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Abstract

Secure aggregation on user private data with the aid of an entrusted server provides
strong privacy guarantees and has been well-studied in the context of privacy-
preserving federated learning. An important problem in privacy-preserving feder-
ated learning with user constrained computation and wireless network resources is
the computation and communication overhead which wastes bandwidth, increases
training time, and can even impacts the model accuracy if many users drop out.
The seminal work of Bonawitz et al. [7] and the work of Bell et al. [6] have
constructed secure aggregation protocols for a very large number of users which
handle dropout users in a federated learning setting. However, these works suffer
from high round complexity (referred to as the number of times the users ex-
change messages with the server) and overhead in every training iteration. In this
work, we propose and implement MicroFedML, a new secure aggregation system
with lower round complexity and computation overhead per training iteration. Mi-
croFedML reduces the computational burden by at least 100 orders of magnitude
for 500 users (or more depending on the number of users) and the message size
by 50 times compared to prior work. Our system is suitable and performs its best
when the input domain is not too large, i.e., small model weights. Notable ex-
amples include gradient sparsification, quantization, and weight regularization in
federated learning.

1 Introduction

Federated learning allows a large number of users with limited resources, e.g., mobile phones, to
collaboratively train a global learning model with the assistance of a central server without sharing
the raw data with any other party. In each learning iteration of federated learning, a central server
sends the global model to all users who then train the model with their local data to obtain an updated
model. The server aggregates the updates from all the users and updates the global model. The new
global model is sent to all users, and the process repeats. In many cases, individual user privacy can
still be compromised by using the trained model and the local updates to infer certain details of the
training data set [23] . To address this problem, the seminal work of Bonawitz et al. proposed the first
secure aggregation protocol run among the server and the users without revealing any individual’s
update. The protocol allow each user to modify its local updates by masking/encrypting it such that
no information about the local updates is revealed to the server and the other users apart from the
final aggregated update.



In the federated learning setting, we require secure aggregation protocols whose efficiency and com-
munication requirements scale practically even when the number of parties is large. Bonawitz et al.
[7] proposed the first secure aggregation protocol which is efficient for deep-network-sized prob-
lems and real-world connectivity constraints. The protocol also allows users to drop offline and
come back online later, as in many scenarios the users are not expected to be always online in the
whole training process. The subsequent work of Bell et al. [6] reduces the bandwidth cost at the
price of higher round complexity and probabilistic correctness, i.e., when there are enough number
of honest users online, the server learns the correct aggregated result with overwhelming proba-
bility. The work of Bonawitz et al. [7] provides a protocol with perfect correctness. Instead of
requiring each user to exchange information with all other users in the network, Bell et al. [6] works
with sparse neighborhood graphs. The intuition is that each user has a small group of users as its
neighbors and the communication only happens between the user and its neighbors.

The works of [7, 6] suffer from some inefficiencies. More specifically, in every learning iteration the
protocols in [7, 6] reveal part of the masks used to protect the local updates from the server. That said,
the masks cannot be reused in later training iterations and fresh masks are generated at each iteration
introducing more communication. Furthermore, every user needs to exchange information about the
freshly generated masks with a number of other users (either all other users in [7] or a subset of
users in [6]) in every iteration, resulting in the communication cost growing significantly as the
total number of users increases. Regarding the round complexity, the number of times messages are
exchanged between the users and the server, it is 5 in [7] and 6 in [6]. A lower round complexity, can
prevent the multiple exchange of messages between the server and the many users and can increase
the accuracy given that users have less chances to drop out in every round. Therefore, a natural yet
fundamental question to ask is the following: can we have a secure aggregation protocol which is
more tailored to the multi-iteration nature of the federated learning setting with improvements in the
round complexity, computational complexity and bandwidth costs?

In this work, we answer the above question in the affirmative by designing secure aggregation pro-
tocols MicroFedML which considerably reduce the communication and computation overheads of
[7, 6]. In a nutshell, our protocols generate the masks in a one-time setup phase which is executed
only once and most importantly the masks can be reused in every training iteration while achieving
the same provable security guarantees provided by [7, 6]. Notable improvements of MicroFedML
over [7, 6] include the following. MicroFedML reduces the round complexity from 5 in [7] and 6
in [6] to just 3 rounds. The computation complexity of each iteration for each user increases linearly
with the number of users in MicroFedML while that of [7, 6] both grow quadratically. We present
our contributions with more details in the next section.

1.1 Problem Statement and Threat Model

We consider a star network topology network in which each user only communicates with the central
server. We propose multi-iteration secure aggregation protocols in which n users Pi for i ∈ [n] holds
a private value xi, and they wish to learn the sum

∑
i xi with the aid of a single untrusted server

without leaking any information about the individulal xi. In the federated learning setting, the server
and the users interact several times (multi-iteration) to compute the summation of model weights xi.
We model an adversary which can launch two kinds of attacks: (1) honest users that disconnect/drop
out or are too slow to respond as a result of unstable network conditions, power loss, etc. User can
dynamically drop out and come back in a later iteration; and (2) arbitrary actions by an adversary
that controls the server and a bounded fraction of the users.

Overall, we assume that the adversary controls the server and at most γ fraction of users which it
decides to corrupt before each protocol execution, and that at most δ fraction of users are dropping
out in every iteration. We assume that γ + 2δ < 1. An adversary in a semi-honest protocol corrupts
parties but follows the protocol’s specification and tries to learn information from the received mes-
sages. An adversary in a malicious protocol is allowed to deviate from the protocol’s specification
in arbitrary ways, changing the messages in an effort to learn the private information of the honest
parties.
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1.2 Our Results

We propose two new multi-iteration secure aggregation protocols MicroFedML1 and MicroFedML2

both in the semi-honest and malicious adversary settings. Both protocols consist of two phases, the
setup phase and the aggregation phase. The Setup phase which is independent of the user private
inputs consists of 3 rounds of interaction between the server and the users in MicroFedML1 or 5
rounds in MicroFedML2. The setup phase runs only once at the beginning of the execution of feder-
ated learning. The aggregation phase runs repetitively for multiple learning iterations and consists of
2 rounds of interaction in the semi-honest scenario in both protocols, while an extra round is needed
to protect privacy against a malicious adversary.

In Table 1 we list the communication complexity per user per round. As we can see our protocols
offer a significant advantage per round. The one-time setup phase communication complexity is
O(n) and O(log n) for each user in MicroFedML1 and MicroFedML2 respectively, which can be
found in Table 2 in Appendix D. We refer the reader to Appendix D.1 and D.2 for the detailed
analysis of the asymptotic performance. The group version of our protocol is more suitable for the
use cases where weaker security guarantees are sufficient. Such as, the adversary cannot adaptively
corrupt all parties in a single group neighborhood. If such an event happens privacy is lost.

We summarize our results in the following two (informal) theorems:

Theorem 1.1. The aggregation protocol MicroFedML1 running with a server S and n users guar-
antees privacy in the presence of a semi-honest (malicious) adversary who can corrupt less than 1

2

( 13 ) fraction of the users and correctness for an adversary who can drop out less than 1
2 ( 13 ) fraction

of the users.

Correctness means that when parties follow the protocol the server gets a sum of online users at the
end of each learning iteration even if dropouts happen during the computation of the summation.
Privacy refers to the fact that an adversary (who may deviate from the protocol) cannot learn any
individual user i’s input xi,k for any training iteration k ∈ [K]. Our protocols do not introduce any
noise and thus do not drop the accuracy of the models. We test our protocol by running logarithmic
regression algorithm on the Census adult dataset [13] and compare the learning result with plain
federated learning in which the users send the plain text of model update to the server. The two
experiments provide models with the same accuracy (0.81).

Theorem 1.2 (Group version). Let γ, δ be two parameters such that γ + 2δ < 1. The aggregation
protocol MicroFedML2 running with a server S and n users guarantees privacy in the presence of
a semi-honest (malicious) adversary who can corrupt less than γ = 1

2 (γ = 1
3 ) fraction of the users

and correctness for an adversary who can drop out less than δ fraction of the users.

We also provide the asymptotic and concrete performance analysis in Section 5 and Appendix D.
Our algorithms work best with small input domains, which is applicable in gradient sparsification,
quantization and weight regularization areas in federated learning. See Appendix E for more infor-
mation about these areas.

Implementation and evaluation. The system we report here is implemented, and we report run-
ning times in Section 5. Our protocol MicroFedML1 outperforms BIK+17 by 100 times in com-
putation time with 500 total participants, while MicroFedML2 runs more than 5 times faster than
BBG+20 when the connectivity of the user communication graph is 100 and the total number of
clients is 500. For 1000 participants, MicroFedML2 is 5 times faster than MicroFedML1.

1.3 Related Works

Our work is inspired by the line of works on secure aggregation protocols [7, 6]. Both protocols
consider a single iteration of aggregation, thus they automatically supports offline users rejoining
the protocol in later iterations as every iteration the protocol starts from the scratch.

There are several other works [20, 36, 14] exploring the secure aggregation problem. Another line of
works [30, 35] adopt differential privacy which is a generic privacy protection technique in database
and machine learning areas. However, all of them either only consider semi-honest adversaries or do
not allow offline users come back online again. We defer more detailed discussion to Appendix E.
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Round Communication cost per user
BIK+17 BBG+20 MicroFedML1 MicroFedML2

1 O(n) elements O(1) elements 1 element 1 element
2 O(n) elements O(log n) elements 1 element + n bits 1 element + log n bits
3 1 elements O(log n) elements O(n) elements O(log n) elements
4 O(n) elements 1 element
5 O(n) elements O(log n) elements
6 O(log n) elements

Table 1: Communication overhead per user of each training iteration of our protocols guaranteeing
privacy against semi-honest/malicious adversaries (the extra round required for privacy in the mali-
cious setting is marked as red and underlined in the table). n denotes the total number of users and
R denotes the size of the range of the aggregation output. An element in BIK+17 and BBG+20 is of
sizeO(logR) while an element in MicroFedML1 and MicroFedML2 is of sizeO(R). The overhead
includes both received and sent messages.

2 Our Approach

In this section we explain the high level idea of our constructions. We first revisit the idea of BIK+17
[7] which sprouts from the following simple idea: to let the server learn the sum of the inputs
x1, . . . , xn while hiding each individual input xi, each individual user i adds a mask hi to its secret
input xi which is hidden from the server and all other users and can be cancelled out when all the
masks are added up, i.e.,

∑
i∈[n] hi = 0, and sends Xi = hi + xi to the server. By adding all Xi

up, the server obtains the sum of all xi. More concretely, assuming i > j without loss of generality,
each pair of users i, j first agree on a random symmetric secret mask mki,j , then they mask their
inputs by user i adding mki,j to xi while user j subtracting mki,j from xj . In other words, each user
i computes a mask hi =

∑
j<i mki,j −

∑
j>i mki,j and sends the masked input Xi = xi + hi to

the server. The server can get the sum of all xi by adding the masked inputs up as mki,j and −mki,j
for each pair of i, j add up to zero. As long as there are at least two honest users not colluding with
other users or the server, the honest users’ inputs are hidden from the corrupt parties.

However, this solution only works when all user are always online. If some masked input Xi of
user i is missing, the sum of hj of online users j will not cancel out in the final sum. To tolerate
the fail-stop failure, the protocol adopts t-out-of-n Shamir’s secret sharing scheme, which allows
a secret value to be devided into n shares and to be reconstructed with any t shares of them while
guaranteeing that anyone with less than t shares cannot obtain any information about the secret.
More specifically, each user i shares its masks mki,j with all n users using Shamir’s secret sharing
before sending the masked input to the server. If any users then fail to send their masked inputs
later, the online users can help the server reconstruct their masks as long as there are at least t users
are still online. Also, to prevent the server from directly reconstruct the secret when it forwards the
shares for the users, each pair of users i, j first agree on a symmetric encryption key eki,j (with a
key exchange algorithm which is introduced in Section 3) and encrypts the shares before they send
the shares to each other.

This fix brings another problem, when the server is controlled by a malicious adversary it can lie
about the online set and ask online users to help reconstruct mki,j of an online user i. With both
the Xi and hi, the server can obtain the secret input xi. To tolerate a malicious adversary, each
honest user adds another layer of mask ri which is uniformly randomly chosen by itself and also
secret-shared, shares are denoted by ri,j , among all users and adds it to the masked input, i.e.,
Xi = xi + hi + ri. To obtain the sum of all xi of the online user set O, the server needs to remove∑
i∈O ri of the online users from

∑
i∈OXi and cancel

∑
i∈O hi with

∑
i/∈O hi. Thus, if user i is

online in the view of at least t honest users, then ri is reconstructed and can be removed from its
masked input, and hi is kept hidden and can be cancelled with other users j’s mask hj ; otherwise, if
user i is offline in at least t honest users’ view, these honest users help the server reconstruct mki,j .
Moreover, all honest users i use an extra round to agree on the online set in their view by signing
the online set and sending to other users their signatures which can be verified with their public keys
and cannot be forged by other parties, as otherwise the server can ask different set of users to help it
reconstruct the masks of different subset of users. By appropriately setting the threshold t, for each
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user the server can recover at most one mask while the other mask is kept hidden so that the input is
covered.

In the construction above, in each iteration, for every user i either ri or hi is revealed, thus two
layers of masks are need and none of them can be reused. The most intuitive change is to let the
server only learn the sum of masks rather than each individual mask — this is achievable with the
additively homomorphic property of the Shamir secret sharing scheme. In other words, the server
can reconstruct the sum of secrets with the sum of shares of different secrets. In this way, only one
layer of mask is needed. Each honest user i first uniformly randomly chooses a mask ri, secret
shares it to {ri,j}j∈[n] with all users j, and sends the masked input Xi = xi + ri to the server.
Let O denote the set of online users i who successfully send the server Xi. Then the server requires∑
i∈O rj,i from online users j. As long as at least t users j reply, the server can reconstruct

∑
i∈O ri

and removes it from the sum of Xi to get the sum of xi.

Although the server cannot directly reconstruct any individual mask now, this modification does not
allow reusing ri. As the server reconstructs the sum of all ri of a set of users in every iteration, it
can still learn a single user’s random mask by accumulating the information of the sum of masks
of different user sets in multiple training iterations. For example, if each user i uses the same ri
in every iteration, then when user 1 drops offline in some iteration k > 1 while all other users are
always online, the server can learn user 1’s random mask r1 from the difference of the sum or r’s
and immediately learn all its historical inputs (and future inputs). To avoid this problem, we further
hide the sum of ri from the server. Let H(·) be a hash function mapping a fresh input value to a
random generator of a cryptographically secure cyclic group which is easy to compute but very hard
to invert. In every iteration k, each user and the server calculate the hash valueH(k) of the iteration
number k. We depict an overview of our first protocol in Figure 1. Instead of sending Xi = ri + xi
and the sum of shares

∑
j∈O rj,i, now each user sendsH(k)Xi andH(k)

∑
j∈O rji to the server. The

server can then reconstruct H(k)
∑
i∈Ori in the exponent as described in Section 3. Intuitively, the

sum of ri is hidden in this way because the finite field is very large so that it is impractical to find
the discrete log of H(k)

∑
i∈Ori which is uniformly random. At the same time, as

∑
i∈O xi is much

smaller, the server can obtain it by calculating the discrete log of H(k)
∑
i∈O Xi − H(k)

∑
i∈O ri .

The protocol description is included in Section 4. We delay the security proof to Appendix B.

Users i Server S

Round 1
run key exchange with user j 6= i
to obtain symmetric keys eki,j

Round 2

randomly chooses ri
secret shares ri among U

encrypts the shares ri,j
such that enceki,j

(ri,j) all encrypted shares

encrypted sharesfrom user j 6= i

Round 3
Decrypts the shares

stores rj,i

(a) Setup phase

Users i Server S

Round 1
Xi = xi + ri H(k)Xi

Online setO

Round 2
SignO The signature onO

all other users’ signatures

Round 3

verify
the signatures ζi = H(k)

∑
j∈O rj,i reconstructH(k)

∑
j∈O rj

using ζi
CalculateH(k)

∑
j∈O xj

= H(k)
∑
j∈O(Xj−rj)

discrete log to get
∑
j∈O xj

(b) Aggregation phase

Figure 1: An overview of MicroFedML1 protocol.

User grouping. To further reduce the communication cost, we divide all users into small groups
so that each user only needs to know the status of a small number of neighbors in the same group in
every iteration. The simplest construction is that each group of users run the previous protocol with
the same central server in parallel. The server obtains the sum of all users’ inputs by summing up
the results of all protocol instances. Obviously, this strategy violates the security requirement that
for each iteration, the server can only learn the sum of inputs of a single large subset of users. Thus,
we add the mask hi generated in a similar way as introduced above so that

∑
i∈[n] hi = 0 to protect

the sum of inputs of each small group. As the sum of hi for users i in any single group is random
and not known to the server, the server can only learn the global sum in which all hi cancel out. This
mask should also be secret shared in the group in the same way as sharing ri and can also be reused
when it is protected in the same way as ri. We depict the high-level idea of the Aggregation phase
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Users i ∈ Gd Server S

Round 1
Xi = xi + hi + ri H(k)Xi

Online setOd ofGd

Round 2
SignOd with dSKi The signature σi

All signatures from neighbors inGd

Round 3

verify signatures H(k)
∑
j∈Od

rj,i−
∑
j∈Gd\Od

hj,i

For each groupGd:

reconstructH(k)
∑
j∈Od

rj−
∑
j∈Gd\Od

hj

calculateH(k)
∑
j∈Od

xj =

H(k)
∑
j∈Od

Xj−(
∑
j∈Od

rj−
∑
j∈Gd\Od

hj)

calculateH(k)
∑
j∈OXj =

∏
d∈[B]H(k)

∑
j∈OdXj

calculate discrete log to get the final result

Figure 2: An overview of the Aggregation phase protocol with user grouping. All users are uni-
formly randomly assigned to B groups so that each group Gd for d ∈ [B] contains n/B users.
Compared to MicroFedML1, in the Setup phase (see Appendix C.1), each user i additionally ob-
tains a mask hi such that

∑
i∈[n] hi = 0 and secret shares both hi and ri among its neighbors in the

same group. It also obtains the shares rj,i and hj,i from its neighbors j.

of the protocol in Figure 2 and formally describe the whole protocol and the security properties in
Appendix C.

3 Preliminaries

We use [n1, n2] for two integers n1, n2 to denote the set of integers {n1, . . . , n2}, and we omit the
left bound if it equals to 1, i.e., [n] denotes the set {1, . . . , n}.
Let p, q be two primes such that p = 2q + 1. A finite field Zp is a set of elements {0, 1, . . . , p− 1}
with multiplication and addition (as well as division and subtraction) operations. Basically, multipli-
cation and addition between elements are conducted as normal arithmetic operations with modulus
p. Formal cryptographic assumptions to Appendix A.

Diffie-Hellman Key Exchange The Diffie-Hellman key exchange algorithm allows two parties to
securely agree on a symmetric secret over a public channel, assuming the discrete log problem is
computationally hard. It consists of three algorithms,

• KA.setup(κ)→ (G′, g, q,H), in which G′ is a group of order q with a generator g, H is a
cryptographically secure hash function;

• KA.gen(G′, g, q,H) → (x, gx) in which x is uniformly sampled from Zq . This algorithm
generates a pair of keys used later in key exchange. The secret key x should be kept secret,
while the public key gx will be disclosed to other parties for key exchange.

• KA.agree(xu, g
xv ) → su,v = H((gxv )xu). This algorithm allows party u to obtain the

symmetric secret su,v = sv,u between party u and party v with its own secret key xu and
the public key gxv of party v.

Shamir’s Secret Sharing We use Shamir’s t-out-of-n secret sharing in [28] to tolerate offline
users. Informally speaking, it allows the secret holder to divide the secret into n shares such that
anyone who knows any t of them can reconstruct the secret, while anyone who knows less than t
shares cannot learn anything about the secret. More specifically, let s, x1, . . . , xn ∈ Zq for some
prime q. The Shamir’s Secret Sharing scheme consists of two algorithms:

• SS.share(s, {x1, x2, . . . , xn}, t)→ {(s1, x1), . . . , (sn, xn)}, in which s denotes the secret,
x1, . . . , xn denotes the n indices, and t denotes the threshold of the secret sharing. This
function returns a list of shares si of the secret s with their corresponding indices xi.

• SS.recon({(s1, x1), . . . , (sn, xn)}, t) = s, in which each pair (si, xi) denotes the share si
on index xi. This function returns the original secret s.
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Furthermore, we define an extension of the standard Shamir’s secret sharing above,
SS.exponentRecon((gs1 , x1), . . . , (gsn , xn), t) = gs, which allows the reconstruction of the se-
cret s with shares s1, . . . , sn being performed in the exponents of finite field elements. We delay the
detail of the definition and the implementation of these functions to Appendix A.2.

Authenticated Encryption We use symmetric authenticated encryption to guarantee that the mes-
sages between honest parties cannot be either extracted by the adversary or be tampered without be-
ing detected. An authenticated encryption scheme consists of two algorithms: AE.enc(m, k) → c,
which encrypts messagem with a key k and generates a ciphertext c; and AE.dec(c, k)→ m, which
decrypts the ciphertext c with the key k and outputs the original message m. We assume that the
scheme we use satisfies IND-CCA2 security.

Public Key Infrastructure A public key infrastructure (PKI) is an arrangement that binds public
keys with the respective identities of participants and provides sender authentication for messages.
It allows parties to create signatures on messages which can be verified with their public keys and
cannot be forged or tampered.

4 Our Protocol

We describe the Setup phase in Algorithm 1 and the Aggregation phase in Algorithm 2. We mark
the part of execution that only needed in malicious settings with red color and underlines.

Algorithm 1 Setup (MicroFedML1)
This protocol uses the following algorithms defined in Section 3: a Public key infras-
tructure, a Diffie-Hellman key exchange scheme (KA.setup,KA.gen,KA.agree); a CCA2-
secure authenticated encryption scheme (AE.enc,AE.dec); a Shamir’s secret sharing scheme
(SS.share,SS.recon,SS.exponentRecon). It proceeds as follows:

Input: A central server S and a user set U of n users. Each user can communicate with the server
through a private authenticated channel. All parties are given the public parameters: the security
parameter κ, the number of users n, a threshold value t, honestly generated pp← KA.setup(κ)
for key agreement, the input space, and a field Zq for secret sharing.

Moreover, every party i holds its own signing key dSKi and a list of verification keys dPKj
for all other parties j. The server S also has all users’ verification keys.

Output: Every user i ∈ U either obtains a set of users Ui such that |Ui| ≥ t and a share rj,i of a
secret value rj for each j ∈ Ui or aborts. The server either outputs a set of users US such that
|US | ≥ t or aborts.
Round 1: Encryption Key Exchange

1: Each user i ∈ U : generates a pair of encryption keys (ski, pki) ← KA.gen(pp), then signs pki
with dSKi and sends (pki, σi) to the server , in which σi denotes the signature .

2: Server S: On receiving (pki, σi) from user j, the server verifies the signature σj with dPKj . If
the signature verification fails, ignore the message from user j. Otherwise, add j to a user list
U1
S . If |U1

S | < t after processing all messages from users, S aborts. Otherwise, the server sends
all public keys and signatures it receives from users j ∈ U1

S to each user in U1
S .

Round 2: Mask Sharing
3: Each user i: On receiving (pki, σi) for a user j ∈ U from the server, each user i verifies the

signatures σj with dPKj . It aborts if any signature verification fails as that indicates the server
is corrupt. Otherwise, it puts j into a user list U1

i and stores eki,j = KA.agree(pkj , ski). It
aborts if |U1

i | < t after processing all received messages. Otherwise, user i uniformly randomly
chooses ri, and calculates the secret shares of ri by {ri,j}j∈U ← SS.share(ri,U1

i , t). Then it
encrypts each share ri,j by ci,j ← AE.enc(ri,j , eki,j) and sends all encrypted shares {ci,j}j∈U1

i

to the server.
4: Server S: If it receives messages from less than t users, abort. Otherwise, it denotes this set

of users with US . It sends each ci,j to the corresponding receiver j for each i ∈ US . Then it
outputs the client set US .
Round 3: User Receiving Shares

5: Each user i If it receives cj,i for less than t users j from the server, abort. Otherwise, decrypt
each encrypted share by rj,i = AE.dec(cj,i, eki,j). If the decryption of the share from user j
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fails, it ignores the encrypted share. Otherwise, it puts j into a user set U2
i and stores rj,i. If

|Ui| < t after processing all shares, it aborts. Otherwise, it stores ri, the set Ui = U2
i , and all

rj,i for j ∈ Ui.

Algorithm 2 Aggregation (MicroFedML1)
This protocol uses the following algorithms defined in Section 3:
a Public key infrastructure, a Shamir’s secret sharing scheme
(SS.share,SS.recon,SS.exponentShare,SS.exponentRecon), a hash function H(·).
It proceeds as follows:

Input: Every user i holds its own signing key dSKi and all users’ verification key dPKj for j ∈ [n],
ri, a list of users Ui, and rj,i for every j ∈ Ui it obtains in the Setup phase. Moreover, it also

holds a secret input xki for every iteration k. The server S holds all users’ verification keys, all
public parameters it receives in the Setup phase, and a list of users US which is its output of the
Setup phase.

Output: For each iteration k, if there are at least t users being always online during iteration k, then
at the end of iteration k, the server S outputs

∑
i∈Ok x

k
i , in which Ok denotes a set of users of

size at least t.
Note: For simplicity of exposition, we omit the superscript k of all variables when it can be
easily inferred from the context.

1: for Iteration k = 1, 2, . . . do
Round 1: Secret Sharing:

2: User i: It calculates Xi = xi + ri and sends H(k)Xi to the server.
3: Server S: Denote the set of users it receives messages from with O. If |O| < t, abort.

Otherwise, it sends O to all users i ∈ O.
Round 2: Online Set Checking (Only needed in Malicious setting):

4: User i: On receiving O from the server, it first checks that O ⊆ Ui and |O| ≥ t, then signs
the set O and sends the signature σi to the server.

5: Server S: If it receives less than t valid signatures on O, abort. Otherwise, it forwards all
valid signatures to all users in O.
Round 3: Mask Reconstruction on the Exponent:

6: User i: On receiving signatures from the server, it first verifies the signatures withO and the
verification keys of the other users. If there are less than t valid signatures, abort. Otherwise, it
calculates ζi = H(k)

∑
j∈O rj,i . It sends ζi to the server.

7: Server S: If it receives ζi from less than t users, abort. Otherwise, let O′ denote
the set of users i successfully sends ζi to the server. The server reconstructs RO =
SS.exponentRecon({ζj , j}j∈O′ , t) and calculates the discrete log of H(k)

∑
i∈O Xi/RO to

get
∑
i∈O xi.

8: end for

5 Concrete Performance

To measure the concrete performance, we implement prototypes of both of our protocols,
MicroFedML1 and MicroFedML2, as well as two benchmark protocols, BIK+17 and BBG+20 with
ABIDES [8] a discrete event simulation framework with modification to enable simulation of feder-
ated learning protocol, in Python language. In all implementations, we assume semi-honest setting,
thus we omit the marked parts of the protocols that only needed in the malicious setting.

The experiments are run on an AWS EC2 r5.xlarge instance equipped with 4 3.1 GHz Intel Xeon
Platinum 8000 series processors CPUs and 32GB memory. We are using large machine instances so
that we can simulate a large number of parties. Each user and the server is single-threaded. For each
protocol, we run 10 iterations of aggregation and take the average of the running time. We measure
the computation time, simulated message delay, and the bandwidth cost of both the user and the
server of the Setup phase and each iteration.

In Figure 3, we compare the local computation time of four protocols with the length of result fixed
to 20 bits and group/neighbor size fixed to 200 for MicroFedML2 and BBG+20. As shown in the
graph, the computation time of MicroFedML1 is about 100 times shorter than BBG+20 when the to-
tal number of users is 500, and the computation time of MicroFedML2 is about 20 times faster than
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Figure 3: Wall-clock local computation time of one iteration of the Aggregation phase of a user and
the server as the number of user increases. The length of the sum of inputs is fixed to ` = 20 bits in
different lines, i.e., the input of each user is in the range [2`/n] when the total number of users is n.
For the protocol MicroFedML2 and BBG+20, the group size / neighbor size is set to 200.
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Figure 4: Outbound bandwidth cost (bytes) on the user and the server side of each iteration of
different protocols when the total number of users grows. The size of the result is fixed to 20 bits.
The neighbor size in protocol MicroFedML2 and BBG+20 is fixed to 100.

BBG+20 when the total number of user is 1000. Since the lines of MicroFedML1 and MicroFedML2

are overlapped in the chosen scale, we include zoom-in graphs in Figure 7 and Figure 8 in Ap-
pendix D.3. In Figure 4 we compare the bandwidth cost per iteration of different protocols, with the
length of the result fixed to 20 bits and the group/neighbor size fixed to 100. The size of outgoing
messages of each user of MicroFedML1 and MicroFedML2 are almost the same, which is about
1000 times smaller than BIK+17 and about 200 times smaller than BBG+20 when the total number
of users is 500. The size of incoming messages from the server per user of MicroFedML1 is also al-
most the same as MicroFedML2, which is about 50 times smaller than BIK+17 and 10 times smaller
than BBG+20 when the total number of users is 500. The improvement of computation time and
bandwidth cost will be larger when the total number of users increases.

We include more detailed graph showing the impact of the result range size (Figure 9), offline rate of
users (Figure 10 with zoom-in in Figure 11), group size (Figure 12) on the local computation time in
Appendix D.3. We also include the performance of the Setup phase measured by local computation
time and bandwidth cost in Figure 13 and Figure 14, respectively.

6 Conclusion and Future Work

In this work, we propose a new construction of multi-iteration secure aggregation protocol that
has better round complexity while keeping the same asymptotic communication cost. We provide
correctness and privacy proofs in semi-honest and malicious settings respectively, and show that our
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concrete performance is better than the previous works when the input domain is small. A future
direction is to extend the result to larger input domain for other use cases.
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A Preliminaries (Continued)

A.1 Additional Cryptographic Primitives

Negligibility and Indistinguishability A function f : N→ R is a negligible function if for every
positive integer c there exists an integer nc such that for all n > nc, f(n) < 1

nc .

We say that an event happens with negligible probability if its probability is a function negligible in
the security parameter. Symmetrically, we say that an event happens with overwhelming probability
if it happens with 1 but negligible probability.

We say that two ensembles of probability distributions {Xn}n∈N and {Yn}n∈N are computation-
ally indistingsuishable (denoted with ≈c) if for all non-uniform PPT distinguisher D, there exists a
negligible function f such that for all n ∈ N,∣∣∣∣ Pr

t←Xn
[D(1n, t) = 1]− Pr

t←Yn
[D(1n, t) = 1]

∣∣∣∣ < f(n).

Finite Field and Cyclic Group Let p, q be two primes such that p = 2q + 1. Zp denotes a finite
field with elements {0, 1, . . . , p− 1} and Z∗p denotes a group {1, . . . , p− 1}. G refers to a subgroup
of Z∗p of order q, which is also a cyclic group and every element in it is a generator of the group.
In other word, for any element g ∈ G, G = {g0, g1, . . . , gq−1}. In the protocol description in
this paper, by uniformly randomly choosing some value, we mean uniformly randomly choosing an
element from Zq if not noted explicitly; by computing gr or logg R for some element g ∈ G, we
mean the power and discrete log computation happening in group G.

Decisional Diffie-Hellman (DDH) Assumption In our protocol, we assume that the following
assumption holds: Let p, q be two primes, p = 2q + 1. Let g be a generator of Z∗p. Then the follow-
ing two distributions are computationally indistinguishable, given that a, b, c are independently and
uniformly randomly chosen from Zq:

(ga, gb, gab) and (ga, gb, gc).
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Hypergeometric Distribution The hypergeometric distribution X ∼ HyperGeom(N,m, n) is
a discrete probability distribution that describes the probability of picking X objects with some
specific feature in n draws, without replacement, from a finite population of size N that contains
exactly m objects with that feature.

We use the following tail bounds for X ∼ HyperGeom(N,m, n):

• ∀d > 0 : Pr[X ≤ (m/N − d)n] ≤ e−2d2n,

• ∀d > 0 : Pr[X ≥ (m/N + d)n] ≤ e−2d2n.

A.2 Implementation of Shamir’s Secret Sharing

We first describe the implementation of the two functions SS.share and SS.recon defined in Sec-
tion 3. The first function can be implemented by uniformly randomly choosing t − 1 coefficients
a1, . . . , at−1 from Zq , and calculates si = f(xi) for f(x) = s+a1x+ . . .+at−1x

t−1. The function
f can be reconstructed from the shares with the Lagrange basis polynomials. More specifically, let
`i(x) = Πj 6=i,j∈[n]

x−xj
xi−xj , then f(x) =

∑
i∈[n] si · `i(x). In this way, we can obtain s = f(0). In

fact, we can obtain shares f(x) for all values of x as long as we know the values of f(xi) for at least
t different xi. Moreover, given the secret s and {f(xi)}i∈[m] for m < t − 1, we can always find
the rest of the shares {f(xi)}i∈[m+1,t] such that s = SS.recon({(f(xi), xi)}i∈[t], t) by arbitrarily
choosing {f(xi)}i∈[m+1,t−1], and calculating f(xt) with the Lagrange basis polynomials. For sim-
plicity, we call this process as calculating the rest of the shares of s for indices {xi}i∈[m+1,t] fixing
the shares {f(xi)}i∈[m] .

Additionally, we define the function SS.exponentRecon as mentioned in Section 3 and its coun-
terpart SS.exponentShare which is used later in the security proofs as an extension of Shamir’s
secret sharing. Let p, q be primes such that p = 2q + 1. Let G be the multiplicative cyclic subgroup
of order q of Z∗p and let g be a generator of G. Let s, sij , ai ∈ Zq for i ∈ [t] and ij ∈ [q] for j ∈ [n].
We define two functions:

• SS.exponentRecon((gs1 , x1), . . . , (gsn , xn), t) = {gs, ga1 , . . . , gat−1}: With the shares
gs1 , . . . , gsn , it returns the secret and the polynomial coefficients of the Shamir secret
sharing in the exponent. More precisely, it returns {gs, ga1 , . . . , gat−1} such that for
f(x) = s + a1x + . . . + at−1x

t−1, f(xi) = si for i ∈ [n]. This function can be im-
plemented without knowing s1, . . . , sn by performing all the linear operations of function
SS.recon in the exponent.

• SS.exponentShare(gs, ga1 , . . . , gat−1 , x) = gsx : with the coefficients of the polynomial
in exponent, it returns a new share in exponent at index x. More precisely, it returns gsx =

gs · (ga1)x · . . . · (gat−1)x
t−1

. This function can also be implemented without knowing the
exponents s, a1, . . . , at−1.

A.3 Security Definition

In this section, we formally define the secure aggregation protocol and the security property for a
multi-iteration secure aggregation protocol.
Defintion A.1 (Aggregation Protocol). An aggregation protocol Π(U ,S,K) with a set of users U ,
a server S, integers K as parameters consists of two phases: the Setup phase and the Aggregation
phase. The Setup phase runs once at the beginning of the execution, then the Aggregation phase
runs for K iterations. At the beginning of each iteration k ∈ [K] of the Aggregation phase, each
user i ∈ U holds a input xki , and at the end of each iteration k, the server S outputs a value
wk =

∑
i∈U x

k
i .

We define the correctness and privacy property of the protocol below.
Defintion A.2 (Correctness with Dropouts). Let n = |U|. An aggregation protocol Π guarantees
correctness with δ offline rate if for every iteration 1 ≤ k ≤ K and for all sets of offline users
offlinek ⊂ U with |offlinek| < δn, the server outputs wk =

∑
i∈U\offlinek

xki at the end of iteration
k if every user and the server follows the protocol except that the users in offlinek drops offline at
some point in iteration k.
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Ideal Functionality To define privacy property, we first describe an ideal functionality which al-
lows the adversary to learn the sum of secrets of all honest and online users chosen by the adversarial
server in every iteration. More formally, Idealδ{xki }i∈U\C,k

is an ideal oracle, which can be queried
once for each iteration k ∈ [K]. When queried with a large enough set of honest users U and the
iteration k, it provides

∑
i∈U x

k
i . More specifically, given a set of users U and an iteration number

k, it operates as follows:

Idealδ{xki }i∈U\C,k
(U, k) =

{∑
i∈U x

k
i if U ⊆ (U\C) and |U | > (1− δ)|U| − |C|,

⊥ otherwise.

Defintion A.3 (Privacy against Semi-honest/Malicious Adversary). LetK,n be integer parameters.
Let Π be a multi-iteration secure aggregation protocol running with one central server S and a set
of n users U = {1, . . . , n}. An aggregation protocol Π guarantees privacy against γ fraction of
semi-honest/malicious adversary with δ offline rate if there exists a PPT simulator SIM such that for
all k = 1, . . . ,K, all inputs vectors Xk = {xk1 , . . . , xkn} for each iteration 1 ≤ k ≤ K, and all sets
of corrupted users C ⊂ U with |C| < γn controlled by an honest-but-curious/malicious adversary
MC which also controls the server S, the output of SIM is computationally indistinguishable from
the joint view of the server and the corrupted users in that execution, i.e.,

REALU,KC (MC , {xki }i∈U\C,k∈[K]) ≈c SIM
U,K,Idealδ

{xk
i
}i∈U\C,k∈[K] (MC)

B Security Proofs for MicroFedML1

In this section, we first recap the idea of the protocol MicroFedML1 which guarantees privacy
against malicious adversary as a whole picture, then we discuss the security properties of the proto-
col MicroFedML1 in different adversarial settings.

As described in Section 2, in the Setup phase, each user i first agree with every other users j on the
symmetric encryption key eki,j , by picking a pair of secret key ski and public key pki and sends
the public key pki to all other users j. On receiving the public key pkj from other users, the user
i combines it with its own secret key ski to generate eki,j , which should be the same generated
in the same way on user j’s side (see Section 3 for more details). Then it uniformly randomly
picks a random mask ri, and calculate the secret shares of it for all other users. Before sending
the shares, user i encrypts the share for user j with eki,j so that the server cannot learn the share
from the messages it forwards for them, while they can decrypt the messages between them with
eki,j . Moreover, in the key agreement process mentioned above, a server controlled by a malicious
adversary might sending users malicious public keys pk′ rather than forwarding the public keys from
honest users so that the user i is actually agreeing on a corrupt key with the adversary and all its
encrypted messages can easily be decrypted by the adversary then. Thus, a public-key infrastructure
(PKI) (see Section 3 for more details) which allows users to verify the source of messages is required.
More specifically, in PKI, each user holds a secret signing key which is only known to itself and a
public verification key which is known to all parties. User i signs the public key pki with its signing
key generating a signature which cannot be forged by anyone not knowing its signing key and can
be verified by anyone holding it public verification key that the message is from user i. It sends the
signature with pki to the server and verifies all the signatures on pkj’s from other users j with user
j’s verification key.

After the Setup phase, each user should hold its own random mask ri and one share rj,i of rj for
each of other users j. Then, in each iteration, the user i first sends the masked input in the exponent
gXi = gxi+ri to the server. When user i receives the online set O from the server, it needs to check
if all other honest users receive the same online set. After agreeing on the online set by signing
on the online set, sending the signature to other users, and verifying other users’ signatures, each
user sends g

∑
j∈O rj,i to the server, who then reconstructs g

∑
j∈O rj , removes it from g

∑
j∈O Xj , and

recovers
∑
j∈O xj by discrete log.

Now, we discuss the security properties. First, we consider the case in which the server is honest and
the adversary controls only a subset of users. In this setting, the adversary can never learn anything
about the honest users’ inputs no matter how many corrupt users it controls. The proof is straight
forward: the joint view of any subset of users is independent of the other users’ inputs, as each user
never receives any information depend on other users’ input value from the server by the description

14



of the protocol. More formally, the joint view of any subset of users U ′ ⊂ U , can be simulated by
a simulator SIM without knowing xi for i /∈ U ′ by randomly choosing x′i in the domain for each
i /∈ U ′ and simulating the users i /∈ U ′ and the server following the protocol.

Now, we discuss the correctness property with dropouts and the privacy property in the semi-honest
and malicious settings when the adversary controls both the server and a set of users C.

B.1 Correctness with Dropouts

We first discuss the correctness guarantee of the protocol when all users and the server follow the
protocol except that less than δ fraction of users are offline in each iteration. The correctness property
is easy to see when the server gets enough shares (i.e., |O′| > (1− δ)n) in the second round of each
iteration of the aggregation phase to reconstruct RO = H(k)

∑
i∈O ri . The condition is satisfied

when there are less than δ fraction of users are ever offline in the iteration and the threshold t of
secret sharing is set as b(1− δn)c+ 1. Thus, we have the following theorem.
Theorem B.1. The protocol Π instantiated with Algorithm 1 and Algorithm 2 with parameter t =
b(1− δ)nc+ 1 guarantees correctness with δ offline rate.

B.2 Privacy against Semi-Honest Adversary

In this section, we discuss the privacy guarantee of the protocol when the semi-honest adversary
controls both a subset of users and the server.

We can also reduce the round complexity by removing the second round in the Aggregation phase,
as the server is assumed to follow the protocol so that it sends the same online list to each user.
Theorem B.2. The protocol Π instantiated with Algorithm 1 and Algorithm 2 running with a server
S and n users with parameter t = bn/2c+ 1 guarantees privacy against 1

2 -fraction of semi-honest
adversary with 1

2 offline rate. The protocol takes 3 rounds in Setup phase and 2 rounds for each
iteration of Aggregation phase.

Proof. We first define the behavior of a simulator SIM:

• In the Setup phase:

– Round 1: Each honest user i follows the protocol description in Algorithm 1.
– Round 2: For each corrupt user j ∈ Ui ∩ C, an honest user i stores eki,j =

KA.agree(pkj , ski). For each pair of honest users i, j, the simulator uniformly ran-
domly chooses a symmetric encryption key ek∗i,j , and sets ek∗j,i = ek∗i,j .
Then, for each corrupt user j ∈ U1

i ∩ C, user i uniformly randomly chooses ri,j , en-
crypts it by ci,j ← AE.enc(ri,j , eki,j); for each honest user j ∈ U1

i \C, user i encrypts
a dummy value by ci,j ← AE.enc(⊥, ek∗i,j). Each honest user i sends {ci,j}j∈Ui to
the server.

– Users Receiving Shares: For each honest user i, on receiving cj,i from the server,
each honest user i follows the protocol except that it additionally aborts if for any
honest j, the decryption succeeds while the result is different from the value user j
encrypts in the previous round.

• In the k-th iteration of the Aggregation phase:

– Round 1: Each honest user i uniformly randomly chooses X∗i and sends H(k)X
∗
i to

the server.
– Round 3: If the online set O the honest users receive from the server is of size at

least t, the simulator queries the ideal functionality to get w = Ideal(O\C, k). Then
for all honest users i ∈ O\C, the simulator uniformly randomly samples w∗i for i ∈
O\C under the restriction

∑
i∈O\C w

∗
i = w. For each i ∈ O\C, the simulator SIM

calculates r∗i = X∗i − w∗i , and calculates the shares r∗i,j for all j ∈ Ui\C such that
r∗i = SS.recon({r∗i,j , j}j∈Ui\C , {ri,j , j}j∈C , t), where ri,j for j ∈ C are the shares
that have already been sent to the corrupt users in the Setup phase. Let r∗j,i = rj,i for
j ∈ C and honest user i.
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Then for the honest users i who receives O, the simulator sends ζ∗i = H(k)
∑
j∈O r

∗
j,i

to the server on behalf of user i.

We describe a series of hybrids between the joint view of corrupt parties in the real execution and the
output of the simulation described above. Each hybrid is identical to the previous one except the part
explicitly described. By proving that each hybrid is computationally indistinguishable from the pre-
vious one, we prove that the joint view of the corrupt parties in the real execution is indistinguishable
from the simulation.

Hyb0 This random variable is the joint view of all parties in C in the real execution.

Hyb1 In this hybrid, a simulator which knows all secret inputs of honest parties in every iteration
simulates the execution with MC following the protocol.

The distribution of this hybrid is exactly the same as the previous one.

Hyb2 In this hybrid, for any pair of two honest users i, j, the encryption of shares ci,j and cj,i
they send between each other are encrypted and decrypted using a uniformly random key
ek∗i,j instead of eki,j obtained through Diffie Hellman key exchange in Setup Phase.

The indistinguishability between this hybrid and the previous one is guaranteed by 2ODH
assumption.

Hyb3 In this hybrid, we substitute each encrypted share cri,j = AE.enc(ek∗i,j , ri,j) sent between
honest parties in the Setup phase in the previous hybrids with the encryption of a dummy
value, i.e., cri,j

∗ = AE.enc(⊥, ek∗i,j).

The indistinguishability is guaranteed by IND-CPA security of the encryption scheme.

Hyb4 In this hybrid, in every iteration k, each honest user i substitutes H(k)Xi it sends to
the server in the first round with H(k)X

∗
i for a uniformly randomly chosen X∗i . More-

over, in the third round, for each honest user i, SIM calculates r∗i = X∗i − xi and the
shares r∗i,j for honest users j based on the shares which have already been sent to cor-
rupt users in the Setup phase, i.e., it calculates r∗i,j for j ∈ U\C making sure that r∗i =
SS.recon({r∗i,j , j}j∈Ui\C , {ri,j , j}j∈C). For corrupt users j ∈ C, let r∗j,i = rj,i. Then each
honest user i who receivesO with at least t valid signatures calculates ζ∗i = H(k)

∑
j∈O r

∗
j,i

and sends ζ∗i to the server.

By Lemma B.7, this hybrid is indistinguishable from the previous one.

Hyb5 In this hybrid, in the second round of each iteration, for each user i ∈ O\C, instead of
setting r∗i = X∗i − x∗i , SIM randomly picks r∗i under the constraint that

∑
i∈OS\C r

∗
i =∑

i∈OS\C X
∗
i −
∑
i∈OS\C xi. The simulator then uses r∗i to calculate the shares {r∗i,j}j∈U\C

for user i ∈ O\C.

This hybrid is indistinguishable from the previous hybrid, as r∗i are still uniformly random,
and the sum of r∗i in the exponent of H(k)

∑
i∈O\C r

∗
i that the server can reconstruct from

the shares keeps the same.

Hyb6 In this hybrid, in the second round of each iteration, for each honest user i /∈ O, the
simulator sets r∗i as 0 and calculates the shares for i.

This hybrid is identical to the previous one as there is only one unique O and if an honest
user is not included in O, the share r∗i,j for j ∈ U\C will not be included in any ζ∗j sent to
server. Thus, the adversary will not receive any information about r∗i in the third round of
the iteration.

Hyb7 Instead of receiving the inputs from the honest parties and using
∑
i∈O\C xi to sample

r∗i for i ∈ O\C, the simulator makes a query to the functionality Ideal with the user set
O\C and iteration counter k and use the output value to sample random value r∗i in every
iteration with |O\C| ≥ t − nC . Note that the Ideal functionality will not return ⊥ in this
case.
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The distribution of this hybrid is exactly the same as the distribution of the previous hybrid.
In this hybrid, the simulator does not know xi for any user i.

Now we have proved that the joint view of MC in the real execution is computationally indistin-
guishable from the view in the simulated execution.

B.3 Privacy against Malicious Adversary

In this section, we prove that our protocol protects the privacy of honest users in the active adversary
setting with compromised server. In other words, we prove that when executing the protocol with
threshold t ≥ b 23nc + 1, the joint view of the server and any set of less than t users does not leak
any information about the other users’ inputs other than what can be inferred from the output of the
computation. In this work we do not consider the full security guarantee in the malicious setting,
which means when a subset of users are malicious, we do not guarantee that the server learns the
aggregation of the honest and online users’ inputs.

For some iteration k of the Aggregation phase, We say a user set O ⊆ U is a common online set if
some honest user receives at least t valid signatures onO in the third round. This set might not exist
when the server is corrupt.
Fact B.3 (Unique Common Online Set). When t > 2

3n and |C| < 1
3n, There is at most one common

online set O in every iteration.

Proof. For the sake of contradiction, assume there exists two different common online set O1 and
O2 in some iteration k. Let U1 and U2 denote the set of honest users who sign on O1 and O2

respectively. By the definition of common online set, |U1| ≥ t − |C| and |U2| ≥ t − |C|. Thus
|U1| + |U2| ≥ 2t − 2|C| > 4

3n −
1
3n − |C| = n − |C|, which is total number of honest users. Thus

we have a contradiction as an honest user will only sign on one online set.

The following theorem shows that the joint view of any subset of less than t users and the server
can be simulated without knowing the secret input of any other users. In other words, the adver-
sary controlling the server and less than t users cannot learn anything other than the output of the
computation.
Theorem B.4. The protocol Π instantiated with Algorithm 1 and Algorithm 2 (with underlined
parts) guarantees privacy against 1

3 -fraction of malicious adversary with 1
3 offline rate. The Setup

phase of the protocol runs in 3 rounds with O(n) communication complexity per user and the Ag-
gregation phase runs in 3 rounds with O(n) communication complexity per user.

Proof. We first define the behavior of a simulator SIM:

• In the Setup phase:

– Round 1: Each honest user i follows the protocol description in Algorithm 1.
– Round 2: Each honest user i receives (pkj , σj) from the server, and verifies the signa-

tures as described in Algorithm 1, except that the simulator aborts if some honest user
i receives a valid signature of an honest user j on a public encryption key different
from what user j sends to the server in the previous round. Then for each corrupt
user j ∈ Ui ∩ C, an honest user i stores eki,j = KA.agree(pkj , ski). For each pair of
honest users i, j, the simulator uniformly randomly chooses a symmetric encryption
key ek∗i,j , and sets ek∗j,i = ek∗i,j .
Then, for each corrupt user j ∈ U1

i ∩ C, user i uniformly randomly chooses ri,j , en-
crypts it by ci,j ← AE.enc(ri,j , eki,j); for each honest user j ∈ U1

i \C, user i encrypts
a dummy value by ci,j ← AE.enc(⊥, ek∗i,j). Each honest user i sends {ci,j}j∈Ui to
the server.

– Users Receiving Shares: For each honest user i, on receiving cj,i from the server,
each honest user i follows the protocol except that it additionally aborts if for any
honest j, the decryption succeeds while the result is different from the value user j
encrypts in the previous round.
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• In the k-th iteration of the Aggregation phase:

– Round 1: Each honest user i uniformly randomly chooses X∗i and sends H(k)X
∗
i to

the server.
– Round 2: Each honest user follows the protocol by signing the online setO it receives

and sending the signature to the server.
– Round 3: If any honest user receives at least t valid signatures on the online set O

it receives in the previous round, the simulator queries the ideal functionality to get
w = Ideal(O\C, k). Then for all honest users i ∈ O\C, the simulator uniformly
randomly samples w∗i for i ∈ O\C under the restriction

∑
i∈O\C w

∗
i = w. For each

i ∈ O\C, the simulator SIM calculates r∗i = X∗i − w∗i , and calculates the shares r∗i,j
for all j ∈ Ui\C such that r∗i = SS.recon({r∗i,j , j}j∈Ui\C , {ri,j , j}j∈C , t), where ri,j
for j ∈ C are the shares that have already been sent to the corrupt users in the Setup
phase. Let r∗j,i = rj,i for j ∈ C and honest user i.
Then for the honest users i who receives O with at least t valid signatures from the
server in the second round, the simulator sends ζ∗i = H(k)

∑
j∈O r

∗
j,i to the server on

behalf of user i.

By Fact B.3, there will be at most one unique set O that collects enough number of valid signatures
and the Ideal functionality will be queried at most once each iteration.

We describe a series of hybrids between the joint view of corrupt parties in the real execution and the
output of the simulation described above. Each hybrid is identical to the previous one except the part
explicitly described. By proving that each hybrid is computationally indistinguishable from the pre-
vious one, we prove that the joint view of the corrupt parties in the real execution is indistinguishable
from the simulation.

Hyb0 This random variable is the joint view of all parties in C in the real execution.

Hyb1 In this hybrid, a simulator which knows all secret inputs of honest parties in every iteration
simulates the execution with MC following the protocol.

The distribution of this hybrid is exactly the same as the previous one.

Hyb2 In this hybrid, the simulator aborts if MC provides any of the honest parties j in the Setup
phase with a valid signature with respect to an honest user i’s public key dPKi on pk∗i
different from what i provides.

The indistinguishability between this hybrid and the previous one is guaranteed by the
security of the signature scheme.

Hyb3 In this hybrid, for any pair of two honest users i, j, the encryption of shares ci,j and cj,i
they send between each other are encrypted and decrypted using a uniformly random key
ek∗i,j instead of eki,j obtained through Diffie Hellman key exchange in Setup Phase.

The indistinguishability between this hybrid and the previous one is guaranteed by 2ODH
assumption.

Hyb4 In this hybrid, we substitute each encrypted share cri,j = AE.enc(ek∗i,j , ri,j) sent between
honest parties in the Setup phase in the previous hybrids with the encryption of a dummy
value, i.e., cri,j

∗ = AE.enc(⊥, ek∗i,j).

The indistinguishability is guaranteed by IND-CPA security of the encryption scheme.

Hyb5 In this hybrid, in every iteration k, each honest user i substitutes H(k)Xi it sends to
the server in the first round with H(k)X

∗
i for a uniformly randomly chosen X∗i . More-

over, in the third round, for each honest user i, SIM calculates r∗i = X∗i − xi and the
shares r∗i,j for honest users j based on the shares which have already been sent to cor-
rupt users in the Setup phase, i.e., it calculates r∗i,j for j ∈ U\C making sure that r∗i =
SS.recon({r∗i,j , j}j∈Ui\C , {ri,j , j}j∈C). For corrupt users j ∈ C, let r∗j,i = rj,i. Then each
honest user i who receivesO with at least t valid signatures calculates ζ∗i = H(k)

∑
j∈O r

∗
j,i

and sends ζ∗i to the server.
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By Lemma B.7, this hybrid is indistinguishable from the previous one.

Hyb6 In this hybrid, in each iteration, if some honest user receives O with at least t valid sig-
natures in the second round, then in the third round, for each user i ∈ O\C, instead of
setting r∗i = X∗i − x∗i , SIM randomly picks r∗i under the constraint that

∑
i∈OS\C r

∗
i =∑

i∈OS\C X
∗
i −
∑
i∈OS\C xi. The simulator then uses r∗i to calculate the shares {r∗i,j}j∈U\C

for user i ∈ O\C.

This hybrid is indistinguishable from the previous hybrid, as r∗i are still uniformly random,
and the sum of r∗i in the exponent of H(k)

∑
i∈O\C r

∗
i that the server can reconstruct from

the shares keeps the same.

Hyb7 In this hybrid, in each iteration, if some honest user receives O with at least t valid signa-
tures in the second round, then in the third round, for each honest user i /∈ O, the simulator
sets r∗i as 0 and calculates the shares for i.

This hybrid is identical to the previous one as there is only one unique O and if an honest
user is not included in O, the share r∗i,j for j ∈ U\C will not be included in any ζ∗j sent to
server. Thus, the adversary will not receive any information about r∗i in the third round of
the iteration.

Hyb8 Instead of receiving the inputs from the honest parties and using
∑
i∈O\C xi to sample

r∗i for i ∈ O\C, the simulator makes a query to the functionality Ideal with the user set
O\C and iteration counter k and use the output value to sample random value r∗i in every
iteration with |O\C| ≥ t − nC . Note that the Ideal functionality will not return ⊥ in this
case.

The distribution of this hybrid is exactly the same as the distribution of the previous hybrid.
In this hybrid, the simulator does not know xi for any user i.

Now we have proved that the joint view of MC in the real execution is computationally indistin-
guishable from the view in the simulated execution.

We prove that Hyb4 and Hyb5 are indistinguishable. First, we prove the following lemma, which is
an extension of the DDH assumption.

Lemma B.5 (Extension of the DDH Assumption). Let p and q be two primes while p = 2q +
1. Let g be a generator of field Z∗p. If the DDH assumption holds, then for uniformly random
a, b1, . . . , bt, b

′
1, . . . b

′
n ∈ Zq , the following two distributions are computationally indistinguishable:

(ga, gb1 , . . . , gbn , gab1 , . . . , gabn) (1)

(ga, gb1 , . . . , gbn , gab
′
1 , . . . , gab

′
n) (2)

Proof. We define Hybi = (ga, gb1 , . . . , gbn , gab1 , . . . , gabi , gab
′
i+1 , . . . , gab

′
n) for i ∈ [0, n]. Based

on the DDH assumption, we prove that the two neighboring hybrids are computationally indistin-
guishable. For the sake of contradiction, assume there is a PPT adversary A which can distin-
guish between Hybi−1 and Hybi for some i ∈ [1, n]. Then, we construct the following distin-
guisher D(A,B,C) for DDH tuples: it first uniformly randomly picks b1, . . . , bi−1, bi+1, . . . , bn
and b′i+1, . . . , b

′
n. Then it invokes A with the tuple

(A, gb1 , . . . gbi−1 , B, gbi+1 . . . , gbn , Ab1 , . . . Abi−1 , C,Ab
′
i+1 . . . , Ab

′
n)

and outputs the bit A outputs. Let A = ga, B = gb. Then, when C = gab, the distribution
D feeds A is just the distribution of Hybi, and when C = gab

′
for a uniformly random b′, the

distribution D feeds A is the distribution of Hybi−1. D succeeds if A successfully distinguishes
between the two hybrids. If the DDH assumption holds, such A does not exist, and Hybi−1 and
Hybi are computationally indistinguishable.

As the distribution (1) is the same as Hybn, and the distribution (2) is the same as Hyb0, the two
distributions in the lemma are computationally indistinguishable.
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Lemma B.6. Let n, t, nC ,K be integer parameters, nC ≤ n−t < t. Let x1, . . . , xn−nC be uniformly
random elements of some finite field F. Let xi,j ∈ Zq for i ∈ [n − nC ] and j ∈ [n] be shares of xi
calculated with t-out-of-n Shamir secret sharing algorithm, i.e., {xi,j}j∈[n] ← SS.share(xi, [n], t)
for i ∈ [n− nC ].

For each k = 1, . . . ,K, let yk1 , . . . , y
k
n−nC also be uniformly randomly cho-

sen from F. Let yki,j for i, j ∈ [n − nC ] be elements of Zq such that yki =

SS.recon({yki,j , j}j∈[n−nC ], {xki,j , j}j∈[n−nC+1,n], t). Let H(·) be a random oracle that re-
turns a random element of Z∗q on each fresh input.

Then the following two distributions are computationally indistinguishable if the DDH assumption
holds:

{xi,j}i∈[n−nC ],j∈[n−nC+1,n], {{H(k)xi}i∈[n−nC ], {H(k)xi,j}i,j∈[n−nC ]}k∈[K] (3)

{xi,j}i∈[n−nC ],j∈[n−nC+1,n], {{H(k)y
k
i }i∈[n−nC ], {H(k)y

k
i,j}i,j∈[n−nC ]}k∈[K] (4)

Proof. We prove the indistinguishability with a sequence of hybrids. Let Hyb0
equal to the distribution (3). Then for each k ∈ [K], Hybk is the same as
Hybk−1 except that {H(k)xi}i∈[n−nC ], {H(k)xi,j}i,j∈[n−nC ] are susbstituted with

{H(k)y
k
i }i∈[n−nC ], {H(k)y

k
i,j}i,j∈[n−nC ]. Defined in this way, HybK is identical to the dis-

tribution (4) in the lemma. Then between Hybk and Hybk+1 for k ∈ [0,K − 1], we additionally
define Hybk,0 = Hybk and a sequence of hybrids Hybk,i for i ∈ [n − nC ]: Hybk,i is the
same as Hybk,i−1 except that H(k)xi , {H(k)xi,j}j∈[n−nC ] in Hybk,i−1 is substituted with

H(k)y
k
i , {H(k)y

k
i,j}j∈[n−nC ]. Note that Hybk,n−nC is identical to Hybk+1.

Then we prove that the two adjacent hybrids Hybk0,i0−1 and Hybk0,i0 are computationally indistin-
guishable. For the sake of contradiction, assume that there exists a distinguisher

D({xi,j}i∈[n−nC ],j∈[n−nC+1,n], {Zk,i}i∈[n−nC ], {Zk,i,j}i,j∈[n−nC ]}k∈[K])

can distinguish between these two distributions. Then we construct the following PPT distinguisher

D′(A,B1, ..., Bt−c, C1, ..., Ct−c) :

For i ∈ [n − nC ], it uniformly randomly samples xi and calculates the t-out-of-n Shamir secret
sharing of xi by {xi,j}j∈[n] ← SS.share(xi, [n], t). For k < k0, it also it unifromly randomly
samples yki for i ∈ [n− nC ] and secret shares each yki to generate shares {yki,j}j∈[n]. Moreover, for
k ∈ [K] and k 6= k0, D′ uniformly randomly chooses sk and assigns H(k) := gsk , and for k0, it
assigns A to H(k0). Then it feeds the following input to the distinguisher D: For the first part, it
feeds D with xi,j for i ∈ [n− nC ], j ∈ [n− nC + 1, n]; then for the second part:

• For k < k0, it sets Zk,i = gsky
k
i and Zk,i,j = gsky

k
i,j ; for k > k0, let Zk,i = gskxi and

Zk,i,j = gskxi,j for i, j ∈ [n− nC ] .

• For i < i0, let Zk0,i = Ay
k
i and Zk0,i,j = Ay

k
i,j ; for i > i0, let Zk0,i = Axi and

Zk0,i,j = Axi,j .

• It sets Zk0,i0 and {Zk0,i0,j}j∈[n−nC ] in the following way: It calculates Xi0 by

Xi0 , C1, . . . Ct−1 = SS.exponentRecon((B1, 1), . . . (Bt−nC , t− nC),
(gxi0,n−nC+1 , n− nC + 1), . . . , (gxi0,n , n), t),

and the remaining shares Xi0,j for j ∈ [t− nC + 1, n− nC ] by

Xi0,j = SS.exponentShare(j,Xi0 , C1, . . . , Ct−1).

Let Zk0,i0 = Xi0 . For j ∈ [t− nC ], let Zk0,i0,j = Cj , and for j ∈ [t− nC + 1, n− nC ], let
Zk0,i0,j = Xi0,j .
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Then D′ returns the bit D outputs.

When Ci = gabi for i ∈ [t− c], the distribution of the input forD is exactly the same as Hybk0,i0−1;
when C=g

ci for uniformly random ci for i ∈ [t − c], the distribution of the input for D is exactly
the same as Hybk0,i0 . Thus, D win the games with the same probability as A distinguishes between
Hybk0,i0−1 and Hybk0,i0 . However, by Lemma B.5, there is no such a distinguisher D′. Thus, we
have a contradiction.

Lemma B.7. If the DDH assumption holds, then the distributions of Hyb4 and Hyb5 are computa-
tionally indistinguishable.

Proof. For the sake of contradiction, assume there exists an adversary which can distinguish be-
tween Hyb4 and Hyb5. Then we can construct a distinguisher

D({r∗i,j}i∈[n−nC ],j∈[n−nC+1,n], {Zk,i}i∈[n−nC ], {Zk,i,j}i,j∈[n−nC ]}k∈[K])

in the following way:

D simulates the protocol execution withA as described in Hyb4, except that in Round 2 of the Setup
phase, each honest user sends r∗i,j ; in each iteration k, for each honest user i, it substitutes H(k)Xi

with Zk,i in the first round, and substitutes ζi =
∏
j∈OH(k)rj,i with ζ∗i =

∏
j∈O Zk,j,i in the last

round. Then it outputs the bit A outputs.

When the input ofD is sampled from the distribution (3), the distribution of the simulation is identi-
cal to Hyb4, and when the the input of D is sampled from the distribution (4), the distribution of the
simulation is identical to Hyb5. Thus, D successfully distinguishes between the two distributions
when A succeeds. However, by Lemma B.6, such a distinguisher D does not exists under the DDH
assumption. Thus, we have a contradiction.

C MicroFedML2: Improvement with User Grouping

In the protocol introduced in Section 4 we eliminate the communication cost of secret sharing in
each iteration by reusing the random mask. However, each user still needs to know the online status
of all participants to calculate the sum of the shares of the mask, which needs to be represented in at
least O(n) bits. In the malicious setting, this also means each user needs to receive O(n) signatures
of other online users from the server to guarantee the agreement on the online set. In this section,
we further reduce the communication cost by grouping the users, so that each user only needs to
know the status of a small number of neighbors in the same group. We show the Setup phase and the
Aggregation phase of MicroFedML2 with privacy guarantee against malicious adversary in Figure 5
and Figure 6 respectively, then we give the formal description of the protocol in Appendix C.1.

For simplicity, we assume that the the group assignment is provided by the trusted third party as part
of the inputs, but the assignment can also be implemented with a distributed randomness generation
protocol to allow all users to decide the assignment together. We chooses the group size in exactly
the same way and under the same assumptions as neighborhood size is chosen in BBG+20 [6]. We
discuss the group properties we need in Appendix C.2.

C.1 Protocol with User Grouping

The protocol runs with one server and n users 1, 2, . . . , n, which can only communicate with the
server through secure channels. Same as the previous protocol, the server and the users perform the
Setup phase first, then execute the Aggregation phase for K iterations.

We describe the Setup phase in Algorithm 3 and the Aggregation phase in Algorithm 4. The parts
that only needed to protect privacy against malicious adversary are marked with red color and un-
derlines.

Algorithm 3 Setup (MicroFedML2)
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Users i ∈ Gd Server S

Round 1

generates keys pki, ski,

and pk1
i , sk1

i , pk−1
i , sk−1

i ,

signs pki, pk1
i , pk−1

i with dSKi
pki, pk1

i , pk−1
i , σi

Verifies signatures{pkj , pk1
j , pk−1

j , σj}j∈U1
S∩(Gd∪Gd±1)

Round 2

gets common keys
eki,j with pkj , ski

and mkbi,j with pk−bj , skbi
for b = ±1;

secret shares skbi amongGd+b
encrypts the shares for j using eki,j encrypted shares {csk

i,j}j∈Gd+1∪Gd−1

{csk
j,i}j∈U2

S∩(Gd+1∪Gd−1)

Round 3

hi =
∑
j∈Gd−1

mki,j −
∑
j∈Gd+1

mki,j ;

randomly chooses ri
secret shares ri, hi amongGd

encrypts the shares for j with eki,j encrypted shares {cri,j , c
h
i,j}j∈Gd

{crj,i, c
h
j,i}j∈U3

S∩Gd

Round 4

offlinei: users j inGd
who sends pkj in the first round

but fails sending the encrypted shares
in the third round

sign offlinei with dSKi offlinei, σ
′
i

{offlinej , σ
′
j}j∈U4

S∩(Gd−1∪Gd+1)
,

Round 5

skb
j′,i if j′ is in t offlinej fromGd−b for b = ±1

reconstructs sk1j′ , sk−1j′
calculates mki′,j′

for all i′ in the adjacent groups of j
then calculates hj′
adds hj′ up to get hS

which is the sum of h-masks
of users who fail to share their h-masks
in round 3

Figure 5: An overview of the Setup phase of MicroFedML2

This protocol uses the following algorithms defined in Section 3: a public key infras-
tructure, a Diffie-Hellman key exchange scheme (KA.setup,KA.gen,KA.agree); a CCA2-
secure authenticated encryption scheme (AE.enc,AE.dec); a Shamir’s secret sharing scheme
(SS.share,SS.recon,SS.exponentShare,SS.exponentRecon); It also accesses a random or-
acle H(·), which has range in Z∗p. It proceeds as follows:

Input: A central server S and a user set U of n users. Each user can communicate with the server
through a private authenticated channel. All parties are given public parameters: the security
parameter κ, the number of users n, a threshold value t, honestly generated pp← KA.setup(κ)
for key agreement, the input space X , a field F for secret sharing.

Moreover, all clients are uniformly randomly divided into B groups G1, . . . , GB , each of
which contains n/B clients. For convenience, in the description of the protocol, letG−1 = GB ,
and GB+1 = G1. The user i in group d holds the group index d, its own signing key dSKi and a
list of verification keys dPKj for j ∈ [n]. The server S also has all users’ verification keys.

Output: Every user i ∈ U who is online through the Setup phase either obtains a set of users Ui of
size at least t and two shares rj,i, hj,i for each j ∈ Ui or abort. The server either obtains a set of
users US such that |US | ≥ Bt and a global mask hS or abort.

Round 1: Key Exchange:
1: Each user i ∈ Gd: It generates a pair of encyption keys (pki, ski) and two pairs of masking keys

(pk1i , sk1i ) and (pk−1i , sk−1i ). It sends the three public keys with signatures on them to the server.
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Users i ∈ Gd Server S

Round 1
Xi = xi + hi + ri

H(k)Xi

Od: list of online users inGd

Round 2
SignOd with dSKi The signature σi

{σj}j∈Gd

Round 3

verify signatures
H(k)

∑
j∈Od

rj,i−
∑
j∈Gd\Od

hj,i

For each groupGd:

reconstructH(k)
∑
j∈Od

rj−
∑
j∈Gd\Od

hj

calculateH(k)
∑
j∈Od

xj =

H(k)
∑
j∈Od

Xj−(
∑
j∈Od

rj−
∑
j∈Gd\Od

hj)

calculateH(k)
∑
j∈OXj =

∏
d∈[B]H(k)

∑
j∈OdXj

calculate discrete log to get the final result

Figure 6: An overview of the Aggregation phase of MicroFedML2

2: Server S: Let U1
S denotes the set of users send the server public keys with valid signatures. For

i ∈ U1
S ∩ Gd, the server distributes the public encryption key pki and the signature received

from user i ∈ Gd to all users in U1
S ∩ (Gd ∪Gd−1 ∪Gd+1), and distributes the public masking

key pkbi with the signatures to all users in U1
S ∩Gd+b for b ∈ {−1, 1}.

Round 2: Secret Mask Key Sharing:
3: Each user i ∈ Gd: Let U1

i denote the set of users from whom user i receives the public keys with
valid signatures. Note that now U1

i ⊆ Gd ∪Gd−1 ∪Gd+1. It runs the key exchange algorithm
to generate eki,j for j ∈ U1

i as described in line 3 in Algorithm 1. Moreover, it runs the key
exchange algorithm to generate mki,j for j ∈ Gd+b with skbi and pk−bj for b = {1,−1}.

It then calculates t-out-of- nB secret shares of skbi among users in Gd+b to generate
{skbi,j}j∈Gd+b , and encrypts each share with eki,j to generate cipher text cskb

i,j for b = {−1, 1}.
It then sends all encrypted shares to the server.

4: Server S: Let U2
S denote the set of users who successfully send the server messages. If for any

group Gd, |U2
S ∩Gd| < t, abort. Otherwise, For each group d ∈ [B] and each i ∈ U2

S ∩Gd, The
server sends each encrypted share cskb

i,j to the corresponding receiver j ∈ Gd+b.
Round 3: Mask Sharing:

5: Each user i ∈ Gd: Denote the set of users j ∈ Gd−b from who user i receives cskb

j,i for b =

{1,−1} with U2
i . It decrypts the encrypted share by skbj,i = AE.dec(cskb

j,i , eki,j). If any cskb

j,i

for j ∈ U2
i ∩ Gd−b cannot be correctly decrypted, remove j from U2

i . It then checks if for
b ∈ {1,−1}, |U2

i ∩Gd+b| < t. If yes, abort.
Otherwise, user i uniformly randomly chooses a self mask (r-mask) and calculates the h-

mask hi =
∑
j∈U2

i ∩Gd−1
mki,j −

∑
j∈U2

i ∩Gd+1
mki,j . Then it calculates the shares of ri and hi

among j ∈ U1
i ∩Gd and encrypts the shares with eki,j as described in line 3 of Algorithm 1. It

then sends the encrypted shares {cri,j , chi,j}j∈U1
i ∩Gd to the server.

6: Server S: Denote the set of all users i who successfully sends the server encrypted shares with
U3
S . If for any group Gd, |U3

S ∩ Gd| < t, abort. Otherwise, It sends the shares to the corre-
sponding receiver j for each i ∈ U3

S , and an offline set of group d offlined = Gd ∩ (U2
S\U3

S) to
users in U3

S ∩ (Ud−1 ∪ Ud+1). (The server doesn’t need to send this offline set in the malicious
setting. Instead, it waits for the users to send the offline sets in their views with their signatures
as described in the red underlined part of Round 4.)

Round 4: Agreeing on the Offline User Set:
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7: Each user i ∈ Gd: It decrypts each received encrypted share by rj,i = AE.dec(crj,i, eki,j), and
hj,i = AE.dec(chj,i, eki,j). If the decryption of the share from user j fails, it ignores the message
from user j. Otherwise, it puts j into a user set U3

i and stores rj,i and hj,i. If U3
i < t after

processing all shares, it aborts. Then it signs and sends a user list offlinei = (U1
i ∩Gd)\U3

i
with the signature σi on the list to the server.

8: Server S: If the server receives offlinei with valid signatures σi from less than t users i from
any group Gd, abort. Otherwise, denote the set of users i who send the offline lists with valid
signatures to the server with U4

S . The server sends the list and the signature (offlinei, σi) for all
i ∈ Gd ∩ U4

S to all users in (Gd−1 ∪Gd+1) ∩ U4
S .

Round 5: Reconstructing Offline Users’ Masks:
9: Each user i ∈ Gd: After receiving all user lists with the signature (offlinej , σj) from the server,

it verifies the signatures and aborts if any signature verification fails. It also aborts if it receives
less than t offline lists with valid signatures from group Gd−1 or Gd+1. Otherwise, for group
Gd−1, it checks if there is any user j′ ∈ Gd−1 ∩ U2

i being included in at least t offline lists it
receives from users in Gd−1. If yes, put them in a list offlined−1. It repeats the process on group
Gd+1. it sends sk1j′,i for j′ ∈ offlined−1 and sk−1j′,i for j′ ∈ offlined+1 to the server. It also stores
Ui = U3

i and rj,i, hj,i for j ∈ Ui.
10: Server S: For each group d, if for a user i ∈ Gd the server receives at least t shares skbi,j from

both groupsGd+b for b ∈ {−1, 1}, the server puts i into a user list offlineS . Each user in this list
fails to share their r- and h-masks with their group members in Round 3, while the symmetric
masking keys mki,j between itself and the member j of i’s neighbor group have been included
in the hj . Thus, the server needs to calculates hi by reconstructing skbi for b = ±1, running
the key exchange algorithm for i and user j ∈ U2

S ∩ Gd−1 by mki,j = KA.agree(pk1j , sk−1i )

and for i and user j ∈ U2
S ∩ Gd+1 by mki,j = KA.agree(pk−1j , sk1i ), and calculating

hi =
∑
j∈U2

S∩Gd−1
mki,j −

∑
j∈U2

S∩Gd+1
mki,j . Then it obtains US = U2

S\offlineS and
hS =

∑
i∈offlineS

hi.

As the participants may drop offline in any round in the execution, some users i might fail to com-
plete the key exchange process, to send out the encrypted shares of sk1i and sk−1i , or to share the
two masks chi,j and cri,j in the Setup phase. If a user fails to finish key exchange for ek or mk with
the other users, it will not be considered in the calculation of other users’ h-masks or participate the
Aggregation phase. However, if a user i drops offline at the end of the second round of the Setup
phase, i.e., after exchanging mki,j with other users j and sending the encryption of shares sk1i,j and
sk−1i,j , user j will include mki,j in its h-mask, while user i fails to share its own hi with the other
group members inGd in the third round. In this case, if user i drops offline in the Aggregation phase,
the online users inGd are not able to help the server reconstruct hi, and the h-masks in the final sum
will not cancel out. Thus, the server needs to reconstruct sk1i and sk−1i and calculates the h-masks
of these users i so that it can cancel the h-masks in the final sum by itself. Also, these users should
not participate in the Aggregation phase as their h-masks are revealed. More specifically, the honest
users who finish the Setup phase update their participants list, removing the users in their groups
who fail to send them the shares of their r- and h-masks. This set can be different in different users’
view if the adversary is malicious.

Algorithm 4 SecAgg (MicroFedML2)
This protocol uses the following algorithms defined in Section 3:
a public key infrastructure, a Shamir’s secret sharing scheme
(SS.share,SS.recon,SS.exponentShare,SS.exponentRecon); a random oracle H(·)
which returns a random generator of Z∗p on a fresh input. It proceeds as follows:

Input: Every user i ∈ Gd holds its own signing key dSKi and every user j’s verification keys dPKj ,
ri, hi, a list of users Ui ⊆ Gd with rj,i, hj,i for every j ∈ Ui. Moreover, for every iteration k, it
also holds a secret input xki . The server S holds all inputs it receives in the Setup phase, and the
list of users US it outputs in the Setup phase.

24



Output: For each iteration k, if all users are honest and there are at least t users being always online
in each group during iteration k, then at the end of iteration k, the server S outputs

∑
i∈Ok x

k
i ,

in which Ok denotes a set of at least Bt users.
Note: For simplicity of exposition, we omit the superscript k of all variables when it can be
easily inferred from the context.

1: for Iteration k = 1, 2, . . . do
Round 1: Masked Input:

2: User i: It masks the input by Xi = xi + ri + hi and sends H(k)Xi to the server.
3: Server S: If it receives messages from less than t users from any group, abort. If it receives

messages from a user not in US , ignore the message. Otherwise, let O denote the set of users
i who successfully send the masked input to the server. For each group Gd, the server sends
Od = O ∩Gd to all users i ∈ Od.
Round 2: Online Set Checking:

4: User i: It checks |Od| ≥ t, signs Od and sends back to the server as described in line 4 of
Algorithm 2.

5: Server S: It distributes the signatures from users Gd to Od as described in line 5 of Algo-
rithm 2.
Round 3: Mask Reconstruction:

6: User i: it checks that it receives at least t valid signatures from the members of Gd onOd. If
any signature is invalid, abort. Then it calculates ζi = H(k)

∑
j∈Od

rj,i−
∑
j∈Ui\Od

hj,i and sends
ζi to the server.

7: Server S: If it receives ζi from less than t users in any group Gd, abort. Otherwise, the
server calculates

z = logH(k)

H(k)
∑
i∈O Xi/

∏
d∈[B]

SS.exponentRecon({ζi}i∈Od , t)


by brute force. Then it calcualtes

∑
i∈O xi = z + hS , in which hS is from the server’s output

in the Setup phase.
8: end for

C.2 Group Properties

To achieve security and correctness at the same time, there should not be too many corrupt or of-
fline line nodes in each group. We show that if we choose the size N = n/B of each group and
the threshold t appropriately, this requirement can be satisfied with overwhelming probability. We
follow the same reasoning and calculation with the same assumptions as in [6].

We first define the requirements as the following two good events.

Defintion C.1 (Not too many corrupt members). Let N, t be integers such that N < n and t ∈
(N/2, N), and let C ⊂ [n]. Let G = (G1, . . . , GB) is a partition of [n] so that |Gd| = N for each
d ∈ [B]. We define event E1 as

E1(C,G, N, t) = 1 iff ∀d ∈ [B] : |Gd ∩ C| < 2t−N.

Defintion C.2 (Enough shares are available). Let N, t be integers such that N < n and t ∈
(N/2, N), and let D ⊂ [n]. Let G = (G1, . . . , GB) is a partition of [n] so that |Gd| = N for
each d ∈ [B]. We define event E2 as

E2(D,G, N, t) = 1 iff ∀d ∈ [B] : |Gd ∩ ([n]\D)| ≥ t.

We say a distribution of grouping is nice grouping if the above two events happen with overwhelming
probability. In other words, with a nice grouping algorithm, each group has neither too many corrupt
members nor too many offline members with 1 but negligible probability.

Defintion C.3 (Nice Grouping). Let N, σ, η be integers and let γ, δ ∈ [0, 1]. Let C ⊂ [n] and
|C| ≤ γn. Let D be a distribution over pairs (G, t). We say that D is (σ, η, C)-nice if, for all set
D ⊂ [n] such that |D| ≤ δn, we have that

1. Pr[E1(C,G′, N, t′) = 1 | (G′, t′)← D] > 1− 2−σ ,
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2. Pr[E2(D,G′, N, t′) = 1 | (G′, t′)← D] > 1− 2−η .

Lemma C.4. Let γ, δ ≥ 0 such that γ+2δ < 1. Then there exists a constant c making the following
statement true for all sufficiently large n. Let N and t be such that

N ≥ c(1 + log n+ η + σ), t = d(3 + γ − 2δ)N/4e.

Let C ⊂ [n], such that C ≤ γn, be the set of corrupt clients. Then for sufficiently large n, the
distribution D over pairs (G, t) implemented by uniformly randomly assigning all n users into n/N
groups each of size N is (σ, η, C)-nice.

Proof. We first prove that constraint 1 in Definition C.3 is satisfied. Let m = γnN
n−1 +√

N
2 (σ log 2 + log n). Fixing an arbitrary honest user i, let X denote the number of corrupt users

falling in the same group as user i. Then X ∼ HyperGeom(n− 1, γn,N). By the tail bound of the
hypergeometric distribution,

Pr[X ≥ m] = Pr

[
X ≥

(
γn

n− 1
+

√
1

2N
(σ log 2 + log n)

)
·N

]
≤ e−2N · 1

2N (σ log 2+logn) =
1

n
·2−σ.

As t ≥ (3 + γ − 2δ)N/4, we have that 2t−N ≥ (1 + γ − 2δ)N/2. Then as long as

N ≥ σ log 2 + log n

2

(
1 + γ − 2δ

2
− γn

n− 1

)−2
,

we have that 2t−N ≥ m, i.e., Pr[X ≥ 2t−N ] ≤ 1
n · 2

−σ . Taking the union bound over all users,
we have that event E1 happens with overwhelming probability. This can be achieved by choosing

c ≥ 1

2

(
1 + γ − 2σ

2
− γn

n− 1

)−2
.

For the second constraint, let Y denote the number of offline users in the honest and online user i’s
group. Then Y ∼ HyperGeom(n − 1, δn,N). Let m′ = δnN

n−1 +
√

N
2 (η log 2 + log n). Then we

have
Pr[Y ≥ m′] ≤ 1

n
· 2−η.

If N − t ≥ m′, then by the same argument, we have the second constraint holds. By choosing

N ≥ η log 2 + log n

2

(
3 + γ − 2δ

4
− (1− δ)n

n− 1

)−2
,

we have N − t ≥ m′ when n is sufficiently large. This can be achieved by setting

c >
1

2

(
3 + γ − 2δ

4
− (1− δ)n

n− 1

)−2
.

Both bounds of c are bounded when n is sufficiently large. Thus, we can choose a constant c that is
larger than these two bounds.

C.3 Correctness

We show that with every party following the protocol except a subset of users dropping offline in
every iteration, if the grouping algorithm is (σ, η, C)-nice, then the server can learn the sum of at
least Bt clients’ inputs at the end of iteration k with one but negligible probability for each k ∈ [K].
Theorem C.5 (Correctness with dropouts). Let γ, δ be two parameters such that γ < 1/3, γ+2δ <
1, and σ and η be two security parameters. The protocol Π be an instantiation of Algorithm 3 and
Algorithm 4 running with a server S and n users guarantees correctness with δ offline rate with
probability 1−K · 2−η , when the grouping algorithm is (σ, η, C)-nice for C ⊂ U with |C| < γ|U|.
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Proof. As all users and the server are assumed to follow the protocol, the participants of the Aggre-
gation phase should be the same in all users’ and the server’s view. Denote the participants of the
Aggregation phase with U , and let Gd denote the participants of the Aggregation phase in group d.
As the grouping algorithm is (σ, η, C)-nice, by definition, event E2 fails to happen with probabil-
ity 2−η . By union bound, the event that in every iteration there are at least t users online in every
group happen with probability at least 1−K · 2−η . If in iteration k, for each group Gd, there are at
least t users online at the end of the iteration, then in the last round of the iteration, the server can
reconstruct

Rd = SS.exponentRecon({ζi}i∈Od , t) = H(k)
∑
i∈Od

ri−
∑
i∈Gd\Od

hi ,

and by calculating the discrete log ofH(k)
∑
i∈O Xi/

∏
d∈[B]Rd, the server obtains z =

∑
i∈OXi−∑

i∈O ri +
∑
i∈U\O hi =

∑
i∈O xi +

∑
i∈U hi. As

∑
i∈offline hi +

∑
i∈U hi = 0, by adding hS to

z, the server gets the sum
∑
i∈O xi.

C.4 Privacy

It is easy to see that same as MicroFedML1, this protocol provides perfect privacy when the server
is honest, as the joint view of any set of users does not depend on the input value of other users. We
also omit the privacy proof against semi-honest adversary as it is a simplified version of the more
complex malicious proof without any part related to public-key infrastructure. Now we prove that
this protocol guarantees privacy against malicious adversary who controls both users and the server.
Theorem C.6 (Privacy against Malicious Adversary). Let γ and δ be two parameters such that
γ < 1/3, γ + 2δ < 1, and σ and η be two security parameters. The protocol Π be an instance
of Algorithm 3 and Algorithm 4 guarantees privacy against γ-fraction of malicious adversary with
δ offline rate with probability 1 − 2−σ when the grouping is (σ, η, C)-nice. The Setup phase of the
protocol runs in 5 rounds with O(n) communication complexity per user and the Aggregation phase
runs in 3 rounds with O(n) communication complexity per user.

Before proving the privacy guarantee, we define several notions used in the proof.

Participation in the Aggregation phase For a user i ∈ Gd, we say the user i participates in the
Aggregation phase if it is included in less than t − |Gd ∩ C| honest users’ offline lists at the end of
the fourth round of the Setup phase.
Lemma C.7. Assume event E1 happens, i.e., there are less than 2t− n

B corrupt users in any group.
If for any user i, sk−1i and sk1i are reconstructed by the server, then i must not participate in the
Aggregation phase; if user i participates in the Aggregation phase, at least one of sk−1i and sk1i is
hidden from the server.

Proof. If sk1i for a user i ∈ Gd is reconstructed by the server, there must be at least t members of
group Gd+1 sending the shares to the server in the fifth round of the Setup phase, at least t − |C ∩
Gd+1| of which are from honest users. All of these honest users must have received at least t valid
signatures on offline sets that includes user i. At least t − |C ∩ Gd| of these signatures come from
honest users in Gd who have put i in their offline list. By definition, i is not participating in the
Aggregation phase.

Common online set of a group For some iteration k of the Aggregation phase, we say a user set
Od ⊆ Gd is a common online set of group d if some honest user in Gd receives at least t valid
signatures on Od in the third round. This set might not exist when the server is corrupt. Then we
have the following fact:
Fact C.8 (Unique Common Online Set each Group). When 2t > n/B + |C ∩Gd|, there is at most
one common online set Od for each group d in every iteration.

This statement can be proved with the same reasoning as the proof of Fact B.3. Now, we give the
proof for Theorem C.6.

Proof. (of Theorem C.6) By saying that an honest user uses r′ (or h′) as r-mask (or h-mask) in
iteration k of the Aggregation phase, we mean that in the first round of the iteration k, the user uses
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r′ (or h′) to calculate Xi; it also calculates the shares r′i,j of r′ for honest users in its group fixing
the shares that have already been sent to its corrupt neighbors. Then in the third round, every honest
user j in its group uses r′i,j or h′i,j to calculate the sum of shares.

As the good events happen with overwhelming probability when the grouping algorithm is (σ, η, C)-
nice, we only considers the case when both events E1 and E2 happen. We first define the behavior
of the simulator SIM:

• In the Setup phase:

– Round 1: The simulator simulates each honest user following the protocol.
– Round 2: Each honest user i receives the public keys and the signatures (pkj , σj)

from the server, and verifies the signatures as described in Algorithm 3, except that
the simulator additionally aborts if some honest user i receives a valid signature of an
honest user j on a public encryption key different from what user j sends to the server
in the previous round. Then for each corrupt user j ∈ U1

i ∩ C, an honest user i stores
eki,j = KA.agree(pkj , ski). For each pair of honest users i, j, the simulator uniformly
randomly chooses a symmetric encryption key ek∗i,j , and sets ek∗j,i = ek∗i,j . For each
j ∈ U1

i ∩ (Gd−1 ∪ Gd+1), each honest user i also stores mki,j . Then it follows the
protocol, except that for honest user j ∈ Gd−1, instead of encrypting the share sk−1i,j ,
it encrypts some dummy value by csk−1∗

i,j ← AE.enc(0, ek∗i,j), and for honest user
j ∈ Gd+1 it does the same symmetrically.

– Round 3: Each honest user i decrypts the shares as described in the protocol to get
sk−1j,i (or sk1j,i) for each j ∈ U2

i ∩ Gd+1 (or j ∈ U2
i ∩ Gd−1). In this process, the

simulator additionally aborts if for any honest user j ∈ U2
i , the decryption succeeds

while the result is different from what j encrypts in the previous round. Moreover,
the simulator uniformly randomly chooses mk∗i,j for each pair of honest users i ∈ Gd
and j ∈ Gd+1, and let mk∗i,j = mki,j for each honest user i ∈ Gd and each corrupt
user j ∈ Gd±1. Then each honest user i calculates h∗i =

∑
j∈U2

i ∩Gd−1
mk∗i,j −∑

U2
i ∩Gd+1

mk∗i,j . Then it follows the protocol to secret shares ri and hi among group
members of Gd and encrypts the shares except that it substitutes the encrypted shares
sent to honest user j ∈ Gd with the encryption of a dummy value with ek∗i,j .

– Round 4: Each honest user i decrypts the shares for j ∈ U3
i as described in protocol.

In this process, the simulator additionally aborts if for any honest user j ∈ U3
i , the

decryption succeeds while the result is different from what j encrypts in the previous
round. Then each user i follows the protocol to sign the offline list offlinei and sends
the list and the signature to the server.

– Round 5: On receiving (offlinej , σj) from the server, the user i aborts if any signature
is invalid. The simulator additionally aborts if any honest user i receives offline′j 6=
offlinej for another honest user j with valid signature with respect to pkj . Otherwise,
each honest user i follows the protocol in this round.

At the end of the Setup phase, for each groupGd, the simulator checks if there is any honest
user i ∈ Gd such that at least t−nC shares sk1i,j (or sk−1i,j ) are sent to the server from honest
users j ∈ Gd+1 (or  ∈ Gd−1) and puts such users i in a user list offlineSIM.

• In the k-th iteration of the Aggregation phase:

– Round 1: Each honest user i uniformly randomly chooses X∗i and sends H(k)X
∗
i to

the server.
– Round 2: For all group Gd, each honest user i ∈ Gd follows the protocol, signs Od

and sends the signature to the server.
– Round 3: For each group Gd, the simulator checks if there are some honest users
i ∈ Gd receiving at least t valid signatures on Od it receives in Round 2.
∗ If there are such users in every group, then let O = ∪d∈[B]Od, the simulator

queries the ideal functionality to get w = Ideal(O\C, k). The simulator then
uniformly randomly choosesw∗i for i ∈ O under the restriction that

∑
i∈O\C w

∗
i =
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w. For each iteration k ∈ [K], it uniformly randomly picks h∗i under the constraint
that

∑
i\offlineSIM

h∗i =
∑
i\offlineSIM

hi. It then calculates r∗i = X∗i − w∗i − h∗i ,
and calculates the shares r∗i,j of r∗i for i ∈ Gd and j ∈ Gd\C based on ri,j for
j ∈ Gd∩C that have already been sent to the corrupt users in the Setup phase. Let
r∗i,j = ri,j for i ∈ C. The simulator sends ζr∗i and ζh∗i calculated as described in
the protocol to the server, except that they are calculated with r∗j,i and h∗j,i.

∗ if for any group d ∈ [B] there is no such Od, the simulator uniformly randomly
chooses the random mask r∗i and the mutual mask h∗i of each honest user i, and
calculates the shares of r∗i and h∗i based on the shares that have already been sent
to the corrupt users in the Setup phase. Then each honest user calculates ζ∗i using
the new shares and sends to the server.

We describe a series of hybrids between the joint view of corrupt parties in the real execution and
the output of the simulation. Each hybrid is identical to the previous one except the part explicitly
described. By proving that each hybrid is computationally indistinguishable from the previous one,
we prove that the joint view of corrupt parties in the real execution is indistinguishable from the
simulation.

Hyb0 This random variable is the joint view of all parties in C in the real execution.

Hyb1 In this hybrid, a simulator which knows all secret inputs of honest parties in every iteration
simulates the execution with MC .

The distribution of this hybrid is exactly the same as the previous one.

Hyb2 In this hybrid, the simulator aborts if MC provides any of the honest parties j in the Setup
phase with a valid signature with respect to an honest user i’s public key dPKi on public
encryption and masking keys different from what i provides.

The indistinguishability between this hybrid and the previous one is guaranteed by the
security of the signature scheme.

Hyb3 In this hybrid, for any pair of two honest users i, j, the encryption of shares they send
between each other in Round 2 and Round 3 of the Setup Phase are encrypted and decrypted
using a uniformly random key ek∗i,j instead of eki,j obtained through Diffie Hellman key
exchange in Round 1 of the Setup Phase.

The indistinguishability between this hybrid and the previous one is guaranteed by 2ODH
assumption.

Hyb4 In this hybrid, each encrypted share sent between each two honest parties i, j in the Setup
phase in the previous hybrids is substituted with the encryption of a dummy value ⊥ with
ek∗i,j .

The indistinguishability is guaranteed by IND-CPA security of the encryption scheme.

Hyb5 In this hybrid, in every iteration k, each honest user i substitutes H(k)Xi it sends to
the server in the first round with H(k)X

∗
i for a uniformly randomly chosen X∗i . More-

over, in the third round, for each honest user i, SIM calculates r∗i = X∗i − xi − hi and
the shares r∗i,j for honest users j based on the shares which have already been sent to
corrupt users in the Setup phase, i.e., it calculates r∗i,j for j ∈ U\C making sure that
r∗i = SS.recon({r∗i,j , j}j∈Ui\C , {ri,j , j}j∈C). For corrupt users j ∈ C, let r∗j,i = rj,i. Then
each honest user i ∈ Gd who receives the common online set Od with at least t valid
signatures calculates ζ∗i = Hc(k)

∑
j∈Od

r∗j,i−
∑
j∈Ui\Od

hj,i and sends ζ∗i to the server.

With the same reasoning as in the proof of Theorem B.7, this hybrid is indistinguishable
from the previous one.

Hyb6 In this hybrid, in the third round of each iteration, for each honest user i ∈ Gd not included
in Od and each ρ ∈ [a], instead of setting r∗i = X∗i − xi − hi, SIM uniformly randomly
picks r∗i and uses it to calculate the shares for the honest users as described in the previous
hybrid.
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This hybrid is identical to the previous one as there is atmost one uniqueOd and if an honest
user is not included in Od, the share r∗i,j for honest user i not in O will not be included in
ζ∗j of honest user j. Thus, the adversary will not receive any information about r∗i in the
third round of the iteration.

Hyb7 In this hybrid, in the third round of each iteration, for each user i ∈ Od\C, instead of
setting r∗i = X∗i −xi−hi, SIM randomly picks r∗i under the constraint that

∑
i∈Od\C r

∗
i =∑

i∈Od\C X
∗
i −

∑
i∈Od\C(xi + hi).

This hybrid is indistinguishable from the previous hybrid, as r∗i are still uniformly random,
and the sum of r∗i the server can reconstruct from the shares for each group keeps the same.

Hyb8 In this hybrid, at the end of the Setup phase, the simulator uniformly randomly chooses
mk∗i,j for each pair of honest users i, j /∈ offlineSIM from two adjacent groups. For honest
user i ∈ Gd\offlineSIM and user j ∈ (C ∪ offlineSIM) ∩ Gd±1, let mk∗i,j = mki,j obtained
in the Setup phase. The simulator then uses mk∗i,j to calculates h∗i for each honest user
i /∈ offlineSIM and uses h∗i as hi in the Aggregation phase.

This hybrid is indistinguishable from the previous one, as the server does not know any
information about sk±1i for any honest user i /∈ offlineSIM (guaranteed by the security of
Shamir secret sharing). Thus, mki,j for honest users i, j /∈ offlineSIM is indistinguishable
from mk∗i,j chosen uniformly randomly.

Hyb9 Instead of choosing mk∗i,j for each pair of honest users i, j /∈ offlineSIM, the simulator just
choose h∗i for each honest user i /∈ offlineSIM uniformly at random under the constraint that∑
i/∈offlineSIM

h∗i =
∑
i/∈offlineSIM

hi.

By Lemma C.11, this hybrid is identical to the previous one.

Hyb10 In this hybrid, instead of using fixed h∗i chosen at the end of the Setup phase, the simu-
lator uniformly randomly chooses h∗i for each honest user i /∈ offlineSIM under the same
constraint

∑
i/∈offlineSIM

h∗i =
∑
i/∈offlineSIM

hi at the beginning of each iteration.

This hybrid is indistinguishable from the previous one.

Hyb11 When Od exists for each d ∈ [B], instead using the constraint
∑
i∈Od\C r

∗
i =∑

i∈Od\C X
∗
i −
∑
i∈Od\C(xi+h

∗
i ) for each d ∈ [B] to randomly pick r∗i for each i ∈ Od\C,

the simulator uses the constraint
∑
i∈O\C r

∗
i =

∑
i∈O\C X

∗
i −

∑
i∈O\C(xi + h∗i ).

This hybrid is identical to the previous one, as it is the same as the following hybrid:
in the third round of iteration k, each honest user first chooses h∗i under the constraint
that

∑
i/∈offlineSIM

h∗i =
∑
i/∈offlineSIM

hi, then it uniformly randomly chooses h∗∗i for each
i ∈ Od\C under the constraint that

∑
i∈Od\C h

∗∗
i =

∑
i∈Od\C h

∗
i . The h∗∗i for other honest

user i /∈ offlineSIM are randomly chosen such that
∑
i/∈offlineSIM

h∗∗i =
∑
i/∈offlineSIM

hi. Then
r∗i is chosen under the constraint that

∑
i∈Od\C r

∗
i =

∑
i∈Od\C X

∗
i −

∑
i∈Od\C(xi +h∗∗i ).

In this hybrid, {h∗i } and {h∗∗i } have the same distribution. Thus, the distribution of r∗i does
not change, either.

Hyb12 In this hybrid, if for some group Gd, there is no large enough Od with at least t valid
signatures in the view of any honest node inGd, the simulator uniformly randomly chooses
r∗i for honest users i in group Gd′ such that Od′ exists.

This hybrid is indistinguishable from the previous one, as no information about r∗i or h∗i
for honest i ∈ Gd will be revealed to the server by the security of Shamir’s secret sharing
scheme. Thus, the distribution h∗i for i ∈ Gd′ is identical to uniformly random distribution
in the server’s view.

Hyb13 Instead of using the inputs xi to calculate
∑
i∈O\C xi, the simulator queries the ideal func-

tionality by w = Ideal(O, k) if there is a common online set O exists in iteration k and
uses w as the sum.
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The distribution of this hybrid is exactly the same as the distribution of the previous hybrid.
In this hybrid, the simulator does not know xi for any user i.

Now we have proved that the joint view of MC in the real execution is computationally indistin-
guishable from the view in the simulated execution.

Lemma C.9. Let n, t, nC ,K be integer parameters, nC ≤ n − t < t. Let w be an element in Zq ,
and wi ∈ Zq for i ∈ [n] be shares of w calculated with t-out-of-n Shamir secret sharing algorithm,
i.e., {wi}i∈[n] ← SS.share(w, [n], t).

For each k ∈ [K], let wki for i ∈ [n − nC ] be elements of Zq such that w =
SS.recon({wki , i}i∈[n−nC ], {wi, i}i∈[n−nC+1,n], t). Let H(·) be a random oracle that returns a ran-
dom element of Z∗p on each fresh input.

The following two distributions are computationally indistinguishable:

w, {wi}i∈[n−nC+1,n], {H(k)wi}i∈[n−nC ],k∈[K] (5)

w, {wi}i∈[n−nC+1,n], {H(k)w
k
i }i∈[n−nC ],k∈[K] (6)

Proof. We define a hybrid Hyb0 to be identical to the distribution (5), and a sequence of hybrids
Hybk for k ∈ [K] as following: Hybk is the same as Hybk−1 except that in Hybk, H(k)wii∈[n−nC ] are

substituted with H(k)
wki
i∈[n−nC ]. Thus, HybK is identical to distribution (6). Then we prove that any

two adjacent hybrids Hybk0−1 and Hybk0 for k0 ∈ [K] are computationally indistinguishable.

For the sake of contradiction, assume there exists a PPT distinguisher

D(w, {wi}i∈[n−nC+1,n], {Zki }i∈[n−nC ],k∈[K])

which distinguishes between the two distributions. Then, we construct the following distinguisher

D′(A,B1, ..., Bt−nC−1, C1, ..., Ct−nC−1) :

D′ uniformly randomly picks {wi}i∈[n−nC+1,n] as the second part of the input to D, and calculates
Wi = SS.exponentRecon((gw, 0), {Bj , j}j∈[t−nC−1], {gwj , j}j∈[n−nC+1,n], t, i) for i ∈ [t −
nC , n− nC ]. For k ∈ [K] and k 6= k0 it uniformly randomly picks sk ∈ Zq , and sets H(k) = gsk .

• For k ∈ [k0 − 1], it calculates fresh shares wki of w such that w =

SS.recon({wki }i∈[n−nC ], {wi}i∈[n−nC ], t) and it sets Zki = gw
k
i sk for i ∈ [n− nC ] ;

• For k ∈ [k0 + 1,K], it sets Zki = Bski for i ∈ [t − nC − 1] and Zki = W sk
i for i ∈

[t− nC , n− nC ] ;

• Then it sets H(k0) = A, Zk0i = Ci for i ∈ [t− nC − 1], and runs

Zkj = SS.exponentRecon((Aw, 0), {Ci, i}i∈[t−nC−1], {A
wi , i}i∈[n−C+1,n], t, j)

for j ∈ [t− nC , n− nC ].

Then it outputs the bit D outputs.

When the input to D′ is from the distribution (1), then distribution of D’s input is identical to
Hybk0−1, and if the input toD′ is from the distribution (2), then distribution ofD’s input is identical
to Hybk0 . Thus, D′ wins with the probability that D succeeds. By Lemma B.5, such a distinguisher
D′ does not exist. Thus, we have a contradiction.

Lemma C.10. Let n, t, nC ,K be integer parameters, nC ≤ n − t < t. Let x1, . . . , xn−nC be
uniformly random elements in Zq , and

∑
i∈[n−nC ] xi = w. Let xi,j ∈ Zq for i ∈ [n−nC ] and j ∈ [n]

be shares of xi calculated with t-out-of-n Shamir secret sharing algorithm, i.e., {xi,j}j∈[n] ←
SS.share(xi, [n], t) for i ∈ [n− nC ].
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For each k = 1, . . . ,K, let yk1 , . . . , y
k
n−nC also be uniformly randomly chosen from Zq such

that
∑
i∈[n−nC ] y

k
i = w. Let yki,j for i, j ∈ [n − nC ] be elements of Zq such that yki =

SS.recon({yki,j , j}j∈[n−nC ], {xki,j , j}j∈[n−nC+1,n], t). Let H(·) be a random oracle that returns a
random element of Z∗p on each fresh input.

Then the following two distributions are computationally indistinguishable if the DDH assumption
holds:

w, {xi,j}i∈[n−nC ],j∈[n−nC+1,n], {{H(k)xi}i∈[n−nC ], {H(k)xi,j}i,j∈[n−nC ]}k∈[K] (7)

w, {xi,j}i∈[n−nC ],j∈[n−nC+1,n], {{H(k)y
k
i }i∈[n−nC ], {H(k)y

k
i,j}i,j∈[n−nC ]}k∈[K] (8)

Proof. We prove the indistinguishability between the two distributions by proving that any two
adjacent hybrids defined below are computationally indistinguishable:

Hyb1 It is the same as distribution (7), except that in this hybrid, we calculates t-out-of-n shares
of w by {wj}j∈[n] ← SS.share(w, [n], t) first, then secret shares xi for i ∈ [n− nC − 1] as
described in the Lemma. Then, instead of secret sharing xn−nC , we calculates xn−nC,j =
wj −

∑
i∈[n−nC−1] xi,j for each j ∈ [n].

This hybrid is identical to distribution (7) by the additive homomorphic property of Shamir
Secret sharing scheme.

Hyb2 It is the same as the previous hybrid, except that for each k ∈ [K], we calculates wkj
for j ∈ [n − nC ] such that w = SS.recon({wkj , j}j∈[n−C], {wj , j}j∈[n−nC+1,n], t), and
we calculates ykn−nC,j = wkn−nC −

∑
i∈[n−nC−1] xi,j . We substitutes H(k)xn−nC with

H(k)y
k
n−nC and H(k)xn−nC ,j with H(k)y

k
n−nC ,j for j ∈ [n− C].

By Lemma C.9, This hybrid is indistinguishable from the previous one.

Hyb3 It is the same as the previous hybrid, except that in this hybrid, for each k ∈ [K], and
i ∈ [n − nC − 1], we choose yki uniformly at random, calculates {yki,j}j∈[n−nC ] such that
yi = SS.recon({yki,j , j}j∈[n−nC ], {xi,j , j}j∈[n−nC+1,n]). Then we substitutesH(k)xi with

H(k)y
k
i and H(k)xi,j with H(k)y

k
i,j for i ∈ [n− C − 1], j ∈ [n− C].

By Lemma B.6, This one is indistinguishable from the previous one. This hybrid is also
identical to distribution (8).

Lemma C.11. Let n,B be two integer parameters. Let xdi,j for i, j ∈ [n] and d ∈ [B] be uniformly
random elements from some finite field F. Let hdi =

∑
j∈[n] x

d−1
j,i −

∑
j∈[n] x

d
i,j for each i ∈ [n]

and d ∈ [B], in which we define x0j,i = xBj,i for i, j ∈ [n] for convenience. Let ydi for i ∈ [n] and
d ∈ [B] also be uniformly randomly chosen elements in F such that

∑
i∈[n],d∈[B] y

d
i = 0. Then the

following two distributions are the same:

{hdi }i∈[n],d∈[B] and {ydi }i∈[n],d∈[B].

This lemma can also be easily proved with induction.

D Performance analysis

We include asymptotic performance analysis of MicroFedML1 and MicroFedML2 in Appendix D.1
and Appendix D.2 respectively, and include more experiment results in Appendix D.3. In this sec-
tion, we use n to denote the total number of users, and use R = 2` to denote the size of the range of
result, i.e., the sum of inputs the server learns in each iteration is assumed to be in the range [R].
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Communication cost #Round
User Server

MicroFedML1 (Setup) O(n) O(n2) 3
MicroFedML2 (Setup) O(log n) O(n log n) 5

Table 2: Communication overhead of the Setup phase of aggregation of MicroFedML1 and
MicroFedML2 guaranteeing privacy against malicious adversaries in which n denotes the total num-
ber of users. Note that BIK+17 and BBG+20 have O(n2) and O(n log n) communication cost,
respectively, on the server side but they incur this cost in every iteration.

D.1 Asymptotic Performance of MicroFedML1

D.1.1 Semi-Honest Protocol

Communication In the Setup phase, each user sends one public encryption key (O(1)) to the
server and receives public encryption keys of all other users (O(n)), then it sends encrypted shares
for all other users of its random mask chosen from Zq to the server and receives one encrypted share
of mask of each other user (O(nR)). This results in O(nR) communication cost for each user. As
the message the server sends to each user is of the same size, the communication cost for the server
is O(n2R).

In the first round of the Aggregation phase, each user sends an element H(k)xi+ri ∈ Z∗p to the
server (O(R)) and receives the indicator of the online set O (n bits), which results in O(R + n)

communication cost. In the second round, each user sends H(k)
∑
j∈O rj,i which is also an element

in Z∗p to the server, which results in O(R) communication cost. Thus, the total communication cost
of each user is O(R + n). As the size of message between the server and each user is the same, the
communication cost of the server is O(Rn+ n2).

Computation We discuss the computation cost of each user first. In the Setup phase, each user
i needs to 1) generate a pair of encryption keys pki and ski, 2) run the key exchange algorithm
to obtain eki,j for all other users j, 3) secret shares ri among all users, 4) encrypt share ri,j for
each other user j with eki,j , 5) decrypt the cipher text cj,i for each other user j with eki,j . Thus, the
computation cost of each user in the Setup phase isO(n). In the Aggregation phase, the computation
cost of each user consists of calculating H(k)xi+ri and calculating H(k)

∑
j∈O rj,i , which is O(n)

in total.

Then we analyze the computation cost of the server. In the Setup phase of the semi-honest protocol,
the server only forwards the messages for users. In the Aggregation phase, the server needs to
multiply all the masked inputs it receives, reconstruct the sum of the random masks of all online
users in the exponent, and calculate the discrete log to get the final result in the second round of the
Aggregation phase. Thus, the computation cost of the server is O(n + R) in Aggregation phase of
the semi-honest protocol.

D.1.2 Protocol guaranteeing privacy against malicious adversary

In the protocol that protects privacy against malicious adversaries, in addition to the communication
cost listed above, each user also sends a signature and receives signatures of all other users in the
first round of the Setup phase and the second round of the Aggregation phase, which results in O(n)
communication cost. Thus, the asymptotic communication cost does not change.

Regarding the computation cost, each user needs to additionally sign the public key ek in the Setup
phase and the online set in the Aggregation phase and also verify all other users’ signatures, which
involves O(n) compuation cost. The server also needs to verify all signatures from the users. Thus,
the asymptotic computation cost is the same as the cost of semi-honest protocol for both users and
the server.
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D.2 Asymptotic Performance of MicroFedML2

D.2.1 Semi-Honest Protocol

Communication In the Setup phase, each user i ∈ Gd needs to 1) send its public encryption key
pki and two public masking keys pk1i and pk−1i to the server and receive the public keys of the group
members of its own group Gd and two neighboring groups Gd+1 and Gd−1, 2) send the encrypted
shares of sk1i and sk−1i to all group members of Gd+1 and Gd−1 and receive encrypted shares from
them, 3) send the encrypted shares of ri and hi to the group members in Gd and receive encrypted
shares from them, 4) receive the list of offline users in Gd+1 and Gd−1 and send the shares of
secret masking keys of those offline users to the server. When the size of each user group is set
as O(log n), the communication cost for each user in the Setup phase is O(R log n). As messages
between the server and each user is the same, the communication cost of the Setup phase for the
server is O(nR log n).

The communication cost of the Aggregation phase for both the user and the server is the same as
the non-grouping version except that now each user only needs to know the online set of its own
group. Thus, assuming the group size is O(log n), the communication cost of one iteration of the
Aggregation is O(R+ log n) for each user and O(nR+ n log n) for the server.

Computation We discuss the computation cost of each user first. In the Setup phase, each user
i ∈ Gd needs to 1) generate three key pairs, 2) run key exchange algorithm to get the symmetric
encryption key eki,j for group members j of Gd and mki,j for group members of Gd+1 and Gd−1,
secret share its private masking keys among the group members of two neighboring groups Gd+1

and Gd−1, 3) decrypt the shares of private masking keys received from the two neighboring groups
pick the random mask ri and calculate the mutual mask hi, secret share both the masks among
group members of Gd, and encrypt each share, 4) decrypt the shares of the masks received from
group members of Gd. Thus, the computation cost of each user of the Setup phase is O(log n).

In each iteration of the Aggregation phase, each user i needs to compute the masked input H(k)Xi
and the aggregated shares H(k)

∑
j∈Od

rj,i−
∑
j∈Gd\Od

hj,i , which involves O(log n) computation.

Now, we analyze the computation cost of the server. In the Setup phase, excepting forwarding
messages for users, the server also needs to reconstruct mk−1i and mk1i and calculate hi for the users
i who are online in the second round but offline in the third round. Assuming there are δn offline
users in which δ is a constant parameter, the server needs to do O(n2) computation.

In the Aggregation phase, the server needs to reconstruct the sum of masks in the exponent, multiply
the results of all groups together, and calculate the discrete log to get the final result. Assuming each
group is of size O(log n), the computation cost of the server is O(log n+ n

logn +R).

D.2.2 Protocol Guaranteeing Privacy against Malicious Adversary

Communication In addition to the communication listed in the semi-honest case, in this version,
each user i ∈ Gd needs to send and receive signatures with the public keys and agree on two offline
lists of Gd+1 and Gd−1 respectively before it sends the shares of the secret masking keys of the
offline users in these two groups to the server in the Setup phase, and agree on the online set Oi by
sending and receiving signatures on the set. These introduces O(log n) additional communication
cost to both the Setup phase and the Aggregation phase for each user (which means O(n log n)
additional cost for the server), which does not change the asymptotic communication cost of the
users and the server.

Computation Compared to the semi-honest version of protocol, the user needs to signs the public
keys and verify signatures from the members of its own group and two neighboring groups, and the
server also needs to verify the signatures it receives. This adds O(log n) computation to each user
and O(n) computation to the server, which does not change the asymptotic computation cost for
both the users and the server.

D.3 Experimental Results

We use the following cryptographic primitives:
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Figure 7: Zoom-in results of Figure 9 for the MicroFedML1 protocol. The lines show wall-clock
computation time of one iteration of the Aggregation phase of a user and the server, as the number
of users increases. The length of the sum of inputs varies in different lines as shown in the legend.

200 400 600 800 1,000 1,200 1,400 1,600

1.55

1.6

1.65

1.7

·10−2

Number of users

C
om

pu
ta

tio
n

tim
e

(s
)

User computation time

50

100

150

200 400 600 800 1,000 1,200 1,400 1,600

2

3

4

5

6

7

Number of users

C
om

pu
ta

tio
n

tim
e

(s
)

Server computation time

50

100

150

Figure 8: Wall-clock local computation time of MicroFedML2 for a user and the server with different
group size (as shown in the legend), as the total number of users increases. The maximum size of
the aggregation result is fixed to 20 bits.

• For the finite field used in secret sharing, exponentiation and discrete log, We use a 2048-bit
secure prime provided in https://www.ietf.org/rfc/rfc3526.txt as p.
• For key agreement, we use Diffie-Hellman key exchange algorithm and SHA-256 hash

function provided by PyNaCl library.
• For secret sharing, we use the standard t-out-of-n Shamir secret sharing extended with

reconstruction in exponents as described in Section 3.
• For discrete log, we use the brute force algorithm, i.e., searching for the log result starting

from 0.
• For Authenticated Encryption, we use the secret key encryption algorithm XSalsa20
https://libsodium.gitbook.io/doc/advanced/stream_ciphers/xsalsa20 pro-
vided by PyNaCl library with 256-bit keys.

We observe that the discrete log calculation is the most expensive part of both our protocols. This
part can be optimized with several known discrete log algorithms with better efficiency, which im-
proves the asymptotic running time from O(n) to O(

√
n), in which n denotes the size of the range

of the result.

Figure 9 shows how the local computation time of each iteration of the Aggregation phase (y-axis)
of each user and the server changes as the total number of users (x-axis) grows. Different lines show
the computation time when the size of the sum of inputs are different. As shown in the graph, the
running time of MicroFedML1 is not affected significantly by the number of users but more affected
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Figure 9: Wall-clock local computation time of one iteration of the Aggregation phase of a user and
the server as the number of user increases. The length of the sum of inputs is set to ` = 16, 20, 24
bits in different lines, i.e., the input of each user is in the range [2`/n] when the total number of users
is n.

by the size of the sum of inputs. On the contrary, the performance of BIK+17 is impacted by the
total number of users and does not change with different input sizes. This is because of the different
methods the two protocols use to obtain the result. In BIK+17, in all scenarios we are using the same
finite field, which means the size of each share (which is a field element) and the time it requires to
share and reconstruct the secret keep the same in these scenarios. On the other hand, each user needs
to share two secrets among all other users and the server needs to reconstruct a secret for each user
with shares from a linear fraction of all users in every iteration, thus the running time of both the
user and the server increases as the number of users increase. On the contrary, in the Aggregation
phase of MicroFedML1, each user only calculates and sends one field element to the server in each
round and the server only needs to run the reconstruction in the exponent once no matter how many
users are participating. Thus, the total running time does not grow obviously with the total number
of users when compared with the benchmark protocol. As the server calculates the aggregated result
with discrete log, the running time increases when the range of the result enlarges. We show that the
running time of users and server of our protocol does increase as total number of users increase in
Figure 7 ( which is a zoom-in of Figure 9 containing only running results of MicroFedML1. )

In Figure 10 we show the local computation time of online users (who stay online in the whole
iteration) and the server in one iteration of MicroFedML1 and BIK+17 with different fraction of
users dropping out. In each iteration, a δ-fraction of users are randomly selected from all users and
stay online before they sending the masked inputs to the server (which happens in the first round of
MicroFedML1 and in the second round of BIK+17) then stay silent in the rest part of the iteration.
The size of the sum of inputs is fixed to 20 bits. Different lines show the computation time of one
iteration of the online users and the server in the cases with different δ. As shown in the left graph,
the dropout rate does not affect the computation time of online users significantly in BIK+17. This
is because in the round after the dropout event happens, each online user i needs to send one share
of secret for each other user j to the server no matter user j is online or not. The graph on the
right side shows that the computation time of the server in BBG+20 decreases as the fraction of the
dropout users increases. This is different from the experiment result reported in [7], as in [7] the
server needs to extend the symmetric masking key between an offline user i and all other users j to a
long vector using a pseudorandom generator (PRG) to cover the whole input vector which is costly,
while in this work we assume each input is a single element and the server does not apply PRG
over the symmetric masking key, which makes the impact of dropout rate less severe. Moreover, the
implementation of the reconstruction of the Shamir’s secret sharing in our experiment naively uses
all shares received, which means the more users drop out, the less shares received by the server in
the next round and the less time it takes to run the reconstruction algorithm.

In both graphs of Figure 10, we do not see significant change in computation time as the dropout
fraction changes. We provide a zoom-in version including only MicroFedML1 in Figure 11, in
which we can see the higher value of δ leads to shorter computation time for both users and the
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Figure 10: Wall-clock computation time of one iteration of the Aggregation phase of a user and the
server, as the number of users increases. Different lines show the running time when the fraction of
offline users are different. The length of the sum of inputs is fixed to 16 bits. In other words, the
input of each client is in the range [216/n] when the total number of users is n.
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Figure 11: Zoom-in of Figure 10 with only MicroFedML1 included. Wall-clock running time for a
user and the server, as the number of users increases. Different lines show the running time when
the fraction of offline users are different.

server. This is because of the same reason as mentioned above — the less users are online, the less
shares need to be included when computing the sum of shares on the user’s side, and the less shares
are included in the reconstruction in the exponent on the server’s side.

Figure 12 shows the local computation time of each user and the server of each iteration of
MicroFedML2 and BBG+20 for different neighbor sizes and total number of users. By neighbor
size, we mean the size of one group in our group protocol and the number of neighbors each user
has in BBG+20. Note that in real world application, the neighbor size should be chosen based on
the total number of users and the assumed fraction of corrupt and dropout users. For example, when
the total number of users is 1000, the fraction of corrupted user is 0.33, and the fraction of offline
users is 0.05, the group size can be chosen as about 80, while to tolerate both 0.33 fraction of corrupt
users and 0.33 fraction of offline users, the group size should be chosen as 300 in the semi-honest
scenario. We refer the readers to Appendix C.2 and Section 3.5 of [6] for the detailed discussion
about how to choose the group size or the number of neighbors. In the experiment, we use fixed
group size just for efficiency analysis purpose. As shown in the running result, sharing information
with only a small set of neighbors significantly improves the performance of the benchmark proto-
col BBG+20, as the number of users included in secret sharing and reconstruction is a major factor
of computation overhead. On the contrary, the improvement brought by the grouping is not that
obvious in MicroFedML2 as the only two things affected by the number of neighbors in the Aggre-
gation phase are the size of the online set the server sends to each user and the number of shares the
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Figure 12: Wall-clock local computation time (y-axis) of one iteration of MicroFedML2 and
BBG+20 for a user (left) and the server (right) as the number of users (x-axis) increases. Differ-
ent lines shows the running result with different group size (shown in the legend). The length of
the sum of all inputs is fixed to 20 bits.

server uses in the reconstruction of secret in exponent. Both of these two parts compose only a very
small fraction of total running time. We also present Figure 8 as a zoom-in which only includes our
grouping protocol to show how the group size affects the computation time. The computation time
of users varies more than the computation time of the server when the group size is different, as in
each iteration, the user needs to sum up the shares of the masks of all online group members the
running time of which depends on the group size, while the major computation cost on the server
side is the discrete log, which is not affected by the total number of users.

In Figure 13, we report the total computation time of each user and the server in the Setup phase of
MicroFedML1 and MicroFedML2 with different group sizes. The graph on the left shows that the
computation time of each user in the Setup phase of the basic protocol grows with the total number
of users, while in the group protocol the computation time grows when the group size grows. This
is because in both protocols, the computation time grows when each user needs to share secrets with
more parties. In Figure 14, we report the bandwidth cost of the Setup phase of both MicroFedML1

and MicroFedML2. In MicroFedML1, the bandwidth cost on the user side grows linearly with the
growth of total number of users as each user needs to send one encrypted share to every other user,
which also results in quadratic bandwidth growth on the server’s side. In MicroFedML2, when the
group size is fixed, the bandwidth cost on the users’ side does not increase with the total number
of users, while the bandwidth cost on the server’s side increases linearly as the number of groups
increases.

We also implement federated learning protocol with MicroFedML1 on the adult census income
dataset [13] which provides 14 input features such as age, marital status, and occupation, that can be
used to predict a categorical output variable identifying whether (True) or not (False) an individual
earns over 50K USD per year. We run a logistic regression algorithm on the preprocessed version
used by Byrd et al. [9] which is a cleaned version with one constant intercept feature added based on
a preprocessed version of the dataset from Jayaraman et al. [17] The preprocessed dataset contains
105 features and 45,222 records, about 25% (11,208) of which are positive. The dataset is loaded
once at the beginning of the protocol execution and randomly split into training set (75%) and testing
set (25%). At the beginning of each training iteration, a user randomly selects 200 records from the
training data as its local training data and test the model accuracy with the common test set. We
run both the plain federated learning in which every user simply sends its update in plain text to
the server and the version with MicroFedML1 in which the model updates are aggregated with the
secure aggregation protocol for 5 iterations of aggregation, each with 50 local training iteration. We
assess accuracy using the Matthews Correlation Coefficient (MCC) [22], a contingency method of
calculating the Pearson product-moment correlation coefficient (with the same interpretation), that
is appropriate for imbalanced (3:1) classification problems in our case. The accuracy of the models
output in these two scenarios are both distributed close around 0.81, showing that using the secure
aggregation protocol does not affect the accuracy of the model learned.
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Figure 13: Wall-clock local computation time of the Setup phase for a user and the server, as the
number of users increases. The length of the sum of inputs is fixed to 20 bits. Different lines shows
the running results for MicroFedML1 and MicroFedML2 with different group size.
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Figure 14: Outbound bandwidth cost (bytes) on the user and the server side of the Setup phase of
MicroFedML1 and MicroFedML2 when the total number of users grows. The size of the result is
fixed to 20 bits. Different lines shows the running results for MicroFedML1 and MicroFedML2 with
different group size.

D.4 Discussion about the Size of the Inputs

As we use discrete log algorithm to recover the result in every iteration which is known to lack
efficient solution for large values, the size of the result (i.e., the aggregated value generated in each
iteration) significantly affects the server-side calculation time. We are using THE brute force algo-
rithm to calculate the discrete log, which takes O(R) time in which R denotes the size of the range
of the result. There are several well-known algorithms [29, 25] which improves the amortized effi-
ciency to O(

√
R). We are not using them in our experiments as they are not outperforming the brute

force algorithm on the small domain size used in our experiments. We believe that the optimized
algorithms can bring performance improvements on larger domains. We determine the domain of
the inputs based on the size of the aggregation result and the number of users. Let R denote the
size of the range of the result and n denote the total number of users, then the input of each user
in each iteration is randomly sampled from the domain [R/n]. That said, our aggregation protocols
are more suitable to models with small weights coming out of quantization, compression etc. See
Section E for references.

In all of our experiments, we are using 2048 bits standard prime for the finite field, which means the
order of the cyclic subgroup and the elements in the group are of the same size. The computation
time can also change with other choices of the prime. Moreover, we only consider the case with
single input in our experiments. When applying our protocol to the case with vectors as input, each
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vector element can be treated as an individual input, thus the communication cost grows linearly
with the length of input, and the discrete log computation on each vector element can be executed in
parallel. In comparison, BIK+17 and BBG+20 extends the shared randomness with pseudorandom
generator (PRG) to cover the length of the input vector, thus the communication cost does not grow
with the length of the input vector, but the computation time grows linearly as the operation of
extending the randomness with PRG cannot be parallelized.

E Related Works

Secure aggregation There are several other works exploring the secure aggregation problem. Liu
et al. propose a privacy preserving federated learning scheme for XGBoost in [20]. However, it does
not allow offline nodes to rejoin the training process later without sacrificing privacy. Several recent
works also employ the idea of reconstructing one layer of mask of online users. Yang et al. proposes
a secure aggregation protocol LightSecAgg [36] in which each user chooses a local mask, shares an
encoding of it first, then it sends the input covered with the mask to the server, and sends the server
the aggregated value of masks of the online users to the server so that the server can decode the
aggregated mask from the sum of the masked inputs. The authors also discuss secure aggregation
solution in asynchronous federated learning which allows the stale updates from slow users to also
contribute in learning tasks. In SAFELearn [14] proposed by Fereidooni et at., each user the encryp-
tion of its local update encrypted with fully homomorphic encryption (FHE) to the server who only
performs the aggregation computation on the cipher text when there is only one server available,
or shares its update among more than one non-colluding servers who collaboratively calculates the
aggregation of the model updates with multiparty computation (MPC) or secure two-party compu-
tation (STPC). However, both of these works consider only semi-honest adversary model and the
users also need to generate and share the random masks in every iteration of aggregation.

Differential Privacy Another line of works adopt differential privacy which is a generic privacy
protection technique in database and machine learning area. The high level idea is to add artificial
noises to the gradients to prevent inverting attack without losing too much accuracy. Applying
differential privacy technique in federated learning is more challenging than in traditional machine
learning scenario, as in federated learning every single user needs to add the noises by its own. The
individual noise should not be either too weak to lose the functionality of hiding the data, or too
strong to radically harm the accuracy of the learning result. Truex et al. propose a hybrid approach
[30] which protects the privacy during learning process with secure multiparty computation and
prevents inference over the outputs of learning with differential privacy. This work assumes all
clients are online. HybridAlpha proposed by Xu et al. in [35] also adopts both differential privacy
and functional encryption. It assumes honest but curious server and dishonest users.

Quantization, gradient sparsification, and weight regularization Both quantization and gra-
dient sparsification are methods commonly used to reduce the cost of communicating gradients
between nodes in the scenario of data-parallel Stochastic Gradient Descent (SGD). There is a col-
lection of works [19, 3, 4, 8, 27, 21, 5, 37, 24, 12, 11, 16, 1, 2, 10, 33, 34, 15, 26, 32] proposing
methods for quantization, gradient compression and sparsification as well as clustering leading to
smaller weights. Our secure aggregation protocols, suitable to smaller weights, can be used to exe-
cute the above methods in a privacy-preserving way for federated learning setting. Moreover, weight
regularization [31, 18] is a widely used technique to reduce overfitting by keeping the weights of the
model small.

F ABIDES Framework

We use a discrete event simulation framework ABIDES [8] to implement the simulation of our
protocol. In this section, we give an overview of this framework.

F.1 Creating Parties for a Protocol

Within the context of a discrete event simulation, any actor which can affect the state of the system is
generically called an agent. In ABIDES, all agents inherit (in the sense of object-oriented program-
ming) from the base Agent class. This class provides a minimal implementation for the methods
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required to properly interact with the simulation kernel. It is expected that experimental agents will
override those methods which require non-default behavior.

Each party in a cryptographic protocol will therefore be an instance of some subclass of Agent,
customized to contain that agent’s portion of the protocol. When a protocol calls for multiple parties
of the same type, only one specialized agent class must be created, with the relevant parties each
being a distinct instance during the simulation, with potentially different timing, randomness, and
attributes.

The following subsections briefly describe these minimum required methods. Note that agents may
additionally contain any other arbitrary methods as required for their protocol participation.

F.1.1 Methods Called Once per Agent

The kernelInitializing method is called after all agents have been created. It gives each agent
a reference to the simulation kernel. This method is a good place to conduct any necessary agent
initialization that could not be handled in the agent’s init method for some reason, for example
if it required interaction with the kernel.

The kernelStarting method is called just before simulated time begins to flow. It tells each
agent the starting simulated time. Agents that need to take action at the beginning of the simulation,
without being prompted by a message from another agent, should use this event to schedule a wakeup
call using setWakeup. Otherwise, the agent may never act.

The kernelStopping method is called just after simulated time has ended, to let each agent know
that no more messages will be delivered. This is a good place to compute statistics and write logs.

The kernelTerminating method is called just before the simulation kernel exits. It allows a final
chance for each agent to release memory or otherwise clean up its resources.

F.1.2 Methods Called Many Times per Agent

The wakeup method is called by the kernel when this agent had previously requested to be activated
at a specific simulated time. The agent is given the current time, but it is otherwise expected the agent
will have retained any required information in its internal state. An agent can request a wakeup call
with setWakeup.

The receiveMessage method is called when a communication has arrived from another agent.
The agent is given the current time and an instance of the Message class. The kernel imposes no
particular constraint on the contents of a message. It is up to the agents in a simulation to interpret
the messages they may receive. Most of the existing messages simply hold a Python dictionary in
Message.body that contains key-value pairs, varying with message type. An agent can transmit a
message with the sendMessage method, and computation or latency delays will be automatically
added by the kernel during delivery scheduling.

F.1.3 Example: Shared Sum Protocol

While there may be a server agent in a client-server protocol, it is important to understand that
there is no “one place” to write protocol logic in a linear fashion. Just as in the real world, progress
through the protocol will be driven by individual agent actions, and each agent must constantly work
out where it stands in the protocol and what it should do next.

For example, imagine a simple multi-party computation (MPC) protocol to securely compute a
shared sum. There will need to be two agent classes created, because a client party and a computation
service will behave quite differently. We might call them SumClient and SumService. Both will
inherit from the basic Agent class.

The Central View Thinking centrally, we could write English instructions for a simple shared
sum protocol using MPC:

1. Each party i should send to each other party j a randomly generated large number nij .

2. Each party i should calculate and retain souti =
∑
j nij .
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3. After receiving a message nji from all other parties j, each party i should compute sini =∑
j nji.

4. Each party i should send to the summation service encrypted operand value Vi = vi −
souti + sini , where vi is the cleartext value of its operand.

5. After receiving a message containing operand Vi from all client parties i, the service should
compute result R =

∑
i Vi, and send messages containing result R to all parties i.

All parties will now have an accurate summation result despite the summation service receiving
encrypted operands and being unable to reveal any party’s cleartext operand.

Summary of Distributed Implementation But how will we implement the above protocol in a
multi agent discrete event simulation without “central logic”? We will need to carefully control the
flow of the simulation through individual agent actions and internal agent state. The client parties
require code for Steps 1-4 of the protocol and the summation service requires code for Step 5.

SumClient.kernelStarting will need to request an initial wakeup call for this client party at, or
shortly after, the given start time, which will be the earliest possible simulated timestamp. This
can be done by calling self.setWakeup.

SumClient. init will need to receive a list of peer party ids within the same connected subgraph
and store this in an instance variable for later use. This list is necessary to send shared secrets to
peers, and to know when all “expected” shared secrets have been received from peers.

SumClient.wakeup will need to implement Steps 1 and 2 of the protocol. The protocol must begin
with wakeup calls to the agents, because there are is not yet any message flow to trigger party
activities. To send the shared secrets, the party will call self.sendMessage once per peer client
discovered during init . The body of a message is typically a Python dictionary, so we can set
Message.body[’type’] = ’SHARED SECRET’ and Message.body[’secret’] to the randomly
generated value for a given peer. The sent shared secrets can be accumulated into an instance variable
for later use, for example as self.sent sum.

SumClient.receiveMessage(msg) will need to implement steps 3 and 4 of the protocol, be-
cause this phase is triggered by receipt of messages from other parties. The client party can
test msg.body[’type’] to determine what kind of message has roused it. Upon receiving a
SHARED SECRET message, the party should accumulate the secret value and a count of received
values into instance variables, for example as self.received sum and self.received count.
There is no outside signal to tell a party when it has received the final shared secret, so at receipt
of each secret, the party must compare its received count to the known size of its peer network.
When the final secret has arrived and been accumulated, the party will call sendMessage one time
with the id of the summation service and set Message.body[’type’] = ’SUM REQUEST’ and
Message.body[’value’] to the encrypted operand value, which is the cleartext operand value
plus the sum of received secrets minus the sum of sent secrets.

SumService. init will need to receive a count of client parties from whom it should expect sum-
mation requests, and store this in an instance variable, for example as self.num clients.

SumService.receiveMessage(msg) will need to implement step 5 of the protocol, because it is
triggered by receipt of messages from client parties. Note that there is no need for a non-default
implementation of SumService.wakeup, because the service does nothing until it receives client re-
quests. Each time a SUM REQUEST message is received, the service must store as instance variables
the received operand values, the clients from which they were received, and a count of received
values. Once the service has received the expected number of SUM REQUEST messages, it can sum
the operands to a single result and call self.sendMessage once per communicating client party to
deliver the result in an appropriate message type, perhaps SUM RESULT.

If the client parties should do something with the summation result,
SumClient.receiveMessage(msg) is the appropriate location for that code. Note that the
client party must distinguish incoming SUM RESULT messages from SHARED SECRET messages by
testing msg.body[’type’].
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F.2 Connecting Parties in a Protocol

For a multi agent discrete event simulation to be useful, the parties must be able to exchange mes-
sages. For the simulation to be realistic, those messages should experience variable, non-zero com-
munication latency or time in flight, and various parties should be able to have different latency
characteristics.

The ABIDES framework supports this through the model.LatencyModel class, which defines a
(potentially) fully-connected pairwise network among the agents in a simulation, or the parties in a
protocol. Once defined, the model will be automatically applied to all messages within the simulated
environment. The preferred latency model is currently the ‘cubic’ model.

The cubic latency model accepts up to five parameters: connected, min latency, jitter,
jitter clip, and jitter unit. Only the parameter min latency is required. The others have
reasonable default values.

In brief, min latency must be a 2-D numpy array defining the minimum latency in nanoseconds
between each pair of agents. The matrix can be diagonally symmetric if communication speed
should be independent of communication direction, but this is not required. The connected param-
eter must be either True (all parties are pairwise connected) or a 2-D boolean numpy array denoting
connectivity. Parties that are not connected will be prohibited from calling sendMessage with each
other’s id. The remaining parameters describe the cubic randomness added to the minimum latency
when each message is scheduled for delivery. Detailed documentation is contained in the docstring
at the top of the LatencyModel class code.

F.3 Realistic Computation Delays within a Protocol

Reasonable estimation of computation time is another important piece of a realistic simulation. The
ABIDES framework supports a per-party computation delay that represents how long the party re-
quires to complete a task and generate resulting messages. This delay will be used both to determine
the “sent time” for any messages originated during the activity and the next available time at which
the party could act again. Computation delays are stored in a 1-D numpy array with nanosecond
precision.

A specific party (simulation agent) has only one computation delay value at a time, but these values
can be updated at any time. We can therefore observe the actual computation time of the activity as
it happens in the simulation, and use this to set the appropriate delay in simulated time.

A straightforward way to handle this is to assign pandas.Timestamp(’now’) to a variable when
the activity begins, and subtract it from a second call to pandas.Timestamp(’now’) when the
activity ends. The difference between these two can be passed to self.setComputationDelay to
update the party’s computation cost for the current activity.

The same technique can be used to accumulate time spent by a party in various sections of the
protocol, so aggregated statistics can be logged or displayed at the conclusion of the protocol.
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