
Parameter Optimization and
Larger Precision for (T)FHE

Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti,
Damien Ligier, Jean-Baptiste Orfila, Samuel Tap

Zama, Paris, France - https://zama.ai/
{loris.bergerat, anas.boudi, quentin.bourgerie, ilaria.chillotti,

damien.ligier, jb.orfila, samuel.tap}@zama.ai

Abstract

In theory, Fully Homomorphic Encryption schemes allow users to compute
any operation over encrypted data. However in practice, one of the major dif-
ficulties lies into determining secure cryptographic parameters that minimize
the computational cost of evaluating a circuit. In this paper, we propose a
solution to solve this open problem. Even though it mainly focuses on TFHE,
the method is generic enough to be adapted to all the current FHE schemes.

TFHE is particularly suited, for small precision messages, from Boolean
to 5-bit integers. It is possible to instantiate bigger integers with this scheme,
however the computational cost quickly becomes unpractical.

By studying the parameter optimization problem for TFHE, we observed
that if one wants to evaluate operations on larger integers, the best way to do
it is by encrypting the message into several ciphertexts, instead of considering
bigger parameters for a single ciphertext.

In the literature, one can find some constructions going in that direction,
which are mainly based on radix and CRT representations of the message.
However, they still present some limitations, such as inefficient algorithms to
evaluate generic homomorphic lookup tables and no solution to work with
arbitrary modulus for the message space.

We overcome these limitations by proposing two new ways to evaluate
homomorphic modular reductions for any modulo in the radix approach, by
introducing on the one hand a new hybrid representation, and on the other
hand by exploiting a new efficient algorithm to evaluate generic lookup tables
on several ciphertexts. The latter is not only a programmable bootstrap-
ping but does not require any padding bit, as needed in the original TFHE
bootstrapping. We additionally provide benchmarks to support our results in
practice.

Finally, we formalize the parameter selection as an optimization problem,
and we introduce a framework based on it enabling easy and efficient trans-
lation of an arithmetic circuit into an FHE graph of operation along with its

https://zama.ai/

Parameter Optimization & Larger Precision for (T)FHE

optimal set of cryptographic parameters. This framework offers a plethora of
features: fair comparisons between FHE operators, study of contexts that are
favorable to a given FHE strategy/algorithm, failure probability selection for
the entire use case, and so on.

2 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Contents

1 Introduction 5

2 Preliminaries 10
2.1 FHE Background . 10
2.2 Modular Arithmetic with a Single LWE Ciphertext 12
2.3 Modular Arithmetic with Several LWE ciphertexts 15

2.3.1 Radix-based large integers . 15
2.3.2 CRT-based large integers . 16
2.3.3 Limitations . 17

3 Parameter Selection for FHE 18
3.1 The FHE Optimization Problem . 20
3.2 Pre-Optimization & Graph Transformations 22
3.3 Takeaways On Larger Precision . 26

4 TFHE-based Large Integers 28
4.1 Generalization of large integer representations 28

4.1.1 Generalization of radix to any large modulus Ω 28
4.1.2 Larger Integer using Hybrid Representation 31

4.2 LUT evaluation over large integers 32
4.2.1 New WoP-PBS . 32
4.2.2 Fast & Native CRT Implementation 38
4.2.3 Comparison Between 𝒜(this work), 𝒜(CJP21) and 𝒜(GBA21) 38
4.2.4 Comparison Between 𝒜(this work) and 𝒜(LMP21) 40

4.3 Benchmarks . 41
4.3.1 Cryptographic Parameters . 41
4.3.2 Experimental results . 43

5 An Optimization Framework for FHE 45
5.1 Full-Fledged Problem . 45
5.2 Failure Probability: From the AP to the Entire Graph 46
5.3 Optimal PBS Insertion . 48
5.4 Study of Key Switching Position . 49
5.5 Failure Probability Spectrum . 51
5.6 Optimization for Several Public Keys 52
5.7 Consensus-Friendly TFHE & Blockchain Application 54

6 Conclusion & Future Work 57

Acronyms 61

3 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

A Details on Advanced Modular Arithmetic from Single LWE Ci-
phertexts 63
A.1 Arithmetic Operators . 63
A.2 Multiplications . 64
A.3 Carry & Message Extractions . 65

B Example on Radix-Based Integers 65

C Detail about Algorithms 66
C.1 Tree PBS approach on Radix-Based Modular Integers 67

4 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

1 Introduction

Fully Homomorphic Encryption (FHE) refers to an encryption scheme that allows to
perform a potentially unlimited amount of computation over encrypted data. FHE
schemes have attracted a lot of attention in the last decade. Indeed, they may solve
many real world applications on which the privacy of some manipulated data has to
be preserved.

The constructions that are mainly studied nowadays are based on hard problems
over lattices: LWE [Reg05], and its variant RLWE [LPR10, SSTX09]. The (R)LWE-
based schemes mainly used nowadays are BGV [BGV12], B/FV [Bra12, FV12],
HEAAN [CKKS17], GSW [GSW13], FHEW [DM15] and TFHE [CGGI20].

While the constructions have seen a large improvement in the last decade, by
proposing operations that are more and more efficient, one of the main problems
of FHE schemes remains to find good cryptographic parameters. Such parameters
need to both be secure and make the operations as efficient as possible, in terms
of either computational cost, memory or power consumption. Solving this problem
is fundamental if we plan for a large scale adoption of FHE schemes. Regarding
the security constraints, the LWE/Lattice-estimator [APS15] is the main tool to
evaluate the security of parameters for an LWE-based cryptosystem1. However, it
does not help finding efficient parameters for a given use-case. Finding the optimal
parameter set is even harder and no solution has been proposed yet.

In this paper, we mainly focus on TFHE scheme [CGGI20]. This scheme is
particularly interesting because it offers a bootstrapping technique that is able to
reduce the noise of ciphertexts and, at the same time, to evaluate a function on
the input, expressed as a Look-Up Table (LUT). This is often called programmable
bootstrapping (PBS). Unfortunately, in practice, the bootstrapping takes as input a
single LWE ciphertext encrypting a small message (say at most 8 bits). To evaluate
operations on large precision messages, the only known way is to split the message
into many ciphertexts and then build the circuit as a combination of linear operations
and PBSs. The solutions presented until now, however, are not very efficient.

State of the art

In the literature, a few compilers [DKS+20][GKT22] for FHE schemes have been
proposed: they mainly optimize the circuit to make it as FHE friendly as possible.
Most of them target schemes like HEAAN in [CKKS17] where there is no real boot-
strapping algorithm and which has batching and SIMD capabilities that TFHE does
not have. The noise management for HEAAN is quite different than the noise man-
agement for TFHE, the former providing approximate results. For schemes such as
BGV, B/FV or HEAAN, that have the tendency to avoid bootstrapping in favor of
leveled operations, the existing compilers perform some kind of parameter selection.

1In what follows, the security has been estimated with the commit made on January 5, 2023:
https://github.com/malb/lattice-estimator/tree/f9f4b3c69d5be6df2c16243e8b1faa80703f020c

5 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

https://github.com/malb/lattice-estimator/tree/f9f4b3c69d5be6df2c16243e8b1faa80703f020c

Parameter Optimization & Larger Precision for (T)FHE

For these schemes, there exists a line of work aiming to reduce the multiplicative
depth of the circuit to be homomorphically evaluated [CAS17, ACS20, LLOY20].
This is due to the fact that these schemes are parametrized with a fixed number
of levels, and every multiplication consumes one of the levels. Once all the levels
are consumed, no more multiplications can be performed and decryption or boot-
strapping is required. This is not an approach used in TFHE-like schemes, where
the multiplicative depth is not a measure taken into account, since the non linear
operations are performed by using a bootstrapping.

For TFHE-like schemes, the circuits evaluated by these compilers [CMG+18,
CDS15] are binary circuits, using gate bootstrapping, with hard-coded parameters
and focus on optimizing the Boolean circuit instead.

Some other existing works tried to achieve a similar objective as our contribution,
but with a reduced scope. As instance, in [MML+22] the authors tried to improve
the parameter generation for BGV, and in [Kle22], Klemsa proposes an approach to
automatize the setup of parameters for TFHE with particular attention in efficiently
using resources during the bootstrapping step (e.g. size of bootstrapping keys). The
task we try to solve is wider and aims to provide a generic approach to automatically
select the best parameters according to a given cost model for an arbitrary graph of
FHE operators while guaranteeing correctness and security.

We suggest this paper [VJH21] for more information and for comparisons on all
existing FHE compilers. To the best of our knowledge, no one has ever presented a
result on optimization of parameters for an FHE scheme including a bootstrapping
with a flexibility for multi-precision plaintexts.

In the state of the art, several approaches using many ciphertexts to represent
a single message are proposed. We can summarize these approaches in two main
categories: the radix and the CRT (Chinese Reminder Theorem) representations.

The radix representation consists in decomposing a message into several chunks
according to a decomposition base. It is very similar to the representation in base
10 we use in our daily lives, where to represent a large number we use several digits.
Then the idea is to put each of the elements of the decomposition into a separate
ciphertext and to define the new encryption of the large message as the list of these
ciphertexts.

The CRT approach consists in representing a number x modulo a large integer
Ω =

∏κ
i=0 ωi, where the ωi are all co-primes, as the list of its residues xi = x mod ωi.

Each of the reduced elements is then encrypted into a different ciphertext and, as
for the radix approach, the new encryption of the large message modulo Ω is the
list of these ciphertexts. Observe that the CRT approach in the plaintext space is
different from the well known SIMD style [GHS12].

In order to use these two approaches in TFHE, the elements of the decomposition
(for the radix approach) and the residues (for the CRT approach) need to be quite
small (generally less than 8 bits).

The approach of splitting a message into multiple ciphertexts has already been
proposed for binary radix decomposition in FHEW [DM15] and TFHE [CGGI20],

6 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

and for other representations in [BST20], [GBA21], [KO22], [CZB+22], [LMP21]
and [CLOT21]. However, none of them takes advantage of carry buffers to make the
computations more efficient between multi-ciphertext encrypted integers by avoiding
bootstrapping as much as possible. In [GBA21] they propose two approaches to
evaluate the PBS over these multi-ciphertexts inputs, called tree-based and chained-
based approaches (that we shorten by Tree-PBS and Chained-PBS). The Chained-
PBS method is generalized in [CZB+22] to any function in exchange of a larger
plaintext space. In [CLOT21], the authors propose for the first time a WoP-PBS
technique, i.e., a PBS that does not require a bit of padding. After them, two
different WoP-PBS were proposed in [LMP21] and [KS21].

The idea of using the CRT approach is mentioned in [KS21] but unfortunately
no details are provided. The authors do not change the traditional TFHE encoding
to fit the CRT representation. In our paper, we provide detailed algorithms to
describe the use of the CRT in the plaintext space with two different approaches
(with or without carry buffers, along with their respective encoding). Concerning
bootstrapping, they describe how to trivially construct polynomials for the blind
rotation, which allows them to only evaluate a narrow set of functions (every CRT
element mapped to an output CRT element).

These techniques are the first step towards larger precision. Indeed, they have
some limitations. In particular, the radix approach does not allow any modulo to
be represented, but only multiples of a certain base (or bases), and the CRT is
limited on the maximal number that could be represented, because there exists a
very limited amount of primes or co-primes smaller than 8 bits.

While arithmetic operations can be evaluated quite straight forwardly for these
representations, the bootstrapping and generic LUT evaluation is very inefficient,
and the only known technique is the Tree-PBS proposed by [GBA21]. This tech-
nique becomes very inefficient as the number of ciphertexts encrypting a single large
message increases.

Our contributions

The problem of finding the optimal set of cryptographic parameters for a homo-
morphic evaluation is still an open problem, and represents an obstacle in the path
towards large-scale adoption of FHE.

In this paper, we introduce the first optimization procedure for TFHE-like
schemes. The idea is to exploit FHE knowledge to build a good optimization model
and to speed up the process with TFHE related shortcuts. A noise formula and
a cost model are attached to each of the FHE operators, in order to quantify its
impact on the noise growth and on the execution time. In the end, we succeed in
translating the FHE optimization problem into a more classical optimization prob-
lem (simplified along the way), where already known and powerful optimization
techniques finally take over, such as the branch-and-bound algorithm.

By finding the fastest set of parameters for different contexts, one can truly
compare FHE operators together. Some of the comparisons we make in this paper

7 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

put some light on the relation between the precision of the encrypted integers, and
the time needed to compute over them. In particular, it is clear that if we want to
work with large precision in TFHE, it is more efficient to use several ciphertexts
to encrypt a single message, instead of considering huge parameters so it fits into
a single one. TFHE ciphertexts are in fact limited to a precision of 8 bits at most :
above that, computation is considered too slow.

In this paper we overcome some limitations that were still present in such
constructions. For instance, we add two new techniques in order to compute a
generic modular reduction for any modulo in the radix strategy, which was an
open problem. We also introduce an hybrid approach mixing CRT and radix
representations in order to get the best of both worlds and having the possibility to
implement any homomorphic modular integer arithmetic. We also introduce a new
algorithm to compute a bootstrapping on one or several ciphertexts, which do not
need to have a known bit of padding, and allows us to evaluate at once a generic
lookup-table on a large integer. Using this new algorithm, it is then possible to
evaluate in an efficient manner a generic lookup-table on radix, CRT, or hybrid
integer representation, which was not possible until this paper. We also propose
benchmarks proving the practicality of our new techniques.

Finally, by formalizing the study done on optimization, we design the first op-
timization framework for FHE computation. Roughly speaking, it is a generic ap-
proach taking as input a graph of mathematical operators, such as additions, mul-
tiplications or LUT evaluations, and a list of translation rules, i.e., various ways to
transform these clear operations into FHE operations. Numerical values across this
graph are associated with some metadata regarding their precision and whether or
not it should be encrypted. In a nutshell, the output provided by the optimization
framework is an optimal graph of FHE operators along with the optimal parameter
set for this graph.

As already mentioned above, this optimization framework allows to compare
different FHE algorithms together. Indeed, within the same use-case, one can find
the best parameters for different combinations of FHE operators (computing the
same plaintext function), in a fair way. As a matter of fact, it will take into account
the probability of failure as well as the output noise so they are the same for all
tested combinations. We also show how to optimize a global probability of failure
for the entire use-case. We demonstrate that adding more bootstrapping can speed
up some homomorphic computations and we prove that the position of a key switch
operator has a non negligible impact on the efficiency of a circuit. Finally we describe
ways to use our framework to take into account other constraints such as having
a consensus-friendly FHE evaluation, or allowing an optimization for more than a
single pair of bootstrapping key and key switching key.

8 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Paper organization

A background on probability and FHE, as well as more detailed techniques for
homomorphic arithmetic encoded on single/multiple ciphertexts, are provided in
section 2.

Section 3 introduces one of this paper’s contribution: a process to select cryp-
tographic parameters. It starts by formalizing it as an optimization problem, and
details simplifications one can do to speed the optimization process.

Section 4 gives details about another contribution: large-precision homomorphic
modular integers for any modulus, thanks to two new homomorphic modular re-
duction algorithms, and hybrid representation bridging the gap between the CRT
and radix representations. Finally we describe in this section a new algorithm to
compute homomorphic lookup-tables over multiple LWE ciphertexts and how to
leverage it to compute any function on our large-precision homomorphic modular
integers. We conclude this section with some comparisons with the state of the art
and benchmarks.

Section 5 provides a description of our optimization framework with its many
features. Indeed to get the best out of our modular integers, we need to find the
best parameter set which is done with the optimization framework.

Section 6 presents some conclusive remarks, open problems and future works.

9 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

2 Preliminaries

Notations and probability background.

In the rest of the paper, we use the notation 𝒩(µ, σ2) to indicate a normal dis-
tribution with mean µ and variance σ2. We note by Var and E the variance and
expectation of a probability distribution respectively. We note by N, Z and R the
sets of natural, integer and real numbers respectively. We often use the shortcut ZΩ

to represent Z/ΩZ. We note ℛ = Z[X]/(XN + 1), where N is a power of 2, and
ℛΩ = ZΩ[X]/(XN + 1). We note by P a probability.

Definition 1 (Standard score) Let A←↩ 𝒩(0, σ2) (centered normal distribution),
let pfail be a failure probability and let erf be the error function erf (z) 7→ 2√

π

∫ z

0
e−t

2
dt.

We define the standard score z∗ for pfail as z∗(pfail) =
√
2 · erf−1 (1− pfail) and we

have: P(A ̸∈]− z∗σ, z∗σ[) ≤ pfail.

Let t ∈ R, we have z∗(pfail) · σ ≤ t⇒ P (A ̸∈]− t, t[)) ≤ pfail

2.1 FHE Background

The security of many FHE schemes is based on the hardness of the LWE problem and
its variants. There are several types of ciphertexts involved in TFHE. We start by
defining the encoding function that we use in this entire paper for GLWE ciphertexts
and later we recall the definition of GLWE ciphertexts including its special cases of
RLWE and LWE ciphertexts.

Definition 2 (GLWE Encode & Decode) Let q ∈ N be a ciphertext modulus,
and let p ∈ N a message modulus, and π ∈ N the number of bits of padding2. We
have 2π · p ≤ q and 2π · p is the plaintext modulus. Let M ∈ Rp be a message.

We define the encoding of M as: M̃ = Encode (M, 2π · p, q) = ⌊∆ ·M⌉ ∈ Rq with
∆ = q

2π ·p ∈ Q the scaling factor (see a visual example in Figure 1). To decode, we

compute the following function: M = Decode
(
M̃, 2π · p, q

)
=
⌊
M̃
∆

⌉
∈ Z2π ·p.

In practice M̃ contains a “small” error term E =
∑N−1

i=0 ei ·X i ∈ Q[X]/(XN+1),

so we can rewrite M̃ = ∆ ·M +E ∈ Zq. The decoding algorithm fails if and only if
there is at least one i ∈ [[0, N − 1]] such that |ei| ≥ ∆

2
. We can note this probability

as follow:

P
(⋃

|ei| ≥
∆

2

)
= P

(
Decode

(
M̃, 2π · p, q

)
̸= M

)
(1)

Definition 3 (GLWE Ciphertext) Given an encoding M̃ ∈ Rq and a secret key

S⃗ = (S1, · · · , Sk) ∈ Rk
q , with coefficients either sampled from a uniform binary,

2For simplicity we use a power of 2 for the padding, but this is not a necessary condition.

10 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

uniform ternary or Gaussian distribution, a GLWE ciphertext of M̃ under the secret
key S⃗ is defined as the tuple:

CT =

(
A1, · · · , Ak, B =

k∑
i=1

Ai · Si + M̃ + E

)
∈ GLWES⃗(M̃) ⊆ Rk+1

q

such that {Ai}ki=1 are polynomials in Rq with coefficients sampled from the uniform
distribution in Zq, E is a noise (error) polynomial in Rq, with coefficients sampled

from a Gaussian distributions χσ, and with M̃ = Encode (M, p, q). The parameter
k ∈ Z>0 represents the number of polynomials in the GLWE secret key.
A GLWE ciphertext with N = 1 is called LWE ciphertext: in this case we note the
size of the secret key by n = k, and we note both the ciphertext and the secret with
a lower case, e.g. ct and s⃗. A GLWE ciphertext with k = 1 and N > 1 is called
RLWE ciphertext.

∅ p e

Figure 1: Plaintext binary representation with p = 8 = 23 (cyan), π = 2 (dark blue)
such that 2π · p ≤ q, the error e (red). The white part is empty. The MSB are on
the left and the LSB on the right.

In TFHE-like schemes, another type of ciphertext is used, and it is called GGSW
(Generalized GSW [GSW13]). A GGSW ciphertext is composed of (k + 1)ℓ GLWE
ciphertexts, encrypting the same message times elements of the secret key with some
redundancy. The redundancy is defined by a decomposition base β and a number of
levels ℓ in the decomposition. GGSW ciphertexts are used for bootstrapping keys
and in the circuit bootstrapping, later described.

Key Switching. An LWE-to-LWE key switching is a homomorphic operator
to change the secret key as well as a few parameters, and details can be found
in [CGGI20, CLOT21]. It takes as input an LWE ciphertext ctin ∈ LWEs⃗′ (m̃) en-
crypting an encoding m̃ of a message m under a secret key s⃗′ ∈ Zn′ , and a key
switching key KSK encrypting s⃗′ with redundancy under another LWE secret key
s⃗ ∈ Zn. It returns an LWE ciphertext ctout ∈ LWEs⃗ (m̃) encrypting m under the
secret key s⃗, with a larger noise. Its signature is ctout ← KS(ctin,KSK).

Bootstrapping. In FHE schemes, the technique used to reduce the noise is called
bootstrapping. In TFHE-like schemes, bootstrapping is also able to evaluate a
LUT at the same time. For this reason it is often called programmable bootstrap-
ping [CGGI20, CJL+20, CJP21], or PBS in short. The PBS is composed of 3 se-
quential operators: a modulus switching (MS), a blind rotation (BR) and a sample
extraction (SE). A PBS, takes as input an LWE ciphertext ctin ∈ LWEs⃗ (m̃) en-
crypting an encoding m̃ of a message m under a secret uniform binary key s⃗ ∈ Zn,

11 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

a bootstrapping key BSK encrypting the bits of s⃗ as GGSW ciphertexts under a se-
cret key S⃗ ′ ∈ Rk, and a polynomial PL encoding a r-redundant3 LUT for x 7→ L[x].
The PBS returns an LWE ciphertext ctout encrypting L[m] under the secret key s⃗′,

extracted from S⃗ ′, with smaller noise (if the parameters are chosen appropriately
and if the input LWE ciphertext did not contain too much noise). There is how-
ever a probability of failure where the output is actually L[m + ϵ] with ϵ ̸= 0. The
signature of the PBS is: ctout ← PBS(ctin,BSK, PL). To simplify notation, we note
ctout ← KS-PBS(ctin,PUB, Pf) where PUB = (BSK,KSK) when a KS is followed by
a PBS.

Two additional parameters can be used in the PBS to obtain a generalized PBS
as in [CLOT21]: (κ, ϑ). These two parameters define the exact part of the plaintext
that is extracted by modulus switching during the PBS.

LUT evaluation. In 2017, Chillotti et al. [CGGI20] proposed an operator called
circuit bootstrapping, transforming an LWE ciphertext into a GGSW ciphertext.
It consists in performing some PBS followed by an LWE-to-GLWE functional KS.
The later operator converts an LWE ciphertext encrypting m into a GLWE ci-
phertext encrypting the constant polynomial m. The authors also proposed two
operators to evaluate LUTs in a leveled way, called horizontal and vertical pack-
ing. They both take as input a d-bit message msg, encrypted as a list of d
GGSW ciphertexts encrypting one of its bits. They also take in input α LUTs
L0 = [l0,0, · · · , l0,2d−1], . . . Lα−1 = [lα−1,0, · · · , lα−1,2d−1]: the goal is to compute the
result of the evaluation of the LUTs on the input message, i.e., return encryptions
of l0,msg, . . . , lα−1,msg. Both operators use CMux gates, either as a tree or in a blind
rotation, to compute the LWE result (that can be a GLWE in horizontal packing).
Horizontal packing is interesting when many LUTs should be evaluated in parallel,
while vertical packing is interesting when a single (large) LUT needs to be evaluated.
They are two extremes of a trade-off for the evaluation of homomorphic LUTs and
a mixed solution has been proposed generalizing both of them.

2.2 Modular Arithmetic with a Single LWE Ciphertext

In this section we adapt the encoding proposed in definition 2 in order to include
a carry space into the plaintext space. The core idea is to give enough room in a
ciphertext encrypting an integer message modulo β ∈ N to store more than just the
message but also potential carries coming from leveled operations such as addition or
multiplication with a known integer. In order to keep track of the worst case message
in each ciphertext – i.e., check if there is still room to perform more operations – we
use a metadata that we call degree of fullness.

3The redundancy of a LUT consists in repeating r times (r is a parameter depending on N
and on the number of possible messages) the entries L(i) of the LUT in the polynomial PL. The
redundancy is necessary to perform the rounding operation during bootstrapping [CLOT21, Section
2].

12 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

In practice, we split the traditional plaintext space into three different parts: the
message subspace storing an integer modulo β ∈ Z (we call β the base), the carry
subspace containing information overlapping β, and a bit of padding (or more) often
needed for bootstrapping. In this context, we refer to the carry-message modulo as
the subspace including both the message subspace plus the carry subspace, and we
note it p ∈ N. Figure 2 shows a visual example.

∅ p

β

e

Figure 2: Plaintext binary representation with a base β = 4 = 22 (green), a carry
subspace (cyan), a carry-message modulo p = 16 = 22+2 (cyan+green) such that
0 < β < p, the error e (red), and a bit of padding is displayed in the MSB (dark
blue). The white part is empty. So the plaintext modulo is 32 = 22+2+1. This means
that we have 2 bits in the carry subspace (set to 0 in a fresh ciphertext), that will
contain useful data when one computes leveled operations.

The degree of fullness, that we note deg, of an LWE ciphertext ct encrypting a
message 0 ≤ m < p, is equal to deg (ct) = µ

p−1 ∈ Q, where µ is the known worst case
for m, i.e., the biggest integer that m can be, such that 0 ≤ m ≤ µ < p. To ensure
correctness, the degree of fullness should always be a quantity included between 0
and 1, where deg (ct) = 1 means that the carry-message subspace is full in the worst
case.

We take advantage of the carry subspace to compute leveled operations and to
avoid bootstrapping. In practice, the carry subspace acts as a buffer to contain the
carry information derived from homomorphic operations and the degree of fullness
acts as a measure that indicates when the buffer cannot support additional opera-
tions: once this limit is reached the carry subspace is emptied by bootstrapping. To
be able to perform a leveled operation between two LWE ciphertexts of that type,
they need to have the same base β, carry-message p and ciphertext modulus q. We
now list the operators one can compute over such encrypted integers:

• homomorphic addition between two encrypted integers;

• multiplication by a small integer constant ;

• homomorphic opposite, requiring a correction term;

• homomorphic subtraction, composed as an opposite and an addition;

• homomorphic univariate function evaluation, computed with PBS;

• homomorphic multivariate function evaluation, computed by using a trick that
was already proposed in [CZB+22]. If the degrees of the ciphertexts allow,
the idea is to concatenate two messages m1 and m2 (or more) respectively

13 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

encrypted in ct1 and ct2 by re-scaling the first one with constant multiplication
to µ2+1 (where µ2 is the worst possible value that can be reached by the m2)
and add it to ct2 and finally compute a PBS on the concatenation. Once the
two messages are concatenated in a single ciphertext, the bi-variate LUT L
can be simply evaluated as a univariate LUT L′ on the concatenation of m1

and m2. A visual example is proposed in Figure 3;

• homomorphic multiplication between two ciphertexts, computed by using the
multivariate approach just described, for both the LSB multiplication (i.e.

m1 · m2 mod β) and the MSB multiplication (i.e.
⌊
m1·m2

β

⌋
). If instead we

want to compute the multiplication without any modular reduction, we can
use well known techniques in TFHE literature such as in [CJL+20];

• homomorphic carry/message extraction, computed through PBS.

Inputs:

∅

0 0 0

β ∅

0 0 0

β

Shift: 0 0 0 0 0 0

Addition: 0

Result LUT: 0 0 0

×β

+

KS-PBS

.

Figure 3: Example of a bi-variate LUT evaluation with shift and PBS.

We provide more details on these operations in Supplementary Material A.

Remark 1 Generally with FHE one has to monitor noise growth. However, in this
paper, we chose parameters such that the noise is always under a certain level if the
degree of fullness has not reached the maximal value allowed. When we approach this
value for the degree, a bootstrapping operation is performed and the noise is reduced
at the same time. We give more details in Section 4.3.1.

In the next paragraph, we provide details on how to build a LUT and evaluate
the PBS on ciphertexts having p different from a power of 2.

PBS with p Not a Power of Two. No details, nor analysis have been provided
yet in the literature about computing PBS when the plaintext space is not a power
of two. We bring some clarity to this question in this paragraph.

14 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

When one wants to compute a traditional PBS evaluating a non-negacyclic func-
tion, it is required to have a bit of padding, which forces the plaintext space to be
even. However the algorithm works the same with an odd p, the only difference lies
in the way the r-redundant LUT is built. This also brings a slight modification in
the evaluation of the error probability when computing such PBS.

Recall that such LUT encoded in the polynomial plaintext L̃ = Encode(L, p′, q)
of a GLWE ciphertext and L̃ contains redundancy. We call mega-cases each block of
successive redundant values. In a generic manner, if the LUT we want to compute
is defined as L : Zp → Zp′ , x 7→ yx, we define the polynomial L̃ as:

L̃ = X−⌊
N
2·p⌉ ·

(
N−1∑
i=0

⌊
q

p′
· y⌊ i·pN ⌋

⌉
·X i

)

Proof 1 (Sketch) With such a LUT, and p not a power of 2, we end up with two

possible sizes for the mega-cases of the r-redundant LUT: either
⌊
N
p

⌋
or
⌈
N
p

⌉
. For

the correctness study, we will take the worst case scenario, i.e., considering
⌊
N
p

⌋
.

The encoding function (definition 2) enables to have messages centered in the mega-
cases when it comes to PBS, it means that the probability of going into the wrong
mega-case during a PBS in the worst case scenario is when the error eMS is bigger in

absolute value than
⌊
N
p

⌋
where eMS is the error in the PBS after the modulus switch

and before the blind rotation. It is easy to estimate eMS as a variance, thanks to
noise formulae. Since it is close to a Gaussian distribution, we can use a confidence
interval to infer the probability to get into the wrong mega-case. □

2.3 Modular Arithmetic with Several LWE ciphertexts

In TFHE, a single ciphertext can efficiently encrypt up to 8-bits of information.
Larger messages should be encrypted in a different way: a possibility is to use many
ciphertexts to encrypt a single large precision message in LWE. In that case, there
are two options that are already used in the literature: the radix representation or
the CRT representation. They are both valid approaches but have some limitations
in their actual state. We briefly describe the two approaches and the limitations
that we overcome in Section 4.

2.3.1 Radix-based large integers

The radix based approach consists in encrypting a large integer modulo Ω =
∏κ−1

i=0 βi

as a list of κ ∈ N LWE ciphertexts. Each of the κ ciphertexts is defined according
to a pair (βi, pi) ∈ N2 of parameters, such that 2 ≤ βi ≤ pi < q, which respectively
corresponds to the message subspace and the carry-message subspace involved with
the modular arithmetic, as described in Section 2.2. Figure 4 gives a visual repre-
sentation out of a toy example.

15 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

∅
0

p0

0 0

β0

· · ·
e0

ct0 = LWE(m̃0)

∅
0

p1

0 0

β1

· · ·
e1

ct1 = LWE(m̃1)

∅
0

p2

0 0

β2

· · ·
e2

ct2 = LWE(m̃2)

Figure 4: Plaintext representation of a fresh radix-based modular integer of length
κ = 3 working modulo Ω = (22)3 with msg = m0 + m1 · β0 + m2 · β0 · β1. The
symbol ∅ represents the padding bit needed for the PBS. For each block we have
m̃i = Encode (mi, pi, q). For all 0 ≤ i < κ we have βi = 4, pi = 16, κ = 3 and
Ω = 43.

In practice, the restriction for Ω is that it has to be a product of small basis.
Indeed, TFHE-like schemes do no scale well when one is increasing the precision, so
the good practice is to keep pi ≤ 28.

To encode a message msg ∈ ZΩ, one needs to decompose it into a list of {mi}κ−1i=0

such that msg = m0 +
∑κ−1

i=1 mi ·
(∏i−1

j=0 βj

)
. Then we can independently call the

Encode function (definition 2) on each mi so we have m̃i = Encode (mi, 2
π · pi, q)

with π the number of bits of padding. Finally we can encrypt each m̃i into an LWE
ciphertext. To decode, we simply recompose the integer from the mi values.

In terms of operations between radix-based large integers, it is important to
recall that two messages can interact if they are encoded and encrypted with the
same parameters. The majority of the arithmetic operations can be computed by
using a schoolbook approach (homomorphically mixing linear operations and PBS)
and by keeping an eye on the degree of fullness in each block. When carries are full,
they need to be propagated to next block: this is done by extracting the carry and
the message and adding carry to the next block (last carry can be thrown away).
We provide some examples to better understand in Supplementary Material B.

When it comes to computing a generic LUT over a radix-based modular integer,
the only known approach from the literature is the Tree-PBS from [GBA21], which
becomes more and more complex when the number of blocks grows.

2.3.2 CRT-based large integers

The CRT based approach consists in encrypting a large integer modulo Ω =
∏κ−1

i=0 βi

as a list of κ LWE ciphertexts, such that each pair βi and βj ̸=i of bases are co-
primes. Each of the κ ciphertexts is defined according to a pair {βi, pi}0≤i<κ such
that 2 ≤ βi < pi < q.

In order to encode a message msg ∈ ZΩ, one needs to compute {mi}κ−1i=0 such
that msg = mi mod βi for all 0 ≤ i < κ. Then we can independently encode and
encrypt each mi into an LWE ciphertext. To decode, we simply need to compute
the modular reduction in base βi and compute the inverse of the CRT.

With this CRT encoding, we have to empty the carry buffers when they are
(almost) full. Indeed, the quantity overlapping the base βi is not needed to maintain
correctness but when using TFHE PBS, the bit of padding needs to be preserved.

16 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

We need to only call the message extraction algorithm, described in Section 2.2
when needed.

All the arithmetic operations can be performed independently on the blocks by
using the operators described in Section 2.2. Concerning the evaluation of LUT,
the only known way in the literature to compute them on CRT-based large inte-
gers, is the technique proposed by [KS21], that can be used only when the LUT
to evaluate is CRT friendly. By CRT friendly, we intend a LUT L that can be in-
dependently evaluated in each component, i.e., L such that EncodeCRT (L (msg)) =
(L0 (m0) , · · · , Lκ−1 (mκ−1)) where EncodeCRT = (m0, · · · ,mκ−1). For generic LUT
evaluations, once again, the only technique known in the literature is the Tree-PBS
by [GBA21].

Native CRT. In TFHE, we can also encode CRT integers by using no padding bit
and no carry buffer (so no degree of fullness either), and by encoding the message mi

as
⌊

q
βi
·mi

⌉
. By doing so, additions and scalar multiplications become native and

do not require any PBS, except for noise reduction. To compute additions one can
use the LWE addition on each residue, and to compute a scalar multiplication by α,
one can decompose α with the CRT basis into smaller integers, and compute scalar
multiplications with them. Without the bit of padding, the PBS can be evaluated
only with a WoP-PBS algorithm. However, to evaluate generic LUT, the problem
is still open. We will provide a solution in the next sections.

2.3.3 Limitations

The radix and CRT approaches discussed in this section are a first step towards
solving the precision problem in TFHE-like schemes. However, they come with
limitations:

• The radix approach is limited to the modulo Ω that can be expressed as a
product of bases. But if the modulo is as instance a large prime, no solution
is known.

• The CRT approach suffers from the CRT requirements, i.e., co-prime bases,
and the precision limitation we have in practice with TFHE. Indeed, there are
a limited number of primes between 2 and 128. It means that this approach
is good when Ω is composed of small enough co-prime factors but for the rest
of the possible Ω we need other solutions.

• For both the radix and the CRT approach, the only way to evaluate a generic
LUT is the Tree-PBS, which does not scale well with the number of blocks,
and so it is still inefficient in practice.

In Section 4 we provide solutions to overcome all these limitations.

17 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

3 Parameter Selection for FHE

To compute over ciphertexts one needs to select parameters related to their shape.
With LWE ciphertexts a dimension n is required, and with GLWE ciphertexts, a
polynomial size N and a dimension k are required. In this paper, those parameters
are called macro-parameters. In addition, some FHE operators (definition 4) come
with some degrees of freedom that one also needs to set. As an example, a key switch
requires a base β and a level ℓ. Those parameters are called micro-parameters,
because they are only used locally, inside an FHE operator.

Micro and macro parameters have an impact on the cost and/or the noise added
during the evaluation of an FHE operator, so they need to be carefully picked. In a
computation circuit, one needs to find parameters not only for one FHE operator,
but for a graph of FHE operators. The more degrees of freedom in a DAG there
are, the harder the parameter search is. The question we answer in this section is
then:

For a given graph of FHE operators, how to find parameters so the evaluation is
the fastest while preserving both correctness and security?

The task we are considering here is not trivial and was an open problem until
this contribution.

Our framework takes as input a graph of FHE operators, a level of security and
a correctness probability, and outputs parameters that will guarantee:

1. the desired level of security,

2. the correctness of the computation up to the desired correctness probability,

3. a cost as small as possible.

The first guarantee is easy to reach using the security oracle (definition 6) that
can be built using the lattice-estimator [APS15]. Indeed, one can always increase
the amount of noise at encryption (or key generation) to get the desired security.
Using this, one does not need to find the best encryption noise, one can simply look
for the best LWE dimension (or GLWE dimension and polynomial size) and take
the minimal encryption noise given by the security oracle. In the end, one is sure
to provide enough security as the noise is chosen with respect to other ciphertext
parameters.

To guarantee the correctness of a computation (guarantee 2), one needs to
rely on the noise model of each FHE operator in the graph. With FHE schemes,
there is a link between the noise inside a ciphertext and the correctness of the
computation. In fact, if the noise grows too much, the message will be tampered
and the decryption algorithm will not yield the correct result. In order to guarantee
the correctness, one needs to track the noise at each step of the computation (using
the noise model) and choose parameters in a way that the noise remains small

18 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

enough.

The last guarantee is to have a cost as small as possible. For that, one needs to
use the cost model and select the parameters that minimize this cost (among the
ones that satisfy guarantee 2). Naturally, the more realistic the cost model is, the
better the parameters will be in practice.

Basis for FHE Optimisation

In this paper, we will require a few higher level definitions. For instance, we formalize
what an FHE operator is.

Definition 4 (FHE & Plain operator) Any FHE operator 𝒪 is an implemen-
tation of an FHE algorithm, on a given piece of hardware, taking as input some
ciphertexts and/or plaintexts and returning one or more ciphertexts. A plain oper-
ator is a function mapping several integers into an output list of integers.

Definition 5 (Noise & Cost Model) FHE operators are associated with a noise
model, a cost model and an plain operator. A noise model is often a formula used
to model the noise evolution across an FHE operator. The cost model is a surrogate
for the metric one wants to minimize, it could be the execution time, the power con-
sumption, or the price. A cost is written Cost (·). The FHE operator must compute
the same operation as its associated plain operator under some noise constraints.

Noise formulae and cost model. A noise formula for a given homomorphic
operator takes as input the variance of the input ciphertext noises, some crypto-
graphic parameters involved in the operator computation, as well as the plaintext
values used in the operator.

The noise of a freshly encrypted ciphertext is a random (small) integer drawn
from a given distribution χ (σ), where σ2 is its variance. Variances help us quanti-
fying noise in ciphertext, so whenever it is written that a ciphertext contains more
noise than another, we mean that the noise inside the first ciphertext is drawn from
a normal distribution with a bigger variance than the second one.

In this paper we will always consider the cost model to approximate the running
time on a single thread. More details on the cost model used in the experiments
/ benchmarks are provided later in the paper. Other and more complex cost mod-
els could be considered (e.g. combining complexity of operations with keys and
ciphertext sizes, pieces of hardware, RAM, etc.), but we leave this as a future work.

Security. The security of a GLWE-based scheme depends on the distribution of
the secret key (for example binary, ternary or Gaussian), the product between the
GLWE dimension and the polynomial size (i.e. k ·N), the noise distribution, and the
ciphertext modulus (often written q). To estimate the security level offered by some
given parameters one can use the LWE/Lattice-estimator [APS15]. As a general

19 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

rule of thumb, to keep the same security level, when increasing the product k · N
we can decrease the minimal noise needed inside a ciphertext.

In the rest of this paper, we assume that, for each possible distributions of the
secret key, we have access to the following security oracle:

Definition 6 (Security Oracle) Given the product k ·N , a level of security λ and
a ciphertext modulus q, the security oracle outputs the minimal noise variance σ2

min

needed in a ciphertext for it to be secure with the required level of security.

3.1 The FHE Optimization Problem

We start by explaining the core ideas to ensure the three aforementioned guarantees.
As said above, one needs to choose the macro-parameters among a set of possible

values. For example, the polynomial size N must be a power of 2. One wants to
narrow it down to a finite set, and a practical yet wide enough space for TFHE-like
schemes could be 𝒫N = {28, 29, · · · , 217}. In the same manner, the LWE dimension
n could be selected in 𝒫n = [[256, 2048]] and the GLWE dimension in 𝒫k = [[1, 6]].
The 𝒫N is called the search space of N .

Definition 7 (FHE DAG) Let 𝒢 = (V, L) be a DAG of FHE operators. We
define V = {𝒪i}1≤i≤α as the set of vertices, each of them being an FHE operator.
We define L as the set of edges, each of them associated with the modulus p of the
encrypted message i.e. L ⊂ {{x, y, p} |(x, y) ∈ V 2, p ∈ N}. When L is not needed,
we will simply write 𝒢 = V . We note Cost (𝒢, x) the cost of running the FHE graph
𝒢 with the parameter set x.

For a given FHE DAG 𝒢 (definition 7), one also needs to set the micro pa-
rameters. For example, the logarithm of the decomposition base for a KS or a
PBS log2 (β) can be taken in 𝒫log2(β) = [[1, ⌊log2(q)⌋]] and the level of the decom-
position ℓ in 𝒫ℓ = [[1, ⌊log2(q)⌋]]. As (β, ℓ) are used to do a radix decomposi-
tion of each integer composing the input ciphertext, we know that ℓ · log2 (β) ≤
log2(q) so in practice, we will consider (β, ℓ) as one unique variable in 𝒫log2(β),ℓ =
{(log2 (β) , ℓ) ∈ [[1, ⌊log2(q)⌋]]2, ℓ · log2 (β) ≤ log2(q)}.

In the end, one needs to choose a set of parameters in the Cartesian product of
the search spaces of all the micro and macro parameters of a graph 𝒢. This space
is noted 𝒫𝒢 and is called the search space of 𝒢. In the rest of the paper, this set is
simply called 𝒫 when there is no ambiguity on the graph.

Definition 8 (Noise Bound) Let CT ∈ GLWES⃗

(
M̃
)

a GLWE ciphertext of an

encoding M̃ of M with a message modulus p and π padding bits. The noise bound
tα(π, p) for a failure probability α is the biggest integer satisfying:

σ ≤ tα (π, p)⇒ P
(
Decode

(
M̃, 2π · p, q

)
̸= M

)
≤ α

The noise bound can also depend on other values, for instance it could take the
degree of fullness later defined in this paper.

20 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Remark 2 Assuming that the input ciphertext contains a noise polynomial E =∑N−1
i=0 eiX

i ∈ Rq such that ∀i, ei ∼ 𝒩 (0, σ2), we have an explicit formula for the
noise bound tα(π, p) =

∆
2·κ with κ = z∗ (pfail), the standard score (Definition 1) for

pfail = 1 − N
√
1− α. Let us assume σ ≤ tα. Immediately using Definition 1 and

Equation 1, we have P
(
|ei| ≥ ∆

2

)
≤ pfail = 1− N

√
1− α. Thus

P
(
Decode

(
M̃, 2π · p, q

)
̸= M

)
= P

(⋃
|ei| ≥

∆

2

)
= 1− P

(⋂
|ei| <

∆

2

)
= 1−

N∏
i=1

P
(
|ei| <

∆

2

)
by indep. of {ei}i∈[[1,N]]

= 1−
N∏
i=1

(
1− P

(
|ei| ≥

∆

2

))
≤ 1− (1− pfail)

1
N = α

When the input ciphertext is an LWE ciphertext i.e. N = 1, we have 1 −
N
√
1− α = α.

Using the noise bound, we can guarantee a correct decoding up to a given prob-
ability using only the distribution of the noise which can be publicly estimated. The
tightness of the noise model is crucial to build tight confidence intervals.

Every ciphertext in an FHE DAG must have a noise smaller than its associated
noise bound in order to guarantee the correctness of the computation. With those
constraints, we define the noise feasible set, a subset of the search space 𝒫 where
every set of parameters will guarantee a correct computation.

Definition 9 (Noise Feasible Set) Let 𝒢, an FHE DAG such that 𝒢 = (V, L)
with L = {(·, ·, pi)}i∈[[1,|L|]], and let α be a failure probability. Let {σi}i∈|L| be the
standard deviation of the noise in the ciphertexts transiting on every edge of 𝒢. For
every edge i, we must have σi(x) ≤ tα (pi) which defines a subset of the search space
𝒫: 𝒮i = {x ∈ 𝒫|σi(x) ≤ tα (pi)}. The intersection of all those sets is the noise
feasible set 𝒮: the set of parameter sets that will lead to a correct computation. We
have:

𝒮 =
⋂
i∈I

𝒮i = {x ∈ 𝒫|∀i ∈ [[1, |L|]], σi ≤ tα (pi)}

By choosing a set of parameters that is in the noise feasible set, we are sure to
have a correct computation which satisfies guarantee 2. In this set, we want to find
the set of parameters minimizing the cost of the FHE DAG. Formally, we want:

argmin
x∈𝒫

Cost (𝒢, x) s.t. x ∈ 𝒮 (𝒢) (2)

21 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

The problem of finding efficient and correct FHE parameters is then a mini-
mization problem under constraints. We can naturally use optimization techniques
to solve it. The issue is that the complexity of the problem is dependent on the
size of the FHE DAG which can rapidly become unrealistic for large DAGs. In the
next section, we present several non trivial simplifications prior to the optimization
enabling to speed up the task.

Remark 3 As we defined a feasible set for the noise, we can also define other
feasible sets for other constraints. For instance to limit the size of the public keys
(key switching keys, bootstrapping keys, ...), the size of the ciphertexts (bandwidth)
or even to add some constraints between parameters.

3.2 Pre-Optimization & Graph Transformations

To simplify the optimization problem, we present an analysis working on any FHE
DAG. The idea is to subdivide it in sub-graphs with the constraint that to compute
the noise distribution of a ciphertext in one of these sub-graphs, we do not need to
know the noise distribution of a ciphertext in another sub-graphs. The starting point
is to note that there are some FHE operators that output ciphertexts with a noise
independent of the input noise for some well-chosen parameters. This motivates us
to distinguish those FHE operators from the rest:

Definition 10 (FHE operator Categories) We divide the FHE operators (defi-
nition 4) into two categories regarding their respective noise formulae:

(i) an operator which outputs a noise independent of the input noise, such as the
PBS in our context;

(ii) an operator which adds some noise to the input noise, such as a KS or a dot
product;

Using this distinction, for any FHE DAG, we can identify sub-graphs that are
independent from others. Now that we have several independent sub-graphs, we
want to find a way to compare them together. To do so, we define the notion of
atomic pattern types to regroup sub-graphs of FHE operators called atomic patterns
that we know how to compare. For instance, two atomic patterns of the same type
can have a different message modulus p or different number of inputs.

For each atomic pattern types, we will compare atomic patterns and identify the
ones where the noise will be the highest. Those are the ones we need to take into
account when trying to construct 𝒮 (𝒢).

Definition 11 (Atomic Pattern Type) An Atomic Pattern (AP) type 𝒜(·) cor-
responds to a sub-graph of FHE operators that outputs one or several ciphertexts
with a noise independent of the input noise.

An Atomic Pattern A is a particular instance of an AP type 𝒜(·). When an AP
A ∈ 𝒜(·) is instantiated with a parameter set x, we write A (x). From A (x) one can
estimate the amount of noise at any edge of its FHE sub-graph and one can also
estimate its total cost using a cost model.

22 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Once we have identified the atomic pattern types in a graph 𝒢 = (V,E), we can
build a FHE DAG 𝒢′ = (V ′, E ′) such that each FHE operator in V ′ is an atomic
pattern i.e. V ′ = {Ai(·)}i∈[[1,|V ′|]]. This new graph is equivalent to the input graph

and we have 𝒮 (𝒢) =
⋂

i∈[[1,|V ′|]] 𝒮 (Ai (·)). We leverage the fact that we can compare
the noise between atomic patterns of the same type to efficiently find the atomic
patterns that have the smallest feasible sets. We will describe this procedure for
a noise feasible set, but this can be extended to another kind of feasible set - for
instance, the evaluation key sizes.

Two AP of the same type can be compared even without a given set of parame-
ters. Hence we can introduce the notion of domination between AP.

Definition 12 (AP Domination) An AP A dominates A′ if any x ∈ 𝒫(𝒢) sat-
isfying the noise constraints of A also satisfies the constraints of A′. More formally,
we have 𝒮 (A) ⊂ 𝒮 (A′) i.e. 𝒮 (A)

⋂
𝒮 (A′) = 𝒮 (A). A′ is said to be dominated by A

For all AP types in a graph 𝒢, for all APs of this type, we can simply keep the
ones that are not dominated by any other AP. Indeed, we can discard the APs that
are dominated because their constraints will be satisfied if the constraints of one of
their dominant AP are satisfied.

With TFHE, we mainly use three FHE operators: the homomorphic dot product
(DP), the key switch and the programmable bootstrapping. The key switch is
generally computed before the PBS (as in [CJP21]). We consider the noise formulae
of [CLOT21] for the key switch and the bootstrapping. Because of the FFT in TFHE
PBS, we had to add a corrective formula to take into account the noise added by
the floating point representation. In particular, simply by casting the bootstrapping
key from a 64-bit integers to a float (represented with 64 bits) some of the LSB are
lost. Similarly, the error grows all along computations in the Fourier domain due
to the floating point arithmetic. To correct the formula accordingly, one solution
is to collect data regarding the noise in many different parameter settings and use
them to deduce a corrective formula that takes into account the FFT-induced error.
Using this method, we found that the following formula provides a good correction
for the variance of the output of a bootstrapping: n · 2ω1 · ℓ · β2 · N2 · (k + 1) with
ω1 ≈ 22−2.6 (where 22 is 2 · (64−53), since q = 264, 53 corresponds to the mantissa
bits in the f64 floating point representation, and 2.6 is an experimental fitting).

All the experiments and benchmarks later provided in this paper will consider
the algorithmic complexity of each FHE algorithm for the cost model. It means that
we count the number of additions, multiplications, castings between integer types,
and the asymptotic cost of the FFT in each algorithm and use it as a surrogate of
the execution time. For instance, the operation

∑α
i=1 Mi · CTi (where Mi ∈ Rq are

polynomials and CTi = (Ai, Bi) ∈ R2
q are RLWE ciphertexts,) will have a cost of

(2 + 1) α N log(N)︸ ︷︷ ︸
to FFT domain

+2α N︸ ︷︷ ︸
float ×

+(α− 1)N︸ ︷︷ ︸
float +

+ 2 N log(N)︸ ︷︷ ︸
to standard domain

With this cost model, we assume the cost of a multiplication between floating point
numbers or integers to be same than the cost of an addition between integers. While

23 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

this hypothesis is false in practice, it is close enough to provide efficient parameter
sets. To simplify the problem, we assume the cost of the dot product to be negligible
compared to the other FHE operators. Here, we assume the cost of an atomic pattern
A to be the sum of the cost of every FHE operator inside it, i.e. the cost of a PBS
and the cost of a KS.

A homomorphic dot product is a dot product between a vector of ciphertexts and
a vector of integers. Notice that given some ciphertexts {cti}i∈I with independent
noises coming from 𝒩 (0, σ2) and some weights {ωi}i∈I , the noise in the output
ciphertext ctout =

∑
i∈I cti ·ωi follows the distribution 𝒩 (0, ν2σ2) with ν2

2 =
∑

i∈I ω
2
i ,

the squared 2-norm. Thus, given a dot product between a vector of ciphertexts with
the same (normal) noise distribution and a vector of integers, we only need the
2-norm ν to characterize the output noise of a dot product.

Naturally, we define our first concrete atomic pattern type 𝒜(CJP21) which is
composed of a DP, followed by a KS and a final PBS (i.e. a MS, a BR and a SE)
as in [CJP21]. Here we assume every input of the dot product to be the output of a
bootstrapping, hence we do not consider the fact that some of those inputs could be
freshly-encrypted ciphertext. Everything we describe below is easily modifiable to
take that into account. In the definition of the dot product, we saw that the 2-norm
ν and the input variance are sufficient to compute the output noise of a DP if every
input ciphertext has the same normal noise distribution. Hence, an atomic pattern
AP of type 𝒜(CJP21) is entirely characterized by two values: the 2-norm ν and its
noise bound t. We will note A = A (ν, t).

It is easy to compare the noise in atomic patterns of this type using the following
property which is a special case of definition 12.

Theorem 1 (AP Domination) Let’s consider A1, A2 ∈ 𝒜(·) two AP of a type
that include a homomorphic DP, ν1, ν2 two 2-norms such that ν1 ≤ ν2 and t1, t2
two noise bounds where t2 ≤ t1. We have: 𝒮 (A2(ν2, t2)) ⊂ 𝒮 (A1(ν1, t1)) i.e.
𝒮 (A2(ν2, t2))

⋂
𝒮 (A1(ν1, t1)) = 𝒮 (A2(ν2, t2)). A1 is said to be dominated by A2

Proof 2 (Sketch) A1 and A2 share the same type. When decreasing the noise
bound, i.e. going from t1 to t2, we have less possible solutions x, but all the ones that
satisfy t2 will satisfy t1. The same reasoning works for the 2-norms. By increasing
the 2-norm, i.e. going from ν1 to ν2, there are less possible solutions x, but all the
solutions satisfying ν2 will satisfy ν1. □

Given a graph 𝒢 = {Ai}i∈I of atomic patterns of type 𝒜(CJP21), we can apply
the theorem above to simplify the construction of 𝒮 (𝒢). In fact, we do not need
to build each 𝒮 (Ai) as some of them are included in others. From our input graph
𝒢, we construct a new graph 𝒢pareto = Pareto (𝒢) = {A′i}i∈Ipareto containing only

non-dominated atomic patterns using theorem 1 (Pareto comes from Pareto front,
well known in optimization). It follows that 𝒢pareto contains at most as many atomic
patterns as there are different noise bounds in the graph.

An interesting property of 𝒢pareto is that 𝒮 (𝒢) = 𝒮 (𝒢pareto) i.e. if one solves
the optimization problem (Eq. 2) using 𝒮 (𝒢pareto) instead of 𝒮 (𝒢), we will get the

24 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

same optimal solution. This is interesting because to compute 𝒮 (𝒢) =
⋂

i∈I 𝒮 (Ai)
we needed to build |I| search spaces and with 𝒢pareto, we only need to build |Ipareto|
search spaces and most of the time |I| ≫ |Ipareto|.

Another useful observation is to notice that in an atomic pattern of type 𝒜(CJP21),
the noise is strictly increasing until the end of the modulus switching step in the
final PBS. As the noise bound is assumed to be constant inside one atomic pattern,
we do not need to check that the noise satisfies the noise bound t after the dot
product or after the key switching, we only need to do it after the modulus switch.
If we note σMS,1, the standard deviation of the noise after the modulus switching in
an atomic pattern A1, we have 𝒮 (A1) = {x ∈ 𝒫|σMS,1 (x) ≤ t}.

As we assume the cost of a dot product to be negligible, the cost of an atomic
pattern is only dependent on the cryptographic set of parameters and not on a
particular instance of an atomic pattern of type 𝒜(CJP21).

For a graph 𝒢 = {Ai}i∈I , we have Cost (𝒢, x) =
∑

i∈I Cost (Ai, x) for x a solution
in the search space 𝒫 and we now that for any (i, j) ∈ I2,Cost (Ai, x) = Cost (Aj, x),
so instead of minimizing the cost of running the total graph 𝒢, we can settle for
minimizing the cost of one atomic pattern of type 𝒜(CJP21).

To sum up, for a given graph 𝒢, instead of solving equation 2, we can build a
new graph 𝒢pareto as described above and solve the following which will give us the
same value but will be easier to compute.

argmin
x∈𝒫

Cost (·, x) s.t. x ∈ 𝒮 (𝒢pareto) (3)

The above problem is greatly simplified but still depends on the input graph
𝒢 = {A (νi, ti)}i∈I . It can be useful to have access to sets of parameters that work
for a wide range of applications. Given a graph 𝒢, we will be able to select the best
set of parameters in those pre-computed sets.

A simple way to do that is to introduce another special graph 𝒢worst, that we call
the worst case atomic pattern. It is defined as 𝒢worst = {A (maxi∈I νi,mini∈I ti)}.
This graph is reduced to only one atomic pattern that may or may not be present
if the input graph 𝒢. Using theorem 1, we know that 𝒮 (𝒢worst) ⊂ 𝒮 (𝒢). So if we
solve equation 3 on 𝒢worst, we end up with a feasible solution for 𝒢. Using this new
graph, we are able to pre-compute sets of cryptographic parameters for different
values of (ν, t). Given a graph 𝒢, we will select the set of parameters for the worst
case atomic pattern 𝒢worst of 𝒢.

Above, we found a feasible solution and intuitively, this solution is close to the
optimal one. To have bounds on the optimality of the solution for a graph 𝒢 =
{Ai}i∈I , we can use another particular graph 𝒢best defined as 𝒢best = {A(ν∗, t∗)}
with t∗ = mini∈I ti and ν∗ = max {νi|A (νi, t

∗) ⊂ 𝒢} i.e. it is a graph composed
of the atomic pattern of the graph 𝒢 that have the smallest noise bound and the
highest norm2 for this noise bound. If the worst case atomic pattern is the same
as the best case atomic pattern, the method described above yields an optimal
solution as 𝒢pareto = 𝒢worst = 𝒢best. If they are different, we can deduce a bound of

25 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

optimality: as 𝒢best ⊂ 𝒢, we know that 𝒮 (𝒢) ⊂ 𝒮 (𝒢best). Solving equation 3 for
𝒢best give us a lower bound on the cost of the optimal solution of equation 3 for 𝒢
and solving equation 3 for 𝒢worst give us an upper bound.

The atomic pattern types give us a powerful tool to compare several variants
of the bootstrapping existing in the FHE literature. As different bootstrapping
techniques have different cost-noise trade-offs, it is hard to compare them. By
studying atomic patterns, we do not need to trouble ourselves with that, if one
bootstrap yields more noise than another, it will be taken into account as the input
noise of the atomic pattern will be higher.

3.3 Takeaways On Larger Precision

We defined another atomic pattern type 𝒜(GBA21) composed of a dot product, a key
switch and the tree-PBS introduced in [GBA21]. The only way to compare the PBS
of [CGGI20] in 𝒜(CJP21) and the tree-PBS in 𝒜(GBA21) is by solving equation 3 for
the two types of atomic patterns with a range of 2-norms and a range of message
precision, and finally plot the results.

In the Figure 5, we display the comparison between 𝒜(CJP21) and 𝒜(GBA21) for 4
distinct 2-norms and for message precision in {21, · · · , 224}. The padding bit is not
included in the message precision.

Figure 5: In this figure, we compare the cost of AP type 𝒜(CJP21) and AP of type
𝒜(GBA21) with 2 and 3 blocks.

In this experiment, we choose 𝒫 (N) = {21, · · · , 218}, the search space of the
polynomial size N . We set q = 264 and we used a probability of failure pfail ≈ 2−35

and one bit of padding (i.e. π = 1).

26 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Remark 4 (Noise Bound) For 𝒜(CJP21), the noise bound (definition 8) is defined
as t (p, 1) = q

21+1·p·z∗(pfail)
.

For 𝒜(GBA21), the noise bound needs to be computed differently because this AP
with 2 blocks (respectively 3 blocks) involves η2 (respectively η3) PBS, all sources of
potential failures.

ηi = i · p
i−1 − 1

p− 1
+ 1, with i the number of blocks

To guarantee a global failure probability for one 𝒜(GBA21), the noise bound needs to
be computed from the number ηi of PBS. We start by computing the failure probability

needed for one PBS defined as p′i = 1−(1− pfail)
1
ηi and from it we can finally compute

the noise bound for each PBS t (p, 1) = q

21+1·p·z∗(p′i)
. A generalization of this approach

is explained in Section 5.2.

The first takeaway is that TFHE bootstrapping (in atomic pattern 𝒜(CJP21),
blue/• curve) can only handle messages up to 11 bits of precision. By using these
parameters set, the cost of this atomic pattern with regards to the precision is an
exponential function in two parts. For precisions above 4 to 5 bits (padding bit
not included), adding a bit of precision more than doubles the cost, indeed the
polynomial size doubles for every additional bit of precision. TFHE PBS does not
scale well with the precision, to maximize efficiency, it should not be used when the
messages have more than 5 bits of precision.

For 𝒜(GBA21), we used on the first layer the multi-value PBS introduced
in [CIM19] and we used PBS over encrypted lookup tables [CGGI20] on the other
layers. The tree-PBS of [GBA21] takes as input a vector of ciphertexts each contain-
ing part of the message. The red/+ curve (respectively green/▼ curve) represents
the cost to compute a tree-PBS over 2 ciphertexts (respectively 3 ciphertexts) each
one containing a chunk of the message. Using this, we can reach precisions that are
not feasible with the bootstrapping from [CGGI20]. Above 11 bits, we cannot find
parameters that will guarantee the correctness of 𝒜(CJP21). Regarding the tree-PBS
with 2 blocks, it becomes interesting in term of cost with 6 bits of precision or more,
and offers parameters up to 16 bits of precision. For higher precision, no feasible
solution could be found. The tree-PBS with 3 blocks provides a way to go above
that and we found solutions for precision up to 21 bits. It is more efficient than
the other two starting at 10 bits of precision. It is important to notice that even
if solutions exist, computing 𝒜(GBA21) over message of 21 bits costs more than 220

times the cost of [CGGI20] PBS over Boolean messages.
To conclude this comparison, [CGGI20]’s bootstrapping used as in [CJP21] (i.e.

with a KS before and not after) is the best way to apply a function over message
of small precision (1 to 5 bits). For precision above 11 bits, we have to use the
tree-PBS in [GBA21]. But as we can see in the figures, we need an algorithm more
efficient than [GBA21] when it becomes too expensive, i.e., above 9 bits, especially if
one wants to build efficient operations over larger homomorphic integers with TFHE
and still being able to compute LUTs on them.

27 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

4 TFHE-based Large Integers

One of the main observations from the Section 3 concern the precision of messages
that we can encrypt in TFHE-like ciphertexts. Thanks to the optimizer, we observed
that it is more efficient to split a message into several ciphertexts instead of making
the parameters of a single ciphertext grow (starting from 6 bits of precision).

The literature proposes already some solutions based on the radix decomposition
and on the CRT decomposition, that we describe in Section 2. However, these
solutions present some limitations. Indeed, the radix approach can be only used
with a modulo that can be expressed as a product of small integers, and no generic
solution is proposed for, as instance, large prime moduli. The precision limitations
to 8-bits in the message space makes also the CRT approach very limited, since
the number of prime or co-prime numbers smaller than 8 bits is really small.
Additionally, when it comes to the generic LUT evaluation in these two contexts,
the only known technique is the Tree-PBS [GBA21], which unfortunately does not
scale well when the number of ciphertexts encrypting a message increases.

In order to overcome all these limitations, in this section we start by generalizing
the radix approach to every modular integer, by proposing homomorphic modular
reductions for radix-based ciphertexts. We then try to get the best of both worlds
from the new radix approach and from the CRT by proposing a new hybrid method,
which has no more limitations in terms of precision. More importantly, we also
present a new WoP-PBS technique, i.e., a PBS without bit of padding, that we can
use to evaluate generic LUTs on these new large integers and that performs better
that the Tree-PBS for larger precisions. We provide details on the comparison of
the two techniques and we conclude this section by presenting some benchmarks.

4.1 Generalization of large integer representations

In order to overcome the limitations in radix and CRT approaches for large integers
in TFHE, we propose two improvements. We start from a generalization of the
radix approach to any large modulus Ω. Then, we propose a hybrid approach that
takes the best of both the radix and the CRT approaches and allows us to work
with any moduli efficiently. In practice without the first improvement, the number
of possible CRT residues is majorized by the numbers of small prime integers, thus
harshly restricting the available general modulo Ω offered by the hybrid approach.

4.1.1 Generalization of radix to any large modulus Ω

By using the radix representation, homomorphic modular integers are defined modu-
lus Ω, that is equal to the product of the bases βi ∈ N, i ∈ [0, κ−1], i.e., Ω =

∏κ−1
i=0 βi.

Here, we propose to remove this restriction by generalizing the previous arithmetic
to any modulus Ω s.t.

∏κ−2
j=0 βj < Ω <

∏κ−1
j=0 βj. The only difference with the previ-

ous approaches lies in the computation of the modular reduction. In what follows,

28 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

we propose two complementary methods to perform this modular reduction, whose
efficiency depends on Ω and the product of the selected basis.

First method for modular reduction. The first method consists in perform-
ing multiple LUT evaluations in the most significant block to reduce it modulo Ω.
Indeed, the modular reduction is applied on the κth block (i.e., ctκ−1) which rep-
resents mκ−1 ·

∏κ−2
i=0 βi with mκ−1 < pκ−1, and which might be larger than Ω. The

complete process is detailed in Algorithm 1. The modular reduction is performed
as a series of κ PBS (with KS, Line 2) and the result is a radix-based integer with
a base (β0, . . . , βκ−1) decomposition. The final step is to add the first κ − 1 blocks
of the result of the modular reduction to the first κ− 1 blocks of the input (Line 4)
and to replace the last block in the result by the (κ − 1)-th block obtained in the
modular reduction (Line 5).

Algorithm 1: (ct′0, . . . , ct
′
κ−1)← ModReduction1((ct0, . . . , ctκ−1),PUB)

Context: 
Pj : r-redundant LUT for

{
Zpκ−1

→ Zβj

x 7→ x′
j = Decompj

(
x ·
∏κ−2

h=0 βh mod Ω
)

x′
j is the j-th element in the decomposition in base (β0, . . . , βκ−1)

s.t. x ·
∏κ−2

h=0 βh mod Ω = x′
0 +

∑κ−1
i=1 x′

i ·
(∏i−1

j=0 βj

)
Input:


(ct0, . . . , ctκ−1), encrypting msg = m0 +

∑κ−1
i=1 mi ·

(∏i−1
j=0 βi

)
s.t. cti encrypts message mi with parameters (βi, pi)

PUB: public material for KS-PBS

Output: (ct′0, . . . , ct
′
κ−1), encrypting msg = m0 +

∑κ−1
i=1 mi ·

(∏i−1
j=0 βi

)
mod Ω

/* Decompose message in block κ− 1 with respect to base (β0, . . . , βκ−1) */

1 for j ∈ J0;κ− 1K do
2 cj ← KS-PBS(ctκ−1,PUB, Pj)

/* Add (as in Section 2.2) decomposition to all the blocks up to κ− 2 */

3 for j ∈ J0;κ− 2K do
4 ct′j ← Add(ctj , cj)

/* Replace κ− 1 block with κ− 1 element in decomposition */

5 ct′κ−1 ← cκ−1

6 return (ct′0, . . . , ct
′
κ−1)

Observe that the κ KS-PBS in Line 2 of Algorithm 1 could be replaced by
optimized procedures evaluating several different LUT on the same input cipher-
text. A few constructions have been proposed in the literature, such as the
PBSmanyLUT [CLOT21] or the multi-value bootstrapping [CIM19].

Proof 3 (Correctness of Algorithm 1) By construction, we have that∏κ−2
j=0 βj < Ω <

∏κ−1
j=0 βj. Then, reducing the (κ − 1)-th block encrypting the

message mκ−1 < pκ−1, rescaled by the product
∏κ−2

i=0 βi modulus Ω is enough to
correctly clear its carry space without loosing information. This is homomorphically
done by evaluating the κ functions x ∈ Zpκ−1 7→ Decompj

(
x ·
∏κ−2

h=0 βh mod Ω
)

29 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

with j ∈ J0, κ − 1K. Then, for all i ∈ J0;κ − 1K, Decrypt(ci) = ri, giving

r = r0 +
∑κ−1

i=1 ri ·
(∏i−1

j=0 βj

)
with ri < βi and 0 ≤ r < Ω. The last step is to

compute the addition between each cti but the (κ−1)-th with the ci. The final output
is given by ct′ = (ct′0, . . . ct

′
κ−1). Then, for all i ∈ J0;κ− 2K, Decrypt(ct′i) = mi + ri,

such that Decrypt(ct′) = m0 + r0 +
∑κ−2

i=1 (mi + ri) ·
(∏i−1

j=0 βj

)
+ rk−1

∏κ−1
j=0 βj. □

Second method for modular reduction. The second method idea is based on
the shape of −

∏κ−2
h=0 βh (i.e., the negation of the scaling factor of the message in the

κ− 1 block) reduced modulo Ω. The radix decomposition is:

κ−2∏
h=0

βh mod Ω = ν0 + ν1 · β0 + ν2 · β0β1 + . . .+ νκ−1 ·
κ−2∏
j=0

βj.

If νκ−1 = 0 and the other elements of the decomposition, i.e., ν0, ν1, . . . , νκ−2, are
small integers (ideally many of them set to 0), then this method is more efficient.
Indeed, when these conditions are respected, the idea is to replace the MSB block
by multiplying it by the non-zero constants νj and subtracting the results from the
j-th input block, for j ∈ J0, κ − 2K. Some multiplications with positive constants
are needed and might require some carry propagation prior to them depending on
the degrees of fullness. This method is detailed in Algorithm 2. In the general case
where the bases for each block are different, the algorithm performs a homomorphic
decomposition into the right base, corresponding to a series of PBSs, that is detailed
in Supplementary Material C. This step could be skipped if the bases are compatible.
The padding algorithm that follows is simply a padding with zero ciphertexts for
the addition and subtraction to work.
Let’s develop the algorithm for a 3-blocks integer:

m = m0 +m1β0 +m2β0β1 and β0β1 = ν0 + ν1β0 + ν2β0β1 mod Ω

therefore,

m = m0 +m1β0 +m2ν0 +m2ν1β0 +m2ν2β0β1

= (m0 +m2ν0) + (m1 +m2ν1)β0 + (m2ν2)β0β1 mod Ω.

What happens is that if ν2 = 0, then we will have emptied the last block. Let’s
try this method on an example: Ω = 1055, κ = 3, β⃗ = (β, β, β) with β = 25 and
p⃗ = (p, p, p) with p = 27. Observe that (25)2 mod 1055 = −31 = −1 · 25 + 1 (so
ν0 = 1, ν1 = −1 and ν2 = 0). Then, the new reduced ciphertext would be composed
by:

• in the block 0: the addition between the previous block 0 and the previous
block 2 multiplied times 1;

• in the block 1: the addition between the previous block 1 and the previous
block 2 multiplied times −1;

30 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

• in the block 2: an encryption of 0.

Observe that in Algorithm 2 the subtraction algorithm follows the regular school-
book subtraction modulo an integer Ω.

Proof 4 (Correctness of Algorithm 2) If the degree of fullness of the input (κ−
1)-th block is small enough to be able to perform a constant multiplication times
the largest of the constants ν0, . . . , νκ−2, followed by a homomorphic addition, the
algorithm can start. In fact, the algorithm consists in multiplying the non-zero
constants νj times the block ctκ−1 and then to subtract the result to the input ctj
block, for j ∈ J0, κ− 2K. The result of this operation, by definition of the constants
ν0, . . . , νκ−1, is a new radix-based encryption of msg reduced modulo Ω. In case the
bases in the blocks are not the same, a homomorphic decomposition step (as described
in Supplementary Material C) needs to be performed before addition.

As for Algorithm 1, this new ciphertext is not a “fresh” ciphertext, in the sense
that the carries in the blocks are not all empty (because of the homomorphic addi-
tion). A carry propagation step can be applied if necessary and it can be used to
continue the computations. □

4.1.2 Larger Integer using Hybrid Representation

As we explained above, the CRT-only approach has some limitations. To overcome
them, we create a new homomorphic hybrid representation that mixes the CRT-
based approach with the radix-based approach, in order to take advantage of the
best of both worlds. The idea is to use the CRT approach as the top layer in the
structure, and to represent the CRT residues by using radix-based modular integers
when needed: with this approach we do not have any more restrictions on Ω.

Encode. Let (Ω0, · · · ,Ωκ−1) be integers co-primes to each other, i.e., (Ωi,Ωj) co-
primes for all i ̸= j, and let Ω =

∏κ−1
i=0 Ωi. To encode a message msg ∈ ZΩ, as

in the CRT-only approach, the message is split into a list of {msgi}
κ−1
i=0 such that

msgi = msg mod Ωi for all 0 ≤ i < κ. At this point, for each message msgi for
i ∈ J0, κ − 1K, the encoding used for radix-based modular integers is used (Encode
from definition 2). Then, any CRT residues Ωi have its own list of radix bases:
(βi,κi−1, · · · , βi,0) and more generally its parameters {(βi,j, pi,j)}0≤j<κi

∈ N2κi . The
formal encoding is described in the Figure 6.

Decode. The decoding is done in two steps: first, each independent radix-based
modular integer is decoded to obtain the independent residues modulo Ω0, . . . ,Ωκ−1,
and then the CRT is inverted to retrieve the message modulo Ω.

Arithmetic operations. To perform any homomorphic operation, it is enough
to perform the computation on each radix component independently, as shown for
the CRT-only approach. Then, depending on the Ωi values, the modular reduction
algorithms (i.e., Alg. 1 or Alg. 2) can be used.

31 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

msg mod Ω 7→



msg0 = msg mod Ω0 7→


{m0,j}κ0−1

j=0 s.t.

msg0 = m0,0 +
∑κ0−1

j=1 m0,j ·
(∏j−1

k=0 β0,k

)
and m̃0,j = Encode (m0,j , p0,j , q)

∀0 ≤ j < κ0

..

.

msgκ−1 = msg mod Ωκ−1 7→


{mκ−1,j}

κκ−1−1

j=0 s.t.

msgκ−1 = mκ−1,0 +
∑κκ−1−1

j=1 m0,j ·
(∏j−1

k=0 βκ−1,k

)
and m̃κ−1,j = Encode (mκ−1,j , pκ−1,j , q)

∀0 ≤ j < κκ−1

Figure 6: Hybrid approach visualisation combining CRT representation on the top
level and radix representation below.

The hybrid approach can be seen as a generalization of both the CRT-only
approach (if κi = 1 for all 0 ≤ i < κ) and the pure radix-based modular integer
approach (if κ = 1). It also covers the mixed cases where some of the κi are equal
to 1 and the others are greater.

For generic LUT evaluation, the only known solution is the Tree-PBS [GBA21].
In next section we propose a new technique for generic LUT evaluation and we show
that it scales better than the Tree-PBS.

4.2 LUT evaluation over large integers

The PBS [CGGI20, CJP21] takes as input a single LWE ciphertext and output
the LUT evaluation on the encrypted message. However, when the message is en-
coded in multiple LWE ciphertexts, a single PBS is not enough. The Tree-PBS
method proposed in 2021 by Guimarães, Borin and Aranha [GBA21] enables to
evaluate a large look-up table over many input ciphertexts. For completeness, we
provide details about how to use this technique for our large homomorphic integers
in Supplementary Material C.1. The Tree-PBS is a valid solution for the evalu-
ation of generic LUT in large integers, but its complexity increases exponentially
with the number of blocks (i.e., the number of LWE ciphertext composing a large
integer ciphertext). Additionally, the Tree-PBS technique uses the classical PBS
[CGGI20, CJP21], which has the constraints on the bit of padding and on the small
precision of the messages.

In this section, we propose an alternative technique to evaluate generic LUTs on
large integers, that scales better than the Tree-PBS and does not have the constraint
on the bit of padding.

4.2.1 New WoP-PBS

A WoP-PBS, i.e., a PBS which does not require a bit of padding, is a method that
was introduced for the first time by Chillotti et al. [CLOT21]. As the classical PBS,
it takes as input an LWE ciphertext with or without bits of padding in the MSB,

32 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

a public key called bootstrapping key, and a LUT L. It outputs the homomorphic
evaluation of the LUT on the input message, i.e., an LWE encryption of L[m].

Here, we propose a new WoP-PBS that is able to take as input not only one
LWE ciphertext but several, it is able to round (or truncate or more) each of the
input messages to a given precision, and it can be used to compute several LUT on
the same set of inputs at the cost of (about) a single LUT.

Our method is based on two building blocks: the circuit bootstrapping and the
mixed (or vertical or horizontal) packing from [CGGI20]. In practice, the algorithm
executes the following steps:

• It starts by using generalized PBS [CLOT21], evaluating a scaled sign func-
tion (negacyclic), and homomorphic subtraction to extract all the bits of the
encrypted large message. Each bit is output as a LWE ciphertext.

• It converts each of the LWE ciphertexts extracted by previous step into GGSW
ciphertexts, by using circuit bootstrapping [CGGI20].

• It uses the GGSW ciphertexts from previous step to evaluate the LUT as a
mixed (or vertical or horizontal) packing [CGGI20]: it consists in practice in a
CMux tree, followed by a blind rotation and one (or several) sample extraction.

The cleartext representation of the new WoP-PBS is presented in Figure 7.
In general, the circuit bootstrapping is the most expensive part of the algorithm

(each circuit bootstrapping requires several PBSs, each followed by several func-
tional key switchings). Since the number of circuit bootstrapping corresponds to
the number of bits composing the input message, the technique generally scales lin-
early in the size of the input message. However, after a certain input size, the mixed
packing stops being negligible and becomes as costly (or even more) than the circuit
bootstrapping part: roughly speaking, this happens when the number of CMuxes
in the mixed packing part becomes as big as the number of CMuxes in the PBSs
computed inside the circuit bootstrappings (e.g., for the parameter sets that we use
in our experiments, this happens when the input size is about 28 bits).

We provide the details of the technique (using vertical packing in this case) in
Algorithm 3. To evaluate several LUT, we just need to repeat the vertical packing
for each LUT evaluation.

Proof 5 (Correctness of Algorithm 3) In what follows, we prove that the out-
put of Algorithm 3 is: ctout = (LWEs(l0(m)), · · · , LWEs(lκ−1(m))), with li ∈ Zω a
LUT.

The first step is called the Bit Extract (corresponding to the lines 3 to 9 in
algorithm 3): all bit of information from all the κth bits are going to be extracted
to be stored in a new block. The first extracted bit is the least significant of the
message. To do so, it is first shifted to the MSB of the ciphertext. More formally,
the first step is to shift the αi-th MSB to the 1-st MSB by multiplying cti by 2αi−1

with αi = ⌈log2(βi)⌉. At this point, the next step would be to compute a PBS with a

33 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

m = m3

Bit Extract
+ CBS

m2

Bit Extract
+ CBS

m1

Bit Extract
+ CBS

m0

Bit Extract
+ CBS

m3,3 m3,2 m3,1 m3,0 m2,3 m2,2 m2,1 m2,0 m1,3 m1,2 m1,1 m1,0 m0,3 m0,2 m0,1 m0,0

L =

L0,0

L0,1

L1,0

L1,1

CMux

CMuxCMux

CMux

L0,m3,3

L1,m3,3

Lm3,2,m3,3 L[m]Select
in LUT

Figure 7: Cleartext evaluation of the new WoP-PBS (toy example). The values
mi,j (for i, j ∈ {0, 1, 2, 3}) are bits. We split the LUT L into 4 smaller LUTs
(L0,0, L0,1, L1,0, L1,1) to be evaluated in the CMux tree. The output LUT of this tree
is given in input to the operation selecting the right output of a LUT (corresponding
to the blind rotation). The output L[m] is the element in the LUT L corresponding
to the input message m. The Bit Extract blocks correspond to the lines 2 to 12
in Algorithm 3 and the CMux tree followed by a blind rotation corresponds to the
vertical packing (VPLut, line 13).

LUT defined by the polynomial P (X) = − q
2αi+1 ·

∑N−1
i=0 X i s.t.:{

q
2α+1 if Decrypt(cti · 2αi−1) ∈ [q

2
, q[

−q
2α+1 otherwise

Then, by homomorphically adding q
2α+1 , this gives either an encryption of q

2α
or 0.

However, observe that for a cleartext equals to 0, any negative noise will lead to a
wrong result in the extracted bit (i.e., after decryption, we get q

2α+1 instead of − q
2α+1).

To avoid this type of errors we need to add a small correction integer denoted ϵi (for
i ∈ [0, κ − 1]) to the shifted ciphertext cti · 2α−1. In what follows, we compute the
value of the corrective term.

We need to be cautious about encoded values that are closed to the two bounds
0 or q

2
: if the noise is negative, then the PBS will return an incorrect result. In

order to choose the right correcting term, we need to determine the smaller distance
(denoted d(·, ·)) between the preceding encoded value v1 and q, and the preceding
encoded value v2 and q

2
, i.e.:

min
(
d
(
v1 ∈

[
0;

q

2

[
,
q

2

)
, d
(
v2 ∈

[q
2
; q
[
, q
))

34 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

.
We now compute the two distances. At this point, we need to distinct between

two cases:

1. βi is a power of two, i.e., βi = 2k. The values are encoded by
⌊

q
2k
· i
⌉

mod q with i ∈ J0, 2kJ. For the shift we compute
⌊

q
2k
· i
⌉
· 2k−1 mod q, so the

only remaining encoded values are 0 and q
2
, so the distance between these two

values is d = q
2
=
⌊
q·2k−1

βi

⌋
= 2ϵi.

2. βi is not a power of two, i.e., βi = β′i · 2k, with some odd β′i ̸= 1. As
βi << q , after the first shift, for all j ∈ N we obtain the following bound over
the encoded values:⌊
q

βi

· (j mod βi)

⌉
· 2αi−1 mod q ≤

(
q

βi

· (j mod βi) +
1

2

)
· 2αi−1 mod q

≤ q

βi

· (j mod βi) · 2αi−1 + 2αi−2 mod q

We now want to work with β′i instead of βi. Then, for all j ∈ N,∃j′, j′′ ∈ N,
such that:

q

βi

· (j mod βi) · 2αi−1 mod q =
q

β′i
· (j′ mod β′i) · 2α

′
i−1 mod q.

=
q

β′i
· (j′′ mod β′i) mod q.

The next is step is to compute the minimum of the distances:

min
(
d
(
v1 ∈ [0;

q

2
[,
q

2

)
, d
(
v2 ∈

[q
2
; q
[
, q
))
−2αi−2, vi ∈

{
q

β′i
· j′ mod q

}
j′∈{0,β′i−1}

.

First we can bound v1:

v1 ≤
⌈
q

β′i
·
⌊
β′i
2

⌋⌉
=

q

2
−
⌊

q

2β′i

⌋
So we have d1 = d

(
v1 ∈ [0; q

2
[, q

2

)
≥
⌊

q
2β′i

⌋
.

Next we can bound v2:

v2 ≤
⌈
q

β′i
· (β′i − 1)

⌉
= q −

⌊
q

β′i

⌋
So we have d2 = d

(
v2 ∈ [q

2
; q[, q

)
>
⌊

q
β′i

⌋
≥
⌊

q
2β′i

⌋
. The distance is then

bounded by
⌊

q
2β′i

⌋
− 2αi−2. The correcting term is finally defined as half of this

bound, i.e., ϵi =
⌊

q
4β′i

⌋
− 2αi−3 =

⌊
q·2k−2

βi

⌋
− 2αi−3.

35 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Remark Since the term 2αi−3 is very small regarding q, it can be neglected to have
the same ϵ in the both cases. About the noise bound, this term is also negligible,
since it is smaller than 1 before the shift.

By taking ϵi =
⌊
q·2k−2

βi

⌋
and adding ϵi to cti ·2α−1 we ensure that for any message,

an error e of size |e| < ϵi will lead to a correct PBS evaluation. This means that

before the shift, the noise in cti should be smaller than
⌊
q·2k−2

βi

⌋
· 2−⌊log2(βi)⌋.

At this point, the less significant bit (the α-th bit) has been extracted and stored
into a new LWEi,α. To extract the next bit, we first subtract LWEi,α to cti. With this
operation we ensure that the α-th bit is now equal to 0. As we want to extract the
(α − 1)-th bit, we now shift by 2α−2. Finding the corrective term ϵi is much easier
in this case, as the second bit is equal to 0 after the shift. Hence, we can take ϵ = q

4

and extract the bit with a PBS. To extract the remaining bits, we just need to repeat
the previous steps (subtraction, shift, add ϵ = q

4
and PBS).

Concerning the correctness of circuit bootstrap and vertical packing, we refer
to [CGGI20].

□

The noise of the output of Algorithm 3 corresponds to the noise of a circuit boot-
strapping – a PBS, followed by a private functional KS (i.e., an external product) –
followed by

∑κ−1
i=0 δi CMuxes (all the keys are uniformly binary). The formula can

be obtained from the noise formulae presented in [CLOT21] and it is equal to:

Var(ECB) = nℓBR(k + 1)N
β2
BR + 2

12
Var(BSK) + n

q2 − β2ℓBR

BR

24β2ℓBR

BR

(
1 +

kN

2

)
+︸ ︷︷ ︸

PBS

+
nkN

32
+

n

16

(
1− kN

2

)2

︸ ︷︷ ︸
PBS

+ ℓBR(n+ 1)
β2
BR + 2

12
Var(KSK)+︸ ︷︷ ︸

private functional KS

+
q2 − β2ℓBR

BR

24β2ℓBR

BR

(
1 +

n

2

)
+

n

32
+

1

16

(
1− n

2

)2
︸ ︷︷ ︸

private functional KS

Var(EWoP-PBS) = Var(ECB)+

(
κ−1∑
i=0

δi

)
ℓCB(k + 1)N

β2
CB + 2

12
Var(ECB) +

(
κ−1∑
i=0

δi

)
kN

32
+︸ ︷︷ ︸

mixed packing

+

(
κ−1∑
i=0

δi

)
q2 − β2ℓCB

CB

24β2ℓCB

CB

(
1 +

kN

2

)
+

(∑κ−1
i=0 δi

)
16

(
1− kN

2

)2

︸ ︷︷ ︸
mixed packing

The cost of Algorithm 3 corresponds to the cost of
∑κ−1

i=0 (δi − 1) KS-PBSs (with
parameters n, k, N , ℓBR, βBR, ℓKS, βKS, σBSK, σKSK), plus the cost of

∑κ−1
i=0 δi

circuit bootstrappings (with parameters n, k, N , ℓBR, βBR, ℓCB, βCB, σBSK, σFPKS),

plus the cost of log2(N)+ 2
∑κ−1

i=0 (δi)−log2(N)− 1 CMuxes (with parameters k, N , ℓCB,
βCB). Observe that the base and level used in the PBS for bit extraction and in

36 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

the PBS for circuit bootstrapping might be chosen differently. Several optimizations
are possible in Algorithm 3. We did not include them directly in Algorithm 3 to
simplify the explanation:

• The PBSs in the first step of the algorithm can either be computed indepen-
dently, or sequentially, from LSB to MSB, by removing an extracted bit from
the input ciphertext before extracting the next one.

• The second step of the circuit bootstrapping, which is a series of several packing
functional key switchings, can be improved by following a similar footstep as
a technique proposed in [CCR19]. We perform an initial LWE-to-GLWE KS
(not functional) to each of the outputs of the PBS, and then, as already done
in [CCR19], we perform an external product times the GGSW encryption of
the GLWE secret key to obtain the remaining GLWE ciphertexts. This allows
us to reduce the size of public evaluation keys at the cost of a slightly larger
noise in the output.

• The KS-PBS performed in Line 8 is a Generalized PBS, as described
in [CLOT21], so the modulus switching directly reads the next bit to be ex-
tracted. The sign function is evaluated in order to re-scale the bit at the
right scaling factor. The circuit bootstrappings used in Lines 11 and 12 are
also instantiated with a Generalized PBS. If we chose a value of ϑ > 0 we
could improve the circuit bootstrappings with a PBSmanyLUT, as described
in [CLOT21], i.e., perform all the PBS in a circuit bootstrapping at the cost
of a single PBS. Using this technique imposes an additional constraint on the
noise in input of the circuit bootstrapping.

• We can observe that one of the PBS of the circuit bootstrappings used in
Line 11 could be avoided thanks to the KS-PBS in Line 8, that might already
provide the bit extracted at the right re-scaling factor.

Remark 5 In general, the number of circuit bootstrappings performed in Algo-
rithm 3 corresponds to the number of bits of the input message. However, this
number might be slightly larger in some special cases, such as the case where the
carry buffers have not been emptied beforehand, or the case of native CRT. In these
cases, we might need to extract more bits of information, and so perform more PBSs
during bit extraction and more circuit bootstrappings. Furthermore, different pos-
sible inputs might encode the same value, hence the LUT L needs to contain some
kind of redundancy. If the goal is to compute the discrete function f , one needs to
compute the L as L[(m0, · · · ,mκ−1)] = Encode (f (Decode (m0, · · · ,mκ−1))).

Remark 6 (Faster Algorithm 3 for Special LUTs) Observe that the new
WoP-PBS approach can be also adapted, and be very convenient, for particular LUTs
such as the ReLU or the sign function in the radix mode, as instance. Indeed, for
these functions we are only interested in the MSB part of the message, so the mixed
packing is greatly simplified, and the cost of the WoP-PBS becomes linear in the
number of blocks.

37 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

4.2.2 Fast & Native CRT Implementation

Following up on what we present in Section 2.3.2, it is possible to have a fast version
of CRT encoded integers spread out into several ciphertexts. As an example, to
encode a residue m0 = 3 mod 7, its associated plaintext is

⌊
3 q
7

⌉
. Additions and

scalar multiplications are extremely fast in this context: they do not require any
PBS and they can be computed independently and in parallel on each of the CRT
residues with fast FHE operators. Indeed, to compute additions we use the LWE
addition on each residue, and to compute a scalar multiplication by α, we decompose
α with our CRT basis into smaller integers, and compute scalar multiplications with
them.

To the best of our knowledge, until this work, there were no efficient algorithm
to compute LUT in this context. However, one can use the new WoP-PBS to do
so. They simply need to extract the first ⌈log2 (βi)⌉ most significant bits for each
residue, thanks to negacyclic sign functions. A bit extraction on a non-2-power
encoded ciphertext has to be computed in the exact same manner.

The sign evaluation for an integer message m encoded as m̃ = m · q
p
(where

both q and p are powers of two) is computed by adding to the input ciphertext
q
2p
, computing a PBS on it with a trivial encryption of P (X) =

∑N−1
i=0 −

q
2p′

X i and
finally adding to the output q

2p′
. The output is the encoding b · q

p′
where b is the most

significant bit of m. With p not a two power, one needs to replace q
2p

with
⌊

q
2p

⌋
.

We built modular integers with 16 bits of precision with the CRT basis
(β0 = 7, β1 = 8, β2 = 9, β3 = 11, β4 = 13) and we used for each odd residue a non
power-of-2 encoding.

4.2.3 Comparison Between 𝒜(this work), 𝒜(CJP21) and 𝒜(GBA21)

In Section 4.2.1, we introduced a new WoP-PBS in Algorithm 3. We can now resume
our comparison, started in Section 3.3, to find out which algorithm is the best
(depending on some parameters) to compute over ciphertexts with large precision.
To do so, we consider a new atomic pattern type 𝒜(this work) composed of a DP and
the WoP-PBS (Algorithm 3). As this algorithm can work on a single ciphertext or on
several ciphertexts containing chunks of the message, we present three variants: 1,
2 and 4 blocks. We display a comparison between 𝒜(CJP21), 𝒜(GBA21) and 𝒜(this work)

on figure 8. We used the exact same context as in Figure 5 for this experiment, so
the failure probability is for the three of them pfail ≈ 2−35.

Remark 7 (Noise Bound) For 𝒜(CJP21) and 𝒜(GBA21), please refer to Remark 4.
For 𝒜(this work), we have a certain number of sequential bit extractions per input LWE
ciphertext / block. In theory, we want to take into account all those potential PBS
(one per bit extraction), but we noticed that the first one dominates all the others
regarding noise. In fact, their impact on the total failure probability is negligible
compared with the first bit extraction. Our experiments showed that for 2-norms ν ≥
4, and for failure probability below 2−25 this assumption holds. We leave as future
works the exploration of this topic. With this assumption, we start by computing the

38 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Figure 8: In this figure, we evaluate a LUT over a few encrypted inputs. We compare
AP type 𝒜(this work), corresponding to the WoP-PBS introduced in this paper (1, 2
and 4 blocks), and AP type 𝒜(GBA21), corresponding to the Tree-PBS [GBA21] (2
and 3 blocks). As a baseline, AP of type 𝒜(CJP21) is also plotted.

failure probability needed for one PBS defined as p′i = 1− (1− pfail)
1
κ , since there are

κ input LWE ciphertexts. From it, we can finally compute the noise bound for each
PBS t (p, 0) = q

21·p·z∗(p′i)
.

The brown/♦ curve represents the cost of the best parameter set for an atomic
pattern 𝒜(this work) working over one block. We can immediately notice that, between
1 and 9 bits of precision, 𝒜(CJP21) is more interesting than the new bootstrapping
(Algorithm 3). However, with precisions from 10 bits and above, 𝒜(this work) has
solutions that are more efficient than the 𝒜(CJP21)’s existing ones, and finds solutions
when 𝒜(CJP21) cannot. For small ν, it offers solutions that are slightly better than
the ones from 𝒜(GBA21).

The pink/ curve (respectively the pink/■ curve) represents the atomic pattern
𝒜(this work) for two blocks (respectively four blocks) of message. On those curves, we
see that it scales much better than the other atomic pattern types. With Algo-
rithm 3, we manage to find solution up to 24 bits of precision. Those solutions are
costly but far less than the ones for 𝒜(GBA21), and for comparison, it is only 210

times more costly to compute a LUT over a message with 24-bits of precision with
𝒜(this work) than compute a LUT with 1-bit of precision with 𝒜(CJP21). Also for 18
bits of precision, the new WoP-PBS with two blocks is approximately 27 times faster
than the tree-PBS in 𝒜(GBA21) with three blocks.

To sum up, for small precisions (up to 5 bits), TFHE PBS is the best option

39 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

among the three considered. Above 10/11 bits of precision, the algorithm we intro-
duced in this paper (Algorithm 3) becomes the best alternative and improves the
state of the art by a non-negligible factor.

Remark 8 (LUT Evaluation for Even More Precision) It is important to
observe that evaluating a LUT on integers larger than e.g., 30 bits, even in clear,
becomes too expensive in terms of memory (e.g. a LUT for 30-bit input and out-
put integers contains 230 · 64 bits = 8 GB of information). So both techniques –
Tree-PBS and our new WoP-PBS – are anyway not practical anymore.

Remark 9 (Small Public Material for Algorithm 3) An important observa-
tion to make about Algorithm 3 is that the size of the needed public material scales
way better than a tree-PBS as in [GBA21]. As an example, for a total of 18 bits
of precision we have a key of 1.65 GB for 𝒜(GBA21) and a size of 0.926 GB for
𝒜(this work).

4.2.4 Comparison Between 𝒜(this work) and 𝒜(LMP21)

A few WoP-PBS constructions have been proposed in the literature. Some
works [KS21, LMP21] already compare them, but our optimization framework en-
ables to truly do it by comparing them at the best of their efficiency. This can be
done by putting each of them in a different atomic pattern type and finding optimal
parameters for different 2-norms and precisions. To do so, we create one additional
atomic pattern type called 𝒜(LMP21) composed of a DP, a KS and the WoP-PBS from
[LMP21]. We used the exact same context as in Figure 5 for this experiment, so the
failure probability is for the both of them pfail ≈ 2−35. We display in figure 9 the
comparison between our new WoP-PBS (Algorithm 3, blue/• curve) in 𝒜(this work)

and the WoP-PBS from [LMP21] in 𝒜(LMP21) (red/+ curve).

Remark 10 (Noise Bound) For 𝒜(this work), please refer to Remark 7. For
𝒜(LMP21), we consider the two sequential PBS involved in the algorithms. They
almost have the same amount of input noise and thus we assume that they both con-
tribute equally to the overall failure probability. We experimented the two possible
scenarios, (i) taking the first PBS’s input noise for the computation or (ii) taking
the second one. We did not observe any difference between the two approaches for
the considered failure probabilities and 2-norms. We start by computing the failure

probability needed for one PBS defined as p′i = 1 − (1− pfail)
1
2 and from it we can

finally compute the noise bound for each PBS t (p, 0) = q

21+1·p·z∗(p′i)
.

The first thing that we learn on the WoP-PBS of [LMP21] is that it does not
scale well with big precisions, which is not surprising as the algorithm uses as sub-
routine two PBS from [CGGI20] to compute the WoP-PBS. Thus, as for 𝒜(CJP21),
for precisions above 10, we do not find any feasible solutions. We can also identify
as before two parts on the curve, the first one for small precisions (1-8 bits) and a

40 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Figure 9: In this figure, we compare the cost of AP type 𝒜(this work) and type 𝒜(LMP21).
The first one corresponds to DP-KS followed by our new WoP-PBS (Section 4.2.1),
and the second one to DP-KS followed by the WoP-PBS from [LMP21].

second one for higher precisions: the reason behind this sudden growth in cost is
also due to the increase of the polynomial size to manage bigger messages.

Thanks to the new WoP-PBS (Algorithm 3), we are able to compute a WoP-
PBS over large messages. To conclude, this new algorithm scales better than existing
algorithms to compute LUTs over large message and we do not need a padding bit
which is a known constraint of TFHE bootstrapping.

4.3 Benchmarks

In this section, we provide a few practical benchmarks for integers of sizes 16 and
32 bits. All the cryptographic parameters are detailed in 4.3.1. The specifications
of the machine are: Intel(R) Xeon(R) Platinum 8375C@2.90GHz with 504GB of
RAM. Note that such an amount of RAM is not needed: all benchmarks can be run
on a basic laptop. All implementations are done using TFHE-rs4 (the follow-up of
the Concrete library [CJL+20]).

4.3.1 Cryptographic Parameters

In Tables 1 and 2, we report the cryptographic parameters that we use to compute
our benchmarks. All of them have been obtained with the optimization framework.
In those tables, the notation B (resp. ℓ) refers to the basis (resp. the number

4https://github.com/zama-ai/tfhe-rs

41 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

https://github.com/zama-ai/tfhe-rs

Parameter Optimization & Larger Precision for (T)FHE

of levels) parameter used for a given FHE algorithm such as a key switch or a
[CGGI20]’s PBS. By default, the cryptographic parameters ensure 128 bits of se-
curity, a failure probability pfail

(
𝒜(CJP21)

)
, pfail

(
𝒜(this work)

)
≤ 2−13.9 i.e. a standard

score (Definition 1) of 4 which is pretty easy to experiment with.

Remark 11 (Biggest 2-Norm) For a given message modulo β and carry-message
modulo p one can find the worst 2-norm that they could encounter in the modular
arithmetic defined in section 2.2. Indeed, a fresh encoding is at worst β− 1, and the
biggest message one can consider before needing to empty the carry buffer is p− 1,

so the biggest integer one can multiply a ciphertext with is
⌊
p−1
β−1

⌋
which is the biggest

2-norm.

In Table 1, we provide seven parameter sets for 𝒜(CJP21), each one with a bit
of padding, a specific message modulus p and specific 2-norm ν. In Table 2, we
provide five parameters sets for 𝒜(this work), each one with a specific (carry-)message
modulo p, a specific number of bits to extract per LWE ciphertext during the WoP-
PBS, a specific number κ of input LWE ciphertext to the WoP-PBS and a specific
2-norm ν. They do not have a bit of padding. In parameter IDs #11 and #12, the
message modulus specifies the CRT base used and the corresponding number of bits
to extract for each base.

Compatibility Between 𝒜(this work) and 𝒜(CJP21). We generated couples of pa-
rameter sets that are compatible, one for 𝒜(CJP21) and the other for 𝒜(this work). By
compatible, we mean that one can go from one to the other freely and smoothly.
From 𝒜(CJP21) to 𝒜(this work), one needs to remove the bit of padding in the usual LUT
of 𝒜(CJP21)’s PBS. From 𝒜(this work) to 𝒜(CJP21), one needs to add a bit of padding
in the LUT of the usual 𝒜(this work)’s WoP-PBS. But we also need other guarantees
to be able to freely compose atomic patterns 𝒜(CJP21) and 𝒜(this work). In particular,
we need to guarantee that (i) each atomic pattern can absorb/deal with input noise
either coming from 𝒜(CJP21) or 𝒜(this work) and (ii) the input LWE dimensions of each
atomic pattern are compatible i.e. the product of the GLWE dimension k by the
polynomial size N must be equal in both AP. We could remove constraint (ii) by
adding two key switching keys, one to go from 𝒜(CJP21) to 𝒜(this work) and one to go
from 𝒜(this work) to 𝒜(CJP21): we leave it as future work.

To satisfy those two conditions, we decided to first solve the optimization problem
on 𝒜(this work) and later on 𝒜(CJP21) with more constraints. The first optimization
gives us the product k ·N and the output variance of 𝒜(this work). Then we solve the
optimization problem for 𝒜(CJP21) with an additional constraint for the polynomial
size N and the GLWE dimension k to satisfy (i) and using the maximum between
the output noise of 𝒜(CJP21) and 𝒜(this work) as the input noise of 𝒜(CJP21) which
satisfies (ii). This approach works well for parameter couples (#1,#8) and (#2,#9).
But for the last parameter set couple (#3,#10), there is no solution for 𝒜(CJP21)

with the aforementioned constraints. For this special case, we reverse the order of
the optimization and first solve the optimization problem for 𝒜(CJP21) and then for
𝒜(this work) with the additional constraints mentioned above.

42 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

4.3.2 Experimental results

The tables presented in this section contain timings related to 16 and 32-bit in-
teger operations using the radix approach (Table 3), the CRT approach (Table 4)
and the native CRT approach (Table 5). The benchmarks measure timings to com-
pute homomorphic additions, multiplications, carry cleanings (apart from the native
CRT approach) and LUT evaluations (only for 16-bits integers). As explained in
Remark 8, it is not doable to evaluate LUT on 32-bit integers.

Radix Approach. In Table 3, dedicated to the radix approach, we display two
instances of 16-bit integers and three instances of 32-bit integers. The number of
additions is bounded by the room available in the carry buffer, and once it is full, a
carry cleaning in needed.

For the 16-bit integers, it is possible to use both the 𝒜(CJP21) and the 𝒜(this work)

operators. This means that for 16-bits integer, classical arithmetic uses the usual
PBS (𝒜(CJP21)), and LUT evaluation is done with the WoP-PBS (𝒜(this work)). We
assume that the WoP-PBS is done over integers with free carry buffers (i.e., af-
ter a carry cleaning). The parameters have been generated as described in Para-
graph 4.3.1. Note that the addition does not require any PBS to be computed (this
is denoted with a star +∗), but is done accordingly to the parameters generated for
the PBS.

For 32-bit integers, only arithmetic operations are possible. So, cryptographic
parameters are optimized following 𝒜(CJP21) only. Hence, some operations are com-
puted faster for the 32-bit integers than for the 16-bit ones.

Remark 12 (Multiplication Failure Probability) When 32-bit integers are
represented with 32 blocks (i.e., κ = 32), the number of AP of type 𝒜(CJP21) re-
quired to compute a multiplication is quadratic in the number of blocks. Because the
error probability pfail of this AP is bounded by 2−13.9 in our experiments, the error
probability at the level of the multiplication will be increased greatly. To balance this,
one can use the technique described in section 5.2. Timings are clearly not in favor
of this representation, and the probability of having an error is small enough for the
other representations (with a smaller number of blocks). One solution is to keep
the same value of pfail and consider a small enough κ, resulting in a better trade-off
between running time and failure probability at the multiplication level (e.g., the one
associated with the parameter ID#5). Another way of solving this problem would
be to have another parameter set dedicated to the multiplication algorithm, with a
smaller failure probability pfail but we leave that as an future work.

CRT Approach. Table 4 is dedicated to the CRT approach. In this representa-
tion, each block have a dedicated basis, and are independent by construction. We
display one instance for 16-bit integers and another one for 32-bit integers. For
both of them we show the total time needed to compute the operations, as well as
the amortized time when the implementation is multi-threaded. As for Table 3, the
number of additions is bounded by the room available in the carry buffer, and once it

43 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

is full, a carry cleaning in needed. Note that in the case of homomorphic evaluation
of polynomial functions, using the CRT representation offers better timings, since it
is sufficient to compute a PBS on each CRT residue. The timings are then the same
as the ones of the carry cleaning when there is one block per residue, otherwise it
means that we are considering the hybrid approach, and in that case, it is the cost
of a LUT evaluation separately on each block.

For the 16-bit integers, the basis is given by Ω = 23 ·32 ·7 ·11 ·13 ≈ 216. As for 16-
bit in radix representation, it is possible to use both the 𝒜(CJP21) and the 𝒜(this work)

operators. However, the major difference here is about the parameter optimization:
in this case, the atomic pattern 𝒜(CJP21) has been privileged. Thus, the timings for
the evaluating a LUT using a WoP-PBS are way slower. By removing the constraint
of compatibility, the performance should be closer to the one of Table 5. The WoP-
PBS is parallelized by extracting bits for each block independently. Then, each
LUT evaluation outputting one block (and taking all bits as input) is computed
in parallel: note that this approach could also be applied in the case of the radix
decomposition.

We consider the basis defined by Ω = 25 · 35 · 54 · 74 ≈ 232 to represent 32-bit
integers using the hybrid representation. For instance, to represent integers under
the modulus 74, we use radix-based integers with 4 blocks and a message modulus
equals to 7. Thanks to the CRT representation, by using this basis multiplications
can be computed with the fast bi-variate PBS approach described in 2.2.

Native CRT Approach. In Table 5, dedicated to the native CRT approach, we
display one instance of 16-bit integers and another of 32-bit integers. We consider
Ω = 7 ·8 ·9 ·11 ·13 ≈ 216 and respectively Ω = 3 ·11 ·13 ·19 ·23 ·29 ·31 ·32 ≈ 232 Since
there is no carry buffer in this representation, there is no need for a carry cleaning.
However, to avoid incorrect computation, the number of additions is bounded for
these parameter sets by the value ν. Once this bound is reached, a WoP-PBS is
required to reduce the noise.

We observe a slower timing for the multiplication with 32-bit integers, 36.8 sec-
onds, which leads us to think that for the precision around 32 bits, a hybrid approach
is more efficient. Indeed, the native CRT approach requires to have in a single LWE
ciphertext a small enough noise (after the bootstrapping) to preserve the message
(with a size equal to the co-prime modulo) and the room for the 2-norm ν needed to
compute multiplications with known integers or additions between ciphertexts. So
when one tries to build a big Ω, since small prime numbers are not infinite, they end
up with big co-prime residues and as a consequence needs big 2-norm which means
very slow parameter sets.

Remark 13 (Timing for the Optimization) For most of the studied AP in this
paper, the parameter search has been optimized: it takes less than a second to gen-
erate a curve such as in Figures 8. The only atomic pattern taking more time to get
a parameter set generated is 𝒜(GBA21). Indeed, we did not implement shortcuts in it
parameter search resulting in 26 minutes to generate a curve.

44 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

5 An Optimization Framework for FHE

In this section, we introduce the full fledged problem we want to ultimately tackle.
We also show how to adapt our framework to work with the probability of failure
for the whole graph and not only the probability of failure of atomic operations. We
will then expand the comparison between atomic pattern types and explain other
key features of our optimization framework. For instance, we are able to optimally
insert bootstrapping in leveled operations to decrease the noise, but we are also able
to deal with several public keys (bootstrapping and key switching keys). We will
also show how to tweak an atomic pattern to obtain a consensus-friendly version of
TFHE.

5.1 Full-Fledged Problem

We introduced in definition 7 the notion of FHE DAG. Such structure is filled with
nodes symbolizing an FHE operator or a sub-graph of FHE operators. In real life
situation, one owns a graph of computation and wants to deploy an FHE scheme to
compute the same graph but over encrypted data. It means that the problem we
eventually address in this paper is way more complicated that what we previously
explained in section 3. Instead of taking a graph of FHE Operators, we take as
input a crypto-free graph and find at the same time, the best FHE DAG and its
associated cryptographic parameters which guarantee that it behaves as the input
DAG but over encrypted inputs. The following definition formalizes this notion.

Definition 13 (Plain DAG) Let 𝒢 =
(
V ,E

)
be a DAG of plain operators. We

define V =
{
𝒪i

}
1≤i≤α as the set of vertices, each of them being a plain operator that

can be additions, multiplications, subtractions, LUT evaluation, and many others.
We define E as the set of edges, each of them associated with the precision p of the
message as well as a label which is either “private” or “public”. When E is not
needed, we will simply write 𝒢 = V .

We note 𝒮FHE

(
𝒢
)
the set of all possible FHE graphs computing the same func-

tionality than the plain DAG 𝒢.

Our optimization framework takes as input a plain DAG 𝒢, a level of security,
and a correctness probability. It outputs an FHE DAG 𝒢 as well as a parameter set
x for 𝒢. Remember most of the FHE operators in 𝒢 introduce some cryptographic
parameters, for instance a local polynomial size N ∈ N or a local base β ∈ N. It
implies that the total number of possible parameter sets is exponentially huge and
we want x to be the best of them all. Also remember that for a same plain operator,
for instance a homomorphic multiplication, there are many possible strategies to
translate it into an FHE sub-graph. In this example, we could use the leveled
multiplication in the TFHE-context as explained in [CLOT21] or two PBS as in
[CJL+20]. Those different ways to translate a plain operator into an FHE one make
the problem more complex as the size of 𝒮FHE

(
𝒢
)
depends on the list of known

translation rules between plain and FHE operators.

45 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

The output of our optimization framework, an FHE DAG 𝒢 and its associated
parameter set x must fulfill guaranties 1, 2, 3 and a last one:

4. the FHE DAG computes the plain functionality described in the plain DAG.

The full-fledged problem we want to solve is the following:

(
𝒢, x̂

)
= argmin 𝒢,xCost (𝒢, x) s.t. 𝒢 ∈ 𝒮FHE

(
𝒢
)

(4)

x ∈ 𝒮 (𝒢)

To build 𝒮FHE

(
𝒢
)
, we use simple translation rules between plain operators and

FHE operators (definition 4). To compute a lookup table or a function, we can use
a KS and a PBS from [CGGI20] if the precision of the message is between 1 and 8
bits or the WoP-PBS described in algorithm 3 for larger precisions. A multiplication
between ciphertext can be replaced by two PBS from [CGGI20] and an addition as
described in [CJL+20] (end of section 2.). A DP can be replaced by the same DP
working over ciphertexts. We will explain in 5.3 how to do a better transformation
by optimally inserting PBS in the DP.

5.2 Failure Probability: From the AP to the Entire Graph

In the previous section, all failure probabilities were associated with one single FHE
operator (at least those where there is effectively a risk). We want to extend our
framework to work directly with the probability of failure of the entire graph. To
do so, we start by exposing a simpler case where two AP are compared, before
generalizing the method to a whole graph.

Observe that it is easy to have an upper bound on the graph failure probability
given individual AP failure probabilities. Let 𝒢 = {Ai}i∈I be an FHE DAG and
let’s assume, without loss of generality, that 𝒢 has an unique output ct (m̃out). For
every i ∈ I, let ct (m̃i) be the ciphertext for which the noise is the highest in Ai.
Than, the failure probability for the whole graph is bounded by:

pfail (𝒢) = P (Decode (ct (m̃out)) ̸= mout) ≤ 1−
∏
i∈I

(
1− pfail(Ai)

)
(5)

with pfail (Ai) = P (Decode (ct (m̃i)) ̸= mi), ∀i ∈ I. By applying the domination
concept presented in Theorem 1, when an atomic pattern A1 is dominated by an
atomic pattern A2, we can find a relationship between pfail (A1) and pfail (A2).

Let α be the failure probability that we want to guarantee for every atomic
pattern, and let κ = z∗ (α) be its associated standard score. Let (ν1, ν2) ∈ R2

s.t. ν1 ≤ ν2, and let (p1, p2) be two precisions s.t. p1 ≤ p2, which means that
t1 =

q
21+p1+1·κ = ∆1

2κ
≥ t2 =

q
21+p2+1·κ = ∆2

2κ
. Let A1 = A (ν1, t1) and A2 = A (ν2, t2) be

two atomic patterns of type 𝒜(CJP21).
As ν1 ≤ ν2 and t1 ≥ t2, A1 is dominated by A2 (Theorem 1). It means that

if we have |e2| < ∆2

2
, we know that |e1| < ∆1

2
with e1 ←↩ 𝒩 (0, σ2

1) (respectively
e2 ←↩ 𝒩 (0, σ2

2)) is the maximal noise in A1 (respectively A2).

46 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Following Definition 8, we know that σ2 ≤ t2 ⇒ P
(
|e2| ≥ ∆2

2
= κ · t2

)
≤ α. It

follows that, if this inequality is met, we will also have P
(
|e1| ≥ ∆1

2

)
= pfail (A1) ≤ α

(Theorem 1).
At this point, we look for an estimation of the failure probability pfail (A1) as a

function of pfail (A2). The noise inside an atomic pattern of type 𝒜(CJP21) is maximal
after the modulus switching. With our noise model we have that:

∀i ∈ I, σ2
i = σ2

BR · ν2
i + σ2

KS + σ2
MS

With σ2 ≤ t2 and σ1 ≤ t1, we have:

σ2
1 ≤ t22 − (ν2

2 − ν2
1) · σ2

BR ≤ t21

With the previous inequality, we have found a tighter noise bound than before and
we can compute its associated standard score κ1.

Let’s assume that there exists a real number D ∈ R∗ such that, for every pos-
sible set of parameter x, σ2

BR (x) ≥ D, i.e., D = minx σ
2
BR (x). Using the previous

inequality, we have:

σ2
1 ≤ t22 − (ν2

2 − ν2
1) · σ2

BR

≤ t22 − (ν2
2 − ν2

1) ·D = t21,new

=

(
∆1

2 · κ1

)2

≤ t21

and so we have:

κ1 =
∆1

2
·

(
D · (ν2

1 − ν2
2) +

(
∆2

2κ

)2
)− 1

2

. (6)

Using Definition 1, we have pfail (A1) ≤ 1− erf
(
κ1

2

)
. To find an adequate D, one

can iterate over every possible set of parameters x and find the minimal value for
σBR (x). In particular, if ν1 = ν2, we have κ1 ≥ ∆1

∆2
· κ.

Using the relationship above, we have a simple algorithm to find parameters that
satisfy a given failure probability for a whole graph 𝒢 = {Ai}i∈I . Let pfail (𝒢) be
the failure probability we want to guarantee for the whole graph, and let δfail be its
associated tolerance. The algorithm will output a failure probability pfail (A) that
can be used as described in the sections above and we are sure to achieve a failure
probability p̃fail (𝒢) such that

∣∣∣p̃fail (𝒢)− pfail (𝒢)
∣∣∣ < δfail.

First, we build 𝒢pareto = {Ai}i∈I′ ← Pareto (𝒢), as defined in Section 3.2. Then,

we set pfail (Adominant) ← 1 − (1− pfail (𝒢))
1
|I′| . At this stage, we can apply what is

described above to find the probability of failure of the dominated atomic patterns
i.e. compute ∀i ∈ I ∖ I ′, pfail (Adominated,i). Then, using equation 5, we can compute

47 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

p̃fail (𝒢) ≈ 1− (1− pfail (Adominant))
|I′| ·

∏
i∈I∖I′

(1− pfail (Adominated,i))

If
∣∣∣p̃fail (𝒢)− pfail (𝒢)

∣∣∣ > δfail, we need to decrease or increase pfail (Adominant) and

to repeat the rest of the algorithm until we meet the condition.

5.3 Optimal PBS Insertion

In Section 5.1, we suggested to translate a plain DP into an FHE DP. Here, we
explain how to automatically insert PBS during a DP wherever it is interesting
with regards to the cost model. It could sound counter intuitive as the PBS can
be a very costly operator, hence inserting PBSs will increase the total cost of the
computation. However when the 2-norm of a DP operator is high, the parameters
must be large enough to still guarantee the correctness of the computation and those
large parameters will have an impact on the cost. We need our framework to choose
whether it is interesting to split the DP operator or not to end up with more PBSs
but with smaller cryptographic parameters.

The following theorem explores this approach.

Theorem 2 (DP Splitting) Let A (ν, t) be an AP of type 𝒜(CJP21) with a noise

bound t and including a DP of 2-norm ν. Let Ã (ν, t, d) the same AP than A but
where its DP is split into d + 1 sub-DP of approximately the same 2-norm and
connected together with PBS. It actually breaks an AP into d + 1 AP of the same
type organised in two layers (d followed by a last one connecting them all).

Let 𝒢 = {A (νi, t)}0≤i<Y such that ν0 < ν1 < ... < νY−1. Let d⃗∗ = (d∗0, · · · , d∗Y−1)
and d⃗ =

(
d′0, · · · , d′Y−1

)
be two different possible splitting solutions. We define the

following two FHE graphs: 𝒢∗ =
{
Ã (νi, t, d

∗
i)
}

0≤i<Y
and 𝒢′ =

{
Ã (νi, t, d

′
i)
}

0≤i<Y
.

If every coordinates of d∗ is inferior or equal (coordinate wise) to the ones from

d̃ and 𝒮 (𝒢∗) = 𝒮
(
𝒢
)
, then, d̃ cannot be the optimal solution.

Proof 6 (Sketch) Let x ∈ 𝒮 (𝒢∗) = 𝒮
(
𝒢
)
, we have Cost (𝒢∗, x) < Cost (𝒢′, x)

as there are more atomic patterns in 𝒢′ than in 𝒢∗ so 𝒢′ cannot be the result of
equation 4. □

Application to AP of type 𝒜(CJP21)

We consider a graph 𝒢 = {A(νi, t)}0≤i<α composed of AP of type 𝒜(CJP21) which
involves a DP operator. We introduce a new AP type and translate every AP of type
𝒜(CJP21) into this new AP type A∗ ∈ 𝒜(CJP21∗) which has the exact same sub-graph
than AP type 𝒜(CJP21) except that the DP is split into several sub-DP connected
with PBS as explained in Theorem 2. This AP has a new parameter di describing
the splitting of the DP for the i-th AP, i.e., how many sub-DP we will have. Note
that a graph 𝒢∗ with fixed values di can be viewed as a graph 𝒢∗ of AP type 𝒜(CJP21).

48 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Formally, equation 4 can be written this way:

(
𝒢, x̂

)
= argmin

d⃗∈𝒟
Cost

(
𝒢∗

d⃗
, x∗
)
s.t. 𝒢∗

d⃗
= {A∗(νi, t, di)}0≤i<α (7)

x∗ solution of equation 2

Several ways can be imagined to split a DP. One could be to group public weights
of the DP into di sets such that their 2-norm is approximately the same. This will
yield the best result if we keep neglecting the cost of the DP. Inserting a PBS adds
extra operations to perform, but it will also reduce the 2-norm of the initial DP.

To find how to split in two a dot product with a 2-norm ν and with the weights
{ωi}i∈J , we can solve the following problem

min
ωi,1,Λ

max(ν1, ν2) s.t. ωi = ωi,1Λ + ωi,2

GCD (ωi,1,Λ) = 1

∀j ∈ {1, 2} , νj =
√∑

i

ω2
j,1

(8)

This will yield two sets of weights {ωi,1}i∈J and {ωi,2}i∈J with ν2
1 =

∑
i∈J ω

2
i,1 ≈

ν2
2 =

∑
i∈J ω

2
i,2.

If we don’t know the weights {ωi}i∈J but we know that they follow an uniform
distribution between −2p and 2p, we have a trivial way yet very efficient (regarding
the noise) to split a DP in d + 1 DP. We can radix-decompose all the DP weights
with the level being equal to d+ 1 and the log2 of the base β is equal to p+1

d+1
. Here

each Λi is equal to a power of β.

5.4 Study of Key Switching Position

In some contexts it is possible to analytically compare two AP types prior to the
optimization, i.e. for all suitable set of parameters, one of the AP is always better
than the other. For instance, in the gate bootstrapping described in [CGGI20], an
unlimited number sequences of PBS, KS and DP is described. However one can
analytically prove that it is always best to have the KS right before the PBS. We
introduced a new atomic pattern type 𝒜(CGGI20) composed of a key switch, a DP
and a PBS and we compare it to 𝒜(CJP21). The following theorem formalizes the
comparison between those two types.

Theorem 3 (Relation Between 𝒜(CJP21) and 𝒜(CGGI20)) We consider two 2-
norms ν1, ν2 ∈ R+ such that ν1 ≤ ν2, two noise bounds t1, t2 ∈ N such that
t2 ≤ t1 and two AP: A1 ∈ 𝒜(CJP21) and A2 ∈ 𝒜(CGGI20). We have 𝒮 (A2 (ν2, t2)) ⊆
𝒮 (A1 (ν1, t1)).

Proof 7 Let’s start with the observation that 𝒜(CJP21) and 𝒜(CGGI20) share the same
search space 𝒫 because they are built with the same operators. For a parameter

49 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

set x ∈ 𝒫, the maximum noise variance in an AP of type 𝒜(CJP21) is σ2
out,1 (x) =

σ2
in (x) · ν2 + σ2

KS (x) + σ2
MS (x) where σ2

KS (x) is the noise added by the KS and
σ2
MS (x) is the noise added by the MS. Similarly, the maximum noise variance in an

AP of type 𝒜(CGGI20) is σ2
out,2 (x) = (σ2

in (x) + σ2
KS (x)) · ν2 + σ2

MS (x).
We consider x̄ ∈ 𝒮 (A2 (ν2, t2)), so we have σ2

out,2 (x̄) = (σ2
in (x̄) + σ2

KS (x̄)) · ν2
2

and σ2
out,2 (x̄) < t22. The simplest non-trivial DP possible is when we only have one

input ciphertext multiplied by 1, so we have 1 ≤ ν. Since variances are positive and
1 ≤ ν1 ≤ ν2, we have:

t21 ≥ t22 > σ2
out,2 (x̄) = σ2

in (x̄) · ν2
2 + σ2

KS (x̄) · ν2
2 + σ2

MS (x̄)

≥ σ2
in (x̄) · ν2

2 + σ2
KS (x̄) + σ2

MS (x̄) ≥ σ2
in (x̄) · ν2

1 + σ2
KS (x̄) + σ2

MS (x̄) = σ2
out,1 (x̄)

So we have t21 ≥ σ2
out,1 (x̄), meaning that x̄ ∈ 𝒮 (A1 (ν1, t1)), so 𝒮 (A2 (ν2, t2)) ⊆

𝒮 (A1 (ν1, t1)). □

The same result can be found by solving equation 2 for atomic pattern types
𝒜(CJP21) and 𝒜(CGGI20). The curves are shown on Figure 10 for precision up to 11
bits and for four different 2-norm ν. In this figure, we also added the comparison
with 𝒜(KS-free), the atomic pattern type composed of a DP and a bootstrapping from
[CGGI20] (without any key switch). The cost of this AP type is plotted as the
green/▼ curve the cost of 𝒜(KS-free). The blue/• curve represents the cost of 𝒜(CJP21)

and the red/+ curve is the cost of 𝒜(CGGI20).
As we can see, the smallest cost is the one of 𝒜(CJP21) which confirms what we

found theoretically by comparing 𝒜(CJP21) and 𝒜(CGGI20) in Theorem 3. We also
notice that for precisions larger than 8 bits, there are no feasible parameters for
𝒜(CGGI20). This is due to the fact that the noise of the key switch is amplified by
the DP in 𝒜(CGGI20) whereas it is not in 𝒜(CJP21). On the contrary, for very small
precisions, 𝒜(CJP21) and 𝒜(CGGI20) are very similar in term of efficiency. The difference
increases as soon as we increase the 2-norm factor ν. It means that for Boolean
TFHE (gate bootstrapping described in [CGGI20]), having the key switching after
the bootstrap does not worsen the cost by much, but it will not stay that way for
larger precisions. This figure also illustrates the usefulness of the key switching as
𝒜(KS-free) is always the worst atomic pattern type in term in cost. Furthermore, for
𝒜(KS-free) no solution is found for precisions larger than 7 bits. To conclude, one
always wants to compute the KS right before the PBS as in AP of type 𝒜(CJP21).

Remark 14 (Mixing Different AP Types in an FHE Graph) We consider
an FHE graph 𝒢 containing two types of AP: type 𝒜(CJP21) and type 𝒜(CGGI20). We
can apply the AP domination (Theorem 1) on every atomic pattern of each type. At
the end of this procedure, we end up with a few AP of type 𝒜(CJP21) and a few AP
of type 𝒜(CJP21). To further simplify the problem, we can use theorem 3 to compare
the remaining atomic patterns of 𝒜(CJP21) with the atomic patterns of 𝒜(CGGI20).

50 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Figure 10: In this figure, we compare AP of type 𝒜(CJP21), type 𝒜(CGGI20) and type
𝒜(KS-free).

5.5 Failure Probability Spectrum

In this section we analyze the impact of decreasing the failure probability on
the cost, for the atomic patterns 𝒜(CJP21) and 𝒜(this work). We consider four
different failure probabilities: pfail ∈ {2−14, 2−20, 2−35, 2−50} and to simplify the anal-
ysis, we fix the 2-norm ν = 24 since the behaviour is pretty similar for other 2-norms.

Figure 11 is dedicated to AP of type 𝒜(CJP21). We plot the cost for precisions
between 1 and 12 bits. As expected, we can observe that if we decrease the failure
probability, the cost increases. Roughly speaking, starting from 4-5 bits of precision,
for every additional bit, N has to be twice as big, which doubles the cost of the
atomic pattern. Observe that the cost is very close for certain curves: as instance, the
brown/ ■ curve, corresponding to pfail = 2−50, and the green/▼ curve, corresponding
to pfail = 2−35, have almost the same cost. The red/+ curve, corresponding to
pfail = 2−20, has a cost that is close to the one of the blue/• curve, corresponding
to pfail = 2−14, up to 7 bits of precision, and starting from 8 bits of precision it
gets closer to the green/▼ curve. This change is due to the fact that there are no
parameter sets fulfilling the requirements with a bigger N only twice as big, it has
to be 4 times bigger.

Figure 12 is dedicated to AP of type 𝒜(this work). The brown/ ■ curve, corre-
sponds to pfail = 2−50, the green/▼ curve, corresponds to pfail = 2−35, the red/+ curve
corresponds to pfail = 2−20, and finally the blue/• curve corresponds to pfail = 2−14.
All the curves follow the same behaviour and are simply shifted up when the failure

51 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Figure 11: Cost comparison for the same AP of type 𝒜(CJP21), with respect to the
following failure probabilities: pfail ∈ {2−14, 2−20, 2−35, 2−50}.

probability is decreased.
To sum up, with the AP of type 𝒜(CJP21), for each additional bit of precision, the

overall cost of the AP is doubled. However, this is not the case with the AP of type
𝒜(this work). The behaviour of the curve in this region (precision below 24 bits) looks
more like a linear one. For probabilities pfail = 2−35 and pfail = 2−50, the curves are
almost overlapping. If we look for instance at 7 bits of precision, the polynomial size
N are the same, but the noise added by the key switch is slightly lower thanks to
a bigger n (output of the key switch) and to other small changes in the key switch
decomposition parameters. Indeed, at this precision, N is already quite big so it
can handle the message precision. Thus the noise of the modulus switch is not the
most constraining one, the one from the key switch actually is. This explains the
small overhead in this context.

5.6 Optimization for Several Public Keys

In previous results on atomic pattern type 𝒜(CJP21), we assumed that we have only
one public material per FHE operator for the whole FHE DAG as we were only
looking for one polynomial size, one GLWE dimension and one LWE dimension.

Restricting the number of public keys helps to have a small quantity of public
material. It also has an impact on the complexity of the optimization problem
because as a result, parameters are shared across the entire FHE DAG. The down
side is that we cannot speed up parts of the FHE DAG that have a bigger noise bound
or less leveled operations (smaller 2-norm) with smaller and faster parameters.

52 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Figure 12: Cost comparison for the same AP of type 𝒜(this work), with respect to the
following failure probabilities: pfail ∈ {2−14, 2−20, 2−35, 2−50}.

In this section we describe a simple optimization problem: one LWE secret key
s⃗ and one GLWE secret key S⃗ ′ (for the PBS) that can be viewed as a bigger LWE
secret key s⃗′, along with X different key switching keys going from s⃗′ to s⃗. These
key switching keys can use a different base β and/or a different number of levels ℓ.
We consider a graph 𝒢 of Y APs of type 𝒜(CJP21).

There are many ways to solve this problem. A naive solution is to consider
different parameters for each KS and to let every KS to have its own (β, ℓ) and to
add the constraint that they can have at most X values. This approach increases
exponentially the search space of the optimization problem, so we will not consider
it.

A second solution, which is straightforward though not the most efficient one, is
to introduce a new variable δ for each KS. This value δ stores the associated KSK
identifier. This is a new parameter to optimize for each KS: ∀i ∈ [1, Y] δi ∈ [1, X].
So our additional search space, defined by the problem of finding which KSK is
used by which KS, is of size XY .

We designed a third solution to solve the problem. Starting now, we will sort
our KSK (KSK0,KSK1, · · ·) such that a KS with KSKi adds less noise than using
KSKi+1 for all 0 ≤ i. Ranking the noise added by the key switching keys allows to
use the following theorem.

Theorem 4 (Optimal KSK) Let KSK0 and KSK1 two KS keys obtained through
the resolution of the optimization problem. W.l.o.g., let us assume that a KS using

53 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

KSK0 adds strictly less noise than the one using KSK1, then the KS with KSK0 will
be slower than the KS with KSK1.

Proof 8 The two keys must have different parameters for the base and/or the num-
ber of level, because the noise added is different by hypothesis. If the optimization
has selected two distinct keys it means that they both satisfy a different cost/noise
trade-off. Then, if a KS with KSK1 is slower than a KS with KSK0 and generates
more noise, KSK1 will always be worse (both in terms of noise and cost) than KSK0

which contradict the fact that the optimization has selected two distinct keys. □

Let’s consider the following toy example: t ∈ N is a noise bound and 𝒢 =
{A0 (ν0, t) , A1 (ν1, t) , A2 (ν2, t)} is an FHE DAG such that ν0 < ν1 < ν2. This graph
has the same noise bound t for each AP and they are all of type 𝒜(CJP21). Let us have
two possible key switching keys and let us assume that δ⃗ = (δ0, δ1, δ2) = (0, 1, 0)
is the optimal solution i.e. we use KSK0 for A0 and A2, KSK1 for A1. We will
show that it cannot be so. We can use theorem 1 to infer that 𝒮 (A (ν2, t)) ⊆
𝒮 (A (ν1, t)) ⊆ 𝒮 (A (ν0, t)), and Theorem 4 to infer that a KS with KSK1 is faster
than a KS with KSK0. It is then straightforward to see that if (0, 1, 0) is a solution,
then (1, 1, 0) (KSK0 for A2 and KSK1 for A0 and A1) is also a solution but a faster
one. This example can be extended to an arbitrary number of AP sharing the same
noise bound and for an arbitrary number of key switching keys as described in the
theorem 5 below.

Theorem 5 (Several KSK) Let 𝒢 = {A (νi, t)}0≤i<Y an FHE graph only com-

posed of AP type 𝒜(CJP21) such that ν0 < ν1 < ν2 < · · · < νY . We consider that
we can have X KSK. The optimal δ⃗ = (δ0, · · · , δY−1) has the property that for all
0 ≤ i < Y − 1 there is δi ≥ δi+1.

Proof 9 (Sketch) Following the same logic as in the toy example above, it is easy
to prove this theorem. □

Using the theorem 5, we can solve the optimization problem without considering
every δ⃗ that cannot be optimal solution of Equation 2.

We can consider an FHE DAG with different noise bounds, and apply what we
just described for each of the different noise bounds. The same approach works to
enable several BSK in the optimization. Indeed, BSK can also be sorted by amount
of noise they offer in their output ciphertexts.

5.7 Consensus-Friendly TFHE & Blockchain Application

Two implementations of the same FHE algorithm that does not involve the FFT will
output the same result as long as it operates over the same inputs (same ciphertexts
and same public materials). For instance, different implementations of a DP or an
LWE-to-LWE KS will produce the same outputs.

54 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

However, implementations that leverage the FFT output different ciphertexts
depending on the FFT algorithm involved. To highlight this, we made an experi-
ment with the traditional parameter set of TFHE-lib for the bootstrapping. We use
the same secret keys, the same bootstrapping key and the same input ciphertexts,
but two different implementations of the PBS with their respective FFT implemen-
tations.

We computed the difference on the resulting ciphertexts for the two different
implementations, we call this value the error of the ciphertexts, which is different
from the noise needed for security in the plaintext. We observed that the ciphertexts
had the same most significant bits but their least significant bits were different.
We also re-run the experiment with different parameters: more levels and bigger
polynomials in the bootstrapping key. The messages encrypted were still correct
but the ciphertexts were completely different.

From those experiments, we can conclude that for a given parameter set and a
ciphertext with a given input error, the PBS with a given FFT either resets the error
to a minimal level or outputs the maximum amount of error, i.e., a re-randomization
of the ciphertext. It means that an FHE circuit containing a DP, a KS and a PBS
will not output the exact same ciphertext if it is run on the same inputs with different
implementations. This is not compatible with use-cases where one actually needs to
guarantee reproducibility across different implementations.

Thankfully, it is possible to ensure the reproducibility by tweaking a bit our
optimization framework as well as the PBS algorithm. The idea is to use a new
AP type that is identical to type 𝒜(CJP21) but with an extra rounding step at the
end (right after the PBS). This rounding procedure aims to remove the LSB of the
ciphertexts that are different from an implementation to the other. This rounding
increases the noise in the plaintext and it adds a new parameter to optimize: the
location of the rounding. The higher in the MSB we round the more noise we
add, but also the more error we remove. Note that this rounding will either keep
the same amount of error (when the output error is maximal, i.e., the ciphertexts
are completely different) or cancel it entirely depending on the parameter for the
rounding and the input error.

We can add to the optimization framework a new constraint related to the max-
imum error of the FFT we want to consider. We can do that easily with an ad-
ditional feasible set 𝒮other (𝒢). The condition could be represented as: 𝒮other (𝒢) =
{x ∈ 𝒫|∀i,EPBSi (x) = 0} ⊂ 𝒫, with EPBSi(x) the error of the output ciphertext
coefficients of a bootstrapping after the rounding. This approach relies on the fact
that we have a model for the error in the output of the PBS in terms of ciphertext
coefficients.

Some cryptographic observations can help reducing the size of the parameter
space. In particular, we must have: q

2β
ℓPBS
PBS

> errorFFT (x).

This optimization enables to set a limit in terms of error in the ciphertext co-
efficients that an implementation of the FFT introduces. Then, we can optimize
for a given FFT error model, some noise model, and some cost model targeting a
common architecture for instance. The result of the optimization can be used to

55 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

compute the same circuit on the same ciphertexts with the same public keys, but
with different implementation of the same FHE algorithms and we will end up with
the exact same ciphertext in output.

This feature enables many miners in a blockchain for instance, to compute the
same circuit on the same inputs and have a consensus without a need to decrypt
anything. It guarantees that the result came out of the desired FHE DAG and not
another designed by an attacker.

56 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

6 Conclusion & Future Work

Finding parameters that are correct, secure and efficient is a hard problem that
hinders large scale adoption of FHE. In this paper, we proposed the first optimization
framework that allows us to efficiently select the best FHE parameters for TFHE-like
schemes given a plain graph, a cost model and a noise models.

In this paper, we proposed new types of ciphertexts, combining several LWE
encryptions to encode large precision messages, by extending radix-based and CRT-
based representations into a new hybrid representation taking the best of both
worlds. We introduced new algorithms to compute modular reduction in those kind
of representations. We also proposed a new WoP-PBS technique to efficiently eval-
uate generic LUTs over these new ciphertext types. We used our new optimization
framework to provide optimal parameters, for those large homomorphic integers as
well as for other practical applications.

The new optimization framework allowed us to convert a crypto-free use-case
into an efficient FHE circuit with its associated parameters. It also enables to
compare several of the bootstrapping algorithms described in the literature and our
new WoP-PBS in diverse scenarios. As a result, we know for each of them, the
contexts where they are suited the most. This knowledge will be useful to accelerate
an optimization process that has many choices in terms of bootstrapping algorithms.

Future Work. An interesting future work would be to extend the optimization
to more than the cryptographic parameters. For instance, many new variables come
with the large homomorphic integer representation we introduced in this paper, such
as the moduli or the number of blocks, and they could also be optimized instead of
being picked by hand.

A second future work consists in optimizing the topology of the graph of FHE
operators by offering to the optimization many different options.

Finally, we could use our new optimization framework to find optimal parameters
for more FHE schemes, other than the TFHE-like ones.

57 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

References

[ACS20] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. Faster homomorphic
encryption is not enough: Improved heuristic for multiplicative depth
minimization of boolean circuits. In Stanislaw Jarecki, editor, Topics
in Cryptology - CT-RSA 2020 - The Cryptographers’ Track at the RSA
Conference 2020, San Francisco, CA, USA, February 24-28, 2020, Pro-
ceedings, volume 12006 of Lecture Notes in Computer Science, pages
345–363. Springer, 2020.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. J. Math. Cryptol., 2015.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. In ITCS, 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical gapsvp. IACR Cryptology ePrint Archive, 2012.

[BST20] Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved secure
integer comparison via homomorphic encryption. In CT-RSA. Springer,
2020.

[CAS17] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey. A multi-start heuris-
tic for multiplicative depth minimization of boolean circuits. In Ljil-
jana Brankovic, Joe Ryan, and William F. Smyth, editors, Combinato-
rial Algorithms - 28th International Workshop, IWOCA 2017, Newcas-
tle, NSW, Australia, July 17-21, 2017, Revised Selected Papers, volume
10765 of Lecture Notes in Computer Science, pages 275–286. Springer,
2017.

[CCR19] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM: efficient
constant bandwidth oblivious RAM from (leveled) TFHE. In CCS 2019.
ACM, 2019.

[CDS15] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: a com-
pilation chain for privacy preserving applications. In Proceedings of the
3rd International Workshop on Security in Cloud Computing, 2015.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: fast fully homomorphic encryption over the torus.
J. Cryptol., 2020.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New tech-
niques for multi-value input homomorphic evaluation and applications.
In CT-RSA. Springer, 2019.

58 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

[CJL+20] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and
Samuel Tap. Concrete: Concrete operates on ciphertexts rapidly by
extending TfhE. In WAHC 2020, 2020.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable boot-
strapping enables efficient homomorphic inference of deep neural net-
works. In CSCML 2021. Springer, 2021.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Ho-
momorphic encryption for arithmetic of approximate numbers. In ASI-
ACRYPT 2017, 2017.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap.
Improved programmable bootstrapping with larger precision and effi-
cient arithmetic circuits for tfhe. In ASIACRYPT 2021. Springer, 2021.

[CMG+18] Eduardo Chielle, Oleg Mazonka, Homer Gamil, Nektarios Georgios
Tsoutsos, and Michail Maniatakos. E3: A framework for compiling c++
programs with encrypted operands. Cryptology ePrint Archive, Paper
2018/1013, 2018.

[CZB+22] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud
Sirdey, and Cédric Gouy-Pailler. Putting up the swiss army knife of
homomorphic calculations by means of tfhe functional bootstrapping.
Cryptology ePrint Archive, Report 2022/149, 2022. https://ia.cr/2022/
149.

[DKS+20] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim
Laine, and Madan Musuvathi. EVA: an encrypted vector arithmetic
language and compiler for efficient homomorphic computation. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. ACM, jun 2020.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In EUROCRYPT 2015, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. IACR Cryptology ePrint Archive, 2012.

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the
functional bootstrap in TFHE. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic eval-
uation of the AES circuit. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceed-
ings, volume 7417 of Lecture Notes in Computer Science, pages 850–867.
Springer, 2012.

59 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

https://ia.cr/2022/149
https://ia.cr/2022/149

Parameter Optimization & Larger Precision for (T)FHE

[GKT22] Charles Gouert, Rishi Khan, and Nektarios Georgios Tsoutsos. Opti-
mizing homomorphic encryption parameters for arbitrary applications.
Cryptology ePrint Archive, Paper 2022/575, 2022. https://eprint.iacr.
org/2022/575.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO 2013. Springer, 2013.

[Kle22] Jakub Klemsa. Hitchhiker’s guide to a practical automated TFHE pa-
rameter setup for custom applications. IACR Cryptol. ePrint Arch.,
page 1315, 2022.

[KO22] Jakub Klemsa and Melek Onen. Parallel operations over tfhe-encrypted
multi-digit integers. Cryptology ePrint Archive, Report 2022/067, 2022.

[KS21] Kamil Kluczniak and Leonard Schild. FDFB: full domain functional
bootstrapping towards practical fully homomorphic encryption. CoRR,
2021.

[LLOY20] DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. Opti-
mizing homomorphic evaluation circuits by program synthesis and term
rewriting. In Alastair F. Donaldson and Emina Torlak, editors, Proceed-
ings of the 41st ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, pages 503–518. ACM, 2020.

[LMP21] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision ho-
momorphic sign evaluation using fhew/tfhe bootstrapping. Cryptology
ePrint Archive, Report 2021/1337, 2021. https://ia.cr/2021/1337.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In EUROCRYPT 2010. Springer,
2010.

[MML+22] Johannes Mono, Chiara Marcolla, Georg Land, Tim Güneysu, and Na-
jwa Aaraj. Finding and evaluating parameters for BGV. IACR Cryptol.
ePrint Arch., page 706, 2022.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC 2005. ACM, 2005.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-
ficient public key encryption based on ideal lattices. In ASIACRYPT
2009. Springer, 2009.

[VJH21] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. Sok: Fully ho-
momorphic encryption compilers. CoRR, 2021.

60 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

https://eprint.iacr.org/2022/575
https://eprint.iacr.org/2022/575
https://ia.cr/2021/1337

Parameter Optimization & Larger Precision for (T)FHE

Acronyms

𝒜(this work) type of atomic pattern introduced in this paper. 3, 38–44, 51–53, 71

𝒜(CGGI20) type of atomic pattern introduced in [CGGI20]. 49–51

𝒜(CJP21) type of atomic pattern introduced in [CJP21]. 3, 24–27, 38–40, 42–44,
46–55, 71

𝒜(GBA21) type of atomic pattern introduced in [GBA21]. 3, 26, 27, 38–40, 44

𝒜(KS-free) type of atomic pattern composed of a dot product and a PBS. 50, 51

𝒜(LMP21) type of atomic pattern introduced in [LMP21]. 3, 40, 41

AP atomic pattern. 22–24, 26, 27, 39, 41, 42, 44, 46, 48–51, 53–55, 71

BR blind rotation. 11, 24

BSK bootstrapping key. 12, 54

CRT Chinese Remainder Theorem. 3, 6–9, 15–17, 28, 31, 32, 37, 38, 43, 44, 57, 68

DAG directed acyclic graph. 18, 20–23, 45, 46, 52, 54, 56

DP dot product. 23, 24, 38, 40, 41, 46, 48–50, 54, 55

FFT Fast Fourier Transform. 23, 54, 55

FHE fully homomorphic encryption. 3, 5–11, 14, 18–24, 26, 38, 45, 46, 48, 50, 52,
54–57

GCD Greatest Common Divisor. 49

GGSW generalized GSW [GSW13]. 11, 12, 33, 37

GLWE general learning with errors. 10–12, 15, 18–20, 37, 52, 53, 65

KS key switching. 11, 12, 20, 22, 24, 27, 36, 37, 40, 41, 46, 49, 50, 53–55

KSK key switching key. 11, 53, 54

LSB least significant bit(s). 14, 23, 55, 64, 66

LUT lookup table. 3, 5, 7, 8, 11, 12, 14–17, 27–29, 32–34, 37–41, 43, 45, 57, 64–68

LWE learning with errors. 3–5, 9–13, 15–20, 32, 33, 37, 38, 44, 52–54, 57, 63–65,
68

61 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

MS modulus switching. 11, 24, 50

MSB most significant bit(s). 13, 14, 30, 32, 37, 55, 64, 66

PBS programmable bootstrapping. 3–5, 7, 11–17, 20, 22–30, 32, 33, 36–40, 44–46,
48–50, 53, 55, 64, 65, 67, 68

RLWE ring learning with errors. 5, 10, 11

SE sample extraction. 11, 24

WoP-PBS without padding programmable bootstrapping. 3, 7, 17, 28, 32–34,
37–41, 43, 44, 46, 57

62 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Supplementary Material

A Details on Advanced Modular Arithmetic from

Single LWE Ciphertexts

In this section we provide more details on the advanced modular arithmetic opera-
tions from Section 2.2.

A.1 Arithmetic Operators

Thanks to the carry subspace, we can compute leveled operations such as homomor-
phic additions or multiplications with a known constant. Let’s consider two LWE
ciphertexts ct1 and ct2 encrypting respectively m1 and m2 with respective degrees
of fullness deg1 and deg2. From the degree of fullness one can infer respective worst
case messages µ1 and µ2 (as defined in 2.2). The following operations are allowed
as long as both ciphertexts share the same base β, carry-message modulus p and
ciphertext modulus q. Our plaintext format does not allow any native modular re-
duction modulo β, i.e. the carry subspace will contain the quantity overlapping β
and we cannot have a degree of fullness greater than 1 at any time for correctness
reason.

Addition To compute the addition m1+m2 modulo β one can use the traditional
LWE addition. With this approach, the necessary condition to guarantee correctness
is deg1+deg2 ≤ 1 and the output ciphertext will have a degree equal to deg1+deg2.

Multiplication To compute a multiplication between ct1 (as defined above) and
an integer constant 0 ≤ c one can use the trivial multiplication between an LWE
ciphertext and a positive integer. With this approach, the necessary condition to
guarantee correctness is c · deg1 ≤ 1 and the output ciphertext will have a degree
equal to c · deg1.

Opposite To compute the opposite of m1 modulo β we can use the trivial algo-
rithm where we compute the opposite of every elements of the LWE ciphertext ct1.
However, without a correction, this will lead to an encoding of a message that is no

more between 0 and p − 1. This is why one must add the correction term β ·
⌈
µ1

β

⌉
after computing the opposite of the each coefficients of the ciphertext. With this

approach, the necessary condition to guarantee correctness is β ·
⌈
µ1

β

⌉
≤ p − 1 and

the output degree of fullness is β ·
⌈
µ1

β

⌉
· 1
p−1 .

63 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Subtraction To compute the subtraction m1 − m2 modulo β one starts by ho-
momorphically compute the opposite of ct2 and then compute the homomorphic
addition with ct1. Both the condition and the output degree of fullness can be
inferred from the descriptions of the previous operations.

LUT Evaluation The PBS is an operation that allows to evaluate a uni-variate
function on the input at the same time as it reduces the noise. It is then easy to
compute l(m1) homomorphically from ct1 with l a LUT. The requirement is that
deg1 ≤ 1, and the output degree is µl

p−1 where µl is the biggest possible output of
the LUT.

A.2 Multiplications

To compute the addition m1 · m2 we can use a combination of leveled operations
and PBS. Here, we propose three types of multiplication:

(i) the multiplication of the two inputs without any modular reduction return-
ing m1 · m2 (requiring that µ1 · µ2 < p). The output degree of fullness is
deg1 · deg2 · (p− 1);

(ii) the multiplication in the LSB, returning an LWE encryption of m1 · m2

mod β. The output degree of fullness is the minimum between β−1
p−1 and

deg1 · deg2 · (p− 1);

(iii) the multiplication in the MSB, returning an LWE encryption of
⌊
m1·m2

β

⌋
. The

output degree of fullness is
⌊
µ1

β

⌋
·
⌊
µ2

β

⌋
;

The first method can be used to compute a multiplication of type (ii), and is
known in the TFHE literature (see as instance [CJL+20]) and consists in computing

the multiplication by observing that x · y = (x+y)2

4
− (x−y)2

4
modulo β. Then, we

compute m1+m2 and m1−m2 in a leveled fashion, and we use two KS-PBS with the

LUT computing the uni-variate function
⌊
x2

4

⌋
mod β to compute (m1+m2)2

4
mod β

and (m1−m2)2

4
mod β. We finally subtract the two results and perform another

KS-PBS with LUT computing x mod β to get the right result.
The second method we propose is using the Chained-PBS. It can be used to

compute multiplications of type (i), type (ii) and type (iii), and requires the use of
the technique presented in one of the previous paragraphs and illustrated in Figure 3.

We evaluate the multiplication of type (ii), as a bi-variate function, by shifting
one of the two ciphertexts, adding to the other one and by performing a KS-PBS

with LUT computing the function (x mod (µ1 + 1)) ·
(⌊

x
µ1+1

⌋
mod β

)
mod β.

We evaluate the multiplication of type (iii) in the same manner. The
only difference is that the KS-PBS evaluates a LUT computing the function⌊

(x mod (µ1+1))·
(⌊

x
µ1+1

⌋
mod β

)
β

⌋
. We evaluate the multiplication of type (i) in the

64 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

same manner. The only difference is that the KS-PBS evaluates a LUT computing

the function (x mod (µ1 + 1)) ·
⌊

x
µ1+1

⌋
.

The third method can be use to compute the multiplication of type (i). It
consists on using a BFV GLWE multiplication as introduced in [CLOT21] for the
TFHE context.

A.3 Carry & Message Extractions

As we observed in previous sections, after performing homomorphic operations the
degree of fullness increases and the carry subspace might need to be emptied. To do
so, we propose two operations: the carry extract operation, that allows to extract

the carry
⌊
m1

β

⌋
of m1 overlapping β into a new LWE ciphertext (one or more),

and message extract operation, which allows to extract m1 mod β into a new LWE
ciphertext.

Both operations use a PBS (along with key switching in order to come back
to the original secret key, if necessary), taking as input the same LWE cipher-
text and the same public material (i.e., the bootstrapping and key switching keys),
but different LUT. The carry extract uses Pcarry-ext : a r-redundant LUT for x →⌊
x
β

⌋
. The output degree of fullness is

⌊
µ1

β

⌋
. The message extract uses Pmsg-ext :

a r-redundant LUT for x → x mod β. The output degree of fullness is the min-
imum between β−1

p−1 and deg1. If the carry subspace is larger than the message
subspace, more than one PBS might be required to empty it all along with slightly
different LUTs.

B Example on Radix-Based Integers

In this section we give more detail about the homomorphic large integers introduced
in this paper.

Multiplication Let’s use a toy example to describe how a multiplication between
two encrypted radix-based modular integers. We will use κ = 2, β0 = 3, β1 = 5 and
Ω = 15. We will multiply msg = msg1 ·msg2 modulo 15 with msg1 = 10 = 3 · 3 + 1,
msg2 = 5 = 1 · 3 + 2 and msg = m1 · 3 +m0. What we do in clear is m0 = 1 · 2 = 2
and m1 = 3 · 2 + 3 · 1 · 3 + 1 · 1 = 16 = 1 because it lives modulo β1 = 5.

We now need to compute this homomorphically between two radix-based mod-
ular integers. We will set p = 32. We have four (two for each integers) ciphertexts

encrypting modular integers: ct
(1)
1 encrypting 3 under (β1, p) with degree 4/31, ct

(1)
0

encrypting 1 under (β0, p) with degree 2/31, ct
(2)
1 encrypting 1 under (β1, p) with

degree 4/31, ct
(2)
0 encrypting 2 under (β0, p) with degree 2/31.

We want to produce a radix-based modular integer that will be composed of
two ciphertexts encrypting modular integers: ct

(out)
1 under (β1, p) and ct

(out)
0 under

65 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

(β0, p). The computation will be the following: ct
(out)
0 ← Mul

(
ct

(1)
0 , ct

(2)
0

)
and:

ct
(out)
1 ← Mul

(
ct

(1)
0 , ct

(2)
1

)
+Mul

(
ct

(1)
1 , ct

(2)
0

)
+ LUT-Eval

(
x 7→ β0 · x mod β1,Mul

(
ct

(1)
1 , ct

(2)
1

))
Note that Mul refers to the multiplication of type (i), and that LUT-Eval refers

to the LUT evaluation in the same section and its first input is a description of
the LUT to evaluate. The degree of fullness of ct

(out)
0 is 4/32, and the degree of

ct
(out)
1 is 8/32 + 8/32 + 4/32 = 20/32. They will encrypt respectively 1 · 2 = 2 and

1 · 1 + 3 · 2 + (3 · 1 · 3 mod 5) = 11 which when decoding will lead to the expected
value.

We could definitely have computed the same functionality, i.e. msg1 · msg2,
from the other two types of multiplication, and it would have only changed a few
details in the algorithm. Also note that we computed LUT-Eval instead of using
a simple multiplication with a constant so the output degree does not become too
big. Here again there are many different combination of parameters and algorithms
that would have produced the desired result. We provide details on this technique
in Algorithm 5 in Supplementary Material C.

Opposite For the negation, we can use msg1 defined above. We start by com-

puting the opposite of the MSB block, i.e. ct
(1)
1 , so we end up with the message

5− 3 = 2. Then we need to compute the opposite of the LSB block, i.e. ct
(1)
1 , so we

end up with the message 3 − 1 = 2, and finally compensate this LSB opposite by
subtracting 1 to the MSB block. It means that we will end up with 2 + (5− 1) = 6
encrypted in the MSB block. After decoding, it will output the expected value.

LUT Evaluation There are many examples of univariate functions (such as the
inverse). These functions could be computed with the techniques we just described
and then, by using a similar method than the one we used to compute the multipli-

cation, it is also possible to compute a homomorphic division of the form
⌊
m1

m2

⌉
.

C Detail about Algorithms

In this section we provide algorithms that are used in the main body of this paper.
Let β⃗ = (β0, . . . , βκ−1) and p⃗ = (p0, . . . , pκ−1). We need to define recursively the

quantities qi,β⃗, ri,β⃗ and γβ⃗, for i ∈ Z≥−1, which are useful in these algorithms, as:

• qi,β⃗(x) =

{
x, if i = −1⌊
q
i−1,β⃗

(x)

βi

⌋
, if i ≥ 0

• ri,β⃗(x) = qi−1,β⃗(x)− qi,β⃗(x) · βi, i ≥ 0

• γβ⃗(x) =

{
min(i ∈ Ω), Ω = {i < |β⃗|, qi,β⃗(x) = 0}
|β⃗| if Ω = ∅.

66 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

The first algorithm we need is the Decomposition algorithm: we give details in
Algorithm 4.

The second tool we need is a padding algorithm, which allows to change the size
of a radix-based large integer encryption from κ to κout. To do so, we complete the
ciphertext with trivial encryptions of zero. This is useful when we use the Decomp
Algorithm 4 since the output ciphertext might not be of length κ.

The signature of the algorithm is:(
c′0, . . . , c

′
κout−1

)
← Pad

(
(c0, . . . , cκ−1) , α, p⃗out, β⃗out

)
We give details on the multiplication operation for radix-based modular integers

in Algorithm 5.

Algorithm 5:
(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
← Mult

((
ct

(1)
0 , . . . , ct

(1)
κ1−1

)
,
(
ct

(2)
0 , . . . , ct

(2)
κ2−1

)
, PUB

)

Context:



(q, pj,i, βj,i,degj,i) : paremathers of ct
(j)
i

µj,i := degj,i ·(pj,i − 1) + 1, j ∈ J1, 2K, i ∈ J0, κj − 1K
β⃗j := (βj,0, . . . , βj,κj−1), p⃗j := (pj,0, . . . , pj,κj−1)

β⃗j,i := (βj,i, . . . , βj,κj−1), p⃗j,i := (pj,i, . . . , pj,κj−1)

γh,k := γ−→
β 2,k

((µ1,h − 1) · (µ2,k − 1))

{P
i,rk,

−−→
β2,j
}0≤i≤κ1−1, 0≤j≤κ2−1, 0≤k≤γi,j

: a LUT for

x→ r
k,
−→
β 2,j

(
(x mod µ2,i) ·

⌊
x

µ2,i

⌋)
· q
2·p2,k+j

Input:

{(
ct

(i)
0 , . . . , ct

(i)
κi−1

)
: encrypting msgi under s⃗, i ∈ J1, 2K

PUB: public material for KS-PBS

Output:
(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
encrypting msg1 ·msg2 under s⃗

1 for i ∈ J0;κ1 − 1K do
/* Put the block to the right basis */

2 cttmp ← LweBasisChange(ct(1)i, p2,0, β2,0,PUB)
/* Compute the multiplication-decomposition */

3

(
ct

(tmp)
0 , . . . , ct

(tmp)
κ−1

)
← OneBlockMul

(
cttmp,

(
ct

(2)
0 , . . . , ct

(2)
κ2−1

)
,PUB

)
/* Add the results of the multiplications together */

4

(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
← Add(

(
ct

(out)
0 , . . . , ct

(out)
κ−1

)
,
(
ct

(tmp)
0 , . . . , ct

(tmp)
κ−1

)
)

5 end

6 return
(
ct

(out)
0 , . . . , ct

(out)
κ−1

)

C.1 Tree PBS approach on Radix-Based Modular Integers

In this section, we give more details on how to apply the TreePBS technique
by [GBA21] to our new radix-based modular integers.

In [GBA21] the plaintext integers are all encrypted under the same basis β:
we offer here the possibility to evaluate a large look-up table with integers set in
different basis (β0, . . . , βκ−1).

Let Ω =
∏κ−1

i=0 βi, and let L = [l0, l1, · · · , lΩ−1] be a LUT with Ω elements. We
want to evaluate this LUT on a radix-based modular integer encrypting a message
msg = m0 +

∑κ−1
i=1 mi

∏i−1
j=0 βj.

67 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Then, to evaluate the new multi-radix tree-PBS we performs the following steps:

1. We note as B = {βi|i ∈ J0, κ − 1K} and as ϑ(βi) the component mi of msg
associated to βi.

2. We define βmax = max(β ∈ B).

3. We split the LUT L into ν =
∏

βi∈B
βi

βmax
smaller LUTs (L0, . . . , Lν−1) that each

contain βmax different elements of L.

4. We compute a PBS on each of the ν LUTs using the ciphertext encrypting
ϑ(βmax) as a selector.

5. We build a new large look-up table L by packing, with a key switching, the
results of the ν iterations of the PBS in previous step.

6. We remove βmax from B: B = B − βmax.

7. We repeat the steps from 2 to 6 until B is empty.

The generalized multi-radix tree-PBS takes as input a radix-based modular
integer ciphertext, a large look-up table L and the public material required for
the PBS and key switching and returns a LWE ciphertext. The signature is:
ctout ← Tree-PBS((ct0, . . . , ctκ−1),PUB, L).

For the CRT-only and hybrid approaches, the multi-radix tree-PBS works in the
same way.

68 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Algorithm 2:
(
ct′0, . . . , ct

′
κ−1
)
← ModReduction2((ct0, . . . , ctκ−1),PUB)

Context:

{
ν⃗ = (ν0, ν1, . . . , νκ−1) be a convenient decomposition s.t.∏κ−2

h=0 βh mod Ω = ν0 + ν1β0 + ν2β0β1 + . . .+ νκ−2

∏κ−3
j=0 βj

Input:

{
(ct0, . . . , ctκ−1) , encrypting msg = m0 +

∑κ−1
i=1 mi

(∏i−1
j=0 βi

)
s.t. cti encrypts message mi with parameters (βi, pi)

Output:
(
ct′0, . . . , ct

′
κ−1

)
encrypting msg = m0 +

∑κ−1
i=1 mi

(∏i−1
j=0 βi

)
mod Ω

/* Copy input and set the κ− 1 block to zero (trivial encryption) */

1

(
ct′0, . . . , ct

′
κ−1

)
← (ct0, . . . , ctκ−2, 0)

2 for j ∈ J0;κ− 2K do
/* Multiply block κ− 1 times νj, Multiplication with a Positive

Constant as in Section 2.2 */

3 if νj < 0 then
4 cj ← ScalarMul(ctκ−1,−νj)
5 else
6 cj ← ScalarMul(ctκ−1, νj)

/* Decompose (as in Supplementary Material C) cj block starting from

the βj */

7 (cj,0, . . . , cj,κ−j−1)← Decomp
(
cj , (βi)i∈Jj,κ−1K , (pi)i∈Jj,κ−1K ,PUB

)
/* Pad (as in Supplementary Material C) the carry to fit with the

output */

8

(
c′j,0, . . . , c

′
j,κ−1

)
← Pad

(
(cj,0, . . . , cj,κ−j−1) , j, (βi)i∈J0,κ−1K , (pi)i∈J0,κ−1K

)
/* Update the output */

9 if νj < 0 then

10

(
ct′0, . . . , ct

′
κ−1

)
← Add

((
ct′0, . . . , ct

′
κ−1

)
,
(
c′j,0, . . . , c

′
j,k−1

))
11 else

12

(
ct′0, . . . , ct

′
κ−1

)
← Sub

((
ct′0, . . . , ct

′
κ−1

)
,
(
c′j,0, . . . , c

′
j,k−1

))
13 return

(
ct′0, . . . , ct

′
κ−1

)

69 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Algorithm 3: ctout ← WoP-PBS((ct0, . . . , ctκ−1),PUB, L)

Context:



∆i : scaling factor for the ciphertext cti

δi : bits occupied by message in ciphertext cti starting from ∆i

Ω = 2
∑κ−1

i=0 δi

(βCB, ℓCB) : the base and level of the output GGSW

ciphertexts to the circuit bootstrapping

(κ, ϑ) ∈ N× N defining the modulus switching in the

generalized PBS [CLOT21]

Input:


(ct0, . . . , ctκ−1) encrypting msg = (m0, . . . ,mκ−1)

with for all 0 ≤ i < κ, Decode (Decrypt (cti)) = mi

PUB : public keys required for the whole algorithm

L = [l0, l1, · · · , lΩ−1] : a LUT, s.t. lh ∈ Zω

Output: ctout encrypting lmsg

1 for i ∈ J0;κ− 1K do

2 for j ∈ J0; δi − 2K do

/* Extract from the LSB of the message (use generalized PBS

from [CLOT21]) */

3 ϵi =
q
4

4 if j == 0 and q
pi

/∈ N then

/* Case of the native CRT (see proof below) */

5 ϵi ←
⌊
q·2k−2

βi

⌋
6 αi,j =

∆i·2j
2

7 Li,j = [−αi,j , · · · ,−αi,j]

8 ci ← KS-PBS
((
cti · 2δi−1−i

)
+ (0, · · · , 0, ϵi) ,PUB, Li,j , (κ=log2(∆i)+j,ϑ=0)

)
9 c′i ← ci + (0, · · · , 0, αi,j)

/* Subtract the extracted bit from the original ciphertext */

10 cti ← Sub(cti, c
′
i)

/* Circuit bootstrap [CGGI20] the extracted bit into a GGSW */

11 Ci,j ← CircuitBootstrap(c′i,PUB, (βCB, ℓCB), (κ = log2 (∆i) + j, ϑ = 0))

/* Circuit bootstrap [CGGI20] the last bit into a GGSW */

12 Ci,j ← CircuitBootstrap(cti,PUB, (βCB, ℓCB), (κ = log2 (∆i) + δi − 1, ϑ = 0))

/* Vertical Packing LUT evaluation [CGGI20] */

13 ctout ← VPLut

({
Ci,j

}j∈⌈0;δi−1⌉

i∈J0;κ−1K
, L

)
14 return ctout

70 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

AP parameters LWE GLWE
LWE-to-LWE

PBS
param key switch WoP-PBS
ID

p ν n log2(σ) k log2(N) log2(σ) log2(B) ℓ log2(B) ℓ
compatible

1 22 3 615 −13.38 4 9 −51.49 2 5 12 3 #8
2 24 5 702 −15.69 2 10 −51.49 2 7 9 4 #9
3 26 5 872 −20.21 1 12 −62.00 4 4 22 1 #10
4 22 3 667 −14.76 6 8 −37.88 4 3 18 1 ∅
5 24 5 784 −17.87 2 10 −51.49 4 3 23 1 ∅
6 28 17 983 −23.17 1 14 −62.00 4 5 15 2 ∅
7 26 9 838 −19.30 1 12 −62.00 3 5 15 2 ∅

Table 1: Optimized parameters for AP of type 𝒜(CJP21).

AP parameters LWE GLWE micro parameters
param
ID

p
bit(s) to

κ ν n log2(σ) k log2(N) log2(σ) operator log2(B) ℓ
extract

8 22 1 16 3 549 −11.62 2 10 −51.49

LWE-to-LWE
2 5

key switch
PBS 12 3

packing
17 2

key switch
compatible circuit

13 1
with CJP#1 bootstrapping

9 24 2 8 5 534 −11.22 2 10 −51.49

LWE-to-LWE
2 5

key switch
PBS 12 3

packing
17 2

key switch
compatible circuit

9 2
with CJP#2 bootstrapping

10 26 4 5 5 538 −11.33 4 10 −62.00

LWE-to-LWE
1 10

key switch
PBS 4 11

packing
20 2

key switch
compatible circuit

7 4
with CJP#3 bootstrapping

11


7
8
9
11
13



3
3
4
4
4

 5 5 696 −15.53 2 10 −51.49

LWE-to-LWE
2 7

key switch
PBS 9 4

packing
17 2

key switch
circuit

7 3
bootstrapping

12



3
11
13
19
23
29
31
32





2
4
4
5
5
5
5
5


8 25 781 −17.79 1 11 −51.49

LWE-to-LWE
1 16

key switch

PBS 5 8

packing
13 3

key switch
circuit

6 4
bootstrapping

Table 2: Optimized parameters for AP of type 𝒜(this work).

71 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

integer parameters PBS based operations WoP-PBS based operations

Ω p
carry

κ
param

+∗ × carry
param ID LUT evaluation

modulus ID cleaning

216 21 21 16 #1 12.8 µs 29.0 s 932 ms #8 823 ms
216 22 22 8 #2 6.67 µs 5.73 s 657 ms #9 1.80 s
232 21 21 32 #4 19.1 µs 43.8 s 685 ms

∅232 22 22 16 #5 12.3 µs 9.60 s 514 ms
232 24 24 8 #6 137 µs 25.0 s 6320 ms

Table 3: Benchmarks for 16-bit and 32-bit homomorphic integers based on the radix
approach. The star (∗) means that a PBS is not required to compute the operation.

type of
PBS based operations WoP-PBS based operations

Ω
execution

param
+∗ × carry

param ID LUT evaluation
ID cleaning

≈ 216
sequential

#3
8.36 µs 401 ms 251 ms

#10
23.1 s

5 threads 1.67 µs 80.3 ms 50.2 ms 4.61 s

≈ 232
sequential

#7
27.6 µs 5.17 s 2400 ms ∅

4 threads 8.78 µs 1.82 s 729 ms

Table 4: Benchmarks for 16-bit homomorphic integers based on the CRT approach
and 32-bit integers are computed with a hybrid approach. We use the following
CRT basis: Ω = 7 · 8 · 9 · 11 · 13 ≈ 216 and Ω = 25 · 35 · 54 · 74 ≈ 232.

Ω
type of

WoP-PBS based operations

execution param ID
+∗

× LUT evaluation
ν time

≈ 216
sequential

#11 5
4.32 µs 7.42 s 3.81 s

5 threads 0.862 µs 1.65 s 0.761 s

≈ 232
sequential

#12 25
6.98 µs 36.8 s ∅

8 threads 0.873 µs 5.31 s

Table 5: Benchmarks for 16-bit and 32-bit homomorphic integers based on the native
CRT approach. We use the following CRT basis: Ω = 7 · 8 · 9 · 11 · 13 ≈ 216 and
Ω = 3 · 11 · 13 · 19 · 23 · 29 · 31 · 32 ≈ 232.

72 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

Parameter Optimization & Larger Precision for (T)FHE

Algorithm 4: (ctj)j∈J0,γK ← Decomp
(
ctin, β⃗, p⃗,PUB

)

Context:



(q, p,deg) : parameters of ctin

µ := deg ·(p− 1)

γ := γβ⃗(µ)

s⃗ ∈ Zn : the secret key

Pi,β⃗ : a LUT for x→ ri,β⃗(x) ·
q

2·pi
, i ∈ J0, κ− 1K

Input:


ctin : LWE encryption of a message m

(p⃗, β⃗) ∈ Nκ2

PUB: public material for KS-PBS

Output: (ctj)j∈J0,γK encrypting the message m

1 for j ∈ J0, γK do
2 ctj ← KS-PBS(ctin,PUB, Pi)

3 with ctj LWE encryption with parameters
(
q, βj , pj ,deg = min(

βj−1
pj−1 ,

q
j−1,β⃗

(µ)

pj−1)
)

4 end
5 return (ctj)j∈J0,γK

73 L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.B. Orfila & S. Tap

	Introduction
	Preliminaries
	FHE Background
	Modular Arithmetic with a Single LWE Ciphertext
	Modular Arithmetic with Several LWE ciphertexts
	Radix-based large integers
	CRT-based large integers
	Limitations

	Parameter Selection for FHE
	The FHE Optimization Problem
	Pre-Optimization & Graph Transformations
	Takeaways On Larger Precision

	TFHE-based Large Integers
	Generalization of large integer representations
	Generalization of radix to any large modulus
	Larger Integer using Hybrid Representation

	LUT evaluation over large integers
	New WoP-PBS
	Fast & Native CRT Implementation
	Comparison Between apBBB, apCJP and apGBA
	Comparison Between apBBB and apLMP

	Benchmarks
	Cryptographic Parameters
	Experimental results

	An Optimization Framework for FHE
	Full-Fledged Problem
	Failure Probability: From the AP to the Entire Graph
	Optimal PBS Insertion
	Study of Key Switching Position
	Failure Probability Spectrum
	Optimization for Several Public Keys
	Consensus-Friendly TFHE & Blockchain Application

	Conclusion & Future Work
	Acronyms
	Details on Advanced Modular Arithmetic from Single LWE Ciphertexts
	Arithmetic Operators
	Multiplications
	Carry & Message Extractions

	Example on Radix-Based Integers
	Detail about Algorithms
	Tree PBS approach on Radix-Based Modular Integers

