
A Power Side-Channel Attack on the
Reed-Muller Reed-Solomon Version of the HQC

Cryptosystem

Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh,
and Georg Sigl

Technical University of Munich, Munich, Germany
{t.schamberger,lukas.holzbaur,julian.renner,antonia.wachter-zeh,

sigl}@tum.de

Abstract. The code-based post-quantum algorithm Hamming Quasi-
Cyclic (HQC) is a third round alternative candidate in the NIST stan-
dardization project. For their third round version the authors utilize a
new combination of error correcting codes, namely a combination of a
Reed-Muller and a Reed-Solomon code, which requires an adaption of
published attacks. We identify that the power side-channel attack by
Uneo et al. from CHES 2021 does not work in practice as they miss the
fact that the implemented Reed-Muller decoder does not have a fixed
decoding boundary. In this work we provide a novel attack strategy that
again allows for a successful attack. Our attack does not rely on simula-
tion to verify it success but is proven with high probability for the HQC
parameter sets. In contrast to the timing side-channel attack by Guo
et al. we are able to reduce the required attack queries by a factor of 12
and are able to eliminate the inherent uncertainty of their used timing
oracle. We show practical attack results utilizing a power side-channel of
the used Reed-Solomon decoder on an ARM Cortex-M4 microcontroller.
In addition, we provide a discussion on how or whether our attack strat-
egy to be usable with the side-channel targets of mentioned related work.
Finally, we use information set decoding to evaluate the remaining attack
complexity for partially retrieved secret keys. This work again empha-
sizes the need for a side-channel secure implementation of all relevant
building blocks of HQC.

Keywords: Error Correction · HQC · Post-Quantum Cryptography ·
Power Analysis · Side-Channel Analysis

1 Introduction

The post-quantum cryptography (PQC) contest of NIST is currently in its third
round with the goal of reaching standardization of first algorithms in 2022 and
a broader portfolio of alternatives in 2024. While the first two rounds were dom-
inated with research on possible performance improvements and optimized im-
plementations the focus of the third round is mainly on the side-channel security
of systems, which was also encouraged by NIST in is final report of the second

2 Schamberger et al.

round [10]. This paper discusses a new side-channel attack against the code-
based post-quantum cryptosystem Hamming Quasi Cyclic (HQC) [8], which is
an alternative candidate for standardization in the third round of the NIST con-
test. HQC makes use of the concatenation of two error correction codes in order
to offer a good trade-off between error-correction capability and fast encryption
and decryption. The authors changed the used codes in their third round sub-
mission from a repetition in combination with a BCH code to a concatenated
Reed-Muller and Reed-Solomon code. As most works on side-channel attacks
against HQC are based on the former combination, these attacks have to be
revised.

Related Work Attacks on the second-round version of HQC are mostly based
on the observation that a side-channel leakage of the used BCH code can be
used to construct a decoding oracle that allows to distinguish whether an error
has to be corrected by the BCH decoder during decryption. There are timing
side-channel attacks [11,16] against a non-constant time implementation of the
BCH decoder as well as a power side-channel attack [13].

Attacks against the current version of the HQC cryptosystem, with a combi-
nation of a Reed-Muller and Reed-Solomon code, use parts of the implemented
variant of the Fujisaki-Okamoto transformation to build a plaintext-checking or-
acle. This allows distinguishing if crafted ciphertexts decrypt to the same plain-
text dependent on the secret key, again resulting in a possible attack on the
whole key using multiple queries to the oracle. Xagawa et al. [17] use a fault in-
jection to skip the ciphertext comparison setup of the transformation resulting
in direct access to the plaintext, while Ueno et al. [15] attack the used pseu-
dorandom number generator (PRG) required in the transformation through a
power side-channel. Both use an adaption of an attack described in [2,5] to the
third round version of HQC. Most recent Guo et al. [3] observed that the imple-
mented fixed-weight sampler in combination with the pseudorandom function
(PRF) provide a timing side-channel that can be used as a plaintext checking
oracle. They claim a success rate of 87% in retrieving the whole key.

Contributions With their choice of Reed-Muller codes in their third round
version of the HQC algorithm the authors implicity induce a different form
of decoder, as for Reed-Muller codes the decoder is usually implemented as
a maximum likelihood decoder. This decoder class, in contrast to a bounded-
distance decoder, as used for the former repetition code, does not have a distinct
decoding boundary. In other words the amount of correctable errors is dependent
on the support of the error, which in some cases allows correcting more errors
than the specified error correction capability of the code. This characteristic
breaks the attack attempts by [2,5], which has been unfortunately missed in
[15,17] and therefore described attacks do not work. In this paper we provide an
attack strategy that again allows successful power side-channel attacks on the
third round version of HQC. Our contributions are as follows:

– We show through simulation and with the use of a counterexample that
attacks described in [15,17] are not successful. Thus, we develop a new attack

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 3

strategy that again allows the retrieval of the secret key through a power
side-channel attack.

– While the previous attacks had to rely on simulations or an attack on a
few keys to verify the success of their attack strategy, we are able to prove
sufficient conditions for the success of our approach. These conditions are
fulfilled with very high probability for the parameters of HQC.

– We provide an evaluation of the remaining attack complexity for partially
retrieved secret keys with the use of information set decoding.

– Finally, we discuss possible side-channel oracles and show an analysis of the
power side-channel from [13] for the updated HQC version.

2 Preliminaries

2.1 Notation

Let Fq be the finite field of size q. Denote by F2[x1, . . . , xm] = F2[x] the ring
of polynomials in x = (x1, . . . , xm) with coefficients in F2. For a polynomial
f(x) ∈ F2[x] and integer s ≥ 1, define the evaluation map

ev×s : F2[x] 7→ Fs2
m

2

ev×s(f(x)) 7→ (f(a), f(a), . . . , f(a)︸ ︷︷ ︸
s times

)a∈Fm2 .

Note that if the degree of each variable x1, . . . , xm is restricted to be at most 1,
this is a bijective mapping, i.e., any vector in F2m

2 can be uniquely associated
to a polynomial f(x) ∈ F2[x]. For any ordering of the elements a ∈ F2m

2 we
define the mapping χ(a) from Fm2 to the indices of the s positions in ev×s(f(x))
corresponding to f(a). For ease of notation, we neglect the dependence of f(x)
on x, if clear from context. By slight abuse of notation, we define the Ham-
ming weight HW×s(f) := HW×s(ev×s(f)) and Hamming distance d×s(f, f ′) :=
d(ev×s(f), ev×s(f ′)) of polynomials via the respective evaluation map. The sup-
port of a polynomial is defined to be supp×s(f) := {χ(a) | f(a) 6= 0,a ∈ Fm2 }.
If s = 1 we omit the ×1 superscript from our notation.

We define Fm×n2 to be the set of all m × n matrices over F2, Fn2 = F1×n
2

for the set of all row vectors of length n over F2, and define the set of integers
[a, b] := {i : a ≤ i ≤ b}. We index rows and columns of m × n matrices by
0, . . . ,m − 1 and 0, . . . , n − 1, where the entry in the i-th row and j-th column
of the matrix A is denoted by Ai,j .

The Hamming weight of a vector a is indicated by HW(a) and the Hamming
support of a is denoted by supp(a) := {i ∈ Z : ai 6= 0}. Let V be a vector space
of dimension n over F2. We define the product of u,v ∈ V as uv = u rot(v)> =
v rot(u)> = vu, where

rot(v) :=


v0 vn−1 . . . v1

v1 v0 . . . v2

...
...

. . .
...

vn−1 vn−2 . . . v0

 ∈ Fn×n2 .

4 Schamberger et al.

As a consequence of this definition, elements of V can be interpreted as poly-
nomials in the ring R := F2[X]/(Xn − 1).

2.2 HQC

The HQC scheme consists of a public code C ⊆ Fn2 of length n and dimension
k, where it is assumed that both an efficient encoding algorithm Encode and
an efficient decoding algorithm Decode are known publicly. In the following
we describe the HQC algorithm as submitted to the third round of the NIST
post-quantum standardization contest with its specification last updated in June
2021. We start by introducing the PKE version of the algorithm as shown in
Algorithms 1 to 3. Within these algorithms several polynomials are uniformly

sampled from R, denoted as
$←− with the optional argument of specifying the

Hamming weight w of the polynomial as well as the randomness θ used to ini-
tialize the sampler. The parameter sets of HQC are shown in Table 1.

Algorithm 1: Key-
Gen

Input: param
Output: pk, sk

1 h
$←− R

2 (x,y)
$(w)←−−− R2

3 s← x + hy
4 pk = (h, s)
5 sk = (x,y)
6 return pk, sk

Algorithm 2: En-
crypt

Input: m, pk, θ
Output: c

1 e′
$(we,θ)←−−−−− R

2 (r1, r2)
$(wr,θ)←−−−− R2

3 u← r1 + hr2

4 v ← Encode(m) +
sr2 + e′

5 return c = (u,v)

Algorithm 3: De-
crypt

Input: sk = (x,y)
c = (u,v)

Output: m
1 v′ ← v − uy
2 m← Decode(v′)
3 return m

shortened RS code duplicated RM code
[n1, k, dRS] [n2, kRM , dRM , s] n w wr = we

HQC-128 [46, 16, 31] [384, 8, 192, 3] 17,669 66 75
HQC-192 [56, 24, 33] [640, 8, 320, 5] 35,851 100 114
HQC-256 [90, 32, 49] [640, 8, 320, 5] 57,637 131 149

Table 1: Parameter sets of HQC [9]

The HQC authors use the PKE version of HQC to construct an IND-CCA2
secure KEM. Using this KEM, a random shared secretK can be exchanged where
the sender applies encapsulation (Algorithm 4) and the receiver decapsulation
(Algorithm 5). These algorithms use three different hash functions G,H, and K,
which are based on SHAKE256 with 512 bits of output. In order to counteract
chosen-chipertext attacks, the decrypted message is re-encrypted and compared
to the original ciphertext input. Only if both ciphertexts are equal K gets re-
leased otherwise the decapsulation is aborted. In order for the re-encryption to
be possible the sampling of the random elements has to be deterministic, which
is ensured by deriving a seed from the message which is used to initialize the
sampler.

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 5

Algorithm 4: Encapsu-
late

Input: pk
Output: K, c = (u,v),d

1 m
$←− Fk2

2 θ ← G(m)
3 c← Encrypt(pk,m, θ)
4 K ← K(m, c)
5 d← H(m)

Algorithm 5: Decapsulate

Input: sk, c,d
Output: K

1 m′ ← Decrypt(sk, c)
2 θ′ ← G(m′)
3 c′ ← Encrypt(pk,m′, θ′)
4 if c 6= c′ and d 6= H(m′) then
5 abort

6 else
7 K ← K(m, c)

2.3 Choice of Error Correcting Code C

For the third round version of HQC the code C is instantiated as a concatenated
code with a Reed-Muller (RM) code as the inner and a Reed-Solomon (RS) code
as the outer code. The function Encode describes the encoding of a message m ∈
Fk2 into m̃ ∈ Fn1n2

2 using the concatenated code. First the outer RS code is used
to encode m into m1 ∈ Fn1

28 , followed by encoding each coordinate m1,i of m1

into m̃1,i ∈ Fn2
2 using the inner duplicated RM code. The duplicated encoding

works in two phases. First, each m1,i is encoded with the underlying [128,8,64]-
RM code to obtain m̄1,i, which is then duplicated based on the multiplicity s (see
Table 1) resulting in m̃1,i. In other words the final encoding result is constructed
as m̃ = (m̃1,0, . . . , m̃1,n1−1) ∈ Fn1n2

2 .
The function Decode describes the decoding of an input in Fn1n2

2 to a mes-
sage m ∈ Fk2 . First the individual m̃1,i are decoded with the duplicated RM
decoder (DRM), which results in the input to RS decoder (DRS) as an element
in Fn1

28 . Finally, the RS decoding results in the message m ∈ Fk2 .

Definition 1 (First Order Reed-Muller Code). Denote x = (x1, . . . , xm).
Define the code RM×s(m) to be

RM×s(m) =
{

ev×s(f(x))
∣∣ f(x) ∈ F2[x],deg(f(x)) ≤ 1

}
.

We refer to s as the multiplicity of the RM code. If s = 1 we omit the superscript
and write RM(m).

For details on RM codes and their properties we refer the reader to [7, Chap-
ter 13].

3 Novel Oracle-Based Side-Channel Attack

In this section we describe our chosen-ciphertext attack against the HQC cryp-
tosystem which is able to retrieve the secret key polynomial y during decryp-
tion/decapsulation. We start by describing the support distribution of y, which
is essential for the attack. In a second step we introduce the general idea of our

6 Schamberger et al.

attack and focus on the characteristics of RM codes that render some published
attacks unsuccessful. As a third step we describe our attack strategy based on
a close-to-zero oracle. We additionally provide attack results and compare the
required oracle queries to related work. Finally, we show how to retrieve the
secret key from partial attack results using information set decoding.

3.1 Support Distribution of y

With the proposed HQC parameter sets, y is sampled as a sparse polynomial
with HW(y) = w. As our attack targets each duplicated RM codeword of length

n2 individually, we split y into corresponding chunks y
(0)
i with 0 ≤ i ≤ n1. In

order to prevent algebraic attacks, y is chosen to be of length n, which is the
smallest primitive prime greater than n1n2. Therefore, y contains a second part
y(1) consisting of the remaining n− n1n2 bits.

y
(0)
0 y

(0)
1 y

(0)
2

. . . y
(0)
n1−1 y(1)

y(0) ∈ Fn1n2
2 y(1) ∈ Fn−n1n2

2
y

(0)
i ∈ Fn2

2

Fig. 1: Different parts of the secret key y ∈ Fn2 .

Our proof of the attack is defined for a maximum Hamming weight of all y
(0)
i .

For this we define yw,max = max{HW(y
(0)
0), . . . ,HW(y

(0)
n1−1)} as the maximum

Hamming weight of all chunks of y(0). We determine the probabilities of certain
yw,max by simulating the weight distribution of 10 million samples of y(0) with
the results shown in Table 2.

yw,max 1 2 3 4 5 6 7 8 9
HQC-128 0% ≈0% 3.75% 48.77% 86.49% 97.44% 99.59% 99.94% 99.99%
HQC-192 0% ≈0% 0.01% 10.74% 57.96% 88.50% 97.57% 99.56% 99.93%
HQC-256 0% ≈0% 0.09% 20.83% 71.87% 93.94% 98.96% 99.84% 99.97%

Table 2: Probabilities that y(0) is generated such that the weight of y
(0)
i for

i = 0, . . . , n1 − 1 is at most yw,max.

With our attack strategy we are able to attack y(0), as only this part acts
as an input to the decoder. Nevertheless, we discuss methods to retrieve the
whole y in Section 3.2. The probability that HW(y(1)) > 0 can be computed by
1−

(
n1·n2

w

)
/
(
n
w

)
. Considering the parameters of HQC-128, HQC-192, and HQC-

256 we determine the respective probabilities to be 1.85%, 3.02%, and 8.07%.
This means that in most cases it suffices to determine the y(0) because there are
no ones in y(1).

3.2 General Attack Idea

With our chosen-ciphertext attack we are able to determine all parts of the

secret key y
(0)
i individually and in sequential manner. Within the Hamming

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 7

Quasi-Cyclic (HQC) algorithm the only operation utilizing the secret key is the
decoding of the vector v′ = v − uy during decryption (c.f. Algorithm 3). By
setting u = (1, 0 . . . , 0) ∈ Fn2 the decoder input results in v′ = v − y. As v is
part of the ciphertext c = (u,v), it is controllable by the attacker. By setting it
to a valid codeword ∈ C, y can be seen as an error that has to be corrected by
the decoder. Note that due to the sparseness of y it is sufficient to only retrieve
its support.

Now the general idea of the attack is to choose v such that the decoding

result depends on y
(0)
i , revealing its support. In the case of HQC an attacker

requires access to the individual RM decoder results, as the respective input

consists of y
(0)
i subtracted from its corresponding part of v. It is not possible to

directly attack the decapsulation of HQC (Algorithm 5), as it includes a check
for the validity of the ciphertext that does not reveal information about m in
case of failure. Nevertheless, a side-channel can be used in order to construct an
oracle that again reveals information about the decoding result. We therefore
construct an oracle that is able to determine whether the RM decoder decoded
to the all-zero or a non-zero codeword in a given position. The oracle is formally
defined in Definition 2. We discuss different side-channels, which can be used to
construct this oracle, in Section 4.

Definition 2 (Close-to-0-Oracle). Let C be an RM(m) code. Define De
0 :

Fnq 7→ {True,False} with e ∈ Fnq to be the function given by

De
0(r) =

{
True, if DRM(r + e) = 0,

False, else,

where DRM denotes a decoder for the RM code.

By querying the oracle and therefore having access to the decoding result
our attack strategy as well as the related work is based on two steps. First, an
input has to be found (or set for some attacks) that, after the subtraction of the

corresponding y
(0)
i , lies exactly at the decoding boundary of the RM decoder. An

example is to find an input that lies exactly one error above the border meaning
the input results in a decoding error, i.e. in the decoder not returning the all-zero
codeword 0, and therefore the oracle returns False. This implies that if we set an

additional bit in the input, which is in the support of y
(0)
i , we reduce the error

resulting in a successful decoding indicated by the oracle as True. Now in the
second attack step we can query the oracle by successively inverting each bit of
the input we found in the first step. In this process an oracle result of True, i.e., a
successful decoding to the all-zero codeword, indicates that this position is in the

support of y
(0)
i . This allows to retrieve the whole support of the attacked secret

key block. By repeating this approach for all n1 RM blocks we can retrieve the
complete y(0).

Limitations of Previous Works With the change of the used codes in the
third round version of the HQC, the first attack step, namely finding an input

8 Schamberger et al.

that lies at the decoding border of the internal code, has to be changed due to
the use of a different decoder type. This is the case as the decoder of the now
used RM code is implemented as an ML decoder, where ties are resolved in favor
of the word of smaller lexicographical order. A ML decoder is formally defined
as follows:

Definition 3 (ML Decoder). Let C be an [n, k]q code. Define DML : Fnq 7→ C
to be a function returning the codeword that maximizes the probability P (r|c),
i.e.,

DML(r) = arg max
c∈C

P (r|c) .

If this choice is not unique, it returns the word that is smaller in lexicographical
order.

In the Hamming metric and without considering soft information an ML de-
coder translates to a function returning the codeword of the smallest Hamming
distance to the given vector, i.e., DML(r) = arg minc∈C d(r, c). Note that ML
decoding is known to be very complex and therefore rarely used in practice.
However, for a few code classes, such as first-order RM codes, efficient decoders
are known, a fact that is exploited in this system. Most other systems based on
algebraic codes, such as Classic McEliece [1], instead employ bounded-distance
decoders, which decode any error up to a given weight and fail if no codeword
is within this specified radius1. On the other hand, for a symmetric memoryless
channel an ML decoder always returns (one of) the codeword(s) closest to the
received word, regardless of its distance to the received word. Importantly, this
implies that the behavior of this decoder does not only depend on the number
of errors but also on the positions of these errors. However, this independence
of the error positions in a bounded-distance decoder is essential to some known
attack strategies such as [2,5]. Hence, while the setup might look similar, these
methods cannot be directly applied to a system employing an ML decoder in-
stead of a bounded-distance decoder. For instance, the side-channel attack in [17,
Section C.7]2 claims that the method for determining an additive error vector
from oracle outputs, given in [2, Figure 7], also applies the third round version
of HQC. In Appendix A we show that this leads to incorrect outputs of the al-
gorithm, which are caused by exactly this difference in behavior between an ML
and a bounded-distance decoder, rendering their described attack unsuccessful.

Retrieval of y(1) If y(0) has been retrieved completely and error free, we can
use the published linear algebraic approach shown in [13] to get the remaining

1 The previous version of the HQC system employed repetition codes of odd length
instead of RM codes. It is well-known that this class of codes is perfect, i.e., the
unique decoding error balls centered on the codewords fill the entire space. In this
specific case, a bounded-distance decoder with radius (d − 1)/2 is equivalent to an
ML decoder. Note that first-order RM codes are not perfect, so this special case does
not apply here.

2 Note that the description of the attack in [15] is based on the same assumptions, as
it directly refers to [17].

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 9

part of the secret key defined as y(1). Assuming that HW(y(1)) ≤ 2 the resulting
work factor of this approach for HQC-128, HQC-192 and HQC-256 is 219.02,
224.08 and 230.32, respectively. In the case that y(0) is only partially retrieved we
have to use information set decoding, as described in Section 3.4, which directly
retrieves the complete secret key y from the partial information.

3.3 Description of the Attack Strategy

In this section we introduce our attack strategy that considers the characteristics
of the RM ML decoder and therefore again allows for the correct retrieval of
y(0). It is based on two algorithms, where first the strategy to find an input
word that lies at the decoder border is described as Algorithm 6 and then the
strategy to retrieve the support of the error with the use of multiple of these
words as Algorithm 7. We start by introducing the reasoning for our strategy
leading to a formal proof to successfully retrieve y(0) if the Hamming weight
of the respective RM block is smaller than dRM

4 . Our simulation of yw,max (see
Table 2) indicates that this condition holds for nearly all possible keys of HQC,
as 99.9% of simulated keys show a yw,max of 9 with dRM being 192 for HQC-
128 and 320 for HQC-192/HQC-256 (c.f. Table 1), respectively. We conclude this
section with a discussion of the required oracle calls of our strategy in comparison
to related work.

Algorithm 6: FindWordAtBorder

Input : Oracle function De
0

Sets Î, Ǐ ⊂ [0, n2 − 1]
Output: Vector r ∈ Fn2

2

1 r ← 0

2 for ξ ∈ Î ∩ Ǐ do
3 if De

0(r) = True then
4 rξ ← 1

5 else
6 return Vector r ∈ Fn2

2

7 for ξ ∈ Î \ Ǐ do
8 if De

0(r) = True then
9 rξ ← 1

10 else
11 return Vector r ∈ Fn2

2

Algorithm 7: FindError

Input : Oracle function De
0

Sets I1, I2 ⊂ [0, n2 − 1]
Output: Vector ẽ ∈ Fn2

2

1 ẽ← 0

2 for Î ∈ {I1, [0, n2 − 1] \ I1} do
3 for Ǐ ∈ {I2, [0, n2 − 1] \ I2}

do
4 r ←

FindWordAtBorder(De
0, Î, Ǐ)

5 ê← r

6 for ξ ∈ Î ∩ Ǐ do
7 rξ ← rξ + 1
8 if De

0(r) = True then
9 êξ ← êξ + 1

10 rξ ← rξ + 1

11 ẽÎ∩Ǐ ← êÎ∩Ǐ

12 return Vector ẽ ∈ Fn2
2

To begin, we show some general results on the intersection of the supports
of RM(m) codewords. Note that there exists an extensive literature on RM
codes and their supports are well understood. For completeness, we nevertheless

10 Schamberger et al.

include the following statement in the form required to prove the main results
of this section. As the statements and proofs in the following heavily rely on the
properties of the multivariate polynomials associated with each RM codeword,
we denote all vectors in the following by the polynomial which results in the
respective vector when evaluated in F2m

2 .

Lemma 1. Consider two polynomials p̂, p̌ ∈ F2[x] with deg(p̂) = deg(p̌) = 1
and p̌ 6∈ {p̂, p̂+ 1}. Denote d = 2m−1. Then, for any f ∈ RM(m) we have

| supp(f) ∩ supp(p̂p̌)| = HW(fp̂p̌) =


0, if f ∈ {0, p̂+ 1, p̌+ 1, p̂+ p̌}
d
2 , if f ∈ {1, p̂, p̌, p̂+ p̌+ 1}
d
4 , else.

Proof. The first case follows from observing that fp̂p̌ = 0 for these polynomials3.
It is well-known that any codeword p ∈ RM(m), except the all-zero and the all-
one word, i.e., any word with deg(p) = 1, is of weight d = 2m−1.Since deg(p̂) =
deg(p̌) = 1 and p̌ 6∈ {p̂, p̂+ 1} we have deg(p̂+ p̌) = 1. Therefore, HW(p̂+ p̌) = d
and we get

HW(p̂+ p̌) = HW(p̂) + HW(p̌)− 2HW(p̂p̌)

d = 2d− 2HW(p̂p̌)

d

2
= HW(p̂p̌) .

The second case follows since we have supp(p̂p̌) ⊂ supp(f) for any f ∈ {1, p̂, p̌, p̂+
p̌+1}. Now consider some f ∈ RM(m)\{0, p̂+1, p̌+1, p̂+p̌, 1, p̂, p̌, p̂+p̌+1} and
note that deg(f) = 1. Observe that the supports of the polynomials {p̂p̌, p̂(p̌ +
1), (p̂+ 1)p̌, (p̂+ 1)(p̌+ 1)} partition the 2m codeword positions. Hence, by the
pigeonhole principle, there exists some p̄ ∈ {p̂(p̌ + 1), (p̂ + 1)p̌, (p̂ + 1)(p̌ + 1)}
with

HW(p̄f) ≥
⌈

HW(f)−HW(p̂p̌f)

3

⌉
≥ d−HW(p̂p̌f)

3
.

Further, it is easy to check that p̂p̌+ p̄ ∈ {p̂, p̌, p̂+ p̌+1}, which implies deg(p̂p̌+
p̄) = 1 and HW(p̂p̌+ p̄) = d. Now, towards a contradiction, assume HW(fp̂p̌) >
d
4 . Then, we have

d(p̂p̌+ p̄, f) = HW(p̂p̌+ p̄) + HW(f)− 2HW((p̂p̌+ p̄)f)

= 2d− 2(HW(p̂p̌f) + HW(p̄f))

≤ 2

(
d−

(
HW(p̂p̌f) +

d−HW(p̂p̌f)

3

))
≤ 2
(
d− d+ 2HW(p̂p̌f)

3

)
3 Note that f2 = f in F2[x], so (p̂ + 1)p̂p̌ = p̂2p̌ + p̂p̌ = 2p̂p̌ = 0.

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 11

< 2
(
d−

d+ 2d4
3

)
= d .

As both p̂p̌+p̄ and f are inRM(m), this can only be true if p̂p̌+p̄ = f . However,
we have p̂p̌+p̄ ∈ {p̂, p̌, p̂+p̌+1} and therefore, by definition of f , a contradiction.
Now assume there exists an f ′ ∈ RM(m)\{0, p̂+1, p̌+1, p̂+ p̌, 1, p̂, p̌, p̂+ p̌+1}
with HW(fp̂p̌) < d

4 and note that this set is closed under inversions, i.e., also

contains f ′ + 1. Then, we have HW((f ′ + 1)p̂p̌) > d
4 , which cannot be true, as

shown above. ut

Using these results, we now show that the output of Algorithm 6 always results
in a word that causes a specific ML decoding result, under certain non-restrictive
assumptions.

Lemma 2. Denote by p̂, p̌ ∈ F2[x] two polynomials with deg(p̂) = deg(p̌) = 1
and p̌ 6∈ {p̂, p̂+ 1}. Then, for r = FindWordAtBorder(De

0 , supp(p̂), supp(p̌)) as in
Algorithm 6 it holds that DRM(r+ e) ∈ {p̂, p̌, p̂+ p̌+ 1} and the decision is not
the result of a tie in the distance with some other word RM(m) \ F .

Proof. Denote F = {p̂, p̌, p̂+ p̌+1}. First note that the algorithm always returns
a word r such that De

0(r) = False. Clearly, this statement would only be false
if De

0(r) = True for all steps in the for loops of Lines 2 and 7. To see that this
cannot be the case, consider the d

4 -th iteration in the for-loop of Line 7. In this

iteration we have HW(r) = 3
4d and supp(r) ⊂ Î = supp(p̂), where p̂ ∈ RM(m)

by definition. It follows that r + e is in the unique decoding ball of p̂, since

d(r + e, p̂) = HW(p̂+ r + e)

≤ HW(p̂+ r) + HW(e)

= d−HW(r) + HW(e) <
d

2
.

In this case, an ML decoder for the RM code would decide for p̂, and it holds
that De

0(r) = False and DRM(r + e) = p̂ ∈ {p̂, p̌, p̂ + p̌ + 1}. Note that this
also implies HW(p̂(p̌ + 1)r) ≤ d

4 for any returned word r. Now consider the
case that Algorithm 6 terminates in the for loop of Line 2, i.e., for an r with
supp(r) ⊆ (Î ∩ Ǐ). For this case, we show a statement that is slightly stronger
than required, namely, we prove that for any f ∈ RM(m) \ (F ∪ {0}) we have
d(r + e, 0) < d(r + e, f), which implies that f cannot be the outcome of an
ML decoder4. To begin, observe that DRM(r + e) 6= 1 since HW(r + e) ≤
HW(r)+HW(e) < n

4 + d
4 and therefore d(r+e, 0) = HW(r+e) < n−HW(r+e) =

d(r+e, 1), so the ML decoder does not decode to the all-one word in this case. If
HW(r) ≤ d

4 , we get HW(r+e) < d
2 and an ML decoder always decides for 0, i.e.,

De
0 = True, so we can assume that HW(r) > d

4 when Algorithm 6 terminates.
Denote F̄ = RM(m) \ (F ∪ {0, 1}). Now consider some f ∈ F̄ and note that

4 Note that this does not imply that the outcome is 0, since one of the words of F
could still be closer to r + e than 0.

12 Schamberger et al.

supp(p̂p̌) = Î ∩ Ǐ. Then, we have

d(r + e, f) = HW(f + r + e)

≥ HW(f + r)−HW(e)

= HW(p̂p̌(f + r)) + HW((p̂p̌+ 1)(f + r))−HW(e)

= HW(p̂p̌(f + r)) + HW((p̂p̌+ 1)f)−HW(e)

≥ HW(r)−HW(p̂p̌f) + HW((p̂p̌+ 1)f)−HW(e) .

Since f 6∈ (F ∪{0, 1}) Lemma 1 gives HW(p̂p̌f) ≤ d
4 , so −HW(p̂p̌f)+HW((p̂p̌+

1)f) ≥ 3
4d. Therefore, we get d(r+ e, f) > HW(r) + 3

4d−
1
4d = HW(r) + 1

4d. On
the other hand, the distance of r + e to 0 is

d(r + e, 0) = HW(r + e)

≤ HW(r) + HW(e)

< HW(r) +
1

4
d .

Therefore, if Algorithm 6 terminates in the for-loop of Line 2, the outcome of
the ML decoder cannot be a word of F̄ ∪ {1}, which implies that DRM(r) ∈ F .
Now consider the case where Algorithm 6 terminates in the for-loop of Line 7.
Note that, by definition of the sets Î and Ǐ, we have supp(r) ⊂ supp(p̂) and,
since the for-loop of Line 2 is completed, it holds that HW(p̂p̌r) = d

2 . To begin,
observe that

d(r + e, p̂) = HW(p̂+ r + e)

≥ HW(p̂+ r) + HW(e)

(a)
= d−HW(r) + HW(e) <

5

4
d−HW(r) , (1)

where (a) holds because supp(r) ⊂ supp(p̂) and HW(p̂) = d. It follows immedi-
ately from Lemma 1 that an RM(m) code can be partitioned by

RM(m) = {0} ∪ {1} ∪ {p̂+ 1} ∪ F ∪ {f | HW(p̂p̌f) = 0,HW(p̂(p̌+ 1)f) =
d

2
}

∪ {f | HW(p̂p̌f) =
d

4
,HW(p̂(p̌+ 1)f) =

d

4
} .

The statement holds if the distance to the words in all subsets except {0} and
F is larger than Eq. (1). We consider each subset separately:

– For f = 1 we have

d(r + e, f) = HW(f + r + e)

≥ HW(f)−HW(r)−HW(e)

> 2d−HW(r)− d

4

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 13

>
7

4
d−HW(r) > d(r + e, p̂) .

– For f = p̂+ 1 we have

d(r + e, f) = HW(f + r + e)

≥ HW(f + r)−HW(e)

= HW(p̂(f + r)) + HW((p̂+ 1)(f + r))−HW(e)

= HW(p̂r) + HW((p̂+ 1)f)−HW(e)

= HW(r) + HW(f)−HW(e)

= 2HW(r) + d−HW(r)−HW(e)

(a)

≥ 2d−HW(r)−HW(e)

>
7

4
d−HW(r) > d(r + e, p̂) ,

where (a) holds because HW(r) ≥ HW(p̂p̌r) = d
2 , as noted above.

– For any f ∈ RM(m) with HW(p̂p̌f) = 0 and HW(p̂(p̌+ 1)f) ≥ d
4 we have

d(r + e, f) = HW(f + r + e)

≥ HW(f + r)−HW(e)

= HW(p̂p̌(f + r)) + HW((p̂p̌+ 1)(f + r))−HW(e)

≥ HW(p̂p̌r) + HW((p̂p̌+ 1)f)︸ ︷︷ ︸
=HW(f)=d

−HW((p̂p̌+ 1)r)−HW(e)

= d+ HW(p̂p̌r)−HW((p̂p̌+ 1)r)−HW(e)

= d+ 2HW(p̂p̌r)︸ ︷︷ ︸
=d

−(HW(p̂p̌r) + HW((p̂p̌+ 1)r))−HW(e)

= 2d−HW(r)−HW(e)

>
7

4
d−HW(r) > d(r + e, p̂) .

– For any f ∈ RM(m) with HW(p̂p̌f) = HW(p̂(p̌+ 1)f) = d
4 we have

d(r + e, f) = HW(f + r + e)

≥ HW(f + r)−HW(e)

= HW(p̂p̌(f + r)) + HW(p̂(p̌+ 1)(f + r)) + HW((p1 + 1)(f + r))

−HW(e)

= HW(p̂p̌(f + r)) + HW(p̂(p̌+ 1)f)−HW(p̂(p̌+ 1)r)

+ HW((p1 + 1)f)︸ ︷︷ ︸
= d

2

−HW(e)

=
d

4
+
d

4
−HW(p̂(p̌+ 1)r) +

d

2
−HW(e)

14 Schamberger et al.

= d+ HW(p̂p̌r)− (HW(p̂p̌r) + HW(p̂(p̌+ 1)r))−HW(e)

=
3

2
d−HW(r)−HW(e)

>
5

4
d−HW(r) > d(r + e, p̂) .

We conclude that for any f ∈ RM \ (F ∪ {0}) a word of F (specifically p̂) is
closer5 to r+ e than f , and it follows that DRM(r+ e) ∈ F . Since the distance
to the word of F was truly smaller in each of the discussed cases, i.e., not a
tie, the decision is not the result of a tie in the distance with some other word
RM(m) \ F . ut

Due to the specific structure of the words in the set F , i.e., the possible
outputs of an ML decoder for the considered input, we are now able to make a
statement on the behavior of the oracle when a single bit of this input is flipped.

Lemma 3. Denote by p̂, p̌ ∈ F2[x] two polynomials with deg(p̂) = deg(p̌) = 1
and p̌ 6∈ {p̂, p̂+ 1}. Then, for r = FindWordAtBorder(De

0 , supp(p̂), supp(p̌)) as in
Algorithm 6 and any ξ ∈ supp(p̂p̌) it holds that

De
0(r + u(ξ)) =

{
True, if rξ + eξ = 1

False, else,

where u(ξ) ∈ F2m

2 denotes (polynomial corresponding to) the ξ-th unit vector.

Proof. Denote F = {p̂, p̌, p̂+ p̌+1}. By Lemma 2, we have DRM(r+e) =: p̃ ∈ F
for the word r returned at Step 4 of Algorithm 7. By definition of F , this implies
that (Î ∩ Ǐ) ⊂ supp(p̃), i.e., the positions Î ∩ Ǐ of p̃ are all one. Therefore, if

a position in Î ∩ Ǐ of r + e is changed from 0 to 1, the distance to p̃ always
decreases by 1 and the ML decoder output does not change. On the other hand,
if a position in Î∩Ǐ of r+e is changed from 1 to 0, the distance to any polynomial
of F always increases by 1, the distance to 0 decreases by 1, and the distance to
any other word in RM(m) \ (F ∪ {0}) decreases by at most 1. Hence, the ML
decoding result changes from p̃ to 0 and the oracle returns True. ut

Finally, we show that Algorithm 7 is always successful in recovering the
correct vector e, given that some non-restrictive assumptions are fulfilled.

Theorem 1. Let De
0 be a oracle for the code RM×s(m) ⊂ Fs2m2 of minimum

distance d = s2m−1, where e ∈ Fs2m2 with HW(e) < d
4 . Consider two polynomials

p1, p2 ∈ F2[x] with deg(p1) = deg(p2) = 1 and p2 6∈ {p1, p1+1}. Then, the output
of Algorithm 7 is FindError(De

0 , supp×s(p1), supp×s(p2)) = e.

Proof. For sake of readability and ease of notation, we focus on the case of
multiplicity s = 1 in this proof. It is easy to verify that all statements also hold

5 Similarly to the previous case, this does not mean that the ML decoding result is
necessarily p̂, since the proof does not hold for p̌ and p̂ + p̌ + 1.

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 15

for s > 1 by essentially multiplying every weight/distance by s. Note that both

Algorithms 6 and 7 are independent of s. Consider some choice of Î and Ǐ in
Steps 2 and 3 of Algorithm 7. Note that there exist corresponding polynomials
p̂ ∈ {p1, p1 + 1} and p̌ ∈ {p2, p2 + 1} with supp(p̂) = Î and supp(p̌) = Î and we
have deg(p̂) = deg(p̌) = 1 and p̌ 6∈ {p̂, p̂+ 1} for any such choice. Step 6 iterates

over all positions of r in Î ∩ Ǐ and queries the oracle with this bit flipped. If this
changes the oracle output to True, the corresponding bit is flipped in ê, with
the goal of obtaining êÎ∩Ǐ = eÎ∩Ǐ at the end of the loop. We consider the four
different possible combinations of eξ and rξ:

– eξ = 0, rξ = 0 or eξ = 1, rξ = 1: Flipping positions rξ corresponds to setting
a 0 in r+e to 1. By Lemma 3, this does not change the ML decoding result,
i.e., the oracle still returns False. The bit êξ is not flipped, i.e., we have
êξ = rξ, and we correctly obtain êξ = eξ.

– eξ = 0, rξ = 1 or eξ = 1, rξ = 0: Flipping positions rξ corresponds to setting
a 1 in r + e to 0. By Lemma 3, this does change the ML decoding result to
all-zero, i.e., the oracle now returns True. The bit êξ is flipped, i.e., we have
êξ = rξ + 1, and we correctly obtain êξ = eξ.

We conclude that ẽÎ∩Ǐ = êÎ∩Ǐ = eÎ∩Ǐ . This holds for any choice of Î and Ǐ.

The lemma statement follows from observing that the corresponding sets Î ∩ Ǐ
partition the set of all positions [0, qm − 1].

ut

Required Oracle Calls Our strategy as described in Algorithm 7 requires at
most 4 · (2·n2

4 + n2

4) oracle calls dependent on the length of the RM code. Note

that the algorithm has to be repeated for all n1 blocks of y(0) introducing an
additional factor of n1.

We observed that the attack strategy of exploiting shown by Guo et al. [3]
can be adapted for the use with our oracle. In addition to some disadvantages
of the exploited timing side-channel (see Section 4 for a detailed discussion) this
approach shows a largely increased number of required oracle calls. In essence
their attack works by randomly increasing the Hamming weight of an input to
the RM decoder until they reach the decoding boundary. Then the oracle can be
queried with the individual bits of the input flipped. From the now found error
positions only those that are not self introduced in the first step are counted

as a valid part of the support of y
(0)
i . Therefore, the attack steps have to be

repeated until each position is evaluated and optionally a certain threshold for
each position is reached. This makes the attack non-deterministic, and therefore
we simulated the required oracle calls for 400,000 attacks with yw,max in the
range 1 ≤ yw,max ≤ 10 given a threshold of one (each position has to be evaluated
once). The resulting mean of the required oracle calls in comparison with our
strategy is shown in Table 3. To summarize our attack strategy in comparison
to [3] requires by a factor of 11.73 (HQC-128) and 12.62 (HQC-192/256) less

oracle queries. In addition, it is proven to be successful for HW(y
(0)
i) < dRM

4 ,
where dRM = s · 2m−1.

16 Schamberger et al.

Timing Attack [3] This work
HQC-128 13522*46 1152*46
HQC-192 24216*56 1920*56
HQC-256 24216*90 1920*90

Table 3: Comparison of required oracle queries for the different attack strategies.
Note that the size of the RM code is the same for HQC-192 and HQC-256, and
therefore we use the same simulation result for both parameter sets. Using the
timing side-channel of [3] requires even more oracle calls as a majority decision
or each bit has to be found in order to increase the reliability of the oracle.

3.4 Retrieval of y from Partial Information with Information Set
Decoding

In the case that y(0) is only partially retrieved we can still use this partial infor-
mation to mount an attack through information set decoding. For a general ap-
proach on how to incorporate partial side-channel information into information-
set decoding we refer the reader to [4]. There are two main reasons for the
information to be limited. Either there is a limit on the amount of possible ora-
cle calls due to the amount of decryptions that can be observed by the attacker
or the side-channel used to create the oracle does not result in perfect oracle
answers. In Appendix B we describe a modified variant of Stern’s algorithm [14]
that is able to incorporate correct information about the support of the individ-

ual y
(0)
i to lower the complexity of information set decoding. The resulting work

factorWModSt given the knowledge of τ elements of the support of y(0) is shown
in Fig. 2. Note that our algorithm also uses the information whether a full block

y
(0)
i has been retrieved, and we therefore assume the support of y(0) is evenly

distributed between the different blocks of y
(0)
i in Fig. 2.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

50

100

150

200

250

300

τ

lo
g

2
(W

M
o
d
S
t
)

HQC-128

HQC-192

HQC-256

Fig. 2: Resulting work factor of Algorithm 8 for all HQC parameter sets given
the knowledge of τ elements of the support of y(0).

4 Side-channel Targets to Build the Required Oracle

There are several possible side-channels that can be used to construct our close-
to-zero oracle as given in Definition 2. In this section we describe our results of
directly attacking the implemented RS decoder of the HQC round 3 reference

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 17

implementation using our power side-channel described in [13]. In addition, we
discuss the approaches in related work and show how or whether these side-
channels can be adapted to build our oracle. An overview of the different side-
channel targets of the HQC decapsulation is shown in Fig. 3. Note that we
consider a discussion of the fault-attack of Xagawa et al. [17] out of scope for
this work.

u

v
c = (u,v)

y

v − uy Decode

Gm′
Sample

θ

Encode m′G + sr2 + e

m′G

s

r1 + hr2

r2

e

r1

h

=

H abort

K(m, c) K

no

yes

d′
d

u′

v′

Decryption Encryption

Power side-channel [13] Power side-channel [15] Timing side-channel [3]

Fig. 3: Building blocks of the HQC decapsulation (c.f. Algorithm 5) with the
side-channel attack targets used in related work.

4.1 Power Side-channel on the RS Decoder

It is possible to construct our required oracle from the decoding result of the RS
decoder. First we have to recall that our oracle indicates whether the RM decoder
is able to correctly decode to the all-zero codeword or the decoding fails, and any
other codeword is returned. Transferring this behavior to be observable through

the RS decoder requires to set all the remaining y
(0)
i that are not attacked to

zero. Then if the RS decoder has to correct an error we know that the RM
decoder was not able to return the correct all-zero codeword and the oracle
result is True.

In order to observe that the RS decoder has to correct an error we use the
template matching approach shown in [13]. Note that although this method is
targeting a BCH decoder we can still use the approach in our setting. This is due
to the fact that BCH codes are subcodes of RS codes and usually decoded using
the same procedure as RS codes6. Therefore, steps during the decoding of these
codes are essentially the same. The attack target for building the templates is the
computation of the error-locator polynomial, as it showed the highest amount
of exploitable leakage. As the input can be directly controlled by an attacker,
templates for both classes can be constructed through the power side-channel.
Then for each oracle call the constructed input is fed into the decapsulation and

6 A (linear) subcode consists of a subset of codewords of the original code, usually in
the form of a linear subspace. It is easy to see that any decoder for the original code
can also be applied to the subcode, since it contains any codeword of the subcode.
For more details on the relation between RS and BCH codes, the reader is referred
to [7, Chapter 12].

18 Schamberger et al.

the respective power trace is compared to the templates through the use of a
sum-of-squared-difference metric. As a result the class with the smallest metric
is chosen as the oracle result.

Attack Results We evaluated the oracle with our power side-channel setup
consisting of a STM32F415RGT6 ARM Cortex-M4 microcontroller mounted on
a Chipwhisperer CW308 UFO board running at 10 MHz. The power consumption
is measured through the integrated shunt resistor with a PicoScope 6402D USB-
oscilloscope running at a sampling rate of 156.25 MHz. As an attack target we
use the latest version of the HQC-128 reference implementation. With our setup
a total amount of 1000 template traces are used for the initialization of the
oracle using a t-test threshold of 100 for point of interest detection. Using the
initialized oracle we are able to correctly classify 100,000 attack traces. As this
number is above the required number of oracle calls for a complete key recovery
we consider an attack on the complete secret key successful.

4.2 Power Side-Channel on the used Hash Functions G,H

In [15] the authors show how to create a plaintext-checking oracle for HQC
by observing a power side-channel of the used hash functions SHAKE256-512.
With their oracle they are able to distinguish if a certain input results in a fixed
message m′ or if the result is different to this fixed message. As m′ is directly
used as an input to G and H the authors identify these hash functions as an
attack target. In order to instantiate their oracle they use a machine learning
classifier based on a convolutional neural network (CNN). They evaluate their
CNN on the SHAKE software implementation of pqm4 [6] with the same side-
channel platform and microcontroller as we described in the previous section.
Using 30,000 training traces they achieve an accuracy of 0.998 when classifying
10,000 test traces, which can be further increased through the combination of
multiple classifications.

This oracle can not be directly used with our proposed attack strategy as the
resulting message after decryption is always zero. It can nevertheless be adapted
to work as our close-to-zero oracle (Definition 2) by setting the resulting input to
Decode such that the input to the RS decoder is set to its decoding boundary.
This can be done by setting (dRS − 1)/2 blocks of y(0), that are not currently
attacked, to be decoded as a non-zero value and therefore acting as an error for

the all-zero RS codeword. Then the RM decoding result of the attacked y
(0)
i

determines if the resulting message is zero (True) or unequal to zero (False),
which is observable through their oracle.

4.3 Timing Side-Channel of the used Sampler

Guo et al. [3] showed a timing side-channel in the implementation of the sam-
pler of the HQC reference implementation that is used to generate the random
fixed-weight vectors e, r1, and r2. This is the case as the sampler implements
rejection sampling, which requires a varying amount of calls to the PRNG in or-
der to generate potential required additional randomness. As the seed θ for the

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 19

PRNG is derived from the message m, the amount of additional required PRNG
calls is dependent on m and therefore also the execution time of the decapsu-
lation. This timing side-channel allows to build a plaintext-checking oracle for
which the authors show an attack strategy. In order for two different messages
to be distinguishable through their oracle the initial message is chosen such that
it requires at least three additional calls to the PRNG which has a low probabil-
ity of 0.58 for all possible messages. Due to the inherent uncertainty of timing
side-channels and this probability still leaving room for ambiguity the authors
introduce a majority threshold for the classification of each bit. Their empirical
results show a classification success rate of 87% with a majority threshold of
five.

Their oracle can not be used with our attack strategy as its resulting mes-
sage m is always zero. This message unfortunately does not require multiple
calls to the PRNG, and therefore it is not easily distinguishable through this
timing side-channel. In contrast, our developed attack strategy allows the usage
of both described power side-channels, which show a better classification result
and eliminate the inherent uncertainty of timing side-channels removing the need
for a majority decision.

5 Conclusion

In this paper we showed a novel proven side-channel attack strategy that again
allows for a successful power side-channel attack against the updated round three
version of the HQC cryptosystem. Published attacks against the former HQC
version are not valid anymore, as the authors updated their used error correcting
codes for their third round submission. We identified that the published power
side-channel attack on the updated HQC version by Uneo et al. [15] is not valid
in practice, as the authors miss a crucial property of the implemented Reed-
Muller decoder that renders their attack unsuccessful. In contrast to the attack
strategy by Guo et al. [3], that exploit a timing side-channel in the implemented
polynomial sampler, our attack shows a by a factor of 12 reduced amount of re-
quired side-channel oracle calls. Our attack strategy allows the use of two power
side-channel targets, namely the Reed-Solomon decoder as shown in [13] and the
used SHAKE256 hash function as described in [15], to build the required oracle
for our attack. We show practical attack results for the latest Reed-Solomon
decoder of the latest HQC-128 implementation on an ARM Cortex-M4 micro-
controller. Finally, we provided an estimation of the remaining attack complexity
for partial attack results with the use of information set decoding.

Acknowledgment

This work was supported by the German Research Foundation (Deutsche For-
schungsgemeinschaft, DFG) under Grant No. SE2989/1-1 as well as WA3907/4-1
and the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agreement No 801434). We
would like to thank Christoph Frisch for his helpful feedback.

20 Schamberger et al.

References

1. Albrecht, M.R., et al.: NIST post-quantum cryptography standardization round 3
submission: Classic McEliece, https://classic.mceliece.org

2. Bâetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.:
Misuse attacks on post-quantum cryptosystems. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 747–776.
Springer (2019)

3. Guo, Q., Hlauschek, C., Johansson, T., Lahr, N., Nilsson, A., Schröder, R.L.:
Don’t reject this: Key-recovery timing attacks due to rejection-sampling in HQC
and BIKE. Cryptology ePrint Archive, Report 2021/1485 (2021), https://ia.cr/
2021/1485

4. Horlemann, A.L., Puchinger, S., Renner, J., Schamberger, T., Wachter-Zeh, A.:
Information-set decoding with hints. In: Code-Based Cryptography, pp. 60–83.
Springer International Publishing (2022)

5. Huguenin-Dumittan, L., Vaudenay, S.: Classical misuse attacks on NIST round 2
PQC: The power of rank-based schemes

6. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

7. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes, vol. 16.
Elsevier (1977)

8. Melchor, C.A., et al.: NIST post-quantum cryptography standardization round 2
submission: Hamming Quasi-Cyclic (HQC), http://pqc-hqc.org/

9. Melchor, C.A., et al.: Nist post-quantum cryptography standardization round 3
submission: Hamming Quasi-Cyclic (HQC), http://pqc-hqc.org/

10. Moody, D., et al.: Status report on the second round of the NIST
post-quantum cryptography standardization process. Tech. rep. (jul 2020).
https://doi.org/10.6028/nist.ir.8309

11. Paiva, T.B., Terada, R.: A timing attack on the HQC encryption scheme. In:
Paterson, K.G., Stebila, D. (eds.) Selected Areas in Cryptography – SAC 2019.
pp. 551–573. Springer International Publishing, Cham (2020)

12. Renner, J.: Post-Quantum Cryptography in the Hamming Metric, the Rank Met-
ric, and the Sum-Rank Metric. Dissertation (Ph.D. thesis), Technische Universität
München (2022)

13. Schamberger, T., Renner, J., Sigl, G., Wachter-Zeh, A.: A power side-channel at-
tack on the CCA2-secure HQC KEM. In: Smart Card Research and Advanced Ap-
plications - 19th International Conference, CARDIS 2020. pp. 119–134. Springer
(2020)

14. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory and Applications. pp. 106–113. Springer Berlin
Heidelberg, Berlin, Heidelberg (1989)

15. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-
encryption: A generic power/em analysis on post-quantum KEMs. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2022(1), 296–322 (Nov
2021), https://tches.iacr.org/index.php/TCHES/article/view/9298

16. Wafo-Tapa, G., Bettaieb, S., Bidoux, L., Gaborit, P., Marcatel, E.: A practicable
timing attack against HQC and its countermeasure. Cryptology ePrint Archive,
Report 2019/909 (2019), https://eprint.iacr.org/2019/909

17. Xagawa, K., Ito, A., Ueno, R., Takahashi, J., Homma, N.: Fault-injection attacks
against NIST’s post-quantum cryptography round 3 KEM candidates. Cryptology
ePrint Archive, Report 2021/840 (2021), https://ia.cr/2021/840

https://classic.mceliece.org
https://ia.cr/2021/1485
https://ia.cr/2021/1485
https://github.com/mupq/pqm4
http://pqc-hqc.org/
http://pqc-hqc.org/
https://doi.org/10.6028/nist.ir.8309
https://tches.iacr.org/index.php/TCHES/article/view/9298
https://eprint.iacr.org/2019/909
https://ia.cr/2021/840

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 21

A Counterexample to the Attack Strategy in [15,17]

The work [2, Figure 7] presents a learning algorithm which allows for determining
an additive error given access to a decode-to-zero oracle for a bounded-distance
decoder. In [2, Theorem 11] it is shown that this algorithm succeeds with proba-
bility 1 in the considered setting. Given the vectors r and e, the oracle is defined
as

BOO(r) =

{
True, if HW(r + e) ≤ τ,
False, else.

In other words, the oracle provides the information whether the sum of the in-
put r and the error e would be corrected to zero by a bounded-distance decoder
of radius τ . Note that BOO(r) is similar to the oracle De

0(r) in our work, as
given in Definition 2, except that it assumes a bounded-distance decoder, i.e., a
fixed decoding threshold, instead of an ML decoder. In [17, Section C.7]7 it is
claimed that this algorithm can be applied to the round three version of HQC
system, which employs an ML decoder. However, the fixed decoding threshold
of the bounded-distance decoder is essential to the algorithm of [2, Figure 7]
and in this section we show that replacing the BOO(r) oracle with the De

0(r)
oracle, i.e., considering an ML decoder instead of a bounded-distance decoder,
causes this algorithm to return incorrect error vectors. Note that this choice of
decoder is inherent to the system and cannot be influenced by the attacker, so
the oracle De

0(r) is the appropriate oracle to use for this system. In addition to
this counterexample we implemented the attack strategy and performed a simu-
lated attack by directly accessing the RM decoder results of the HQC reference

implementation. We were not able to correctly retrieve the support y
(0)
i with

our simulations.
The algorithm of [2, Figure 7] is based on constructing a vector, such that

the sum of this vector and the error is at the decoding threshold. For a bounded-
distance decoder, the result of the BOO oracle, when queried with a single bit
of this input flipped, then determines the corresponding position of the error
vector. However, this only applies if the result of input x plus error e is at the
decoding threshold for every position. We give an example of a vector for which
this is only the case for a subset of positions, which leads to an incorrect output,
even in the case of a single error. We follow the steps of the algorithm of [2,
Figure 7] and fix the error vector to be the first unit vector e = e(1).

Initialize
x (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

First while loop iteration
u (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
v (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)

De
0(x+ u) = False

y ← u (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

7 The authors of [15] directly cite [17] for their attack description.

22 Schamberger et al.

Second while loop iteration
u (0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

De
0(x+ u) = False

y ← u (0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Third while loop iteration
u (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

De
0(x+ u) = True

x← x+ u (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y ← v (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Fourth while loop iteration
u (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

De
0(x+ u) = True

x← x+ u (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y ← v (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

||y|| = 1 Terminate while loop.

As claimed, we now have a word x+ e that is at the threshold of decoding, i.e.,
if a position inside its support is flipped, we decode to zero, i.e., De

0(x) = True.
The last for-loop of the algorithm iterates over all positions, checking if flipping
each bit alters the decoding result. Initialize z to

z ← x (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

So, e.g., for the error position we have

x+ e(1) (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
x+ e(1) + e (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and therefore De
0(x+ e(1)) = True. Hence, the first bit in the vector z is flipped

to obtain

z ← z + e(1) (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

Similarly, for any other position in the support, such as, e.g., i = 2, we have

x+ e(2) (1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
x+ e(2) + e (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and therefore De
0(x+ e(2)) = True, so the second bit of z is flipped to obtain

z ← z + e(2) (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 23

After the first 8 positions we have

z ← z + e(1) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

However, take for example i = 9. Then,

x+ e(9) (0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
x+ e(9) + e (1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

.

At this point the difference between a bounded-distance decoder and an ML
decoder affects the decoding decision. While this word does have weight more
than d/2, it is easy to check that an ML decoder still decides for the all-zero
word, so De

0(x+ e(9)) = True and we get

z ← z + e(1) (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) .

This holds for all positions in the second part of the word, so at the end of the
algorithm the “approximated error vector” is given by

z ← z + e(1) (1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) .

Hence, even in this simple case of a single error, the strategy does not return the
correct error vector.

B Modified Variant of Stern’s Algorithm

Let J := {j0, . . . , jτ−1} ⊆ supp(y) ⊆ [0 :n − 1] be the subset of the support of
y that we retrieved, and let L := {l0, . . . , lι−1} ⊆ [0 : n − 1] \ supp(y) denote
the indices of the zero entries in y that we determined. Then, we us obtain the
secret vectors x and y using the modified variant of Stern’s algorithm [14] that
is shown in Algorithm 8.

Theorem 2. Let n and w be parameters chosen according to Table 1. Let (x,y)
and (h, s) be a private and public key pair generated by Algorithm 1 for the
chosen parameters. Let J := {j0, . . . , jτ−1} be a subset of the support of y, let
L = {l0, . . . , lι−1} denote a set of indices of zero entries in y, and let n′ = n− ι
and w′ = w−τ . Furthermore, let k1, pSt, νSt,1, and νSt,2 be non-negative integers
such that k1 ≤ n′, pSt ≤ w + w′, νSt,1 ≤ n− k1, and νSt,2 ≤ n− n′ + k1.

Then, given H = [1, rot(h)] ∈ Fn×2n
2 , w, s ∈ Fn2 , k1, pSt, νSt,1, νSt,2, J , and

L, Algorithm 8 outputs the vector [x,y] with, on average, approximately

WModSt :=
WSt,Iter

PSt

24 Schamberger et al.

operations in F2, where

WSt,Iter := (n+ n′)3 + (νSt,1 + νSt,2)

(
pSt∑
i=1

(
M1

i

)
+

pSt∑
i=1

(
M2

i

)
− n′ +

(
M2

pSt

))

+ 21−νSt,1−νSt,2

(
M1

pSt

)(
M2

pSt

)
(w + w′ − 2pSt + 1)(2pSt + 1),

the quantities M1 = bk1/2c + b(n′ − k1)/2c and M2 = dk1/2e + d(n′ − k1)/2e,
and

PSt :=
∑

a∈N2
0

a1≤w
a2≤w′

a1+a2=pSt

∑
b∈N2

0
b1≤w−a1
b2≤w′−a2
b1+b2=pSt

(bk1/2ca1
)(dk1/2eb1

)(n−k1−νSt,1w−a1−b1
)

(nw)

(b(n
′−k1)/2c
a2

)(d(n
′−k1)/2e
b2

)(
k1−νSt,2
w′−a2−b2

)

(n
′

w′)
.

Proof. In Line 1, the algorithm uses J to transform the syndrome decoding
instance (H, s, [x,y]) of length 2n, dimension n and error weight 2w into the
syndrome decoding instance (H, s̃, [x, ỹ]) of length 2n, dimension n and error
weight w + w′, where HW(ỹ) = w′ and supp(ỹ) ∪ J = supp(y). The remaining
steps are equal to the modification of Stern’s algorithm presented in [4] and
[12, Alg. 17] except that the set X2 always contains L1 = {l0, . . . , ldι/2e−1}
and the set Y2 always contains L2 = {ldι/2e, . . . , lι−1}. By this choice of X2

and Y2, the syndrome decoding instance (H, s̃, [x, ỹ]) is transformed into the
(H̄, s̄, [x, ȳ]) instance of length n + n′, dimension n′ and error weight w + w′,

where H̄ ∈ Fn
′×(n+n′)

2 , s̄ ∈ Fn+n′

2 , and ȳ ∈ Fn′2 .
Such that an iteration of Stern’s algorithm can solve the (H̄, s̄, [x, ȳ]) syn-

drome decoding instance, there must be exactly pSt error positions in both
X1 ∪ X2 and Y1 ∪ Y2 and no error positions in Z1 and Z2. The probability
that this event occurs is equal to PSt, cf. [4] and [12, Thm. 4.9]. This implies
that, on average, Lines 5 to 12 need to be executed 1/PSt, where each iteration
has a complexity of WSt,Iter. ut

Power SCA on the Reed-Muller Reed-Solomon Version of HQC 25

Algorithm 8: Modified Stern Algorithm

Input : Parity-check matrix H ∈ Fn×2n
2

Non-negative integer w
Syndrome vector s ∈ Fn2
Non-negative integers k1, pSt, νSt,1, νSt,2

Subset of the support J := {j0, . . . , jτ−1} ⊆ supp(y)
Subset of zero entries L = {l0, . . . , lι−1} ⊆ [0 :n− 1] \ supp(y)

Output: Vector [x,y] ∈ F2n
2

1 s̃← s + h>n+j0 + . . .+ h>n+jτ−1
∈ Fn2 , where h` is the `-th column of H

2 L1 ← {l0, . . . , ldι/2e−1}
3 L2 ← {ldι/2e, . . . , lι−1}
4 e′ ← 0 ∈ F2n

2

5 while HW(e′) > 2w − τ ∨ s̃ 6= e′H> do

6 X1
$←− {S ⊆ [0 :n− 1] : |S| = bk1/2c}

7 Y1
$←− {S ⊆ [0 :n− 1] \ X1 : |S| = dk1/2e}

8 Z1
$←− {S ⊆ [0 :n− 1] \ (X1 ∪ Y1) : |S| = νSt,1}

9 X2
$←− {S ∪ L1 ⊆ [n :2n− 1] \ L2 : |S ∪ L1| = b(n− k1)/2c}

10 Y2
$←− {S ∪ L2 ⊆ [n :2n− 1] \ X2 : |S ∪ L2| = d(n− k1)/2e}

11 Z2
$←− {S ⊆ [n :2n− 1] \ (X2 ∪ Y2) : |S| = νSt,2}

12 e′ ← Iteration of original Stern algorithm w.r.t. the syndrome s̃, the
sets X1 ∪ X2, Y1 ∪ Y2, Z1 ∪ Z2 and the parameters pSt and
νSt = νSt,1 + νSt,2

13 return e ∈ F2n
2 with support supp e′ ∪ J

	A Power Side-Channel Attack on the Reed-Muller Reed-Solomon Version of the HQC Cryptosystem

