
The Hardness of LPN over Any Integer Ring

and Field for PCG Applications

Hanlin Liu

Shanghai Jiao Tong University

hans1024@sjtu.edu.cn

Xiao Wang

Northwestern University

wangxiao@cs.northwestern.edu

Kang Yang

State Key Laboratory of Cryptology

yangk@sklc.org

Yu Yu

Shanghai Jiao Tong University

Shanghai Qizhi Institute

yuyu@yuyu.hk

Abstract

Learning parity with noise (LPN) has been widely studied and used in cryptography. It was recently

brought to new prosperity since Boyle et al. (CCS’18), putting LPN to a central role in designing secure

multi-party computation, zero-knowledge proofs, private set intersection, and many other protocols. In

this paper, we thoroughly studied the concrete security of LPN problems in these settings. We found that

many conclusions from classical LPN cryptanalysis do not apply to this new setting due to the low noise

rates, extremely high dimensions, various types (in addition to F2) and noise distributions.

• For LPN over field Fq , we give a parameterized reduction from an exact noise distribution to a regu-

lar one that not only generalizes the recent result by Feneuil, Joux and Rivain (Crypto’22), but also

significantly reduces the security loss by paying only an additive price in dimension and number of

samples.

• We analyze the security of LPN over a ring Z2λ . Although existing protocols based on LPN over

integer rings use parameters as if they are over fields, we found an attack that effectively reduces the

weight of a noise by half compared to LPN over fields. Consequently, prior works that use LPN over

Z2λ overestimate up to 40 bits of security.

• We provide a complete picture of the hardness of LPN over integer rings by showing: 1) the equiva-

lence between its search and decisional versions; 2) an efficient reduction from LPN over F2 to LPN

over Z2λ ; and 3) generalization of our results to any integer ring.

• For LPN over finite fields, we found that prior analysis ignored some important differences between

classical LPN cryptanalysis and the new setting, leading to overly conservative parameters. We show

that even after bringing all classical LPN cryptanalysis, including the latest SD 2.0 analysis (Asi-

acrypt’22), to the setting over finite fields, much less weight of noises is needed for the same level of

security.

To improve the use of LPN assumptions for a wide range of cryptographic protocols, we provide an

open-sourced script that estimates the concrete security of LPN over integer rings and finite fields.

1 Introduction

The learning parity with noise (LPN) assumption states that it is hard to distinguish LPN samples (A,A ·
s + e) from random samples, where A is a public matrix, s is a random secret and e is a noise vector

sampled from a sparse distribution. The LPN assumption has been applied to build various primitives, e.g.,

1

hans1024@sjtu.edu.cn
wangxiao@cs.northwestern.edu
yangk@sklc.org
yuyu@yuyu.hk

Protocol LPN type

[BCG+19a, YWL+20] OT F2

[SGRR19] VOLE F261−1 and Z264

[WYKW21] ZK F2 and F261−1
[FKL+21] ZK F2128

[RS21, BC22, RR22] PSI F2128

[BMRS21] ZK F240 and F261−1
[BBMH+21] ZK Z272

[BBMHS22a] ZK Z2104

(a) Prior works in the PCG framework and their re-

quired LPN variants over different fields and rings.

0 5 10 15 20 25 30
75

100

125

150

175

200

The bit-length of a ring/field element

B
it

se
cu

ri
ty

LPN over F2λ

LPN over Z2λ

Analysis in [BCGI18]

(b) The bit-security from our analysis for LPN over F2λ and

Z2λ . Parameters N = 210, k = 652, t = 106 are used.

Figure 1: LPN assumptions in prior work and our analysis on one set of parameters. For a set of parameters

(N, k, t), N is the number of samples, k is the dimension and t is the Hamming weight of a noise vector.

symmetric encryption and authentication (e.g., [HB01] and follow-up works), public key encryption [Ale03],

commitment scheme [JKPT12], garbled circuits [App16], oblivious transfer [DDN14] and collision-resistant

hash functions [BLVW19, YZW+19]. All these primitives adopt LPN over binary field F2 with moderate

dimensions.

Recent works by Boyle et al. [BCGI18, BCG+19b] introduced the pseudorandom correlation genera-

tor (PCG) paradigm that can produce a large batch of correlated randomness, e.g., oblivious transfer (OT)

and vector oblivious linear evaluation (VOLE), at a small cost. At the core of the PCG idea is to build

a pseudorandom generator (PRG) with a simple internal structure from LPN-style assumptions and then

privately evaluate such a PRG using function secret sharing [BGI15]. The sparsity of a noise e translates

to communication efficiency, while the efficiency of LPN encoding translates to computational efficiency.

Later, the PCG paradigm was used to build a series of concretely efficient protocols with sublinear commu-

nication [SGRR19, BCG+19b, YWL+20, WYKW21, CRR21, BBMHS22b] for generating correlated OT

(COT) or VOLE correlations. These PCG-like protocols have gained a lot of interests in designing various

concretely efficient protocols, including secure multi-party computation (MPC) (e.g., [DPSZ12, NNOB12,

WRK17, HSS20, CDE+18, DILO22a]), zero-knowledge (ZK) proofs (e.g., [WYKW21, BMRS21, DIO21,

YSWW21, DILO22b, BBMHS22b]), privacy-preserving machine learning [SGRR19, WYX+21], private

set intersection (PSI) [RS21, BC22, RR22], etc.

Although widely used in a lot of cryptographic protocols and real-world applications, many of them use

LPN variants that have not attracted much attention in cryptanalysis, especially compared to the classical

LPN assumption over F2 [Ale03, FS09, HS13, TS16]. Furthermore, prior analysis on the classical LPN

assumption does not directly cover the LPN variants used in the PCG setting because of their unique features:

• Protocols often require an LPN assumption over a ring other than F2, including a finite field or even an

integer ring 1 like Z2λ .

• Most existing analyses focus on a Bernoulli noise distribution, but all PCG-like protocols adopt an exact

noise distribution. Meanwhile, the difference in concrete security between the Bernoulli and exact noise

is unclear.

• Most applications require an LPN assumption with very high dimension (e.g., millions) and low noise rate

1By integer ring we refer to ZN for any composite number N , which is used to distinguish from polynomial rings.

2

(e.g., 1/105), which is out of the typically reported range of parameters considered for coding theoretic

primitives.

At this point, all implementations of PCG use the LPN parameters from the original work by Boyle et

al. [BCGI18], who analyzed the concrete security of LPN over F2128 . However, as we summarize in Table 1a,

follow-up works used the same analysis to choose parameters for many different variants of LPN over F2,

Fp, and Z2λ , many of which were not covered by the original analysis. It was not clear how large a gap in

security when using LPN parameters over a field for LPN over another field or ring.

In addition, multiple PCG-like protocols [BCGI18, BCG+19b, BCG+19a, YWL+20, WYKW21, CRR21,

BCG+22] together with some MPC protocols such as [HOSS18] adopt a variant of exact noise distributions

called regular noise distributions to achieve significantly better efficiency, where a regular noise distribution

further divides a noise vector into t consecutive sub-vectors of size ⌊N/t⌋ and each sub-vector has a single

noisy coordinate, where N is the number of samples. The recent reduction by Feneuil et al. [FJR22] from an

exact noise distribution to a regular noise distribution incurs a large security loss, which makes the security

gap between two noise distributions be still large.

1.1 Our Contribution

We conduct a systematic study on the LPN assumptions used by recent PCG-like protocols that can be in turn

applied in MPC, ZK, PSI etc. For all relevant applications, each requiring a field or ring of different sizes,

we provide concrete parameter recommendations by giving an open-sourced Python script 2that estimates

the bit-security of LPN problems over arbitrary integer rings and finite fields. The previous cryptanalysis

provides a good coarse-level estimation but the exact bit-security can differ by 20 to 80 bits. In particular, the

field size and the type of elements (finite field vs integer ring) hugely impact the security of the underlying

LPN assumption. For example, as shown in Figure 1b 3, for a set of parameters that [BCGI18] estimates to

have 128-bit security, our analysis shows that the bit-security of LPN over finite fields is about 175 to 194
bits and its security over integer rings is mostly below 90 bits when the ring size is larger than 26. These

findings are a combination of correction/refinement from prior works as well as new attacks/reductions on

LPN over rings, where we provide the upper bound and lower bound of their exact security. We also give a

tighter reduction from an exact noise distribution to a regular noise distribution, and thus significantly shrink

the security gap between two noise distributions.

The hardness of LPN under regular noise distributions. Recently, Feneuil et al. [FJR22] observed that

an exact noise vector (of Hamming weight t) is also regular with some probability (estimated to e−t in Sec-

tion 3), and thus (T ,ǫ)-hard LPN under exact noise implies (T ,etǫ)-hard LPN under regular noise. However,

the security loss is sometimes unaffordable as LPN may not have security beyond et in many practical set-

tings. We introduce a tunable parameter α ≥ 1 and show that if the LPN over Fq with dimension k, sample

number N , and exact weight-t noise is (T ,ǫ)-hard, then the LPN over Fq with dimension (k + αt), sample

number (N+αt), and regular weight-(αt) noise is (T −poly(k,N),2
t
α
+2 ·ǫ)-hard, where factor 1/α allows

to weaken the security loss at the exponent, while it adds only an additive term αt to the dimension, and the

number of samples.

The hardness of LPN over integer rings. Although having been used in protocol design [SGRR19,

BBMH+21, BBMHS22a], the LPN assumption over an integer ring has only been studied in a handful

of papers, without much concrete analysis. Akavia [Aka08] studied the hardness of Learning Characters

with Noise problem in the random samples access model, which generalizes LPN over any integer ring and

noise of bounded Hamming weight.

2This script can be found at https://gist.github.com/hansliu1024/21c87609e75f6cc52decdc69981e1d5b.
3In this figure and the following tables, the number of samples N and dimension k are adopted from [BCGI18], and the weight

of a noise vector t in [BCGI18] is increased to make the parameters achieve 128-bit security according to the analysis [BCGI18].

3

https://gist.github.com/hansliu1024/21c87609e75f6cc52decdc69981e1d5b

LPN This work [BCGI18]

N k t F2128 F28 Z2128 Z4 F2 Any field size

210 652 106 194 186 89 116 176 128
212 1589 172 155 146 76 95 131 128
214 3482 338 150 144 78 95 132 128
216 7391 667 151 148 82 99 135 128
218 15336 1312 153 153 87 104 139 128
220 32771 2467 155 157 92 108 143 128
222 67440 4788 156 160 97 113 147 128

Table 1: The comparison of our analysis and [BCGI18] about the bit-security of an LPN problem with dimension k,

number of samples N and Hamming weight of noises t over different rings. Each noise vector is sampled uniformly

at random such that it has a fixed Hamming weight t.

dual-LPN This work [BCGI18]

n N t F2128 F28 Z2128 Z4 F2 Any field size

210 212 88 208 198 99 122 177 128
212 214 83 200 190 101 126 175 128
214 216 78 195 184 104 128 175 128
216 218 73 190 180 104 126 173 128
218 220 68 186 176 106 127 169 128
220 222 63 182 172 107 127 165 128
222 224 58 177 168 109 126 162 128

Table 2: The comparison of our analysis and [BCGI18] about the bit-security of a dual-LPN problem with n = N/4
(corresponding to the number of COT/VOLE correlations), number of samples N , Hamming weight of noises t. Each

noise vector is sampled uniformly at random such that it has a fixed weight t.

All existing works select the parameters assuming that LPN over an integer ring is as secure as LPN

over a finite field and then use the parameter recommendation from [BCGI18]. However, as our analysis

shows in Figure 1b and in Tables 1 and 2, LPN over an integer ring is significantly more vulnerable to

attacks than LPN over a finite field of similar size. What’s more, although LPN over a finite field becomes

harder to attack as the field size increases, LPN over an integer ring becomes easier to attack as the ring

size increases! We briefly discuss our results below and summarize their relationships in Figure 2.

1. Focusing on the most commonly used ring Z2λ , we show a concrete attack that can solve a t-noise LPN

over Z2λ by solving a
(
2(λ−1)

2λ−1 · t
)

-noise (which approximates to t/2) LPN over F2. This means that LPN

over an integer ring is concretely weaker than LPN over a finite field and we need to double the weight

of noise vectors to cover this attack. The impact to existing cryptographic protocols is significant. It will

lead to roughly 2× more communication and computation.

2. On the positive side, we provide evidence that the LPN assumption over an integer ring is generally hard.

In particular, we show a reduction between t-noise LPN over F2 and (λ · t)-noise LPN over a ring Z2λ ,

which means that LPN over an integer ring is asymptotically as hard as classical LPN. This “efficient”

reduction requires a different noise distribution: instead of sampling t locations and putting a uniform

non-zero entry from Z2λ in each location, we need to sample λ weight-t noise vectors e0, . . . , eλ−1 over

F2, and define the final noise vector as e =
∑

i∈[λ] 2
i ·ei with weight≤ λ · t. This noise distribution may

4

Comp-LPN over F2

Comp-LPN over Z2λ
Sec 4.3

Dec-LPN over F2

Dec-LPN over Z2λ

trivial

trivial[BFKL94, KSS10, AIK07]

Sec 4.1

Sec 4.2

Figure 2: The reduction relations between computational and decisional versions of LPN over F2 and Z2λ

in the presence of Bernoulli and exact noise distribution.

be interesting, as it can be used in the design of PCG-like protocols by adopting the upper bound λ · t to

run these protocols. This change of distributions is crucial: without such change, the best reduction that

we can find goes from t-noise LPN over F2 to (2λ · t)-noise LPN over Z2λ , which is exponentially worse

than the above. Another interesting fact is that the above reductions only require the code matrix A to

be Boolean, which eliminates the need for integer multiplication during encoding. Prior work [CRR21]

observed that using a Boolean code matrix is not vulnerable to existing linear-test attacks for LPN over

finite fields; here we show that for LPN over integer rings, using a Boolean matrix is provably secure

assuming that classical LPN over F2 is hard.

3. While the above reductions focus on the decisional version of LPN, we also give a reduction from com-

putational LPN over Z2λ to that over F2. Thus, we show the equivalence between computational and

decisional versions of LPN over Z2λ as shown in Figure 2. We also generalize all the results to any

integer ring. In particular, we show a concrete attack that can solve a t-noise LPN over ring Zpλ1qλ2

by solving either a
(
p−1
p · t

)
-noise LPN over Fp or a

(
q−1
q · t

)
-noise LPN over Fq, where p, q are two

primes. This attack works for both computational and decisional versions of LPN. We also give a reduc-

tion from t-noise LPN over Fp and t-noise LPN over Fq to
(
(λ1+λ2) ·t

)
-noise LPN over Zpλ1qλ2 . Given

these reductions over Zpλ1qλ2 , one can easily generalize them to any integer ring.

The hardness of LPN over finite fields. When |F| > 2, [BCGI18] is the main work that provides compre-

hensive cryptanalysis in this setting. They analyzed the concrete security of LPN instances over a large field

by considering Pooled Gauss (called Gaussian elimination in [BCGI18]), statistical decoding (SD, a.k.a.,

low-weight parity check) and information set decoding (ISD) attacks. Our new analysis shows that the

parameters of LPN over finite fields given in [BCGI18] are overly conservative (see Table 1 and Table 2).

Their analysis shows that the low-weight parity check is almost always the best attack and the attack cost

does not change when changing the field size. We find that [BCGI18] ignored some important differences

between classical LPN cryptanalysis and the new setting, and have the following:

1. Concurrent to our work, Carrier et al. [CDAMHT22] modified the framework of the SD attack and

proposed a new variant, called the SD 2.0 algorithm. Under the Gilbert-Varshamov (GV) bound noise

regime 4, the attack even outperforms all ISD algorithms for k < 0.3N , e.g., (N, k, t) = (214, 3482, 3850)
or (216, 7391, 19900). However, we observe that the SD 2.0 algorithm [CDAMHT22] does not behave

well in solving the low-noise LPN problems underlying the PCG-like protocols, because the collision

technique used by the SD 2.0 algorithm takes exponential time |F|θ(k) that is much larger than the

4The GV bound decoding over F2 is to solve LPN instances that achieve the GV relative distance t/N = H
−1(1 − k/N),

known as the hardest non-trivial instance of interest for classical LPN cryptanalyses, where H(·) is the binary entropy function.

5

subexponential security 2O(kµ) of the low-noise LPN assumption, where dimension k and low noise

rate µ = k−c for constant 0 < c < 1. Inspired by this observation, we propose an adapted algorithm to

analyze the low-noise LPN assumption by replacing it with other collision techniques, e.g., [BCGI18].

For all the LPN parameters given in [BCGI18], we show that SD attack, even taking into account the

adapted SD 2.0 algorithm, has the largest cost (see Table 3 and Table 4 of Section 5). Furthermore, we

prove that both an optimal SD attack and SD 2.0 attack (adapted to the low-noise setting) require more

cost than the original Prange’s ISD algorithm [Pra62] for a large set of commonly used parameters: |F| =
kω(1), the Hamming weight of the noise t = o(N) and the number of samples (1+β) ·k ≤ N = poly(k)
for constant β > 0. We note that our results do not invalidate SD 2.0 due to the different parameter

settings considered in [CDAMHT22] and by us. This again shows the disparity between classical LPN

cryptanalysis and ones used for MPC.

2. All the attacks listed in [BCGI18] do not take into account the sizes of fields. As a result, follow-up

works also use the same analysis formula for fields of other sizes. We show that ISD (including Pooled

Gauss as its special case) is the best attack to solve the low-noise LPN problems over finite fields, and the

cost of ISD attack increases as the field size increases. We also find that the advantage of the advanced

ISD algorithm over Pooled Gauss attack gradually disappears as the field size increases (see Figure 3 of

Section 5). Particularly, when the field size is large enough, ISD has the same cost as Pooled Gauss.

Compared to the analysis [BCGI18], our new analysis shows that one can reduce the weight parameter t by

20%− 40% when keeping the same security level. This directly allows us to obtain the efficiency improve-

ment of PCG-like COT and VOLE protocols, which in turn improves the MPC, ZK and PSI applications.

2 Preliminary

2.1 Notation

We will use κ and ρ to denote the computational and statistical security parameters, respectively. We denote

by log the logarithm in base 2. For a, b ∈ N with a ≤ b, we write [a, b] = {a, . . . , b−1} and use [n] to denote

[0, n− 1] for simplicity. We use x← S to denote sampling x uniformly at random from a set S and x← D
to denote sampling x according to a distributionD. For a ringR, we denote by |R| the size ofR. By slightly

abusing the notation, for a vector a, we use |a| to denote the Hamming weight of a, and denote by a[i] the

i-th component of a. For a vector a ∈ (Z2λ)
k, we use BitDecomp(a) to denote the bit-decomposition of

a, and the output of BitDecomp(a) is denoted by (a0,a1, · · · ,aλ−1) such that ai ∈ F
k
2 for each i ∈ [λ]

and (a0[j],a1[j], . . . ,aλ−1[j]) is the bit-decomposition of ring element a[j] ∈ Z2λ for each j ∈ [k]. Let

BitDecomp−1(a0,a1, · · · ,aλ−1) =
∑λ−1

i=0 2i·ai ∈ (Z2λ)
k be the inverse of BitDecomp(a). We use poly(·)

to denote a polynomial function. For 0 < µ < 1/2, let H(µ)
def
= µ · log(1/µ) + (1− µ) · log(1/(1− µ)) be

the binary entropy function. We will use the following lemmas throughout the paper:

Lemma 1 (Asymptotics for binomial coefficients (see, e.g., [GKP94])). For any 0 < µ < 1/2, we have(
n
nµ

)
= 2nH(µ)− logn

2
+O(1), where binary entropy H(µ) ∈

(
µ log(1/µ), µ(log(1/µ) + 3

2)
)
.

Lemma 2 (see, e.g., [YS16]). For any µ ∈ (0, 1), if each coordinate of a vector v ∈ F
t
2 is independently

set to 1 with probability µ, then the probability that the Hamming weight of v is equal to ⌈µt⌉ is at least

Ω(1/
√
t).

2.2 Learning Parity with Noise

Recently, variants of the Learning Parity with Noise (LPN) assumption [BFKL94] are used to build PCG-

like protocols with sublinear communication for generating (C)OT and (V)OLE correlations. The LPN

6

variants are defined over a general finite ring R. The known LPN-based protocols mainly consider three

cases for the choices of ringR:

• Case 1 that R = F2 is used to design the COT protocols [BCG+19b, BCG+19a, YWL+20, CRR21],

which is in turn able to be transformed into standard OT protocols.

• Case 2 that R is a large finite field F with |F| ≥ 2ρ is used to construct the VOLE protocols [BCGI18,

BCG+19a, SGRR19, WYKW21, CRR21] and the OLE protocol [BCG+19b].

• Case 3 thatR = Z2λ (e.g., λ ∈ {32, 64, 128}) is used to obtain the VOLE protocols [SGRR19, BBMH+21].

For the other case that R is a small finite field (e.g., R = F28), it is still interesting to design some subfield

VOLE protocols [SGRR19, WYKW21]. When considering some more general rings such as R = Zpλ for

a prime p > 2 and R = Zpλ1qλ2 for two primes p, q, the LPN problems over such rings may be useful for

future protocols.

Following the previous work (e.g., [BCG+19b, BCG+19a]), we define the (primal-)LPN and dual-LPN

assumptions over a general ringR as follows:

Definition 1 (LPN). Let D(R) = {Dt,N (R)}t,N∈N denote a family of distributions over a ring R such

that for any t,N ∈ N, Im(Dt,N (R)) ⊆ RN . Let C be a probabilistic code generation algorithm such that

C(k,N,R) outputs a matrix A ∈ RN×k. For dimension k = k(κ), number of samples N = N(κ), Ham-

ming weight of a noise vector t = t(κ), and a ring R, we say that the decisional (D,C,R)-LPN(k,N, t)
problem is (T, ǫ)-hard if for every probabilistic distinguisher B running in time T , we have

∣∣∣∣ Pr
A,s,e

[
B(A, b

def
= A · s+ e) = 1

]
− Pr

A,u
[B(A,u) = 1]

∣∣∣∣ ≤ ǫ,

where A ← C(k,N,R), s ← Rk, e ← Dt,N (R) and u ← RN . We say that the computational

(D,C,R)-LPN(k,N, t) problem is (T, ǫ)-hard if for every probabilistic algorithm B running in time T ,

we have

Pr
A,s,e

[
B(A, b

def
= A · s+ e) = (s, e)

]
≤ ǫ,

where A, s, e are defined as above.

In the above definition, both T and ǫ are functions of computational security parameter κ. We mainly

consider the following families of noise distributions:

• Bernoulli. Let Ber(R) = {Berµ,N (R)}µ,N be the family of Bernoulli distributions. In particular,

Berµ,N (R) is a Bernoulli distribution with parameters µ,N over a ring R, such that each component

in a vector sampled from Berµ,N (R) is a uniform element in R with probability µ and 0 otherwise. The

expected Hamming weight of the sampled vector is t = µN(|R| − 1)/|R|. Note that the definition

is equivalent to sampling a uniform non-zero element in R with probability µ(|R| − 1)/|R| for each

component.

• Exact. Let HW(R) = {HWt,N (R)}t,N be the family of exact distributions. In particular, each component

of a noise vector sampled from HWt,N (R) is a uniform non-zero element in t random positions and zero

elsewhere. To simplify the description, we often refer to such a distribution as an exact noise distribution.

• Regular. To achieve better efficiency, prior works [HOSS18, BCG+19b, BCG+19a, YWL+20, WYKW21]

further consider the family of regular noise distributions, denoted by RHW(R) = {RHWt,N (R)}t,N . In

addition to fixed Hamming weight, the noise vector further divides into t consecutive sub-vectors of size

⌊N/t⌋, where each sub-vector has a single noisy coordinate. We are not aware of any non-trivial attacks

7

that can utilize the regular structure beyond reducing the dimension by t, which has also been noted by

previous work, e.g., [HOSS18, BCGI18, BCG+19b, BCG+19a]. Thus, our analysis of the hardness of

(dual-)LPN for exact noise distributions (as shown in Section 5) has covered the case of regular noise

distributions.

The existing LPN-based PCG-like protocols adopt the latter two noise distributions, and the standard LPN

assumption adopts the Bernoulli distribution. While the standard LPN assumption uses random linear codes

to instantiate C (i.e., sampling A uniformly at random), these LPN-based protocols adopt other kinds of

linear codes to obtain faster computation. The other linear codes to instantiate C include: local linear

codes [Ale03], LDPC codes and its variant [IKOS08, CRR21], quasi-cyclic codes [AMBD+18], MDPC

codes [MTSB13], Druk-Ishai codes [DI14], etc. In this paper, we did not analyze the hardness of the

LPN problems based on quasi-cyclic codes, which needs to take into account the effect of the DOOM

attack [Sen11] that allows providing
√
N computational speedup. As far as we know, other kinds of lin-

ear codes listed above seem not to lead to significantly better attacks, compared to random linear codes.

To simplify the notation, we often omit C from the (D,C,R)-LPN(k,N, t) problem, and only write

(D,R)-LPN(k,N, t).
Below, we define the dual-LPN assumption over a general finite ring R with a family D of noise distri-

butions, where both the decisional version and search version are described. The dual-LPN is also known as

syndrome decoding.

Definition 2 (Dual LPN). Let D(R) and C be as in Definition 1. For two integers N,n with N > n, we

define

C
⊥(N,n,R) =

{
H ∈ Rn×N : H ·A = 0, A ∈ C(N − n,N,R), rank(H) = n

}
.

For output length n = n(κ), number of samples N = N(κ), noise-vector Hamming weight t = t(κ), we

say that the decisional (D,C⊥,R)-dual-LPN(N,n, t) problem is (T, ǫ)-hard if for every PPT distinguisher

B running in time T : ∣∣∣∣Pr
H,e

[B(H,H · e) = 1]− Pr
H,u

[B(H,u) = 1]

∣∣∣∣ ≤ ǫ,

where H← C
⊥(N,n,R), e← Dt,N (R) and u← RN .

We say that the computational (D,C⊥,R)-dual-LPN(N,n, t) problem is (T, ǫ)-hard if for every probabilis-

tic algorithm B running in time T , we have

Pr
H,e

[B(H,H · e) = e] ≤ ǫ,

where H, e are defined as above.

For any fixed code generation algorithm C and noise distribution D, the dual-LPN problem defined as

above is equivalent to the primal-LPN problem from Definition 1 with dimension k = N−n and the number

of samples N . The direction transforming an LPN instance into a dual-LPN instance directly follows the

simple fact that H · (A · s+ e) = (H ·A) · s+H · e = H · e, as H is the parity-check matrix of the code

generated by A. The reverse direction can be obtained in a way similar to [MM11, Lemma 4.9]. As such,

we often write the (D,R)-dual-LPN(N,n, t) problem for simplicity. We give an overview of some attacks

on the LPN problem in Appendix C.

3 The Hardness of LPN with Regular Noise Distributions

Many MPC protocols [HOSS18, BCG+19b, BCG+19a, YWL+20, WYKW21] rely on the hardness of low-

noise LPN under the regular noise distribution (RHW,Fq)-LPN(k,N, t), where the noise vector is divided

8

into t blocks, each of length ⌊N/t⌋ and Hamming weight 1. Intuitively, LPN with regular noise may look

easier than that with exact noise. For example, the LPN over F2 with regular noise simply leaks t parity bits

of its secret and thus reduces the dimension by t.
Recently, Feneuil et al. [FJR22] introduced a reduction from the (dual)-LPN with a regular noise distri-

bution to that with an exact noise distribution5.

Theorem 1 (Theorem 1 of [FJR22], adapted). If the (HW,Fq)-problem is (T , ǫ)-hard, then the (RHW,Fq)-problem
is (T , ǫ·

(
N
t

)
/(Nt)

t)-hard, where the statement holds for both versions of LPN, i.e., problem ∈ {dual-LPN(N,n, t),
LPN(k,N, t)}.

The reduction suffers significant security loss, i.e., the penalty factor

pt =

(
N

t

)/(N
t

)t
=
(tt
t!

)
·
t−1∏

i=1

(1− i

N
) = et−Θ(ln t)−Θ(t2/N) = et(1−o(1)),

where the approximation is based on Stirling’s ln(t!) = t ln t−t+Θ(ln t), t = o(N), and 4−x ≤ 1−x ≤ e−x

for 0 ≤ x ≤ 1/2. Meanwhile, it is not hard to see that for many non-trivial parameter choices ǫ > e−t.
Consider the dual LPN problem

[H1,H2] · (e1‖e2) = H1e1 +H2e2 = y

where H1 ∈ F
n×n
q , H2 ∈ F

n×(N−n)
q , e1 ∈ F

n
q and e2 ∈ F

N−n
q . A polynomial-time attack simply bets

e2 = 0 and computes e1 = H
−1
1 y (assuming WLOG invertible H1), which succeeds with probability

(
n
t

)
/
(
N
t

)
=

N−n∏
i=1

(1− t
n+i) > e−

t(N−n)
n+1 . E.g., for N ≤ 2n the term ǫ > e−t cannot afford multiplying with

pt, which renders the bound meaningless. This is just the ǫ for T = poly(n,N), and for larger T it only

becomes worse due to the known optimizations and trade-offs between T and ǫ (see, e.g., [TS16]). The case

for (primal-)LPN is likewise.

In retrospect, [FJR22, Theorem 1] incurs significant loss because it simply uses 1/pt to account for the

probability that an exact noise vector is regular at the same time. We provide a new reduction below with

a new parameter α such that [FJR22, Theorem 1] becomes a corollary for α = 1. More importantly, with

large α we are able to reduce the security loss dramatically by dividing the exponent by α, while paying

only an additive price αt in dimension and number of samples.

Theorem 2. Let t,N ∈ N, and α ≥ 1 such that αt ∈ N and (αt)|N . If the (HW,Fq)-LPN(k,N, t) is

(T ,ǫ)-hard, then the (RHW,Fq)-LPN(k + αt,N + αt, αt) is (T − poly(k,N), 2
t
α
+2 · ǫ)-hard.

Proof. Let N = αtm for m ∈ N. On input of (HW,Fq)-LPN(k,N, t) samples parsed as

A
def
=

A1
...

Aαt

 , b

def
=

b1 = A1s+ e1
...

bαt = Aαts+ eαt

 ,

where each Ai ∈ F
m×k
q and ei ∈ F

m
q . Our analysis is conditioned on the event E that |ei| ≤ 1 for every

1 ≤ i ≤ αt, which occurs with probability

Pr
(e1,...,eαt)←HWt,N (Fq)

[E] =
(
αt
t

)
·
(
N
αt

)t
(
N
t

) =
t−1∏

i=1

(1− i
αt)

(1− i
N)
≥ 21−

t
α .

5In particular, [FJR22] considers a d-split noise, which consists of d blocks of length N/d and each block has weight t/d. For

d = t, it corresponds to the regular noise.

9

Sample matrix B ∈ F
k×(k+αt)
q , row vectors rT1 , . . ., rTαt ∈ F

k+αt
q uniformly at random. For each i,

define Ci
def
=

[
AiB

rTi − 1
T(AiB)

]
and b′i

def
=

[
bi

rTi x− 1
Tbi + ui

]
, where x is uniform over Fk+αt

q (subject

to s = Bx), 1T is the all-ones row vector (whose every coordinate is 1), ui is the non-zero entry of ei
if |ei| = 1, and otherwise ui is uniformly over Fq/{0}. We can verify that conditioned on E the shuffled

samples of (Ci, b
′
i = Cix +

[
ei

ui − 1
Tei

]
) are identically distributed to the i-th (1 ≤ i ≤ αt) block of the

(RHW,Fq)-LPN(k + t,N + t, t) instance, where

[
ei

ui − 1
Tei

]
is of Hamming weight 1 by the definition

of ui. Therefore, we just feed all the shuffled (Ci, b
′
i) samples to the (RHW,Fq)-LPN solver and then

recovers s = Bx. Note that we can just use random elements (over Fq) as values for (rTi x − 1
Tbi + ui)

since condition on any full-rank square matrix M
def
=[BT, r1,. . ., rαt] we have that (Bx,rT1 x, . . ., rTαtx) is

uniformly random over Fk+αt
q , which is almost true (up to a slight deviation). For example, consider q = 2

as the worst case6. We denote by E1 the event that [BT, r1,. . ., rαt−σ] has full rank, and denote by E2
the event that our random elements equal to (rTi x − 1

Tbi + ui) for all αt − σ + 1 ≤ i ≤ αt. We have

Pr[E1] ≥ 1− 2−σ+1 (see, e.g., [YS16, Fact A.2]), and Pr[E2] ≥ 2−σ. The simulation is perfect conditioned

on E1∧E2, whose probability 2−σ(1−2−σ+1) reaches its maximum 1/8 when σ = 2. Therefore, the overall

security loss factor is 21−
t
α /8 = 2−

t
α
−2.

We get similar result for dual-LPN in Corollary 1 via a simple reduction from LPN to dual-LPN, i.e,

(A, b = A · s+ e) can be efficiently transformed into a dual-LPN instance (H,y = H · b = H · e) due to

the duality between H and A, regardless of the distribution of e.

Corollary 1. Let t,N ∈ N and α ≥ 1 such that αt ∈ N and (αt)|N . If the (HW,Fq)-LPN(k,N, t) is

(T ,ǫ)-hard, then the (RHW,Fq)-dual-LPN(N + αt,N − k, αt) is (T − poly(k,N), 2
t
α
+2 · ǫ)-hard.

4 The Hardness of LPN over Integer Rings

LPN over an integer ring has been used in multiple prior works. For example, Schoppmann et al. [SGRR19]

used it to construct VOLE over Z264 , which can then be used for performing private machine learning tasks

in the semi-honest setting. Recently, Baum et al. [BBMH+21, BBMHS22a] proposed VOLE protocols

based on LPN over a ring Z2λ , and used them to construct concretely efficient ZK protocols on arithmetic

circuits over Z2λ . These VOLE protocols could also benefit other works that need VOLE over integer rings

like the MPC protocol SPDZ2k [CDE+18]. The current security estimate of LPN over Z2λ in prior work

is directly adapted from that for LPN over a field F of size |F| ≈ 2λ [BCGI18]. As we will show in this

section the hardness of LPN over Z2λ is more related to that over F2 (rather than that over the λ-bit field).

As depicted in Figure 2, we provide the following reductions between the hardness of LPN over Z2λ and

that over F2.

• Decisional LPN over Z2λ → Decisional LPN over F2. We show that distinguishing LPN samples over

Z2λ with noise weight t from exact noise distribution is no harder than distinguishing LPN over F2 with

noise weight 2(λ−1)

2λ−1 · t ≈ t/2. This reduction directly gives an attack that reduces the noise weight by half

for an LPN instance over Z2λ .

• Decisional LPN over F2 → Decisional LPN over Z2λ . We show that distinguishing LPN over F2 with

noise weight t is no harder than the distinguishing attack on LPN over Z2λ with 1) non-standard Bernoulli-

like integer noise of weight at most λ · t; and 2) standard Bernoulli noise of weight ≈ 2λ · t.
6For large q, we can get full-rank square matrices with at least constant probability.

10

• Computational LPN over Z2λ → Computational LPN over F2. We show that a secret recovery attack

on LPN over Z2λ with noise weight t is no harder than that on LPN over F2 with noise weight roughly

t/2. While a generic reduction requires kω(λ)-hardness for LPN over Z2λ , we also give more efficient

reductions for their weakly one-wayness that is more relevant to practical attacks and security estimates.

We also discuss how to optimize the secret recovery attack on LPN over Z2λ based on that over F2 in

practice.

We give similar reductions for the LPN over Zpλ1qλ2 (for distinct primes p, q) in Appendix B. When we

give the reductions between different computational LPN variants, we assume that LPN over a field in

consideration mostly has a unique solution in the average case (except for a negligible fraction), which will

simplify the analysis. Note that this is true for most interesting parameter regimes of LPN, which give rise

to cryptographic applications (e.g., PCG and public-key encryption).

Lemma 3 (Unique decoding of LPN over any finite field F). For any N > k + 4t logN , the following is

bounded by N2t

|F|N−k−2t :

Pr
A←Fk×N

[
∃s1 6= s2 ∈ F

k, e1, e2 ∈ F
N : |e1|, |e2| ≤ t ∧ (A · s1 + e1 = A · s2 + e2)

]
.

Proof. Let s
def
= s1 − s2 ∈ F

k and e
def
= e2 − e1 ∈ F

N . For any s 6= 0, A · s is uniform over FN . Together

with |e| ≤ 2t, the probability that A · s = e is at most
∑2t

i=0

(
N
i

)
/|F|N−i ≤

(∑2t
i=0

(
N
i

))
/|F|N−2t ≤

N2t/|F|N−2t. By a union bound on all possible s ∈ F
k, we obtain the bound claimed in the lemma.

4.1 Reduction from Decisional LPN over Z2λ to LPN over F2

We start with a simple observation that the distinguishing attack on LPN over Z2λ can be based on that over

F2 with roughly halved noise weight. Specifically, we have the following theorem.

Theorem 3. If decisional (D,Z2λ)-LPN(k,N,w1) is (T, ǫ)-hard, then decisional (D,F2)-LPN(k,N,w2)

is (T − poly(k,N), O(dǫ))-hard, where (D, w1, w2, d) ∈ {(HW, t, 2
(λ−1)

2λ−1 t,
√
t), (Ber, µ, µ, 1)}.

Proof. Given LPN samples over ring Z2λ (A, b = A · s + e mod 2λ), we observe that least significant

bits (LSBs) of these samples (A0 := A mod 2, b0 := b mod 2) constitute exactly the LPN samples over

F2 for noise e0 = e mod 2. In case that e ← HWt,N (Z2λ), the noise vector e0 follows a Bernoulli-like

distribution over FN
2 , which is sampled by first picking t out of N coordinates at random and then filling in

these t coordinates with random non-zero elements over Z2λ (and the rest with zeros). Thus, overall e0 has

expected weight t′ = 2(λ−1)

2λ−1 · t, where 2(λ−1)

2λ−1 is the probability that a random non-zero element of Z2λ is

odd. By Lemma 2, this implies that with probability Ω(1/
√
t), the noise vector e0 follows the exact noise

distribution HWt′,N (F2). On the other hand, the LSBs of (A,u) with an exact u ∈ Z2λ are uniform as

well. Therefore, one can use (HW,F2)-LPN(k,N, t′) solver to distinguish (A0, b0) from uniform samples.

The proof for the second statement is likewise, except when taking the LSBs of e ← Berµ,N (Z2λ) we

immediately get e0 ∼ Berµ,N (F2) as desired.

Despite the preserved noise probability µ in the case of Bernoulli distribution, we note that Berµ,N (Z2λ)
has expected weight (1−2−λ)µN , while Berµ,N (F2) has expected weight µN/2 that is roughly 2× smaller

than Berµ,N (Z2λ).

11

4.2 Reduction from LPN over F2 to Decisional LPN over Z2λ

We first show that the LPN assumption over F2 implies that over Z2λ under the standard Bernoulli noise

distribution. However, we achieve the goal by paying a price in the security loss due to the dependence

among different noise vectors. As a result, we get the very conservative statement that decisional LPN over

F2 with noise weight t is no harder than decisional LPN over Z2λ with noise weight roughly 2λt. We then

introduce more useful Bernoulli-like noise distributions to enable more efficient reductions. In particular,

we can reduce to an LPN over Z2λ with noise weight λt (rather than 2λt).

Theorem 4. If decisional (Ber,F2)-LPN(k,N, µ/2λ) is (T, ǫ)-hard, then decisional (Ber,Z2λ)-LPN(k,N, µ)
is (T − poly(k,N), λǫ)-hard.

Proof. Let (A, b = A · s + e mod 2λ) be an LPN over Z2λ . Decompose the matrix and vectors into λ
ones over F2 as follows: (A0,A1, · · · ,Aλ−1) := BitDecomp(A), (s0, s1, · · · , sλ−1) := BitDecomp(s),
(e0, e1, · · · , eλ−1) := BitDecomp(e) and (b0, b1, · · · , bλ−1) := BitDecomp(b). Therefore, for i ∈ [λ] we

can write

bi = A
0 · si + ei + fi(A, s0, · · · , si−1, e0, · · · , ei−1) mod 2 ,

where fi is the sum of all other terms involving the individual sj and ej with index j ≤ i − 1. Define the

hybrid distributions H0, · · · , Hλ as

H0 = (A,u0, · · · ,ui−1,ui · · · ,uλ−1)

...

Hi = (A, b0, · · · , bi−1,ui · · · ,uλ−1)

...

Hλ = (A, b0, · · · , bi−1, bi · · · , bλ−1)

where uj ← F
N
2 for j ∈ [λ] is sampled independently at random. Note that all the si’s are independent and

uniformly random. It suffices to consider the effective noise rate on ei conditioned on e0, · · · , ei−1 (as part

of fi). Therefore, if all the adjacent Hi−1 and Hi are computationally indistinguishable, then H0 and Hλ

are computationally indistinguishable by a hybrid argument. It thus remains to estimate the effective noise

rate. Consider a single noise sample (e0[j], e1[j], . . . , eλ−1[j]) ← Berµ,N (Z2λ), where ei[j] is the j-th bit

of ei. Conditioned on any non-zero (e0[j], . . . , ei−1[j]), ei[j] is uniformly random and thus unconditionally

masks the corresponding bi[j]. Otherwise, we have that

Pr
[
ei[j] = 1

∣∣ (e0[j], . . . , ei−1[j]) = 0i
]
=

µ2−(i+1)

1− µ+ µ2−i
≥ µ2−(i+1)

is the noise rate needed to keep the computational indistinguishability between Hi and Hi+1, which reaches

its minimum µ2−λ when i = λ− 1.

Based on the above theorem, we easily obtain the following corollary whose proof is given in Ap-

pendix A.

Corollary 2. If decisional (Ber,F2)-LPN(k,N, µ/2λ) is hard, then computational (HW,Z2λ)-LPN (k,N, t =
(1− 2−λ)µN) is hard.

In retrospect, the dependency among the noise vectors {ei} incurs significant losses during the reduction.

This motivates us to introduce the specific noise distributions, IndBerµ,N (Z2λ) and IndHWt,N (Z2λ), where

Ind refers that the bit decomposition of the noise, e0, . . ., eλ−1 are independent and identically distributed,

and parameter µ (resp., t) is noise rate (resp., weight) of each ei.

12

• IndBerµ,N (Z2λ) is bit-wise independent. By e← IndBerµ,N (Z2λ), we mean that e :=
∑λ−1

i=0 2i · ei with

ei ← Berµ,N (F2) for i ∈ [λ]. The noise rate of IndBerµ,N (Z2λ) is the probability that each coordinate of

e is non-zero, i.e., 1 − (1 − µ/2)λ ≤ λµ/2 by Bernoulli’s inequality. Therefore, the expected Hamming

weight of e← IndBerµ,N (Z2λ) is at most λt where t = µN/2.

• IndHWt,N (Z2λ) decomposes into λ independent vectors from HWt,N (F2). By e← IndHWt,N (Z2λ), we

mean that e :=
∑λ−1

i=0 2i · ei with ei ← HWt,N (F2) for i ∈ [λ]. It is easy to see that the Hamming weight

of e is at most λt.

Distributions IndBerµ,N (Z2λ) and IndHWt,N (Z2λ) have not been used in existing protocols. However, LPN

with such distributions can be used to design PCG-like protocols by running these protocols with maximum

weight λt. Below, we show that decisional LPN over F2 with noise weight t is tightly equivalent to decisional

LPN over Z2λ with noise weight roughly λt under the new noise distributions.

Theorem 5. Let (D1,D2, w) ∈ {(Ber, IndBer, µ), (HW, IndHW, t)} and we have:

1. If decisional (D1,F2)-LPN(k,N,w) is (T, ǫ)-hard, then decisional (D2,Z2λ)- LPN(k,N,w) is (T −
poly(k,N), λǫ)-hard.

2. If decisional (D2,Z2λ)-LPN(k,N,w) is (T, ǫ)-hard, then decisional (D1,F2)- LPN(k,N,w) is (T −
poly(k,N), ǫ)-hard.

Proof. The proof of the first statement is similar to that of Theorem 4, except that now every ei is indepen-

dent of the previous e0, · · · , ei−1, where ei follows Berµ,N (F2) by the definition of e ← IndBerµ,N (Z2λ).
The proof of the second statement can be trivially adapted from that of Theorem 3, i.e., A0 = A mod 2,A0·
s0 + e0 = A · s+ e mod 2.

On the choice of matrix A As we can see from the proofs of Theorem 4, Theorem 5 and Theorem 6

(shown in Section 4.3), all the reductions only rely on that A0 is uniformly distributed over FN×k
2 while

A
1, · · · ,Aλ−1 can be arbitrary (or even zero matrix), where (A0,A1, . . . ,Aλ−1) := BitDecomp(A). In

other words, it suffices to use a Boolean matrix A = A
0, and the choices of A1, . . . ,Aλ−1 do not introduce

any further hardness to the LPN problem over Z2λ . Overall, we give a positive result that LPN over ring

Z2λ with Boolean matrices is secure if the corresponding LPN over binary field F2 is secure.

4.3 Reduction from Computational LPN over Z2λ to LPN over F2

We show that an LPN instance over Z2λ can be efficiently translated to λ instances of LPN over F2, which

are independent except that they share the same random matrix A
0 over F2 and that the noise vectors of the

λ instances are somehow correlated. We refer to the proof of Theorem 6 on how to address the correlation

issue. Here we give a reduction from computational LPN over a ring Z2λ to that over F2 by extending the

corresponding reduction between their decisional versions shown in Section 4.1. Algorithm 1 shows how

computational LPN over Z2λ is reduced to that over Z2λ−1 by recursion, whose correctness is analyzed in

Lemma 4. Note thatALPN
2λ

degenerates to secret recovery algorithm for LPN over F2 when λ = 1. Without

loss of generality, we assume that ALPN2 returns the noise vector in addition to the recovered secret.

Lemma 4. Let (A, b = A · s + e mod 2λ) be the LPN samples over Z2λ , then (A′, b′) as defined in

Algorithm 1 constitute the LPN samples over Z2(λ−1) , where A
′ =

∑λ−2
i=0 2i ·Ai, b′ = A

′ · s′ + e′, s′ =∑λ−1
i=1 2i−1 · si and e′ =

∑λ−1
i=1 2i−1 · ei

13

Algorithm 1: ALPN
2λ

, the secret recovery algorithm on LPN over Z2λ (λ ≥ 2) with oracle access

to ALPN2 (the solver for LPN over F2).

Input: (D,Z2λ)-LPN(k,N, t) samples (A, b = A · s+ e mod 2λ)
Output: s ∈ Z2λ

1 (A0,A1, · · · ,Aλ−1) := BitDecomp(A);

2 (b0, b1, · · · , bλ−1) := BitDecomp(b);
3 (s0, e0)← ALPN2(A

0, b0);
4 b′ := (b−A · s0 − e0)/2;

5 Return s = s0 + 2 · ALPN
2(λ−1)

(
A
′ :=

∑λ−2
i=0 2i ·Ai, b′

)
;

Proof. Let (A0,A1, · · · ,Aλ−1) and (b0, b1, · · · , bλ−1) be the matrices and vectors defined in Algorithm 1.

Let (s0, s1, · · · , sλ−1) := BitDecomp(s) and (e0, e1, . . . , eλ−1) := BitDecomp(e). Note that A′ is

obtained from A by truncating the most significant bits (MSBs), and thus follows the distribution in LPN

over Z2(λ−1) . It suffices to prove b′ = A
′ · s′ + e′ mod 2(λ−1), where s′ =

∑λ−1
i=1 2i−1 · si and e′ =∑λ−1

i=1 2i−1 ·ei are the secret and noise of LPN over Z2(λ−1) respectively. In particular, we have the following:

2 · b′ − 2 · (A′ · s′ + e′) = b−A · s0 − e0 − 2 · (A′ · s′ + e′)

= b−A · s0 − e0 −A · (s− s0)− e+ e0

= b−A · s− e = 0 mod 2λ ,

where note that 2 · e′ = e− e0.

Below, we show that (ǫλ+1)-hard computational LPN over Z2λ implies O(ǫ)-hard LPN over F2, where

λ = O(1) needs to be small in general (for polynomial hardness), and it can be up to λ = kΘ(1) (for

subexponential hardness). E.g., if the former is 2
√
k-hard with λ = k0.25, then the latter is 2Θ(k0.25)-hard.

Theorem 6. If computational (D1,Z2λ)-LPN(k,N,w) is (λT + poly(k,N), ǫλ+1)-hard, then computa-

tional (D2,F2)-LPN(k,N,w) is (T, 2ǫ)-hard, where (D1, D2, w)∈ {(Ber,Ber, µ), (IndBer,Ber, µ), (IndHW,HW, t)}.

Proof. For contradiction assume that there exists an algorithmALPN2 that recovers the secret of LPN over F2

with probability more than 2ǫ within time T . It suffices to prove the case (D1, D2, w) = (Ber,Ber, µ). For

proof convenience7, consider distribution Berµ,N (F2) being sampled in two steps: first pick each coordinate

with probability µ independently (and let the rest with 0’s), and second assign the picked coordinates with

uniform random bits. By a simple argument there exist at least an ǫ fraction of good (A0,coin1(e
i)) for

whichALPN2 recovers si from (A0, A0si+ei) with probability at least ǫ, where coin1(e
i) denotes the step-

1 random coin for sampling ei and the probability is taken over the si and the step-2 coin of ei. Therefore,

ALPN
2λ

(see Algorithm 1) invokes A on (A, b = A · s + e mod 2λ) for λ times and recovers s with an

overall probability of at least ǫλ+1, a contradiction to the assumption. The proofs for the other two cases

are slightly simpler because e0, . . ., eλ−1 are independent and thus no two-step sampling is needed, i.e.,

coin1(e
i) is empty.

In Appendix A, we further prove the following theorem.

7The two-step sampling is defined to be in line with Berµ,N (Z2λ), and therefore captures the correlations among e
0, . . ., eλ−1,

which share the same step-1 randomness.

14

Theorem 7. If computational (HW,Z2λ)-LPN(k,N, t) is (λT + poly(k,N), ǫλ+1)-hard, then computa-

tional (HW,F2)-LPN(k,N, t′) is (T, 2ǫ
1−exp(−δ2t/6))-hard, where t′ = t2

(λ−1)

2λ−1 (1+δ) for any constant δ > 0.

The above reduction suffers a significant security loss by exponent factor 1/(λ+1) since computationally

intractable problems typically require a small success probability for efficient adversaries. In the setting of

practical key recovery attacks, however, we often expect the success probability to be (1 − 1/poly(k)) or

even overwhelming. In this case, we get more efficient reductions as below.

Theorem 8. If the computational (D1,F2)-LPN(k,N,w) problem can be broken (say by ALPN2) in time T
with success probability at least (1 − ǫ), then the computational (D2,Z2λ)-LPN(k,N,w) problem can be

broken byALPN
2λ

(see Algorithm 1) in time λT +poly(k,N) with success probability at least 1−(λ+1)
√
ǫ,

where (D1, D2, w) ∈ {(Ber,Ber, µ), (Ber, IndBer, µ), (HW, IndHW, t)}.

Proof. Similar to the proof of Theorem 6, we have by a Markov inequality that for at least a (1−√ǫ) fraction

of (A0,coin1(e
i))ALPN2 recovers si from (A0, A0si+ei) with probability at least 1−√ǫ. Overall,ALPN

2λ

succeeds with probability (1−√ǫ)(1− λ
√
ǫ) ≥ 1− (λ+ 1)

√
ǫ by a union bound.

In Appendix A, we also give a proof of the following theorem.

Theorem 9. If the computational (HW,F2)-LPN(k,N, t′) problem can be broken (say byALPN2) in time T
with success probability at least (1−ǫ/2), then the computational (HW,Z2λ)-LPN(k,N, t) problem can be

broken byALPN
2λ

(see Algorithm 1) in time λT +poly(k,N) with success probability at least 1−(λ+1)
√
ǫ,

where t′ = t 2
λ−1

2λ−1(1 + δ) for any δ and ǫ satisfying δ2t ≥ 6 ln(2/ǫ).

Optimized attacks on (Ber/HW,Z2λ)-LPN. In practice, we optimize the attacks on (Ber/HW,Z2λ)-LPN
by exploiting the correlations among the error vectors of the λ instances, e0, . . . , eλ−1. In particular, Al-

gorithm 1 recovers the corresponding secrets s0, s1, · · · , sλ−1 sequentially. That means when the attacker

works on the (i+1)-th LPN instance he already sees e0, . . . , ei−1 from the previous i broken instances. As

analyzed in the proof of Theorem 4, for any single noise sample (e0[j], e1[j], . . . , eλ−1[j])← Berµ,N (Z2λ),
ei[j] is uniformly random conditioned on any non-zero (e0[j], . . . , ei−1[j]), and thus sample bi[j] is useless

(encrypted by one-time pad) and should be discarded. In other words, the effective noise rate of the i-th LPN

instance is roughly µ2−(i+1) given the attacker’s knowledge about e0, . . . , ei−1. Therefore, the success rate

of solving the (Ber,Z2λ)-LPN(k,N, µ) is roughly the product of the λ instances of (Ber,F2)-LPN with

continuously halving noise rates µ, µ/2, . . ., µ/2λ−1. For instance, if solving these instances can succeed

with probability ǫ, ǫ2
−1

, . . ., ǫ2
−(λ−1)

respectively, then it leads to a success probability of approximately ǫ2

(instead of ǫλ+1). The optimization for reducing (HW,Z2λ)-LPN(k,N, t)) to (HW,F2)-LPN is likewise.

5 Concrete Analysis of Low-Noise LPN over Finite Fields

Recently, a series of works [BCGI18, BCG+19a, SGRR19, BCG+19b, YWL+20, WYKW21, CRR21] use

the (dual-)LPN problem with very low noise rate over finite fields to construct concretely efficient PCG-like

protocols, which extend a small number of correlations (e.g., COT, ROT, VOLE and OLE) to a large number

of correlations with sublinear communication. These protocols can be used as building blocks to design a

variety of MPC and ZK protocols. Therefore, the hardness of (dual-)LPN problems is crucial to guarantee

the security of all the protocols.

Almost all of the known PCG-like protocols based on (dual-)LPN over a field adopt the formulas

by Boyle et al. [BCGI18] to select the concrete parameters for some specified security level. Boyle et

15

(HW,F)-LPN This work This work [BCGI18]

Parameters (log |F| = 128) (log |F| = 1) (Any field size)

N k t Gauss SD SD 2.0 ISD Gauss SD SD 2.0 ISD Gauss SD ISD

210 652 57 111 184 184 111 111 194 116 94 80 93 115
212 1589 98 100 151 151 100 100 154 137 83 85 80 104
214 3482 198 101 149 149 101 101 150 144 86 94 80 108
216 7391 389 103 147 147 103 103 148 146 91 99 80 112
218 15336 760 105 146 146 105 105 146 146 95 103 80 117
220 32771 1419 107 145 145 107 107 145 145 99 106 80 121
222 67440 2735 108 144 144 108 108 144 144 104 108 80 126

Table 3: The comparison of our analysis and [BCGI18] about the costs of Pooled Gauss, SD attack, our adapted SD

2.0 (SD 2.0) and ISD attacks to solve an LPN problem with dimension k, number of samples N , Hamming weight of

noises t.

(HW,F)-dual-LPN This work This work [BCGI18]

Parameters (log |F| = 128) (log |F| = 1) (Any field size)

n N t Gauss SD SD 2.0 ISD Gauss SD SD 2.0 ISD Gauss SD ISD

210 212 44 117 189 189 117 117 191 170 97 80 100 117
212 214 39 111 170 169 111 111 170 166 95 80 92 112
214 216 34 107 151 151 107 107 151 151 93 80 84 107
216 218 32 108 145 145 108 108 145 145 95 84 82 109
218 220 31 112 143 143 112 112 143 143 99 88 82 112
220 222 30 116 141 141 116 116 141 141 103 93 82 116
222 224 29 119 139 139 119 119 139 139 107 97 82 120

Table 4: The comparison of our analysis and [BCGI18] about the costs of Pooled Gauss, SD attack, our adapted

SD 2.0 (SD 2.0) and ISD attacks to solve a dual-LPN problem with n = N/4 (related to the number of COT/VOLE

correlations), number of samples N , Hamming weight of noises t.

al. [BCGI18] obtained the formulas by analyzing three attacks: Pooled Gauss attack, information set decod-

ing (ISD) attack and SD attack. However, their analysis is oversimplified and the formulas are not accurate,

which express in the following aspects:

• When analyzing the hardness of LPN with an exact noise distribution HWt,N (F), the formula against

Pooled Gauss attack is obtained by viewing HWt,N (F) as a Bernoulli distribution, which makes the for-

mula not accurate.

• When analyzing the hardness of LPN against ISD attack, the formula is just an upper bound of the com-

plexity of the Prange’s ISD algorithm [Pra62] to solve LPN problems over a large field. This does not

cover the advanced ISD variants [Ste88, Dum91, MMT11, BJMM12]. Furthermore, their analysis does

not capture the impact of field sizes when calculating the ISD cost.

• When analyzing the hardness of LPN against SD attack, each parity-check vector is assumed to be inde-

pendently in compliance with a Bernoulli distribution, which is inaccurate [DT17]. In addition, the time

estimated by them just allows for achieving a small successful probability, which does not match with that

by the above two attacks.

In the following subsections, we will give more detailed analysis for the hardness of low-noise (dual-)LPN

16

(HW,F)-LPN(k,N, t) (HW,F)-dual-LPN(N,n, t)

N k t ([BCGI18]) t (ours) n N t ([BCGI18]) t (ours)

210 652 106 68 210 212 88 50
212 1589 172 136 212 214 83 48
214 3482 338 274 214 216 78 45
216 7391 667 531 216 218 73 42
218 15336 1312 1023 218 220 68 39
220 32771 2467 1876 220 222 63 36
222 67440 4788 3552 222 224 58 34

Table 5: The comparison of noise weights between our analysis and [BCGI18] for 128-bit security level. Among

the LPN parameters, N is the number of samples, k is the dimension, n = N/4 and t is the Hamming weight of a

noise vector. We assume the field size is log |F| = 128, and an exact noise distribution HWt,N (F).

problems as well as more accurate formulas. Since all known PCG-like protocols use an exact noise vector

with fixed weight, our formulas just consider the case of exact noise distributions. According to our analysis,

we show more accurate costs of the above three attacks in Table 3 and Table 4. In these tables, we also

compare the attack costs with that given by Boyle et al. [BCGI18] and all the LPN parameters are adopted

from [BCGI18]. Under the same LPN parameters, while Boyle et al. [BCGI18] showed that either Pooled

Gauss attack or SD attack has the lowest cost, our more detailed analysis shows that ISD attack has the

lowest cost. In other words, for PCG-like protocols, one can only consider the ISD attack to choose a set of

LPN parameters in many cases. For large fields, our analysis shows that Pooled Gauss attack has the same

cost as ISD attack, where recall that Pooled Gauss can be considered a special case of ISD. The formulas

given by Boyle et al. [BCGI18] show that SD attack performs the best in most of LPN parameters. However,

we point out that this is generally not true. In particular, our analysis results in Tables 3 and 4 show that

SD attack has the highest cost among three kinds of attacks. Furthermore, we show in Section 5.3 that the

SD 2.0 attack adapted to the low-noise setting (which recovers the optimal SD attack) require more cost

than the ISD attack against LPN problems over large fields using random linear codes. Our proof does not

require that the Hamming weight of noise vectors achieves the Gilbert-Varshamov bound, and instead allow

all weights for the LPN parameters used in PCG-like protocols. Tables 3 and 4 also show that ISD attack

has lower cost for smaller field size, which justifies that it is not accurate to use the same formulas for all

field sizes as in [BCGI18].

Our analysis shows that most of LPN parameter sets used in know PCG-like protocols actually achieve

better security. In other words, given a security parameter, smaller weight for noise vectors can be chosen,

which allows for achieving higher efficiency in these PCG-like protocols. In particular, for 128-bit security

level, Table 5 reports the comparison of Hamming weights of noise vectors between our analysis and previ-

ous work [BCGI18], given several sets of dimensions and the numbers of samples used in [BCGI18]. From

this table, we can see that the Hamming weight of a noise vector is reduced by 19% − 36% for LPN and

41% − 43% for dual-LPN, respectively. While the COT/VOLE protocols in the PCG framework need to

communicate O(tκ log N
t) bits and compute t GGM trees for each iteration, the reduction of parameter t

will be directly transferred to the improvements of communication and computation costs in these protocols.

5.1 The Hardness of LPN against Pooled Gauss Attack

For solving the problems of LPN and dual-LPN with exact noise distributions, Boyle et al. [BCGI18] gave

a formula to compute the cost of Pooled Gauss attack by simplifying HWt,N (F) as Bert/N,N (F). Below,

we give a more accurate formula to calculate the cost of Pooled Gauss attack, and discuss the difference

17

between the simplified analysis [BCGI18] and our analysis.

We first extend Pooled Gauss attack [EKM17] from solving a (dual-)LPN problem from a Bernoulli

distribution to solving that with an exact noise distribution HWt,N (F). Specifically, the Pooled Gauss attack

performs as follows:

• Given a (HW,F)-LPN(k,N, t) instance b = A·s+e, for each iteration, guess k non-noisy coordinates of

vector b by sampling them at random, and obtain a length-k vector b′ and k×k matrix A
′. Then, compute

s′ := (A′)−1 · b′ and verify whether s′ is correct or not by running the test algorithm in [EKM17].

• Given a (HW,F)-dual-LPN(N,n, t) instance b = H·e, for each iteration, guess n coordinates of vector e

by sampling them uniformly at random such that these coordinates contain t noisy coordinates of e, choose

the corresponding n×n sub-matrix H
′ from H according to the n coordinates, compute e′ := (H′)−1 ·b,

and then checks if |e′| = t.

The above attack uses the fixed N samples for both LPN and dual-LPN. For solving LPN, Pooled Gauss

attack runs in time
(Nt)
(N−k

t)
·k2.8, where

(N−k
t)

(Nt)
is the probability of guessing successfully in one iteration, and

k2.8 is the cost of inverting matrix A
′ via Strassen’s algorithm. For solving dual-LPN, Pooled Gauss attack

runs in time
(Nt)
(N−k

t)
· (N − k)2.8, where k = N − n is the dimension and (N − k)2.8 is the cost of inverting

matrix H
′ via Strassen’s algorithm. As LPN can be efficiently transformed into dual-LPN and vice versa,

Pooled Gauss attack solves a (dual-)LPN problem with number of samples N , dimension k and weight of

noises t in time
(Nt)
(N−k

t)
· min(k2.8, (N − k)2.8). Therefore, the bit-security of a (dual)-LPN instance with

respect to Pooled Gauss attack is computed as

log
(
min(k2.8, (N − k)2.8)

)
+

(
log

(
N

t

)
− log

(
N − k

t

))
.

For the LPN problem with an exact noise distribution, Boyle et al. [BCGI18] simplified the cost of Pooled

Gauss attack as (1
1−t/N)k ·k2.8. In the following, we show the difference between the attack cost in [BCGI18]

and that by us is huge. In particular,

Tours

TBoyle et al. [BCGI18]
≈
(
1− t

N

)k

·
(
N
t

)
(
N−k
t

) ≥
(
1− t

N

)k

·
(

N

N − k

)t

≈ etk·(
1

N−k
− 1

N) = e
t·k2

N·(N−k) ,

where ≈ denotes an approximate relation that omits a polynomial factor. For the (dual-)LPN parameters

N, k used in known PCG-like protocols (e.g., k = 0.75N considered in [BCGI18]), the cost of Pooled

Gauss attack estimated by Boyle et al. [BCGI18] is about 2O(t) times larger than that estimated by us.

5.2 The Hardness of LPN against ISD Attack

Based on the concrete analysis of ISD attack in [HOSS18], Boyle et al. [BCGI18] used an upper bound

of the cost of the Prange’s ISD algorithm [Pra62] to evaluate the hardness of LPN problems over any field

against ISD attacks. As shown in Tables 3 and 4, the upper-bound formula cannot capture accurately the cost

of more advanced ISD variants [Ste88, Dum91, MMT11, BJMM12]. In the following, we first summarize

the known ISD variants, and then use the state-of-the-art ISD algorithm to evaluate the hardness of LPN

problems over finite fields. We distinguish two cases: binary field F2 and other larger fields.

Binary field F2. For binary field F2, we adopt the state-of-the-art BJMM-ISD algorithm [BJMM12] to

analyze the concrete hardness of low-noise (dual-)LPN problems. From the expected time of BJMM-ISD

shown in Theorem 16 of Appendix D, we can see that it is hard to give a succinct formula to compute

the cost of BJMM-ISD. Thus, we choose to provide a script 8, which allows to automatically compute

8This script can be found at https://gist.github.com/hansliu1024/21c87609e75f6cc52decdc69981e1d5b.

18

https://gist.github.com/hansliu1024/21c87609e75f6cc52decdc69981e1d5b

0 5 10 15 20 25 30
175

180

185

190

195

The bit length of a field element

B
it

se
cu

ri
ty

ISD attack

Pooled Gauss

(a) LPN(N = 210, k = 652, t = 106)

0 2 4 6 8 10

148

150

152

154

156

158

The bit length of a field element

ISD attack

Pooled Gauss

(b) LPN(N = 222, k = 67440, t = 4788)

0 5 10 15 20 25 30
175

185

195

205

The bit length of a field element

B
it

se
cu

ri
ty

ISD attack

Pooled Gauss

(c)dual-LPN(n = 210, N = 212, t = 88)

0 10 20 30 40
160

165

170

175

180

The bit length of a field element

ISD attack

Pooled Gauss

(d) dual-LPN(n = 222, N = 224, t = 58)

Figure 3: The costs of Pooled Gauss and SD-ISD attacks from our analysis to solve LPN and dual-LPN

problems on different field sizes, where N is the number of samples, k is the dimension, n = N/4 and t is

the weight of a noise vector.

the cost of the BJMM-ISD attack. Our analysis does not consider the known NN-ISD variants [MO15,

BM18], because these ISD variants introduce quite large polynomial overheads, and make them less efficient

when analyzing the concrete costs of low-noise LPN problems. Besides, our analysis does not cover the

ISD algorithms [BBC+19, EB22, EMZ21] with more efficient space consumption, and always assume that

sufficient memory is available which makes the LPN parameters more conservative.

Larger fields. For the case of non-binary fields, we focus on the hardness of (dual-)LPN problems over

any finite field F with |F| ≥ 256 (especially for large fields with |F| ≥ 2ρ). For other field sizes (i.e.,

|F| ∈ {4, 8, 16, 32, 64, 128}), low-noise (dual-)LPN seem to be less interesting for PCG, MPC and ZK

applications. We adopt the generalized SD-ISD algorithm [Pet10] to analyze the cost of solving low-noise

(dual-)LPN problems over field F. As such, we provide a Python script to automatically compute the cost

of the SD-ISD attack.

Compared to the SD-ISD algorithm by Peters [Pet10], the SD-ISD variant by Meurer [Meu12] has the

performance advantage when the field size |F| < 128, and the advantage becomes vanishingly small when

|F| ≥ 128. Thus, for the case that |F| ≥ 256, it is enough to adopt the Peters’s SD-ISD algorithm to evaluate

the hardness of low-noise (dual-)LPN problems. Note that it is unclear how to extend the generalization

approaches [Pet10, Meu12] to more efficient MMT-ISD and BJMM-ISD algorithms for solving low-noise

LPN over a larger field F and make the resulting ISD algorithm be significantly more efficient than the SD-

ISD variant [Pet10]. We leave it as an interesting future work. Even if these generalization approaches can

be efficiently applied in the MMT-ISD and BJMM-ISD algorithms, the performance advantage of MMT-

ISD and BJMM-ISD (compared to SD-ISD) decreases when the field size increases, and will diminish for a

sufficiently large field. Our analysis does not consider the ISD variants [Hir16, GKH17] that generalize the

May-Ozerov nearest-neighbor algorithm to solve dual-LPN problems any finite field, as these ISD variants

19

introduce quite large polynomial overheads and thus are less efficient when analyzing the concrete costs of

solving low-noise LPN.

For any finite field F, the generalized SD-ISD variant [Pet10] generates two sets S0 and S1 with size((k+ℓ)/2
p/2

)
· (|F| − 1)p/2, where p and ℓ are two additional parameters for the SD-ISD variant. Note that the

size of |S0| and |S1| increases exponentially with p. Following the work [Pet10], p should be quite small to

minimize the cost of going though sets S0 and S1, and ℓ is set as ℓ = log|F|
(
k/2
p

)
+ p log|F|(|F| − 1). If the

even integer p 6= 0, then the cost of the generalized SD-ISD algorithm is at least O((k+ ℓ)|F|), which is the

cost to just find identical elements in two sets S0 and S1. When the field size is large enough, we will have

to choose p = 0 and ℓ = 0 to minimize the cost of the generalized SD-ISD attack, according to the above

equation. In this case, the generalized SD-ISD attack actually becomes Pooled Gauss attack. In Figure 3,

we give a comparison of costs between Pooled Gauss attack and the generalized SD-ISD attack for solving

LPN and dual-LPN problems on different field sizes. From this figure, we can see that ISD attack has the

same cost as Pooled Gauss attack when the field size is sufficiently large.

5.3 The Hardness of LPN against SD Attack

Boyle et al. [BCGI18] analyzed the cost of solving LPN problems against SD attack, and shown that this

attack performs the best among three kinds of attacks for their parameters selection. In the following, we

show two oversimplifications in their analysis [BCGI18], which lead to underestimate the cost of this attack.

First, Boyle et al. [BCGI18] assumes that each parity-check vector v ∈ V independently follows a Bernoulli

distribution Berw/N,N (F) where w ∈ N is the Hamming weight of v, which is inaccurate 9 [DT17] and

leads to underestimated cost of SD attack. To obtain more accurate complexity of this attack, a weaker

assumption was proposed by [DT17] where each parity-check vector v ∈ V is assumed to be independently

in compliance with an exact noise distribution HWw,N (F). Second, Boyle et al. [BCGI18] underestimated

the cost of this attack as T = T1/ǫ, where T1 is the time of finding one parity check vector v ∈ V and ǫ is

the distinguishing advantage for one vote. The SD attack solves the decisional LPN problem with negligible

advantage in time T , while other attacks solve the LPN problem with constant advantage. Following the

previous work [Al 01, Ove06, FKI07, DT17], this attack takes time T = T1/ǫ
2 to distinguish LPN samples

from random samples with constant advantage. 10

The SD 2.0 algorithm [CDAMHT22] outperforms the ISD algorithm for the GV bound decoding over

F2 with k < 0.3N . Given a (HW,F)-LPN(k,N, t) instance b = A ·s+e, SD 2.0 solves the computational

LPN problem by recovering the noise e, which introduces a new parameter s and proceeds in two stages as

follows:

1. Find a set of parity-check vectors

V ⊂
{
v

def
=
[
v1 v2

] ∣∣v1 ∈ F
s, v ·A = 0 and |v2| = w

}
,

with a sufficiently small w > 0. Note that for each v, 〈v, b〉 = 〈v,A · s ⊕ e〉 = 〈v, e〉 = 〈v1, e1〉 ⊕
〈v2, e2〉, where e

def
=
[
e1 e2

]
with e2 ∈ F

N−s. The SD 2.0 algorithm [CDAMHT22] assumes that

〈v2, e2〉 independently follows a Bernoulli distribution Berǫ,1(F) with some ǫ > 0 for each v ∈ V .

9The Bernoulli distribution admits a slackness event that the weight of a parity-check vector v goes much below the ex-

pected w leading to underestimated attack costs. However, for an optimal weight w, such low-weight vectors v’s violating the

Gilbert–Varshamov bound may not exist at all.
10We shall distinguish the differences between 1/ǫ and 1/ǫ2. If a single key-recovery attack succeeds with probability ǫ, then

repeating roughly 1/ǫ independent instances achieves constant (or even overwhelming) success probability. In contrast, if a single

distinguishing attack gains advantage ǫ, then the number of independent votes needed to amplify the advantage to constant is about

1/ǫ2 by a Chernoff bound.

20

2. Recover e1 ∈ F
s from
{
(v1, 〈v1, e1〉 ⊕∆)

∣∣ [v1 v2
]
∈ V , v1 ∈ F

s and ∆← Berǫ,1(F)
}

via a fast Fourier transform in time O(s log(|F|)|F|s).
An appropriate value for parameter s is chosen so that the two stages take about the same cost. The procedure

to recover other bits of e is likewise. The SD 2.0 algorithm [CDAMHT22] achieves larger advantage, in

terms of (Pr[〈v2, e2〉 = 0] − 1/|F|), than that achieved by the traditional SD attack, i.e., (Pr[〈v, e〉 =
0]− 1/|F|).

In order to compete with the advanced ISD algorithms [Ste88, Dum91, MMT11, BJMM12] for the GV

bound decoding over F2, SD 2.0 [CDAMHT22] uses the same collision technique invoked by these ISD

algorithms to find set V with a much smaller w. However, SD 2.0 [CDAMHT22] does not perform well

on low-noise LPN, as the collision technique takes exponential time |F|θ(k) that is already larger than the

overall subexponential security 2o(k) of the low-noise LPN problem.

We tweak the SD 2.0 algorithm [CDAMHT22] for analyzing the low-noise LPN by replacing the col-

lision technique with other collision techniques, e.g., [BCGI18]. Note that our adapted SD 2.0 attack is

considered to cover the traditional SD attack with the same collision technique (by setting s = 0). There-

fore, our analysis of the adapted SD 2.0 below also implicitly recovers that of the traditional SD attack. We

consider two cases: binary field F2 and larger fields.

Binary field F2. Given a (HW,F)-LPN(k,N, t) instance, the adapted SD 2.0 finds parity-check vector-set

with Hamming weight w. According to [Lyu05, Lemma 3], we have that

ǫs = Pr[〈v2, e2〉 = 0]− 1/|F| = 1

2

(N − 2w − t+ 1

N − t+ 1

)t
,

and the adapted algorithm solves the problem in time T = mins
(
T1·(1/ǫs)2+s2s

)
, where w = (k+1−s)/2

and assume T1 = k + 1 following [BCGI18].

Larger fields. We analyze the cost of solving a (HW,F)-LPN(k,N, t) problem using our adapted SD 2.0
algorithm and the traditional SD attack over field of size |F| ≥ (2+c)t for some constant c > 0. In particular,

we have the following theorem.

Theorem 10. For w = w(s) ∈ N and a finite field F with size |F| ≥ 4t, the adapted SD 2.0 algorithm solves

the (HW,F)-LPN(k,N, t) problem in time

T = min
s

(
T1 ·

((
N
t

)
(
N−w

t

) · 2|F|
|F| − 1

)2

+ s log
(
|F|
)
|F|s
)

,

where T1 is the time of finding one parity check vector.

The proof of Theorem 10 is postponed to Appendix E. We set w = k − s + 1 and assume T1 = k + 1
following the work [BCGI18]. For the case of a field F with 2 < |F| < 4t, we can still use above formula to

estimate the cost of our adapted SD 2.0 algorithm, which can be only smaller than the actual cost and makes

our analysis more conservative.

Below, we show that for solving LPN problems over large fields, both the optimal SD attack and the SD

2.0 attack (adapted to the low-noise setting) take more cost than the Prange’s ISD algorithm [Pra62]. In the

following theorem, we assume that LPN problems adopt random linear codes as in [DT17]. The proof of

Theorem 11 is postponed to Appendix E.

Theorem 11. For any (HW,F)-LPN(k,N, t) problem with |F| = kω(1), (1 + β)k ≤ N = poly(k) for

a constant β > 0 and t = o(N), both the traditional SD attack and our adapted SD 2.0 attack (that

distinguishes with constant advantage) require more cost than the Prange’s ISD algorithm (that recovers

the secret with constant probability).

21

Acknowledgements

Work of Xiao Wang is supported in part by DARPA under Contract No. HR001120C0087, NSF award

#2016240, research awards from Facebook and Google, and a Gift from PlatON. The views, opinions,

and/or findings expressed are those of the author(s) and should not be interpreted as representing the offi-

cial views or policies of the Department of Defense or the U.S. Government. Work of Kang Yang is sup-

ported by the National Natural Science Foundation of China (Grant Nos. 62102037, 61932019, 62022018).

Work of Yu Yu is supported by the National Key Research and Development Program of China (Grant Nos.

2020YFA0309705 and 2018YFA0704701) and the National Natural Science Foundation of China (Grant

Nos. 62125204 and 61872236). Yu Yu also acknowledges the support from the XPLORER PRIZE.

References

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant input

locality. In Advances in Cryptology—Crypto 2007, volume 4622 of LNCS. Springer, 2007.

[Aka08] Adi Akavia. Learning Noisy Characters, Multiplication Codes, and Cryptographic Hard-

core Predicates. PhD thesis, Massachusetts Institute of Technology, 2008.

[Al 01] A. Kh. Al Jabri. A statistical decoding algorithm for general linear block codes. In Bahram

Honary, editor, 8th IMA International Conference on Cryptography and Coding, volume

2260 of LNCS. Springer, December 17–19, 2001.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th Annual

Symposium on Foundations of Computer Science (FOCS). IEEE, 2003.

[AMBD+18] Carlos Aguilar-Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and

Gilles Zémor. Efficient encryption from random quasi-cyclic codes. IEEE Transactions on

Information Theory, 64, 2018.

[App16] Benny Applebaum. Garbling XOR gates “for free” in the standard model. J. Cryptology,

29(3), July 2016.

[BA21] Gregory Bard and Martin Albrecht. M4ri(e)- linear algebra over F2 (and F2e). In Free

Open Source Software, 2021.

[BBC+19] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo Santini.

A finite regime analysis of information set decoding algorithms. Algorithms, 12(10), 2019.

[BBMH+21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoı̂t Razet, and Peter Scholl.

Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k.

In ACM Conf. on Computer and Communications Security (CCS) 2021. ACM Press, 2021.

[BBMHS22a] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella:

Efficient vector-ole and zero-knowledge proofs over Z2k . In CRYPTO 2022, Lecture Notes

in Computer Science. Springer, 2022.

[BBMHS22b] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella:

Efficient vector-ole and zero-knowledge proofs over Z2k , August 13–18 2022.

22

[BC22] Dung Bui and Geoffroy Couteau. Private set intersection from pseudoran-

dom correlation generators. Cryptology ePrint Archive, Paper 2022/334, 2022.

https://eprint.iacr.org/2022/334.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter

Scholl. Efficient two-round OT extension and silent non-interactive secure computation. In

ACM Conf. on Computer and Communications Security (CCS) 2019. ACM Press, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Effi-

cient pseudorandom correlation generators: Silent OT extension and more. In Advances in

Cryptology—Crypto 2019, Part III, volume 11694 of LNCS. Springer, 2019.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and

Peter Scholl. Correlated pseudorandomness from expand-accumulate codes, August 13–18

2022.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In

ACM Conf. on Computer and Communications Security (CCS) 2018. ACM Press, 2018.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic

primitives based on hard learning problems. In Advances in Cryptology—Crypto 1993,

LNCS. Springer, 1994.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Advances in

Cryptology—Eurocrypt 2015, Part II, volume 9057 of LNCS. Springer, 2015.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random

binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In Advances

in Cryptology—Eurocrypt 2012, LNCS. Springer, 2012.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,

and the statistical query model. In 32nd Annual ACM Symposium on Theory of Computing

(STOC). ACM Press, 2000.

[BLVW19] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs. Worst-

case hardness for LPN and cryptographic hashing via code smoothing. In Advances in

Cryptology—Eurocrypt 2019, Part III, volume 11478 of LNCS. Springer, 2019.

[BM18] Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for

LPN security. In PQCrypto 2018. Springer, April 9–11 2018.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-

knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In Advances

in Cryptology—Crypto 2021, Part IV, LNCS. Springer, 2021.

[CDAMHT22] Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-Pierre Tillich. Sta-

tistical decoding 2.0: Reducing decoding to lpn. In ASIACRYPT 2022. Springer, 2022.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPD

Z 2k: Efficient MPC mod 2k for dishonest majority. In Advances in Cryptology—

Crypto 2018, Part II, volume 10992 of LNCS. Springer, 2018.

23

https://eprint.iacr.org/2022/334

[CG90] John T. Coffey and Rodney M. Goodman. The complexity of information set decoding.

IEEE Transactions on Information Theory, 36(5), 1990.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE and

oblivious transfer from hardness of decoding structured LDPC codes. In Advances in

Cryptology—Crypto 2021, Part III, LNCS. Springer, 2021.

[DDN14] Bernardo David, Rafael Dowsley, and Anderson C. A. Nascimento. Universally composable

oblivious transfer based on a variant of LPN. In CANS 14 International Conference on

Cryptology and Network Security, LNCS. Springer, 2014.

[DEM19] Claire Delaplace, Andre Esser, and Alexander May. Improved low-memory subset sum

and LPN algorithms via multiple collisions. In Martin Albrecht, editor, 17th IMA Inter-

national Conference on Cryptography and Coding, volume 11929 of LNCS, Oxford, UK,

December 16–18, 2019. Springer.

[DI14] Erez Druk and Yuval Ishai. Linear-time encodable codes meeting the gilbert-varshamov

bound and their cryptographic applications. In Moni Naor, editor, ITCS 2014: 5th Confer-

ence on Innovations in Theoretical Computer Science, Princeton, NJ, USA, January 12–14,

2014.

[DILO22a] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenticated garbling from

simple correlations. LNCS. Springer, August 13–18 2022.

[DILO22b] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point zero

knowledge: Two multiplications for the price of one. Cryptology ePrint Archive, Report

2022/552, 2022. https://ia.cr/2022/552.

[DIO21] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its

applications. In ITC 2021, volume 199, 2021.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computa-

tion from somewhat homomorphic encryption. In Advances in Cryptology—Crypto 2012,

volume 7417 of LNCS. Springer, 2012.

[DT17] Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding. In ISIT 2017, 2017.

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-

Swedish Int. Workshop Inform. Theory, 1991.

[EB22] Andre Esser and Emanuele Bellini. Syndrome decoding estimator. In PKC 2022, volume

13177, 2022.

[EHK+18] Andre Esser, Felix Heuer, Robert Kübler, Alexander May, and Christian Sohler. Dissection-

BKW. In Advances in Cryptology—Crypto 2018, Part II, volume 10992 of LNCS. Springer,

2018.

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In Advances in

Cryptology—Crypto 2017, Part II, volume 10402 of LNCS. Springer, 2017.

[EKZ21] Andre Esser, Robert Kübler, and Floyd Zweydinger. A faster algorithm for finding closest

pairs in hamming metric. In FSTTCS 2021, volume 213, 2021.

24

https://ia.cr/2022/552

[EMZ21] Andre Esser, Alexander May, and Floyd Zweydinger. Mceliece needs a break – solving

mceliece-1284 and quasi-cyclic-2918 with modern isd. Cryptology ePrint Archive, Report

2021/1634, 2021. https://ia.cr/2021/1634.

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head:

Shorter signatures from zero-knowledge proofs. In CRYPTO 2022, Lecture Notes in Com-

puter Science. Springer, 2022.

[FKI07] Marc P. C. Fossorier, Kazukuni Kobara, and Hideki Imai. Modeling bit flipping decod-

ing based on nonorthogonal check sums with application to iterative decoding attack of

mceliece cryptosystem. IEEE Trans. Inf. Theory, 53(1), 2007.

[FKL+21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai

Weng. Constant-overhead zero-knowledge for RAM programs. In ACM Conf. on Computer

and Communications Security (CCS) 2021. ACM Press, 2021.

[FS09] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based cryp-

tosystems. In Advances in Cryptology—Asiacrypt 2009, volume 5912 of LNCS. Springer,

2009.

[GKH17] Cheikh Thiécoumba Gueye, Jean Belo Klamti, and Shoichi Hirose. Generalization of

BJMM-ISD using may-ozerov nearest neighbor algorithm over an arbitrary finite field Fq. In

International Conference on Codes, Cryptology, and Information Security, volume 10194,

2017.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics: a foun-

dation for computer science. 1994. 2nd edition.

[HB01] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In Advances

in Cryptology—Asiacrypt 2001, LNCS. Springer, 2001.

[Hir16] Shoichi Hirose. May-ozerov algorithm for nearest-neighbor problem over F(q) and its ap-

plication to information set decoding. In SECITC 2016, volume 10006, 2016.

[HJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In

Advances in Cryptology—Eurocrypt 2010, LNCS. Springer, 2010.

[HOSS18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. TinyKeys:

A new approach to efficient multi-party computation. In Advances in Cryptology—

Crypto 2018, Part III, volume 10993 of LNCS. Springer, 2018.

[HS13] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of in-

formation set decoding. Cryptology ePrint Archive, Report 2013/162, 2013.

https://eprint.iacr.org/2013/162.

[HSS20] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC

combining BMR and oblivious transfer. J. Cryptology, 33(4), October 2020.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with con-

stant computational overhead. In 40th Annual ACM Symposium on Theory of Computing

(STOC). ACM Press, 2008.

25

https://ia.cr/2021/1634
https://eprint.iacr.org/2013/162

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commitments and effi-

cient zero-knowledge proofs from learning parity with noise. In Advances in Cryptology—

Asiacrypt 2012, LNCS. Springer, 2012.

[KSS10] Jonathan Katz, Ji Sun Shin, and Adam Smith. Parallel and concurrent security of the HB

and HB+ protocols. J. Cryptology, 23(3), July 2010.

[LY21] Hanlin Liu and Yu Yu. A non-heuristic approach to time-space tradeoffs and

optimizations for BKW. Cryptology ePrint Archive, Report 2021/1343, 2021.

https://eprint.iacr.org/2021/1343.

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random linear

codes, and the subset sum problem. In RANDOM 2005, volume 3624, 2005.

[Meu12] Alexander Meurer. A coding-theoretic approach to cryptanalysis. Universität Bochum Ruhr,

November 2012. Dissertation thesis.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity

of LWE search-to-decision reductions. In Advances in Cryptology—Crypto 2011, volume

6841 of LNCS. Springer, 2011.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in

Õ(20.054n). In Advances in Cryptology—Asiacrypt 2011, LNCS. Springer, 2011.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to de-

coding of binary linear codes. In Advances in Cryptology—Eurocrypt 2015, Part I, volume

9056 of LNCS. Springer, 2015.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. Mdpc-

mceliece: New mceliece variants from moderate density parity-check codes. In Proceedings

of the 2013 IEEE International Symposium on Information Theory, 2013, pages 2069–2073.

IEEE, 2013.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. A new approach to practical active-secure two-party computation. In Advances

in Cryptology—Crypto 2012, volume 7417 of LNCS. Springer, 2012.

[Ove06] Raphael Overbeck. Statistical decoding revisited. In ACISP 06: 11th Australasian Confer-

ence on Information Security and Privacy, LNCS. Springer, 2006.

[Pet10] Christiane Peters. Information-set decoding for linear codes over F q. In Nicolas Sendrier,

editor, The Third International Workshop on Post-Quantum Cryptography, PQCRYPTO

2010, Darmstadt, Germany, May 25–28 2010. Springer.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans. Inf.

Theory, 8, 1962.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast psi from improved

okvs and subfield vole. Cryptology ePrint Archive, Paper 2022/320, 2022.

https://eprint.iacr.org/2022/320.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-

OLE. In Advances in Cryptology—Eurocrypt 2021, Part II, LNCS. Springer, 2021.

26

https://eprint.iacr.org/2021/1343
https://eprint.iacr.org/2022/320

[Sen11] Nicolas Sendrier. Decoding one out of many. In Bo-Yin Yang, editor, Post-Quantum Cryp-

tography - 4th International Workshop, PQCrypto 2011, Tapei, Taiwan, November 29 – De-

cember 2 2011. Springer.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Distributed

vector-OLE: Improved constructions and implementation. In ACM Conf. on Computer and

Communications Security (CCS) 2019. ACM Press, 2019.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In Coding Theory and

Applications, volume 388, 1988.

[TS16] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a

sub-linear error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th In-

ternational Workshop, PQCrypto 2016, Fukuoka, Japan, February 24–26 2016. Springer.

[Wag02] David Wagner. A generalized birthday problem. In Advances in Cryptology—Crypto 2002,

volume 2442 of LNCS. Springer, 2002.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient ma-

liciously secure two-party computation. In ACM Conf. on Computer and Communications

Security (CCS) 2017. ACM Press, 2017.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable,

and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In

IEEE Symp. Security and Privacy 2021. IEEE, 2021.

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: Efficient

conversions for zero-knowledge proofs with applications to machine learning. In USENIX

Security Symposium 2021. USENIX Association, 2021.

[YS16] Yu Yu and John P. Steinberger. Pseudorandom functions in almost constant depth from low-

noise LPN. In Advances in Cryptology—Eurocrypt 2016, Part II, volume 9666 of LNCS.

Springer, 2016.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and

affordable zero-knowledge proofs for circuits and polynomials over any field. In ACM Conf.

on Computer and Communications Security (CCS) 2021. ACM Press, 2021.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast extension

for correlated OT with small communication. In ACM Conf. on Computer and Communica-

tions Security (CCS) 2020. ACM Press, 2020.

[YZW+19] Yu Yu, Jiang Zhang, Jian Weng, Chun Guo, and Xiangxue Li. Collision resistant

hashing from sub-exponential learning parity with noise. In Advances in Cryptology—

Asiacrypt 2019, Part II, LNCS. Springer, 2019.

27

A Proofs of Theorems and Lemmas

Corollary 2. If decisional (Ber,F2)-LPN(k,N, µ/2λ) is hard, then computational (HW,Z2λ)-LPN
(
k,N,

t = (1− 2−λ)µN
)

is hard.

Proof. By Theorem 4 it suffices to show that decisional (Ber,Z2λ)-LPN implies its computational analogue,

which in turns implies computational (HW,Z2λ)-LPN. The former is trivial and thus it left out to show the

latter. The difference is that for e ← Berµ,N (Z2λ) e has expected (instead of exact) Hamming weight

µN 2λ−1
2λ

. The difference is not substantial for computational problems as conditioned on |e| = (1 −
2−λ)µN , which has probability Ω(1/

√
N), e follows the exact-weight distribution HW(1−2−λ)µN,N (Z2λ),

which completes the proof.

Theorem 7. If computational (HW,Z2λ)-LPN(k,N, t) is (λT+poly(k,N), ǫλ+1)-hard, then computational

(HW,F2)-LPN(k,N, t′) is (T, 2ǫ
1−exp(−δ2t/6))-hard, where t′ = t2

(λ−1)

2λ−1 (1 + δ) for any constant δ > 0.

Proof. Similar to the proof of Theorem 6, we can show if there exists ALPN2 that breaks LPN over F2

and noise H̃Wt,N (F2) with probability more than 2ǫ within time T , then it can be used to breaks LPN

over Z2λ and noise HWt,N (Z2λ) with probability ǫλ+1, where H̃Wt,N (F2) is the distribution of ei when

e ← HWt,N (Z2λ). The expected weight of ei is t 2
λ−1

2λ−1 , and thus by a Chernoff bound ei is a convex

combination of distributions HW1,N (F2), . . ., HWt′,N (F2) with t′ = t 2
λ−1

2λ−1(1 + δ) and δ > 0 except for an

error probability bounded by exp(−δ2t/6). Since ALPN2 works on LPN over F2 with noise HWt′,N (F2), it

should work on that with noise HWi,N (F2) of weight up to i = t′ (and any their convex combination) as

well.11 Therefore,ALPN2 that breaks (HW,F2)-LPN(k,N, t′) with probability 2ǫ/(1−exp(−δ2t/6)) is the

hypothetical algorithm desired to complete the proof.

Theorem 9. If the computational (HW,F2)-LPN(k,N, t′) problem can be broken (say byALPN2) in time T
with success probability at least (1− ǫ/2), then the computational (HW,Z2λ)-LPN(k,N, t) problem can be

broken byALPN
2λ

(see Algorithm 1) in time λT+poly(k,N) with success probability at least 1−(λ+1)
√
ǫ,

where t′ = t 2
λ−1

2λ−1(1 + δ) for any δ and ǫ satisfying δ2t ≥ 6 ln(2/ǫ).

Proof. Similar to the proof of Theorem 8, as long as there is ALPN
2λ

that succeeds in breaking the LPN

over F2 and noise ei with probability at least (1 − ǫ), then the rest follows from Markov inequality and a

union bound. As analyzed in the proof of Theorem 7, ei is exp(−δ2t/6)-close to a convex combination of

distributions HW1,N (F2), . . ., HWt′,N (F2) with t′ = t 2
λ−1

2λ−1(1 + δ) and δ > 0. Therefore, we need ALPN
2λ

to be successful on over F2 and noise HWt′,N (F2) with probability at least

1− ǫ

1− exp(−δ2t/6) ≤ 1−
(
ǫ− exp(−δ2t/6)

)
≤ 1− ǫ

2
.

B The Hardness of LPN over More General Rings

We generalize the reductions between LPN over Zpλ1qλ2 and LPN over Fp/Fq for distinct primes p, q. Our

techniques extend to an arbitrary integer ring with more than two prime factors as well.

11Strictly speaking, ALPN2
implies such an algorithm with roughly the same complexity and success probability, which can be

seen by a simple reduction.

28

We recall that every number a ∈ [pλ1qλ2] can be uniquely represented using the multi-base (1, p, . . .,
pλ1 , pλ1q, . . ., pλ1qλ2−1) for distinct primes p, q. We define function DigitDecomp that decomposes a num-

ber/vector/matrix a ∈ [pλ1qλ2]
dim

(where dim = 1, n, n1 × n2 for number, vector, or matrix respectively

by applying the operation component-wise) into the above multi-base representation, i.e.,

DigitDecomp(a) = (a0,a1, · · · ,aλ1+λ2−1)

such that ai ∈ [p]dim and aj ∈ [q]dim for every i ∈ [λ1] and j ∈ [λ1, λ1 + λ2], and a =
∑λ1−1

i=0 piai +∑λ1+λ2−1
j=λ1

pλ1qj−λ1aj , and its inverse DigitDecomp−1 such that a = DigitDecomp−1(a0,a1, · · · ,aλ1+λ2−1).
We show how to reduce the hardness of both decisional LPN over Fp and decisional LPN over Fq to that

of decisional LPN over Zpλ1qλ2 with the noise distributions, IndBerµ,N (Zpλ1qλ2) and IndHWt,N (Zpλ1qλ2),
extending the noise distributions IndBerµ,N and IndHWt,N from over Z2λ to Zpλ1qλ2 .

• e ← IndBerµ,N (Zpλ1qλ2) refers to e := DigitDecomp−1(e0, e1, · · · , eλ1+λ2−1) with ei ← Berµ,N (Fp)

and ej ← Berµ,N (Fq) for i ∈ [λ1] and j ∈ [λ1, λ1 + λ2].

• e ← IndHWt,N (Zpλ1qλ2) means e := DigitDecomp−1(e0, e1, · · · , eλ1+λ2−1) with ei ← HWt,N (Fp)

and ej ← HWt,N (Fq) for i ∈ [λ1] and j ∈ [λ1, λ1 + λ2].

Algorithm 2:ALPN
pλ1qλ2

, the secret recovery algorithm on LPN over Zpλ1qλ2 (λ1+λ2 ≥ 2) with

oracle access to ALPNr (the solver for LPN over Fr) and r ∈ {p, q}.
Input: (D,Zpλ1qλ2)-LPN(k,N, t) samples (A, b = A · s+ e mod pλ1qλ2)
Output: s ∈ Zpλ1qλ2

1 (A0,A1, · · · ,Aλ1+λ2−1) := DigitDecomp(A);

2 (b0, b1, · · · , bλ1+λ2−1) := DigitDecomp(b);
3 if λ1 >= 1 then

4 (s0, e0)← ALPNp(A
0, b0);

5 b′ := (b−A · s0 − e0)/p;

6 Return s = s0 + p · ALPN
pλ1−1qλ2

(
A
′ := A mod pλ1−1qλ2 , b′

)
;

7 (s0, e0)← ALPNq(A
0, b0);

8 b′ := (b−A · s0 − e0)/q;

9 Return s = s0 + q · ALPN
qλ2−1

(
A
′ := A mod qλ2−1, b′

)
;

Theorem 12 (Equivalence of Decisional LPN over Zpλ1qλ2 and Fp/Fq).

1. Both decisional (D1,Fp)-LPN(k,N,w) and decisional (D1,Fq)-LPN(k,N,w) are hard iff decisional

(D2,Zpλ1qλ2)-LPN(k,N,w) is hard.

2. If decisional (D,Zpλ1qλ2)-LPN(k,N, t) is hard, then both of decisional (D,Fp)- LPN(k,N,wp) and

decisional (D,Fq)-LPN(k,N,wq) are hard.

where (D1,D2, w) ∈ {(Ber, IndBer, µ), (HW, IndHW, t)} and (D, w1, wp, wq) ∈ {(HW, t, (p−1)pλ1−1qλ2

pλ1qλ2−1 ·
t, (q−1)pλ1qλ2−1

pλ1qλ2−1 · t), (Ber, µ, µ, µ)}.

29

Proof. The proof of the first statement is essentially similar to that of Theorem 4 and Theorem 5. Let

(A, b = A · s + e mod pλ1qλ2) be the LPN over Zpλ1qλ2 . Decompose the matrices and vectors into the

corresponding size-(λ1+λ2) lists, (s0, s1, · · · , sλ1+λ2−1) := DigitDecomp(s), (e0, e1, · · · , eλ1+λ2−1) :=
DigitDecomp(e) and (b0, b1, · · · , bλ1+λ2−1) := DigitDecomp(b). Therefore, for i ∈ [λ1] and j ∈ [λ1, λ1+
λ2], we can write

bi = A
′ · si + ei + fi(A, s0, · · · , si−1, e0, · · · , ei−1) mod p ,

bj = A
′′ · sj + ej + fj(A, s0, · · · , sj−1, e0, · · · , ej−1) mod q ,

where A
′ = A mod p, A′′ = A mod q and fi (resp., fj) is the sum of all other terms involving the

individual components of s and e with index up to i − 1 (resp., j − 1). Define the hybrid distributions

H0, · · · , Hλ1+λ2 as

H0 = (A,u0, · · · ,uk−1,uk · · · ,uλ1+λ2−1)

...

Hk = (A, b0, · · · , bk−1,uk · · · ,uλ1+λ2−1)

...

Hλ1+λ2 = (A, b0, · · · , bk−1, bk · · · , bλ1+λ2−1)

where every ui ← F
N
p and uj ← F

N
q is sampled independently for i ∈ [λ1] and j ∈ [λ1, λ1 + λ2].

Note that all the sk’s are independent, and by the definition of e ← IndBerµ,N (Zpλ1qλ2) (resp., e ←
IndHWt,N (Zpλ1qλ2)) we have that ei follows Berµ,N (Fp) (resp., HWt,N (Fp)) and ej follows Berµ,N (Fq)

(resp., HWt,N (Fq)) given its (independent) prefix e0, · · · , ei−1 and prefix e0, · · · , ej−1 for i ∈ [λ1] and

j ∈ [λ1, λ1 + λ2]. Therefore, all the adjacent Hi−1 and Hi are computationally indistinguishable and so are

H0 and Hλ by a hybrid argument.

The proof of the second statement is essentially similar to that of Theorem 3. Given the LPN over

ring Zpλ1qλ2 samples (A, b = A · s + e mod pλ1qλ2), we also observe that the samples (A0 := A

mod r, b0 := b mod r) constitute exactly the LPN over Fr samples for noise e0 = e mod r, where

r ∈ {p, q}. In case that e ← HWt,N (Zpλ1qλ2), the noise vector e mod p has expected weight tp =
(p−1)pλ1−1qλ2

pλ1qλ2−1 · t and the noise vector e mod q has expected weight tq = (q−1)pλ1qλ2−1

pλ1qλ2−1 · t. This implies

that with probability Ω(1/
√
t) the noise vector e mod p follows the exact-weight distribution HWtp,N (Fp)

and the noise vector e mod q follows the exact-weight distribution HWtq ,N (Fq). The proof for the second

statement is likewise, except when taking e ← Berµ,N (Zpλ1qλ2) we get e mod r ∼ Berµ,N (Fr), where

r ∈ {p, q}.

Similar with the analysis of Theorem 8, we give a reduction both computational LPN over Fq and Fp to

that over a ring Zpλ1qλ2 (see Theorem 13), extending the corresponding reduction between computational

LPN over F2 and Z2λ .

Lemma 5. Let (A, b = A · s+ e mod pλ1qλ2) be the LPN samples over Zpλ1qλ2 , then (A′, b′) as defined

as in line 6 (resp., line 9) of Algorithm 2 constitute the LPN samples over Zpλ1−1qλ2 (resp., over Zqλ2−1).

Proof. Let (A0,A1, · · · ,Aλ−1), (b0, b1, · · · , bλ−1) be as per Algorithm 1, and let (s0, s1, · · · , sλ−1) :=
DigitDecomp(s), (e0, e1, · · · , eλ−1) := DigitDecomp(e). The proof of the statement about (A′, b′) de-

fined as in line 6 and line 9 are similar with that of Lemma 4. For the statement about (A′, b′) defined as in

line 6, it suffices to prove b′ = A
′ · s′ + e′ mod pλ1−1qλ2 , where s′ = (s − s0)/p and e′ = (e − e0)/p

30

are the secret and noise of the LPN over Zpλ1−1qλ2 respectively. That is,

pb′ − p(A′ · s′ + e′) = b−A · s0 − e0 − p(A′ · s′ + e′)

= b−A · s0 − e0 −A · (s− s0)− e+ e0

= b−A · s− e = 0 mod pλ1qλ2 ,

where the first equality follows from b′ = (b − A · s0 − e0)/p, the second is due to pA′ · s′ = pA · s′
mod pλ1qλ2 and pe′ = e− e0, and the last is by the assumption of LPN over Zpλ1−1qλ2 . For the statement

about (A′, b′) defined as in line 9, it suffices to prove b′ = A
′ · s′+ e′ mod qλ2−1, where s′ = (s− s0)/q

and e′ = (e− e0)/q are the secret and noise of the LPN over Zqλ2−1 respectively. That is,

qb′ − q(A′ · s′ + e′) = b−A · s0 − e0 − q(A′ · s′ + e′)

= b−A · s0 − e0 −A · (s− s0)− e+ e0

= b−A · s− e = 0 mod qλ2 ,

where the first equality follows from b′ = (b − A · s0 − e0)/q, the second is due to qA′ · s′ = qA · s′
mod qλ2 and qe′ = e− e0, and the last is by the assumption of LPN over Zqλ2−1 .

Theorem 13. If computational (Ber,Fp)-LPN(k,N, µ) and (Ber,Fq)-LPN(k,N, µ) problems can be bro-

ken with probability at least (1−ǫ) in time T respectively, then the computational (Ber,Zpλ1qλ2)-LPN(k,N, µ)
problem can be broken in time (λ1+λ2)T+poly(k,N) with success probability at least 1−(λ1+λ2+2)

√
ǫ.

Proof. Algorithm 2 translates an (Ber,Zpλ1qλ2)-LPN(k,N, µ) instance into λ1 (Ber,Fp)-LPN(k,N, µ) in-

stances and λ2 (Ber,Fq)-LPN(k,N, µ) instances, which are independent except that all (Ber,Fp)-LPN(k,N, µ)
instances share the same random matrix A mod p, all (Ber,Fq)-LPN(k,N, µ) instances share the same

random matrix A mod q and that the noise vectors of the λ1 + λ2 instances are somehow correlated.

For contradiction assume that there exists an algorithm ALPNp (resp., an algorithm ALPNq) that recovers

the secret of LPN over Fp (resp., the secret of LPN over Fq) with probability more than 2ǫ within time T .

Similar to the proof of Theorem 6, we consider distribution Berµ,N (Fr), for r ∈ {p, q}, being sampled in

two steps: first pick each coordinate with probability with probability µ independently (and let the rest with

0’s), and second assign the picked coordinates with uniform random field element.

We have by a Markov inequality that for at least a (1 − √ǫ) fraction of (A mod p, coin1(e
i)) ALPNp

recovers si (for i ∈ [λ1]) from (A mod p, (A mod p) ·si+ei) with probability at least 1−√ǫ. Thus, the

secret of all (Ber,Fp)-LPN(k,N, µ) instances can be recovered with the following probability by a union

bound

(1−
√
ǫ)(1− λ1

√
ǫ) ≥ 1− (λ1 + 1)

√
ǫ .

The proof about the (Ber,Fq)-LPN(k,N, µ) instances is likewise, and we have that the secrets of all

(Ber,Fq)-LPN(k,N, µ) instances can be recovered with the following probability by a union bound

(1−
√
ǫ)(1− λ2

√
ǫ) ≥ 1− (λ2 + 1)

√
ǫ .

Therefore, overall ALPN
pλ1qλ2

succeeds with the following probability by a union bound

1− (λ1 + λ2 + 2)
√
ǫ .

31

C Attacks on LPN Problems

In the following, we outline the known attacks on LPN problems and refer the reader to the related works

listed below for more details.

Gauss. Gauss attack [EKM17] is the most natural extension of Gaussian elimination to recover the secret

vector from an LPN instance with a Bernoulli distribution. This attack guesses a fresh batch of k non-noisy

LPN samples by picking them at random in each iteration, inverts the corresponding submatrix, computes

a candidate secret s′, and then verifies whether s′ is correct or not. For LPN with noise rate r, this attack

recovers the secret in time Θ̃(1/(1 − r)k) using Θ̃(1/(1 − r)k) samples, where r = µ(|R| − 1)/|R| for a

Bernoulli distribution Berµ,N (R). When considering the concrete LPN parameters, the number of samples

required is not achieved.

To reduce the number of samples in Gauss attack, Esser, Kübler and May [EKM17] introduced Pooled

Gauss attack, which guesses k non-noisy samples by picking them at random from a pool of the fixed N =
k2 log2 k LPN samples in each iteration, and then inverts the corresponding subsystem to get a candidate

vector s′ and verifies if s′ is correct. For LPN with noise rate r, this attack recovers the secret in time
k3 log2 k
(1−r)k using k2 log2 k samples. The Pooled Gauss attack [EKM17] only considers the LPN problem with

a Bernoulli distribution. In Section 5.1, we extend it to solve LPN and dual-LPN with an exact noise

distribution.

As pointed out in [EKM17], Pooled Gauss attack solves the LPN problem via finding a non-noisy index

set, and such a non-noisy index set is called an information set in coding theory language. Therefore, we can

view Pooled Gauss as a special case of the information set decoding (ISD) algorithm, particularly Pooled

Gauss algorithm resembles the well-known algorithm of Prange [Pra62].

Information set decoding (ISD). As shown in the previous subsection, solving LPN is equivalent to solving

its dual variant, which is able to be interpreted as the task of decoding a linear code from its syndrome. The

best-known algorithms for this task are improvements of the Prange’s ISD algorithm [Pra62], which aims

to find a size-t subset of the rows of the parity-check matrix H that spans H · e, where recall that t is the

Hamming weight of noise vector e.

For solving dual-LPN over binary field F2, the Prange’s ISD algorithm [Pra62] was gradually im-

proved in recent years. The improved ISD algorithm [Ste88, Dum91] is called the Stern-Dumer variant

(SD-ISD) in [HS13]. Later, the May-Meurer-Thomae variant (MMT-ISD) [MMT11] and the Becker-Joux-

May-Meurer variant (BJMM-ISD) [BJMM12] improved the SD-ISD by using the generalized birthday

algorithm [Wag02]. We give an overview of the three ISD variants in Appendix D. Recently, several

works [BBC+19, EB22, EMZ21] reduced the significant space consumption of the MMT-ISD and BJMM-

ISD algorithms.

Compared to the case of F2, the ISD algorithms to solve dual-LPN over larger fields are less studied.

An initial study of ISD over a field F with |F| > 2 was given by Coffey and Goodman [CG90], who

provided an asymptotic analysis of the Prange’s ISD algorithm over F. Peters [Pet10] generalized the more

efficient SD-ISD algorithm from binary field F2 to any finite field F. Later, Meurer [Meu12] proposed a new

generalization of the SD-ISD algorithm over any finite field.

These NN-ISD [MO15, BM18, EKZ21, Hir16, GKH17] applied “nearest neighbors” search to the SD-

ISD or BJMM-ISD algorithms, and obtain better asymptotic complexities, where the works [MO15, BM18,

EKZ21] focus on the case of binary field F2, and the works [Hir16, GKH17] allow an arbitrary finite field

F. However, these NN-ISD introduce quite large polynomial overheads.

Statistical decoding. While Gauss and ISD attacks recover the secret vector s, statistical decoding at-

tack [Al 01, Ove06, FKI07, DT17] (a.k.a., low-weight parity-check attack in [BCGI18, BCG+19a, BCG+19b])

can directly distinguishes LPN samples (A, b = A ·s+e) over a finite field F from random samples (A,u).

32

The core of this attack is to find a set of parity-check vectors

V ⊂ {v |v ·A = 0 and |v| = w with a sufficiently small w > 0} .

While Pr[〈v,u〉 = 0] = 1/|F| for random samples, Pr[〈v, b〉 = 〈v, e〉 = 0] = 1/|F| + ǫ with some ǫ > 0
for LPN samples, since both Hamming weights of vectors e and v are small. For each v ∈ V , this attack

can compute a vote 〈v,y〉 with either y = b or y = u. By repeating the process |V| = 1/ǫ2 times, this

attack outputs a majority of votes indicating whether y = b or y = u.

In terms of asymptotic costs, Debris-Alazard and Tillich [DT17] show that an optimal statistical decod-

ing algorithm requires more cost than the Prange’s ISD algorithm [Pra62] for the GV bound decoding over

F2.

Recently, Carrier, Debris-Alazard, Meyer-Hilfiger and Tillich [CDAMHT22] tweaked the framework

of statistical decoding and beat the above bound by introducing the fast Fourier transform. Furthermore,

they [CDAMHT22] proposed an advanced attack, called the SD 2.0 algorithm, which improved statistical

decoding considerably and even outperforms the ISD algorithm for the GV bound decoding over F2 and

k < 0.3N . The SD 2.0 algorithm [CDAMHT22] invokes two techniques to reduce the time complexity, as

follows:

1. generalize the majority voting to the fast Fourier transform, leading to a smaller ǫ.

2. use the same collision technique invoked by the ISD algorithms [Ste88, Dum91, MMT11, BJMM12] to

find set V with a smaller w.

However, the running time of the second technology is |F|θ(k), which limits its advantage in analyzing

the (HW,F)-LPN(k,N, t) problem of security |F|θ(k). Therefore, the low-noise LPN assumption is be-

yond its strengths, because of the subexponential security 2O(kµ) of the low-noise LPN assumption, where

dimension k and low noise rate µ = k−c for constant 0 < c < 1.

Our adapted SD 2.0 algorithm adjusts the SD 2.0 algorithm [CDAMHT22] for analyzing the low-noise

LPN assumption by replacing the second technology with other collision techniques, e.g., [BCGI18]. How-

ever, this adapted SD algorithm still performs poorly on all the LPN parameters given in [BCGI18] (see

Table 3 and Table 4 of Section 5). Moreover, in Section 5.3, we will prove that both an optimal statistical

decoding attack and SD 2.0 attack (adapted to the low-noise setting) require more cost than the Prange’s

ISD algorithm [Pra62] for analyzing the LPN assumptions over a large field, while allowing any weight

t = o(N) satisfied by the low-noise LPN assumption.

BKW. Blum, Kalai and Wassermann [BKW00] introduced the first sub-exponential algorithm (referred to

as the BKW algorithm) that solves LPN problems using a sub-exponential number of samples. In partic-

ular, the BKW algorithm recovers the secret of a (D,F2)-LPN(k,N, t) instance with noise rate r in time

2O(k/ log(k/r)) using 2O(k/ log(k/r)) samples. Later, Lyubashevsky [Lyu05] reduced the sample complexity

of the BKW algorithm to k1+ǫ (for any constant ǫ > 0) at the price of increasing the time complexity to

2O(k/ log log(k/r)). The BKW algorithms have worse performance in time and the number of samples for solv-

ing low-noise LPN over larger fields. More recent works [EHK+18, DEM19, LY21] focused on reducing

the space complexity of the BKW algorithm. Esser, Kübler and May [EKM17] also described the combina-

tions and refinements of Pooled Gauss, ISD and BKW attacks, which are called Well-Pooled Gauss, Hybrid

and Well-Pooled MMT attacks. All these attacks either require a sub-exponential number of samples that is

not satisfied in the LPN-based protocols under the PCG framework, or take significantly more time than the

previous three attacks for solving LPN with low noise rate. Thus, our analysis does not consider the BKW

algorithms.

33

D Variants of Information Set Decoding

Following the analysis [FS09, Sen11, HS13, TS16], we summarize the ISD variants by Stern-Dumer [Ste88,

Dum91], May et al. [MMT11] and Becker et al. [BJMM12]. We refer the reader to the corresponding papers

and the surveys [FS09, Sen11, HS13, TS16] for a more detailed description.

D.1 Stern-Dumer Variant

The SD-ISD attack introduces two additional parameters p and ℓ, and adjusts both parameters to minimize

the whole running time. Specifically, given an instance of the (HW,F2)-dual-LPN(N,N − k, t) problem

(H ∈ F
(N−k)×N
2 ,y = H · e ∈ F

(N−k)
2), the SD-ISD attack first transforms the instance to the following

equation (1) via partial Gaussian elimination, where U is a non-singular (N − k)× (N − k) matrix and P

is a random N ×N permutation matrix.

N − k − ℓ k + ℓ

1
. . .

1

R0 y0

U ·H ·P = , U · y =

0 R1 y1ℓ

(1)

Then, this attack finds e1 ∈ F
(k+ℓ)
2 such that R1 ·e1 = y1 and |e1| ≤ p via the following meet-in-the-middle

attack:

1. For each e1,0 ∈ F
(k+ℓ)/2
2 with |e1,0| ≤ p/2, add the vector R1 ·

[
e1,0 0

]
into a sorted set S0.

2. For each e1,1 ∈ F
(k+ℓ)/2
2 with |e1,1| ≤ p/2, add the vector y1 −R1 ·

[
0 e1,1

]
into a sorted set S1.

3. Search for identical elements in sets S0 and S1, and then add the corresponding vectors (e1,0+e1,1) into

a set S ⊆ {e1 |R1 · e1 = y1}.

This attack repeats the above steps until |e0|+ |e1| ≤ t where e0 = R0 · e1 + y0, and then outputs a noise

vector e = P · (e0, e1)T. The expected running time and more details of the SD-ISD variant are given in

Appendix D.

Many variants [MMT11, BJMM12, MO15, BM18] improved the above step 3 of SD-ISD attack (finding

candidate e1) via the generalized birthday algorithm [Wag02], the representation technique [HJ10] and the

“Nearest Neighbours” search.

D.2 May-Meurer-Thomae Variant

The May-Meurer-Thomae variant (MMT-ISD) [MMT11] replaced the birthday algorithm of Stern-Dumer

variant [Ste88, Dum91] with an order-2 generalized birthday algorithm [Wag02]. This variant applied this

and the representation technique [HJ10] to improve ISD asymptotically and does as following,

1. For all e1,0 ∈ F
(k+ℓ)/2
2 with |e1,0| ≤ p/4, store R1 ·

[
0 e1,0

]
in sorted S1 and S3 with S1 = S3.

2. For all e1,1 ∈ F
(k+ℓ)/2
2 with |e1,1| ≤ p/4, store R1 ·

[
e1,1 0

]
in sorted S2 and store y1 − R1 ·[

e1,1 0
]

in sorted S4.

34

3. Search from S1 to S4 and generate S ⊆ {(e1 |R1 · e1 = y1} by an order-2 generalized birthday algo-

rithm [Wag02].

Note that the set C is a singleton in the original algorithm. By allowing several c ∈ C we allow larger

values of r1 and give more flexibility in the search for optimal parameters. A larger r1 also allows smaller

memory requirements with the same algorithmic complexity.

D.3 Becker-Joux-May-Meurer Variant

The Becker-Joux-May-Meurer variant (BJMM-ISD) [BJMM12] further applied an order 3 generalized birth-

day algorithm [Wag02] and does as following,

1. For all e1,0 ∈ F
(k+ℓ)/2
2 with |e1,0| ≤ p2/2, store R1 ·

[
0 e1,0

]
in sorted S1, S3, S5 and S7 with

S1 = S3 = S5 = S7.

2. For all e1,1 ∈ F
(k+ℓ)/2
2 with |e1,1| ≤ p2/2, store R1 ·

[
e1,1 0

]
in sorted S2, S4 and S6 with S2 =

S4 = S6 and store y1 −R1 ·
[
e1,1 0

]
in sorted S8.

3. Search from S1 to S8 and generate generate S ⊆ {(e1 |R1 · e1 = 0} by an order-3 generalized birthday

algorithm [Wag02], where p2 = O(p) is positive additional parameters.

D.4 Cost of ISD variants

We essentially follow and simplify the analysis done in [FS09, Sen11, HS13, TS16] and count complexity

by the number of field operations. The expected run-time of ISD attack consists of the below parts.

1. We denote TGauss as the cost of the partial Gaussian elimination. A naive implementation leads to

TGauss = (N − k − ℓ)N2 field operation. Fast linear algebra [BA21] leads to TGauss = (N − k −
ℓ)N2/ log(N − k − ℓ).

2. We estimate the success probability of one iteration. It is common in existing literature [Sen11] that each

individual e1 leads independently to success with the probability

ε(p, ℓ)2ℓ ≈
(
N − k − ℓ

t− p

)
2ℓ
/(N

t

)
.

It follows that the probability of success of one iteration is equal to

P(p, ℓ) ≈ ε(p, ℓ)2ℓ|S|

The expected value of the set S will depend on various birthday decoding.

3. Complexity of various birthday decoding.

4. The final test cost 2|S|N field operation.

Theorem 14 (SD-ISD [HS13, Ste88, Dum91]). The (HW,F2)-LPN(k,N, t) problem can be solved by the

SD-ISD variant in expected time

TSD(N, k, t) = min
p,ℓ

1

P(p, ℓ)
(
TGauss + 2L0 ·N + 2E

[
|S|
]
·N
)
,

where L0 = |S1| = |S2| =
((k+ℓ)/2

p/2

)
and E

[
|S|
]
=

L2
0

2ℓ
.

35

Theorem 15 (MMT-ISD variant [HS13, MMT11]). the (HW,F2)-LPN(k,N, t) problem can be solved in

expected time TMMT (N, k, t) by the MMT-ISD variant as below

TMMT (N, k, t) = min
ℓ,r1,p,|C|

1

P(p, ℓ)
(
TGauss + |C| ·N ·

(
4L0 +

2L2
0

2r1
+

2L4
0

2ℓ+r1

))
,

where L0 =
((k+ℓ)/2

p/4

)
and |S| = |C|L4

0

2ℓ+r1
.

Theorem 16 (BJMM-ISD variant [HS13, BJMM12]). The (HW,F2)-LPN(k,N, t) problem can be solved

in expected time TBJMM (N, k, t) by the BJMM-ISD variant as below

TBJMM (N, k, t) = min
p,ℓ,r1,r2,e1,e2

1

P(p, ℓ)
(
TGauss + (8S3 + 4C3 + 2C2 + 2C1) ·N

)
,

where S3 =
(
(k+ℓ)/2

p2

)
, C3 =

S2
3

2r2 , C2 =
C2

3
2r1 , C1 =

S2
1

2ℓ−r1−r2
, S1 = min{µ2C2,

(k+ℓ
p1
)

2r1+r2
}, |S| = min{µ1C1,

(k+ℓ
p)
2ℓ
},

µ1 =
(p1e1)(

k+ℓ−p1
p1−e1

)

(k+ℓ
p1
)

, µ2 =
(p2e2)(

k+ℓ−p2
p2−e2

)

(k+ℓ
p2
)

, p2 = p1/2 + e2 and p1 = p/2 + e1.

E Proofs of Theorem 10 and Theorem 11

Theorem 17 (Theorem 10, restated). For w = w(s) ∈ N and a finite field F with size |F| ≥ 4t, the adapted

SD 2.0 algorithm solves the (HW,F)-LPN(k,N, t) problem in time

T = min
s

(
T1 ·

((
N
t

)
(
N−w

t

) · 2|F|
|F| − 1

)2

+ s log
(
|F|
)
|F|s
)

,

where T1 is the time of finding one parity check vector.

Proof. To simplify the analysis, we replace the exact noise distribution HWt,N (F) with a slightly different

HW′t,N (F) as: 1) sample t out of N positions uniformly at random (and set the rest N − t positions to 0);

2) for each selected position, use a random element in F. Using the modified noise distribution HW′t,N (F),
we analyze the cost of statistical decoding attack to solve the decisional (HW′,F)-LPN(k,N, t) problem

by extending the analysis approach for binary field F2 [DT17], where HW′(F) = {HW′t,N (F)}t,N is the

corresponding family of distributions. This attack can obtain a distinguishing advantage at least 1
2 in time T .

Then, we show that the advantage is reduced to 1
4 in the same time, when the noise distribution is converted

from HW′t,N (F) to HWt,N (F).
Consider b = A · s + e′ with e′ ← HW′t,N (F), we denote by E the event that there is no intersection

between the non-zero positions of vector v′ =
[
0 v2

]
and the noisy positions of e′. Note that 〈v′, e′〉 =

〈v2, e′2〉, where e′
def
=
[
e′1 e′2

]
with e′2 ∈ F

N−s. Then, we have the following:

Pr[〈v′, b〉 = 〈v′, e′〉 = 0] =Pr[〈v′, e′〉 = 0 |E] · Pr[E] + Pr[〈v′, e′〉 = 0 | ¬E] · Pr[¬E]

≤Pr[E] +
1

|F| · Pr[¬E] =

(
N−w

t

)
(
N
t

) +
1

|F| ·
(
1−

(
N−w

t

)
(
N
t

)
)
.

Therefore, our adapted SD 2.0 algorithm solves the (HW′,F)-LPN(k,N, t) in time

T = min
s

T1 ·
((

N
t

)
(
N−w

t

) · 2|F|
|F| − 1

)2

+ s log
(
|F|
)
|F|s ,

36

We consider the statistical distance between e← HWt,N (F) and e′ ← HW′t,N (F)

SD(e, e′) ≤ SD(U(F\{0})t ,UFt) = 1− (1− 1

|F|)
t ≤ t

|F| ≤
1

4
,

where the first inequality is because HW′t,N (F) shares the same first-step sampling procedure as HWt,N (F)
(UR denotes a uniform distribution overR), and the second equality is due to that for b′ ← UFt , conditioned

on b′ ∈ (F\{0})t, which has probability (1−1/|F|)t, b′ follows distribution U(F\{0})t . Therefore, taken into

account the statistical difference between e and e′, both our adapted SD 2.0 algorithm and the traditional

SD attack solve the (HW,F)-LPN(k,N, t) with constant probability.

Theorem 18 (Theorem 11, restated). For any (HW,F)-LPN(k,N, t) problem with |F| = kω(1), (1+β)k ≤
N = poly(k) for a constant β > 0 and t = o(N), both the traditional SD attack and our adapted SD 2.0
attack (that distinguishes with constant advantage) require more cost than the Prange’s ISD algorithm (that

recovers the secret with constant probability).

Proof. As we analyze above, the traditional SD attack takes no less cost than the adapted SD 2.0. Then,

It’s enough to prove that SD 2.0 attack (adapted to the low-noise setting) cannot be more effective than the

Prange’s ISD algorithm. Note that Prange’s ISD algorithm recovers the secret of the (HW,F)-LPN(k,N, t)
problem in time 2o(k) and constant probability. We only consider s = o(k) in the SD 2.0 framework.

If s = Ω(k), then the statement is true, because the SD 2.0 algorithm takes at least |F|s to solve the

(HW,F)-LPN(k,N, t) problem.

The SD 2.0 framework needs to find parity-check vectors from

V ⊂
{
v

def
=
[
v1 v2

] ∣∣v1 ∈ F
s, v ·A = 0 and |v2| = w

}
,

with a sufficiently small w > 0. The expected number of parameter-w parity-check vectors is E[|V|] ≤(
N−s
w

)
|F|w−k+s. We need E[|V|] ≥ 1 to guarantee existence. In particular, we have the following:

2w·logN+(w−k+s)·log |F| = Nw · |F|w−k+s ≥
(
N − s

w

)
· |F|w−k+s ≥ 1.

From the above relation, |F| = kω(1) and N = poly(k), we have that w ≥ (1 − o(1))k. Since the cost of

SD 2.0 increases as w increases, we set w = (1− o(1))k for an optimal attack in the SD 2.0 framework and

we conservatively assume that the time of finding a parity-check vector with minimal weight w is at least

the time using the Gaussian elimination method (denoted by TGauss). 12 According to Theorem 10, we have

that the SD 2.0 solves the LPN problem with constant probability in time

T = min
s=o(k)

TGauss ·
((

N
t

)
(
N−w

t

) · 2|F|
|F| − 1

)2

+ s log
(
|F|
)
|F|s .

The cost of the Prange’s ISD algorithm is upper-bounded by TGauss · (Nt)
(N−k

t)
[BCGI18, HOSS18]. From

t = o(N), we have the following:
(

(Nt)
(N−w

t)

)2

(Nt)
(N−k

t)

=

(
N
t

)
·
(
N−k
t

)
(
N−w

t

)2 =
((N − o(N)) · (N − k − o(N))

(N − w − o(N))2

)t

=
((N − o(N))2 − k · (N − o(N))

(N − o(N))2 − 2w · (N − o(N)) + w2

)t
.

12If there exist more efficient algorithms to find such a parity-check vector, then they can also be used to improve the ISD

algorithm.

37

From N ≥ (1 + β)k, we have that 2w · (N − o(N)) − k · (N − o(N)) = (2w − k) · (N − o(N)) ≥
(1 + β − o(1)) · k2 ≥ k2 ≥ w2. Then, we have that the value in the above equation is at least 1. Therefore,

the cost-ratio between the optimal attack in the SD 2.0 framework and the Prange’s ISD algorithm is at least

4.

38

	Introduction
	Our Contribution

	Preliminary
	Notation
	Learning Parity with Noise

	The Hardness of LPN with Regular Noise Distributions
	The Hardness of LPN over Integer Rings
	Reduction from Decisional LPN over Z2 to LPN over F2
	Reduction from LPN over F2 to Decisional LPN over Z2
	Reduction from Computational LPN over Z2 to LPN over F2

	Concrete Analysis of Low-Noise LPN over Finite Fields
	The Hardness of LPN against Pooled Gauss Attack
	The Hardness of LPN against ISD Attack
	The Hardness of LPN against SD Attack

	Proofs of Theorems and Lemmas
	The Hardness of LPN over More General Rings
	Attacks on LPN Problems
	Variants of Information Set Decoding
	Stern-Dumer Variant
	May-Meurer-Thomae Variant
	Becker-Joux-May-Meurer Variant
	Cost of ISD variants

	Proofs of Theorem 10 and Theorem 11

