.032241320870590756 10−28 · 0.0004905643852600863
5 23 1 11 754 9 5 8 2 10−9 · 0.017316707276816803 10−28 · 0.0004905643852600863
5 24 1 11 732 14 3 8 2 10−9 · 0.038708750461228824 10−28 · 0.0004905643852600863
5 25 1 11 732 22 2 8 2 10−9 · 0.038708750461228824 10−28 · 0.0004905643852600863
6 0 1 12 829 1 22 4 4 10−9 · 0.0011156306006826016 10−28 · 0.0000000004701977...
6 1 1 12 830 1 22 4 4 10−9 · 0.0010755761232457746 10−28 · 0.0000000004701977...
6 2 1 12 831 1 23 4 4 10−9 · 0.0010369597214244384 10−28 · 0.0000000004701977...
6 3 1 12 839 1 23 4 4 10−9 · 0.0007739764830443337 10−28 · 0.0000000004701977...
6 4 1 12 806 2 15 5 3 10−9 · 0.0025866848530675537 10−28 · 0.0000000004701977...
6 5 1 12 806 2 15 5 3 10−9 · 0.0025866848530675537 10−28 · 0.0000000004701977...
6 6 1 12 806 2 15 5 3 10−9 · 0.0025866848530675537 10−28 · 0.0000000004701977...
6 7 1 12 806 2 15 5 3 10−9 · 0.0025866848530675537 10−28 · 0.0000000004701977...
6 8 1 12 807 2 15 5 3 10−9 · 0.002493815125381719 10−28 · 0.0000000004701977...
6 9 1 12 809 2 15 5 3 10−9 · 0.0023179588621158615 10−28 · 0.0000000004701977...
6 10 1 12 817 2 15 5 3 10−9 · 0.0017301015756691659 10−28 · 0.0000000004701977...
6 11 1 12 821 2 15 9 2 10−9 · 0.0014947017412545129 10−28 · 0.0000000004701977...
6 12 1 12 807 3 12 5 3 10−9 · 0.002493815125381719 10−28 · 0.0000000004701977...
6 13 1 12 810 3 12 5 3 10−9 · 0.002234737201751485 10−28 · 0.0000000004701977...
6 14 1 12 785 3 12 8 2 10−9 · 0.005574527873094785 10−28 · 0.0000000004701977...
6 15 1 12 775 4 9 8 2 10−9 · 0.008035274993266698 10−28 · 0.0000000004701977...
6 16 1 12 781 4 9 8 2 10−9 · 0.0064524574974792805 10−28 · 0.0000000004701977...
6 17 1 12 777 5 8 8 2 10−9 · 0.007468651822107135 10−28 · 0.0000000004701977...
6 18 1 12 799 5 8 8 2 10−9 · 0.003341168490712078 10−28 · 0.0000000004701977...
6 19 1 12 810 6 7 8 2 10−9 · 0.002234737201751485 10−28 · 0.0000000004701977...
6 20 1 12 821 7 6 9 2 10−9 · 0.0014947017412545129 10−28 · 0.0000000004701977...
6 21 1 12 784 11 4 8 2 10−9 · 0.005782123408257866 10−28 · 0.0000000004701977...
6 22 1 12 796 14 3 8 2 10−9 · 0.003728517389899873 10−28 · 0.0000000004701977...
6 23 1 12 803 22 2 9 2 10−9 · 0.0028865648301374824 10−28 · 0.0000000004701977...
7 0 1 13 861 1 23 6 3 10−9 · 0.00034624533306605433 10−28 · 0.0000000004701977...
7 1 1 13 868 1 23 6 3 10−9 · 0.0002680581841283959 10−28 · 0.0000000004701977...
7 2 1 13 860 2 15 6 3 10−9 · 0.00035913951654704253 10−28 · 0.0000000004701977...
7 3 1 13 860 2 15 6 3 10−9 · 0.00035913951654704253 10−28 · 0.0000000004701977...
7 4 1 13 860 2 15 6 3 10−9 · 0.00035913951654704253 10−28 · 0.0000000004701977...
7 5 1 13 860 2 15 6 3 10−9 · 0.00035913951654704253 10−28 · 0.0000000004701977...
7 6 1 13 860 2 15 6 3 10−9 · 0.00035913951654704253 10−28 · 0.0000000004701977...
7 7 1 13 861 2 15 6 3 10−9 · 0.00034624533306605433 10−28 · 0.0000000004701977...
7 8 1 13 865 2 15 6 3 10−9 · 0.00029913474995530794 10−28 · 0.0000000004701977...

Table 7: Optimal parameters for AP type #1.
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Parameter Optimization & Larger Precision for (T)FHE

log2 (p) log2 (ν) k N n βPBS ℓPBS βKS ℓKS σ2
LWE σ2

GLWE
7 9 1 13 894 2 15 6 3 10−9 · 0.00010360200812216222 10−28 · 0.0000000004701977...
7 10 1 13 861 3 11 6 3 10−9 · 0.00034624533306605433 10−28 · 0.0000000004701977...
7 11 1 13 863 3 11 6 3 10−9 · 0.00032182916451109036 10−28 · 0.0000000004701977...
7 12 1 13 878 3 11 6 3 10−9 · 0.00018596722828865105 10−28 · 0.0000000004701977...
7 13 1 13 861 4 9 6 3 10−9 · 0.00034624533306605433 10−28 · 0.0000000004701977...
7 14 1 13 868 4 9 6 3 10−9 · 0.0002680581841283959 10−28 · 0.0000000004701977...
7 15 1 13 840 5 8 9 2 10−9 · 0.0007461884109371632 10−28 · 0.0000000004701977...
7 16 1 13 880 5 8 9 2 10−9 · 0.0001728533845542463 10−28 · 0.0000000004701977...
7 17 1 13 843 7 6 9 2 10−9 · 0.0006686682522955102 10−28 · 0.0000000004701977...
7 18 1 13 847 8 5 9 2 10−9 · 0.0005776883941864146 10−28 · 0.0000000004701977...
7 19 1 13 872 10 4 9 2 10−9 · 0.0002315858445590207 10−28 · 0.0000000004701977...
7 20 1 13 861 14 3 9 2 10−9 · 0.00034624533306605433 10−28 · 0.0000000004701977...
7 21 1 13 879 22 2 19 1 10−9 · 0.00017929044822819066 10−28 · 0.0000000004701977...
8 0 1 14 934 2 15 6 3 10−9 · 0.000023999244008682802 10−28 · 0.0000000004701977...
8 1 1 14 934 2 15 6 3 10−9 · 0.000023999244008682802 10−28 · 0.0000000004701977...
8 2 1 14 934 2 15 6 3 10−9 · 0.000023999244008682802 10−28 · 0.0000000004701977...
8 3 1 14 934 2 15 6 3 10−9 · 0.000023999244008682802 10−28 · 0.0000000004701977...
8 4 1 14 934 2 15 6 3 10−9 · 0.000023999244008682802 10−28 · 0.0000000004701977...
8 5 1 14 936 2 15 6 3 10−9 · 0.00002230689026135902 10−28 · 0.0000000004701977...
8 6 1 14 957 2 15 5 4 10−9 · 0.000010350812924730065 10−28 · 0.0000000004701977...
8 7 1 14 950 2 15 7 3 10−9 · 0.000013369935636477038 10−28 · 0.0000000004701977...
8 8 1 14 935 3 11 6 3 10−9 · 0.000023137599323552676 10−28 · 0.0000000004701977...
8 9 1 14 925 3 11 7 3 10−9 · 0.00003335116039980488 10−28 · 0.0000000004701977...
8 10 1 14 935 3 11 7 3 10−9 · 0.000023137599323552676 10−28 · 0.0000000004701977...
8 11 1 14 924 4 9 7 3 10−9 · 0.00003459315831408987 10−28 · 0.0000000004701977...
8 12 1 14 930 4 9 7 3 10−9 · 0.000027778873020808788 10−28 · 0.0000000004701977...
8 13 1 14 904 5 8 10 2 10−9 · 0.00007187461318617459 10−28 · 0.0000000004701977...
8 14 1 14 905 6 7 10 2 10−9 · 0.00006929409946560719 10−28 · 0.0000000004701977...
8 15 1 14 907 7 6 10 2 10−9 · 0.00006440769017473006 10−28 · 0.0000000004701977...
8 16 1 14 912 8 5 10 2 10−9 · 0.00005364650061584954 10−28 · 0.0000000004701977...
8 17 1 14 931 10 4 10 2 10−9 · 0.000026781528342425384 10−28 · 0.0000000004701977...
8 18 1 14 938 14 3 10 2 10−9 · 0.000020733876156777412 10−28 · 0.0000000004701977...
8 19 1 14 919 42 1 20 1 10−9 · 0.0000415323534113429 10−28 · 0.0000000004701977...

Table 8: Optimal parameters for AP type #1.
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