
Finding and Evaluating Parameters for BGV

Johannes Mono1, Chiara Marcolla2, Georg Land1,3,
Tim Güneysu1,3, and Najwa Aaraj2

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany
2 Technology Innovation Institute, Abu Dhabi, United Arab Emirates

3 DFKI GmbH, Cyber-Physical Systems, Bremen, Germany

Abstract. The Brakerski Gentry Vaikuntanathan (BGV) scheme is a
state-of-the-art fully homomorphic encryption (FHE) scheme. Encryp-
tion is based on the Learning with Errors over rings (RLWE) assump-
tion and thus, each ciphertext has an associated error that grows with
each homomorphic operation. To avoid failure during decryption, the
growing error needs to stay below a certain threshold. This requires a
trade-off between security and error margin that influences the parame-
ters specific to each use case. Choosing such parameters, for example the
polynomial degree or the ciphertext modulus, is a challenge and requires
expert knowledge specific to each scheme.

In this work, we improve the current state-of-the-art of parameter gen-
eration. We provide a comprehensive analysis of BGV parameters for the
Double Chinese Remainder Theorem (DCRT) representation, study the
error bounds for additional cases such as rotations or constant multipli-
cations and provide improved noise estimates for parameter generation.
We also empirically derive a closed formula enabling fast security esti-
mates given a ciphertext modulus and polynomial degree. Finally, we
combine our theoretical research and provide an interactive parameter
generator for the leveled BGV scheme which output easy-to-use code
snippets for PALISADE, an open-source FHE library.

Keywords: Fully Homomorphic Encryption, BGV, Parameter Generation, PAL-
ISADE

1 Introduction

Since Gentry’s seminal work in 2009 [10], fully homomorphic encryption (FHE)
has attracted a lot of attention from the cryptographic research community
[1, 15, 16]. FHE enables arbitrary computations on encrypted data and opens
up new possibilities in data processing. As an example, hospitals analyzing health
information can work only on encrypted data and provide clients with an en-
crypted result, thus not risking to leak any sensitive data.

The BGV scheme [4] is currently considered to be one of the state-of-the-art
FHE schemes. BGV is based on the Learning with Errors (LWE) problem [19]
and its ring variant RLWE [14]. RLWE-based FHE schemes, including BGV,

2 J. Mono et al.

need to keep the error associated with each ciphertext below a certain threshold
as decryption would fail otherwise. This requires a trade-off between security
(small ciphertext modulus) and error margin (big ciphertext modulus).

In general, choosing parameters such as the polynomial degree d or the cipher-
text modulus q is a challenge with FHE schemes and requires expert knowledge
specific to each scheme. There are multiple parameters to consider and users
and developers alike have to make many choices with state-of-the-art software
libraries. A real-world example is the programming interface of PALISADE [18],
an open-source FHE library that also implements BGV. A user needs to choose a
polynomial implementation as well as seven additional parameters (Listing 1.1).

auto ctx = CryptoContext <DCRTPoly >:: BGVrns(

2, // cyclic order

65537, // plaintext modulus

HEStd_128_classic , // security level

3.2, // error standard deviation

2, // multiplicative depth

OPTIMIZED , // secret distribution

BV); // key switching method

Listing 1.1. BGV setup routine in PALISADE

For researchers familiar with FHE, this flexibility is valuable. For other users
however, this burden of choice increases the difficulty of simply using the library
securely.

The FHE community took a first step towards standardization with the Ho-
momorphic Encryption Security Standard [2]. The standard provides parameter
sets based on the LWE Estimator [3], a software tool to determine the security
level of RLWE instances. More specifically, the standard provides upper limits
on the size of the ciphertext modulus for certain security levels λ and polynomial
degrees d in the form of lookup tables.

Libraries such as PALISADE use these look-up tables in order to simplify
the parameter selection for users. As FHE parameters depend on the specific
use case, the trade-off is a non-optimized parameter generation leading to larger
than necessary parameters. This in turn negatively affects the runtime and mem-
ory usage of FHE implementations. Thus, generating high-quality parameters is
important for FHE in general.

Related Work For BGV, there currently are two main approaches analyzing the
error growth: with the canonical norm [6, 7, 12] or with the infinity norm [13].
While the canonical norm is known to result in better parameters, only the last
work analyzed the BGV operations for the DCRT representation, the best known
approach to implementing RLWE-based schemes. Additionally, while there are
case studies with specific parameter sets [5], the circuit models for parameter
generation have remained rather simple and static [11].

Finding and Evaluating Parameters for BGV 3

The main idea of our work is to improve the current state-of-the-art of pa-
rameter generation and the usability of the BGV scheme with the following
contributions:

– We provide a comprehensive analysis of BGV parameters for the DCRT rep-
resentation. We study the bounds for the error growth considering additional
cases such as rotations and constant multiplications and provide improved
noise estimates for parameter generation (Section 3).

– We provide an interactive parameter generator for the leveled BGV scheme
using our theoretical and empirical formulas (Section 4). The generator out-
puts easy-to-use code snippets with example circuits for PALISADE as well
as benchmarking code for the specific parameter set.

– We empirically derive a closed formula enabling fast estimation of the secu-
rity of a parameter set. More specifically, we output a security estimate for
a given ciphertext modulus and polynomial degree (Section 4.1).

– Moreover, in Section 2.5, we also provide a comprehensive manual on the
bounds for the error growth and the parameters used in the leveled BGV
scheme, following and collecting previous studies [2, 6, 7, 11, 12, 13].

2 Preliminaries

2.1 Notations

We start with general notations we will use in the remainder of this work.
For a positive integer m, we denote by Zm the ring of integers modulo m.

We denote by Z∗
m = {x ∈ Zm | (x,m) = 1} the multiplicative group of units. We

denote by R = Z[x]/⟨Φm(x)⟩ and by Rp = Zp[x]/⟨Φm(x)⟩, where p is an integer
and Φm(x) is the cyclotomic polynomial (see Section 2.2). We denote by t and
q the plaintext and the ciphertext modulus, respectively, and Rt the plaintext
space. Moreover, we set t ≡ 1 mod m and q a chain of primes, such that

q = qL−1 =

L−1∏
j=0

pj ,

where pi are roughly of the same size and pi ≡ 1 mod m [11]. The multiplicative
depth M of the circuit determines the number of primes L = M + 1. Thus, for
any level ℓ, we have qℓ =

∏ℓ
j=0 pj .

Polynomials are denoted by lower letters such as a, vectors of polynomials are
denoted in bold a. Polynomial multiplication is denoted as a · b while multipli-
cation with a scalar t is denoted as ta. Let x ∈ R, we write [x]m ∈ [−m/2,m/2)
for the centered representative of x mod m.

We denoted by χe the RLWE error distribution, typically a discrete Gaussian
with standard deviation σ = 3.19 [2], and by χs the secret key distribution. In
general, if χ is a probabilistic distribution and a ∈ R a random polynomial, we
write a← χ when sampling each coefficient independently from χ.

4 J. Mono et al.

2.2 Mathematical Background

Cyclotomic polynomial Let F be a field and m be a positive integer. We recall
that a m-th root of unity is a number ζ ∈ F satisfying the equation ζm = 1. It
is called primitive if m is the smallest positive integer for which ζm = 1. The
m-th cyclotomic polynomial is defined as Φm(x) =

∏
(j,m)=1(x−ζj). The degree

of Φm is ϕ(m) = m
∏

p|m (1− 1/p) = |Z∗
m|, Euler’s totient function.

Canonical embedding and canonical norm In this section we recall the
result of [6, 7, 12]. Let a ∈ R be a polynomial. The canonical embedding of a
is the vector obtained by evaluating a at all primitive m-th roots of unity. The
canonical embedding norm of a ∈ R is defined as ||a||can = maxj∈Z∗

m
|a(ζj)|. For

a vector of polynomials a = (a0, . . . , an−1) ∈ Rn, the canonical embedding norm
is defined as ||a||can = maxi ||ai||can. For any polynomial a, b ∈ R, the following
properties hold:

– ||a||can ≤ ϕ(m)||a||∞.
– ||ab||can ≤ ||a||can||b||can.
– ||a||∞ ≤ cm||a||can for the ring expansion factor cm.

Note that, cm = 1 if the degree of Φm(x) is a power-of-two [8].
Let us consider a random a ∈ R where each coefficient is sampled indepen-

dently from on of the following zero-mean distributions:

– DGq(σ2), the discrete Gaussian distribution with standard deviation σ over
the interval (−q/2, q/2].

– DBq(σ2), the discrete Binomial distribution with standard deviation σ over
the interval (−q/2, q/2].

– U3, the uniform distribution over the ternary set {±1, 0}.
– Uq, the uniform distribution over Zq.
– ZO(ρ), a distribution over the ternary set {0,±1} with probability ρ/2 for
±1 and probability 1− ρ for 0 with ρ ∈ [0, 1].

If we choose a ∈ R from the distributions above, the random variable a(ζ)
has variance V = ϕ(m) ·Va, where Va is the variance of each coefficient in a and
it is bounded

||a||can ≤ Dσ
√

ϕ(m) = D
√

ϕ(m) · Va, (1)

for someD [6]. Moreover, the probability that the variable a exceeds its standard
deviation by more than a factor of D is roughly erfc(D). Thus, we have to
choose D large enough to obtain a reasonable failure probability. Specifically,
erfc(6) ≈ 2−55, erfc(5) ≈ 2−40 and erfc(4.5) ≈ 2−32.

If a, b ∈ R are chosen randomly and γ is a constant, the following holds for
the variances [7]:

– Va+b = Va + Vb.
– Vγa = γ2Va.
– Vab = ϕ(m)VaVb.

Finding and Evaluating Parameters for BGV 5

Thus, to study the variance of ||a||can, we have to study the variance Va of
each coefficient ai of a. Specifically,

ai ∈ Uq ⇒ Va ≈ q2/12, ai ∈ U3 ⇒ Va = 2/3,
ai ∈ DGq(σ2)⇒ Va = σ2, ai ∈ ZO(ρ)⇒ Va = ρ.

(2)

As in [6], we assume that messages behave as if selected uniformly at random
from Ut. Thanks to Equations (1) and (2), we have that

||m||can ≤ Dt
√
ϕ(m)/12. (3)

Lattices and Hermite Factor Let B = (b1, . . . ,bk) be linearly independent
vectors in Rn, then the lattice L(B) generated by the base B is defined by

L = L(B) =
{ k∑

i=1

γibi : γi ∈ Z,bi ∈ B
}
.

The dimension k of a lattice L ⊂ Rn is called rank. The volume (or determinant)
of L is defined as Vol(L) =

√
det(BtB). In the special case that L is a full rank

lattice, i.e. when k = n, we have that Vol(L) = |det(B)|. Finally, we can define
the Hermite factor δk0 as

δk0 = ||b1||/Vol(L)1/k (4)

where b1 is the shortest vector in the reduced base B of the lattice L. The factor
δ0 is called the root Hermite factor.

2.3 Security of RLWE-Based Schemes

The LWE problem consists of finding the secret vector s ∈ Zn
q , given b ∈ Zm

q

and A ∈ (Zq)
m×n such that As + e = b mod q, where e ∈ Zm

q is sampled
from the error distribution χe. The security of LWE-based schemes depends on
the intractability of this problem and attacks on these schemes are based on
finding efficient algorithms to solve them [15]. In [3], the authors presented three
different methodologies to solve the LWE problem and the central part of two
of them is based on lattice reduction. Namely, starting from a bad (i.e. long)
lattice basis, find a better (i.e. reduced and more orthogonal) basis.

The most well-known lattice reduction algorithm used in practice is BKZ
(block Korkin-Zolotarev reduction) due to Schnorr and Euchner [20]. In these
algorithms, the time complexity and the outcome quality (i.e. the orthogonality
of the reduced basis) is characterised by the Hermite factor [9]. Specifically, the
run time of the BKZ algorithm is higher when the root-Hermite factor δ0 is
smaller [20]. This result is also supported by a realistic estimation provided in
[3], where the authors show that the log of the time complexity to get a root-
Hermite factor δ0 with BKZ is

log(tBKZ)(δ0) = Ω

(
− log(log δ0)

log δ0

)
(5)

6 J. Mono et al.

if calling the SVP oracle costs 2O(β), where β is the the block-size of BKZ
algorithm.

2.4 DCRT Representation

The DCRT changes the representation of the polynomials. This also influences
the computations itself and thus slight adaptations to the bounds have to be
made. In the following, we will briefly explain the DCRT representation and
adjust the error bounds accordingly.

To represent polynomials in the DCRT representation, we need to apply two
concepts based on the Chinese Remainder Theorem (CRT): the residue number
system (RNS) and the Number Theoretic Transform (NTT). The residue number
system (RNS) decomposes integers in Zq into smaller integers Zqi for q =

∏
qi.

For pairwise coprime qi, we define a ring isomorphism Zq
∼= Zq1 × . . .×Zqk with

x mod q 7→ (x mod q1, . . . , x mod qk).

In the context of BGV, we decompose a polynomial in Rq into smaller polyno-
mials in Rq1 × . . .×Rqk .

The Number Theoretic Transform (NTT) and its inverse, the INTT, trans-
form a polynomial to a point-wise representation such that

INTT(NTT(a)⊙NTT(b)) = a · b

where ⊙ denotes the point-wise multiplication of the transformed polynomials.
This significantly reduces the cost of polynomial multiplication from O(n2) to
O(n log n), the running time of the NTT. Mathematically, the NTT evaluates
the polynomial in each of the m-th roots of unity ζj , namely, it decomposes the
polynomial into linear terms modulo (x− ζj). For a full definition, we refer the
interested reader to [21].

2.5 The BGV Scheme

The BGV scheme is state-of-the-art FHE scheme based on the RLWE hardness
assumption. As is common with RLWE-based schemes, implementations of BGV
use the DCRT representation for polynomials (see Section 2.4).

Usually, the BGV scheme is used for leveled circuits, that is circuits with
a somewhat low multiplicative depth as bootstrapping is very expensive [11].
Hence, we will focus on the leveled version of the BGV scheme in this work.

In the following, we recall the definitions and compute the noise analysis for
encryption and the schemes arithmetic operations collecting previous studies [7,
12]. For modulus switching and key switching, we will provide only the definitions
and noise bounds, including the RNS variants, and provide a thorough noise
analysis later in Section 3. This extends previous work based on the canonical
embedding norm with a thourough analysis for an arbitrary plaintext modulus
in combination with the RNS.

Finding and Evaluating Parameters for BGV 7

Key Generation, Encryption & Decryption

KeyGen(λ)
Define parameters and distributions with respect to λ.
Sample s← χs, a← UqL and e← χe.
Output

sk = s and pk = (b, a) ≡ (−a · s+ te, a) (mod qL).

Encpk(m)

Receive plaintext m ∈ Rt for pk = (b, a).
Sample u← χs and e0, e1 ← χe.
Output c = (c, L, νclean) with

c = (c0, c1) ≡ (b · u+ te0 +m,a · u+ te1) (mod qL).

Decsk(c)

Receive extended ciphertext c = (c, ℓ, ν) for sk = s. Decrypt with

c0 + c1 · s ≡ m+ te (mod qℓ).

Output m ≡ m+ te mod t.

Let c = (c, ℓ, ν) be the extended ciphertext, where c is a ciphertext, ℓ denotes
the level and ν the critical quantity of c. The critical quantity is defined as the
polynomial ν = [c0 + c1 · s]qℓ for the associated level ℓ [6].

To understand the error growth and thus analyze the critical quantity ν for
each extended ciphertext c = (c, ℓ, ν), we apply the decryption algorithm. The
following shows the decryption of a ciphertext after an encryption:

c0 + c1 · s ≡ (−a · s+ te) · u+ te0 +m+ (a · u+ te1) · s (mod qL)

≡ m+ t(e · u+ e1 · s+ e0) (mod qL).

The critical quantity is thus defined as [c0 + c1 · s]qℓ for the associated level ℓ.
In general, decryption is correct as long as the error does not wrap around the

modulus qℓ, that is ||ν||∞ ≤ cm||ν||can < qℓ/2. Note that applying decryption is
equivalent to evaluating the ciphertext c as polynomial in s, that is c0 + c1 · s ≡
ν mod qℓ. In the following, we will often use this polynomial representation of a
ciphertext to proof correctness of an algorithm or operation.

We derive the bounds for each operation using the canonical embedding norm
(Section 2.2). For the encryption operation, we use Equations (2) and (3)

||[c0 + c1 · s]qℓ ||can ≤ D
√
ϕ(m)V[c0+c1·s]qℓ = D

√
ϕ(m) (Vm + t2Ve·u+e1·s+e0)

≤ D
√
ϕ(m) (Vm + t2(ϕ(m)VeVu + ϕ(m)Ve1Vs + Ve0)).

Namely,
Bclean = Dt

√
ϕ(m) (1/12 + 2ϕ(m)VeVs + Ve). (6)

8 J. Mono et al.

Addition, Multiplication & Constant Multiplication

Add(c, c′)

Receive extended ciphertexts c = (c, ℓ, ν) and c′ = (c′, ℓ, ν′).

Output (c+ c′, ℓ, νadd).

Mul(c, c′)

Receive extended ciphertexts c = (c, ℓ, ν) and c′ = (c′, ℓ, ν′).

Output ((c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1), ℓ, νmul).

MulConst(α, c)

Receive constant polynomial α ∈ Rt and extended ciphertext c = (c, ℓ, ν).

Output (α · c, ℓ, νconst).

As long as the bound on each critical quantity stays below the decryption
threshold, correctness follows with

νadd = ν + ν′ = [c0 + c1 · s]qℓ + [c′0 + c′1 · s]qℓ ≡ m+m′ mod t
⇒ ||νadd||can ≤ ||ν||can + ||ν′||can

νmul = ν · ν′ = [c0 + c1 · s]qℓ · [c′0 + c′1 · s]qℓ ≡ m ·m′ mod t
⇒ ||νmul||can ≤ ||ν||can||ν′||can

νconst = α · ν = α · [c0 + c1 · s]qℓ ≡ α ·m mod t

⇒ ||νconst||can ≤ ||α||can||ν||can = Dt
√

ϕ(m)
12 ||ν||

can.

Here, we also consider the constant α to be uniformly distributed in Rt. Note
that the output of the multiplication is still a polynomial in s, but of degree 2. We
will later define key switching (see Section 2.5) to modify a ciphertext polynomial
c0 + c1 · s + c2 · s2 back to another polynomial c′0 + c′1 · s encrypting the same
plaintext.

Modulus Switching Modulus switching reduces the associated level and the
critical quantity for a ciphertext, enabling leveled homomorphic computations.

The idea is to switch from a ciphertext modulus qℓ to a ciphertext modulus
qℓ′ = qℓ−k for some k ∈ Z. We thus multiply the ciphertext by qℓ′

qℓ
, roughly

reducing the error by the same factor. But, as we need to output a valid cipher-
text, we add a small correction term δ that (i) only influences the error, that
is being a multiple of t, i.e., δ ≡ 0 mod t, and (ii) modifies the ciphertext to be
divisible by qℓ/qℓ′ , i.e., δ ≡ −c mod qℓ

qℓ′
.

Finding and Evaluating Parameters for BGV 9

ModSwitch(c, ℓ′)

Receive extended ciphertext c = (c, ℓ, ν) and target level ℓ′ = ℓ− k.
Set δ = t[−ct−1]qℓ/qℓ′ and

c′ =
qℓ′

qℓ
(c+ δ) (mod qℓ′).

Output (c′, ℓ′, νms).

For k = 1, qℓ′
qℓ

= 1
pℓ
. First, we want to show the correctness of modulus

switching. Let [c0+ c1 · s]qℓ = c0+ c1 · s−kqℓ for some k ∈ Z. For the same k, let

[c′0 + c′1 · s]qℓ′ = c′0 + c′1 · s− kqℓ′

=
1

pℓ
(c0 + c1 · s+ δ0 + δ1 · s)− kqℓ′

=
1

pℓ
([c0 + c1 · s]qℓ + kqℓ + δ0 + δ1 · s)− kqℓ′

=
1

pℓ
([c0 + c1 · s]qℓ + δ0 + δ1 · s)

≡ p−1
ℓ m mod t.

Note that we actually decrypt to the plaintext p−1
ℓ m mod t, but we can multiply

a plaintext by pℓ either before encryption or after decryption. This issue does
not exist for pℓ ≡ 1 mod t, but finding such pℓ can be difficult in practice.

The error after the modulus switching is bounded by

||νms||can ≡ ||[c′0 + c′1 · s]qℓ′ ||
can ≤ 1

pℓ
(||ν||can + ||δ0 + δ1 · s||can) .

As Vδi = Vtpℓ
=

t2p2
ℓ

12 , and thus Vδ0+δ1·s =
t2p2

ℓ

12 (1 + ϕ(m)Vs), we have

||νms||can ≤
1

pℓ
(||ν||can +D

√
ϕ(m)Vδ0+δ1·s) =

1

pℓ
||ν||can + Bscale,

with

Bscale = Dt

√
ϕ(m)

12
(1 + ϕ(m)Vs). (7)

Note that, decryption is correct as long as ||ν||can < qℓ
2cm
− pℓBscale.

For the RNS implementation, we have to apply a fast base extension to δ

from qℓ′
qℓ

to qℓ′ . For two moduli q =
∏k

i=1 qi and p =
∏k′

j=1 pj and a polynomial α,
we define it as

BaseExt(α, q, p) =

k∑
i=1

[
α
qi
q

]
qi

q

qi
mod pj .

This outputs α + qu in the RNS base p for an error polynomial u. In our case,
we have to set

δ = tBaseExt(−ct−1,
qℓ
qℓ′

, qℓ′).

10 J. Mono et al.

Note that for ℓ′ = ℓ− 1, BaseExt(−ct−1, pℓ, qℓ′) = [−ct−1]qℓ/qℓ′ . We analyze the
impact on the error in Section 3.

Key Switching Key switching is used for (i) reducing the degree a ciphertext
polynomial, usually the output of a multiplication, or (ii) changing the key after
a rotation. For a multiplication, we convert the ciphertext term c2 · s2 to a
polynomial cks0 +cks1 ·s and for a rotation, we convert the ciphertext term c1 ·rot(s)
to a polynomial cks0 + cks1 · s. In the following, we will only analyze multiplication
and more specifically, we will output c′ = (c0 + cks0 , c1 + cks1) and denote the
ciphertext term we want to remove by c2. This also covers rotations as one only
has to consider the term we want to remove as c1 and an output of (c0+cks0 , c

ks
1).

More specifically, we again make use of the RLWE hardness assumption to hide
s2 using s. Decryption with s “unboxes” s2 and applies it to the ciphertext term
c2. In the following, we provide the general algorithms for key switching:

KeySwitchGen(s, s2)

Receive secret key s2 and secret key target s.
Sample a← UqL , e← χe.
Output key switching key

ks = (ks0, ks1) ≡ (−a · s+ te+ s2, a) (mod qL).

KeySwitch(ks, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ks.
Switch key for c0 + c1 · s+ c2 · s2 with

c′ ≡ (c0 + c2 · ks0, c1 + c2 · ks1) (mod qℓ).

Output (c′, ℓ, νks).

Since qℓ divides qL, [ks]qℓ is a valid key switching key with respect to qℓ and
thus

c′0 + c′1 · s ≡ c0 + c2 · ks0 + (c1 + c2 · ks1) · s (mod qℓ)

≡ c0 − c2 · a · s+ c2 · te+ c2 · s2 + c1 · s+ c2 · a · s (mod qℓ)

≡ c0 + c1 · s+ c2 · s2 + tc2 · e (mod qℓ).

Thus, the error after the key switching algorithm is bounded by

||νks||can = ||[c′0 + c′1 · s]qℓ ||can ≤ ||ν||can + tc2 · e.

Unfortunately, the error after the key switching algorithm grows too much with
the term tc2 · e and thus several variants exist to reduce its growth. In this
work, we consider the three main variants: the Brakerski Vaikuntanathan (BV)
variant, the Gentry Halevi Smart (GHS) variant, and the Hybrid variant.

Finding and Evaluating Parameters for BGV 11

BV Variant The BV variant decomposes c2 with respect to a base ω to reduce
the error growth [4]. For polynomials α and β and l = ⌊logω qℓ⌋+ 1, we define

Dω(α) = ([α]ω, [⌊α/ω⌋]ω, . . . , [⌊α/ωl−1⌋]ω)

Pω(β) = ([β]qℓ , [βω]qℓ , . . . , [βω
l−1]qℓ).

It follows that, for any α, β ∈ Rqℓ , we have ⟨Dω(α),Pω(β)⟩ ≡ α · β mod qℓ[13].

KeySwitchGenBV(s, s2)

Receive secret key s′ and secret key target s.
Sample a← U l

qL , e← χl
e.

Output key switching key

ksBV = (ksBV0 ,ksBV1) = (−a · s+ te+ Pω(s
2),a) (mod qL).

KeySwitchBV(ksBV, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksBV.
Switch key for c0 + c1 · s+ c2 · s2 with

c′ = (c0 + ⟨Dω(c2),ks
BV
0 ⟩, c1 + ⟨Dω(c2),ks

BV
1 ⟩) (mod qℓ).

Output (c′, ℓ, νBV
ks).

The error after the BV key switching is c′0+c′1·s ≡ c0+c2·ksBV0 +(c1+c2·ksBV1)·s
(mod qℓ), namely,

||[c0 + c1 · s+ ⟨Dω(c2),Pω(s
2)⟩+ t⟨Dω(c2), e⟩]qℓ ||can,

that is,

||νBVks ||can = ||[c′0 + c′1 · s]qℓ ||can ≤ ||ν||can + ||t⟨Dω(c2), e⟩||can.

Since t⟨Dω(c2), e⟩ = t
∑l−1

i=0[⌊c2/ωi⌋]ω · ei = t
∑l−1

i=0 ω̃i · ei, we have

Vt·⟨Dω(c2),e⟩ = t2lϕ(m)Vω̃i
Vei .

We can assume that ω̃i behaves like a uniform polynomial drawn from Uω. So

||t · ⟨Dω(c2), e⟩||can ≤ D

√
ϕ(m)t2lϕ(m)

ω2

12
Vei = Dtϕ(m)ω

√
l
Ve

12
.

Finally, we have l =
√
⌊logω(qℓ)⌋+ 1 ∼

√
logω(qℓ) and can set

||νBVks ||can ≤ ||ν||can + ω
√

logω(qℓ)Bks,

where

Bks = Dtϕ(m)
√
Ve/12. (8)

12 J. Mono et al.

BV-RNS Variant For the BV-RNS variant, we define D and P not with re-
spect to some digit decomposition ω, but rather use the already existing RNS
decomposition.

D(α) =

[α(qℓ
p0

)−1
]
p0

, . . . ,

[
α

(
qℓ
pℓ

)−1
]
pℓ

P(β) =

([
β
qℓ
p0

]
qℓ

, . . . ,

[
β
qℓ
pℓ

]
qℓ

)
.

We analyze the growth of noise in Section 3.

GHS Variant The GHS variant [11] switches to a bigger ciphertext modulus
Qℓ = qℓP with P and q coprime. Then, key switching takes places in RQℓ

and,
by modulus switching back down to qℓ, the error is reduced again. As a tradeoff,
we have to make sure that our RLWE instances are secure with respect to Qℓ.

KeySwitchGenGHS(s, s2)

Receive secret key s2 and secret key target s.
Sample a← UQL , e← χe.
Output key switching key

ksGHS = (ksGHS0 , ksGHS1) ≡ (−a · s+ te+ Ps2, a) (mod QL).

KeySwitchGHS(ks, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksGHS.
For c0 + c1 · s+ c2 · s2, switch key with

c′ ≡ (Pc0 + c2 · ksGHS0 , P c1 + c2 · ksGHS1) mod Qℓ.

Set δ = t[−c′t−1]P , modulus switch back with

c′′ =
1

P
(c′ + δ) (mod qℓ).

Output (c′′, ℓ, νGHS
ks).

Since we use modulus switching, showing correctness is similar in most aspects.
For some k ∈ Z, let [c′0 + c′1 · s]Qℓ

= P [c0 + c1 · s+ c2 · s2]qℓ + tc2 · e− kQℓ.

[c′′0 + c′′1 · s]qℓ = [c0 + c1 · s+ c2 · s2]qℓ +
tc2 · e+ δ0 + δ1 · s

P
≡ m mod t.

Finding and Evaluating Parameters for BGV 13

We suppose that c2 behaves like a uniform polynomial samples from Uqℓ and, as
before, [−ct−1]P behaves like a uniform polynomial samples from UP . Then,

||νGHSks ||can ≤ ||[c0 + c1 · s+ c2 · s2]qℓ ||can +
||tc2 · e+ δ0 + δ1 · s||can

P

= ||ν||can +
D
√

ϕ(m)(t2q2ℓ
Ve

12 + t2P 2 1
12 (1 + ϕ(m)Vs))

P

≤ ||ν||can +
qℓ
P
Bks + Bscale,

where Bscale and Bks are as in Equations (7) and (8), respectively. Decryption,
and thus key switching, is correct as long as ||ν||can < qℓ

2cm
− qℓ

P Bks − Bscale.

GHS-RNS Variant For the RNS variant of GHS, we set P =
∏k

j=1 Pj such that
Pi ≡ 1 mod m and apply the same adaptations to δ as to the RNS version of
modulus switching. Additionally, we have to apply the fast base extension to c2
and extend it with

BaseExt(c2, qℓ, Qℓ) = c2 + qℓu.

We analyze the noise growth in Section 3.

Hybrid Variant The Hybrid variant combines the BV and GHS variants [11]. In
the following, we use the same notation from the variants as before.

KeySwitchGenHybrid(s, s2)

Receive secret key s2 and secret key target s.
Sample a← U l

QL
, e← χl

e.
Output key switching key

ksHybrid = (ksHybrid0 , ksHybrid1) ≡ (−a · s+ te+ P Pω(s
2),a) (mod QL).

KeySwitchHybrid(ksHybrid, c)

Receive extended ciphertext c = (c, ℓ, ν) and key switching key ksHybrid.
For c0 + c1 · s+ c2 · s2, switch key with

c′ ≡ (Pc0 + ⟨Dω(c2), ks
Hybrid
0 ⟩, P c1 + ⟨Dω(c2), ks

Hybrid
1 ⟩) mod Qℓ.

Set δ = t[−c′t−1]P , modulus switch back with

c′′ =
1

P
(c′ + δ) (mod qℓ).

Output (c′′, ℓ, νHybrid
ks).

Correctness follows by combining the proofs of each variant. The bounds also
follow similarly, since before to scale down we have ν′ = νP + ωlBks, where Bks

is as an Equation (8). Thus, the error after the modulus switching procedure is

14 J. Mono et al.

bounded by qℓ
Qℓ
||ν′||can + Bscale, that is,

||νHybridks ||can ≤ ||ν||can +
ω
√

logω(qℓ)

P
Bks + Bscale,

where Bscale is defined as Equation (7).

Hybrid-RNS Variant The Hybrid-RNS variant combines the RNS adaptations
of each variant. However, instead of decomposing with respect to each single
RNS prime, we group the primes into ω chuncks of size l = L

ω − 1. Hence, we set

q̃i =
∏il+l−1

j=il pj and define D and P as

D(α) =

[α(qℓ
q̃0

)−1
]
q̃0

, . . . ,

[
α

(
qℓ
q̃l−1

)−1
]
q̃l−1

P(β) =

([
β
qℓ
q̃0

]
qℓ

, . . . ,

[
β

qℓ
q̃l−1

]
qℓ

)
.

Also, we now have to base extend from each q̃i to Qℓ instead.

3 Analyzing Error and Modulus Bounds

In this section, we study the modulus size pℓ for any level ℓ. Our approach
is extends previous work [6, 7, 11] by using new bounds for the DCRT repre-
sentation, including essential BGV operations such as rotations and constant
multiplications and allows for multiple key switching approaches.

We start by analysing the error bounds for modulus and key switching in
the DCRT representation. Then, we follow up by specifying our circuit model
and finish our analysis by taking a look at the decryption modulus q0, in the fol-
lowing called bottom modulus, the top modulus qL−1 and the remaining middle
moduli qℓ.

3.1 Modulus Switching

For modulus switching, we can either scale by a single modulus or by multiple
moduli. When scaling by a single modulus, the bound Bscale is as in Equation (7).

When scaling by k > 1 moduli however, we have to adjust our bound due to
the base extension. Let [c0 + c1 · s]qℓ = c0 + c1 · s− κqℓ for some κ ∈ Z. For the
same κ, let [c′0 + c′1 · s]qℓ′ = c′0 + c′1 · s− κqℓ′ , then

[c′0 + c′1 · s]qℓ′ = c′0 + c′1 · s− κqℓ′

=
qℓ′

qℓ
(c0 + c1 · s+ δ0 + δ1 · s)− κqℓ′

=
qℓ′

qℓ
([c0 + c1 · s]qℓ + δ0 + δ1 · s).

Finding and Evaluating Parameters for BGV 15

Using the fast base extension, we have δ = tBaseExt(−ct−1, qℓ
qℓ′

, qℓ′). The vari-

ance follows as

Vδi =

(
t
√
k

qℓ
qℓ′pℓ

pℓ√
12

)2

=

(
t

√
k

12

qℓ
qℓ′

)2

introducing a factor of
√
k and thus ||νms||can ≤ qℓ′

qℓ
||ν||can +

√
kBscale.

3.2 Key Switching

For the BV-RNS variant, D decomposes to each individual modulus and the key
switching is bound by

||νBV−RNS
ks ||can ≤ ||ν||can + ||t⟨D(c2), e⟩||can

≤ ||ν||can +
√
L+ 1max(pi)Bks.

For the GHS-RNS variant, we have two additional errors from the base exten-
sion: once for extending c2 from qℓ to Qℓ and once for extending δ from P to Qℓ.
When extending c2 and multiplying with the key switching key, this results in

c′0 + c′1s ≡ Pc0 + (c2 + qℓu) · ks0 + (Pc1 + (c2 + qℓu) · ks1)s (mod Qℓ)

≡ P [c0 + c1s+ c2s
2]qℓ + t(c2 + qℓu)e (mod Qℓ)

increasing the noise to ||ν′||can ≤ P ||ν||can+qℓBks+
√
L+ 1qℓBks. When extend-

ing δ, the additional noise behaves equivalent to our modulus switching analysis.
Thus, for P =

∏k
j=1 Pj , we get a factor of

√
k and overall

||νGHS−RNS
ks ||can ≤ ||ν||can +

√
L+ 1

qℓ
P
Bks +

√
kBscale.

For the Hybrid-RNS variant, we can combine our previous analyses. However,
we again have to adjust for the fact that we decompose the ciphertext modulus
into ω products q̃ and not necessarily to each individual RNS prime. The fast
base extension takes place before the dot product, for an upper bound we now
consider max q̃i instead of max qi leading to

||νHybrid−RNS
ks ||can ≤ ||ν||can +

√
ω(L+ 1)

max(q̃i)

P
Bks +

√
kBscale.

3.3 Modeling the Homomorphic Circuit

In general, we split the homomorphic circuit in levels and reduce the ciphertext
noise to a base level B using modulus switching. The multiplicative depth M
determines the modulus count L = M + 1 which can be split into three types:
top, middle and bottom modulus.

16 J. Mono et al.

– The top modulus pL−1 is the first modulus in the prime chain. Before do
any operation, we reduce the fresh encryption noise Bclean down to the base
noise B using modulus switching. We continue in level L−2 with the middle
modulus.

– The middle modulus pℓ at level 1 ≤ ℓ ≤ L − 2 reduces the noise back to
B after the arithmetic operations as defined by the model (see below) using
modulus switching procedure. This reduce the modulus from qℓ to qℓ−1 until
the last modulus q0 = p0.

– For the bottom modulus p0, we can still perform all arithmetic operations
within our model, however we do not scale down to B. Instead, this modulus
is large enough such that decryption can be performed correctly.

At each level (except the first one), we operate on η+1 ciphertexts ci in parallel.
Then, one constant multiplication can be performed followed up by τ rotations.
Finally, the ciphertexts are added up and used as input to one multiplication
before modulus switching is applied. Note that within that model, all parameters
can be chosen as required by the use case.

For τ = 0, we refer to the model as base model and provide separate formulas
as it simplifies analysis and thus also reduces the ciphertext modulus size.

M

c0 c1 . . . cη

+

α0

rot

rot

α1

rot

rot

αη

rot

rot

τ

c

Fig. 1. Our analysis model depicted as circuit.

3.4 Error Analysis

Let us consider the multiplication of two ciphertexts, c · c′, both output of the
circuit in Figure 1. Each of ci ciphertext has starting noise B. After performing
a constant multiplication the error grows from B to BBconst, where Bconst =
Dt
√

ϕ(m)/12 (as in Section 2.5). Then we apply τ rotations. Note that, the
rotations itself do not influence the noise directly, however the key switching
back to the original key adds key switching noise vks, which depend on the key

Finding and Evaluating Parameters for BGV 17

switching method:

vks =

ω
√
logω(qℓ)Bks (BV)

pℓ
√
ℓ+ 1Bks (BV - RNS)

fks
0 Bks/P + fks

1 Bscale (others)

(9)

where

fks =

(qℓ, 1) (GHS)

(qℓ
√
ℓ+ 1,

√
k) (GHS - RNS)

(ω
√
⌊logω(qℓ)⌋, 1) (Hybrid)

(p
L/ω
ℓ

√
w(ℓ+ 1),

√
k) (Hybrid - RNS)

(10)

So, after the τ rotations the bounded error of each ciphertext ci grows from
BBconst to BBconst + τvks. Thus we sum all the resulting ciphertexts together
obtaining the final ciphertext c (with error bounded by η(BBconst+τvks)). Lastly,
we multiply c and c′, both output of the circuit in Figure 1 and the final noise
is grew up to

(ηBBconst + ητvks)
2 = ε2B2 + η2τ2v2ks + 2ητεvksB,

where ε = ηBconst and let ξ = ε2.
In the base model without rotations, the noise magnitude grows from B to

ξB2. Following the same argument as before, we provide several values for ξ
which depend on the order of multiplications and additions (see Table 1). If we
do not need any constant multiplication, we set Bconst = 1.

Order Count #1 Count #2 ξ

Add then Mul η 1 η2B2
const

Add then Mul η, η′ 1 ηη′B2
const

Mul then Add 1 η ηB2
const

Table 1. Defining ξ based on the order of addition and multiplication.

3.5 The Top Modulus

The top modulus is the first modulus in the prime chain, that is pL−1. Before
do any operation, we reduce the error Bclean down to B. We use the modulus
switching reducing the error and go down to next level:

Bclean

pL−1
+ Bscale < B ⇐⇒ pL−1 >

Bclean

B − Bscale
(11)

Note that, in same specific cases we have that B − Bscale > Bclean. So in these
cases we do not have any restriction on pL−1.

18 J. Mono et al.

3.6 Middle Moduli (when L ≥ 3)

As described before, considering the multiplication of two ciphertexts, c and
c′, output of the circuit in Figure 1, the noise magnitude grows from B to
(εB + ητvks)

2. Since c · c′ is a polynomial of degree 2, we have to perform the
key switching technique and, to reduce the noise magnitude down to B, we also
need the modulus switching procedure.

In the case of GHS and Hybrid key switching, we can actually merge the
key switching with the modulus switching and directly switch down to a smaller
modulus, that is, from Qℓ to qℓ−1 decreasing the noise by qℓ−1/Qℓ = 1/(Ppℓ).
Note that, performing these procedure, we also add the key switching noise vks
(see (9)) and the modulus switching noise Bscale (as in Equation (7)).

BV key-switching. Since we want to reduce the noise size back to B, after
the key switching we have to apply the modulus switching. Thus, we have to set

(εB + ητω
√
⌊logω(qℓ)⌋Bks)

2

pℓ
+

ωBks

√
⌊logω(qℓ)⌋
pℓ

+ Bscale < B. (12)

Note that
√
⌊logω(qℓ)⌋ ∼

√
(ℓ+ 1) logω(pℓ) and, for pℓ enough big, we have

that ωBks

√
⌊logω(qℓ)⌋/pℓ ∼ 0. Then,

ξB2

pℓ
+

(2ητεω√(ℓ+ 1) logω(pℓ)Bks

pℓ
− 1

)
B +

(ητω
√

(ℓ+ 1) logω(pℓ)Bks)
2

pℓ
+ Bscale < 0.

Since Equation (12) must have a positive discriminant, we have

1−
4ητεω

√
(ℓ+ 1) logω(pℓ)Bks

pℓ
− ξBscale

pℓ
≥ 0.

Moreover, the pℓ’s have roughly the same size and we have to satisfy Equa-
tion (12) for the largest modulus ℓ = L− 2, thus we can set

p1 ∼ . . . ∼ pL−2 ∼ ηε(4τω
√
L− 1 logω(Bks)Bks + BconstBscale) (13)

So we have 2ητεω
√
(ℓ+ 1) logω(pℓ)Bks/pℓ ∼ 0 and the discriminant ∼ 0. Thus,

B ∼ 1
2ξ/pℓ

∼ 2τω
√
L− 1 logω(Bks)Bks/Bconst + Bscale/2. Note that for some spe-

cific parameters, if we set B as before, we have B − Bscale < 0 and so, pL−1 as
in Equation (11), becomes negative. Thus, we slightly modify B setting

B ∼ 2τω
√
L− 1 logω(Bks)Bks

Bconst
+ Bscale (14)

Previous work has shown, that 3 ≤ ω ≤ 5 is a good choice for ω [13].

No rotations. If τ = 0, Equation (12) becomes

ξB2

pℓ
+

ωBks

√
⌊logω(qℓ)⌋
pℓ

+ Bscale < B.

Finding and Evaluating Parameters for BGV 19

As before, we must have a positive discriminant and thus

1− 4ξ

pℓ

(ωBks

√
(ℓ+ 1) logω(pℓ)

pℓ
+ Bscale

)
∼ 1− 4ξ

pℓ
Bscale ≥ 0.

We set p1 ∼ . . . ∼ pL−2 ∼ 4ξBscale and B ∼ 1
2ξ/pℓ

∼ 2Bscale.

BV-RNS key-switching. Applying the RNS variant of the BV key switching,
the situation is more complex. Indeed, after the modulus switching procedure,
we have

(εB + ητpℓ
√
ℓ+ 1Bks)

2

pℓ
+

Bkspℓ
√
ℓ+ 1

pℓ
+ Bscale < B (15)

which (in the variable B) must have a positive discriminant: 1−4εητ
√
ℓ+ 1Bks−

(4ε2Bks

√
ℓ+ 1 + 4ε2Bscale)/pℓ ≥ 0. But this is impossible. This means that the

error has grown too much, so we have to reduce it again by applying (another)
modulus switching. More precisely, from the level ℓ, we directly go down to level
ℓ− 2, and since the pℓ’s have roughly the same size, we have

(εB + ητpℓ
√
ℓ+ 1Bks)

2

p2ℓ
+

Bkspℓ
√
ℓ+ 1

p2ℓ
+ Bscale < B.

As before we must have a positive discriminant, namely,

1− 4εητ
√
ℓ+ 1Bks

pℓ
− 4ε2Bks

√
ℓ+ 1

p3ℓ
− 4ε2Bscale

p2ℓ
≥ 0,

thus we have pℓ ∼ 4εητ
√
ℓ+ 1Bks. Since for each multiplication we need to use

2 moduli, we have to double the number of moduli pℓ. So we have p1 ∼ . . . ∼
pL−2 ∼ 4εητ

√
L− 1Bks, where L = 2(M + 1) with M the multiplicative depth

of the circuit4. Since 2εητ
√
ℓ+ 1Bks/pℓ ≤ 1/2 and the discriminant is between

0 and 1, we have

B ∼ 1

ξ/p2ℓ
∼ 16η2τ2(L− 1)B2

ks. (16)

No rotations. If τ = 0, Equation (15) becomes

ξB2

pℓ
+

Bkspℓ
√
ℓ+ 1

pℓ
+ Bscale < B.

As before, imposing a positive discriminant, we obtain, for any 1 ≤ ℓ ≤ L − 2,
pℓ ∼ 4ξ(

√
L− 1Bks + Bscale) and B ∼ 1

2ξ/pℓ
∼ 2(
√
L− 1Bks + Bscale).

4 We are going to see that also for p0 we need the error reduction.

20 J. Mono et al.

GHS key-switching. After the first step of the key switching, the error grows
from (εB+ητvks)

2 to either P (εB+ητvks)
2+qℓBks (if we use GHS key-switching)

or P (εB + ητvks)
2 +
√
ℓ+ 1qℓBks (when we execute its RNS variant). Then, we

perform the modulus switching directly down to a smaller modulus decreasing
the noise by 1/(Ppℓ) and adding the error Bscale (or

√
kBscale in the RNS case).

As before, we want to reduce the noise size back to B, so we set

P (εB + ητvks)
2 + fks

0 Bks

Ppℓ
+ fks

1 Bscale < B,

where Bscale, vks and fks
i as in Equations (7), (9) and (10), respectively. For

ξ = ε2, the equation above becomes

ξB2

pℓ
+ 2ητε

pℓ

(
fks
0

P Bks + fks
1 Bscale

)
B + η2τ2

pℓ

(
fks
0

P Bks + fks
1 Bscale

)2
+

fks
0

Ppℓ
Bks + fks

1 Bscale < B.
(17)

To solve this inequality in B, we follow the idea of Gentry et al. [11]. Let

Rℓ =
η2τ2

pℓ
(
fks
0

P
Bks + fks

1 Bscale)
2 +

fks
0

Ppℓ
Bks + fks

1 Bscale.

Since Rℓ increases with larger ℓ’s, we have to satisfy this inequality for the largest
modulus ℓ = L − 2. Moreover, RL−2 > fks

1 Bscale. Since we want that this term
is as close to Bscale as possible, we have to set P large enough. Namely, either

P > Kfks
0 Bks/Bscale, (18)

for a large enough constant K ∈ N (i.e., we can take K ∼ 100). Equation (17)

becomes ξB2

pℓ
+ (

2ητεfks
1

pℓ
Bscale − 1)B +

(ητfks
1)2

pℓ
B2
scale + fks

1 Bscale < 0. Thus, to
satisfy this equation, we again must have a positive discriminant and therefore(2ητεfks

1

pℓ
Bscale − 1

)2
− 4

ξ

pℓ

((ητfks
1)2

pℓ
B2
scale + fks

1 Bscale

)
≥ 0,

that is, 1− 4fks
1 (η2τBconst + ξ)Bscale/pℓ ≥ 0. We then have

p1 ∼ . . . ∼ pL−2 ∼ 4fks
1 (η2τBconst + ξ)Bscale (19)

and RL−2 ∼ fks
1 Bscale. Finally, if we set pℓ as in (19), we have the discriminate

equal to zero and we can find B with

B ∼ fks
1

(
τ/Bconst + 2

)
Bscale. (20)

No rotations. If τ = 0, Equation (17) becomes

ξB2

pℓ
+

fks
0 Bks

Ppℓ
+ fks

1 Bscale < B,

where ξ is as in Table 1. Equations (19) and (20) are the same, instead P can be

decrease to either KqL−3

Bscale
Bks in the GHS case or KqL−3

√
L−2

Bscale
Bks for GHS-RNS.

Indeed, Rℓ changes to either qℓ−1

P Bks+fks
1 Bscale (GHS) or qℓ−1

√
L−2

P Bks+fks
1 Bscale

(GHS-RNS) (see also [11] for the specific case when τ = 0 and Bclean = 1).

Finding and Evaluating Parameters for BGV 21

Hybrid key switching. The noise after the key switching and the modulus
switching is at most(

εB + ητ(
fks
0

P Bks + fks
1 Bscale)

)2
pℓ

+
fks
0

Ppℓ
Bks + fks

1 Bscale < B.

Following the same argument as before, we obtain the same equality for P, pi
and B (i.e., as in Equations (18) to (20), respectively). Specifically, for P we
have either

P ≥ Kω
√
logω(qL−2)Bks/Bscale,

when we use the hybrid key-switching, or, in the RNS case,

P ≥ Kp
L/ω
L−2

√
w(L− 1)Bks/Bscale,

for a large enough constant K ∈ N (i.e., we can take K ∼ 100).

No rotations. In this case, if we do not have any rotation or any constant multipli-
cation, the equations for P, pℓ and B are the same (setting τ = 0 and Bconst = 1,
respectively).

3.7 The Bottom Modulus

The bottom modulus is the last modulus in the prime chain, that is p0. At level
zero, we do not need any modulus reduction. To ensure a correct decryption, we
require that the noise bounded by (εB + ητvks)

2 is smaller than q0/2 and thus
cm(εB + ητvks)

2 < q0/2, namely,

p0 = q0 > 2cm(εB + ητvks)
2. (21)

BV key switching. Equation (21) becomes z > εB + ητωBks

√
logω(2cmz2)

where z =
√
q0/2cm, i.e., q0 = 2cmz2. Since

√
logω(2cm)+

√
2 logω z >

√
logω(2cmz2),

it is enough to prove that

z > εB + ητωBks

(√
logω(2cm) +

√
2 logω z

)
(22)

We claim that this inequality holds for z = 2εB. Indeed, since B is as in Equa-
tion (14), then Equation (22) becomes

εB

ητωBks
−
√

logω(2cm) ∼ 2
√
L− 1 logω(Bks) +

BconstBscale

2τωBks
>
√
2 logω(2εB).

Note that 2εB < B3
ks, so the previous inequality holds since

2
√
L− 1 logω(Bks) +

BconstBscale

2τωBks
>
√
6 logω(Bks) >

√
2 logω(2εB).

Namely,
p0 > 8cmξB2.

If τ = 0, Equation (21) becomes p0 > 2cmξB2 = 8cmξB2
scale.

22 J. Mono et al.

BV-RNS key switching. As before, applying the RNS version of BV key
switching, the situation is more complex. Indeed, Equation (21) becomes p0 >
2cm(εB+ητp0Bks)

2, which is impossible. This means that the error has grown too
much, so we have to reduce it again by applying (another) modulus switching.
More precisely, at level zero, we cannot perform any operation. To ensure a
correct decryption, we require that the noise is smaller than q0/2 and thus

p0 > 2cmB = 32cmη2τ2(L− 1)B2
ks,

since B is as Equation (16).
Different the case when we do not have any rotation. Indeed, Equation (21)

becomes p0 > 2cmξB2 = 8cmξ(
√
L− 1Bks + Bscale)

2.

Other cases. Note that ητvks = ητ(fks
0 Bks/P + fks

1 Bscale) ∼ ητfks
1 Bscale and

thanks to Equation (20), εB = fks
1 (ητ + 2ηBconst)Bscale. So

p0 > 2cm
(
εB + ητvks)

2 ∼ 2cm(2ηfks
1 Bscale(τ + Bconst)

)2
.

If we do not have any rotation, Equation (21) becomes p0 > 2cmξB2, namely,
either p0 > 8cmξB2

scale in the GHS and Hybrid case, or p0 > 8cmkξB2
scale in their

RNS variant.

3.8 The Key Switching Modulus P

The biggest modulus for GHS and Hybrid key-switching is Q = PqL−1, where

qL−1 = q = p0pL−1

∏L−2
ℓ=1 pℓ is the the ciphertext modulus and the value of P is

summarized in Table 2.

ks RNS Case P

GHS

−
τ ̸= 0 KqL−2

Bks
Bscale

τ = 0 KqL−3
Bks
Bscale

✓
τ ̸= 0 KqL−2

√
L− 1 Bks

Bscale

τ = 0 KqL−3

√
L− 2 Bks

Bscale

− any Kω
√

logω(qL−2)
Bks
Bscale

Hybrid

✓ any Kp
L/ω
L−2

√
w(L− 1) Bks

Bscale

Table 2. The key switching modulus P .

Finding and Evaluating Parameters for BGV 23

From Table 2, one can also see that the hybrid key switching provide smaller P ,
where K ∈ N is a large enough constant (i.e., we can take K ∼ 100), Bconst =
Dt
√

n/12, Bclean, Bscale and Bks as in Equations (6) to (8), respectively.

3.9 Parameters Specification

In Table 3 we summarize all the parameters specification, where, we recall that
qℓ =

∏ℓ
j=0 pj for any level 0 ≤ ℓ ≤ L− 1 and, for the RNS variant of GHS and

Hybrid, we have P =
∏k

j=1 Pj .

t ≡ 1 mod m for CRT
gcd(t, q) = 1 for security reason
Pi and pj small primes for RNS
pj ≡ 1 mod m and Pi ≡ 1 mod m for efficient NTT
pℓ roughly of the same size with 1 ≤ ℓ ≤ L− 2

Table 3. Required parameter specification

Moreover, for the scaling procedure (see Section 2.5), one can choose

pi ≡ 1 mod t and P ≡ 1 mod t.

3.10 Modulus Size for Power-of-Two Cyclotomics

In this section we summarize the moduli size considering Φm(x) = xn + 1 and
n = 2κ (and so m = 2n). Let ξ be as in Table 1, Bconst = Dt

√
n/12, Bclean, Bscale

and Bks as in Equations (6) to (8), respectively, with ϕ(m) = n. ks denote the
key switching procedure, where B, G/H are BV, GHS and Hybrid without RNS
variant, respecively.

p0 pℓ pL−1

8ξ(Bscale +
√
L− 1Bks)

2 4ξ(Bscale +
√
L− 1Bks)

Bclean

Bscale + 2
√
L− 1Bks

BV-RNS

8kξB2
scale 4ξ

√
kBscale

Bclean

(2
√
k − 1)Bscale

G/H-RNS

8ξB2
scale 4ξBscale

Bclean

Bscale
else

Table 4. Case with no rotations (τ = 0).

24 J. Mono et al.

Note that, in the RNS variant of BV key-switching when τ ̸= 0 (denoted by
B∗) L = 2(M +1), where M is the multiplicative depth of the circuit. In all the
other cases L = M + 1.

p0

8η2(2τω
√
L− 1 logω(Bks)Bks + BconstBscale)

2 B

32η2τ2(L− 1)B2
ks B∗

8η2(τ + Bconst)
2B2

scale G/H

8kη2(τ + Bconst)
2B2

scale G/H-RNS

pℓ

η2Bconst(4τω
√
L− 1 logω(Bks)Bks + BconstBscale) B

4η2τ
√
L− 1BconstBks B∗

4η2(τ + Bconst)BconstBscale G/H

4η2
√
k(τ + Bconst)BconstBscale G/H-RNS

pL−1

(
2τω
√
L− 1 logω(Bks)Bks

)−1

BconstBclean B(
16η2τ2(L− 1)B2

ks − Bscale

)−1

Bclean B∗

(
τ

Bconst
+ 1

)−1 Bclean
Bscale

G/H

(√
k
(

τ
Bconst

+ 2
)
− 1

)−1 Bclean
Bscale

G/H-RNS

Table 5. Case with τ ̸= 0 rotations.

4 A Parameter Generator for BGV

In the following, we introduce the empirically derived, closed security formula
for our parameter generator. Then, we introduce the generator itself within the
context of our research.

4.1 Security Analysis

We propose an empirically derived formula linking the security level λ with the
dimension n for a given ciphertext modulus size log q enabling a fast security

Finding and Evaluating Parameters for BGV 25

estimate for the parameter generation. Let us consider a full rank lattice L. We
know that the shortest vector of L has norm ||b1|| = δk0q

n/k (see Equation (4)).
To perform lattice reduction on L, the LWE attacker has to choose the number of
semples M , namely the subdimension, such that ||b1|| = δM0 qn/M is minimized.
Micciancio and Regev [17] showed that this minimum is obtained when M =√
n log q/ log δ0. We can suppose that we should reduce the basis enough so that
||b1|| = q. This implies that log q = log(δM0 qn/M) = 2

√
n log q log δ0, that is

n = log q/(4 log δ0). (23)

Substituting (23) in (5), we have a bound linking λ, n and q. Then, we run
through the following steps deriving our final formula

1. We run the lattice estimator [3] for the dimensions n = 2k and the secret
distribution χs = U3 and χs = χe. We choose k ∈ {10, . . . , 15} following the
Homomorphic Encryption Standard [2].

2. Starting from the theoretical bound linking λ, n, and q, we find a function
that follows the data points generated with the lattice estimator.

3. Finally, we model the resulting formula with coupled optimization finding
the final constants.

Thus, we obtain

λ ≈ − log

(
A log q

n

)
Bn

log q
+C

√
log q

n
log

(
n

log q

)
, (24)

where
A = 0.07 B = 0.34 C = 18.53 when χs = U3 (Figure 2).
A = 0.65 B = 0.53 C = 22.88 when χs = χe.

This formula (provide λ, receive n) opens up the possibility to generate param-
eters for a given security level.

We provide a visualization of the formula in Figure 2 together with the
original data points by the Lattice Estimator (for χs = U3). Note that for GHS
and Hybrid key switching variants, we have to consider the bigger modulus
Q = qP to evaluate the security.

4.2 A Parameter Generator for BGV

The parameter generator for BGV provides an accessible way to our theoretical
work. Most importantly, developers can use the generator and receive a simple
code example as well as a simple benchmarking setup to easily compare differ-
ent parameter scenarios on their local setups. The generator itself is written in
Python and will be publicly available on GitHub 5.

5 https://github.com/Crypto-TII/fhegen

26 J. Mono et al.

Fig. 2. The security formula with data points of the Lattice Estimator when χs = U3.

It consists of four modules: the BGV module, a code generation module, a
configuration module and an interactive module. The BGVmodule is the heart of
the generator. It provides a function to calculate all necessary bound constants
as well as generation functions for the ciphertext and key switching moduli q
and P as well as a power-of-two cyclotomic order m. Additionally, it handles the
logic of the interactive menu and implements compatibility checks for our target
library PALISADE.

The code generation module outputs three files: a Makefile, a main.cpp file
with example and comparison code for a single plaintext and a bench.cpp file
with simple benchmarks for the basic homomorphic operations. As we cannot
cover all possible environments, users can adjust some of the environment-specific
options such as the benchmark repetitions or the include paths for each library
in the configuration module. The interactive module handles user dialogs as well
as input parsing.

Interactive Mode The interactive mode of the parameter generator prompts the
user for a number of questions. We list required inputs in the first part, optional
inputs in the second part of Table 6. After providing all required information,
the user receives the output in text form and, if the PALISADE option is chosen,
the generated code. The output for the ciphertext modulus contains the bound
on the ciphertext modulus itself as well as the bounds for the bottom, middle
and top modulus, respectively.

Finding and Evaluating Parameters for BGV 27

t or log t any integer ≥ 2
λ or m any integer ≥ 40 or ≥ 4, respectively
M , η any integer > 0
τ any integer ≥ 0
Library 'None', 'PALISADE'

Full Batching full batching with t, 'True' or 'False'
Secret Distribution 'Ternary', 'Error'
Key Switching 'Hybrid', 'BV', 'GHS'
ω any integer ≥ 1

Table 6. Required and optional inputs to the parameter generator

An exemplary output is the following.

$ python fhegen/bgv.py

Welcome to the interactive parameter generator for BGV! :)

Do you want a specific plaintext modulus? [N/?]:

[...]

Do you want to continue to the advanced settings? [N/y]:

Generated your BGV configuration!

sec: 157.49

d: 16384

t: 65537

logq: 354 (111, 80, 3)

logP: 11

slots: 16384

Generating Makefile , main.cpp and bench.cpp for PALISADE.

Listing 1.2. Shortened example on usage and output of the parameter generator

Limitations Due to internal workings of PALISADE, we cannot guarantee that
all parameter sets work. For example, PALISADE supports only a plaintext of
up to 60 bit and thus choosing a larger plaintext modulus will result in non-
working code. However, we are happy to work with the community to integrate
checks on these constraints as users encounter them.

Future Work For future work, we would propose extending the parameter gen-
erator to other available BGV implementations such as the recently released
OpenFHE6. Additionally, we suggest applying our approach of flexibel parame-
ter generation to other FHE schemes such as Brakerski Fan Vercauteren (BFV).
In general, we think that there still is room to improve the parameter generation
process for FHE schemes in use-case specific scenarios.

6 https://www.openfhe.org/

28 J. Mono et al.

5 Conclusion

Finding an optimal set of parameters for a specific FHE scheme is a challenging
task. Use-case specific aspects such as the multiplicative depth or the amount of
rotations with key switchings performed significantly impact the error growth.
Hence, evaluating parameters in each use case is a necessity for choosing FHE
parameters.

In this work, we extend previous analysis bringing together the DCRT rep-
resentation and the canonical embedding norm and improve upon the existing
state-of-the-art. Additionally, we define new circuit models that include essential
BGV operations such as constant multiplication or rotations. We then provide an
in-depth analysis of the noise growth for the three main variants of key switching
and provide several formulas for parameter generation.

We also provide an empirically derived and closed formula to estimate the
security of a given parameter set based using coupled optimization for ternary
and Gaussian secrets. Finally, we combine our theoretical research and imple-
ment our results in an interactive parameter generator for BGV which outputs
easy-to-use code snippets for PALISADE.

Acknowledgements We want to thank Anna Hambitzer for her helpful comments
on coupled optimization.

Bibliography

[1] Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic
encryption schemes: Theory and implementation. ACM Computing Surveys
(CSUR) 51(4), 1–35 (2018)

[2] Albrecht, M.R., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov,
S., Halevi, S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio,
D., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic
encryption security standard. Tech. rep., HomomorphicEncryption.org,
Toronto, Canada (November 2018)

[3] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

[4] Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.)
Advances in Cryptology – CRYPTO 2011. pp. 505–524. Springer, Berlin,
Heidelberg (2011)

[5] Chen, H., Kim, M., Razenshteyn, I., Rotaru, D., Song, Y., Wagh, S.: Mali-
ciously secure matrix multiplication with applications to private deep learn-
ing. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. pp. 31–59. Springer (2020)

[6] Costache, A., Smart, N.P.: Which ring based somewhat homomorphic en-
cryption scheme is best? In: Cryptographers’ Track at the RSA Conference.
pp. 325–340. Springer (2016)

[7] Costache, A., Laine, K., Player, R.: Evaluating the effectiveness of heuristic
worst-case noise analysis in FHE. In: European Symposium on Research in
Computer Security. pp. 546–565. Springer (2020)

[8] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Annual Cryptology Confer-
ence. pp. 643–662. Springer (2012)

[9] Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.)
Advances in Cryptology – EUROCRYPT 2008. pp. 31–51. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008)

[10] Gentry, C.: A fully homomorphic encryption scheme, vol. 20. Stanford uni-
versity Stanford (2009)

[11] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES
Circuit. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology –
CRYPTO 2012. pp. 850–867. Springer, Berlin, Heidelberg (2012)

[12] Iliashenko, I.: Optimisations of fully homomorphic encryption (2019)
[13] Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption

schemes for finite fields (2021)
[14] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning

with errors over rings. In: Gilbert, H. (ed.) Advances in Cryptology – EU-
ROCRYPT 2010. pp. 1–23. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

30 J. Mono et al.

[15] Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek, F.H., Aaraj, N.:
Survey on fully homomorphic encryption, theory and applications (2022)

[16] Martins, P., Sousa, L., Mariano, A.: A survey on fully homomorphic encryp-
tion: An engineering perspective. ACM Computing Surveys (CSUR) 50(6),
1–33 (2017)

[17] Micciancio, D., Regev, O.: Lattice-based Cryptography. Springer, Berlin,
Heidelberg (2009)

[18] PALISADE: https://palisade-crypto.org
[19] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-

tography. In: Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing. pp. 84–93 (2005)

[20] Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical programming
66(1-3), 181–199 (1994)

[21] Seiler, G.: Faster avx2 optimized ntt multiplication for ring-lwe lattice cryp-
tography (January 2018), https://eprint.iacr.org/2018/039

