
Finding and Evaluating Parameters for BGV

Johannes Mono1, Chiara Marcolla2, Georg Land1,3,
Tim Güneysu1,3, and Najwa Aaraj2

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany
2 Technology Innovation Institute, Abu Dhabi, United Arab Emirates

3 DFKI GmbH, Cyber-Physical Systems, Bremen, Germany

Abstract. The BGV scheme is a state-of-the-art fully homomorphic
encryption (FHE) scheme. Encryption is based on the Learning with
Errors over rings (RLWE) assumption and thus each ciphertext has an
associated error that grows with each homomorphic operation. To avoid
failure during decryption, the growing error, also called critical quantity,
needs to stay below a certain threshold. This requires a trade-off between
security and error margin that influences the parameters specific to each
use case. Choosing such parameters, for example the polynomial degree
or the ciphertext modulus, is a challenge and requires expert knowledge.

The main idea of our work is to improve the current state of BGV
parameter selection. More specifically, we provide a parameter generator
for the leveled BGV scheme using theoretical bounds on the error growth
and an empirically derived formula for the security estimate. For the for-
mer, we combine previous analysis using the canonical embedding norm
and analysis of the residue number system. For the latter, we develop a
model based on data from the Lattice Estimator tool and coupled opti-
mization. Finally, we provide the open-source generator which outputs
easy-to-use code snippets for the BGV libraries HElib and PALISADE.

Keywords: Fully Homomorphic Encryption, BGV, Parameter Generation, HE-
lib, PALISADE

1 Introduction

Since Gentry’s seminal work in 2009 [10], fully homomorphic encryption (FHE)
has attracted a lot of attention from the cryptographic research community
[1,18,19]. FHE enables arbitrary computations on encrypted data and opens up
new possibilities in data processing. As an example, hospitals analyzing health
information can work only on encrypted data and provide clients with an en-
crypted result, thus not risking to leak any sensitive data.

The Brakerski Gentry Vaikuntanathan (BGV) scheme [4] is currently consid-
ered to be one of the state-of-the-art FHE schemes. BGV is based on the Learning
with Errors (LWE) problem [23] and its ring variant RLWE [17]. RLWE-based
FHE schemes, including BGV, need to keep the error associated with each cipher-
text below a certain threshold as decryption would fail otherwise. This requires

2 J. Mono et al.

a trade-off between security (small ciphertext modulus) and error margin (big
ciphertext modulus).

In general, choosing parameters such as the polynomial degree d or the cipher-
text modulus q is a challenge with FHE schemes and requires expert knowledge
specific to each scheme. The FHE community took a first step towards standard-
ization with the Homomorphic Encryption Security Standard [2]. The standard
provides parameter sets based on the LWE Estimator, a software tool to de-
termine the security level of RLWE instances4 More specifically, they provide
upper limits on the size of the ciphertext modulus for certain security levels λ
and polynomial degrees d in the form of lookup tables.

However, there are other parameters to consider and users and developers
alike have to make additional choices with state-of-the-art software libraries. A
real-world example is the programming interface of HElib [13,26], an open source
FHE library by Halevi and Shoup that provides a software implementation of
BGV. The following is a stripped-down setup routine in an example shipped
with HElib (Listing 1.1).

auto ctx = ContextBuilder <BGV >()

.m(32109) // cyclic order

.p(4999) // plaintext modulus

.r(1) // Hensel lifting

.bits (500) // length of modulus chain

.c(2) // key switching columns

.build()

Listing 1.1. BGV setup routine in HElib

A user needs to choose five parameters in order to use the BGV implementation.
For researchers familiar with FHE, this flexibility is valuable. For other users
however, this burden of choice increases the difficulty of simply using the library
securely.

With PALISADE [21], another open source FHE library that also implements
BGV, even more parameters have to be selected in the BGV example:

auto ctx = CryptoContext <DCRTPoly >:: BGVrns(

2, // cyclic order

65537, // plaintext modulus

HEStd_128_classic , // security level

3.2, // error standard deviation

2, // multiplicative depth

OPTIMIZED , // secret distribution

BV); // key switching method

Listing 1.2. BGV setup routine in PALISADE

Thus, a user needs to choose a polynomial implementation as well as seven
additional parameters (Listing 1.2).

4 Its successor is the Lattice Estimator [3]
https://github.com/malb/lattice-estimator

Finding and Evaluating Parameters for BGV 3

Taking a look at other setup options in the code base, PALISADE also pro-
vides a simple setup routine by setting most parameters to specific defaults.
The trade-off however is a non-optimized error margin leading to bigger-than-
necessary ciphertext and key sizes as well as slower execution times. Although
not perfect, we want to remark that both libraries manage to reduce the com-
plexity of choosing parameters from a user’s perspective.

The main idea of our work is to improve the current usability of the BGV
scheme with the following contributions:

– We empirically derive formulas for parameters generation using the lattice
estimator [3]. Specifically, for a given ciphertext modulus, we provide the
the polynomial degree as input and receive the security level as output (Sec-
tion 6).

– We provide an easy-to-use, interactive parameter generator for the leveled
BGV scheme using our theoretical and empirical formulas (Section 5) follow-
ing previous works [2, 6, 7, 11, 15]. To the best of our knowledge, we provide
the first use-case focused generator for the BGV scheme.

– The generator outputs code snippets with example circuits for either PAL-
ISADE or HElib (Section 7) as well as benchmarking code for the specific
parameter set.

– We give a complete overview of the leveled BGV scheme that combines
the residue number system (RNS) approach of Kim et al. [16] with the error
analysis of Gentry et al. [11] and Costache et al. [6,7] (Section 3). In addition,
we extend previous parameter analysis to include rotations in our model.

2 Preliminaries

2.1 Notations

For a positive integer m, we denote by Zm the ring of integers modulo m. We
denote by Z∗

m = {x ∈ Zm | (x,m) = 1} the multiplicative group of units. We
denote by R = Z[x]/⟨Φm(x)⟩ and by Rp = Zp[x]/⟨Φm(x)⟩, where p is an integer
and Φm(x) is the cyclotomic polynomial (see Section 2.2). We denote by t and
q the plaintext and the ciphertext modulus, respectively, and Rt the plaintext
space. Moreover, we set t ≡ 1 mod m (for CRT - see Section 4) and q a chain
of primes, such that

q = qL−1 =

L−1∏
j=0

pj ,

where pi are roughly of the same size and pi ≡ 1 mod m [11]. Moreover, for
the scaling procedure we set pi ≡ 1 mod t [6]. Note that L primes provide the
multiplicative depth of the circuit, which is L − 1. So, for any level ℓ, we have
qℓ =

∏ℓ
j=0 pj .

Polynomials are denoted by lower letters such as a, vectors of polynomials
are denoted in bold a and polynomial multiplication is denoted as a · b while
multiplication with a scalar t is denoted as ta.

4 J. Mono et al.

2.2 Mathematical Background

Cyclotomic polynomial Let F be a field and m be a positive integer. We recall
that a m-th root of unity is a number ζ ∈ F satisfying the equation ζm = 1. It
is called primitive if m is the smallest positive integer for which ζm = 1. The
m-th cyclotomic polynomial is defined as Φm(x) =

∏
(j,m)=1(x−ζj). The degree

of Φm is ϕ(m) = m
∏

p|m (1− 1/p) = |Z∗
m|, Euler’s totient function.

Canonical embedding and canonical norm In this section we recall the
result of [6, 7, 15]. Let a ∈ R be a polynomial. The canonical embedding of a
is the vector obtained by evaluating a at all primitive m-th roots of unity. The
canonical embedding norm of a ∈ R is defined as ||a||can = maxj∈Z∗

m
|a(ζj)|. For

a vector of polynomials a = (a0, . . . , an−1) ∈ Rn, the canonical embedding norm
is defined as ||a||can = maxi ||ai||can. For any polynomial a, b ∈ R, the following
properties hold:

– ||a||can ≤ ϕ(m)||a||∞.
– ||ab||can ≤ ||a||can||b||can.
– ||a||∞ ≤ cm||a||can for the ring expansion factor cm.

Note that cm = 1 if Φm(x) is a power-of-two [8].
Let us consider a random a ∈ R where each coefficient is sampled indepen-

dently from on of the following zero-mean distributions:

– DGq(σ2), the discrete Gaussian distribution with standard deviation σ over
the interval (−q/2, q/2].

– DBq(σ2), the discrete Binomial distribution with standard deviation σ over
the interval (−q/2, q/2].

– U3, the uniform distribution over the ternary set {±1, 0}.
– Uq, the uniform distribution over Zq.
– ZO(ρ), a distribution over the ternary set {0,±1} with probability ρ/2 for
±1 and probability 1− ρ for 0 with ρ ∈ [0, 1].

If we choose a ∈ R from the distributions above, the random variable a(ζ)
has variance V = ϕ(m) ·Va, where Va is the variance of each coefficient in a and
it is bounded

||a||can ≤ Dσ
√

ϕ(m) = D
√

ϕ(m) · Va, (1)

for someD [6]. Moreover, the probability that the variable a exceeds its standard
deviation by more than a factor of D is roughly erfc(D). Thus, we have to
choose D large enough to obtain a reasonable failure probability. Specifically,
erfc(6) ≈ 2−55, erfc(5) ≈ 2−40 and erfc(4.5) ≈ 2−32.

If a, b ∈ R are chosen randomly and γ is a constant, the following holds for
the variances [7]:

– Va+b = Va + Vb.
– Vγa = γ2Va.
– Vab = ϕ(m)VaVb.

Finding and Evaluating Parameters for BGV 5

Thus, to study the variance of ||a||can, we have to study the variance Va of
each coefficient ai of a. Specifically,

ai ∈ Uq ⇒ Va ≈ q2/12, ai ∈ U3 ⇒ Va = 2/3,
ai ∈ DGq(σ2)⇒ Va = σ2, ai ∈ ZO(ρ)⇒ Va = ρ.

(2)

As in [6], we assume that messages behave as if selected uniformly at random
from Ut. Thanks to Equations (1) and (2), we have that

||m||can ≤ Dt
√
ϕ(m)/12. (3)

Lattices and Hermite Factor Let B = (b1, . . . ,bk) be linearly independent
vectors in Rn, then the lattice L(B) generated by the base B is defined by

L = L(B) =
{ k∑

i=1

γibi : γi ∈ Z,bi ∈ B
}
.

The dimension k of a lattice L ⊂ Rn is called rank. The volume (or determinant)
of L is defined as Vol(L) =

√
det(BtB). In the special case that L is a full rank

lattice, i.e. when k = n, we have that Vol(L) = |det(B)|. Finally, we can define
the Hermite factor δk0 as

δk0 = ||b1||/Vol(L)1/k (4)

where b1 is the shortest vector in the reduced base B of the lattice L. The factor
δ0 is called the root Hermite factor.

3 The BGV Scheme

The BGV scheme provides multiple algorithms for encryption and decryption, for
homomorphic operations and for controlling the error growth. In the following,
we provide a definition of all algorithms except bootstrapping, we consider it
out of scope for this work.

3.1 Key Generation, Encryption & Decryption

KeyGen(λ)
Define parameters and distributions with respect to λ. Sample s← χs, a← UqL
and e← χe. Output sk = s and pk = (b, a) ≡ (−a · s+ te, a) (mod qL).

Encpk(m)

Receive plaintext m ∈ Rt for pk = (b, a). Sample u← χs and e0, e1 ← χe.

Output c = (c, L, νclean) with c = (c0, c1) ≡ (b ·u+te0+m,a ·u+te1) (mod qL).

6 J. Mono et al.

Decsk(c)

Receive extended ciphertext c = (c, ℓ, ν) for sk = s. Decrypt with

c0 + c1 · s ≡ m+ te (mod qℓ) and output m ≡ m+ te mod t.

To understand the error growth and thus analyze the critical quantity ν for
each extended ciphertext c = (c, ℓ, ν), we apply the decryption algorithm. The
following shows the decryption of a ciphertext after an encryption:

c0 + c1 · s ≡ (−a · s+ te) · u+ te0 +m+ (a · u+ te1) · s (mod qL)

≡ m+ t(e · u+ e1 · s+ e0) (mod qL).

The critical quantity is thus defined as [c0 + c1 · s]qℓ for the associated level ℓ.

In general, decryption is correct as long as the error does not wrap around the
modulus qℓ, that is ||ν||∞ ≤ cm||ν||can < qℓ/2. Note that applying decryption is
equivalent to evaluating the ciphertext c as polynomial in s, that is c0 + c1 · s ≡
ν mod qℓ. In the following, we will often use this polynomial representation of a
ciphertext to proof correctness of an algorithm or operation.

We derive the bounds for each operation using the canonical embedding norm
(Section 2.2). For the encryption operation, we use Equations (2) and (3)

||[c0 + c1 · s]qℓ ||can ≤ D
√
ϕ(m)V[c0+c1·s]qℓ = D

√
ϕ(m) (Vm + t2Ve·u+e1·s+e0)

≤ D
√
ϕ(m) (Vm + t2(ϕ(m)VeVu + ϕ(m)Ve1Vs + Ve0)).

Namely,

Bclean = Dt
√
ϕ(m) (1/12 + 2ϕ(m)VeVs + Ve). (5)

3.2 Addition, Multiplication & Constant Multiplication

Add(c, c′)

Receive extended ciphertexts c = (c, ℓ, ν) and c′ = (c′, ℓ, ν′).

Output (c+ c′, ℓ, νadd).

Mul(c, c′)

Receive extended ciphertexts c = (c, ℓ, ν) and c′ = (c′, ℓ, ν′).

Output ((c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1), ℓ, νmul).

MulConst(α, c)

Receive constant polynomial α ∈ Rt and extended ciphertext c = (c, ℓ, ν).

Output (α · c, ℓ, νconst).

Finding and Evaluating Parameters for BGV 7

As long as the bound on each critical quantity stays below the decryption
threshold, correctness follows with

νadd = ν + ν′ = [c0 + c1 · s]qℓ + [c′0 + c′1 · s]qℓ ≡ m+m′ mod t
⇒ ||νadd||can ≤ ||ν||can + ||ν′||can

νmul = ν · ν′ = [c0 + c1 · s]qℓ · [c′0 + c′1 · s]qℓ ≡ m ·m′ mod t
⇒ ||νmul||can ≤ ||ν||can||ν′||can

νconst = α · ν = α · [c0 + c1 · s]qℓ ≡ α ·m mod t

⇒ ||νconst||can ≤ ||α||can||ν||can = Dt
√

ϕ(m)
12 ||ν||

can.

Here, we also consider the constant α to be uniformly distributed in Rt. Note
that the output of the multiplication is still a polynomial in s, but of degree 2. We
will later define key switching (see Section 3.4) to modify a ciphertext polynomial
c0 + c1 · s + c2 · s2 back to another polynomial c′0 + c′1 · s encrypting the same
plaintext.

3.3 Modulus Switching

Until now, the associated level for each ciphertext stayed the same in each oper-
ation. Modulus switching reduces the associated level and the critical quantity
for a ciphertext, enabling leveled homomorphic computations. We consider each
modulus switching as a level boundary and a maximum circuit depth L, which
usually corresponds to the amount of multiplications M and one or two addi-
tional modulus switching operations.

The idea is to switch from a ciphertext modulus qℓ to a ciphertext modulus
qℓ′ = qℓ−1. We thus multiply the ciphertext by qℓ′

qℓ
= 1

pℓ
, roughly reducing the

error by the same factor. But, as we need to output a valid ciphertext, we add a
small correction term that (i) only influences the error, that is being a multiple
of t, and (ii) modifies the ciphertext to be divisible by pℓ.

ModSwitch(c, ℓ′)

Receive extended ciphertext c = (c, ℓ, ν) and target level ℓ′ = ℓ− 1.
Set δ = t[−ct−1]pℓ with δ ≡ 0 mod t and δ ≡ −c mod pℓ and

c′ =
1

pℓ
(c+ δ) (mod qℓ′)

and output (c′, ℓ′, νms).

8 J. Mono et al.

First, we want to show the correctness of modulus switching. Let [c0 + c1 ·
s]qℓ = c0 + c1 · s− kqℓ for some k ∈ Z. For the same k, let

[c′0 + c′1 · s]qℓ′ = c′0 + c′1 · s− kqℓ′

=
1

pℓ
(c0 + c1 · s+ δ0 + δ1 · s)− kqℓ′

=
1

pℓ
([c0 + c1 · s]qℓ + kqℓ + δ0 + δ1 · s)− kqℓ′

=
1

pℓ
([c0 + c1 · s]qℓ + δ0 + δ1 · s)

≡ p−1
ℓ m mod t.

Note that we actually decrypt to the plaintext p−1
ℓ m mod t, but we can multiply

a plaintext by pℓ either before encryption or after decryption. This issue does
not exist for pℓ ≡ 1 mod t, but finding such pℓ can be difficult in practice.

The error after the modulus switching is bounded by

||νms||can ≡ ||[c′0 + c′1 · s]qℓ′ ||
can ≤ 1

pℓ
(||ν||can + ||δ0 + δ1 · s||can) .

As Vδi = Vtpℓ
=

t2p2
ℓ

12 , and thus Vδ0+δ1·s =
t2p2

ℓ

12 (1 + ϕ(m)Vs), we have

||νms||can ≤
1

pℓ
(||ν||can +D

√
ϕ(m)Vδ0+δ1·s) =

1

pℓ
||ν||can + Bscale,

with

Bscale = Dt

√
ϕ(m)

12
(1 + ϕ(m)Vs). (6)

Note that, decryption is correct as long as ||ν||can < qℓ
2cm
− pℓBscale [10].

3.4 Key Switching

Key switching is used for (i) reducing the degree a ciphertext polynomial, usually
the output of a multiplication, or (ii) changing the key after a rotation. For a
multiplication, we convert the ciphertext term c2·s2 to a polynomial cks0 +cks1 ·s and
for a rotation, we convert the ciphertext term c1·rot(s) to a polynomial cks0 +cks1 ·s.
In the following, we will only analyze multiplication and more specifically, we
will output c′ = (c0 + cks0 , c1 + cks1) and denote the ciphertext term we want to
remove by c2. This also covers rotations as one only has to consider the term we
want to remove as c1 and an output of (c0 + cks1 , c

ks
1). More specifically, we again

make use of the RLWE hardness assumption to hide s2 using s. Decryption with
s “unboxes” s2 and applies it to the ciphertext term c2. In the following, we
provide the general algorithms for key switching:

Finding and Evaluating Parameters for BGV 9

KeySwitchGen(s, s2)

Receive secret key s2 and secret key target s.
Sample a← UqL , e← χe and output key switching key

ks = (ks0, ks1) ≡ (−a · s+ te+ s2, a) (mod qL).

KeySwitch(ks, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ks.
Switch key for c0 + c1 · s+ c2 · s2 with

c′ ≡ (c0 + c2 · ks0, c1 + c2 · ks1) (mod qℓ)

and output (c′, ℓ, νks).

Since qℓ divides qL, [ks]qℓ is a valid key switching key with respect to qℓ and
thus

c′0 + c′1 · s ≡ c0 + c2 · ks0 + (c1 + c2 · ks1) · s (mod qℓ)

≡ c0 − c2 · a · s+ c2 · te+ c2 · s2 + c1 · s+ c2 · a · s (mod qℓ)

≡ c0 + c1 · s+ c2 · s2 + tc2 · e (mod qℓ).

Thus, the error after the key switching algorithm is bounded by

||νks||can = ||[c′0 + c′1 · s]qℓ ||can ≤ ||ν||can + tc2 · e.

Unfortunately, the error after the key switching algorithm grows too much with
the term tc2 · e and thus several variants exist to reduce its growth. In this
work, we consider the three main variants: the Brakerski Vaikuntanathan (BV)
variant, the Gentry Halevi Smart (GHS) variant, and the Hybrid variant.

BV The BV variant [4] decomposes c2 with respect to a base ω to reduce the
error growth. For polynomials α and β and l = ⌊logω qℓ⌉+ 1, we define

Dω(α) = ([α]ω, [⌊α/ω⌋]ω, . . . , [⌊α/ωl−1⌋]ω)

Pω(β) = ([β]qℓ , [βω]qℓ , . . . , [βω
l−1]qℓ)

and it follows that, for any α, β ∈ Rqℓ , we have ⟨Dω(α),Pω(β)⟩ ≡ α · β mod qℓ
[16].

KeySwitchGenBV(s, s2)

Receive secret key s′ and secret key target s.
Sample a← U l

qL , e← χl
e and output key switching key

ksBV = (ksBV0 ,ksBV1) = (−a · s+ te+ Pω(s
2),a) (mod qL).

10 J. Mono et al.

KeySwitchBV(ksBV, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksBV.
Switch key for c0 + c1 · s+ c2 · s2 with

c′ = (c0 + ⟨Dω(c2),ks
BV
0 ⟩, c1 + ⟨Dω(c2),ks

BV
1 ⟩) (mod qℓ)

and output (c′, ℓ, νBV
ks).

The error after the BV key switching is c′0+c′1·s ≡ c0+c2·ksBV0 +(c1+c2·ksBV1)·s
(mod qℓ), namely,

||[c0 + c1 · s+ ⟨Dω(c2),Pω(s
2)⟩+ t⟨Dω(c2), e⟩]qℓ ||can,

that is,

||νBVks ||can = ||[c′0 + c′1 · s]qℓ ||can ≤ ||ν||can + ||t⟨Dω(c2), e⟩||can.

Since t⟨Dω(c2), e⟩ = t
∑l−1

i=0[⌊c2/ωi⌋]ω · ei = t
∑l−1

i=0 ω̃i · ei, we have

Vt·⟨Dω(c2),e⟩ = t2lϕ(m)Vω̃i
Vei .

We can assume that ω̃i behaves like a uniform polynomial drawn from Uω. So

||t · ⟨Dω(c2), e⟩||can ≤ D

√
ϕ(m)t2lϕ(m)

ω2

12
Vei = Dtϕ(m)ω

√
l
Ve

12
.

Finally, we have l =
√
⌊logω(qℓ)⌋+ 1 ∼

√
logω(qℓ) and can set

||νBVks ||can ≤ ||ν||can + ω
√

logω(qℓ)Bks,

where

Bks = Dtϕ(m)
√
Ve/12. (7)

GHS The GHS variant [11] switches to a bigger ciphertext modulus Qℓ = qℓP
for a big prime P . Then, key switching takes places in RQℓ

and, by modulus
switching back down to qℓ, the error is reduced again. As a tradeoff, we have to
make sure that our RLWE instances are secure with respect to Qℓ.

KeySwitchGenGHS(s, s2)

Receive secret key s2 and secret key target s.
Sample a← UQL , e← χe and output key switching key

ksGHS = (ksGHS0 , ksGHS1) ≡ (−a · s+ te+ Ps2, a) (mod QL).

Finding and Evaluating Parameters for BGV 11

KeySwitchGHS(ks, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksGHS.
For c0 + c1 · s+ c2 · s2, switch key with

c′ ≡ (Pc0 + c2 · ksGHS
0 , P c1 + c2 · ksGHS1) mod qℓ.

Set δ = t[−c′t−1]P , modulus switch back with

c′′ =
1

P
(c′ + δ) (mod qℓ)

and output (c′′, ℓ, νGHS
ks).

Since we use modulus switching, showing correctness is similar in most aspects.
For some k ∈ Z, let [c′0 + c′1 · s]Qℓ

= P [c0 + c1 · s+ c2 · s2]qℓ + tc2 · e− kQℓ.

[c′′0 + c′′1 · s]qℓ = [c0 + c1 · s+ c2 · s2]qℓ +
tc2 · e+ δ0 + δ1 · s

P
≡ m mod t.

As in [6], we suppose that c2 behaves like a uniform polynomial samples from Uqℓ
and, as before, [−ct−1]P behaves like a uniform polynomial samples from UP .
Then,

||νGHSks ||can ≤ ||[c0 + c1 · s+ c2 · s2]qℓ ||can +
||tc2 · e+ δ0 + δ1 · s||can

P

= ||ν||can +
D
√

ϕ(m)(q2ℓ
Ve

12 + t2P 2 1
12 (1 + ϕ(m)Vs))

P

≤ ||ν||can +
qℓ
P
Bks + Bscale,

where Bks and Bscale are as in Equations (6) and (7), respectively. Decryption,
and thus key switching, is correct as long as ||ν||can < qℓ

2cm
− qℓ

P Bks + Bscale.

Hybrid The Hybrid variant combines the BV and GHS variants [11]. In the
following, we use the same notation from the variants as before.

KeySwitchGenHybrid(s, s2)

Receive secret key s2 and secret key target s.
Sample a← U l

qL , e← χl
e and output key switching key

ksHybrid = (ksHybrid0 , ksHybrid1) ≡ (−a · s+ te+ P Pω(s
2),a) (mod QL).

12 J. Mono et al.

KeySwitchHybrid(ksHybrid, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksHybrid.
For c0 + c1 · s+ c2 · s2, switch key with

c′ ≡ (Pc0 + ⟨Dω(c2), ks
Hybrid
0 ⟩, P c1 + ⟨Dω(c2), ks

Hybrid
1 ⟩) mod Qℓ.

Set δ = t[−c′t−1]P , modulus switch back with

c′′ =
1

P
(c′ + δ) (mod qℓ)

and output (c′′, ℓ, νHybrid
ks).

Correctness follows by combining the proofs of each variant. The bounds also
follow similarly, since before to scale down we have ν′ = νP + ωlBks, where Bks

is as an Equation (7). Thus, the error after the modulus switching procedure is
bounded by qℓ

Qℓ
||ν′||can + Bscale, that is,

||νHybridks ||can ≤ ||ν||can +
ω
√

logω(qℓ)

P
Bks + Bscale,

where Bscale is defined as Equation (6).

4 DCRT Representation

The Double Chinese Remainder Theorem (DCRT) changes the representation
of the polynomials. This also influences the computations itself and thus slight
adaptations to the bounds have to be made. In the following, we will briefly
explain the DCRT representation and adjust the error bounds accordingly.

To represent polynomials in the DCRT representation, we need to apply
two concepts based on the Chinese Remainder Theorem (CRT): the residue
number system (RNS) and the Number Theoretic Transform (NTT). The RNS
decomposes integers in Zq into smaller integers Zqi for q =

∏
qi. For pairwise

coprime qi, we define a ring isomorphism Zq
∼= Zq1 × . . .× Zqk with

x mod q 7→ (x mod q1, . . . , x mod qk).

In the context of BGV, we decompose a polynomial in Rq into smaller polyno-
mials in Rq1 × . . .×Rq2 .

The Number Theoretic Transform (NTT) and its inverse, the INTT, trans-
form a polynomial to a point-wise representation such that

INTT(NTT(a)⊙NTT(b)) = a · b

where ⊙ denotes the point-wise multiplication of the transformed polynomials.
This significantly reduces the cost of polynomial multiplication from O(n2) to
O(n log n), the running time of the NTT. Mathematically, the NTT evalutes the
polynomial in each of the 2n roots of unity. For a full definition, we refer the
interested reader to [25].

Finding and Evaluating Parameters for BGV 13

4.1 DCRT Adaptations

For the DCRT representation, we have to make slight adaptations to our al-
gorithms and, more importantly, to the error bounds. Key generation and en-
cryption as well as addition, multiplication and constant multiplication only use
trivial operations that can all be done in the DCRT domain. For decryption,
we have to convert back to the coefficient domain with big integers right before
removing the error, since the operation m+te mod t does not work in the DCRT
representation with respect to q0. For modulus switching, we have to convert the
DCRT polynomial for pℓ to the coefficient domain to calculate delta.

For key switching, we have to do slightly bigger adaptations for both the BV
and GHS variants, thus also influencing the Hybrid variant. For the BV variant,
we define D and P not with respect to some digit decomposition ω, but rather
use the already existing RNS decomposition. For the proof, we only use the fact
that ⟨D(α),P(β)⟩ ≡ α · β mod qℓ and thus we can use

D(α) =

([
α

(
qℓ

p0

)−1]
p0

, . . . ,

[
α

(
qℓ

pℓ

)−1]
pℓ

)
and P(β) =

([
β
qℓ

p0

]
qℓ

, . . . ,

[
β
qℓ

pℓ

]
qℓ

)
.

Using the same approach as before, the error after the BV key switching is
bounded by ||ν||can + ||t⟨D(c2), e⟩||can. Since t⟨D(c2), e⟩ = t

∑ℓ
i=0[c2]pi

· ei and
c2 behaves like a uniform polynomial samples from Upℓ

, we have

||νBV−DCRT
ks ||can ≤ ||ν||can + Bkspℓ

√
ℓ+ 1.

For the GHS variant, we also apply the RNS to P such that P = P1·P2·. . .·Pk.
Then we extend to Qℓ = Pqℓ by calculating the following for each Pi:

ℓ∑
j=0

[
c2

(
qℓ
pj

)−1
]
pj

qℓ
pj

(mod Pi).

Note that this actually results in [c2]pℓ
+ κpℓ in the RNS base P and some

polynomial κ. We then define c′ as in Section 3.4 using the above extension
resulting in c′0 + c′1 · s is equivalent modQℓ to

P [c0+c1 ·s+(c2+κpℓ)·s2]pℓ+t([c2]pℓ+κpℓ)·e ≡ P [c0+c1 ·s+c2 ·s2]pℓ+t([c2]pℓ+κpℓ)·e.

Note that, to perform the modulus switching, we have to consider δ in base
{p0, . . . , pℓ}. So we have to convert back c′ from {P1, . . . , Pk} to {p1, . . . , pℓ},
obtaining δ̃ = t([−c′t−1]P + Pκ̃). Since c′′ = 1

P (c′ + δ̃) (mod qℓ), we have that

[c′′0 + c′′1 · s]pℓ
= [c0 + c1 · s+ c2 · s2]pℓ

+
t([c2]pℓ

+ κpℓ) · e+ δ̃0 + δ̃1 · s
P

.

We again apply the same approach as before, and we obtain

||νGHSks ||can ≤ ||ν||can +
t

P
||([c2]pℓ

+ κpℓ) · e||can + ||δ̃0 + δ̃1 · s||can.

14 J. Mono et al.

Since

[c2]pℓ
+ κpℓ =

ℓ∑
j=0

[
c2

(
qℓ
pj

)−1
]
pj

qℓ
pj

(mod Pi)

and

δ̃ = t

k∑
j=1

[
δ(

P

Pj
)−1

]
Pj

P

Pj
(mod qi),

we have that qℓ/pj and P/Pj are constants and [c2 (qℓ/pj)
−1

]pj and [δ(P/Pj)
−1]Pj

behave like a uniform polynomial samples from Upj and UPj , respectively. Thus,

V([c2]pℓ+κpℓ)·e =ϕ(m)(ℓ+ 1)

(
qℓ
pj

)2

Vpj
Ve = ϕ(m)(ℓ+ 1)q2ℓ

Ve

12
.

Vδ̃0+δ̃1·s =kt2
(
P

Pj

)2

VPj (1 + ϕ(m)Vs) = kt2
P 2

12
(1 + ϕ(m)Vs).

So we have

||νGHS−RNS
ks ||can ≤ ||ν||can +

qℓ
√
ℓ+ 1

P
Bks +

√
kBscale.

For Hybrid, by combining both techniques, the resulting bound is

||νHybrid−RNS
ks ||can ≤ ||ν||can +

pℓ
√
ℓ+ 1

P
Bks +

√
kBscale.

5 Studying the error growth and modulus size

In this section, we study the modulus size in a similar manner as in previous
works [6, 7, 11]. For our model, we provide multiple options: an optional con-
stant multiplication, η summands and τ rotations seperated by multiplications
as shown in Figure 1.

×M

c0 c1 . . . cη

+

α0

rot

rot

α1

rot

rot

αη

rot

rot

τ

c

Fig. 1. Our analysis model depicted as circuit.

Finding and Evaluating Parameters for BGV 15

We also analyze the modulus sizes for a base model without rotations, pro-
viding better bounds for use cases without rotations. The “starting noise” of
a ciphertext is denoted by B, in our case the noise after an encryption and
modulus switching with the top modulus. Considering the multiplication of two
ciphertexts, c1 ·c2, both with starting noise and subsequent operations according
to our model, the noise grows to

(η||const||canB + ητvks)
2 = ς2B2 + η2τ2v2ks + 2ητςvksB,

The added noise of the constant multiplication is ς = η||const||can = ηBconst

with Bconst = Dt
√

ϕ(m)
12 (as in Section 3.2). The rotations itself do not influence

the noise directly, the key switching back to the original key however adds key
switching noise vks. Specifically, depending on the key switching method, we
have

vks =

ω
√

logω(qℓ)Bks (BV)
qℓBks/P + Bscale (GHS)

ω
√
logω(qℓ)Bks/P + Bscale (Hybrid)

(8)

Note that in the base model without rotations, the noise magnitude grows from
B to ξB2, where if we do

⋆ 1 multiplication, then η additions =⇒ ξ = ηB2
const

⋆ η additions, then 1 multiplication =⇒ ξ = η2B2
const

⋆ η1 additions for 1 slot of ciphertexts and
η2 for the second one, then =⇒ ξ = η2η1B

2
const.

1 multiplication between these two results

(9)

Note that when we do not have any constant multiplication we set Bconst = 1.

5.1 The Top Modulus

The top modulus is the first modulus in the prime chain, that is pL−1. Before
do any operation, we reduce the error Bclean down to B, as in [11]. We use the
modulus switching reducing the error and go down to next level:

Bclean

pL−1
+ Bscale < B ⇐⇒ pL−1 >

Bclean

B − Bscale
(10)

5.2 The Bottom Modulus

The bottom modulus is the last modulus in the prime chain, that is p0. At
level zero, no more operations are performed. To ensure a correct decryption,
we require that the noise is smaller than q0/2 and thus cmB < q0/2. Based on
Equation (18), it follows that

p0 = q0 > 4cmBscale. (11)

16 J. Mono et al.

5.3 Middle Moduli (when L ≥ 3)

As described before, after a multiplication and additional operations, the noise
magnitude grows from B to (ςB) + ητvks)

2. To reduce the noise magnitude
down to B, we have to perform modulus switching. Additionally, we assume a
key switching before the multiplication if the user prefers to delay the conversion
of c2 · s2.

For GHS and Hybrid key switching, we can actually merge the key switching
with the modulus switching and directly switch down to a smaller modulus,
that is from Qℓ to qℓ−1 decreasing the noise by qℓ−1/Qℓ = 1/(Ppℓ). As before,
the noise decreases due to the modulus switching, but we have to add the key
switching noise ks depending on the method and the modulus switching noise
Bscale. By merging the two operations, we get slightly improved bounds overall.

BV key-switching : Since we want to reduce the noise size after the key
switching and the modulus switching back to B, we have to set

(ςB + ητω
√
⌊logω(qℓ)⌋Bks)

2

pℓ
+

ωBks

√
⌊logω(qℓ)⌋
pℓ

+ Bscale < B. (12)

Note that
√
⌊logω(qℓ)⌋ ∼

√
(ℓ+ 1) logω(pℓ) and, for pℓ enough big, we have

that ωBks

√
⌊logω(qℓ)⌋/pℓ ∼ 0. Then,

ξB2

pℓ
+

(2ητςω√(ℓ+ 1) logω(pℓ)Bks

pℓ
− 1

)
B +

(ητω
√

(ℓ+ 1) logω(pℓ)Bks)
2

pℓ
+ Bscale < 0,

As Equation (12) must have a positive discriminant, we have

1−
4ητςω

√
(ℓ+ 1) logω(pℓ)Bks

pℓ
− ξBscale

pℓ
≥ 0.

Moreover, the pℓ’s have roughly the same size, thus we can set

p1 ∼ . . . ∼ pL−2 ∼ 4ης(τω
√
L− 1 logω(Bks)Bks + Bconst)Bscale (13)

So we have 2ητςω
√

(ℓ+ 1) logω(pℓ)Bks/pℓ ∼ 0 and the discriminant ∼ 0. Thus,

B ∼ 1

2ξ/pℓ
∼ 2

(τω√L− 1 logω(Bks)Bks

Bconst
+ 1

)
Bscale (14)

Previous work has shown, that 3 ≤ ω ≤ 5 is a good choice for ω [16].
If we do not have any rotation, that is τ = 0, Equation (12) becomes

ξB2

pℓ
+

ωBks

√
⌊logω(qℓ)⌋
pℓ

+ Bscale < B.

As before, we must have a positive discriminant and thus

1− 4ξ

pℓ

(ωBks

√
(ℓ+ 1) logω(pℓ)

pℓ
+ Bscale

)
∼ 1− 4ξ

pℓ
Bscale ≥ 0.

We set p1 ∼ . . . ∼ pL−2 ∼ 4ξBscale and B ∼ 1
2ξ/pℓ

∼ 2Bscale.

Finding and Evaluating Parameters for BGV 17

GHS key-switching : As before, we want to reduce the noise size from (ςB +
ητvks)

2 back to B using key and modulus switching, where vks is as in (8). Let
ξ = ς2, so we have

P · (ςB + ητvks)
2 + Bks · qℓ

Ppℓ
+ Bscale < B

and thus

ξB2

pℓ
+

2ητς

pℓ

(qℓ
P
Bks + Bscale

)
B +

η2τ2

pℓ

(qℓ
P
Bks + Bscale

)2

+
Bksqℓ−1

P
+ Bscale < B.

(15)
To solve this inequality for B, we follow the idea of Gentry et al. [11]. Let

Rℓ = η2τ2

pℓ
(qℓP Bks + Bscale)

2 + Bksqℓ
Ppℓ

+ Bscale. Since Rℓ increases with larger ℓ’s,
we have to satisfy this inequality for the largest modulus ℓ = L − 2. Moreover,
RL−2 > Bscale. Since we want that this term is as close to Bscale as possible, we
have to set P large enough. Namely,

P > kBksqL−2/Bscale (16)

and so Equation (15) becomes ξB2

pℓ
+ (2ητςpℓ

Bscale − 1)B + η2τ2

pℓ
B2
scale + Bscale < 0.

Thus, to satisfy this equation, we again must have a positive discriminant and
therefore(2ητς

pℓ
Bscale−1

)2

−4 ξ

pℓ

(η2τ2
pℓ

B2
scale+Bscale

)
≥ 0 ⇐⇒ 1−4ης(τ + Bconst)

pℓ
Bscale ≥ 0

We then have
p1 ∼ . . . ∼ pL−2 ∼ 4ης(τ + Bconst)Bscale (17)

and RL−2 ∼ Bscale. Finally, if we set pℓ as in (17) and receive a discriminate
equal to zero, we can find B with

B ∼
(
τ/Bconst + 2

)
Bscale. (18)

If we do not have any rotation, that is τ = 0, Equation (15) becomes

ξB2

pℓ
+

Bksqℓ−1

P
+ Bscale < B.

Equations (17) and (18) are the same, instead P can be decrease to kBksqL−3/Bscale.
Indeed, Rℓ changes to Bksqℓ

Ppℓ
+ Bscale = Bksqℓ−1/P + Bscale (see also [11]).

Hybrid key switching : The noise after the key switching and the modulus
switching is at most(

ςB + ητ(
ω
√

logω(qℓ)Bks

P + Bscale)
)2

pℓ
+

ωBks

√
⌊logω(qℓ)⌋
Ppℓ

+ Bscale < B.

18 J. Mono et al.

Following the same argument as before, we obtain the same equality for pi and
B and receive

P ≥ kωBks

√
logω(qL−2)/Bscale.

In this case, if we do not have any rotation or any constant multiplication,
the equations for P, pℓ and B are the same (setting τ = 0 and Bconst = 1,
respectively).

5.4 The Largest Modulus

The ciphertext modulus is given by q = p0pL−1

∏L−2
ℓ=1 pℓ. We summarize the

result of each component in Table 1. The biggest modulus is Q = PqL−1. From
Table 1, one can also see that the hybrid key switching provide smaller P .

Case p0 pℓ pL−1 P

τ ̸= 0

4Bscale

4ης(τω
√
L− 1 logω(Bks)Bks + Bconst)Bscale

Bclean(
2τω

√
L−1 logω(Bks)Bks

Bconst
+1

)
Bscale

− BV

4ης(τ + Bconst)Bscale

Bclean(
τ

Bconst
+1

)
Bscale

kBksqL−2

Bscale
GHS

kωBks

√
logω(qL−2)

Bscale
Hybrid

τ = 0 4ξBscale
Bclean
Bscale

− BV

kBksqL−3

Bscale
GHS

kωBks

√
logω(qL−2)

Bscale
Hybrid

Table 1. Modulus size for d = 2κ, where ξ is as in Equation (9).

6 Security Analysis for BGV

In this section, to enable a more flexible parameter selection, we propose an
empirically derived formula linking the security level λ with the dimension n for
a given ciphertext modulus size log q.

The LWE problem consists of finding the secret vector s ∈ Zn
q , given b ∈ Zm

q

and A ∈ (Zq)
m×n such that As + e = b mod q, where e ∈ Zm

q is sampled
from the error distribution χe. The security of LWE-based schemes depends on
the intractability of this problem and attacks on these schemes are based on
finding efficient algorithms to solve them [18]. In [3], the authors presented three
different methodologies to solve the LWE problem and the central part of two
of them is based on lattice reduction. Namely, starting from a bad (i.e. long)
lattice basis, find a better (i.e. reduced and more orthogonal) basis.

The most well-known lattice reduction algorithm used in practice is BKZ
(block Korkin-Zolotarev reduction) due to Schnorr and Euchner [24]. In these
algorithms, the time complexity and the outcome quality (i.e. the orthogonality
of the reduced basis) is characterised by the Hermite factor [9]. Specifically,

Finding and Evaluating Parameters for BGV 19

the run time of the BKZ algorithm is higher when the root-Hermite factor δ0
is smaller [24]. This result is also supported by a realistic estimation provided
in [3], where the authors show that the log of the time complexity to get a
root-Hermite factor δ0 with BKZ is

log(tBKZ)(δ0) = Ω

(
− log(log δ0)

log δ0

)
(19)

if calling the SVP oracle costs 2O(β), where β is the the block-size of BKZ
algorithm.

Since we need a formula linking λ with n and q, we have to find a relation
between δ0 with n and q. To do that, let us consider a full rank lattice L.
By Equation (4), we know that the shortest vector of L has norm ||b1|| =
δk0q

n/k. To perform lattice reduction on L, the LWE attacker has to choose the
number of semples M , namely the subdimension, such that ||b1|| = δM0 qn/M

is minimized. Micciancio and Regev [20] showed that this minimum is obtained
when M =

√
n log q/ log δ0. Following the same approach of [11], we can suppose

that we should reduce the basis enough so that ||b1|| = q. This implies that
log q = log(δM0 qn/M) = 2

√
n log q log δ0, that is,

n = log q/(4 log δ0). (20)

Substituting (20) in (19), we have a bound linking λ, n and q. Then, we
improve this bound finding a function that follows the data points generated with
the lattice estimator [3]. Finally, we model the resulting formula with coupled
optimization finding the final constants and we obtain the following

λ ≈ − log

(
A log q

n

)
Bn

log q
+C

√
log q

n
log

(
n

log q

)
, (21)

where A = 0.07, B = 0.34 and C = 18.53 for χs = U3 (Figure 2). This formula
(provide λ, receive n) opens up the possibility to generate parameters for a given
security level.

7 A Parameter Generator for BGV

The parameter generator for BGV aims to provide an accessible way to our
theoretical work. Most importantly, developers can use the generator and receive
a simple code example as well as a simple benchmarking setup to easily compare
different parameter scenarios on their local setups. The generator itself is written
in Python and available on GitHub 5. It consists of four modules: the BGV
module, a code generation module, a configuration module and an interactive
module.

5 https://github.com/Crypto-TII/fhegen

20 J. Mono et al.

Fig. 2. The security formula with data points of the Lattice Estimator

The BGV module is the heart of the generator. It provides a function to
calculate all necessary bound constants as well as generation functions for the
ciphertext modulus q, a power-of-two cyclotomic order m and the key switch-
ing modulus P . Additionally, it handles the logic of the interactive menu and
implements compatibility checks for both libraries, HElib and PALISADE.

The code generation module outputs three files if a user chooses one of the
libraries: a Makefile, a main.cpp file with example and comparison code for a
single plaintext and a bench.cpp file with simple benchmarks for the basic ho-
momorphic operations. As we cannot cover all possible environments, users can
adjust some of the environment-specific options such as the benchmark repe-
titions or the include paths for each library in the configuration module. The
interactive module handles user dialogs as well as input parsing.

7.1 Interactive Mode

The interactive mode of the parameter generator prompts the user for a number
of questions. We list required inputs in the first part, optional inputs in the
second part of Table 2. For each input, the generator presents the user with a
default value.

Finding and Evaluating Parameters for BGV 21

t or log t any integer ≥ 2
λ or m any integer ≥ 40 or ≥ 4, respectively
M , η any integer > 0
τ any integer ≥ 0
Library 'None', 'HElib', 'PALISADE'

Full Batching full batching with t, 'True' or 'False'
Secret Distribution 'Ternary', 'Error'
Key Switching 'Hybrid', 'BV', 'GHS'
ω any integer ≥ 1

Table 2. Required and optional inputs to the parameter generator

Currently, the generator is only supporting powers of two, but we plan to extend
support to general cyclotomic orders in a future version.

After providing all required information, the user receives the output in text
form and, if a library was chosen, the generated code. The output for the ci-
phertext modulus contains the bound on the ciphertext modulus itself as well as
the bounds for the bottom, middle and top modulus, respectively. An exemplary
output is the following.

$ python fhegen/bgv.py

Welcome to the interactive parameter generator for BGV! :)

Do you want a specific plaintext modulus? [N/?]:

[...]

Do you want to continue to the advanced settings? [N/y]:

Generated your BGV configuration!

sec: 147.55

d: 16384

t: 65537

logq: 405 (32, 33, 4)

logP: 11

slots: 16384

Generating Makefile , main.cpp and bench.cpp for PALISADE.

Listing 1.3. Shortened example on usage and output of the parameter generator

7.2 Limitations

Although we try to generate working parameters for HElib and PALISADE, we
cannot guarantee this due to the inner workings of each library. As both are
rather sparse on detailed documentation, we tried to balance integrating con-
straints of both libraries with the desire to share the parameter generator so
other people can use it. Together with the community, we want to continue im-
proving the generator; one of these improvement ideas is to reduce the differences
to both libraries more accurately.

22 J. Mono et al.

With respect to HElib for example, we will need to integrate the same prime
generation and automatic noise management in the parameter generator to make
sure that the parameters match. Another example with PALISADE is the use of
RNS modulus and key switching. Although we provide the theoretical bounds
in this work, we did not yet integrate them into the generator. We nonetheless
believe that the generator can and will aid users in parameter selection and is a
good step towards a more usable and approachable BGV.

8 Conclusion

Finding an optimal set of parameters for a specific FHE scheme is a challenging
task. For example, in the BGV scheme the complexity (i. e. depth) of the func-
tion to be homomorphically evaluated impacts the error growth. Higher depths
require a larger ciphertext modulus q and the adoption of a larger modulus de-
creases the security level. The security level can be raised again by adopting a
higher polynomial degree, but this impacts efficiency [18].

Costache et al. [7], improving a previous performance evaluation study [6],
proposed theoretical bounds to estimate error growth, which can be used to
heuristically find parameters. For this, they follow the same methodology as
in [11] and improve the bound using Iliashenko’s method [15]. However, the
main focus of these papers is the comparison of different FHE schemes. Thus, we
improve on their circuit model and provide a tool to generate these parameters.

There also exists prior work aimed at FHE parameterization for specific use-
cases. Reagan et al. [22] a framework that automatically tunes FHE parameters
for neural networks. CinguParam [14] focuses on generating Brakerski Fan Ver-
cauteren (BFV) parameters and is also included in Cingulata [5], an FHE com-
piler. Recently, Gouert et al. [12] suggested brute-forcing log q to find a working
parameter set. Most importantly, no use-case focused and easy-to-use tool for
BGV parameter generation exists.

Acknowledgements We want to thank Anna Hambitzer for her helpful comments
on coupled optimization.

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: Theory and implementation. ACM Computing Surveys (CSUR) 51(4),
1–35 (2018)

2. Albrecht, M.R., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S.,
Halevi, S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody,
D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic encryption security
standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November
2018)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

Finding and Evaluating Parameters for BGV 23

4. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) Advances
in Cryptology – CRYPTO 2011. pp. 505–524. Springer, Berlin, Heidelberg (2011)

5. Cingulata: https://github.com/CEA-LIST/Cingulata

6. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Cryptographers’ Track at the RSA Conference. pp. 325–340.
Springer (2016)

7. Costache, A., Laine, K., Player, R.: Evaluating the effectiveness of heuristic worst-
case noise analysis in FHE. In: European Symposium on Research in Computer
Security. pp. 546–565. Springer (2020)

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Annual Cryptology Conference. pp. 643–
662. Springer (2012)

9. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) Advances
in Cryptology – EUROCRYPT 2008. pp. 31–51. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008)

10. Gentry, C.: A fully homomorphic encryption scheme, vol. 20. Stanford university
Stanford (2009)

11. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES Circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012.
pp. 850–867. Springer, Berlin, Heidelberg (2012)

12. Gouert, C., Khan, R., Tsoutsos, N.G.: Optimizing homomorphic encryption pa-
rameters for arbitrary applications. Cryptology ePrint Archive (2022)

13. Halevi, S., Shoup, V.: Algorithms in helib. In: Garay, J.A., Gennaro, R. (eds.)
Advances in Cryptology – CRYPTO 2014. pp. 554–571. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

14. Herbert, V.: Automatize parameter tuning in ring-learning-with-errors-based lev-
eled homomorphic cryptosystem implementations. Cryptology ePrint Archive
(2019)

15. Iliashenko, I.: Optimisations of fully homomorphic encryption (2019)

16. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for
finite fields (2021)

17. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp.
1–23. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

18. Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek, F.H., Aaraj, N.: Survey
on fully homomorphic encryption, theory and applications (2022)

19. Martins, P., Sousa, L., Mariano, A.: A survey on fully homomorphic encryption:
An engineering perspective. ACM Computing Surveys (CSUR) 50(6), 1–33 (2017)

20. Micciancio, D., Regev, O.: Lattice-based Cryptography. Springer, Berlin, Heidel-
berg (2009)

21. PALISADE: https://palisade-crypto.org

22. Reagen, B., Choi, W.S., Ko, Y., Lee, V.T., Lee, H.H.S., Wei, G.Y., Brooks, D.:
Cheetah: Optimizing and accelerating homomorphic encryption for private infer-
ence. In: 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). pp. 26–39. IEEE (2021)

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing. pp. 84–93 (2005)

24 J. Mono et al.

24. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1-3), 181–199
(1994)

25. Seiler, G.: Faster avx2 optimized ntt multiplication for ring-lwe lattice cryptogra-
phy (January 2018), https://eprint.iacr.org/2018/039

26. Shai Halevi and Victor Shoup: HElib. https://github.com/homenc/HElib

