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Abstract. Division property is a generalized integral property proposed by Todo
at EUROCRYPT 2015. Subsequently, Todo and Morii extended division property
to the bit level and proposed conventional bit-based division property (CBDP) and
bit-based division property using three subsets (BDPT). At ASIACRYPT 2016,
Xiang et al. applied MILP technique to model the CBDP propagation for the first
time. To construct an automatic search model for BDPT propagation, Hu et al.
characterized a variant BDPT based on SMT/SAT. Later at ASIACRYPT 2019,
Wang et al. characterized the BDPT based MILP. However, the above two automatic
search models have some limitations.
In this paper, we focus on constructing an automatic search model that can more
accurately characterize the BDPT propagation. Firstly, we define a new notion
named BDPT Trail, which divides the BDPT propagation into three parts: the
division trail K, division trail L, and Key-Xor operation. Secondly, we improve the
insufficiency of the previous methods of calculating division trails and propose an
effective algorithm that can obtain more valid division trails L of the S-box operation.
Thirdly, we propose a new algorithm that models each Key-Xor operation based on
MILP technique for the first time. Based on this, we can accurately characterize
the Key-Xor operation by solving these MILP models. After that, by selecting
appropriate initial BDPT and stopping rules, we construct an automatic search
model that more accurately characterizes the BDPT propagation. As a result, our
automatic search model is applied to search integral distinguishers for some block
ciphers. For Rectangle, we find a 10-round integral distinguisher which is one more
round than the previous best results. For Simon64, we can find more balanced bits
than the previous longest distinguishers. For Present, we find a better 9-round
integral distinguisher with less active bits.
Keywords: Division Property, Three-subset, MILP, Accuracy, Cross propagation

1 Introduction
Division property. Integral cryptanalysis is one of the most powerful cryptanalysis
techniques [KW02]. For a set of chosen plaintexts, attackers encrypt them r rounds and
calculate the value of the XOR of all ciphertexts. If the value is 0, we say that the cipher
has an r-round integral distinguisher.

Division property, a generalization of the integral property, which was proposed by
Todo at EUROCRYPT 2015 [Tod15b], could explicitly describe the properties hidden
between traditional integral ALL and BALANCE properties. Later at CRYPTO 2015,
Todo [Tod15a] applied the division property to MISTY1, and achieved the first theoretical
integral attack of the full-round MISTY1, which proves the superiority of the division
property. Sun et al. [SHZ+17] revisited division property and studied the property of
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a multiset satisfying certain division property. At CRYPTO 2016, Boura and Canteaut
proposed a new notion called parity set to characterize the division property of the S-box,
based on which they found a better integral distinguisher for Present [BC16].

In order to exploit the algebraic structure of the round function, Todo and Morii
[TM16] proposed bit-based division property, which treats each bit of the target primitive
independently. Bit-based division property can be divided into two categories: conventional
bit-based division property (CBDP) and bit-based division property using three subsets
(BDPT). The CBDP classify all vectors u ∈ Fn

2 into two subsets such that the parity of⊕
x∈X πu(x) is 0 or unknown, while BDPT divides all vectors u ∈ Fn

2 into three subsets
such that the parity of

⊕
x∈X πu(x) is 0, 1, or unknown. Essentially, the set unknown

in CBDP is divided into the sets 1 and unknown in BDPT. Therefore, the BDPT can
characterize the integral property of the primitive more precisely. For example, CBDP
has found a 14-round integral distinguisher of Simon32 while BDPT found the 15-round
integral distinguisher of Simon32 [TM16]. However, the complexity of utilizing CBDP or
BDPT is upper bounded by 2n, where n denotes the block size.

Automatic Searching Integral Distinguishers Based on CBDP. In order to solve the
restriction of the huge complexity, Xiang et al. used Mixed Integral Linear Programming
(MILP) technique to construct an automatic search model, which was successfully applied
to search integral distinguishers for lightweight ciphers whose block sizes were larger than
32 at ASIACRYPT 2016 [XZBL16]. By extending and improving the method, the integral
attacks have been applied to many ciphers and many better integral distinguishers have
been found [SWW17, FTIM17, WGR18, SWW20].

Automatic Searching Integral Distinguishers Based on BDPT. There are two
problems in constructing automatic search model based on BDPT.

1. Feasibility and Efficiency. The automatic search model should be solved in
practical time by openly available solvers.

2. Accuracy and Completeness. The automatic search model needs to accurately
and completely characterize the complex propagation of BDPT, which means the set
K, L, and the influence of the set L on the set K should be traced.

To tackle above problems, Hu et al. [HW19] proposed an automatic search model for a
variant three-subset division property and applied the method to improve some integral
distinguishers. However, it sacrifices quite some accuracy of the original BDPT. Later
at ASIACRYPT 2019, Wang et al. [WHG+19] proposed the pruning technique which
removes redundant vectors, and a new notion “fast propagation” which can translate
BDPT into CBDP. Then, they constructed a new automatic search model based on the
above techniques to search integral distinguishers. We find some division trails are not
correct in their automatic search model.

Our Contributions. In this paper, we construct an automatic search model which can
more completely and accurately characterize the BDPT propagation. The details of our
contributions are summarized as follows.

BDPT Trail. We define a new notion named BDPT Trail to completely and accurately
characterize the BDPT propagation. The BDPT Trail divides the BDPT propagation
into three parts: the propagation of the set K, the propagation of the set L, and Key-Xor
operation. Moreover, we introduce two notions named division trail K and division trail L
to illustrate the propagation of sets K and L, respectively. With these notion, constructing
an automatic search model that characterizes the BDPT propagation is equivalent to
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modeling the division trail K and L, and Key-Xor operation.

Model the BDPT propagation of Nonlinear Layer. We first propose an “S-box”
technique, which treats the nonlinear layer of a block cipher as a blackbox, focusing only
on its input and output, not on specific operations. More precisely, the “S-box” technique
treats the basic operations that provide nonlinearity in non-S-box-based ciphers as an
S-box. By the “S-box” technique, we construct a generalized model that reduces the
number of basic operations and model the nonlinear layer uniformly. More specifically,
we transform the modeling BDPT of the nonlinear layer into the modeling BDPT of
the S-box. To characterize the BDPT propagation of S-box, we apply the method in
[BC16, XZBL16] to calculate all the division trails K of the S-box, and then we study the
method to calculate all valid division trails L of the S-box. We show that the method in
[HW19] only finds a part of all valid division trails L, and the method in [WHG+19] finds
some extra invalid division trails L. Then we present a theorem that can accurately find
all valid division trails L of the S-box according to its ANF directly. Based on this, we
propose an effective algorithm that can obtain more valid division trails L of the S-box. To
model the division trails K and L of the S-box by a set of linear inequalities whose feasible
solutions are exactly these division trails, we use SageMath to generate an initial set of
linear inequalities and then apply a reduction algorithm to reduce the initial set such that
these division trails can be modeled by the minimum number of linear inequalities [ST17].

Model the BDPT propagation of Key-Xor operation. When a Key-Xor operation
is applied, new vectors generated from the set L will be added to the set K. Therefore,
how accurately characterizing the Key-Xor operation is a complex problem. To solve this
problem, we propose a new algorithm that models each Key-Xor operation based on MILP
technique for the first time. Based on this, we can accurately characterize the Key-Xor
operation by solving these MILP models. Finally, by selecting appropriate initial BDPT
and stopping rules, we can construct an automatic search model that more completely
and accurately characterizes the BDPT propagation.

Applications. We apply our automatic search model to search integral distinguishers
of Simon [BSS+15], Simeck [YZS+15], Rectangle [ZBL+15] and Present [BKL+07].
The results are shown in Table 1.

1. For non-S-box-based block ciphers. For Simon64, we can find a better 17-
round integral distinguisher with 27 balanced bits, which has four more bits than
the previous longest distinguisher [WHG+19]. For Simon32, 48, 96, 128 and
Simeck32, 48, 64, the distinguishers we find are in accordance with the previous
longest distinguishers [WHG+19].

2. For S-box-based block ciphers. For Rectangle, we find a 10-round integral
distinguisher with 9 balanced bits, which is one more round than the previous best
integral distinguisher in [WHG+19]. For Present, we find a better 9-round integral
distinguisher with less active bits, i.e., the data complexity decreased from 263 to 262,
and its number of balanced bits is in accordance with the paper [WHG+19]. For the
above four block ciphers, our automatic search model reduces the time complexity of
searching integral distinguishers compared with the previous methods.

Organization. This paper is organized as follows: In Section 2 we briefly review some
basic background knowledge about the bit-based division property. Section 3 studies how
to model these operations used in the round function of a block cipher by the MILP
technique. Section 4 studies the initial and stopping rules, and search algorithm. Section 5
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shows the applications of some lightweight block ciphers, and we conclude our works in
Section 6. Some auxiliary materials are supplied in Appendix.

Table 1: Summarization of integral distinguishers

Cipher Data Round
Number of

Time Reference†
balanced bits⋆

Simon32 231 15 3 1h48m
2.0m

[WHG+18]
[WHG+19]

15 3 1.6m Sect. 5.1

Simon48 247 16 24 1h48m [WHG+18]

16 24 8.4m Sect. 5.1

Simon64 263 18 23 23h31m
1h41m

[WHG+18]
[WHG+19]

18 27 1h8m Sect. 5.1

Simon96 295 22 5 31h25m [WHG+18]

22 5 5h55m Sect. 5.1

Simon128 2127 26 3 62h16m [WHG+18]

26 3 21h7m Sect. 5.1

Simeck32 231 15 7 51m [WHG+18]

15 7 1.3m Sect. 5.1

Simeck48 247 18 5 5h3m [WHG+18]

18 5 12.9m Sect. 5.1

Simeck64 263 21 5 23h25m [WHG+18]

21 5 47.3m Sect. 5.1

Present
263 9 28 4h8m

10m
[WHG+18]
[WHG+19]

262 9 28 4.6m Sect. 5.2

Rectangle
260 9 27 10m [WHG+19]

263 10 9 5.3m Sect. 5.2
† The paper [WHG+18] in IACR Cryptology ePrint Archive is the preprint of [WHG+19]. The results

of the two papers are consistent except for the time complexity.
⋆ The balanced bit is divided into 0 and 1, where “0” represents the bit whose sum is 0, “1” represents

the bit whose sum is 1. The details results are shown in Appendix F.

2 Preliminaries
2.1 Notations
Let F2 be the finite field {0, 1} and Fn

2 be the n-bit string over F2. For any a ∈ Fn
2 , let

a[i] be the i-th bit of a, and the Hamming weight of a is calculated as
∑n−1

i=0 a[i]. For any
a = (a0, . . . , am−1) ∈ Fn0

2 × · · · × Fnm−1
2 , the vectorial Hamming weight of a is defined

as W (a) = (w(a0), . . . , w(am−1)) ∈ Zm, where w(ai) is the Hamming weight of ai, Z
denotes the integer ring. For any k ∈ Zm and k′ ∈ Zm, we define k ⪰ k′ if ki ⩾ k′

i for all
i = 0, 1, . . . , m− 1. Otherwise, k ⪰̸ k′. Let K be the set of k, and |K| be the number of
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vectors in K. Moreover, we simply write K← k when K := K ∪ {k}.

Bit Product Function[Tod15b] For any u ∈ Fn
2 , let x ∈ Fn

2 be the input. The πu(x) :
Fn

2 → F2 is defined as

πu(x) :=
n−1∏
i=0

x[i]u[i]

For any u = (u0, u1, . . . , um−1) ∈ Fn0
2 ×Fn1

2 ×· · ·×Fnm−1
2 , let x = (x0, x1, . . . , xm−1) ∈

Fn0
2 × Fn1

2 × · · · × Fnm−1
2 be the input. The πu(x) : (Fn0

2 × Fn1
2 × · · · × Fnm−1

2 ) → F2 is
defined as

πu(x) :=
m−1∏
i=0

πui(xi)

2.2 Bit-Based Division Property
Todo and Morii proposed two kinds of bit-based division property (CBDP and BDPT) at
FSE 2016 [TM16]. Compared with the traditional division property, bit-based division
property could trace the propagation of division property at the bit level. As a result,
integral distinguishers of Simon32 have been improved from 10-round to 15-round by
them. We will briefly review division property and bit-based division property and present
some propagation rules for bit-based division property.

Definition 1 (Division Property [Tod15b]). Let X be a multiset whose elements take
values from (Fn0

2 × Fn1
2 × · · · × Fnm−1

2 ). When the multiset X has the division property
Dn0,n1,...,nm−1

K , it satisfies the following conditions:

⊕
x∈X

πu(x) =
{

unknown if there exist k ∈ K s.t. W (u) ⪰ k,

0 otherwise.

The conventional bit-based division property (CBDP) only limits the underlying space
to binary domains, which can search for more fine-grained integral characteristics.

Definition 2 (CBDP [TM16]). Let X be a multiset whose elements take a value of Fn
2 .

When the multiset X has the division property D1n

K , it satisfies the following conditions:

⊕
x∈X

πu(x) =
{

unknown if there exist k ∈ K s.t. u ⪰ k,

0 otherwise.

where u ⪰ k if ui ≥ ki for all i.

The bit-based division property using three subsets (BDPT) limits the underlying
space to binary domains and further expands the search scope. Namely, it introduces a
new set L, which is the set of u with

⊕
x∈X πu(x) = 1.

Definition 3 (BDPT [TM16]). Let X be a multiset whose elements take a value of
Fn

2 . When the multiset X has the bit-based division property using three subsets D1n

K,L, it
satisfies the following conditions:

⊕
x∈X

πu(x) =


unknown if there exist k ∈ K s.t. u ⪰ k,

1 else if there is ℓ ∈ L s.t. u = ℓ,

0 otherwise.
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According to [TM16], if there are k, k′ ∈ K satisfying k ⪰ k′, k can be removed from
K because the vector k is redundant. Moreover, if there are ℓ ∈ L and k ∈ K satisfying
ℓ ⪰ k, the vector ℓ is redundant. For any u, the redundant vectors in K and L will not
affect the parity of

⊕
x∈X πu(x).

Propagation Rules. We introduce only a few of the propagation rules used in the
following sections. For more details, please refer to [TM16].
Rule 1 (Key-Xor [TM16]). Let the Key-Xor operation’s input and output division
property be D1n

K,L and D1n

K′,L′ , respectively. Assume that the round key is XORed with the
i-th bit, K′ and L′ are computed as

L′ ← ℓ, for ℓ ∈ L,

K′ ← k, for k ∈ K,

K′ ← (ℓ0, ℓ1, . . . , ℓi ∨ 1, . . . , ℓm−1) , for ℓ ∈ L satisfying ℓi = 0.

Boura et al. presented the propagation rules of S-box for K at bit-level in [BC16] for
the first time, which is summarized in Rule 2.
Rule 2 (S-box for K [BC16]). Let F : Fm

2 → Fn
2 be a function of substitution composed

of (f0, f1, . . . , fn−1), where each fi : Fm
2 → F2 is a boolean function. Assuming the input

to the function F is x = (x0, x1, . . . , xm−1) ∈ Fm
2 , the output y = (y0, y1, . . . , yn−1) is

calculated as

y0 = f0 (x0, x1, . . . , xm−1) ,

y1 = f1 (x0, x1, . . . , xm−1) ,

...
yn−1 = fn−1 (x0, x1, . . . , xm−1) .

For each vector k in the input division property K, check each vector u ∈ Fn
2 whether the

polynomial πu(y) contains any monomial πk′(x) satisfying k′ ⪰ k. If so, (k, u) is a valid
division trail for the S-box function.

2.3 Based-MILP Bit-Based Division Property
Although CBDP has been proved to be a powerful tool to find better integral distinguishers,
the time and memory complexities were roughly 2n for an n-bit block cipher [TM16].
Therefore, the CBDP was only applicable for block ciphers whose block sizes are less than
32 bits. At ASIACRYPT 2016, Xiang et al. [XZBL16] applied the MILP method to the
search for CBDP for the first time. With the help of MILP solver Gurobi1, they can
find CBDP for block ciphers with larger block sizes, e.g., Simon128 or Present. They
introduced the definition of the CBDP trail, which is defined as follows.
Definition 4 (CBDP Trail [XZBL16]). Let fr denote the round function of an iterated
block cipher. Assume that the input multiset to the block cipher has initial division
property D1n

{k}, and denote the division property after i-round propagation through fr by
D1n

Ki
. Thus we have the following chain of division property propagations:

{k} ≜ K0
fr−→ K1

fr−→ K2
fr−→ · · · .

Moreover, for any vector k∗
i ∈ Ki(i ⩾ 1), there must exist a vector k∗

i−1 ∈ Ki−1 such
that k∗

i−1 can propagate to k∗
i by division property propagation rules. Furthermore, for

(k0, k1, . . . , kr) ∈ K0 ×K1 × · · · ×Kr, if ki−1 can propagate to ki for all i ∈ {1, 2, . . . , r},
we call (k0, k1, . . . , kr) an r-round division trail.

1https://www.gurobi.com/
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Xiang et al. [XZBL16] modeled CBDP propagations of basic operations (Copy, Xor,
And) and S-box by linear inequalities. Iterating this process r times, they could build a
MILP model to cover all the possible CBDP trails generated from a given initial CBDP. In
our model, we will treat these basic operations as an S-box. Therefore, we only introduce
the MILP models for S-box.

Model 1 (S-box [XZBL16]). The CBDP Rule 2 in Sect. 2.2 can generate the CBDP
propagation property of the S-box. Then, we use the inequality_generator function in
SageMath2 to get a set of linear inequalities. Sometimes the number of linear inequalities
in the set is large. Thus, a Greedy Algorithm [SHW+14] was proposed to reduce this set.

3 Modeling BDPT Propagations
Suppose an iterated block cipher of the round function fr consists of a nonlinear layer,
linear layer, and Key-Xor operation. Let fk be the Key-Xor operation, and fe be the rest
of the operations in the round function fr. To model the propagation of BDPT for the
operation fe and fk, we define a new notion named BDPT trail.

Definition 5 (BDPT Trail). Assume that the input multiset X to the block cipher has
initial BDPT D1n

k,ℓ and denote the BDPT after r-round propagation through fe and fk by
D1n

Kr,Lr
, where r ⩾ 1. Thus we have the following chain of BDPT propagations:

{k} ≜ K0
fe−→K1

fe−→K2
fe−→· · · fe−→Kr−1

fe−→Krxfk

xfk · · ·
xfk

xfk

{ℓ} ≜ L0
fe−→L1

fe−→L2
fe−→· · · fe−→Lr−1

fe−→Lr

where Ki = fe(Ki−1) ∪ fk(Li) = fe(Ki−1) ∪ fk ◦ fe(Li−1), Li = fe(Li−1), 1 ⩽ i ⩽ r.
Moreover, for any vector tuple (k∗

i , ℓ∗
i ), k∗

i ∈ Ki and ℓ∗
i ∈ Li(1 ⩽ i ⩽ r), there must exist

a vector tuple (k∗
i−1, ℓ∗

i−1), k∗
i−1 ∈ Ki−1 and ℓ∗

i−1 ∈ Li−1, such that (k∗
i−1, ℓ∗

i−1) can propa-
gate to (k∗

i , ℓ∗
i ) by BDPT propagation rules. Furthermore, for ((k0, ℓ0), (k1, ℓ1), . . . , (kr, ℓr))

∈ K0 × L0 × K1 × L1 × · · · × Kr × Lr, if (ki−1, ℓi−1) can propagate to (ki, ℓi) for all
i ∈ {1, 2, . . . , r}, we call (k0, ℓ0) fe,fk−−−→ (k1, ℓ1) fe,fk−−−→ · · · fe,fk−−−→ (kr, ℓr) an r-round BDPT
trail.

By ignoring the Key-Xor operation (which causes the vector ℓ ∈ Li to be added to set
Ki), we can get the following two chains which reflect the propagation property of fe.

{k} ≜ K′
0

fe−→K′
1

fe−→K′
2

fe−→· · · fe−→K′
r−1

fe−→K′
r

{ℓ} ≜ L0
fe−→L1

fe−→L2
fe−→· · · fe−→Lr−1

fe−→Lr

where K′
i = fe(K′

i−1), Li = fe(Li−1), 1 ⩽ i ⩽ r.
Thus, for (k′

0, k′
1, . . . , k′

r) ∈ K′
0 × K′

1 × · · · × K′
r, if k′

i−1 can propagate to k′
i for

all i ∈ {1, 2, . . . , r}, we call (k′
0, k′

1, . . . , k′
r) an r-round division trail K. Similarly, for

(ℓ0, ℓ1, . . . , ℓr) ∈ L0 ×L1 × · · · ×Lr, if ℓi−1 can propagate to ℓi for all i ∈ {1, 2, . . . , r}, we
call (ℓ0, ℓ1, . . . , ℓr) an r-round division trail L.

Similar to methods in [XZBL16], for an initial BDPT D1n

k,ℓ, we determine whether there
exists useful integral distinguishers after r-round encryption, by finding all r-round BDPT
trails which start with the vector tuple (k, ℓ). Thus, we need to accurately describe all
valid division trails of the vectors k and ℓ through fe and fk. For the operation fe, we
model the division trail K and L, respectively. For the operation fk, we construct a new
MILP model to characterize the process that the part of vectors ℓ ∈ Li are added to the
set Ki by the Key-Xor operation.

2https://www.sagemath.org/
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3.1 Treat Nonlinear Layer as “S-box”
We classify block ciphers into two categories based on whether there is an S-box in the
nonlinear layer. When we apply BDPT to non-S-box-based ciphers, we usually need to
consider each of its specific operations for primitives. Taking the Simon family as an
example, we have to consider how to represent these basic operations with a set of linear
inequalities, such as Copy, Xor, And. We aim to construct a generalized model that reduces
the number of basic operations and model the nonlinear layer uniformly. The intuitive
idea is to regard these basic operations that provide nonlinearity as an S-box, which is
named “S-box”. Theoretically, the core operation of the Simon family is represented by
Fig. 1. We refer to the part surrounded by the red dotted line as the “S-box”.

x0 x1 x2 x3

y0 y1 y2 y3

 

&

Fig. 1. Core operation of the Simon family [TM16] and “S-box”

We represent the input to the “S-box” as x = (x0, x1, x2, x3), and the corresponding
output as y = (y0, y1, y2, y3), the algebraic normal form (ANF) of the “S-box” is listed as
follows:

y0 = x0
y1 = x1
y2 = x2
y3 = x0x1 ⊕ x2 ⊕ x3

(1)

S-box is an important component for most S-box-based block ciphers because it is
the only nonlinear part. For non-S-box-based block ciphers, the “S-box” serves the same
purpose. Based on this, we transform the modeling BDPT of the nonlinear layer into the
modeling BDPT of the S-box.

3.2 Limitation of Previously Modeling BDPT of S-box
In [BC16, XZBL16], the rule to calculate all the division trails K of an S-box was presented.
We study the rule to find all valid division trails L of an S-box.

We assume an n-bit S-box: Fn
2 → Fn

2 is composed of (f0, f1, . . . , fn−1), where the
input x = (x0, . . . , xn−1) ∈ Fn

2 and the output y = (y0, . . . , yn−1) ∈ Fn
2 . Every yi can be

expressed as a boolean function of (x0, . . . , xn−1), where i ∈ {0, . . . , n− 1}.
There have been two previous methods for calculating all the division trails L of an S-box,

as shown in Theorem 1. We briefly describe these methods as follows: firstly, by the alge-
braic normal form (ANF) of the S-box, each element yi in the output y = (y0, . . . , yn−1) ∈
Fn

2 can be represented as a boolean function by the input x = (x0, . . . , xn−1), i.e., yi =
fi (x0, . . . , xn−1), where 0 ⩽ i ⩽ n−1. Secondly, suppose that the input ℓ = (ℓ0, . . . , ℓn−1),
for every u ∈ Fn

2 , we calculate the πu(y) =
∏n−1

i=0 y[i]u[i], where y[i] = fi (x0, . . . , xn−1).
Then, we obtain the πu(y) =

∏n−1
i=0 fi (x0, . . . , xn−1)u[i], which is a polynomial representa-

tion about x. Finally, according to rule L1 or L2 of Theorem 1, for the input vector ℓ,
check each vector u ∈ Fn

2 whether the polynomial πu(y) contains πℓ(x) and πu(y) does
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Table 2: Propagation of the bit-based division property using three subsets for the Core
Operation in Simon [TM16]

Input D14

k,ℓ Output D14

K,L

ℓ = [0, 0, 0, 0] L = {[0, 0, 0, 0]}
ℓ = [1, 0, 0, 0] L = {[1, 0, 0, 0]}
ℓ = [0, 1, 0, 0] L = {[0, 1, 0, 0]}
ℓ = [1, 1, 0, 0] L = {[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [1,1,0,1]}
ℓ = [0, 0, 1, 0] L = {[0, 0, 1, 0], [0, 0, 0, 1], [0,0,1,1]}
ℓ = [1, 0, 1, 0] L = {[1, 0, 1, 0], [1, 0, 0, 1], [1,0,1,1]}
ℓ = [0, 1, 1, 0] L = {[0, 1, 1, 0], [0, 1, 0, 1], [0,1,1,1]}
ℓ = [1, 1, 1, 0] L = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 0, 1]}

ℓ = [ℓ1, ℓ2, ℓ3, 1] L = {[ℓ1, ℓ2, ℓ3, 1]}

not contain any monomial πℓ̄(x) satisfying ℓ̄ ≻ ℓ(or polynomial πu(y) contains πℓ(x)). If
so, (ℓ, u) is a valid division trail L for the S-box.

Theorem 1 ([HW19, WHG+19]). If the input BDPT of S-box is D1n

k,ℓ where k = (k0, . . . ,

kn−1), ℓ = (ℓ0, . . . , ℓn−1), then the output BDPT of S-box can be calculated by D1n

K,L1
or

D1n

K,L2
, where

K = {u ∈ Fn
2 | πu(y) contains any monomial πk̄(x) satisfying k̄ ⪰ k}

L1 = {u ∈ Fn
2 | πu(y) does not contain any monomial πℓ̄(x) satisfying ℓ̄ ≻ ℓ and

πu(y) contains πℓ(x)}.
L2 = {u ∈ Fn

2 | πu(y) contains πℓ(x)}.

Remark 1. The rules K and L1 are derived from [HW19]. Moreover, the rules K and L2
are derived from [WHG+19].

We find the rules L1 and L2 both have some limitation, which are illustrated with two
specific examples as follows.

Example 1 (shows that the rule L1 only finds a part of the division trails L). Take the
“S-box”, which represents the core operation of the Simon family as an example. The
“S-box” is a 4× 4 S-box, and its input and output are shown in Fig. 1. Assume that the
input multiset X to the “S-box” has BDPT D14

k,ℓ=(0,1,1,0). The process of getting the valid
division trail (ℓ, u) is briefly describe as follows:

First, we get yi = fi (x0, x1, x2, x3) where 0 ⩽ i ⩽ 3, which is a Boolean function
expression about the input x, as shown in Equation (1). Secondly, for every u ∈ F4

2,
we calculate πu(y) =

∏3
i=0 fi (x0, x1, x2, x3)u[i]. For ease of understanding, we take

u = (0, 1, 0, 1) ∈ F4
2 and calculate π(0,1,0,1)(y) = y1y3 = x1(x0x1⊕x2⊕x3) = x0x1⊕x1x2⊕

x1x3. Finally, according to rule L1, we check whether π(0,1,0,1)(y) = x0x1 ⊕ x1x2 ⊕ x1x3
contains πℓ=(0,1,1,0)(x) = x1x2 and does not contain any monomial πℓ̄(x) satisfying ℓ̄ ≻ ℓ,
where πℓ̄(x) = {x0x1x2, x1x2x3, x0x1x2x3}. Apparently, π(0,1,0,1)(y) satisfies the above
conditions. So (0, 1, 1, 0)→ (0, 1, 0, 1) is a valid division trail L of the “S-box”. To obtain
all the division trails L where ℓ = (0, 1, 1, 0), we traverse u ∈ F4

2 and get another valid
division trail L:(0, 1, 1, 0)→ (0, 1, 1, 0).

However, we find that there is a valid division trail L : (0, 1, 1, 0) → (0, 1, 1, 1) ap-
pears in Table 2 by [TM16] which cannot be found by the rule L1. The reason is that
πu=(0,1,1,1)(y) = x0x1x2⊕x1x2⊕x1x2x3 contains not only πℓ=(0,1,1,0)(x) = x1x2 but also
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x0x1x2 and x1x2x3 ∈ πℓ̄(x). It is worth to explore the valid division trails which were
missing by the rule L1 compared to Table 2. Therefore, for each ℓ, u ∈ F4

2, we calculate
πu(y) and πℓ̄(x) where ℓ̄ ≻ ℓ, and obtain all valid division trails of the “S-box” by rule
L1. Note that the missing valid division trails compared to Table 2 are bolded.

Example 2 (shows that the rule L2 finds some invalid division trails L). Take the Present
S-box as an example. Let the input to Present S-box be x = (x0, x1, x2, x3), and the
corresponding output be y = (y0, y1, y2, y3), the algebraic normal form (ANF) of Present
S-box is shown in Equation (2). Assume that the input multiset X to Present S-box has
BDPT D14

k,ℓ=(1,1,1,0).

y0 = x0x1x3 ⊕ x0x2x3 ⊕ x1x2x3 ⊕ x1x2 ⊕ x0 ⊕ x2 ⊕ x3 ⊕ 1
y1 = x0x1x3 ⊕ x0x2x3 ⊕ x0x2 ⊕ x0x3 ⊕ x2x3 ⊕ x0 ⊕ x1 ⊕ 1
y2 = x0x1x3 ⊕ x0x2x3 ⊕ x1x2x3 ⊕ x0x1 ⊕ x0x2 ⊕ x0 ⊕ x2

y3 = x1x2 ⊕ x0 ⊕ x1 ⊕ x3

(2)

Thus, for each u ∈ F4
2, we calculate πu(y) =

∏3
i=0 fi (x0, x1, x2, x3)u[i]. For ease

of understanding, we take u = (0, 1, 0, 1) ∈ F4
2 and calculate π(0,1,0,1)(y) = y1y3 =

(x0x1x3 ⊕ x0x2x3 ⊕ x0x2 ⊕ x0x3 ⊕ x2x3 ⊕ x0 ⊕ x1 ⊕ 1)(x1x2 ⊕ x0 ⊕ x1 ⊕ x3) = x0x1x2 ⊕
x0x2 ⊕ x0x3 ⊕ x1x3 ⊕ x2x3 ⊕ x3. According to rule L2, we check whether π(0,1,0,1)(y) =
x0x1x2 ⊕ x0x2 ⊕ x0x3 ⊕ x1x3 ⊕ x2x3 ⊕ x3 contains πℓ=(1,1,1,0)(x) = x0x1x2. Apparently,
π(0,1,0,1)(y) satisfies this condition above, so (1, 1, 1, 0)→ (0, 1, 0, 1) is a valid division trail
L of Present S-box. To obtain all the division trails L where ℓ = (1, 1, 1, 0), we traverse
u ∈ F4

2 and obtain the other division trails L:(1, 1, 1, 0)→ (0, 1, 1, 1), (1, 1, 1, 0)→ (1, 0, 1, 1),
(1, 1, 1, 0)→ (1, 1, 0, 1), (1, 1, 1, 0)→ (1, 1, 1, 0) and (1, 1, 1, 0)→ (1, 1, 1, 1).

However, we find that the division trail (1, 1, 1, 0)→ (1, 1, 1, 1) discovered by rule L2 is
an invalid division trail L, i.e., (1, 1, 1, 0) ↛ (1, 1, 1, 1). The proof is described below:⊕
y∈Y

π(1,1,1,1)(y) =
⊕
y∈Y

y0y1y2y3

=
⊕
x∈X

(x0x1x2x3 ⊕ x0x1x2 ⊕ x0x2x3 ⊕ x0x2)

=
⊕
x∈X

π(1,1,1,1)(x)⊕
⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(1,0,1,1)(x)⊕
⊕
x∈X

π(1,0,1,0)(x)

= unknown⊕ 1⊕ (0 or unknown depends on k)⊕ 0
= unknown

According to Definition 3, the parity of
⊕

x∈X π(1,1,1,1)(x) is unknown because u =
(1, 1, 1, 1) ⪰ k for any k ∈ F4

2. So the parity of
⊕

y∈Y π(1,1,1,1)(y) is unknown. In other
words, (1, 1, 1, 0)→ (1, 1, 1, 1) is an invalid division trail L. Therefore, some extra invalid
division trails may be obtained by rule L2.

From Examples 1 and 2, we show that some valid division trails L are missing by rule
L1, and some invalid division trails are produced by rule L2. Thus, we have the following
observation.

Observation 1. The correct rule to calculate all the division trails L of an S-box is
between rules L1 and L2.

From Theorem 1 and Observation 1, we find that the rules L1 and L2 only consider
πu(y), not the specific parity of

⊕
y∈Y πu(y), which is unknown or 1 or 0. Based on this,

we propose Theorem 2 and Observation 2.
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Theorem 2. Let ℓ ∈ Fn
2 represent the input of an S-box. For any u ∈ Fn

2 , (ℓ, u) is a valid
division trail L if and only if

⊕
y∈Y πu(y) = 1.

Proof. Assume that the input multiset X to the S-box has BDPT D1n

k,ℓ, where k =
(k0, . . . , kn−1), ℓ = (ℓ0, . . . , ℓn−1), and the output multiset Y to the S-box has BDPT D1n

K,L.
On the one hand, for any u ∈ Fn

2 , if (ℓ, u) is a valid division trail, we have u ∈ L. According
to Definition 3, for any ℓ′ ∈ L, we have

⊕
y∈Y πℓ′(y) = 1. Thus, we get

⊕
y∈Y πu(y) = 1.

On the other hand, if
⊕

y∈Y πu(y) = 1, we have u ∈ L by Definition 3. For any ℓ′ ∈ L, the
(ℓ, ℓ′) is a valid division trail. Then, we get a valid division trail: (ℓ, u). Thus, Theorem 2
is proven.

Theorem 2 gives sufficient and necessary conditions for (ℓ, u) to be a valid division
trail L, then we propose an observation as,

Observation 2. The parity of
⊕

y∈Y πu(y) is related to the vector k.

Example 3. We take the “S-box” as an example. Assume that the input multiset X to
the “S-box” has BDPT D14

k,ℓ=(0,1,1,0). In Example 1, we find a division trail (0, 1, 1, 0)→
(0, 1, 1, 1) that cannot be discovered by rule L1. Thus,⊕
y∈Y

πu=(0,1,1,1)(y) =
⊕
y∈Y

y1y2y3

=
⊕
x∈X

(x0x1x2 ⊕ x1x2 ⊕ x1x2x3)

=
⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,1)(x)

= (0 or unknown depends on k)⊕ 1⊕ (0 or unknown depends on k)

To illustrate that the value of k affects the parity of
⊕

y∈Y πu=(0,1,1,1)(y), we take two
specific values of the input vector k. If the input vector k = (1, 0, 0, 1),⊕

y∈Y
πu=(0,1,1,1)(y) =

⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,1)(x)

= 0⊕ 1⊕ 0
= 1

If the input vector k = (1, 0, 1, 0),⊕
y∈Y

πu=(0,1,1,1)(y) =
⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,1)(x)

= unknown⊕ 1⊕ 0
= unknown

3.3 New Modeling Method for S-box
Let the set U = {0, 1}n represent all the elements on Fn

2 . For any u ∈ Fn
2 , we assume

that πu(y) contains i ⩽ 2n monomials about the vector x, which are πφ0(x),. . . ,πφi−1(x),
respectively. If πu(y) contains πℓ(x), we assume that ℓ = φj , where 0 ⩽ j ⩽ i− 1.
According to Observation 2 and Theorem 2, we propose Theorem 3, which is a more
accurate method to calculate all valid division trails L of an S-box.
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Theorem 3. If the input multiset X to the S-box has BDPT D1n

k,ℓ where k = (k0, . . . ,

kn−1), ℓ = (ℓ0, . . . , ℓn−1). Let the output multiset Y of S-box have BDPT D1n

K,L, which is
calculated by

K = {u ∈ Fn
2 | πu(y) contains any monomial πk̄(x) satisfying k̄ ⪰ k}

L = {u ∈ Fn
2 | πu(y) contains πℓ(x) and the input vector k ∈ S∩}.

where S∩ =
⋂i−1

q=0 Sq and Sq = U\{φ̄q | φq ⪰ φ̄q}. If q ≠ j, the Sq represents the possible
value of the input vector k when

⊕
x∈X πφq

(x) = 0. If q = j, the Sj represents the possible
value of the input vector k when

⊕
x∈X πφj

(x) = 1.

The proof is provided in Appendix A. Moreover, Appendix B shows a simple example
for Theorem 3. According to Theorem 3, we present a generalized algorithm to calculate
all valid division trails L of an S-box.

Algorithm 1 Calculating division trails of an S-box
Input: The input BDPT of an n-bit S-box D1n

k,ℓ, where k = (k0, . . . , kn−1), ℓ =
(ℓ0, . . . , ℓn−1)

Output: The output BDPT D1n

K,L
1: S̄ = {k̄ | k̄ ⪰ k}, F (X̄) =

{
πk̄(x) | k̄ ∈ S̄

}
2: K̄ = ∅,L̄ = ∅ and U = {0, 1}n

3: for u ∈ (F2)n do
4: S∩ = ∅
5: for 0 ⩽ q ⩽ i− 1 do
6: Sq = ∅ ▷ i ⩽ 2n represents πu(y) contains i monomials
7: if πu(y) contains any monomial in F (X̄) then
8: K̄ = K̄ ∪ {u}
9: if πu(y) contains πℓ(x) then

10: for πu(y) contains every monomial πφq
(x) do

11: Sq = U\{φ̄q | φq ⪰ φ̄q}
12: S∩ =

⋂i−1
q=0 Sq

13: if the input vector k ∈ S∩ then
14: L̄ = L̄ ∪ {u}
15: K = SizeReducek(K̄) and L = SizeReducel(L̄)
16: return K,L

We explain Algorithm 1 line by line:
Line 1 According to input BDPT D1n

k,ℓ and Definition 3, the parity of monomial πk̄(x)
with k̄ ⪰ k over X is unknown, and we store these monomials in F (X̄).
Line 2 Initialize K̄,L̄ as empty sets and let the set U = {0, 1}n represent all the elements
on Fn

2 .
Line 3-6 For any possible u, let the set S∩ be an empty set, and the set S∩ represent
the intersection of the possible values of the input vector k when

⊕
y∈Y πu(y) = 1. For i

monomials contained in πu(y), initialize Sq as an empty set, 0 ⩽ q ⩽ i− 1.
Line 7-8 For any possible u, if polynomial πu(y) contains any monomial in F (X̄), the
parity of πu(y) over X is unknown. We store all these vectors u in K̄.
Line 9-14 For any possible u, if polynomial πu(y) contains the monomial πℓ(x) and the
input vector k ∈ S∩ =

⋂i−1
q=0 Sq, where Sq = U\{φ̄q | φq ⪰ φ̄q} and i ⩽ 2n represent πu(y)

contains i monomials, the parity of πu(y) over X is 1. We store all these vectors u in L̄.
Line 15 SizeReducek function removes all redundant vectors in K̄. Namely, if there are
u, u′ ∈ K̄ satisfying u ⪰ u′, the vector u can be removed from K̄. Moreover, SizeReducel

function removes all redundant vectors in L̄. If there are ℓ′ ∈ L̄ and u ∈ K̄ satisfying
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ℓ′ ⪰ u, the vector ℓ′ can be removed from L̄.
Line 16 Return K,L as output.

Given an n-bit S-box and its input BDPT D1n

k,ℓ, Algorithm 1 returns the output BDPT
D1n

K,L. Thus for any vector k′ ∈ K, (k, k′) is a valid division trail K of the S-box. Similarly,
for any vector ℓ′ ∈ L, (ℓ, ℓ′) is a valid division trail L of the S-box. Because vector ℓ does
not affect the propagation of vector k through the S-box, we will obtain a complete list
of the division trail K by traversing k ∈ Fn

2 , and Xiang et al. [XZBL16] show the results
of Present S-box. Similarly, for a certain input vector ℓ ∈ Fn

2 , we will obtain a set of
division trails L by traversing k ∈ Fn

2 . If we try all the 2n possible input vector ℓ, we will
obtain a complete list of division trails L. Table 4 in Appendix C presents a complete list
of all the division trails L of Present S-box.

Representing the Division Trails of S-box as Linear Inequalities. For an n-
bit S-box, each of its valid division trail can be viewed as a 2n-dimensional vector in
{0, 1}2n. Thus, all valid division trails form a subset A of {0, 1}2n. Similar to Model 1, we
compute the H-Representation of convex hull Conv(A) by using the inequality_generator
function in SageMath. It will return a set of linear inequalities L which characterize all
valid division trails. However, L contains too many inequalities, which will make the size
of the corresponding MILP problem too large to solve. Generally, the Greedy Algorithm
[SHW+14] is used to reduce this set L. However, Sasaki et al. [ST17] found that the
number of inequalities selected by the greedy algorithm was not the optimal solution, and
they proposed a new reduction algorithm. We apply it to reduce this set L, which we
showed in Algorithm 2.

Algorithm 2 Based-MILP Select a subset of linear inequalities from L of an S-box
Input: A: the set of all division trails of an S-box

L: the set of all inequalities in the H-Representation of Conv(A) with A a
subset of {0, 1}2n

Output: O: a set of inequalities seleted from L whose feasible solutions restricted in
{0, 1}2n are exactly A

1: O = ∅ and C = ∅
2: B = {0, 1}2n \A = {b(0), b(1) . . . , b(m−1)}
3: L = {l(0), l(1) . . . , l(t−1)}
4: for b(i) ∈ B do ▷ 0 ⩽ i ⩽ m− 1
5: L∗ = ∅
6: for l(j) ∈ L do ▷ 0 ⩽ j ⩽ t− 1
7: if the inequality l(j) excludes impossible division trails b(i) then
8: L∗ = L∗ ∪ {j}
9: C.AddConstraints(L∗)

10: Obj = Minimize(L)
11: M = ConstructModel(C, Obj)
12: O =M. Optimize()
13: return O

We explain Algorithm 2 line by line:
Line 1 Initialize O and C as empty sets.
Line 2-3 Let the set B = {0, 1}2n \ A represent all impossible division trails, and the
set L represent t inequalities obtained by using the inequality_generator function in
SageMath.
Line 4-9 For each impossible division trail b(i), let the set L∗ be an empty set. For any
inequality l(j) ∈ L, if the inequality l(j) excludes impossible division trails b(i), we store



14 A More Accurate Automatic Search Model for Characterizing Division Property

the tags j of all these inequalities in L∗. AddConstraints() function adds an inequality
constraint

∑
j∈L∗ zj ≥ 1 to the constraint set C with the binary variables z0, z1, . . . , zt−1, in

which zj = 1 represents that inequality l(j) is chosen and zj = 0 represents that inequality
l(j) will not be chosen. The constraint set C means that every impossible division trail is
removed with at least one inequality. Thus, there are m constraints in the constraint set C.
Line 10 Set the objective function Obj: Minimize

∑t−1
j=0 zj .

Line 11 ConstructModel function construct a MILP model M by using the constraint
set C and the objective function Obj.
Line 12 The MILP model M is optimized by the openly available solver Gurobi. It will
return a set of inequalities that is composed of all inequalities l(j) ∈ L satisfying zj = 1,
where 0 ⩽ j ⩽ t− 1.
Line 13 Return O as output.

We applied the Algorithm 2 to a set of linear inequalities generated with SageMath
against all valid division trails of various S-boxes. Compared to the previous reduction
algorithm based on the greedy algorithms, a smaller number of inequalities can be obtained
by Algorithm 2. The results are shown in Table 3. To show the effectiveness of Algorithm 2,
the division trails K and L of the “S-box” is characterized by the 6 and 10 inequalities in
Appendix D, respectively.

Table 3: Number of linear inequalities to characterize all valid division trails of an S-box

S-box The number of
division trails

#inequalities
SageMath Previous Algorithm 2

Simon “S-box”
|K| = 26 12 — 6
|L| = 30 18 — 10

Present S-box
|K| = 47 122 11 8
|L| = 84 257 23 20

Rectangle S-box
|K| = 49 201 17 12
|L| = 80 246 19 17

3.4 Modeling BDPT of Key-Xor operation
To model the Key-Xor operation, we propose Propositon 1 according to Definition 5. The
proof is provided in Appendix E.

Proposition 1 (Cross Propagation). Assume that the input multiset X to an iterated
block cipher has initial BDPT D1n

k,ℓ. And let D1n

Kr,Lr
denote the BDPT of the output multiset

after r-round propagation through fe and fk, where

Kr = fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(k) ∪ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r−1

◦fk(L1) ∪ · · · ∪ fk(Lr)

= fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(k) ∪ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r−1

◦fk ◦ fe(ℓ) ∪ · · · ∪ fk ◦ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(ℓ)

Lr = fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(ℓ)

Thus, the set of the last vectors of all r-round division trails K which start with the vector
k, and the set of the last vectors of all r-round BDPT trails which start with the vector ℓ,
is equal to Kr. Besides, the set of the last vectors of all r-round division trails L, which
start with the vector ℓ is equal to Lr.
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According to Definition 5 and Propositon 1, the Key-Xor operations are independent
of each other during r-round BDPT propagation. Without loss of generality, we consider
the t-th Key-Xor operation, i.e.,

fe ◦ · · · ◦ fe︸ ︷︷ ︸
r−t

◦fk ◦ fe ◦ · · · ◦ fe︸ ︷︷ ︸
t

(ℓ) ∈ Kr

We assume that the input vector ℓ is propagated through t-round and get the set
Lt. For the t-th Key-Xor operation, the input and output BDPT are {Lt} and {K∗

t ,L∗
t },

respectively. Our model uses three n-bit variables Lt, K∗
t , and L∗

t to denote them, where
n is the block size. In many block ciphers, the round key is only XORed with a part of
block. Without loss of generality, we assume that the round key is XORed with the left s
(1 ⩽ s ⩽ n) bits and is represented by an n-bit vector m = (m0, . . . , mn−1), where

mi =
{

1, if 0 ⩽ i ⩽ s− 1,
0, otherwise.

We consider the effect of the t-th Key-Xor operation on K∗
t , L∗

t , respectively.
For the output BDPT L∗

t , according to Rule 1, fk does not affect the propagation from
Lt to L∗

t . Therefore, the constraint on Lt and L∗
t is L∗

t = Lt.
For the output BDPT K∗

t , according to Rule 1, for every vector ℓ∗ ∈ Lt satisfying
ℓ∗

i = 0, 0 ⩽ i ⩽ s− 1, we calculate ℓ∗ ∨m and add it to the set K∗
t . Thus, the constraint

on Lt and K∗
t is ℓt

0 + ℓt
1 + · · ·+ ℓt

s−1 ⩽ s− 1 and K∗
t = Lt ∨m.

We only considered the t-th Key-Xor operation fk instead of considering a complete
BDPT propagation chain, i.e., ℓ → K∗

t → Kr. We give Algorithm 3 to characterize the
BDPT propagation chain based on MILP. In Algorithm 3, we construct a constraint set Ct

using a linear inequality system, which accurately characterizes the BDPT trails of the set
generated by the t-th Key-Xor operation.

Algorithm 3 Based-MILP Characterize the Propagation Rule of Key-XOR Operations
Input: The initial input BDPT of an n-bit iterated block cipher D1n

K0={k},L0={ℓ}
Ok(K): a constraint set of linear inequalities whose feasible solutions are all
valid division trails K of the round function
Ol(L): a constraint set of linear inequalities whose feasible solutions are all
valid division trails L of the round function
An n-bit vector m representing the Key-XOR operation

Output: P: A collection of MILP models with constraints for Key-XOR Operations
1: P = ∅
2: Allocate n-bit variables K∗

i to denote K∗
i , where (i = 0, 1, . . . , r)

3: Allocate n-bit variables Li to denote Li, where (i = 0, 1, . . . , r)
4: Obj = Minimize({kr∗

0 + · · ·+ kr∗

n−1})
5: for (t = 1; t < r; t + +) do
6: Ct = ∅
7: for (i = 0; i < t; i + +) do
8: Ct ← Ol(Li,Li+1)
9: Ct ← {ℓt

0 + ℓt
1 + · · ·+ ℓt

s−1 ⩽ s− 1}
10: K∗

t = Lt ∨m
11: for (j = t; j < r; j + +) do
12: Ct ← Ok(K∗

j ,K∗
j+1)

13: Mt = ConstructModel(Ct, Obj)
14: P = addModel(Mt)
15: return P



16 A More Accurate Automatic Search Model for Characterizing Division Property

We explain Algorithm 3 line by line:
Line 1 Initialize P as empty sets.
Line 2-3 In the MILP model, each n-bit variable represents the BDPT K or L. Thus, we
allocate two sets of n-bit variables K∗

i and Li to represent the sets K∗
i and Li, where n is

the block size and 0 ⩽ i ⩽ r.
Line 4 Set the objective function Obj: Minimize

∑n−1
i=0 kr∗

i , where kr∗

i represents the i-th
bit of the n-bit variables K∗

r .
Line 5-8 For the t-th Key-Xor operation (1 ⩽ t ⩽ r − 1), let the constraint set Ct be an
empty set. The former t-round BDPT propagation is characterized by linear inequalities
constraint set Ol(L), and the inequality constraints of each round are added to the con-
straint set Ct.
Line 9-10 For the t-th Key-Xor operation, we choose vectors that can be added to the set
K∗

t , calculate a new constraint Lt ∨m and assign it to K∗
t .

Line 11-12 The remaining (r − t)-round BDPT propagation is characterized by linear
inequalities constraint set Ok(K), and the inequality constraints of each round are added
to the constraint set Ct.
Line 13 ConstructModel function constructs a MILP model Mt using the constraint set
Ct and the objective function Obj.
Line 14 We add the MILP model Mt, which characterizes the BDPT propagation of the
t-th Key-Xor operation, to the model set P.
Line 15 Return P as output.

Algorithm 3 constructs a MILP model for the former r− 1 Key-Xor operations of an r-
round block cipher, which characterizes all division trails of a complete BDPT propagation
chain, i.e., ℓ→ K∗

t → Kr, 1 ⩽ t ⩽ r − 1. By solving each model Mt in the model set P
separately, we can obtain the set of the last vectors of all r-round BDPT trails, which
start with the vector ℓ.

Remark 2. The r-th Key-Xor operation is ignored in our Algorithm 3, since it does not
produce any unit vector for Kr in our model.

4 Initial, Stopping Rule and Search Algorithm

In this section, we first study the initial BDPT and stopping rule in searching for integral
distinguishers based on BDPT. According to Definition 5 and Proposition 1, for each
model which starts with the input vector k or ℓ, we convert the stopping rule into an
objective function of the MILP model. At last, we propose an algorithm to search integral
distinguishers based on BDPT given the initial BDPT D1n

k,ℓ for an n-bit block cipher.

4.1 Initial BDPT

In [TM16], Todo and Morii set the initial BDPT as (k = 1, ℓ = 7fffffff) to search the
BDPT of Simon32, where the active bits of the vector ℓ are set as 1, and the constant bit
is set to 0. Similarly, we assume that

((
k0

0, k0
1, . . . , k0

n−1
)

,
(
ℓ0

0, ℓ0
1, . . . , ℓ0

n−1
))

denotes the
initial BDPT, where n is the block size. The constraints on k0

i and ℓ0
i are

k0
i = 1, for i = 0, 1, 2, . . . , n− 1

ℓ0
i =

{
1, if the i-th bit is active,
0, otherwise.
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4.2 Stopping Rule
Stopping Rule 1 (for a single model). We consider the stopping rule of the r-th round
output sets Kr and Lr, respectively.

According to Proposition 1, the set Kr is composed of all r-round division trails K,
which start with the vector k, and all r-round BDPT trails produced by the Key-XOR
operations, which start with the vector ℓ. In the BDPT propagation, we note that only
the vector 1 can propagate to vector 1. Thus, if the given initial BDPT is D1n

k,ℓ with k = 1,
the r-round division trails K can be ignored because it does not produce any unit vector
for Kr, i.e.,

Kr \ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(k)

Therefore, the model set P constructed by Algorithm 3 can accurately describe the
vectors in Kr. For each model Mt in the model set P, let (ℓ0

0, ℓ0
1, . . . , ℓ0

n−1) fe−→ · · · fe−→
(ℓt

0, ℓt
1, . . . , ℓt

n−1) fk−→ (kt∗

0 , kt∗

1 , . . . , kt∗

n−1) fe−→ · · · fe−→ (kr∗

0 , kr∗

1 , . . . , kr∗

n−1) denote an r-
round BDPT trail for the t-th Key-Xor operation. The objective function can be set as
follows:

Obj : Minimize{kr∗

0 + kr∗

1 + · · ·+ kr∗

n−1}
According to Proposition 1, the set Lr is composed of all r-round division trails L,

which start with the vector ℓ. Let (ℓ0
0, ℓ0

1, . . . , ℓ0
n−1) fe−→ · · · fe−→ (ℓr

0, ℓr
1, . . . , ℓr

n−1) denote
an r-round division trail L. Thus, we can set the objective function as :

Obj : Minimize{ℓr
0 + ℓr

1 + · · ·+ ℓr
n−1}

Stopping Rule 2 (for the overall model). Our overall model is divided into model sets P
and modelML, which describe all vectors in sets Kr and Lr, respectively. Our overall MILP
model only focuses on the parity of one output bit. Without loss of generality, we consider
the q-th output bit. For each model Mt in the model set P , we can use the solver Gurobi
to determine whether the MILP model Mt has feasible solution Kq = (kr∗

0 , . . . , kr∗

n−1),
where

kr∗

i =
{

1, if i = q,

0, otherwise.

If any Mt in the model set P has feasible solution Kq, there is a unit vector eq ∈ Kr, and
further the q-th output bit is unknown.

If there is not feasible solution Kq of model set P and the number of solutions Lq =
(ℓr∗

0 , . . . , ℓr∗

n−1) of model ML is odd, where

ℓr∗

i =
{

1, if i = q,

0, otherwise.

there is a unit vector eq ∈ Lr, and further the parity of the q-th output bit is 1. Otherwise
the q-th output bit is 0.

4.3 Search Algorithm
We present the automated search integral distinguishers algorithm, which decides the
parity of the q-th output bit with the given initial BDPT D1n

K0={k},L0={ℓ} for an n-bit
block cipher. Firstly, we allocate all round variables and auxiliary variables. Secondly,
we construct a MILP model ML that describes all r-round division trails L and calls
Algorithm 3 to save the model set P. At last, according to the initial and stopping rules,
we can obtain the parity of the q-th output bit based on BDPT. We illustrate the whole
framework in Algorithm 4.
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Algorithm 4 Automated search r-round integral distinguishers
Input: The cipher E, the initial input BDPT of the n-bit block cipher D1n

K0={k},L0={ℓ},
and the number q

Output: The balanced information of the q-th output bit based on BDPT
1: Allocate all the variables denoting the input and output BDPT
2: Obj = Minimize({ℓr

0 + · · ·+ ℓr
n−1})

3: ML = ConstructModel({Ol(L)× r}, Obj)
4: Call Algorithm 3 and save the model set P
5: for every model Mt ∈ P do
6: flag = 0
7: if the MILP model Mt has solutions Kq then
8: flag = flag + 1
9: if flag ⩾ 1 then

10: return unknown
11: else if the number of solutions Lq of model ML is odd then
12: return 1
13: else
14: return 0

5 Applications
In this section, we apply our algorithm to Simon, Simeck, Present, and Rectangle
block ciphers. The results are listed in Table 1. All the experiments are conducted on the
following platform: Xeon(R) CPU E5-2620 v3 @2.40 GHz, 128 G RAM. And the optimizer
used to solve MILP models is Gurobi 9.0.3. In addition, for the integral distinguishers,
the label “a” represents the active bit, “c” represents the constant bit, “?” represents
unknown, “0” represents the balanced bit whose sum is 0, “1” represents the balanced bit
whose sum is 1.

5.1 Applications to SIMON and SIMECK

Simon [BSS+15] is a family of lightweight block ciphers published by the U.S. National
Security Agency (NSA) in 2013. Simon adopts the Feistel structure, and it has a very
compact round function that only involves bit-wise And, Xor, and Circular shift operations.
The structure of one round Simon encryption is depicted in Fig. 2, where Si denotes
the left circular shift by i bits. The core operation of the round function, and “S-box”
are represented in the Fig. 1. Simeck [YZS+15] is a family of lightweight block cipher
proposed at CHES 2015, and its round function is very similar to that of Simon except
for the rotation constants. We only introduce the automatic search model for Simon2n
based on BDPT.

xi yi

S8

S1

S2

ki

xi+1 yi+1

Fig. 2. Round function of Simon
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In Algorithm 3, we introduce two constraint sets, Ok(K) and Ol(L), which describe
division trails K and L of the round function, respectively. For 1-round description of
Simon2n, they are similar except for the characterization of “S-box”. Therefore, we only
introduce 1-round description for Ol(L) of Simon2n.
1-round Description for Ol(L) of Simon2n. Denote one round division trail L of
Simon2n by

(
ai,0

0 , . . . , ai,0
n−1, bi,0

0 , . . . , bi,0
n−1

)
→

(
ai+1,0

0 , . . . , ai+1,0
n−1 , bi+1,0

0 , . . . , bi+1,0
n−1

)
. In

our model, we divide the round function of Simon2n into n “S-box” operations and a
Key-Xor operation. We first consider the “S-box” operation and assume that the input
and output of the j-th “S-box” are denoted as

(
ai,j−1

0 , . . . , ai,j−1
n−1 , bi,j−1

0 , . . . , bi,j−1
n−1

)
and(

ai,j
0 , . . . , ai,j

n−1, bi,j
0 , . . . , bi,j

n−1

)
, respectively. According to Fig. 2, the input set that actually

participates in the j-th “S-box” operation is {ai,j−1
(1−j) mod n, ai,j−1

(8−j) mod n, ai,j−1
(2−j) mod n, bi,j−1

(n−j) mod n},
and the corresponding output set is {ai,j

(1−j) mod n, ai,j
(8−j) mod n, ai,j

(2−j) mod n, bi,j
(n−j) mod n}.

Appendix D shows the 10 inequalities for the division trails L of the “S-box”, and thus the
4-bit input and output can be modeled by the 10 inequalities, which be denoted by L1.
For the rest (2n− 4) bits, which remains unchanged, we have

L2 :
{

ai,j
m = ai,j−1

m m ∈ {0, 1, . . . , n− 1} \ {(1− j), (8− j), (2− j)} mod n

bi,j
m = bi,j−1

m m ∈ {0, 1, . . . , n− 1} \ {(n− j)} mod n

Therefore, we get an accurate description {L1,L2} of the division trails L of the j-th
“S-box”. By repeating this procedure n times, we can get a set of linear inequalities for the
n “S-box” operations.

At last, we consider the Key-Xor operation, and its input and output are denoted
as

(
ai,n

0 , . . . , ai,n
n−1, bi,n

0 , . . . , bi,n
n−1

)
and

(
ai+1,0

0 , . . . , ai+1,0
n−1 , bi+1,0

0 , . . . , bi+1,0
n−1

)
, respectively.

According to Rule 1, the Key-Xor operation does not affect the propagation of division
trails L. Therefore, the Key-Xor operation in Simon2n can be modeled by the following
inequalities:

L3 :
{

ai+1,0
m = bi,n

m m ∈ {0, 1, . . . , n− 1}
bi+1,0

m = ai,n
m m ∈ {0, 1, . . . , n− 1}

So far, we have modeled all operations used in the round function of Simon2n and get an
accurate description {{L1,L2} × n,L3} of 1-round division trails L, i.e., Ol(L). Similarly,
we can get the 1-round description for Ol(K) of Simon2n.

Integral Distinguishers. We use Algorithm 3 and 4 to search the integral distinguishers
of Simon and Simeck family based on BDPT.

1. For Simon64, we can find a 17-round integral distinguisher with 27 balanced bits,
which has four more bits than the previous longest distinguisher [WHG+19]. For
Simon32, 48, 96, 128, the distinguishers we find are in accordance with the previous
longest distinguishers found in [WHG+19].

2. For Simeck32,48, 64, the distinguishers we find are in accordance with the previous
longest distinguishers found in [XZBL16, WHG+19].

The detailed integral distinguishers of Simon and Simeck are listed in Appendix F. To
further prove the accuracy of our automatic search model, we apply Algorithm 3 and 4
to search integral distinguishers of Simon(102) [KLT15] based on BDPT, and show the
detailed results in Appendix G.
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5.2 Applications to PRESENT and RECTANGLE

Present [BKL+07] has an SPN structure and uses 80- and 128-bit keys with 64-bit blocks
through 31 rounds, of which the linear layers are bit permutations. Fig. 3 illustrates the
one-round structure of Present. Rectangle [ZBL+15] is a bit-slice lightweight block
cipher proposed in 2015, and its structure is very similar to Present.
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Fig. 3. One-round SPN Structure of Present

Integral Distinguishers. We have shown how to model the Ol(K) and Ol(L) in Simon.
Thus, we omit the details for these two ciphers due to the limit of space. We apply
Algorithm 3 and 4 to search the integral distinguishers of Present and Rectangle based
on BDPT.

1. For Present, we find a better 9-round integral distinguisher with less active bits,
i.e., the data complexity decreased from 263 to 262, and its number of balanced bits
is in accordance with the paper [WHG+19].

2. For Rectangle, we find a 10-round integral distinguisher with 9 balanced bits,
which is one more round than the previous best integral distinguisher in [WHG+19].

The detailed integral distinguishers of Present and Rectangle are listed in Appendix F.

6 Conclusions
In this paper, we proposed an automatic search model to search integral distinguishers
based on BDPT. We first proposed an effective algorithm that can more accurately obtain
the division trails K and L of the S-box according to its ANF directly. Then we model each
Key-Xor operation based on MILP technique for the first time. By solving these MILP
models, we could accurately characterize the Key-Xor operation. Finally, by selecting
appropriate initial and stopping rules, we can construct an automatic search model that
more accurately characterizes the BDPT propagation, based on which we present an
algorithm to estimate whether the q-th output bit is balanced.

We apply our automatic search model to search integral distinguishers of some block
ciphers. For Simon64, Present, and Rectangle, we obtained much better integral
distinguishers than previous results in the open literature. For other block ciphers, our
results are in accordance with the previous longest distinguishers. Moreover, compared
with the previous methods, our automatic search model reduces the time complexity of
searching integral distinguishers for the above block ciphers.
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A Proof of Theorem 3
According to Theorem 2, for the input vector ℓ, calculating

⊕
y∈Y πu(y) for all u ∈ Fn

2 , if⊕
y∈Y πu(y) = 1, we obtain a valid division trail (ℓ, u). In order to obtain the condition

that
⊕

y∈Y πu(y) = 1 is established, we first study the πu(y), which is a polynomial
representation about x.

πu(y) =
n−1∏
i=0

y[i]u[i]
, where y[i] = fi (x0, . . . , xn−1)

=
n−1∏
i=0

fi (x0, . . . , xn−1)u[i]

=
n−1∏
i=0

 ⊕
v∈Fn

2

afi
v πv(x)

u[i]

Let

g(x) =
n−1∏
i=0

 ⊕
v∈Fn

2

afi
v πv(x)

u[i]

=
⊕

φ∈Fn
2

ag
φπφ(x)

where afi
v ∈ F2 is a constant value depending on fi and v, ag

φ ∈ F2 also is a constant value
depending on g and φ. Thus,

πu(y) =
⊕

φ∈Fn
2

ag
φπφ(x)

we assume the set O = {φ ∈ Fn
2 | ag

φ = 1}, we have⊕
y∈Y

πu(y) =
⊕
x∈X

⊕
φ∈Fn

2

ag
φπφ(x)

=
⊕
x∈X

πφ0(x)⊕ · · · ⊕
⊕
x∈X

πφ|O|−1(x)

where the φi ∈ O, 0 ≤ i ≤ |O| − 1. According to Definition 3, the parity of
⊕

x∈Xπφi
(x)

is unknown or 1 or 0, where 0 ≤ i ≤ |O| − 1. If
⊕

y∈Y πu(y) = 1, i.e.,⊕
x∈X

πφ0(x)⊕ · · · ⊕
⊕
x∈X

πφ|O|−1(x) = 1

Obviously, the input vector ℓ ∈ O and
⊕

x∈Xπℓ(x) = 1. Let ℓ = φj , where j ∈ {i | 0 ≤
i ≤ |O| − 1}. For any φi ∈ O\{φj},

⊕
x∈Xπφi

(x) = 0. Thus,⊕
y∈Y

πu(y) = 1⇔ for every φi ∈ O\{φj},
⊕
x∈X

πφi
(x) = 0 and

⊕
x∈X

πℓ=φj
(x) = 1 (3)

According to Definition 3, for every
⊕

x∈Xπφi
(x) = 0 and

⊕
x∈Xπφj

(x) = 1, the possible
value of the input vector k is Si = U\{φ̄i | φi ⪰ φ̄i}, where 0 ≤ i ≤ |O| − 1(Because
j ∈ {i | 0 ≤ i ≤ |O| − 1}, we have 0 ≤ i ≤ |O| − 1). Therefore, for all 0 ≤ i ≤ |O| − 1, we
have

S∩ = S0 ∩ · · · ∩ S|O|−1

The set S∩ represents the intersection of the possible values of k when the
⊕

x∈Xπφi
(x) = 0

and
⊕

x∈Xπφj
(x) = 1. If the input vector k ∈ S∩, it means that the input vector k such

that (3) holds. So (3) is equivalent to πu(y) contains πℓ(x) and k ∈ S∩.
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B Example for Theorem 3

To help readers understand the Theorem 3, we show a simple example of the core operation
of Simon family. We first treat the core operation of Simon family as an “S-box”,
which is a 4 × 4 S-box, and its input and output are shown in Fig. 1. Let the input
multiset X to the “S-box” have BDPT D14

k,ℓ=(0,0,1,0). For every u ∈ F4
2, we calculate the

πu(y) =
∏3

i=0 fi (x0, x1, x2, x3)u[i] as shown in Table 4. According to Theorem 3 and
Table 4, if the πu(y) contains πℓ(x), the vector u ∈ {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}. We
consider the following three cases respectively.

1. When the vector u = (0, 0, 0, 1), we calculate:

⊕
y∈Y

πu=(0,0,0,1)(y) =
⊕
y∈Y

y3

=
⊕
x∈X

(x0x1 ⊕ x2 ⊕ x3)

=
⊕
x∈X

π(1,1,0,0)(x)⊕
⊕
x∈X

π(0,0,1,0)(x)⊕
⊕
x∈X

π(0,0,0,1)(x)

= (0 or unknown Depends on k)⊕ 1⊕ (0 or unknown Depends on k)

if
⊕

x∈X π(1,1,0,0)(x) = 0, the vector k ∈ S0 = U\{φ̄0 | φ0 = (1, 1, 0, 0) ⪰ φ̄0}.
Similarly, we can get k ∈ S1 = U\{φ̄1 | φ1 = (0, 0, 1, 0) ⪰ φ̄1} and k ∈ S2 = U\{φ̄2 |
φ2 = (0, 0, 0, 1) ⪰ φ̄2}. We calculate the intersection of the values of the vector k,
i.e.,

S∩ = S0 ∩ S1 ∩ S2 = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 1),
(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}

Thus, (0, 0, 1, 0)→ (0, 0, 0, 1) is an valid division trail when the input vector k ∈ S∩.

2. When the vector u = (0, 0, 1, 0), we calculate:

⊕
y∈Y

πu=(0,0,1,0)(y) =
⊕
y∈Y

y2

=
⊕
x∈X

x2

=
⊕
x∈X

π(0,0,1,0)(x)

= 1

if
⊕

x∈X π(0,0,1,0)(x) = 1, the vector k ∈ S0 = U\{φ̄0 | φ0 = (0, 0, 1, 0) ⪰ φ̄0}. We
calculate the intersection of the values of the vector k, i.e.,

S∩ = S0 = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0),
(1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}

Thus, (0, 0, 1, 0)→ (0, 0, 0, 1) is an valid division trail when the input vector k ∈ S∩.
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Table 4: Correspondence between the vector u and πu(y) for the “S-box”
Vector u πu(y)

u = [0, 0, 0, 0] 1
u = [0, 0, 0, 1] y3 = x0x1 ⊕ x2 ⊕ x3

u = [0, 0, 1, 0] y2 = x2

u = [0, 0, 1, 1] y2y3 = x0x1x2 ⊕ x2 ⊕ x2x3

u = [0, 1, 0, 0] y1 = x1

u = [0, 1, 0, 1] y1y3 = x0x1 ⊕ x1x2 ⊕ x1x3

u = [0, 1, 1, 0] y1y2 = x1x2

u = [0, 1, 1, 1] y1y2y3 = x0x1x2 ⊕ x1x2 ⊕ x1x2x3

u = [1, 0, 0, 0] y0 = x0

u = [1, 0, 0, 1] y0y3 = x0x1 ⊕ x0x2 ⊕ x0x3

u = [1, 0, 1, 0] y0y2 = x0x2

u = [1, 0, 1, 1] y0y2y3 = x0x1x2 ⊕ x0x2 ⊕ x0x2x3

u = [1, 1, 0, 0] y0y1 = x0x1

u = [1, 1, 0, 1] y0y1y3 = x0x1 ⊕ x0x1x2 ⊕ x0x1x3

u = [1, 1, 1, 0] y0y1y2 = x0x1x2

u = [1, 1, 1, 1] y0y1y2y3 = x0x1x2x3

3. When the vector u = (0, 0, 1, 1), we calculate:⊕
y∈Y

πu=(0,0,1,1)(y) =
⊕
y∈Y

y2y3

=
⊕
x∈X

(x0x1x2 ⊕ x2 ⊕ x2x3)

=
⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(0,0,1,0)(x)⊕
⊕
x∈X

π(0,0,1,1)(x)

= (0 or unknown Depends on k)⊕ 1⊕ (0 or unknown Depends on k)

if
⊕

x∈X π(1,1,1,0)(x) = 0, the vector k ∈ S0 = U\{φ̄0 | φ0 = (1, 1, 1, 0) ⪰ φ̄0}.
Similarly, we can get k ∈ S1 = U\{φ̄1 | φ1 = (0, 0, 1, 0) ⪰ φ̄1} and k ∈ S2 = U\{φ̄2 |
φ2 = (0, 0, 1, 1) ⪰ φ̄2}. We calculate the intersection of the values of the vector k,
i.e.,

S∩ = S0 ∩ S1 ∩ S2 = {(0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 0, 1),
(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 1)}

Thus, (0, 0, 1, 0)→ (0, 0, 1, 1) is an valid division trail when the input vector k ∈ S∩.
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C Division trail L of Present S-box

Table 5 presents the division trails L of Present S-box.

Table 5: Division trails L of Present S-box
Input ℓ Output L

[0, 0, 0, 0] {[0, 0, 0, 0]}
[0, 0, 0, 1] {[0, 0, 0, 1], [0, 1, 0, 1], [1, 0, 0, 0], [1, 1, 0, 0]}
[0, 0, 1, 0] {[0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 0, 0], [1, 1, 0, 0]}
[0, 0, 1, 1] {[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0],[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0]}
[0, 1, 0, 0] {[0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0]}
[0, 1, 0, 1] {[0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 0]}
[0, 1, 1, 0] {[0, 0, 0, 1], [0, 1, 1, 0], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 0, 0]}
[0, 1, 1, 1] {[0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 1, 0], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 0, 1]}
[1, 0, 0, 0] {[0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0]}
[1, 0, 0, 1] {[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 0]}

[1, 0, 1, 0] {[0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 0, 1],
[1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]}

[1, 0, 1, 1] {[0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 1, 1],
[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 0, 1]}

[1, 1, 0, 0] {[0, 0, 1, 0], [0, 0, 1, 1], [1, 0, 0, 1], [1, 1, 0, 0]}
[1, 1, 0, 1] {[0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 1], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 1, 0]}
[1, 1, 1, 0] {[0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]}
[1, 1, 1, 1] {[1, 1, 1, 1]}

D Linear inequalities description BDPT of the Extension-
S-box

The following inequalities are the 6 inequalities used to describe the “S-box” whose feasible
solutions are exactly the 26 division trails K of the “S-box” where (a0, a1, a2, a3) →
(b0, b1, b2, b3) denotes a division trail.

O =



−a0 − a2 − a3 + b0 + b2 + b3 ≥ 0
−a1 − a2 − a3 + b1 + b2 + b3 ≥ 0
a2 + a3 − b0 − b2 − b3 + 1 ≥ 0
a2 + a3 − b1 − b2 − b3 + 1 ≥ 0
a0 + a1 + a2 + a3 − b0 − b1 − b2 − b3 ≥ 0
a2 − b2 ≥ 0
a0, a1, a2, a3, b0, b1, b2, b3 are binaries

(4)

The following inequalities are the 10 inequalities used to describe the “S-box” whose
feasible solutions are exactly the 30 division trails L of the “S-box” where (a0, a1, a2, a3)→
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(b0, b1, b2, b3) denotes a division trail.

O =



−a1 − a2 − a3 + b1 + b2 + b3 ≥ 0
a0 − b0 ≥ 0
a1 − b1 ≥ 0
−a0 − a2 − a3 + b0 + b2 + b3 ≥ 0
a2 − b2 ≥ 0
a0 − a1 + b1 ≥ 0
a0 + a2 + a3 − b3 ≥ 0
−a0 + a1 + b0 ≥ 0
a1 + a2 + a3 − b3 ≥ 0
a3 − b0 − b1 − b2 − b3 + 3 ≥ 0
a0, a1, a2, a3, b0, b1, b2, b3 are binaries

(5)

E Proof of Propositon 1
According to Definition 5, we have the following iteration expression

Ki = fe(Ki−1) ∪ fk(Li) = fe(Ki−1) ∪ fk ◦ fe(Li−1)
Li = fe(Li−1)

Thus,

Kr = fe(Kr−1) ∪ fk(Lr)
= fe (fe(Kr−2) ∪ fk(Lr−1)) ∪ fk(Lr)
= fe ◦ fe(Kr−2) ∪ fe ◦ fk(Lr−1) ∪ fk(Lr)
...

= fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(k) ∪ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r−1

◦fk ◦ fe(ℓ) ∪ · · · ∪ fk ◦ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(ℓ)

Lr = fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(ℓ)

F Integral Distinguishers listed in Table 1
For Simon and Simeck family block ciphers, all the integral distinguishers can be extended
one more round by the technique in [WLV+14].

F.1 SIMON32’s 14-round Distinguisher

Input:(caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)
Output:(????????????????, ?0??????0??????0)

F.2 SIMON48’s 15-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????, 000000000000000000000000)
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F.3 SIMON64’s 17-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????,
000000000001111?01????0000000000)

F.4 SIMON96’s 21-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????????????????????,
0?0????0?????????????????????????????????0????0?)

F.5 SIMON128’s 25-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????????????????????????????????????,
0?0???????????????????????????????????????????????????????????0?)

F.6 SIMECK32’s 14-round Distinguisher

Input:(caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)
Output:(????????????????, 00???00???00???0)

F.7 SIMECK48’s 17-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????, 0???00?????????????00???)

F.8 SIMECK64’s 20-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????,
00???0?????????????????????0???0)

F.9 PRESENT’s 9-round Distinguisher

Input: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaacc)

Output: (????????????0000????????????0000,
????????????00000000000000000000)
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F.10 RECTANGLE’s 10-round Distinguisher

Input:


aaaaaaaaaaaaaaac
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa

 −→ Output:


?0??00000???00?0
????????????????
????????????????
????????????????



G Integral Distinguishers of SIMON(102)
In [KLT15], another variant of Simon family named Simon(102) is proposed with rotation
constants (1,0,2). Hu et al. [HW19] proposed a variant BDPT and applied it to improve
the integral distinguishers of Simon(102). The results are shown in G.1–G.3, where ‘*’
represents that the output bit is ‘0’ or ‘1’.

G.1 SIMON(102) 32’s 14-round Distinguisher in [HW19]

Input:(caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)
Output:(????????????????, 0*?????????????*)

G.2 SIMON(102) 48’s 15-round Distinguisher in [HW19]

Input:(caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????, 0*?????????????????????*)

G.3 SIMON(102) 64’s 17-round Distinguisher in [HW19]

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????,
0*?????????????????????????????*)

Determining ‘*’ is ‘0’ or ‘1’ can be helpful to integral attacks on Simon(102). Therefore,
we apply Algorithm 3 and 4 to search integral distinguishers of Simon(102) based on
BDPT, and obtain more accurate integral distinguishers compared with [HW19]. The
results are shown in G.4–G.6. Besides, these integral distinguishers can be obtained by
the method of exploring secret keys in [WHG+20]. Note that our automatic search model
supposes that all secret keys are chosen randomly. If consider the secret keys, we may
obtain better integral distinguishers.

G.4 SIMON(102) 32’s 14-round Distinguisher

Input:(caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)
Output:(????????????????, 01?????????????1)

G.5 SIMON(102) 48’s 15-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)
Output:(????????????????????????, 01?????????????????????1)
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G.6 SIMON(102) 64’s 17-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????,
01?????????????????????????????1)


	Introduction
	Preliminaries
	Notations
	Bit-Based Division Property
	Based-MILP Bit-Based Division Property

	Modeling BDPT Propagations
	Treat Nonlinear Layer as ``S-box''
	Limitation of Previously Modeling BDPT of S-box
	New Modeling Method for S-box
	Modeling BDPT of Key-Xor operation

	Initial, Stopping Rule and Search Algorithm
	Initial BDPT
	Stopping Rule
	Search Algorithm

	Applications
	Applications to SIMON and SIMECK
	Applications to PRESENT and RECTANGLE

	Conclusions
	Proof of Theorem 3
	Example for Theorem 3
	Division trail L of Present S-box
	Linear inequalities description BDPT of the Extension-S-box
	Proof of Propositon 1
	Integral Distinguishers listed in Table 1
	SIMON32's 14-round Distinguisher
	SIMON48's 15-round Distinguisher
	SIMON64's 17-round Distinguisher
	SIMON96's 21-round Distinguisher
	SIMON128's 25-round Distinguisher
	SIMECK32's 14-round Distinguisher
	SIMECK48's 17-round Distinguisher
	SIMECK64's 20-round Distinguisher
	PRESENT's 9-round Distinguisher
	RECTANGLE's 10-round Distinguisher

	Integral Distinguishers of SIMON(102)
	SIMON(102) 32's 14-round Distinguisher in DBLP:conf/ctrsa/HuW19
	SIMON(102) 48's 15-round Distinguisher in DBLP:conf/ctrsa/HuW19
	SIMON(102) 64's 17-round Distinguisher in DBLP:conf/ctrsa/HuW19
	SIMON(102) 32's 14-round Distinguisher
	SIMON(102) 48's 15-round Distinguisher
	SIMON(102) 64's 17-round Distinguisher


