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Abstract. In this paper, we focus on constructing an automatic search
model that greatly improves efficiency with little loss of accuracy and
obtains some better results in the construction of integral distinguishers
for block ciphers. First, we define a new notion named BDPT Trail,
which divides BDPT propagation into three parts: the division trail for
K, division trail for L, and Key-Xor operation. Secondly, we improve the
insufficiency of the previous methods of calculating division trails and
propose an effective algorithm that can obtain more valid division trails
for L of the S-box operation. Third, we propose a new algorithm that
models each Key-Xor operation based on the MILP technique for the
first time. Based on this, we can accurately characterize the Key-Xor
operation by solving these MILP models. After that, by selecting the
appropriate initial BDPT and stopping rules, we construct an automatic
search model. As a result, our automatic search model is applied to
search for integral distinguishers for some block ciphers. For GIFT-64,
we find a 11-round integral distinguisher, which is one more round than
the previous best results. For Rectangle, we find a better 10-round
integral distinguisher with 9 balanced bits, which has eight more bits
than the previous best results. For Simon64, we can find more balanced
bits than the previous longest distinguishers.

1 Introduction

Integral cryptanalysis is one of the most powerful cryptanalysis techniques [9].
For a set of chosen plaintexts, attackers encrypt them r rounds and calculate
the value of the XOR of all ciphertexts. If the value is 0, we say that the cipher
has a r-round integral distinguisher.

Division property, a generalization of the integral property, which was pro-
posed by Todo at EUROCRYPT 2015 [19], could explicitly describe the prop-
erties hidden between the traditional integral ALL and BALANCE properties.
Later in CRYPTO 2015, Todo [18] applied the division property to MISTY1 and
achieved the first theoretical integral attack of full-round MISTY1, which proves
the superiority of the division property. Sun et al. [13] reviewed the division
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property and studied the property of a multiset satisfying certain division prop-
erties. At CRYPTO 2016, Boura and Canteaut proposed a new notion called
parity set to characterize the division property of the S-box, based on which
they found a better integral distinguisher for Present [4].

In order to exploit the algebraic structure of the round function, Todo and
Morii [20] proposed the bit-based division property, which treats each bit of the
target primitive independently. The bit-based division property can be divided
into two categories: the conventional bit-based division property (CBDP) and
the bit-based division property using three subsets (BDPT). The CBDP classify
all vectors u ∈ Fn

2 into two subsets such that the parity of
⊕

x∈X πu(x) is 0
or unknown, while BDPT divides all vectors u ∈ Fn

2 into three subsets such
that the parity of

⊕
x∈X πu(x) is 0, 1 or unknown. Essentially, the set unknown

in CBDP is divided into sets 1 and unknown in BDPT. Therefore, the BDPT
can characterize the integral property of the primitive with more precision. For
example, CBDP has found a 14-round integral distinguisher of Simon32 while
BDPT has found a 15-round integral distinguisher of Simon32 [20]. However,
the complexity of utilizing CBDP or BDPT is upper bounded by 2n, where n
denotes the block size.

Automatic Searching Integral Distinguishers Based on CBDP. To solve
the restriction of huge complexity, Xiang et al. used the Mixed Integral Linear
Programming (MILP) technique to construct an automatic search model, which
was successfully applied to search integral distinguishers for lightweight ciphers
whose block sizes were greater than 32 at ASIACRYPT 2016 [26]. By extending
and improving the method, integral attacks have been applied to many ciphers
and many better integral distinguishers have been found [14,5,21,15].

Automatic Searching Integral Distinguishers Based on BDPT. There
are two problems in constructing an automatic search model based on BDPT.

1. Feasibility and Efficiency. The automatic search model should be solved
in practical time by openly available solvers.

2. Accuracy and Completeness. The automatic search model needs to accu-
rately and completely characterize the complex propagation of BDPT, which
means the set K, L, and the influence of the set L on the set K should be
traced.

To address the above problems, Hu et al. [8] proposed an automatic search
model for a variant three-subset division property and applied the method to
improve some integral distinguishers. Later in ASIACRYPT 2019, Wang et al.
[24] proposed the pruning technique that removes redundant vectors, and a new
concept (“fast propagation”) that can translate BDPT into CBDP. Then, they
constructed a new automatic search model based on the above techniques to
search integral distinguishers. However, their methods sacrifice some accuracy
of the original BDPT. The three-subset division property without unknown sub-
set presented at EUROCRYPT 2020 [6] and the monomial prediction presented
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at ASIACRYPT 2020 [7] are two accurate techniques for the division property.
These two techniques provide an essential description of the division property
from the propagation [6] and algebraic [7] perspectives, respectively. Their main
idea is to determine the parity of a public function by counting the number of
solutions (or the number of monomial trails). It is the simplest solution to over-
come the unknown-producing property caused by the Key-Xor operation and
the cancellation property caused by the XOR operation [6]. However, when ap-
plying the technique to block ciphers directly, especially S-box-based ciphers, it
is difficult to count the number of solutions in practical time by openly available
solvers and the computational cost is too high.

Our Contributions. In this paper, we construct an automatic search model
that greatly improves the efficiency for block ciphers with a slight loss of accu-
racy and obtains some better results in the construction of integral distinguishers
for block ciphers. The details of our contributions are summarized as follows.

– BDPT Trail. We define a new notion named BDPT Trail to completely
and accurately characterize the BDPT propagation. The BDPT Trail di-
vides the BDPT propagation into three parts: the propagation of the set K,
the propagation of the set L, and the Key-Xor operation. Furthermore, we
introduce two notions named division trail for K and division trail for L to
illustrate the propagation of sets K and L, respectively. With these notions,
building an automatic search model that characterizes the BDPT propaga-
tion is equivalent to modeling the division trail for K, division trail for L,
and Key-Xor operation.

– Model the BDPT propagation of Nonlinear Layer. We first propose
an “S-box” technique, which treats the nonlinear layer of a block cipher as a
Blackbox, focusing only on its input and output, not on specific operations.
More precisely, the “S-box” technique treats the basic operations that pro-
vide nonlinearity in non-S-box-based ciphers as an S-box. Using the “S-box”
technique, we construct a generalized model that reduces the number of ba-
sic operations and models the nonlinear layer uniformly. More specifically,
we transform the BDPT modeling of the nonlinear layer into the BDPT
modeling of the S-box. To characterize the BDPT propagation of an S-box,
we apply the method in [4,26] to calculate all the division trails for K of the
S-box, and then we study the method to calculate all valid division trails for
L of the S-box. We show that the method in [8] only finds a part of all valid
division trails for L, and the method in [24] finds some extra invalid division
trails for L. Then we present a theorem that can accurately find all valid
division trails for L of the S-box according to its ANF directly. Based on
this, we propose an effective algorithm that can obtain more valid division
trails for L of the S-box. To model the division trails for K and division trails
for L of the S-box by a set of linear inequalities whose feasible solutions are
exactly these division trails, we use SageMath [17] to generate an initial set
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of linear inequalities and then apply a reduction algorithm to reduce the
initial set such that these division trails can be modeled by the minimum
number of linear inequalities [12].

– Model the BDPT propagation of Key-Xor operation. When a Key-
Xor operation is applied, new vectors generated from the set L will be added
to the set K. Therefore, how to accurately characterize the Key-Xor opera-
tion is a complex problem. To solve this problem, we propose a new algorithm
that models each Key-Xor operation based on the MILP technique for the
first time. Based on this, we can accurately characterize the Key-Xor opera-
tion by solving these MILP models. Finally, by selecting appropriate initial
BDPT and stopping rules, we can construct an automatic search model that
greatly improves the efficiency for block ciphers at a little loss of accuracy,
and obtain some better results.

– Applications. We apply our automatic search model to search integral dis-
tinguishers of Simon [2], Simeck [27], Rectangle [28], Present [3] and
GIFT-64 [1]. The results are shown in Table 1.

1. For non-S-box-based block ciphers. For Simon64, we can find a
better 17-round integral distinguisher with 27 balanced bits, which has
four more bits than the previous longest distinguisher [24]. For Simon32,
48, 96, 128 and Simeck32, 48, 64, the distinguishers we find are in
accordance with the previous longest distingui-shers [24].

2. For S-box-based block ciphers. For GIFT-64, we find an 11-round
integral distinguisher which is one round more than the previous best
results. For Rectangle, we find a 10-round integral distinguisher with
9 balanced bits, which has eight more bits than the best integral dis-
tinguisher in [11]. For Present, the distinguishers we find are in agree-
ment with the previous longest distinguishers [24]. For the above five
block ciphers, our automatic search model reduces the time complexity
of searching integral distinguishers compared to the previous methods.

Organization. This paper is organized as follows: In Section 2 we briefly re-
view some basic background knowledge about the bit-based division property.
Section 3 studies how to model these operations used in the round function of
a block cipher by the MILP technique. Section 4 studies the initial and stop-
ping rules and the search algorithm. Section 5 shows the applications of some
lightweight block ciphers, and we conclude our work in Section 6. Some auxiliary
materials are provided in the Appendix.
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Table 1: Summarization of integral distinguishers
Cipher Data Round NBB⋆ Time Ref.†

Simon32 231
15 3 1h48m

2.0m
[23]
[24]

15 3 1.6m Sect. 5

Simon48 247
16 24 1h48m [23]
16 24 8.4m Sect. 5

Simon64 263
18 23 23h31m

1h41m
[23]
[24]

18 27 1h8m Sect. 5

Simon96 295
22 5 31h25m [23]
22 5 5h55m Sect. 5

Simon128 2127
26 3 62h16m [23]
26 3 21h7m Sect. 5

Simeck32 231
15 7 51m [23]
15 7 1.3m Sect. 5

Simeck48 247
18 5 5h3m [23]
18 5 12.9m Sect. 5

Simeck64 263
21 5 23h25m [23]
21 5 47.3m Sect. 5

Present
263 9 28 4h8m

10m
[23]
[24]

263 9 28 4.6m Sect. 5

Rectangle
263 10 1 6.7m [11]
263 10 9 5.3m Sect. 5

GIFT-64
263 10 32 —— [1]
263 11 16 39.1m Sect. 5

1. † : The paper [23] in IACR Cryptology ePrint Archive is the preprint of [24]. The
results of the two papers are consistent except for the time complexity.

2. ⋆ : The balanced bit is divided into 0 and 1, where “0” represents the bit whose
sum is 0, “1” represents the bit whose sum is 1. The details results are shown in
Appendix F.

3. NBB: the number of balanced bits.

2 Preliminaries

2.1 Notations

Let F2 be the finite field {0, 1} and Fn
2 be the n-bit string over F2. For any

a ∈ Fn
2 , let a[i] be the i-th bit of a, and the Hamming weight of a is calculated
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as
∑n−1

i=0 a[i]. For any a = (a0, . . . , am−1) ∈ Fn0
2 × · · · × Fnm−1

2 , the vectorial
Hamming weight of a is defined as W (a) = (w(a0), . . . , w(am−1)) ∈ Zm, where
w(ai) is the Hamming weight of ai, and Z denotes the integer ring. For any
k ∈ Zm and k′ ∈ Zm, we define k ⪰ k′ if ki ⩾ k′i for all i = 0, 1, . . . ,m − 1.
Otherwise, k ⪰̸ k′. Let K be the set of k, and let |K| be the number of vectors
in K. Moreover, we simply write K← k when K := K ∪ {k}.

Bit Product Function [19] For any u ∈ Fn
2 , let x ∈ Fn

2 be the input. The
function πu(x) : Fn

2 → F2 is defined as πu(x) :=
∏n−1

i=0 x[i]
u[i]

For any u = (u0, u1, . . . , um−1) ∈ Fn0
2 ×F

n1
2 ×· · ·×F

nm−1

2 , let x = (x0, x1, . . . ,
xm−1) ∈ Fn0

2 × Fn1
2 × · · · × Fnm−1

2 be the input. The πu(x) : (Fn0
2 × Fn1

2 × · · · ×
Fnm−1

2 )→ F2 is defined as πu(x) :=
∏m−1

i=0 πui
(xi).

2.2 Bit-Based Division Property

Todo and Morii proposed two types of bit-based division property (CBDP and
BDPT) at FSE 2016 [20].

Definition 1. ((Bit-based) division property(CBDP)[20]) Let X be a multiset
whose elements take a value of Fn

2 . When the multiset X has the division property
D1n

K , it satisfies the following conditions:

⊕
x∈X

πu(x) =

{
unknown if there exists k ∈ K s.t. u ⪰ k,

0 otherwise.

where u ⪰ k if ui ≥ ki for all i.

The bit-based division property using three subsets (BDPT) limits the underly-
ing space to binary domains and further expands the search scope. Namely, it
introduces a new set L, which is the set of u with

⊕
x∈X πu(x) = 1.

Definition 2. (BDPT [20]) Let X be a multiset whose elements take a value
of Fn

2 . When the multiset X has the bit-based division property using three subsets
D1n

K,L, it satisfies the following conditions:

⊕
x∈X

πu(x) =


unknown if there exists k ∈ K s.t. u ⪰ k,

1 else if there is ℓ ∈ L s.t. u = ℓ,

0 otherwise.

According to [20], if there are k,k′ ∈ K satisfying k ⪰ k′, k can be removed
from K because the vector k is redundant. Moreover, if there are ℓ ∈ L and
k ∈ K that satisfy ℓ ⪰ k, the vector ℓ is redundant. For any u, the redundant
vectors in K and L will not affect the parity of

⊕
x∈X πu(x).

Propagation Rules. We introduce only a few of the propagation rules used in
the following sections. For more details, see [20].
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Rule 1 (Key-Xor [20]) Let the input and output division property of the Key-
Xor operation be D1n

K,L and D1n

K′,L′ , respectively. Assume that the round key is
XORed with the i-th bit, K′ and L′ are computed as

L′ ← ℓ, for ℓ ∈ L,
K′ ← k, for k ∈ K,

K′ ← (ℓ0, ℓ1, . . . , ℓi ∨ 1, . . . , ℓm−1) , for ℓ ∈ L satisfying ℓi = 0.

Boura et al. presented the propagation rules of S-box for K at bit-level in [4] for
the first time, which is summarized in Rule 2.

Rule 2 (S-box for K [4]) Let F : Fm
2 → Fn

2 be a vectorial Boolean function
composed of (f0, f1, . . . , fn−1), where each fi : Fm

2 → F2 is a Boolean function.
Assuming the input to the function F is x = (x0, x1, . . . , xm−1) ∈ Fm

2 , the output
y = (y0, y1, . . . , yn−1) is calculated as

y0 = f0 (x0, x1, . . . , xm−1) ,

y1 = f1 (x0, x1, . . . , xm−1) ,

...
yn−1 = fn−1 (x0, x1, . . . , xm−1) .

For each vector k in the input division property K, check each vector u ∈ Fn
2

whether the polynomial πu(y) contains any monomial πk′(x) satisfying k′ ⪰ k.
If so, (k,u) is a valid division trail for the S-box function.

2.3 MILP-Based Bit-Based Division Property

At ASIACRYPT 2016, Xiang et al. [26] applied the MILP method to the search
for CBDP for the first time. With the help of the Gurobi MILP solver, they can
find CBDP for block ciphers with larger block sizes, e.g. Simon128 or Present.
They introduced the definition of the CBDP trail, which is defined below.

Definition 3. (CBDP Trail [26]) Let fr denote the round function of an
iterated block cipher. Assume that the input multiset of the block cipher has the
initial division property D1n

{k}, and denote the division property after i-round
propagation through fr by D1n

Ki
. Thus, we have the following chain of division

property propagations:

{k} ≜ K0
fr−→ K1

fr−→ K2
fr−→ · · ·

Furthermore, for any vector k∗
i ∈ Ki(i ⩾ 1), there must exist a vector k∗

i−1 ∈
Ki−1 such that k∗

i−1 can propagate to k∗
i using the propagation rules of divi-

sion properties. Furthermore, for (k0,k1, . . . ,kr) ∈ K0 ×K1 × · · · ×Kr, if ki−1

can propagate to ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round
division trail.
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Xiang et al. [26] modeled CBDP propagations of basic operations (Copy, Xor,
And) and the S-box by linear inequalities. Iterating this process r times, they
could build a MILP model to cover all the possible CBDP trails generated from
a given initial CBDP. In our model, we will treat these basic operations as an
S-box. Therefore, we only introduce the MILP models for S-box.

Model 1 (S-box [26]) The CBDP Rule 2 in Sect. 2.2 can generate the CBDP
propagation property of the S-box. Then, we use the inequality_generator func-
tion in SageMath [17] to get a set of linear inequalities. Sometimes, the number
of linear inequalities in the set is large. Thus, a Greedy Algorithm [16] was pro-
posed to reduce this set.

3 Modeling BDPT Propagations

Suppose that an iterated block cipher of the round function fr consists of a
nonlinear layer, a linear layer, and a Key-Xor operation. Let fk be the Key-Xor
operation, and let fe be the rest of the operations in the round function fr. To
model the propagation of BDPT for the operation fe and fk, we define a new
notion named BDPT trail.

Definition 4. (BDPT Trail) Assume that the input multiset X to the block
cipher has initial BDPT D1n

k,ℓ and denote the BDPT after r-round propagation
through fe and fk by D1n

Kr,Lr
, where r ⩾ 1. Thus we have the following chain of

BDPT propagations:

{k} ≜ K0
fe−→ K1

fe−→ K2
fe−→ · · · fe−→ Kr−1

fe−→ Krxfk xfk · · ·
xfk xfk

{ℓ} ≜ L0
fe−→ L1

fe−→ L2
fe−→ · · · fe−→ Lr−1

fe−→ Lr

where Ki = fe(Ki−1) ∪ fk(Li) = fe(Ki−1) ∪ fk ◦ fe(Li−1), Li = fe(Li−1), 1 ⩽
i ⩽ r.

Moreover, for any vector tuple (k∗
i , ℓ

∗
i ), k∗

i ∈ Ki and ℓ∗i ∈ Li(1 ⩽ i ⩽ r),
there must exist a vector tuple (k∗

i−1, ℓ
∗
i−1), k∗

i−1 ∈ Ki−1 and ℓ∗i−1 ∈ Li−1,
such that (k∗

i−1, ℓ
∗
i−1) can propagate to (k∗

i , ℓ
∗
i ) by BDPT propagation rules.

Furthermore, for ((k0, ℓ0), (k1, ℓ1), . . . , (kr, ℓr)) ∈ K0 × L0 × K1 × L1 × · · · ×
Kr × Lr, if (ki−1, ℓi−1) can propagate to (ki, ℓi) for all i ∈ {1, 2, . . . , r}, we call
(k0, ℓ0)

fe,fk−−−→ (k1, ℓ1)
fe,fk−−−→ · · · fe,fk−−−→ (kr, ℓr) an r-round BDPT trail.

By ignoring the Key-Xor operation (which causes the vector ℓ ∈ Li to be
added to the set Ki), we can get the following two chains, which reflect the
propagation property of fe. Note that the purpose of ’ignoring’ is to define two
new notions to describe the BDPT propagation.

{k} ≜ K′
0

fe−→ K′
1

fe−→ K′
2

fe−→ · · · fe−→ K′
r−1

fe−→ K′
r

{ℓ} ≜ L0
fe−→ L1

fe−→ L2
fe−→ · · · fe−→ Lr−1

fe−→ Lr
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where K′
i = fe(K′

i−1), Li = fe(Li−1), 1 ⩽ i ⩽ r.
Thus, for (k′

0,k
′
1, . . . ,k

′
r) ∈ K′

0 ×K′
1 × · · · ×K′

r, if k′
i−1 can propagate to k′

i

for all i ∈ {1, 2, . . . , r}, we call (k′
0,k

′
1, . . . ,k

′
r) an r-round division trail for K.

Similarly, for (ℓ0, ℓ1, . . . , ℓr) ∈ L0 × L1 × · · · × Lr, if ℓi−1 can propagate to ℓi
for all i ∈ {1, 2, . . . , r}, we call (ℓ0, ℓ1, . . . , ℓr) an r-round division trail for L.

Similar to the methods in [26], for an initial BDPT D1n

k,ℓ, we determine
whether there exist useful integral distinguishers after r-round encryption, by
finding all r-round BDPT trails that start with the vector tuple (k, ℓ). Thus,
we need to accurately describe all valid division trails of the vectors k and ℓ
through fe and fk. For the operation fe, we model the division trail for K and
the division trail for L, respectively. For the operation fk, we construct a new
MILP model to characterize the process in which part of vectors ℓ ∈ Li is added
to the set Ki by the Key-Xor operation.

3.1 Treat Nonlinear Layer as “S-box”

We classify block ciphers into two categories based on whether there is an S-box
in the nonlinear layer. When we apply BDPT to non-S-box-based ciphers, we
usually need to consider each of its specific operations for primitives. Taking the
Simon family as an example, we have to consider how to represent these basic
operations with a set of linear inequalities, such as Copy, Xor, And. We aim to
construct a generalized model that reduces the number of basic operations and
to model the non-linear layer uniformly. The intuitive idea is to regard these
basic operations that provide nonlinearity as an S-box, which is named the “S-
box”. Theoretically, the core operation of the Simon family is represented by
Fig. 1. We refer to the part surrounded by the red dotted line as the “S-box”.

x0 x1 x2 x3

y0 y1 y2 y3

 

&

Fig. 1: Core operation of the Simon family [20] and “S-box”

We represent the input to the “S-box” as x = (x0, x1, x2, x3), and the corre-
sponding output as y = (y0, y1, y2, y3), the algebraic normal form (ANF) of the
“S-box” is listed as follows:

y0 = x0, y1 = x1,
y2 = x2, y3 = x0x1 ⊕ x2 ⊕ x3.

(1)
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The S-box is an important component for most S-box-based block ciphers
because it is the only nonlinear part. For non-S-box-based block ciphers, the
“S-box” serves the same purpose. On the basis of this, we transform the BDPT
modeling of the nonlinear layer into the BDPT modeling of the S-box.

3.2 Limitation of Previously BDPT Modeling of an S-box

In [4,26], the rule was presented to calculate all the division trails for K of an S
box. We study the rule to find all valid division trails for L of an S-box.

We assume an n-bit S-box: Fn
2 → Fn

2 is composed of (f0, f1, . . . , fn−1), where
the input x = (x0, . . . , xn−1) ∈ Fn

2 and the output y = (y0, . . . , yn−1) ∈ Fn
2 .

Every yi can be expressed as a Boolean function of (x0, . . . , xn−1), where i ∈
{0, . . . , n− 1}.

Theorem 1 ([8,24]). If the input BDPT of the S-box is D1n

k,ℓ where k = (k0, . . . ,
kn−1), ℓ = (ℓ0, . . . , ℓn−1), then the output BDPT of the S-box can be calculated
by D1n

K,L1
or D1n

K,L2
, where

K = {u ∈ Fn
2 | πu(y) contains any monomial πk̄(x) satisfying k̄ ⪰ k}

L1 = {u ∈ Fn
2 | πu(y) does not contain any monomial πℓ̄(x) satisfying ℓ̄ ≻ ℓ

and πu(y) contains πℓ(x)}.
L2 = {u ∈ Fn

2 | πu(y) contains πℓ(x)}.

Remark 1. The rules K and L1 are derived from [8]. Furthermore, the rules K
and L2 are derived from [24].

There have been two previous methods to calculate all division trails for L of
an S-box, as shown in Theorem 1. We briefly describe these methods as follows:
firstly, by the algebraic normal form (ANF) of the S-box, each element yi in the
output y = (y0, . . . , yn−1) ∈ Fn

2 can be represented as a boolean function by the
input x = (x0, . . . , xn−1), that is, yi = fi (x0, . . . , xn−1), where 0 ⩽ i ⩽ n − 1.
Secondly, suppose that for the input ℓ = (ℓ0, . . . , ℓn−1), for every u ∈ Fn

2 , we
calculate the πu(y) =

∏n−1
i=0 y[i]

u[i], where y[i] = fi (x0, . . . , xn−1). Then, we
obtain πu(y) =

∏n−1
i=0 fi (x0, . . . , xn−1)

u[i], which is a polynomial representation
about x. Finally, according to rule L1 or L2 of Theorem 1, for the input vector
ℓ, check for each vector u ∈ Fn

2 whether the polynomial πu(y) contains πℓ(x)
and πu(y) does not contain any monomial πℓ̄(x) satisfying ℓ̄ ≻ ℓ(or polynomial
πu(y) contains πℓ(x)). If so, (ℓ,u) is a valid division trail for L of the S-box.

We find that the rules L1 and L2 both have some limitations, which are
illustrated with two specific examples as follows.

Example 1. (shows that the rule L1 only finds a part of the division trails for
L) Take the “S-box”, which represents the core operation of the Simon family
as an example. The “S-box” is a 4 × 4 S-box, and its input and output are
shown in Fig. 1. Assume that the input multiset X to the “S-box” has BDPT
D14

k,ℓ=(0,1,1,0). The process of obtaining the valid division trail (ℓ,u) is briefly
described as follows:
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Table 2: Propagation of the bit-based division property using three subsets
for the Core Operation in Simon [20]

Input D14

k,ℓ Output D14

K,L

ℓ = [0, 0, 0, 0] L = {[0, 0, 0, 0]}
ℓ = [1, 0, 0, 0] L = {[1, 0, 0, 0]}
ℓ = [0, 1, 0, 0] L = {[0, 1, 0, 0]}
ℓ = [1, 1, 0, 0] L = {[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [1,1,0,1]}
ℓ = [0, 0, 1, 0] L = {[0, 0, 1, 0], [0, 0, 0, 1], [0,0,1,1]}
ℓ = [1, 0, 1, 0] L = {[1, 0, 1, 0], [1, 0, 0, 1], [1,0,1,1]}
ℓ = [0, 1, 1, 0] L = {[0, 1, 1, 0], [0, 1, 0, 1], [0,1,1,1]}
ℓ = [1, 1, 1, 0] L = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 0, 1]}

ℓ = [ℓ1, ℓ2, ℓ3, 1] L = {[ℓ1, ℓ2, ℓ3, 1]}

First, we get yi = fi (x0, x1, x2, x3) where 0 ⩽ i ⩽ 3, which is a Boolean
function expression about the input x, as shown in Equation (1). Second, for
every u ∈ F4

2, we calculate πu(y) =
∏3

i=0 fi (x0, x1, x2, x3)
u[i]. For ease of un-

derstanding, we take u = (0, 1, 0, 1) ∈ F4
2 and calculate π(0,1,0,1)(y) = y1y3 =

x1(x0x1 ⊕ x2 ⊕ x3) = x0x1 ⊕ x1x2 ⊕ x1x3. Finally, according to rule L1, we
check whether π(0,1,0,1)(y) = x0x1⊕ x1x2⊕ x1x3 contains πℓ=(0,1,1,0)(x) = x1x2

and does not contain any monomial πℓ̄(x) satisfying ℓ̄ ≻ ℓ, where πℓ̄(x) =
{x0x1x2, x1x2x3, x0x1x2x3}. Apparently, π(0,1,0,1)(y) satisfies the above condi-
tions. So (0, 1, 1, 0)→ (0, 1, 0, 1) is a valid division trail for L of the “S-box”. To
obtain all division trails for L where ℓ = (0, 1, 1, 0), we traverse u ∈ F4

2 and get
another valid division trail for L:(0, 1, 1, 0)→ (0, 1, 1, 0).

However, we find that a valid division trail for L : (0, 1, 1, 0) → (0, 1, 1, 1)
appears in Table 2 by [20] which cannot be found by the rule L1. The reason is
that πu=(0,1,1,1)(y) = x0x1x2⊕x1x2⊕x1x2x3 contains not only πℓ=(0,1,1,0)(x) =
x1x2 but also x0x1x2 andx1x2x3 ∈ πℓ̄(x). It is worth exploring the valid division
trails for L which were missing by rule L1 compared to Table 2. Therefore, for
each ℓ,u ∈ F4

2, we calculate πu(y) and πℓ̄(x) where ℓ̄ ≻ ℓ, and obtain all valid
division trails for L of the “S-box” by rule L1. Note that the missing valid division
trails for L compared to Table 2 are in bold.

Example 2. (shows that the rule L2 finds some extra invalid division trails for
L) Take the Present S-box as an example. Let the input to Present S-box
be x = (x0, x1, x2, x3), and the corresponding output be y = (y0, y1, y2, y3), the
algebraic normal form (ANF) of the Present S-box is shown in Equation (2).
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Assume that the input multiset X to Present S-box has BDPT D14

k,ℓ=(1,1,1,0).

y0 = x0x1x3 ⊕ x0x2x3 ⊕ x1x2x3 ⊕ x1x2 ⊕ x0 ⊕ x2 ⊕ x3 ⊕ 1

y1 = x0x1x3 ⊕ x0x2x3 ⊕ x0x2 ⊕ x0x3 ⊕ x2x3 ⊕ x0 ⊕ x1 ⊕ 1

y2 = x0x1x3 ⊕ x0x2x3 ⊕ x1x2x3 ⊕ x0x1 ⊕ x0x2 ⊕ x0 ⊕ x2

y3 = x1x2 ⊕ x0 ⊕ x1 ⊕ x3.

(2)

Thus, for each u ∈ F4
2, we calculate πu(y) =

∏3
i=0 fi(x0, x1, x2, x3)

u[i]. For
ease of understanding, we take u = (0, 1, 0, 1) ∈ F4

2 and calculate π(0,1,0,1)(y) =
y1y3 = (x0x1x3⊕x0x2x3⊕x0x2⊕x0x3⊕x2x3⊕x0⊕x1⊕1)(x1x2⊕x0⊕x1⊕x3) =
x0x1x2⊕x0x2⊕x0x3⊕x1x3⊕x2x3⊕x3. According to rule L2, we check whether
π(0,1,0,1)(y) = x0x1x2⊕x0x2⊕x0x3⊕x1x3⊕x2x3⊕x3 contains πℓ=(1,1,1,0)(x) =
x0x1x2. Apparently, π(0,1,0,1)(y) satisfies this condition above, so (1, 1, 1, 0) →
(0, 1, 0, 1) is a valid division trail for L of Present S-box. To obtain all the
division trails for L where ℓ = (1, 1, 1, 0), we traverse u ∈ F4

2 and obtain the other
division trails for L:(1, 1, 1, 0)→ (0, 1, 1, 1), (1, 1, 1, 0)→ (1, 0, 1, 1), (1, 1, 1, 0)→
(1, 1, 0, 1), (1, 1, 1, 0)→ (1, 1, 1, 0) and (1, 1, 1, 0)→ (1, 1, 1, 1).

However, we find that the division trail (1, 1, 1, 0)→ (1, 1, 1, 1) discovered by
rule L2 is an invalid division trail for L, that is, (1, 1, 1, 0) ↛ (1, 1, 1, 1). The
proof is described below:⊕

y∈Y
π(1,1,1,1)(y)

=
⊕
y∈Y

y0y1y2y3

=
⊕
x∈X

(x0x1x2x3 ⊕ x0x1x2 ⊕ x0x2x3 ⊕ x0x2)

=
⊕
x∈X

π(1,1,1,1)(x)⊕
⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(1,0,1,1)(x)⊕
⊕
x∈X

π(1,0,1,0)(x)

= unknown⊕ 1⊕ (0 or unknown depends on k)⊕ 0

= unknown.

According to Definition 2, the parity of
⊕

x∈X π(1,1,1,1)(x) is unknown because
u = (1, 1, 1, 1) ⪰ k for any k ∈ F4

2. So, the parity of
⊕

y∈Y π(1,1,1,1)(y) is
unknown. In other words, (1, 1, 1, 0) → (1, 1, 1, 1) is an invalid division trail for
L. Therefore, some extra invalid division trails for L may be obtained by the
rule L2.

From Examples 1 and 2, we show that some valid division trails for L are missing
by rule L1, and some extra invalid division trails for L are produced by rule L2.
Thus, we have the following observation.

Observation 1 The rule to calculate all the division trails for L of an S-box is
between rules L1 and L2.
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From Theorem 1 and Observation 1, we find that rules L1 and L2 only consider
πu(y), not the specific parity of

⊕
y∈Y πu(y), which is unknown or 1 or 0. Based

on this, we propose Theorem 2 and Observation 2.

Theorem 2. Let ℓ ∈ Fn
2 represent the input of an S-box. For any u ∈ Fn

2 , (ℓ,u)
is a valid division trail for L if and only if

⊕
y∈Y πu(y) = 1.

Proof. Assume that the input multiset X in the S-box has BDPT D1n

k,ℓ, where
k = (k0, . . . , kn−1), ℓ = (ℓ0, . . . , ℓn−1), and the output multiset Y in the S-box
has BDPT D1n

K,L. On the one hand, for any u ∈ Fn
2 , if (ℓ,u) is a valid division

trail for L, we have u ∈ L. According to Definition 2, for any ℓ′ ∈ L, we
have

⊕
y∈Y πℓ′(y) = 1. Thus, we get

⊕
y∈Y πu(y) = 1. On the other hand, if⊕

y∈Y πu(y) = 1, we have u ∈ L by Definition 2. For any ℓ′ ∈ L, the (ℓ, ℓ′) is a
valid division trail for L. Then, we get a valid division trail for L: (ℓ,u). Thus,
Theorem 2 is proven.

Theorem 2 gives sufficient and necessary conditions for (ℓ,u) to be a valid divi-
sion trail for L, then we propose an observation as,

Observation 2 The parity of
⊕

y∈Y πu(y) is related to the vector k.

Example 3. We take the “S-box” as an example. Assume that the input multiset
X to the “S-box” has BDPT D14

k,ℓ=(0,1,1,0). In Example 1, we find a division trail
for L:(0, 1, 1, 0)→ (0, 1, 1, 1) that cannot be discovered by rule L1. Thus,⊕
y∈Y

πu=(0,1,1,1)(y) =
⊕
y∈Y

y1y2y3

=
⊕
x∈X

(x0x1x2 ⊕ x1x2 ⊕ x1x2x3)

=
⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,1)(x)

= (0 or unknown depends on k)⊕ 1⊕ (0 or unknown depends on k).

To illustrate that the value of k affects the parity of
⊕

y∈Y πu=(0,1,1,1)(y), we
take two specific values of the input vector k. If the input vector k = (1, 0, 0, 1),⊕

y∈Y
πu=(0,1,1,1)(y) =

⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,1)(x)

= 0⊕ 1⊕ 0 = 1.

If the input vector k = (1, 0, 1, 0),⊕
y∈Y

πu=(0,1,1,1)(y) =
⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,0)(x)⊕
⊕
x∈X

π(0,1,1,1)(x)
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3.3 New Modeling Method for S-box

Let the set U = {0, 1}n represent all the elements on Fn
2 . For any u ∈ Fn

2 ,
we assume that πu(y) contains i ⩽ 2n monomials about the vector x, which
are πφ0

(x),. . . ,πφi−1
(x), respectively. If πu(y) contains πℓ(x), we assume that

ℓ = φj , where 0 ⩽ j ⩽ i− 1. According to Observation 2 and Theorem 2,
we propose Theorem 3, which is a more accurate method to calculate all valid
division trails for L of an S-box.

Theorem 3. If the input multiset X to the S-box has BDPT D1n

k,ℓ where k =
(k0, . . . , kn−1), ℓ = (ℓ0, . . . , ℓn−1). Let the output multiset Y of S-box have BDPT
D1n

K,L, which is calculated by

K = {u ∈ Fn
2 | πu(y) contains any monomial πk̄(x) satisfying k̄ ⪰ k}

L = {u ∈ Fn
2 | πu(y) contains πℓ(x) and the input vector k ∈ S∩}.

where S∩ =
⋂i−1

q=0 Sq and Sq = U\{φ̄q | φq ⪰ φ̄q}. If q ̸= j, the Sq represents
the possible value of the input vector k when

⊕
x∈X πφq

(x) = 0. If q = j, the Sj
represents the possible value of the input vector k when

⊕
x∈X πφj

(x) = 1.

The proof is provided in Appendix A. Moreover, Appendix B shows a simple
example for Theorem 3. According to Theorem 3, we present a generalized algo-
rithm to calculate all valid division trails for L of an S-box.

We explain Algorithm 1 line by line:
Line 1 According to input BDPT D1n

k,ℓ and Definition 2, the parity of monomial
πk̄(x) with k̄ ⪰ k over X is unknown, and we store these monomials in F (X̄).
Line 2 Initialize K̄,L̄ as empty sets and let the set U = {0, 1}n represent all the
elements on Fn

2 .
Line 3-6 For any possible u, let the set S∩ be an empty set, and the set S∩
represent the intersection of the possible values of the input vector k when⊕

y∈Y πu(y) = 1. For i monomials contained in πu(y), initialize Sq as an empty
set, 0 ⩽ q ⩽ i− 1.
Line 7-8 For any possible u, if polynomial πu(y) contains any monomial in
F (X̄), the parity of πu(y) over X is unknown. We store all these vectors u in K̄.
Line 9-14 For any possible u, if polynomial πu(y) contains the monomial πℓ(x)

and the input vector k ∈ S∩ =
⋂i−1

q=0 Sq, where Sq = U\{φ̄q | φq ⪰ φ̄q} and
i ⩽ 2n represent πu(y) contains i monomials, the parity of πu(y) over X is 1.
We store all these vectors u in L̄.
Line 15 SizeReducek function removes all redundant vectors in K̄. Namely,
if there are u,u′ ∈ K̄ satisfying u ⪰ u′, the vector u can be removed from K̄.
Moreover, SizeReducel function removes all redundant vectors in L̄. If there
are ℓ′ ∈ L̄ and u ∈ K̄ satisfying ℓ′ ⪰ u, the vector ℓ′ can be removed from L̄.
Line 16 Return K,L as output.

Given an n-bit S-box and its input BDPT D1n

k,ℓ, Algorithm 1 returns the
output BDPT D1n

K,L. Thus for any vector k′ ∈ K, (k,k′) is a valid division trail
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Algorithm 1: Calculating division trails of an S-box
Input: The input BDPT of an n-bit S-box D1n

k,ℓ, where
k = (k0, . . . , kn−1), ℓ = (ℓ0, . . . , ℓn−1)

Output: The output BDPT D1n

K,L
1 S̄ = {k̄ | k̄ ⪰ k}, F (X̄) =

{
πk̄(x) | k̄ ∈ S̄

}
2 K̄ = ∅,L̄ = ∅ and U = {0, 1}n
3 for u ∈ (F2)

n do
4 S∩ = ∅
5 for 0 ⩽ q ⩽ i− 1 do
6 Sq = ∅ /* i ⩽ 2n represents πu(y) contains i monomials */
7 end
8 if πu(y) contains any monomial in F (X̄) then
9 K̄ = K̄ ∪ {u}

10 end
11 if πu(y) contains πℓ(x) then
12 for πu(y) contains every monomial πφq

(x) do
13 Sq = U\{φ̄q | φq ⪰ φ̄q}
14 end
15 S∩ =

⋂i−1
q=0 Sq

16 if the input vector k ∈ S∩ then
17 L̄ = L̄ ∪ {u}
18 end
19 end
20 end
21 K = SizeReducek(K̄) and L = SizeReducel(L̄)
22 return K,L

for K of the S-box. Similarly, for any vector ℓ′ ∈ L, (ℓ, ℓ′) is a valid division trail
for L of the S-box. Because vector ℓ does not affect the propagation of vector
k through the S-box, we will obtain a complete list of the division trail for K
by traversing k ∈ Fn

2 , and Xiang et al. [26] show the results of Present S-box.
Similarly, for a certain input vector ℓ ∈ Fn

2 , we will obtain a set of division trails
for L by traversing k ∈ Fn

2 . If we try all the 2n possible input vector ℓ, we will
obtain a complete list of division trails for L. Table 4 in Appendix C presents a
complete list of all the division trails for L of Present S-box.

Representing the Division Trails of S-box as Linear Inequalities. For
an n-bit S-box, each of its valid division trail can be viewed as a 2n-dimensional
vector in {0, 1}2n. Thus, all valid division trails form a subset A of {0, 1}2n.
Similar to Model 1, we compute the H-Representation of the convex hull Conv(A)
by using the inequality_generator function in SageMath [17]. It will return a set
of linear inequalities L which characterize all valid division trails. However, L
contains too many inequalities, which will make the size of the corresponding
MILP problem too large to solve. Generally, the Greedy Algorithm [16] is used to
reduce this set L. However, Sasaki et al. [12] found that the number of inequalities
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selected by the greedy algorithm was not the optimal solution, and they proposed
a new reduction algorithm. We apply it to reduce this set L, which we showed
in Algorithm 2.

Algorithm 2: MILP-Based Select a subset of linear inequalities from
L of an S-box

Input: A: the set of all division trails of an S-box; L: the set of all inequalities
in the H-Represen-tation of Conv(A) with A a subset of {0, 1}2n

Output: O: a set of inequalities seleted from L whose feasible solutions
restricted in {0, 1}2n are exactly A

1 O = ∅ and C = ∅
2 B = {0, 1}2n \A = {b(0), b(1) . . . , b(m−1)}
3 L = {l(0), l(1) . . . , l(t−1)}
4 for b(i) ∈ B do

/* 0 ⩽ i ⩽ m− 1 */
5 L∗ = ∅ for l(j) ∈ L do

/* 0 ⩽ j ⩽ t− 1 */
6 if the inequality l(j) excludes impossible division trails b(i) then
7 L∗ = L∗ ∪ {j}
8 end
9 end

10 C.AddConstraints(L∗)

11 end
12 Obj = Minimize(L)
13 M = ConstructModel(C,Obj)
14 O =M.Optimize()
15 return O

We explain Algorithm 2 line by line:
Line 1 Initialize O and C as empty sets.
Line 2-3 Let the set B = {0, 1}2n\A represent all impossible division trails, and
the set L represent t inequalities obtained by using the inequality_generator
function in SageMath.
Line 4-9 For each impossible division trail b(i), let the set L∗ be an empty set.
For any inequality l(j) ∈ L, if the inequality l(j) excludes impossible division trails
b(i), we store the tags j of all these inequalities in L∗. AddConstraints() func-
tion adds an inequality constraint

∑
j∈L∗ zj ≥ 1 to the constraint set C with

the binary variables z0, z1, . . . , zt−1, in which zj = 1 represents that inequality
l(j) is chosen and zj = 0 represents that inequality l(j) will not be chosen. The
constraint set C means that every impossible division trail is removed with at
least one inequality. Thus, there are m constraints in the constraint set C.
Line 10 Set the objective function Obj: Minimize

∑t−1
j=0 zj.

Line 11 ConstructModel function construct a MILP model M by using the
constraint set C and the objective function Obj.
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Line 12 The MILP modelM is optimized by the openly available solver Gurobi.
It will return a set of inequalities that is composed of all inequalities l(j) ∈ L
satisfying zj = 1, where 0 ⩽ j ⩽ t− 1.
Line 13 Return O as output.

We applied Algorithm 2 to a set of linear inequalities generated with Sage-
Math [17] against all valid division trails of various S-boxes. Compared to the
previous reduction algorithm based on greedy algorithms, a smaller number of
inequalities can be obtained by Algorithm 2. The results are shown in Table 3. To
show the effectiveness of Algori-thm 2, the division trails for K and the the the
division trails for L of the “S-box” is characterized by the 6 and 10 inequalities
in Appendix D, respectively.

Table 3: Number of linear inequalities to characterize all valid division trails
of an S-box

S-box The number of
division trails

#inequalities
SageMath Previous Alg. 2

Simon
“S-box”

|K| = 26 12 — 6
|L| = 30 18 — 10

Present
S-box

|K| = 47 122 11 8
|L| = 84 257 23 20

Rectangle
S-box

|K| = 49 201 17 12
|L| = 80 246 19 17

GIFT
S-box

|K| = 49 218 15 12
|L| = 64 236 19 16

3.4 BDPT Modeling of Key-Xor Operation

To model the Key-Xor operation, we propose Propositon 1 according to Defini-
tion 4. The proof is provided in Appendix E.

Proposition 1. (Cross Propagation) Assume that the input multiset X to an
iterated block cipher has initial BDPT D1n

k,ℓ, and let D1n

Kr,Lr
denote the BDPT of

the output multiset after r-round propagation through fe and fk, where

Kr = fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(k) ∪ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r−1

◦fk(L1) ∪ · · · ∪ fk(Lr)

= fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(k) ∪ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r−1

◦fk ◦ fe(ℓ) ∪ · · · ∪ fk ◦ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(ℓ).

Lr = fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(ℓ).
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Then, the set of the last vectors of all r-round division trails for K that start with
the vector k, and the set of the last vectors of all r-round BDPT trails which
start with the vector ℓ, is equal to Kr. Furthermore, the set of the last vectors of
all r-round division trails for L, which start with the vector ℓ is equal to Lr.

According to Definition 4 and Propositon 1, the Key-Xor operations are
independent of each other during r-round BDPT propagation. Without loss of
generality, we consider the t-th Key-Xor operation, i.e.,

fe ◦ · · · ◦ fe︸ ︷︷ ︸
r−t

◦fk ◦ fe ◦ · · · ◦ fe︸ ︷︷ ︸
t

(ℓ) ∈ Kr

We assume that the input vector ℓ is propagated through t-round and get the
set Lt. For the t-th Key-Xor operation, the input and output BDPT are {Lt}
and {K∗

t ,L∗
t }, respectively. Our model uses three n-bit variables Lt, K∗

t , and L∗
t

to denote them, where n is the block size. In many block ciphers, the round key
is only XORed with a part of the block. Without loss of generality, we assume
that the round key is XORed with the left s (1 ⩽ s ⩽ n) bits. We consider the
effect of the t-th Key-Xor operation on K∗

t , L∗
t , respectively.

For the output BDPT L∗
t , according to Rule 1, fk does not affect the prop-

agation from Lt to L∗
t . Therefore, the constraint on Lt and L∗

t is L∗
t = Lt.

For the output BDPT K∗
t , according to Rule 1, for every vector ℓ∗ ∈ Lt

satisfying ℓ∗i = 0, 0 ⩽ i ⩽ s − 1, we calculate ℓ∗i ∨ 1 and add it to the set K∗
t .

Thus, the constraint on Lt and K∗
t is ℓt0+ℓt1+ · · ·+ℓts−1 ⩽ s−1 and K∗

t&Lt = Lt.
We only considered the t-th Key-Xor operation fk instead of considering a

complete BDPT propagation chain, i.e., ℓ→ K∗
t → Kr. We give Algorithm 3 to

characterize the BDPT propagation chain based on MILP. In Algorithm 3, we
construct a constraint set Ct using a linear inequality system, which accurately
characterizes the BDPT trails of the set generated by the t-th Key-Xor operation.

We explain Algorithm 3 line by line:
Line 1 Initialize P as empty sets.
Line 2-3 In the MILP model, each n-bit variable represents the BDPT K or L.
Therefore, we allocate two sets of n-bit variables K∗

i and Li to represent the sets
K∗

i and Li, where n is the block size and 0 ⩽ i ⩽ r.
Line 4 Set the objective function Obj: Minimize

∑n−1
i=0 kr

∗

i , where kr
∗

i represents
the i-th bit of the n-bit variables K∗

r .
Line 5-8 For the t-th Key-Xor operation (1 ⩽ t ⩽ r − 1), let the constraint set
Ct be an empty set. The former t-round BDPT propagation is characterized by
linear inequalities constraint set Ol(L), and the inequality constraints of each
round are added to the constraint set Ct.
Line 9-10 For the t-th Key-Xor operation, we add two new constraints ℓt0 +
ℓt1 + · · · + ℓts−1 ⩽ s − 1 and K∗

t&Lt = Lt to the constraint set Ct. These two
constraints can be used to obtain the vectors that can be added to the set K∗

t .
Line 11-12 The remaining (r− t)-round BDPT propagation is characterized by
linear inequalities constraint set Ok(K), and the inequality constraints of each



A Model Set Method to Search Integral Distinguisher 19

Algorithm 3: MILP-Based Characterize the Propagation Rule of Key-
XOR Operations

Input: The initial input BDPT of an n-bit iterated block cipher
D1n

K0={k},L0={ℓ}; Ok(K): a constraint set of linear inequalities whose
feasible solutions are all valid division trails for K of the round
function; Ol(L): a constraint set of linear inequalities whose feasible
solutions are all valid division trails for L of the round function; An
n-bit vector m representing the Key-XOR operation

Output: P: A collection of MILP models with constraints for Key-XOR
Operations

1 P = ∅
2 Allocate n-bit variables K∗

i to denote K∗
i , where (i = 0, 1, . . . , r)

3 Allocate n-bit variables Li to denote Li, where (i = 0, 1, . . . , r)

4 Obj = Minimize({kr∗
0 + · · ·+ kr∗

n−1})
5 for (t = 1; t < r; t++) do
6 Ct = ∅ for (i = 0; i < t; i++) do
7 Ct ← Ol(Li,Li+1)
8 end
9 Ct ← {ℓt0 + ℓt1 + · · ·+ ℓts−1 ⩽ s− 1}

10 Ct ← K∗
t&Lt = Lt for (j = t; j < r; j ++) do

11 Ct ← Ok(K∗
j ,K∗

j+1)
12 end
13 Mt = ConstructModel(Ct,Obj)
14 P = addModel(Mt)

15 end
16 return P

round are added to the constraint set Ct.
Line 13 ConstructModel function constructs a MILP modelMt using the con-
straint set Ct and the objective function Obj.
Line 14 We add the MILP modelMt, which characterizes the BDPT propaga-
tion of the t-th Key-Xor operation, to the model set P.
Line 15 Return P as output.

Algorithm 3 constructs a MILP model for the former r−1 Key-Xor operations
of an r-round block cipher, which characterizes all division trails of a complete
BDPT propagation chain, i.e., ℓ → K∗

t → Kr, 1 ⩽ t ⩽ r − 1. By solving each
modelMt in the model set P separately, we can obtain the set of the last vectors
of all r-round BDPT trails, which start with the vector ℓ.

Remark 2. The r-th Key-Xor operation is ignored in our Algorithm 3, since it
does not produce any unit vector for Kr in our model.
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4 Initial, Stopping Rule and Search Algorithm

In this section, we first study the initial BDPT and stopping rule to use when
searching for integral distinguishers based on BDPT. According to Definition 4
and Proposition 1, for each model which starts with the input vector k or ℓ, we
convert the stopping rule into an objective function of the MILP model. At last,
we propose an algorithm to search integral distinguishers based on BDPT given
the initial BDPT D1n

k,ℓ for an n-bit block cipher.

4.1 Initial BDPT

In [20], Todo and Morii set the initial BDPT as (k = 1, ℓ = 7fffffff) to search
the BDPT of Simon32, where the active bits of the vector ℓ are set as 1, and
the constant bit is set to 0. Similarly, we assume that ((k00, k01, . . . , k0n−1), (ℓ

0
0, ℓ

0
1,

. . . , ℓ0n−1)) denotes the initial BDPT, where n is the block size. The constraints
on k0i and ℓ0i are

k0i = 1, for i = 0, 1, 2, . . . , n− 1

ℓ0i =

{
1, if the i-th bit is active,
0, otherwise.

4.2 Stopping Rule

Stopping Rule 1 (for a single model). We consider the stopping rule of the
r-th round output sets Kr and Lr, respectively.

According to Proposition 1, the set Kr is composed of all r-round division
trails for K, which start with the vector k, and all r-round BDPT trails pro-
duced by the Key-XOR operations, which start with the vector ℓ. In the BDPT
propagation, we note that only the vector 1 can propagate to vector 1. Thus, if
the given initial BDPT is D1n

k,ℓ with k = 1, the r-round division trails for K can
be ignored because it does not produce any unit vector for Kr, i.e.,

Kr \ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(k)

Therefore, the model set P constructed by Algorithm 3 can accurately de-
scribe the vectors in Kr. For each modelMt in the model set P, let (ℓ00, ℓ01, . . . , ℓ0n−1)
fe−→ · · · fe−→ (ℓt0, ℓ

t
1, . . . , ℓ

t
n−1)

fk−→ (kt
∗

0 , kt
∗

1 , . . . , kt
∗

n−1)
fe−→ · · · fe−→ (kr

∗

0 , kr
∗

1 , . . . , kr
∗

n−1)
denote an r-round BDPT trail for the t-th Key-Xor operation. The objective
function can be set as follows:

Obj : Minimize{kr
∗

0 + kr
∗

1 + · · ·+ kr
∗

n−1}

According to Proposition 1, the set Lr is composed of all r-round division
trails for L, which start with the vector ℓ. Let (ℓ00, ℓ

0
1, . . . , ℓ

0
n−1)

fe−→ · · · fe−→
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(ℓr0, ℓ
r
1, . . . , ℓ

r
n−1) denote an r-round division trail for L. Thus, we can set the

objective function as :

Obj : Minimize{ℓr0 + ℓr1 + · · ·+ ℓrn−1}

Stopping Rule 2 (for the overall model). Our overall model is divided into
model sets P and model ML, which describe all vectors in sets Kr and Lr,
respectively. Our overall MILP model only focuses on the parity of one output
bit. Without loss of generality, we consider the q-th output bit. For each model
Mt in the model set P, we can use the solver Gurobi to determine whether the
MILP model Mt has feasible solution Kq = (kr

∗

0 , . . . , kr
∗

n−1), where

kr
∗

i =

{
1, if i = q,

0, otherwise.

If any Mt in the model set P has feasible solution Kq, there is a unit vector
eq ∈ Kr, and further the q-th output bit is unknown.

If there is not feasible solution Kq of model set P and the number of solutions
Lq = (ℓr

∗

0 , . . . , ℓr
∗

n−1) of model ML is odd, where

ℓr
∗

i =

{
1, if i = q,

0, otherwise.

there is a unit vector eq ∈ Lr, and further the parity of the q-th output bit is 1.
Otherwise the q-th output bit is 0.

4.3 Search Algorithm

We present the automated search integral distinguishers algorithm, which decides
the parity of the q-th output bit with the given initial BDPT D1n

K0={k},L0={ℓ}
for an n-bit block cipher. Firstly, we allocate all round variables and auxiliary
variables. Secondly, we construct a MILP modelML that describes all r-round
division trails for L and calls Algorithm 3 to save the model set P. Finally,
according to the initial and stopping rules, we can obtain the parity of the q-th
output bit based on BDPT. We illustrate the whole framework in Algorithm 4.

5 Applications

In this section, we apply our algorithm to Simon, Simeck, Present, Rectan-
gle and GIFT-64 block ciphers. The results are listed in Table 13. In addition,
for the integral distinguishers, the label “a” represents the active bit, “c” rep-
resents the constant bit, “?” represents unknown, “b” represents the balanced
bit whose sum is 0 or 1, “0” represents the balanced bit whose sum is 0, “1”
represents the balanced bit whose sum is 1.
3 All the experiments are conducted on the following platform: Xeon(R) CPU E5-

2620 v3 @2.40GHz, 128 G RAM, and the optimizer used to solve MILP mod-
els is Gurobi 9.0.3. The source code is available on GitHub https://github.com/
CryptAnalystDesigner/MILP_Models_For_BDPT.git

https://github.com/CryptAnalystDesigner/MILP_Models_For_BDPT.git
https://github.com/CryptAnalystDesigner/MILP_Models_For_BDPT.git
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Algorithm 4: Automated search r-round integral distinguishers
Input: The cipher E, the initial input BDPT of the n-bit block cipher

D1n

K0={k},L0={ℓ}, and the number q
Output: The balanced information of the q-th output bit based on BDPT

1 Allocate all the variables denoting the input and output BDPT
2 Obj = Minimize({ℓr0 + · · ·+ ℓrn−1})
3 ML = ConstructModel({Ol(L)× r},Obj)
4 Call Algorithm 3 and save the model set P
5 for every model Mt ∈ P do
6 flag = 0
7 if the MILP modelMt has solutions Kq then
8 flag = flag + 1
9 end

10 end
11 if flag ⩾ 1 then
12 return unknown
13 end
14 else
15 if the number of solutions Lq of model ML is odd then
16 return 1
17 end
18 else
19 return 0
20 end
21 end

5.1 Applications to SIMON and SIMECK

Simon [2] is a family of lightweight block ciphers published by the U.S. National
Security Agency (NSA) in 2013. Simon adopts the Feistel structure, and has a
very compact round function that only involves bitwise And, Xor, and Circular
shift operations. The structure of one round Simon encryption is depicted in
Fig. 2, where Si denotes the left circular shift by i bits. The core operation of the
round function and “S-box” are represented in Fig. 1. Simeck [27] is a family of
lightweight block ciphers proposed at CHES 2015, and its round function is very
similar to that of Simon except for the rotation constants. We only introduce
the automatic search model for Simon2n based on BDPT.

In Algorithm 3, we introduce two constraint sets, Ok(K) and Ol(L), which
describe division trails for K and division trails for L of the round function,
respectively. For 1-round description of Simon2n, they are similar except for the
characterization of “S-box”. Therefore, we only introduce 1-round description for
Ol(L) of Simon2n.

1-round Description for Ol(L) of Simon2n. Denote one round division trail
for L of Simon2n by (ai,00 , . . . , ai,0n−1, b

i,0
0 , . . . , bi,0n−1)→ (ai+1,0

0 , . . . , ai+1,0
n−1 , bi+1,0

0 , . . . ,

bi+1,0
n−1 ). In our model, we divide the round function of Simon2n into n “S-
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xi yi

S8

S1

S2

ki

xi+1 yi+1

Fig. 2: Round function of Simon

box” operations and a Key-Xor operation. We first consider the “S-box” op-
eration and assume that the input and output of the j-th “S-box” are de-
noted as (ai,j−1

0 , . . . , ai,j−1
n−1 , bi,j−1

0 , . . . , bi,j−1
n−1 ) and (ai,j0 , . . . , ai,jn−1, b

i,j
0 , . . . , bi,jn−1),

respectively. According to Fig. 2, the input set that actually participates in the j-
th “S-box” operation is {ai,j−1

(1−j) mod n, a
i,j−1
(8−j) mod n, a

i,j−1
(2−j) mod n, b

i,j−1
(n−j) mod n}, and

the corre-sponding output set is {ai,j(1−j) mod n, a
i,j
(8−j) mod n, a

i,j
(2−j) mod n, b

i,j
(n−j) mod n}.

Appendix D shows the 10 inequalities for the division trails for L of the “S-box”,
and thus the 4-bit input and output can be modeled by the 10 inequalities, which
are denoted by L1. For the rest (2n−4) bits, which remains unchanged, we have

L2 :

{
ai,jm = ai,j−1

m m ∈ {0, 1, . . . , n− 1} \ {(1− j), (8− j), (2− j)} mod n

bi,jm = bi,j−1
m m ∈ {0, 1, . . . , n− 1} \ {(n− j)} mod n

Therefore, we get an accurate description {L1,L2} of the division trails for L of
the j-th “S-box”. By repeating this procedure n times, we can get a set of linear
inequalities for the n “S-box” operations.

At last, we consider the Key-Xor operation, and its input and output are de-
noted as (ai,n0 , . . . , ai,nn−1, b

i,n
0 , . . . , bi,nn−1) and (ai+1,0

0 , . . . , ai+1,0
n−1 , bi+1,0

0 , . . . , bi+1,0
n−1 ),

respectively. According to Rule 1, the Key-Xor operation does not affect the
propagation of division trails for L. Therefore, the Key-Xor operation in Si-
mon2n can be modeled by the following inequalities:

L3 :

{
ai+1,0
m = bi,nm m ∈ {0, 1, . . . , n− 1}

bi+1,0
m = ai,nm m ∈ {0, 1, . . . , n− 1}

So far, we have modeled all operations used in the round function of Simon2n
and get an accurate description {{L1,L2} × n,L3} of 1-round division trails for
L, i.e., Ol(L). Similarly, we can get the 1-round description for Ol(K) of Si-
mon2n.

Integral Distinguishers. We use Algorithm 3 and 4 to search the integral
distinguishers of the Simon and Simeck family based on BDPT.

1. For Simon64, we can find a 17-round integral distinguisher with 27 balanced
bits, which has four more bits than the previous longest distinguisher [24].
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For Simon32, 48, 96, 128, the distinguishers we find are in accordance with
the previous longest distinguishers found in [24].

2. For Simeck32, 48, 64, the distinguishers we find are in accordance with the
previous longest distinguishers found in [26,24].

The detailed integral distinguishers of Simon and Simeck are listed in Ap-
pendix F. To further prove the accuracy of our automatic search model, we
apply Algorithm 3 and 4 to search integral distinguishers of Simon(102) [10]
based on BDPT, and show the detailed results in Appendix F.12.

5.2 Applications to PRESENT, RECTANGLE and GIFT-64

Present [3] has an SPN structure and uses 80- and 128-bit keys with 64-bit
blocks through 31 rounds, of which the linear layers are bit permutations. Fig. 3
illustrates the one-round structure of Present. Rectangle [28] is a bit-slice
lightweight block cipher proposed in 2015, and its structure is very similar to
Present. By revisiting the design strategy of Present, Banik et al. propose a
new lightweight block cipher GIFT [1], which corrects the well-known weakness
of Present with regards to linear hulls.
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Fig. 3: One-round SPN Structure of Present

Integral Distinguishers. We have shown how to model the Ol(K) and Ol(L)
in Simon. Thus, we omit the details for these three ciphers due to the limit
of space. We apply Algorithm 3 and 4 to search for integral distinguishers of
Present, Rectangle and GIFT-64 based on BDPT.

1. For Present, the distinguishers we find are in accordance with the previous
longest distinguish-ers[24].

2. For Rectangle, we find a 10-round integral distinguisher with 9 balanced
bits, which has eight more bits than the previous best integral distinguisher
in [11].

3. For GIFT-64, we find a 11-round integral distinguisher, which is one more
round than the previous best results [1].

The detailed integral distinguishers of Present, Rectangle and GIFT-64 are
listed in Appendix F.
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6 Conclusions

In this paper, we proposed an automatic search model to search integral dis-
tinguishers for block ciphers based on BDPT. We first proposed an effective
algorithm that can more accurately obtain the division trails for K and division
trails for L of the S-box according to its ANF directly. Then we model each
Key-Xor operation based on the MILP technique for the first time. By solving
these MILP models, we could accurately characterize the Key-Xor operation.
Finally, by selecting appropriate initial and stopping rules, we can construct an
automatic search model that greatly improves the efficiency for block ciphers
with little loss of accuracy, based on which we present an algorithm to estimate
whether the q-th output bit is balanced.

We apply our automatic search model to search for integral distinguishers
of some block ciphers. For Simon64, Rectangle and GIFT-64, we obtained
much better integral distinguishers than previous best results in the open lit-
erature. For other block ciphers, our results are in accordance with the previ-
ous longest distinguishers. Moreover, compared to the previous methods, our
automatic search model reduces the time complexity of searching integral dis-
tinguishers for the block ciphers.
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A Proof of Theorem 3

According to Theorem 2, for the input vector ℓ, calculating
⊕

y∈Y πu(y) for all
u ∈ Fn

2 , if
⊕

y∈Y πu(y) = 1, we obtain a valid division trail for L:(ℓ,u). In order
to obtain the condition that

⊕
y∈Y πu(y) = 1 is established, we first study the

πu(y), which is a polynomial representation about x.

πu(y) =

n−1∏
i=0

y[i]
u[i]

, where y[i] = fi (x0, . . . , xn−1)

=

n−1∏
i=0

fi (x0, . . . , xn−1)
u[i]

=

n−1∏
i=0

⊕
v∈Fn

2

afiv πv(x)

u[i]

Let

g(x) =

n−1∏
i=0

⊕
v∈Fn

2

afiv πv(x)

u[i]

=
⊕
φ∈Fn

2

agφπφ(x)

where afiv ∈ F2 is a constant value depending on fi and v, agφ ∈ F2 also is a
constant value depending on g and φ. Thus,

πu(y) =
⊕
φ∈Fn

2

agφπφ(x)

we assume the set O = {φ ∈ Fn
2 | agφ = 1}, we have⊕

y∈Y
πu(y) =

⊕
x∈X

⊕
φ∈Fn

2

agφπφ(x)

=
⊕
x∈X

πφ0
(x)⊕ · · · ⊕

⊕
x∈X

πφ|O|−1
(x)

where the φi ∈ O, 0 ≤ i ≤ |O| − 1. According to Definition 2, the parity of⊕
x∈Xπφi

(x) is unknown or 1 or 0, where 0 ≤ i ≤ |O| − 1. If
⊕

y∈Y πu(y) = 1,
i.e., ⊕

x∈X
πφ0

(x)⊕ · · · ⊕
⊕
x∈X

πφ|O|−1
(x) = 1

Obviously, the input vector ℓ ∈ O and
⊕

x∈Xπℓ(x) = 1. Let ℓ = φj , where
j ∈ {i | 0 ≤ i ≤ |O| − 1}. For any φi ∈ O\{φj},

⊕
x∈Xπφi

(x) = 0. Thus,⊕
y∈Y

πu(y) = 1⇔ for every φi ∈ O\{φj},⊕
x∈X

πφi
(x) = 0 and

⊕
x∈X

πℓ=φj
(x) = 1
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According to Definition 2, for every
⊕

x∈Xπφi
(x) = 0 and

⊕
x∈Xπφj

(x) = 1,
the possible value of the input vector k is Si = U\{φ̄i | φi ⪰ φ̄i}, where
0 ≤ i ≤ |O| − 1(Because j ∈ {i | 0 ≤ i ≤ |O| − 1}, we have 0 ≤ i ≤ |O| − 1).
Therefore, for all 0 ≤ i ≤ |O| − 1, we have

S∩ = S0 ∩ · · · ∩ S|O|−1

The set S∩ represents the intersection of the possible values of k when the⊕
x∈Xπφi

(x) = 0 and
⊕

x∈Xπφj
(x) = 1. If the input vector k ∈ S∩, it means

that the input vector k such that (A) holds. So (A) is equivalent to πu(y)
contains πℓ(x) and k ∈ S∩.

B Example for Theorem 3

To help readers understand the Theorem 3, we show a simple example of the core
operation of Simon family. We first treat the core operation of Simon family
as an “S-box”, which is a 4 × 4 S-box, and its input and output are shown in
Fig. 1. Let the input multiset X to the “S-box” have BDPT D14

k,ℓ=(0,0,1,0). For

every u ∈ F4
2, we calculate the πu(y) =

∏3
i=0 fi (x0, x1, x2, x3)

u[i] as shown in
Table 4. According to Theorem 3 and Table 4, if the πu(y) contains πℓ(x), the
vector u ∈ {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}. We consider the following three
cases respectively.

1. When the vector u = (0, 0, 0, 1), we calculate:⊕
y∈Y

πu=(0,0,0,1)(y)

=
⊕
y∈Y

y3

=
⊕
x∈X

(x0x1 ⊕ x2 ⊕ x3)

=
⊕
x∈X

π(1,1,0,0)(x)⊕
⊕
x∈X

π(0,0,1,0)(x)⊕
⊕
x∈X

π(0,0,0,1)(x)

= (0 or unknown Depends on k)⊕ 1⊕ (0 or unknown Depends on k)

if
⊕

x∈X π(1,1,0,0)(x) = 0, the vector k ∈ S0 = U\{φ̄0 | φ0 = (1, 1, 0, 0) ⪰
φ̄0}. Similarly, we can get k ∈ S1 = U\{φ̄1 | φ1 = (0, 0, 1, 0) ⪰ φ̄1} and
k ∈ S2 = U\{φ̄2 | φ2 = (0, 0, 0, 1) ⪰ φ̄2}. We calculate the intersection of
the values of the vector k, i.e.,

S∩
=S0 ∩ S1 ∩ S2
={(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 1),
(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}
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Thus, (0, 0, 1, 0) → (0, 0, 0, 1) is an valid division trail for L when the input
vector k ∈ S∩.

2. When the vector u = (0, 0, 1, 0), we calculate:⊕
y∈Y

πu=(0,0,1,0)(y) =
⊕
y∈Y

y2

=
⊕
x∈X

x2

=
⊕
x∈X

π(0,0,1,0)(x)

= 1

if
⊕

x∈X π(0,0,1,0)(x) = 1, the vector k ∈ S0 = U\{φ̄0 | φ0 = (0, 0, 1, 0) ⪰
φ̄0}. We calculate the intersection of the values of the vector k, i.e.,

S∩ = S0
={(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1),

(0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1),

(1, 1, 1, 0), (1, 1, 1, 1)}

Thus, (0, 0, 1, 0) → (0, 0, 0, 1) is an valid division trail for L when the input
vector k ∈ S∩.

3. When the vector u = (0, 0, 1, 1), we calculate:⊕
y∈Y

πu=(0,0,1,1)(y)

=
⊕
y∈Y

y2y3

=
⊕
x∈X

(x0x1x2 ⊕ x2 ⊕ x2x3)

=
⊕
x∈X

π(1,1,1,0)(x)⊕
⊕
x∈X

π(0,0,1,0)(x)⊕
⊕
x∈X

π(0,0,1,1)(x)

= (0 or unknown Depends on k)⊕ 1⊕ (0 or unknown Depends on k)

if
⊕

x∈X π(1,1,1,0)(x) = 0, the vector k ∈ S0 = U\{φ̄0 | φ0 = (1, 1, 1, 0) ⪰
φ̄0}. Similarly, we can get k ∈ S1 = U\{φ̄1 | φ1 = (0, 0, 1, 0) ⪰ φ̄1} and
k ∈ S2 = U\{φ̄2 | φ2 = (0, 0, 1, 1) ⪰ φ̄2}. We calculate the intersection of
the values of the vector k, i.e.,

S∩ = S0 ∩ S1 ∩ S2 = {(0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 0, 1),
(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 1)}

Thus, (0, 0, 1, 0) → (0, 0, 1, 1) is an valid division trail for L when the input
vector k ∈ S∩.
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Table 4: Correspondence between the vector u and πu(y) for the “S-box”

Vector u πu(y)

u = [0, 0, 0, 0] 1

u = [0, 0, 0, 1] y3 = x0x1 ⊕ x2 ⊕ x3

u = [0, 0, 1, 0] y2 = x2

u = [0, 0, 1, 1] y2y3 = x0x1x2 ⊕ x2 ⊕ x2x3

u = [0, 1, 0, 0] y1 = x1

u = [0, 1, 0, 1] y1y3 = x0x1 ⊕ x1x2 ⊕ x1x3

u = [0, 1, 1, 0] y1y2 = x1x2

u = [0, 1, 1, 1] y1y2y3 = x0x1x2 ⊕ x1x2 ⊕ x1x2x3

u = [1, 0, 0, 0] y0 = x0

u = [1, 0, 0, 1] y0y3 = x0x1 ⊕ x0x2 ⊕ x0x3

u = [1, 0, 1, 0] y0y2 = x0x2

u = [1, 0, 1, 1] y0y2y3 = x0x1x2 ⊕ x0x2 ⊕ x0x2x3

u = [1, 1, 0, 0] y0y1 = x0x1

u = [1, 1, 0, 1] y0y1y3 = x0x1 ⊕ x0x1x2 ⊕ x0x1x3

u = [1, 1, 1, 0] y0y1y2 = x0x1x2

u = [1, 1, 1, 1] y0y1y2y3 = x0x1x2x3

C Division trail for L of Present S-box

Table 5 presents the division trails for L of Present S-box.

D Linear inequalities description BDPT of the
Extension-S-box

The following inequalities are the 6 inequalities used to describe the “S-box”
whose feasible solutions are exactly the 26 division trails for K of the “S-box”
where (a0, a1, a2, a3)→ (b0, b1, b2, b3) denotes a division trail.

O =



−a0 − a2 − a3 + b0 + b2 + b3 ≥ 0
−a1 − a2 − a3 + b1 + b2 + b3 ≥ 0
a2 + a3 − b0 − b2 − b3 + 1 ≥ 0
a2 + a3 − b1 − b2 − b3 + 1 ≥ 0
a0 + a1 + a2 + a3 − b0 − b1 − b2 − b3 ≥ 0
a2 − b2 ≥ 0
a0, a1, a2, a3, b0, b1, b2, b3 are binaries

(3)

The following inequalities are the 10 inequalities used to describe the “S-box”
whose feasible solutions are exactly the 30 division trails for L of the “S-box”
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Table 5: Division trails for L of Present S-box

Input ℓ Output L

[0, 0, 0, 0] {[0, 0, 0, 0]}
[0, 0, 0, 1] {[0, 0, 0, 1], [0, 1, 0, 1], [1, 0, 0, 0], [1, 1, 0, 0]}
[0, 0, 1, 0] {[0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 0, 0], [1, 1, 0, 0]}

[0, 0, 1, 1]
{[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0],
[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0]}

[0, 1, 0, 0] {[0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0]}
[0, 1, 0, 1] {[0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 0]}

[0, 1, 1, 0]
{[0, 0, 0, 1], [0, 1, 1, 0], [1, 0, 0, 0],
[1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 0, 0]}

[0, 1, 1, 1]
{[0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 1, 0], [1, 0, 0, 0],

[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 0, 1]}

[1, 0, 0, 0]
{[0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1],
[0, 1, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0]}

[1, 0, 0, 1]
{[0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1],
[0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 0]}

[1, 0, 1, 0]
{[0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 1],
[0, 1, 1, 1], [1, 0, 0, 1][1, 0, 1, 0], ,
[1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]}

[1, 0, 1, 1]
{[0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 0],
[0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 0, 0],
[1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 0, 1]}

[1, 1, 0, 0] {[0, 0, 1, 0], [0, 0, 1, 1], [1, 0, 0, 1], [1, 1, 0, 0]}

[1, 1, 0, 1]
{[0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 1], [1, 0, 0, 0],

[1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 1, 0]}
[1, 1, 1, 0] {[0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]}
[1, 1, 1, 1] {[1, 1, 1, 1]}

where (a0, a1, a2, a3)→ (b0, b1, b2, b3) denotes a division trail.

O =



−a1 − a2 − a3 + b1 + b2 + b3 ≥ 0
a0 − b0 ≥ 0
a1 − b1 ≥ 0
−a0 − a2 − a3 + b0 + b2 + b3 ≥ 0
a2 − b2 ≥ 0
a0 − a1 + b1 ≥ 0
a0 + a2 + a3 − b3 ≥ 0
−a0 + a1 + b0 ≥ 0
a1 + a2 + a3 − b3 ≥ 0
a3 − b0 − b1 − b2 − b3 + 3 ≥ 0
a0, a1, a2, a3, b0, b1, b2, b3 are binaries

(4)
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E Proof of Propositon 1

According to Definition 4, we have the following iteration expression

Ki = fe(Ki−1) ∪ fk(Li) = fe(Ki−1) ∪ fk ◦ fe(Li−1)

Li = fe(Li−1)

Thus,

Kr = fe(Kr−1) ∪ fk(Lr)

= fe (fe(Kr−2) ∪ fk(Lr−1)) ∪ fk(Lr)

= fe ◦ fe(Kr−2) ∪ fe ◦ fk(Lr−1) ∪ fk(Lr)

...
= fe ◦ · · · ◦ fe︸ ︷︷ ︸

r

(k) ∪ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r−1

◦fk ◦ fe(ℓ) ∪ · · · ∪ fk ◦ fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(ℓ)

Lr = fe ◦ · · · ◦ fe︸ ︷︷ ︸
r

(ℓ)

F Integral Distinguishers listed in Table 1

For Simon and Simeck family block ciphers, all the integral distinguishers can
be extended one more round by the technique in [22]. Moreover, since there is no
whitening key at the beginning, we can trivially extend the integral distinguisher
of GIFT-64 by one round [1].

F.1 SIMON32’s 14-round Distinguisher

Input:(caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)

Output:(????????????????, ?0??????0??????0)

F.2 SIMON48’s 15-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)
Output: (????????????????????????, 000000000000000000000000)

F.3 SIMON64’s 17-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????,000000000000000?00????0000000000)
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F.4 SIMON96’s 21-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????????????????????,0?0????0?????????????????????????????????0????0?)

F.5 SIMON128’s 25-round Distinguisher

Input: (

caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (

????????????????????????????????
????????????????????????????????,
0?0?????????????????????????????
??????????????????????????????0?)

F.6 SIMECK32’s 14-round Distinguisher

Input:(caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)

Output:(????????????????, 00???00???00???0)

F.7 SIMECK48’s 17-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)
Output: (????????????????????????, 0???00?????????????00???)

F.8 SIMECK64’s 20-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????,00???0?????????????????????0???0)

F.9 PRESENT’s 9-round Distinguisher

Input: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac)

Output: (???0???0???00000???0???0???00000,???0???0???00000???0???0???00000)

F.10 RECTANGLE’s 10-round Distinguisher


aaaaaaaaaaaaaaac
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa

→

?0??00000???00?0
????????????????
????????????????
????????????????


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F.11 GIFT-64’s 10-round Distinguisher

Input: (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaacaa)

Output: (???b???b???b???b???b???b???b???b,???b???b???b???b???b???b???b???b)

F.12 Integral Distinguishers of SIMON(102)

In [10], another variant of Simon family named Simon(102) is proposed with
rotation constants (1,0,2). Hu et al. [8] proposed a variant BDPT and applied it
to improve the integral distinguishers of Simon(102). The results are shown in
F.13–F.15, where ‘*’ represents that the output bit is ‘0’ or ‘1’.

F.13 SIMON(102) 32’s 14-round Distinguisher in [8]

Input:(caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)

Output:(????????????????, 0*?????????????*)

F.14 SIMON(102) 48’s 15-round Distinguisher in [8]

Input: (caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)
Output: (????????????????????????, 0*?????????????????????*)

F.15 SIMON(102) 64’s 17-round Distinguisher in [8]

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????,0*?????????????????????????????*)

Determining ‘*’ is ‘0’ or ‘1’ can be helpful to integral attacks on Simon(102).
Therefore, we apply Algorithm 3 and 4 to search integral distinguishers of Si-
mon(102) based on BDPT, and obtain more accurate integral distinguishers
compared with [8]. The results are shown in F.16–F.18. Besides, these integral
distinguishers can be obtained by the method of exploring secret keys in [25].
Note that our automatic search model supposes that all secret keys are chosen
randomly. If consider the secret keys, we may obtain better integral distinguish-
ers.

F.16 SIMON(102) 32’s 14-round Distinguisher

Input:(caaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaa)

Output:(????????????????, 01?????????????1)
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F.17 SIMON(102) 48’s 15-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaa)
Output: (????????????????????????, ????????????????????????)

F.18 SIMON(102) 64’s 17-round Distinguisher

Input: (caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output: (????????????????????????????????,01?????????????????????????????1)
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