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Abstract. We study the problem of private set union in the two-party
setting, providing several new constructions. We consider the case where
one party is designated to receive output. In the semi-honest setting, we
provide two protocols. Our four-round protocol out-performs the state-of-
the-art in both communication and computation, and has a runtime that
is 1.3X-2X faster than existing protocols. Our two-round protocol is only
slightly more expensive, but it is still faster than existing protocols and
has the property that the receiver message can be re-used across multiple
executions. All our semi-honest protocols are post-quantum secure.

In the setting where the sender is malicious, we provide the first proto-
cols that avoid the use of expensive zero-knowledge proofs. We estimate
(conservatively) that our constructions are less than 2X more expensive
than the best known semi-honest constructions. As in the semi-honest
setting, we describe two protocols: a faster one that requires four rounds
of communication, and a slightly more expensive protocol that allows
the receiver message to be re-used.

Our work draws on several techniques from the literature on private set
intersection, and helps clarify how these techniques generalize (and don’t
generalize) to the problem of PSU.
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1 Introduction

As the field of secure computation transitions to practice, a lot of research has
focused on building custom protocols for particular computations of interest.
These custom protocols improve the cost of communication, computation, and
round complexity of the generic solutions. One particular computation that
has received more attention than any other is private set intersection (PSI)
[28,9,23,21,24,14,22,26,38,8,7,34,20,11,39,37,29,42,36,32]. This is partly because
the computation has such broad application, and partly because it is so amenable
to custom techniques.
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F n̂1,n2
PSU

Parameters: S’s set size upper bound n̂1 and R’s set size n2.

Functionality:

1. Wait for X = {x1, · · · , xn1} from S, abort if n1 > n̂1.
2. Wait for Y = {y1, · · · , yn2} from R.
3. Send X ∪ Y to R.

Fig. 1. Ideal Functionality of Two-party PSU. (Upper bound for sender.)

Much more recently, a focus has developed on the neighboring problem of
private set union (PSU). In the PSU problem, two parties compute the union of
their two sets, but without revealing the intersecting elements. This is a natural
next step from PSI: some very interesting techniques have been developed in
the study of PSI, and while not all of them will extend to find application in
broad classes of computation, many of them will likely extend to other private
computations on sets.

1.1 Defining PSU

Properly defining the functionality for PSU in the malicious setting is some-
what subtle, and deserves a short discussion. The functionality that we realize
is described in Figure 1, and there are several things to note.

Sender set size. We have parameterized the functionality with an upper bound
of n̂1 on the sender set size. If the sender were to use a smaller input set, the
functionality would allow the computation to proceed. In the extreme case, if
the sender were to submit the empty set, note that the output of the receiver
would be its own input, Y . This is the same outcome that would result if the
sender were somehow able to fully correlate its own input X with Y (without
learning Y ). A stronger functionality, which rejects the sender’s input if it is
not exactly of size n̂1, might be more desirable here. As we will explain in more
detail shortly, we allow this relaxation because it admits a much more efficient
protocol, through the generalization of a technique used by Freedman et al. [15].
We note that there may be applications where we prefer not to leak the exact
input set size, or the exact intersection size. Our relaxed ideal functionality could
be an asset in such scenarios. Finding an efficient realization of the functionality
that enforces a fixed input size is an interesting direction for future work.
Receiver set size and malicious receivers. In this work we only consider a semi-
honest receiver. Reflecting this, our functionality assumes that the size of the
receiver’s input set is exactly n2. It is worth noting that when the input domain
is large (i.e. exponential in the security parameter), malicious security for the
receiver is in fact easier to achieve than semi-honest security. While this is
counter-intuitive, the reason is because the malicious receiver, who is allowed to
change its input, can select a random input set, and with very high probability,
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it will recover the full input of the sender, as the intersection will be empty. It
is therefore “secure” to simply send the sender’s input in the clear. In the semi-
honest setting, this would not be secure, since the corrupted receiver is assumed
to use its true input, which may be correlated with the sender input. Following
similar reasoning, with large input domains, we could prove that our protocols
are secure, even against a malicious receiver; we do not bother to do so, because
the claim is uninteresting. With small input domains, malicious security is more
meaningful. To achieve it, we would need the receiver to prove that it has not
included too small of an input set in its input encoding. Doing this without the
use of expensive zero knowledge proofs is left as an open problem.

In lieu of this, it is tempting to consider relaxing the functionality as we did
with sender security, parameterizing with only an upper bound on the receiver
set size, with the aim of claiming security against a malicious receiver. However,
this functionality admits trivial solutions, just as the current functionality does
in the large domain setting; if the receiver (or simulator) uses the empty-set, they
recover the full input of the sender. Finally, we note that the current discussion
assumes that only the receiver has output. If both parties receive output, then
this discussion relating to a malicious receiver applies to both parties. In that
case, there are only two security models that make sense: semi-honest security
for both parties, or restricting to small domain, and requiring both parties to
prove that their input sets are sufficiently large.

1.2 Our Contribution

We study the problem of two-party private set union in both the semi-honest
and malicious settings. In the semi-honest setting, we realize the stronger func-
tionality, which fixes the inputs sizes of both parties. In the latter case, we
provide output to a semi-honest receiver, and prove security when the sender is
an active adversary that can deviate arbitrarily from the prescribed protocol. In
each setting, we present two protocols: a four-round protocol, and a two-round
protocol. The four-round protocols have the faster running times, due to lower
computational costs, while the two-round protocols provide reusability, allowing
the first receiver message to be used by multiple senders without repeating the
computation. Our protocols leverage some of the most successful techniques of
the PSI literature, generalizing as needed, in order to provide highly efficient re-
sults. Our four-round semi-honest construction out-performs the state-of-the-art
by 1.3×−2× in LAN network with the bandwidth of 10Gbps, and by 1.5×−1.8×
in a 10 Mbps network. We achieve security against malicious senders at almost no
additional cost. We are not aware of any implementations of protocols that are
secure against malicious senders, but, as our protocols are the first to achieve
this notion of malicious security without relying on expensive zero knowledge
proofs, we can confidently assert that they constitute the state-of-the-art. As
in the semi-honest setting, our two-round, malicious secure protocol also has a
reusable receiver message.
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1.3 Technical Overview

Background. A classic approach to computing PSI, first introduced by Freed-
man et al. [15], and afterward appearing in many follow-up results, proceeds as
follows. The receiver encodes its input set, Y , using a random polynomial P , sub-
ject to the constraint that P (y) = 0 for every y ∈ Y . The receiver then encrypts
the coefficients of this polynomial using a homomorphic encryption scheme, and
sends the ciphertexts to the sender. The sender can homomorphically evaluate
the same polynomial on each of its inputs: letting dx = P (x) denote the re-
sulting ciphertext, the sender computes r · dx + x, for random group element
r, and sends the result back to the receiver. If P (x) = 0, the receiver recovers
the correct element x from the intersection, whereas if P (x) 6= 0, the receiver
recovers a random group element that it can safely discard.

Polynomial encodings have been used in many recent PSI protocols, mainly in
the construction of programmable PRFs [30,38,6,5]. Other recent constructions
have moved away from using polynomials to encode the receiver input, using
garbled Bloom filters, [12,39,25], or cuckoo hashing [36,40,38]. More recently,
Garimella et al. [18] generalized the basic approach described above by defining
the notion of an oblivious key value store. Rather than using a polynomial to
encode the input, the receiver uses a data encoding containing key/value pairs,
where the keys are the items in the input set, and the values are uniformly
picked from the value space. After receiving the encoded key/value pairs, the
sender runs a decode algorithm for each item x in its input set. This algorithm
returns the matching value used in the key/value pairs if x is in the receiver’s
set. Finally, the sender and receiver perform secure comparisons of the values to
determine whether it is an intersected input.

Very recently, Zhang et al. [47] have extended the use of OKVS to the PSU
setting. To do this, the values that they use in the OKVS are ciphertexts: the
receiver selects a single random value w from the plaintext space, and for each in-
put y in its set, it encrypts the value w, and inserts the key/value pair (y,Enc(w))
into the OKVS. The sender decodes using x ∈ X, re-randomizes the ciphertext,
and sends the resulting ciphertexts back to the receiver. If x ∈ Y , this cipher-
text will decrypt to w, revealing nothing more than the fact that x ∈ X ∩ Y .
On the other hand, when x /∈ Y , their instantiation of OKVS ensures that the
returned ciphertext is a random one, and therefore is unlikely to decrypt to w.
The semi-honest parties then engage in an oblivious transfer: the sender uses
inputs (x,⊥), and the receiver obliviously requests x if and only if the plaintext
recovered was not w.

Semi-honest protocols. While the OKVS abstraction has helped discover
more efficient protocols (in both PSI and PSU), we observe that it has also
removed one well-known technique from consideration. A simple idea that ap-
pears frequently in both the PSI literature and first proposed in [15], and, more
recently, in the PSU literature [31], is the use of bucketing : rather than executing
the protocol on the full inputs sets, the two parties first agree on a hash function,
and use it to partition their input sets into buckets. They then compute PSU
on each bucket independently, and the receiver takes the union of the results
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to recover the final output. When using polynomials, the small bucket size of
O(log n) greatly reduces the degree of each polynomial (from n to log n), which
has a big impact on the computational cost. However, when using other more
successful instantiations of the OKVS, such as 3H-GCT proposed by Garimella
et al. [18], and then employed in PSU by Zhang et al. [47], the value of bucket-
ing is erased. We defer a description of the 3H-GCT instantiation to section 2.2,
and simply mention here that with this data structure, there is no advantage
for improving concrete computation cost while the need to pad the bucket to its
maximum size only hurts performance.

Zhang et al. [47] currently hold the state-of-the art for PSU in the semi-
honest setting, and their improvement is over the work of Kolesnikov et al. [31],
which relies on polynomial encodings and bucketing. However, we find that
Kolesnikov et al. missed an important improvement that bucketing offers. As
described previously, we assign a different polynomial to each bucket, bene-
fiting from the reduced degree. However, when sending the encrypted coeffi-
cients to the sender, we use Ring-LWE, which allows for plaintext packing [44].
For simplicity, let m denote both the number of buckets and the packing pa-
rameter, and let ai,0, . . . , ai,k+1 denote the coefficients of the polynomial for
the ith bucket. We pack the plaintexts vertically, across the buckets, placing
the jth coefficient from the polynomial of each bucket into the same plain-
text: Pack(a1,j , . . . , am,j). To perform polynomial evaluation over its inputs, the
sender chooses a different value from each of its buckets, x1, . . . , xm, and con-
structs the vector (Pack(x0

1, . . . , x
0
m), . . . ,Pack(xk+1

1 , . . . , xk+1
m )) (with increasing

powers of the input elements in each slot). It then computes the inner product
of this vector with the vector of encrypted coefficients, yielding an evaluation of
the ith polynomial in the ith plaintext slot. The effect is that we save a factor
of the packing parameter in both communication, and in the computation times
of both parties.

In our four-round protocol, the receiver proceeds as described above for the
protocol of Zhang et al. That is, after decrypting the ciphertexts, it learns for
each index j whether the jth input of the sender is in the intersection. The two
parties then perform an oblivious transfer for each index, where the receiver
requests the jth input value only if it is not in the intersection. We evaluate
the performance of this protocol in Section 5. We show that it out-performs the
state-of-the-art by at least 1.3×−1.5× depending on the network bandwidth.

To reduce this to two rounds and provide re-usability, we make a small mod-
ification. When encoding its input, the receiver ensures that the roots of the
polynomials lay at each of its input values. The sender evaluates the polynomi-
als as before to arrive at packed ciphertexts of the form of (Q1(x1), . . . , Qm(xm)).
It additionally computes the ciphertexts of (x1 ·Q1(x1), . . . , xm ·Qm(xm)). For
xj ∈ X ∩ Y , the jth value in both plaintexts is 0, and nothing is learned about
that input by the receiver. When xj /∈ X ∩Y , the ratio of the jth values in each
plaintext reveals xj . A similar approach for PSU, without packing or bucketing,
was first described by Frikken [16]. Although it is only moderately more expen-
sive, the runtime of performing the additional plaintext/ciphertext multiplica-
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tions is greater than the cost of the oblivious transfer. In terms of communication
cost, sending extra O(n) ciphertexts is also more expensive than executing O(n)
OTs. If the RLWE ciphertext modulus is 128-bit long, and the plaintext mod-
ulus is 44-bit long, then using OT will be about 6× less expensive (assuming a
pre-processed silent random OT).

Security against Malicious Senders. In order to realize an efficient protocol
that is secure against a malicious sender, S, we wish to avoid the usage of ex-
pensive tools such as zero-knowledge proofs. Therefore, we generalize and apply
a simple and efficient technique introduced by Freedman, Nissim, and Pinkas
[15] for constructing PSI protocols against malicious senders, and we refer to the
generalized technique as the FNP paradigm. The main idea is to de-randomize
the computation of the sender, allowing the receiver to verify correctness of the
received messages. For reasons we describe later, we do not know how to lever-
age this technique on packed values, so we return instead to using the OKVS
abstraction. (The original FNP construction used polynomial encodings.)

Roughly speaking, using a homomorphic encryption scheme, for each input
y ∈ Y , the receiver, R, generates an encoding using key/value pairs (y,Enc(0)).
For each x ∈ X, the sender decodes to recover dx, samples a random value r, and
homomorphically computes (e, h)← (enc(r1 · dx + r), H2(r2, x)), where r1||r2 =
H1(r), and H1, H2 are hash functions modelled as random oracles. Notice that if
x ∈ Y , e decrypts to r. This allows R to re-evaluate S’s computation, verifying
that e, h are correctly computed with r and some y ∈ Y (the intersected input).

To summarize the high level intuition of their protocol, we first note that their
protocol satisfies a “locality” property: the responses of S can be decomposed
into multiple messages, where each message corresponds solely to one of S’s
inputs. Then, to compute each message corresponding to an input x, S de-
randomizes the computation with some “local” randomness r. To enable R to
verify the message is computed correctly, S allows R to recover r if x is in the
intersection. This can be done in one go as in [15], or, looking ahead to our
second protocol, through some membership test, followed by oblivious transfer,
performed in separate rounds. Finally, R can reevaluate the sender’s step in the
protocol using x and r. Note that this implicitly requires that it is “secure” for
R to know x, which is the case for intersection elements in PSI.

Given the intuition above, the FNP paradigm can be extended to functions
where the output of the receiver is the partial input of the sender, including PSU.
Additionally, however, to leverage the FNP paradigm, the protocol must satisfy
the “locality” property; for example, it does not seem to fit well with techniques
like packing, as we used in our semi-honest protocols. For each of its input values
x, S will decode to recover a ciphertext dx, such that dx encrypts 0 if x ∈ Y ,
and dx is a random ciphertext otherwise. (This property is realized through the
use of the key-value store.) S computes and sends: dx, (dx · x), (dx · r), where,
as above, H(x||r) determines the randomness used in the construction of the 3
ciphertexts (i.e. re-randomization). When Dec(dx) = 0, nothing is revealed to
R, and in all other cases, R can extract both x and r to verify the correctness
of the computation.
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Here, we want to point out a limitation of the FNP paradigm, which led
us to accept the relaxation described previously. Notice that R can only verify
the messages corresponding to its output set, as it is insecure to disclose the
randomness used for inputs that are not part of R’s output. For example, in
PSI, R can verify messages corresponding to the intersected inputs. In PSU,
R can verify messages corresponding to elements in the union that are outside
the intersection. Thus, our PSU protocols allow a malicious S to “inflate” the
intersection size by sending encryptions of 0; this is captured in the functionality
by allowing the input set of the sender to be smaller than intended. In PSI, the
equivalent attack is also admissible: S can send encodings of random values in
order to reduce the intersection size. However, when dealing with large input
domains, this attack on PSI is equivalent to using random inputs (and thus isn’t
an attack at all). For PSU, the impact is the one described previously.

On the positive side, the FNP paradigm is extremely simple to implement and
does not require any additional heavy machinery such as zero-knowledge proofs.
Specifically, it allows to enhance the semi-honest security of the sender “for free”.
Note that the security of the receiver can be handled separately. Specifically, in
some settings (for instance, when the receiver’s input set is much smaller than
the sender’s input or in a reusable setting where the receiver’s work is captured
by a one-time effort), the overhead of attaching a zero-knowledge proof to the
receiver’s message will be amortized away by the overall amount of work in the
protocol.

It is worth comparing this to a relaxation that frequently appears in the PSI
literature [42,38]: many efficient PSI functionalities allow the receiver to increase
their input set size up to some bound, usually referred to as the “slackness”
bound, possibly inflating the intersection size beyond what the honest behavior
allows.4 In PSU, this relaxation allows the sender to correlate its input with the
receiver’s, but without any direct leakage. In PSI it allows the receiver to learn
more about the sender’s input than was intended, but without this correlation
attack.

1.4 Open Questions

There are several directions that warrant further study, and their discussion
helps further explain our results.

FNP with packing. As described above, we do not know how to leverage
ciphertext packing, which provides considerable performance improvement, to-
gether with the FNP paradigm. The problem stems from the fact that the same
encryption randomness is used for the entire plaintext: if xi and xj are packed
together into the plaintext, we cannot reveal the randomness used for xi /∈ Y
while hiding the randomness used for xj ∈ Y . Exploring modifications to the
construction, and possibly to the encryption scheme, are interesting directions.

4 This does not stem from the FNP paradigm, but rather the use of OKVS: depending
on the instantiation, a malicious server can sometimes encode more input elements
without detection.
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Batched OKVS. Zhang et al. were the first to achieve linear complexity, and
they did this through the use of the OKVS abstraction. Although we found that
abandoning the abstraction in favor of bucketing provided better performance,
ideally, we would still have preferred to unify our presentation by continuing to
use the OKVS abstraction. Additionally, such an approach might have helped us
improve our construction in the future if new realizations of the OKVS primitive
are discovered. Because our semi-honest protocols still use polynomial encodings
of the input, it is tempting to view the process as batch encoding and decoding
of the OKVS. Unfortunately, formalizing this becomes a bit messy. When batch
decoding a set of keys, Sk, you would still recover only a single value in V (in our
case, a ciphertext). Since the encoder likely did not batch the same set of inputs
during encoding – in fact, very likely, only a subset of Sk was even inserted into
the structure – we cannot describe the returned value as either a match or a non-
match. The encrypted plaintext contains membership information for each of the
values in Sk, as you would expect, but this ties the OKVS primitive to using
ciphertext values with packed plaintext. The abstraction becomes sufficiently
different, and, perhaps, too constrained, so we decided to abandon it. That said,
the value of batch encoding and decoding is real, and some reasonable abstraction
might provide new insights, just as the OKVS abstraction has done.

Extending FNP. We hinted above that the FNP paradigm can be extended
to a broader class of computations. Intuitively, we can generalize this as follows.
Let FY denote some arbitrary predicate that depends on R’s input set Y , and
let X denote S’s input set. If the output of computation is {x | x ∈ X ∧
FY (x) = 1}, then we can construct a reusable protocol while leveraging the
FNP paradigm to get sender security at almost no cost. The receiver encrypts the
predicate FY (·) using an FHE scheme, and sends the ciphertext to the sender.
The sender homomorphically evaluates the predicate on each of its inputs to
recover ciphertext dx, which is encryption of 0 if the output does not satisfy
the predicate, and an encryption of 1 if it does. It then proceeds as in our own
construction, re-randomizing using H(x||r), and sends dx, (dx ·x), (dx · r). While
the fully generic protocol is not likely to be efficient, we believe that there are
more interesting applications for this paradigm, with more efficient predicate
encodings, waiting to be discovered.

Laconic PSU. Recently, there have been several results on laconic PSI [1,2].
This is a two-round, reusable PSI protocol in which the receiver message is
sublinear in their set size. Such protocols are especially appealing in the set-
ting where a receiver has large input and must repeatedly compute on that set
with multiple senders. We fall short of achieving this, providing reusability but
only with an O(n) size receiver message. It is worth noting that if we sacrifice
the two-round property, we could achieve succinct communication by asking the
receiver to hold onto its encoding, and having the sender query the OKVS struc-
ture (or polynomial encoding) obliviously. However, achieving sublinear receiver
communication in two-rounds remains a very interesting question.
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Table 1. Asymptotic costs of existing semi-honest secure PSU protocols. n is the size of
the input sets, λ denotes a security parameter, and ` is a ciphertext packing parameter.
Communication is measured in field elements, and computation is measured in field
multiplications.

Communication Computation

Frikken [16] O(n) O(n2)

Davidson and Cid [10] O(λn) O(λn log |F |)
Kolesnikov et al. [31] O(n logn) O(n logn log log n)

Garimella et al. [17] O(n logn) O(n logn)

Jia et al. [27] O(n logn) O(n logn)

Zhang et al. [47] O(n) O(n log |F |)
Ours O(n) O(n logn log `)

1.5 Related Work

In the semi-honest model, Frikken [16] presents a PSU protocol that relies on
polynomial representation and additively homomorphic encryption (AHE). In
particular, the receiver computes a polynomial Q(·) such that for every y in its
input set, Q(y) = 0. Then, it sends the encrypted coefficients of Q(·) to the
sender. For each input x, the sender homomorphically computes the ciphertext
of Q(x) and x · Q(x) and returns them to the receiver. Thus, the receiver can
recover all x that are not in the intersection, as Q(x) 6= 0. Their protocol requires
communicating O(n) ciphertexts and O(n2) computation.5 We describe their
solution a bit more formally, and refer to it as the “naive solution,” in Section 3.2.

Davidson and Cid [10] propose a PSU protocol that is based on Bloom filters
and AHE. Roughly speaking, the receiver encodes its set Y using k hash functions
into a bloom filter of λn bits. It inverts the filter by flipping each bit, encrypts
the inverted filter using the AHE scheme, and sends it to the sender. For each
input x, the sender retrieves the k ciphertexts corresponding to x from the
encrypted, inverted filter. Then, it homomoprhically computes the sum; let c
denote the encrypted sum. The sender homomorphically computes and sends
back the ciphertexts c and x · c. Note that if x ∈ Y , c = 0, therefore, the receiver
can only recover x /∈ Y from these responses. The protocol requires sending
O(λn) ciphertexts and computing O(λn) public key operations, in which λ is
the security parameter.

Kolesnikov et al. [31] propose a PSU protocol that relies on polynomials,
OPRFs (oblivious pseudorandom functions), and OT (oblivious transfer). The
parties first invoke OPRF on their inputs, and use the OPRF’s outputs for
polynomial interpolation/evaluation. Through comparing its own OPRF out-
puts with the evaluation result sent by the sender, the receiver learns a bit that
indicates whether an input corresponding to its OPRF output lies in the in-

5 The author claims that bucketing technique can reduce the computation cost to
O(log logn), but does not give any details on how to modify the protocol, and does
not discuss the subtle issue that in PSU, as opposed to PSI, one has to avoid revealing
which buckets contain intersecting items.
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tersection. It then invokes OT to receive the non-intersected input. Overall, it
avoids the expensive public key operations required in the previous works. Also,
to reduce the cost of interpolation and evaluation, they use bucketing techniques
to partition the input set into multiple subsets, and runs the PSU protocol on
each pair of subsets. This reduces the communication complexity to O(n log n)
and the computational cost to O(n log n log log n).

Garimella et al. [17] propose a PSU protocol that relies on an oblivious
switching network to implement a permuted characteristic functionality. In this
functionality, the sender receives the permutation used to permute its set and
the receiver gets a vector of bits indicating which permuted input is in the
intersection. Similar to constructions above, they then invoke OT, allowing the
receiver to recover all non-intersected inputs from the sender. The reliance on the
oblivious switching network incurs an O(n log n) cost for both communication
and computation.

Jia et al. [27] proposed a protocol based on secure shuffling, multi-point
OPRF, and OT. At a high level, the two parties invoke a secure shuffling protocol
to permute and secret share the receiver’s input set, e.g., an input y is shared to
s⊕y and s. Next, they call a multi-point OPRF to evaluate over receiver’s shares
while returning the PRF key to the sender. The sender then computes the xor
between every pair of its own inputs and its shares of the receiver’s inputs. Note
that if a sender’s input x equals a receiver’s input y, evaluating the xor on x and
y’s share s⊕ y gives s, which is exactly the share held by the receiver. Then, it
evaluates the PRF over the xor results and sends the PRF outputs back to the
receiver. Similarly to [31], the receiver compares the PRF output with its own
OPRF results to learn whether the corresponding input is in the intersection.
In the end, the two parties invoke OT to allow the receiver to learn all non-
intersected inputs. To improve efficiency, they leverage the cuckoo hash table,
which brings the communication and computation costs down to O(n log n).

Zhang et al. [47] give the most concretely efficient protocols. Their protocols
are based on the OKVS abstraction, and the one with better computation ef-
ficiency relies on re-randomizable PKE. The receivers encode the pairs of keys
and values into an OKVS, where the keys are its inputs and the values are fresh
ciphertexts of an arbitrary value w picked by the receiver. Then, the sender de-
codes each of its OKVS inputs and sends back the (re-randomized) value, which
decrypts to w if it is in the intersection. The receiver relies on OT to retrieve
all non-intersected inputs from the sender. Their approach gives the best con-
crete communication and computation costs. Asymptotically, they only require
communicating O(n) ciphertexts and computing O(n) public key operations.

We also briefly review previous protocols realizing (two party) PSU in the ma-
licious model. Frikken [16] also modifies its semi-honest PSU protocol to achieve
malicious security using zero-knowledge proofs, which incurs O(n2) communica-
tion cost to prove the correct polynomial interpolation and evaluation. Hazay
and Nissim [23] construct a PSU protocol using zero-knowledge proofs to ensure
R correctly constructs the polynomial. They rely on a perfectly hiding commit-
ment scheme and an OPRF evaluation to ensure that S correctly evaluates the
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protocol. Their protocol requires communicating O(n log n) group elements and
performs O(n log n) modular exponentiation. Blanton and Aguiar [3] use generic
MPC and incur O(n log n) communication and computation cost. Seo et al. [43]
focus on multiparty set union and require O(s3 · n2) communication cost and
O(s4 · n2) computation cost, where s is the number of parties. They rely on
verifiable secret sharing and zero-knowledge proofs to obtain malicious security.

2 Preliminaries

2.1 Notations and Security Definition

Let κ denote the computational security parameter. Let S (resp. R) denote the
sender (resp. receiver) and let X = {x1, · · · , xn1} (resp. Y = {y1, · · · , yn1})
denote the sender’s (resp. receiver’s) input set. Also, let [m] denote the set
{1, 2, · · · ,m}. Finally, we use the abbreviation PPT to denote probabilistic
polynomial-time and refer to a function µ as being negligible in κ if its inverse
grows faster than any polynomial in κ.

We follow [19,33] for the security definitions for secure two-party computa-
tions. We further employ (re-randomizable) additively homomorphic encryption
schemes. As these are quite standard, we defer them to appendix A.

2.2 Oblivious Key-Value Stores

We use the notion of oblivious key-value stores (OKVS) [36,18]. The definition
goes as follows:

Definition 1. A Key-value store is parameterized by a set K of keys, a set V of
values, and a set of functions H as well as two algorithms:

1. EncodeH({(k1, v1), . . . , (kn, vn)}) takes key-value pairs {(k1, v1), . . . , (kn, vn)} ⊆
K × V as input, and outputs an object D or an error indicator ⊥ with sta-
tistically small probability.

2. DecodeH(D, k) takes an object D and a key k as inputs, and outputs a value
v ∈ V.

In the rest of this paper, we omit the underlying parameter H for simplicity. An
OKVS need to satisfy the following two properties:

Correctness. For any A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥6= D ← Encode(A) =⇒ Decode(D, k) = v

Obliviousness. For any tuple of distinct keys (k0
1, . . . , k

0
n) and (k1

1, . . . , k
1
n), if

Encode does not output ⊥ for (k0
1, . . . , k

0
n) or (k1

1, . . . , k
1
n), then

Encode((k0
1, v

0
1), . . . , (k0

n, v
0
n))

c≡ Encode((k1
1, v

1
1), . . . , (k1

n, v
1
n))

where vbi ← V for all i ∈ [n] and b = {0, 1}.
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Furthermore, the following randomness property, which is formally captured
in [47], is handy when arguing the correctness of our PSU protocols.6

(Optional) Randomness. For any A ⊆ K × V with distinct keys and any k∗

that is not among the keys appearing in A, the output of Decode(Encode(A), k∗)
is statistically close to uniform over V.

Finally, by (n,m, 2−λ)-OKVS scheme, we mean the scheme encodes n el-
ements into m slots, and the encode algorithm fails with no more than 2−λ

probability. In our work, we use the following two constructions of OKVS.

Polynomial. A simple example of OKVS is a polynomial P satisfying P (ki) = vi
for all i ∈ [n]. The (encrypted) coefficients of the polynomial is the OKVS data
structure where m = n. It is straightforward to see the correctness property holds
while the obliviousness property follows from the CPA security of the encryption
scheme. The encode (resp. decode) algorithm is simply polynomial interpolation
(resp. evaluation).

3-Hash garbled cuckoo table. 3-Hash Garbled Cuckoo Table (3H-GCT), first
introduced in [18], is a more sophisticated scheme to instantiate OKVS. We give a
high-level description of its data structure and encode/decode algorithms below,
but refer to the original paper for full details.

Recall that K (resp. V) corresponds to the key space (resp. value space) of the
OKVS. Specifically, let V be a finite group or a finite field. Let m = m′ + d+ λ
where d ∈ O(log n) and λ is the statistical security parameter. Let the data
structure D = L||R ∈ Vm, where L ∈ Vm′

and R ∈ Vd+λ.

The encode algorithm is parameterized with the functions h1, h2, h3 : K →
[m′] and a function r : V → {0, 1}d+λ. Given h1, h2, h3 and a k ∈ K, let
l(k) be the bit vector of length m′ where all bits are zero except at positions
h1(k), h2(k), h3(k). Then, the data structure D encoding {(ki, vi)}i∈[n] should
satisfy 〈l(ki)||r(ki), L||R〉 = vi for i ∈ [n] , where 〈·, ·〉 denotes the inner product
between two vectors. Note that finding a satisfying D is equivalent to solving
the system of n linear equations. In particular, the encode algorithm outputs a
random solution for this system of linear equations. On the other hand, decoding
a key k can be done by simply retrieving the slots in D that corresponds to the
non-zero bits in l(ki)||r(ki) and summing them up.

The OKVS is correct whenever the encode algorithm succeeds. It may fail
when there is no solution, i.e., there exist “too many” linearly dependent rows
in the linear equations. To empirically bound this failure probability, [18] ex-
plores several architectures to amplify the probabilistic guarantee of encoding
success. We again refer to their paper for full details. Here we simply state their
parameters. In Section 5.4 in [18], they construct a (n,m, 2−λ)-OKVS scheme
with m ≈ 1.3n and λ > 40.

Roughly speaking, obliviousness follows from the fact that the encode algo-
rithm returns a random solution to the linear equations, and values {vi}i∈[n] are

6 In fact, this property is a bit stronger than what we need, thus some instantiation
of OKVS that do not has this property still suffice for correctness. We elaborate on
this point after presenting our protocols, when the OKVS we instantiate is clear.
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Fn1,n2
PSU

Parameters: S’s set size n1 and R’s set size n2. The universe U of all
elements.

Input: S’s input set X = {x1, · · · , xn1} ⊆ U and R’s input set Y =
{y1, · · · , yn2} ⊆ U .

PSU:

– Send X ∪ Y to R.

Fig. 2. Ideal Functionality of PSU.

uniformly distributed. In Theorem 7 in [47], they formally prove that 3H-GCT
satisfies both the obliviousness and the randomness property.

3 Semi-Honest PSU Protocols

In this section, we introduce two semi-honest protocols that realize the PSU
functionality (Figure 2). In section 3.1, we provide a two-round reusable protocol
relying on RLWE PKE, whereas in section 3.2 we provide a variant protocol in
an OT-hybrid model that is more efficient, in terms of both communication
and computation, at the cost of adding two rounds of interaction. Finally, we
implement both protocols and defer the experimental results to section 5.

3.1 Semi-Honest Reusable PSU

We now present our two-round, reusable PSU protocol, secure against a semi-
honest adversary. Informally, we refer to a two-round PSU protocol as reusable if
the receiver’s message can be reused across multiple executions of the protocol,
potentially with different senders. This property is especially appealing when
the receiver holds a very large input set, and interact with many senders, each
possibly holding smaller inputs.

A naive solution. We describe again a simpler solution, introduced by Friekken
[16]. Recall that R’s input set is Y = {y1, · · · , yn2}. R first computes the poly-
nomial Q(x) =

∏n2

i=1(x − yi) =
∑n2

i=0 ai · xi. Next, it encrypts the polynomial
coefficients a0, · · · , an2

, resulting in c0, · · · , cn2
and sends the ciphertexts to S.

For each xj in S’s set X, S homomorphically evaluates the polynomial, comput-
ing d =

∑n2

i=0 ci · xij , and sets d′ = d · xj . Then, it re-randomizes d and d′ to e
and e′ and sends the re-randomized ciphertexts back to R. To recover the extra
inputs that S brings to the union, R decrypts e and e′ to obtain the plaintexts,
v = Q(xj) and v′ = xj ·Q(xj). Note that if xj ∈ Y , both of them equal to zero
as Q(xj) = 0. Therefore, R learn nothing from these intersection points. On the
other hand, if xj /∈ Y , R recovers xj = v′/v and adds it to the output set. It is
trivial to see that this solution gives the correct result.



14 D. Gordon et al.

For simplicity, throughout our paper we assume n1, n2 ∈ O(n) when analyz-
ing the complexity of our protocols. The naive solution requires R to interpolate
a polynomial of degree n2 and S to evaluate the polynomial n1 times, which
accounts for O(n2) field operations for interpolation and amortized O(n) field
operations for each evaluation. Therefore, to achieve a much more efficient con-
struction (both asymptotically and conretely), we use the bucketing technique
with packing (both introduced below) on top of the naive construction.

Bucketing. We borrow the bucketing technique first used by Freedman et al.
[15] used for the PSI problem. Roughly speaking, using a simple hash table,
both parties partition their input sets into m ∈ O(n/ log n) buckets, where each
bucket contains no more than some k ∈ O(log n) inputs, except with negligible
probability. To prevent additional leakage from the number of inputs in each
bucket, both parties should pad it to maximum size k. However, a subtlety is
observed by Kolesnikov et al. [31]. To ensure that we do not indicate to the
receiver whether an intersections occurs in any particular bucket, the sender’s
dummy items must look like intersection items. This is handled by ensuring the
receiver includes at least 1 dummy item in each interpolation, so that it will
intersect with all dummy items of the sender in the corresponding bucket. As a
result, the maximum number of inputs in a receiver’s bucket is actually k + 1.
Then, the naive solution above is run m times, one for each bucket. Kolesnikov
et al. also observes that the receiver can do this by using 0 coefficients, rather
than interpolating over dummy inputs. In more detail, R interpolates a total of
m polynomials of degree (at most) k+1, one for each bucket, and all using k+2
coefficients. Then S evaluates a degree k+1 polynomial for each of its inputs. To
hide its own bucket sizes, the sender evaluates each polynomial k times, regard-
less of the bucket load. Thus bucketing reduces the total computational costs
of both S and R to O(n log n) field operations7, while the total communication
cost remains O(n).

Further optimization via packing. To further improve concrete efficiency,
we can use the SIMD (Single-Instruction Multiple-Data), first proposed in [44],
to compute multiple values in parallel. In particular, we can encode and pack a
batch of inputs or polynomial coefficients into a single ring element and use an
RLWE encryption scheme to encrypt it into a single ciphertext. Specifically, for
i = [k]∪{0}, R packs the ith coefficient of all m buckets into a ring element, and
encrypts it to a single ciphertext Cj . Also, for j = 1, · · · , k, S packs its jth in-
puts from all m buckets into a ring element. Using coordinate-wise multiplication
between plaintext and ciphertext (denoted as

⊙
), S can compute the multipli-

cation between each pair of polynomial coefficient and S’s input in a batch. This
greatly improves the concrete computational efficiency. Our semi-honest protocol
incorporates the two optimizations mentioned above, and is shown in Figure 3.

7 In Kolesnikov et al. [31], more efficient claim is made as FFT is applicable there.
In our case, the coefficients are encrypted so we need to use the straight-forward
algorithm with amortized cost linear to the degree of the polynomial.
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ΠPSU Semi-honest PSU

Parameters.

– S’s set size n1, R’s set size n2.
– Number of buckets m ∈ O(n/ log(n)), maximum bucket size k ∈
O(logn).

– A prime p. A special dummy item ⊥∈ Zp. A finite ring R.
– A RLWE scheme (Setup,KeyGen,Enc,Dec,ReRand) with plaintext

space R, a reversible function Pack : Zmp → R.

Input. S’s input set X = {x1, · · · , xn1} ⊆ Zp \ {⊥} and R’s input set
Y = {y1, · · · , yn2} ⊆ Zp \ {⊥}.

Protocol.

1. Setup. R computes pp ← Setup(1κ), (pk, sk) ← KeyGen(pp), picks a
random hash function h : Zp → [m].

2. Encryption. R uses h to hash inputs in Y into m buckets. Addition-
ally, it adds a ⊥ to each bucket. Let BRi = {yi,1, · · · , yi,|BR

i |
} denote

the set of inputs in R’s ith bucket. Next, for i ∈ [m], R samples
ai,0 ← Zp and computes

Qi(x) = ai,0 + · · ·+ ai,k+1x
k+1 = ai(x− yi,1) · · · (x− yi,|BR

i |
)

Note that ai,j = 0 if j > |BRi |. For j = [k + 1] ∪ {0}, let Aj =
Pack(a1,j , a2,j , · · · , am,j), R computes Cj ← EncRLWE

pk (Aj). Finally, it
sends pk, h and C0, . . . , Ck+1 to S.

3. Evaluate the encrypted polynomial. S uses h to hash inputs in X
into m buckets. It pads each bucket to size k using ⊥ and randomly
permutes all inputs within each bucket. Let BSi = {xi,1, · · · , xi,k}
denote the set of inputs in S’s ith bucket. For j ∈ [k], i ∈ [k+1]∪{0},

let Xi
j = Pack(xi1,j , . . . , x

i
m,j). S computes: Dj = (

k+1∑
i=0

Ci
⊙
Xi
j) and

D′j = Xj
⊙
Dj . Note that

Dj ∈ EncRLWE
pk (Pack(Q1(x1,j), · · · , Qm(xm,j)))

D′j ∈ EncRLWE
pk (Pack(Q1(x1,j) · x1,j , · · · , Qm(xm,j) · xm,j))

Finally, S re-randomizes the ciphertexts Dj , D
′
j to Ej , E

′
j and sends

back all (Ej , E
′
j).

4. Obtaining output. For each pair of Ej , E
′
j , R decrypts and unpacks

to recover {(Qi(xi,j), Qi(xi,j) · xi,j)}i∈[m]. Note that if xi,j is in the
intersection or xi,j =⊥, R recovers the tuple (0, 0) as Qi(xi,j) = 0.
Otherwise, R can compute xi,j and put it in X̂.

Output. R outputs X̂ ∪ Y .

Fig. 3. Semi-honest PSU Protocol
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Theorem 1. The protocol ΠPSU (Figure 3) securely realizes the ideal functional-
ity Fn1,n2

PSU (Figure 2), under the presence of a semi-honest adversary corrupting
either S or R.

Proof. As FPSU is deterministic and we are in the semi-honest setting, it suffices
to separately show (a) correctness: the protocol output is correct, and (b) privacy:
each party’s view in protocol can be simulated using its own input and output.

It is straightforward to see that the correctness holds when the buckets do not
overflow during hashing. In particular, in Step 4 of the protocol, R recover (0, 0)
for every S’s input x is in the intersection, i.e. (x ∈ Y ), due to the polynomial
evaluated to 0. On the other hand, every element xi,j /∈ Y can be recovered by
R and added to the output. Finally, by following the choices of parameters m
and k according to [40,31], the probability of overflow is bounded by 2−40.

To see that the privacy holds, we first show how SimS(X) simulates the
view for the corrupt S, which consists of pk, h, and R’s encrypted coefficients
C0, ..., Ck+1 sent in Step 2:

1. Run pp ← Setup(1κ), (pk, sk) ← KeyGen(pp) and randomly pick a hash
function h.

2. Compute C̃0 ← EncRLWE
pk (0), · · · , C̃k+1 ← EncRLWE

pk (0).

Clearly, pk, h follows the same distribution, and any PPT adversary that can
distinguish C0, · · · , Ck+1 and C̃0, · · · , C̃k+1 given pk can break the IND-CPA
security of the underlying encryption scheme.

Next, we show how SimR(Y,X ∪ Y ) simulates the view for the corrupt R,
which consists of S’s replies {Ej , E′j}j∈[k] in Step 3:

1. Simulates R’s random tape to run pp ← Setup(1κ), (pk, sk) ← KeyGen(pp),
and randomly pick a hash function h.

2. Compute X̃ = X ∪ Y \ Y . Hash X̃ into the m buckets and pad each bucket
to size k with ⊥ and randomly permute all items within each bucket. Also,
hash inputs in Y into the m buckets and add a ⊥ to each bucket. Let B̃Si =
{xi,1, · · · , xi,k} (resp. BRi = {yi,1, · · · , yi,|BR

i |}) denote the set of items in

S’s (resp. R’s) ith bucket.
3. For i ∈ [m], sample ai ← Zp and compute

Qi(x) = ai,0 + · · ·+ ai,k+1x
k+1 = ai(x− yi,1) · · · (x− yi,|BR

i |)

For j = [k + 1] ∪ {0}, let Aj = Pack(a1,j , a2,j , · · · , am,j) and compute Cj ←
EncRLWE

pk (Aj).

4. For j ∈ [k], and i ∈ [k+1]∪{0}, let X̃i
j = Pack(xi1,j , . . . , x

i
m,j), compute D̃j =

(
k+1∑
i=0

Ci
⊙
X̃i
j) and D̃′j = X̃j

⊙
D̃j . Re-randomize the ciphertexts D̃j , D̃

′
j to

Ẽj , Ẽ
′
j .

First note that the key pair (pk, sk) follows the same distribution in both
views. Next, due to the re-randomization indistinguishable property and CPA
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security, Ej , E
′
j in the real view and Ẽj , Ẽ

′
j in the simulated view are computa-

tionally indistinguishable. Moreover, in the real view, decrypting and unpacking
all Ej , E

′
j for j ∈ [k] results in tuples corresponding to inputs in X̂ = X ∪Y \Y ,

as well as n1−|X̂| tuples of (0,0) corresponding to intersected inputs or padding
inputs ⊥. On the other hand, in the simulated view, decrypting and unpacking
all Ẽj , Ẽ

′
j for j ∈ [k] results in tuples corresponding to inputs in X̃, which equals

to X̂, and the same number of (0, 0) tuples as in the real view. Therefore, the
decryption of ciphertexts gives identical outputs. This concludes our proof.

Reusable Security. We do not formally model re-usable security, but we make
the following observations. When the receiver is corrupt, SimR does not use the
private randomness of the receiver when constructing Ẽj , Ẽ

′
j in Step 3. Therefore,

when reusing R’s message across executions, if there exists a distinguisher Dmany

that can distinguish the real world executions from the simulated executions,
then there exists a distinguisher D that can do so in a single execution, in
contradiction of Theorem 1. This follows because D can simply run SimR itself
to generate the missing portion of Dmany’s view.

When the sender is corrupt, reusability holds trivially for semi-honest proto-
cols that have full correctness. Intuitively, this is because there is nothing learned
by the sender after each additional execution, if the protocol always completes
correctly.8 Therefore, it suffices for SimS to simulate the message of the receiver
just one time. In subsequent protocol executions, SimS simply extracts the sender
input and submits to the trusted party.

3.2 Efficient PSU with OT in the Semi-honest Setting

In this subsection, we show a simple trick to trade the reusability and round
complexity for better communication and computational cost when we are in
the OT-hybrid model. Recall that in the previous protocol, R recovers the set
{(Qi(xi,j), Qi(xi,j) · xi,j)}i∈[m] from each pair of Ej , E

′
j sent by S. Instead, we

first let R recover only {Qi(xi,j)}i∈[m] from Ej , and then have R to recover xi,j
through OT, if and only if Qi(xi,j) 6= 0. This reduces the number of ciphertexts
needed to be computed and the overall communicated by a half, thus reducing
the communication and computational costs. Formally, our protocol is shown in
Figure 4, with the differences highlighted.

Theorem 2. In the FOT-hybrid model, the protocol ΠFOT
PSU (Figure 4) securely

realizes the ideal functionality Fn1,n2

PSU (Figure 2), under the presence of a semi-
honest adversary corrupting either S or R.

The proof is quite similar to the security proof for Π reuse
PSU . Therefore, we only

give a sketch here and defer the proof to the full version. To start with, it is

8 In contrast, if the protocol occasionally fails, one would have to argue that the failure
event does not reveal something about the randomness used in the receiver’s message.
It is possible to construct a contrived protocol that is secure after a small number
of failures, but eventually leaks all of the randomness of the receiver’s message.



18 D. Gordon et al.

ΠFOT
PSU Semi-honest PSU with OT

Parameters.

– S’s set size n1, R’s set size n2.
– Number of buckets m ∈ O(n/ log(n)), maximum bucket size k ∈
O(logn).

– A prime p. A special dummy item ⊥∈ Zp. A finite ring R.
– A RLWE scheme (Setup,KeyGen,Enc,Dec,ReRand) with plaintext

space R, a reversible function Pack : Zmp → R.
– Ideal functionality FOT (Figure 7).

Input. S’s input set X = {x1, · · · , xn1} ⊆ Zp \ {⊥} and R’s input set
Y = {y1, · · · , yn2} ⊆ Zp \ {⊥}.

Protocol.

1. Setup. R computes pp ← Setup(1κ), (pk, sk) ← KeyGen(pp), picks a
random hash function h : Zp → [m].

2. Encryption. R uses h to hash inputs in Y into m buckets. Addition-
ally, it adds a ⊥ to each bucket. Let BRi = {yi,1, · · · , yi,|BR

i |
} denote

the set of inputs in R’s ith bucket. Next, for i ∈ [m], R samples
ai,0 ← Zp and computes

Qi(x) = ai,0 + · · ·+ ai,k+1x
k+1 = ai(x− yi,1) · · · (x− yi,|BR

i |
)

Note that ai,j = 0 if j > |BRi |. For j = [k + 1] ∪ {0}, let Aj =
Pack(a1,j , a2,j , · · · , am,j), R computes Cj ← EncRLWE

pk (Aj). Finally, it
sends pk, h and C0, . . . , Ck+1 to S.

3. Evaluate the encrypted polynomial. S uses h to hash inputs in X
into m buckets. It pads each bucket to size k using ⊥ and randomly
permutes all inputs within each bucket. Let BSi = {xi,1, · · · , xi,k}
denote the set of inputs in S’s ith bucket. For j ∈ [k], i ∈ [k+1]∪{0},
let Xi

j = Pack(xi1,j , . . . , x
i
m,j).

S computes: Dj = (
k+1∑
i=0

Ci
⊙
Xi
j). Note that

Dj ∈ EncRLWE
pk (Pack(Q1(x1,j), · · · , Qm(xm,j)))

Finally, S re-randomizes the ciphertexts Dj to Ej and sends back all
Ej .

4. Obtaining output. For each Ej , R decrypts and unpacks to recover
{Qi(xi,j)}i∈[m]. Note that if xi,j is in the intersection or xi,j =⊥,
Qi(xi,j) = 0. Let bi,j = 0 if Qi(xi,j) = 0 and bi,j = 1 otherwise.
Let X̂ = ∅. For each pair of i ∈ [m], j ∈ [k], S and R call the OT
functionality FOT. Specifically, S serves as the sender with inputs
(⊥, xi,j) and R serves as the receiver with input bi,j . Therefore, for
all i, j such that bi,j = 1, R receives xi,j and puts it in X̂.

Output. R outputs X̂ ∪ Y .

Fig. 4. Semi-honest PSU with OT Protocol
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easy to verify that the correctness holds. Next, to claim privacy against S, note
that the view of S consists of pk and encrypted coefficients C0, . . . , Ck+1 sent by
R, which is exactly the same as in Π reuse

PSU . Finally, compared to Π reuse
PSU , the view

for R now contains {Ej}j∈[m] instead of {(Ej , E′j)}j∈[m], so we can modify the

simulator to only generate {Ẽj}j∈[m], and argue computational indistinguisha-
bility as before. Additionally, the simulator simulates all OT executions to return
every x ∈ X̃ to R, which is identical to the real view.

4 PSU with Malicious Senders

In this section, we present two PSU protocols that securely realize our PSU
functionality (Figure 1) against a malicious sender in the random oracle model.
In section 1.1, we define and discuss the proper PSU functionality in this setting.
In section 4.1, we provide a two-round reusable protocol relying on an additive
homomorphic encryption scheme, and in section 4.2 we provide a more efficient
protocol, in terms of both communication and computation, at the cost of adding
two rounds of interaction. This protocol is in an OT-hybrid model, using a re-
randomizable public key encryption scheme. We note that the two protocols are
incomparable and achieve different properties and efficiency measures.

4.1 Reusable PSU

In this subsection, we show how to realize a two-round reusable PSU protocol
using the FNP paradigm. Compared to our semi-honest protocol, in which we use
a polynomial and simple hash table to encode R’s input set, here we generalize
our protocol by using the abstraction of OKVS to encode R’s input set. Also, we
rely on an Additive-homomorphic encryption scheme, but due to the requirement
of the locality property to use the FNP paradigm, we cannot use packing as we
did in the semi-honest setting.

In more detail, R first encodes its input set Y to an OKVS data structure
D, such that for every y ∈ Y , Decode(D, y) returns a fresh encryption of 0.
After receiving D, for each input x, S homomorphically computes a tuple of
(rerandomized) ciphertexts: (d, d · x, d · r) where d = Decode(D,x). Recall that
h(x||r) determines the randomness used by S to derandomize the computation of
this tuple/message. When Decode(D,x) 6= 0, i.e., x /∈ Y , R can recover x and r
from the decryption of the tuple, and reevaluate S’s derivation of it. Eventually,
R verifies the correctness of all tuples/messages corresponding to the elements
in X \ Y . Our protocol is given in Figure 5.

Theorem 3. The protocol Π∗reusePSU (Figure 5) securely realizes the ideal func-

tionality F n̂1,n2

PSU (Figure 1) with abort, against any malicious sender and any
semi-honest receiver with abort in the random oracle model.

We give a high-level intuition of the proof below and defer the full proof to
Appendix B.
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Π∗reusePSU

Parameters.

– S’s set size upper bound n̂1, R’s set size n2.
– Statistical security parameter λ.
– Number of slots m ∈ O(n).
– A finite group G and finite field F.
– A AH-PKE scheme (Setup,KeyGen,Enc,Dec,ReRand) with plaintext

space F, ciphertext space G, and randomness space ∇.
– An (n,m, 2−λ)-OKVS scheme (Encode,Decode) with key space F and

value space G.
– A hash function h : F2 → ∇3, modeled as a random oracle.

Input. S’s input set X = {x1, · · · , xn1} ⊆ F and R’s input set Y =
{y1, · · · , yn2} ⊆ F.

Protocol.

1. KeyGen. R computes pp← Setup(1κ), (pk, sk)← KeyGen(pp).
2. Encrypt and encode. R generates n2 fresh ciphertexts (c1, . . . , cn2)

of 0, that is, for i ∈ [n2], ci ← Encpk(0). It then generates D ←
Encode({(yi, ci)}i∈[n2]) and sends pk, D to R.

3. Decode and re-randomize. For each element xi ∈ X, S com-
putes di = Decode(D,xi). Next, it samples ri ← F and com-
putes vi||v′i||v′′i = h(xi||ri). Then, for each i ∈ [n1], it computes
ei = ReRandpk(di, vi), e

′
i = ReRandpk(di·xi, v′i), and e′′i = ReRandpk(di·

ri, v
′′
i ), with · denoting the multiplication between a ciphertext and a

plaintext. Finally, it sends {(ei, e′i, e′′i )}i∈[n1] to R.
4. Decrypt and obtain output. R receives {(ei, e′i, e′′i )}i∈[n1] and

aborts if n1 > n̂1. Otherwise, for each (ei, e
′
i, e
′′
i ) received, R com-

putes the decryption: ui = Decsk(ei), u
′
i = Decsk(e

′
i), u

′′
i = Decsk(e

′′
i ).

Let X̂ = ∅. For each tuple of ui, u
′
i, u
′′
i such that ui 6= 0, it calculates

x = u′i/ui and r = u′′i /ui. It then reevaluates S’s previous step to
verify that {(ei, e′i, e′′i )} was correctly computed. If so, it sets X̂∪{x}.

Output. R outputs X̂ ∪ Y .

Fig. 5. Reusable PSU
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Malicious sender. To simulate the OKVS for the malicious sender, we argue
that the simulator can just encode an arbitrary set of inputs (as keys of the
OKVS) with values chosen uniformly from the ciphertext space. By the obliv-
iousness property of the OKVS, this is computationally indistinguishable from
an OKVS encoding real inputs of R with uniformly chosen ciphertexts. Next, we
can further replace the uniformly chosen ciphertexts with ciphertexts encrypting
0s, and argue that the change is computationally indistinguishable, due to single
message multiple ciphertexts indistinguishability of the underlying PKE scheme.

Finally, to show that the output distribution in the above hybrid world is
statistically indistinguishable from that of the real world, we rely on the following
arguments: Due to the randomness property of the OKVS, any of S’s inputs that
are not encoded by R decode to a random value/ciphertext, and the probability
that a random ciphertext decrypts to 0 is negligible. Therefore, R can retrieve
all S’s non-intersected inputs except for negligible probability, assuming that
S does not cheat. In the case where S cheats by sending incorrectly formed
ciphertext tuples, R in the real world discards those recovered (non-intersected)
inputs that correspond to incorrectly formed ciphertext tuples. In the (simulated)
hybrid world, the simulator can extract each of S’s inputs along with the local
randomness used to re-randomized ciphertexts through h, which is modeled as a
random oracle. It can then use these inputs and the corresponding randomness
to verify that each tuple of ciphertexts is computed correctly, discarding those
inputs that are not. Although the discarded inputs may include those intersected
inputs, this will not affect the output, as it will not be returned to R by the
ideal PSU functionality. The formal proof is in Appendix B.

Semi-honest receiver. The simulator for the semi-honest receiver is similar
to the simulator we give in the semi-honest setting. Specifically, the simulator,
given R’s input set Y and the output set X ∪ Y , computes X̃ = X ∪ Y \ Y .
Then, it follows R’s steps to generate the OKVS using R’s input set Y . Next,
it follows S’s steps to decode and generate the re-randomized ciphertext tuples
using inputs in X̃, i.e., the set of S’s inputs that are not in the intersection.
Also, the simulator adds “dummy” ciphertext tuples, generated by encrypting
0s, and sends all ciphertext tuples to R. In the end, R recovers all inputs in X̃,
except with negligible probability, due to the randomness property of OKVS.
Moreover, the remaining “dummy” ciphertext tuples are indistinguishable from
those ciphertext tuples generated through proper decoding and re-randomizing
in the real world, due to the re-randomization indistinguishable property of the
underlying PKE.

Reusable security. For a corrupt semi-honest receiver, the argument is iden-
tical to the one made in Section 3.1: because SimR did not use the private
randomness of R when constructing the sender messages in Step 3, any distin-
guisher that can break security after multiple executions could do so after a
single execution by continuing the simulation itself.

When the sender is malicious, we claim reusability by first noting that the
FNP paradigm enforces honest behavior. In particular, suppose there exists some
D that can distinguish the real world from the ideal world after ` executions
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by some adversary A. We can show that there exists a sequence of inputs,
X1, . . . , X`, such that D can distinguish the real world from the ideal world when
a semi-honest adversary corrupts S. Concretely, these inputs are the subsets of
A’s inputs that verified under the FNP validation. As we argued in Section 3.1,
since the protocol is correct (with all but negligible probability), it follows that
nothing is learned about the randomness used by the receiver in generating its
single message, and a one-time simulation of that message suffices.

Instantiation and cost. Using 3H-GCT for the OKVS scheme and Paillier en-
cryption for the AH-PKE scheme, let σPai denote the size of a Paillier ciphertext
and let σ denote the size of an input. To achieve 2−40 failure probability for
3H-GCT, we need m ≈ 1.3n using the star architecture technique introduced in
[18], and the communication cost can be divided into the following:

– R sends the 3H-GCT to S: ≈ 1.3 · n2 · σPai.
– S sends back the tuples of re-randomized ciphertexts: 3 · n1 · σPai.

The total computational cost is O(n log n) due to the 3 +O(log n) +λ group
operations9 required to secret share (resp. reconstruct) a ciphertext/value when
we encode (resp. decode) the 3H-GCT. However, the concrete cost is dominated
by the cost of modular exponentiation. And we requires O(n) modular expo-
nentiation for computing encryption, decryption, re-randomization and plain-
text/ciphertext multiplication.

4.2 Efficient PSU with OT

In this subsection, we show how to construct a PSU protocol in the OT-hybrid
model using the FNP paradigm. Our protocol sacrifices the reusability and round
complexity, but generally achieves better concrete communication and compu-
tational costs compared to our previous reusable PSU protocol. We quickly go
over our new protocol by highlighting the differences with the previous one. Our
complete protocol is given in Figure 6.

1. To start with, R encodes its input and sends OKVS D to S, except that it
uses fresh encryptions of a single, randomly selected plaintext w, instead of
fresh encryptions of 0.

2. For each of the inputs of S’s, instead of computing the tuple of ciphertexts
(e, e′, e′′), S only computes and returns the first ciphertext e.

3. R decrypt e, and knows that it corresponds to a non-intersected input if
Dec(e) 6= w.

9 While the ciphertext space Z∗N2 of Paillier encryption is a multiplicative group, in-
stead, we can use ZN2 as the value space, which allows for sharing and reconstructing
secret with more efficient additive group operation. This is based on the observation
that a random group element in ZN2 is a group element in Z∗N2 except for negligible
probability.
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4. S and R call FOT for each input of S. R to retrieves all x, r corresponds
to e such that Dec(e) 6= w (and recovers ⊥ elsewhere). If R verifies that e
is correctly computed by reevaluating S’s previous step, R puts x into the
output set.

It is straight forward to see that this protocol still utilizes the FNP paradigm.
In particular,R now relies on OT to recover the randomness used to derandomize
S’s computation of e. Moreover, (semi-honest) R only recovers the randomness
corresponding to those of S’s inputs that are not in the intersection.

In the new protocol, notice that we do not require any additive homomorphic
operation on the ciphertexts, since S no longer needs to compute x · e and r · e.
Additionally, the plaintext space of the encryption scheme no longer needs to
include 0. Together, this allows us to replace the stronger AH-PKE schemes
in the previous protocol with weaker ReRand-PKE schemes, which allows for
more concretely efficient communication. For computational cost, the cost for
additive homomorphic operation is the dominant cost in our previous protocol.
By avoiding it here, the concrete computational cost is also greatly improved.

Theorem 4. In the FOT-hybrid model, the protocol Π∗FOT
PSU (Figure 6) securely

realizes the ideal functionality F n̂1,n2

PSU (Figure 1) with abort, against any mali-
cious sender and any semi-honest receiver with abort in the random oracle model.

The majority of the proof is the same as the proof of Theorem 3. In particular,
as the protocol now relies on OT to transmit the input x and its correspond-
ing randomness r, the simulator needs to adjust accordingly, but the general
argument remains the same. We defer the full proof to Appendix B.

Instantiation and cost. We analyze the communication cost and roughly com-
pare our computation cost with the previous state-of-the-art semi-honest proto-
col by Zhang et al. [47]. Similarly to their protocol, we use 3H-GCT for the OKVS
scheme and ECC ElGamal encryption for the re-randomizable PKE scheme. Fur-
thermore, our OT functionality can be implemented efficiently using Ferret OT
[45] in the malicious setting. Let σEG denote the size of an ECC ElGamal cipher-
text, and σ denote the size of an input. To achieve 2−40 failure probability for
3H-GCT, we need m ≈ 1.3n using the star architecture technique introduced in
[18], and the communication cost can be divided into to the following:

– R sends the 3H-GCT to S: ≈ 1.3 · n2 · σEG.
– S sends back the re-randomized ciphertexts: n1 · σEG.
– Oblivious transfer: 2 · n1 · (σ + σEG).

For computational cost, when comparing to the protocol based on re-randomizable
PKE by Zhang et al. [47], our protocol requires the following tweaks: (1) The
OT protocol needs to be maliciously secure, (2) The OT protocol needs to trans-
fer a message twice the size as theirs, as our message include both the input
and its local randomness used to de-randomize the computation of the corre-
sponding message. (3) The receiver needs to reevaluate S’s step to decode and
re-randomize, in order to verify the ciphertexts received are correctly computed.
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Π∗FOT
PSU

Parameters.

– S’s set size upper bound n̂1, R’s set size n2.
– Statistical security parameter λ.
– Number of slots m ∈ O(n).
– Ideal functionality FOT (Figure 7).
– Two finite groups G1 and G2.
– A ReRand-PKE scheme (Setup,KeyGen,Enc,Dec,ReRand) with plain-

text space G1, ciphertext space G2, and randomness space ∇.
– An (n,m, 2−λ)-OKVS scheme (Encode,Decode) with key space G1

and value space G2.
– A hash function h : G2

1 → ∇, modeled as a random oracle.

Input. S’s input set X = {x1, · · · , xn1} ⊆ G1 and R’s input set Y =
{y1, · · · , yn2} ⊆ G1.

Protocol.

1. KeyGen. R computes pp← Setup(1κ), (pk, sk)← KeyGen(pp).
2. Encrypt and encode. R uniformly samples w ← G1 and generates

n2 fresh ciphertexts (c1, . . . , cn2) of w, i.e., for i ∈ [n2], ci ← Encpk(w).
It then generates D ← Encode({(yi, ci)}i∈[n2]) and sends pk, D to R.

3. Decode and re-randomize. For each element xi ∈ X, S computes
di = Decode(D,xi). Next, it samples ri ← G1 and computes vi =
h(xi||ri). Finally, it computes ei = ReRandpk(di, vi) for each i ∈ [n1]
and sends {ei}i∈[n1] to R.

4. Test equality.R receives {ei}i∈[n1] and aborts if n1 > n̂1. Otherwise,
for each ei received, R computes the decryption: ui = Decsk(ei). Let
bi = 0 if ui = w and bi = 1 otherwise.

5. Obtain output. Let X̂ = ∅. For each i ∈ [n1], S and R call the OT
functionality FOT. Specifically, S serves as the sender with inputs
(⊥, xi||ri) and R serves as the receiver with input bi. Therefore, for
all i such that bi = 1, R receives xi||ri and reevaluates S’s previous
step 3 to verify that ei was correctly decoded and re-randomized by
S. If so, it puts xi in X̂.

Output. R outputs X̂ ∪ Y .

Fig. 6. PSU in the OT-hybrid model
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Item (1) can be achieved almost for free. In [45], they show that their mali-
ciously secure protocol only adds about 5 to 14 percent of runtime compared to
their semi-honest protocol, while OT itself is relatively cheap compared to the
rest of the computations. Item (2) incurs no more than twice the run time. In
the worst case, item (3) doubles the total cost of decoding and re-randomizing
the ciphertext. In conclusion, we estimate our protocol incurs no more than 2x
computation cost compared to [47], which is the previous state of the art for the
semi-honest protocol.

5 Semi-Honest PSU Experimental Results

5.1 Experimental Setup

We ran our experiments in a single AWS c5.24xlarge instance. The machine has
48 cores with GPU clock speed of 3.6 GHz and 192 GB of RAM. We do not
use multi-threading in our implementation where each party runs with a single
thread. We used the linux tc command to simulate the network bandwidth.
In all our experiments, the input items are represented as a 64-bit value. Using
permutation-based hashing, the effective length of each item becomes 64−log(m)
where m is the number of buckets. Upon hashing the elements, all buckets will

be padded to k items such that m ·
∑n
i=k+1

(
n
i

)
1
m

i
(1− 1

m )n−i ≤ 2−λ, where λ is
a statistical security parameter. In our experiments, we choose λ = 40.

Table 2. Parameters for our hashing scheme

n = 214 n = 216 n = 218 n = 220

Protocols m k m k m k m k

Our Protocol A 4096 29 4096 58 4096 139 32768 90

Our Protocol B 4096 29 4096 58 16384 59 65536 60

We implemented two variations of our two-round and four-round semi-honest
protocols. Protocol A optimizes on the communication cost while Protocol B
aims at reducing the computation cost. We denote the two-round protocols by
Protocol A2, Protocol B2 and the four-round ones by Protocol A4, Protocol B4.
The difference between the two variations is the number of buckets m used
in the hashing scheme. For each m, we denote by k the maximum bin size
after padding. See Table 2 for the concrete values of m = O(n/ log n) and k =
O(n/m) = O(log n) for each protocol. The communication cost of the protocols
is dominated by m ·k while the computation is dominated by m ·k2. To minimize
the computation cost, Protocol B chooses m such that m · k2 is small. On the
other hand, Protocol A aims at minimizing O(m · k).

5.2 Experimental Results

We compare our results against the existing PSU protocols such as Kolesnikov
et al.[31], Garimella et al. [17], and Zhang et al. [47]. We took the reported
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run-time and communication cost of the existing protocol from Zhang et al. [47]
directly. The authors ran all the protocols on a single Intel Core i9-9900K with
CPU clock speed of 3.3GHz and 128GB RAM and also used linux tc command
to simulate the network.

Protocol A4 has the lowest communication cost for input of size n ≥ 218.
Compared with [46], ours uses 15% less bandwidth, but runs 2.35× faster in
LAN and 1.5× faster in a slower network with the bandwidth of 10Mbps. Our
protocols have higher communication cost for small input size. As the number
of buckets needs to be greater than or equal to the RLWE packing parameter
(which is 4096 in our implementation), when the input size is small, there is
not much room for optimization. Both our protocols A4 and B4 out-perform
all existing protocols in terms of computation cost. Protocol B4 is 1.3 × −2×
faster than existing protocol in LAN, and the protocol A4 is 1.5×−1.8× faster
when the network bandwidth is 10Mbps. See Table 3 for a comparison of the
communication overhead and Table 4 for the computation cost.

Table 3. The communication cost in MB.

n = 214 n = 216 n = 218 n = 220

Protocols R→ S S → R Total R→ S S → R Total R→ S S → R Total R→ S S → R Total

KRTW19[31] 4.19 29.64 33.8 17.7 122.1 139.8 69.3 562.8 632 300 2306 2606

GMR+21[17]-IKNP 5.91 7.98 13.9 26.0 34.1 60.1 114 145 259 493 616 1109

GMR+21[17]-Silent 2.03 14.93 17.0 6.9 44.6 51.5 26.4 157.1 183.5 104 619 723

ZCL+21[47]-SKE 3.17 3.36 6.52 12.6 13.4 26.0 50.3 53.5 103.8 201 214 415

ZCL+21[47]-PKE 1.17 1.59 2.75 4.63 6.37 11.0 18.5 25.5 44.0 74.0 102 176

ZCL+21[47]-PKE∗ 2.17 2.90 5.05 8.64 11.6 20.2 34.5 46.3 80.8 138 185 323

Our Protocol A2 1.84 7.25 9.09 3.66 14.50 18.16 8.72 34.75 43.5 45.1 180 225

Our Protocol B2 1.84 7.25 9.09 3.66 14.50 18.16 14.8 59.0 73.8 60.0 240 300

Our Protocol A4 1.84 4.30 6.14 3.66 8.61 12.27 8.72 20.6 29.4 45.1 107 152

Our Protocol B4 1.84 4.30 6.14 3.66 8.61 12.27 14.8 35.0 49.8 60.0 143 203

5.3 Parallelizing Our Protocols

The main building blocks of our protocols are hashing, polynomial interpolation,
packed encode, packed decode, and RLWE operations. All these operations are
fully parallelizable. After hashing the input items into buckets, the polynomial
interpolation in each bucket can be executed in parallel. RLWE addition or
subtraction is clearly parallelizable. RLWE plaintext-ciphertext multiplication,
packed encode, and packed decode all use a number theoretic transform as a
sub-routine which is fully parallelizable with the Butterfly algorithm. We expect
around t times gain in the running time in a LAN setting with t threads.
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FOT

Parameters: Sender S, receiver R.

Input: S inputs two messages m0,m1, R inputs b ∈ {0, 1}.
Output: R receives mb, S receives ⊥.

Fig. 7. Ideal Functionality of 1-out-of-2 OT.

Supplementary Materials:

A Additional Preliminaries

A.1 Building Blocks

Permutation Hashing. We adopt the same approach described in [37] to re-
duce the effective length of the input items when hashing them into buckets. Let
σ be the original length of the items, H a hash function, m = 2t the number of
buckets. For an item x, we represent x as x = xL||xR where |xL| = t bits. Then
the value xR will be pushed into the bin xL ⊕H(xR). The input length of the
items in the buckets now becomes σ − log(m).

Oblivious Transfer. Oblivious transfer (OT) [41] is an important crypto-
graphic primitive that allows a sender to transfer one of the two or more messages
to the receiver, while remains oblivious as to which message is transferred. More
in details, we give the ideal functionality for 1-out-of-2 OT in Figure 7.

A.2 Security Definition

Let f = (f1, f2) be a probabilistic polynomial-time functionality. Let x denote
the input of the first party, and y denote the input of the second party. After
executing the functionality, the first party receives f1(x, y) and the second party
receives f2(x, y). Let viewπi (x, y, κ) be the view of the ith party (i = {1, 2})
during the execution of π on the inputs (x, y) and the security parameter κ. In
particular,let outputπi (x, y, κ) be the output of the ith party during the execution
of π on inputs (x, y) and security parameter κ. Let outputπ(x, y, κ) denote the
output of the two parties.

Definition 2. (Semi-honest security) Let f = (f1, f2) be a functionality. We
say π securely computes f in the presence of static semi-honest adversaries if
there exist probabilistic polynomial-time simulators Sim1 and Sim2 such that

{(Sim1(1κ, x, f1(x, y)), f(x, y))}x,y,κ
c≡ {(viewπ1 (x, y, κ), outputπ(x, y, κ))}x,y,κ

{(Sim2(1κ, y, f2(x, y)), f(x, y))}x,y,κ
c≡ {(viewπ2 (x, y, κ), outputπ(x, y, κ))}x,y,κ

where x, y ∈ {0, 1}∗ and κ ∈ N.
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Informally, the above guarantee that each party’s view can be simulated
using only its own input and output. Hence, an adversary corrupting either
party cannot learn more than what it can learn from the party’s input and
output already.

Now we consider the malicious setting. Let A be a non-uniform probabilistic
polynomial-time machine and let i ∈ {1, 2} be the corrupted party. The ideal
execution of f on inputs (x, y), auxiliary input z to A and the security parameter
κ, denoted by idealf,A(z),i(x, y, κ), is defined as the output pair of the honest
party and the adversary A from the ideal execution, where the latter includes
arbitrary PPT function of the prescribed input of the corrupted party, the aux-
iliary input z and fi(x

′, y′), where x′ (resp. y′) may not equal to x if i = 1 (resp.
y if i = 2). On the other hand, the real execution of π on inputs (x, y), auxiliary
input z to A and security parameter κ, denoted by realπ,A(z),i(x, y, κ) is de-
fined as the output pair of the honest party and the adversary A from the real
execution of π.

Definition 3. (Malicious security) Let f = (f1, f2) be a functionality. We say
that π securely computes f with abort in the presence of static malicious adver-
saries if for every non-uniform PPT adversary A in the real world, there exists
non-uniform PPT adversary S in the ideal world, such that for every i ∈ {1, 2},{

idealf,S(z),i(x, y, κ)
}
x,y,z,κ

c≡
{
realπ,A(z),S (x, y, κ)

}
x,y,z,κ

where x, y ∈ {0, 1}∗, z ∈ {0, 1}∗ and κ ∈ N.

Finally we also consider a hybrid world that allows π to call some trusted
party to compute some ideal functionalities g1, · · · , gp(n). We denote the hybrid

execution as hybrid
g1,··· ,gp(n)

π,A(z),a (x, y, κ).

Definition 4. (Malicious security in the hybrid model) Let f = (f1, f2) be a
functionality. We say π securely computes f with abort in the g1, · · · , gp(n)-hybrid
model, in the presence of static malicious adversaries if for every non-uniform
PPT adversary A in the real world, there exists a non-uniform PPT adversary
S in the ideal world, such that for every i ∈ {1, 2},{

idealf,S(z),i(x, y, κ)
}
x,y,z,κ

c≡
{
hybrid

g1,··· ,gp(n)

π,A(z),S (x, y, κ)
}
x,y,z,κ

where x, y ∈ {0, 1}∗, z ∈ {0, 1}∗ and κ ∈ N.

A.3 Re-Randomizable Public Key Encryption Schemes

A Re-randomizable public key encryption scheme is a tuple of five PPT algo-
rithms:

– Setup(1κ): The setup algorithm takes the security parameter 1κ and outputs
the public parameters pp, which includes the description of the message and
ciphertext spaces M, C.
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– KeyGen(pp): The key generation algorithm takes pp and output a pair of
public and private key (pk, sk).

– Encpk(m): The encryption algorithm encrypts a message m ∈M with pk to
a ciphertext c ∈ C.

– Decsk(c): The decryption algorithm decrypts a ciphertext c ∈ C with sk to a
message m ∈M or a failure symbol ⊥.

– ReRandpk(c): The re-randomization algorithm re-randomize a ciphertext c ∈
C with pk to another ciphertext c′ ∈ C. We also use the notation ReRandpk(c, r)
to de-randomize this alogrithm, in which r is the randomness used to re-
randomize.

Correctness. A PKE scheme is re-randomization correct if for any pp ←
Setup(1κ), any (pk, sk) ← KeyGen(pp), and any m ∈ M , any c ← Encpk(m)
and c′ ← ReRandpk(c), we have Decsk(c) = Decsk(c

′) = m.

Re-randomization Indistinguishability. A PKE scheme is re-randomization
indistinguishable if for any pp← Setup(1κ), any (pk, sk)← KeyGen(pp), and any
m ∈M , the distribution of c← Encpk(m) and c′ ← ReRandpk(c) are identical.

Similar to [47], we define an extra property for some re-randomizable PKE
schemes, which comes in handy when we prove the security for some of our
protocols:

(Optional) Single-message multi-ciphertext pseudorandomness. Roughly
speaking, we require that a vector of n ciphertexts encrypting the same plain-
text be indistinguishable from n random values in the ciphertext space. More
formally, a PKE scheme is single-message multi-ciphertext pseudorandom if for
any PPT A = (A1,A2):

AdvA(1κ) = Pr

b = b′ :

pp← Setup(1κ);
(pk, sk)← KeyGen(pp);
(m, state)← A1(pp, pk);
b← {0, 1};
for i ∈ [n], c∗i,0 ← Encpk(m), c∗i,1 ← C
b′ ← A2(pp, state, {c∗i,b}i∈[n])

−
1

2

is negligible in κ.

In particular, it suffices to show that a PKE satisfies the above definition for
n = 1, i.e., single-ciphertext pseudorandomness, and the case with generic n can
be shown via a standard hybrid argument.

An instantiation that we used in our paper is the ElGamal [13] encryption
scheme. It is straightforward to show that it satisfies both correctness and re-
randomization indistinguishability. Additionally, it also satisfies single-message
multi-ciphertext pseudorandomness, which can be proved by reducing to the
hardness of DDH problem.
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A.4 Additively Homomorphic Public Key Encryption Schemes

On top of re-randomizable PKE schemes, we define additively homomorphic
PKE schemes by requiring them to satisfy the following additively homomorphic
properties:

– There is a homomorphic addition operation �, such that for any m,m′, any
c← Encpk(m), c′ ← Encpk(m

′), we have Dec(c� c′) = m+m′.

In this paper, we usually just use + instead of � when the context is clear. This
additively homomorphic property also allows us to compute k · c, where k is a
scalar and c is a ciphertext. In particular, we have Decsk(k · c) = k · Decsk(c).

An instantiation that we use is the Paillier [35] encryption scheme. It satisfies
correctness and re-randomization indistinguishability, and the additive homo-
morphic property. Additionally, it also satisfies single-message multi-ciphertext
pseudorandomness, which can be proved by reduction to the hardness of deci-
sional composite residuosity.

The other instantiation we use is BGV Encryption Scheme [4]. It satisfies
correctness and re-randomization indistinguishability, and the additive homo-
morphic property.

B Proofs of security in the malicious setting

B.1 Proof of Theorem 3

Claim. Our protocol is secure against any malicious sender.

Proof. Let A be a non-uniform probabilistic polynomial-time machine. The ex-
ecution of Π∗reusePSU on inputs (X,Y ), auxiliary input z to A and computational
security parameter κ, denoted by hybridΠ,A(z) (X,Y, κ), is defined as the out-
put pair of the honest party and the adversary A of the hybrid execution. On the
other hand, the ideal execution of F n̂1,n2

PSU on inputs (X,Y ), auxiliary input z to
A and security parameter κ, denoted by idealF,A(z)(X,Y, κ), is defined as the
output pair of the honest party and the adversary A from the ideal execution.

Note that OKVS successfully encodes the input set except for 2−λ probabil-
ity. In our following analysis, we simply treat Encode as perfect. To show that
our protocol is secure against malicious S, we show that for any adversary A
corrupting S, there exists a simulator SimS (Figure 8) such that{

hybridΠ,A(z) (X,Y, κ)
}
X,Y,z,κ

c≡
{
idealF,SimS(z)(X,Y, κ)

}
X,Y,z,κ

where X,Y ⊆ F, z ∈ {0, 1}∗ and κ ∈ N. And{
hybridΠ,A(z) (X,Y, κ)

}
X,Y,z,κ

=
{
pk, D, X̂ ∪ Y

}
X,Y,z,κ{

idealF,SimS(z)(X,Y, κ)
}
X,Y,z,κ

=
{
p̃k, D̃, X̃ ∪ Y

}
X,Y,z,κ

To argue the above probability ensembles are computationally indistinguish-
able, we use the following hybrid joint distributions for any X,Y, z, κ:

Hyb0: Same as idealF,SimS(z)(X,Y, κ).
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Hyb1: Same as Hyb0, except that the simulator is given the honest R’s input

Y . It computes D̃′ ← Encode({(yi, c̃i)}i∈[n2]) and sends D̃′ to A, where c̃i is
uniformly sampled from the ciphertext space, just as in Hyb0.

Hyb2: Same as Hyb1, except that the simulator followsR’s step to generate n2

fresh ciphertexts c1, . . . , cn2
of 0. Then, it computes D ← Encode({(yi, ci)}i∈[n2])

and sends D to A.
Hyb3: Same as hybridΠ,A(z)(X,Y, κ), except pk is replaced by p̃k, note that

pk and p̃k are only semantically different, and the distributions are exactly the
same.

We start by arguing that Hyb0 and Hyb1 are computationally indistinguish-
able. In particular, we show that if there exists some PPT D that distinguishes
Hyb0 and Hyb1 with non-negligible probability, there exists an Aobl that breaks
the obliviousness property of OKVS:

1. Aobl sends Y0 = {ỹi}i∈n2
and Y1 = Y to the challenger C. C uniformly picks

b← {0, 1}, parses Yb as {ybi }i∈n2
and uniformly samples {cbi}i∈n2

from the ci-
phertext space. Finally, C computes and returnsDb ← Encode({(ybi , cbi )}i∈n2).

2. Aobl uniformly samples a public key p̃k, using A as a black box, sends p̃k
and Db to A. Upon response from A, it extracts S’s input set X̃ (same as
how it is done through verification in SimS , step 3 and 4), abort if necessary.

Otherwise, it computes X̃ ∪ Y and sends (p̃k, Db, X̃ ∪ Y ) to D.
3. Aobl usesD’s outcome to decide whetherDb is built from Y0 or Y1. It responds

to C accordingly and wins with non-negligible probability.

Next, we show that Hyb1 and Hyb2 are computationally indistinguishable.
Similarly, we show that if there exists some PPT D that distinguishes Hyb1 and
Hyb2 with non-negligible probability, there exists an PPT Apseu to break single-
message multi-ciphertexts pseudorandomness property of the underlying PKE
scheme:

1. Apseu receives p̃k from the challenger. Apseu sends 0 to C. C uniformly picks
b ← {0, 1}. If b = 0, C uniformly samples {c0i }i∈[n2] from the ciphertext
space. Otherwise, C and generates n2 fresh ciphertexts of 0, i.e., {c1i }i∈[n2]

where c1i ← Encp̃k(0). Then, C sends {cbi}i∈[n2] to Apseu.

2. Apseu, computes Db ← Encode({(yi, cbi )}i∈n2
) and sends p̃k and Db to A.

Upon response from A, it extracts S’s input set X̃ (same as how it is done
through verification in SimS , step 3 and 4), abort if necessary. Otherwise, it

computes X̃ ∪ Y and sends (p̃k, Db, X̃ ∪ Y ) to D.
3. Apseu uses D’s outcome to decide whether the view is in Hyb1 or Hyb2, and

use the outcome to answer C and wins with non-negligible probability.

Finally, we show that Hyb2 and Hyb3 are statistically indistinguishable. No-

tice that both p̃k and D follow the same distributions in the two hybrids. Thus,
A’s response follows the same distribution in both hybrids. Now, let X∗ denote
A’s set of “effective” inputs in both worlds, where each input x ∈ X∗ has a
corresponding tuple (e, e′, e′′) that can be formed by correctly decoded x with
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Simulator SimS

1. KeyGen. The simulator computes pp ← Setup(1κ), (p̃k, s̃k) ←
KeyGen(pp).

2. Encrypt and encode. The simulator randomly generates key-value
pairs {(ỹi, c̃i)}i∈[n2], in which {ỹ1, . . . , ỹn2} ⊆ F and c̃i is uni-

formly picked from the ciphertext space. It then computes D̃ ←
Encode({(ỹi, c̃i)}i∈[n2]) and sends p̃k, D̃ to S.

3. Decode and re-randomize. The simulator keeps a list L for
all queries to the random oracle, i.e., all x̃||r̃. Then, it receives
{(ẽi, ẽ′i, ẽ′′i)}i∈[n1] from S. If n1 > n̂1, it signals the ideal functional-
ity to abort (can be triggered by sending an arbitrary input set with
size n1) and terminates the simulation.

4. Decrypt and obtain output. Let X̃ = ∅. For each tuple
(ẽi, ẽ′i, ẽ′′i), it verifies that it is computed from some x̃||r̃ ∈ L i.e.,
it matches with an earlier query to the random oracle. If the verifi-
cation passes, the simulator sets X̃ = X̃ ∪ {x̃}. Finally, the simulator

submits X̃ to the ideal functionality.

Fig. 8. Simulator for corrupted S.

D and re-randomized using h(x||r). In Hyb2, by definition, X̃ is a subset X∗ as

it additionally requires that each x ∈ X̃, along with their corresponding r, has
been queried by A to the random oracle. As A has negligible probability to guess
the outcome of a random oracle, thus a negligible probability to correctly form a
tuple (e, e′, e′′) without querying a random oracle on x||r, X̃ = X∗ except with
negligible probability. In Hyb3, with overwhelming probability10, X̂ = X∗ \ Y ,
i.e., X̂ is S’s set of “effective” inputs minus those inputs in R’s set. Combining
the observations above, we have X̃ ∪ Y = X∗ ∪ Y = (X∗ \ Y ) ∪ Y = X̂ ∪ Y
except with negligible probability. Finally, Hyb3 is perfectly indistinguishable

from hybridΠ,A(z)(X,Y, κ). Firstly, pk and p̃k are only semantically different
and follow the same distribution. Secondly, in both worlds, abort is triggered
when more than n̂1 ciphertexts are returned by A.

Claim. Our protocol is secure against any semi-honest receiver.

Proof. As F n̂1,n2

PSU is deterministic and we want to show security against a semi-
honest R, it suffices to separately show (a) correctness: the protocol output is
correct except for negligible probability, and (b) privacy: R’s view in the protocol
can be simulated using its own input and output.

To see our scheme is correct, first notice that Encode only fails with 2−λ

probability and we treat it as perfect in our analysis. Then, in step 4 of the
protocol, for each (e, e′, e′′) corresponding to a x ∈ X, if x /∈ Y , there is only
a negligible probability that e decrypts to 0. This is due to the randomness
property of the OKVS, which requires e to be statistically indistinguishable

10 There is a negligible probability that there exists some ei decrypted to 0, even the
corresponding x /∈ Y .
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with a random element in the ciphertext space. As a result, R can recover x and
r from the tuple except for negligible probability. Therefore, X̂ = X \ Y except
for negligible probability and X̂ ∪ Y = X ∪ Y .

To see that privacy holds, we define the following simulator SimR(Y,X ∪ Y )
to generate the view for the semi-honest R:

1. Run pp← Setup(1κ), and (pk, sk)← KeyGen(pp).
2. Compute X̄ = X ∪ Y \ Y , i.e., the set of extra elements that S brings to to

the union.
3. Follow step 2 of the protocol to generate D.
4. For all x ∈ X̄, it follows step 3 of the protocol to decode and re-randomize

them to {(ei, e′i, e′′i )}i∈[|X̄|]. Additionally, it generates {(ei, e′i, e′′i )}|X̄|+1≤i≤n1
,

where each ei ← Encpk(0), e′i ← Encpk(0), e′′i ← Encpk(0).
5. Output {ei}i∈[|X̄|] ∪ {e′i}|X̄|+1≤i≤n1

in a random order.

First notice that all {(ei, e′i, e′′i )}i∈[|X̄|] are perfectly indistinguishable with those
non-intersected inputs in the real view. Then, both {e′i}|X̄|+1≤i≤n1

and the re-
maining ciphertexts in the real view decrypt to 0s. And due to the re-randomization
indistinguishability property of the ciphertexts, the ciphertexts themselves fol-
lows the identical distribution. This concludes our proof.

B.2 Proof of Theorem 4

Claim. Our protocol is secure against any malicious sender.

Proof. Let A be a non-uniform probabilistic polynomial-time machine. The ex-
ecution of Π∗FOT

PSU in FOT-hybrid model on inputs (X,Y ), auxiliary input z to A
and computational security parameter κ, denoted by hybridFOT

Π,A(z) (X,Y, κ), is

defined as the output pair of the honest party and the adversary A of the hybrid
execution. On the other hand, the ideal execution of F n̂1,n2

PSU on inputs (X,Y ),
auxiliary input z toA and security parameter κ, denoted by idealF,A(z)(X,Y, κ),
is defined as the output pair of the honest party and the adversary A from the
ideal execution.

Note that OKVS successfully encodes the input set except for 2−λ probabil-
ity. In our following analysis, we simply treat Encode as perfect. To show that
our protocol is secure against malicious S, we show that for any adversary A
corrupting S and interacting with the functionality FOT, there exists a simulator
SimS (Figure 9) such that{

hybridFOT

Π,A(z) (X,Y, κ)
}
X,Y,z,κ

c≡
{
idealF,SimS(z)(X,Y, κ)

}
X,Y,z,κ

where X,Y ⊆ G1, z ∈ {0, 1}∗ and κ ∈ N. And{
hybridFOT

Π,A(z) (X,Y, κ)
}
X,Y,z,κ

=
{
pk, D, X̂ ∪ Y

}
X,Y,z,κ{

idealF,SimS(z)(X,Y, κ)
}
X,Y,z,κ

=
{
p̃k, D̃, X̃ ∪ Y

}
X,Y,z,κ

To argue the above probability ensembles are computationally indistinguish-
able, we use the following hybrid joint distributions for any X,Y, z, κ:

Hyb0: Same as idealF,SimS(z)(X,Y, κ).
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Hyb1: Same as Hyb0, except that the simulator is given the honest R’s input

Y . It computes D̃′ ← Encode({(yi, c̃i)}i∈[n2]) and sends D̃′ to A, where c̃i is
uniformly sampled from the ciphertext space, just like in Hyb0.

Hyb2: Same as Hyb1, except that the simulator follows R’s instructions to
sample w and generate n2 ciphertexts c1, . . . , cn2

of w. Then, it computes D ←
Encode({(yi, ci)}i∈[n2]) and sends D to A.

Hyb3: Same as hybridFOT

Π,A(z)(X,Y, κ), except pk is replaced by p̃k, note that

pk and p̃k are only semantically different, and the distributions are exactly the
same.

We start by arguing that Hyb0 and Hyb1 are computationally indistinguish-
able. In particular, we show that if there exists some PPT D that distinguishes
Hyb0 and Hyb1 with non-negligible probability, there exists an Aobl that breaks
the obliviousness property of OKVS:

1. Aobl receives p̃k from the challenger. Aobl sends Y0 = {ỹi}i∈n2
and Y1 = Y

to the challenger C. C uniformly picks b← {0, 1}, parses Yb as {ybi }i∈n2
and

uniformly samples {cbi}i∈n2 from the ciphertext space. Finally, C computes
and returns Db ← Encode({(ybi , cbi )}i∈n2).

2. Aobl, using A as a black box, sends p̃k and Db to A. Upon response from A,
it extracts S’s input set X̃ (same as how it is done through verifications in

SimS , step 3 and 4), abort if necessary. Otherwise, it computes X̃ ∪ Y and

sends (p̃k, Db, X̃ ∪ Y ) to D.
3. Aobl uses D’s outcome to decide whether Db is built from Y0 or Y1. It answers
C accordingly and wins with non-negligible probability.

Next, we show that Hyb1 and Hyb2 are computationally indistinguishable.
Similarly, we show that if there exists some PPT D that distinguishes Hyb1 and
Hyb2 with non-negligible probability, there exists an PPT Apseu to break single-
message multi-ciphertexts pseudorandomness property of the underlying PKE
scheme:

1. Apseu receives p̃k from the challenger. C uniformly picks b ← {0, 1}. If b =
0, C uniformly samples {c0i }i∈[n2] from the ciphertext space. Otherwise, C
samples w ← G1 and generates n2 ciphertexts of w, i.e., {c1i }i∈[n2] where

c1i ← Encp̃k(w). Then, C sends {cbi}i∈[n2] to Apseu.

2. Apseu, computes Db ← Encode({(yi, cbi )}i∈n2
) and sends p̃k and Db to A.

Upon response from A, it extracts S’s input set X̃ (same as how it is done
through verifications in SimS , step 3 and 4), abort if necessary. Otherwise,

it computes X̃ ∪ Y and sends (p̃k, Db, X̃ ∪ Y ) to D.
3. Apseu uses D’s outcome to decide whether the view is in Hyb1 or Hyb2, and

use the outcome to answer C and wins with non-negligible probability.

Finally, we show that Hyb2 and Hyb3 are statistically indistinguishable. No-

tice that both p̃k and D follow the same distributions in the two hybrids. Thus,
A’s response follows the same distribution in both hybrids. Now, let X∗ de-
note A’s set of “effective” inputs in both worlds, where each input x ∈ X∗
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Simulator SimS

1. KeyGen. The simulator computes pp ← Setup(1κ), (p̃k, s̃k) ←
KeyGen(pp).

2. Encrypt and encode. The simulator randomly generates key-value
pairs {(ỹi, c̃i)}i∈[n2], in which {ỹ1, . . . , ỹn2} ⊆ G1 and c̃i is uni-

formly picked from the ciphertext space. It then computes D̃ ←
Encode({(ỹi, c̃i)}i∈[n2]) and sends p̃k, D̃ to S.

3. Decode and re-randomize. The simulator keeps a list L for all
queries to the random oracle, i.e., all x̃||r̃. Then, it receives {ẽi}i∈[n1]

from S. If n1 > n̂1, it signals the ideal functionality to abort (can be
triggered by sending an arbitrary input set with size n1) and termi-
nates the simulation.

4. Obtain output. Let X̃ = ∅. For ith call of FOT, the simulator re-
ceives ⊥, x̃′i||r̃′i and verifies that x̃′i||r̃′i ∈ L, i.e., it matches with an
earlier query to the random oracle. Additionally, it follows S’s instruc-
tion in step 3 to compute ẽ′i using D̃, x̃′i, and r̃′i and verifies that ẽ′i
equals to ẽi received in the previous step. If both verifications succeed,
the simulator sets X̃ = X̃ ∪{x̃′i}. Finally, the simulator submits X̃ to
the ideal functionality.

Fig. 9. Simulator for corrupted S.

has a corresponding OT with message x||r, and its corresponding e is cor-
rectly decoded and re-randomized using D and h(x||r), respectively. In Hyb2,

by definition, X̃ is a subset X∗ as it additionally requires that each x ∈ X̃,
along with their corresponding r, has been queried by A to the random or-
acle. As A has negligible probability to guess the outcome of a random ora-
cle, thus a negligible probability to correctly form a e without querying a ran-
dom oracle on x||r, X̃ = X∗ except with negligible probability. In Hyb3, with
overwhelming probability11, X̂ = X∗ \ Y , i.e., X̂ is the set of “effective” in-
puts minus those inputs in R’s set. Combining the observations above, we have
X̃ ∪ Y = X∗ ∪ Y = (X∗ \ Y ) ∪ Y = X̂ ∪ Y except with negligible probability.

Finally, Hyb3 is perfectly indistinguishable from hybridFOT

Π,A(z)(X,Y, κ). Firstly,

pk and p̃k are only semantically different and follow the same distribution. Sec-
ondly, in both worlds, abort is triggered when more than n̂1 ciphertexts are
returned by S.

Claim. Our protocol is secure against any semi-honest receiver.

Proof. As F n̂1,n2

PSU is deterministic and we want to show security against a semi-
honest R, it suffices to separately show (a) correctness: the protocol output is
correct except for negligible probability, and (b) privacy: R’s view in the protocol
can be simulated using its own input and output.

11 There is a negligible probability that there exists some ei decrypted to w, even the
corresponding x /∈ Y .
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To see our scheme is correct, first notice that Encode only fails with 2−λ

probability. Then, in step 4 of the protocol, for each ei corresponding to xi, if
xi /∈ Y , there is only a negligible probability that ei decrypts to w. This is due
to the randomness property of the OKVS, which requires e to be statistically
indistinguishable with a random element in the ciphertext space. As a result, R
requests xi||ri from OT functionality except for negligible probability. Therefore,
X̂ = X \ Y except for negligible probability and X̂ ∪ Y = X ∪ Y .

To see that privacy holds, we define the following simulator SimR(Y,X ∪ Y )
to generate the view for the semi-honest R:

1. Run pp← Setup(1κ), and (pk, sk)← KeyGen(pp).
2. Compute X̄ = X ∪ Y \ Y , i.e., the set of extra elements that S brings to to

the union.
3. Follow step 2 of the protocol to sample w and generate D.
4. For all x ∈ X̄, it follows step 3 of the protocol to decode and re-randomize

them to {ei}i∈[|X̄|]. Additionally, it generates {e′i}i∈[n1−|X̄|], where each e′i ←
Encpk(w).

5. The simulated view includes {ei}i∈[|X̄|] ∪ {e′i}i∈[n1−|X̄|] in a random order
and the corresponding OT outputs {(xi||ri)i∈[|X̄|]} ∪ {⊥, ...,⊥} in the same
random order.

First notice that all {ei}i∈[|X̄|] and {(xi||ri)i∈[|X̄|]} are perfectly indistinguishable
with the real view. Also, the simulator gives OT outputs {⊥, ...,⊥} to R for each
x /∈ Y , and this is exactly the same as the real world. Finally, both {e′i}i∈[n1−|X̄|]
in the simulated view and {ei : ei ← ReRand(di), di = Decode(D,xi)}xi∈X\X̄ in
the real view are ciphertext of w. And due to the re-randomization indistin-
guishability property of the ciphertexts, the ciphertexts themselves follows the
identical distribution. This concludes our proof.
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