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Abstract

The lattice-based cryptography is considered a strong candidate amongst many other pro-
posed quantum-safe schemes for the currently deployed asymmetric cryptosystems that
do not seem to stay secure when quantum computers come into play. Lattice-based algo-
rithms possess a time-consuming operation of polynomial multiplication. As it is relatively
the highest time-consuming operation in lattice-based cryptosystems, one can obtain fast
polynomial multiplication by using number theoretic transform (NTT). In this paper, we
focus on and develop a radix-3 NTT polynomial multiplication and compute its computa-
tional complexity. In addition, utilizing the ring structure, we propose two parameter sets
of CRYSTALS-KYBER, one of the four round-three finalists in the NIST Post-Quantum
Competition.

Keywords: Number Theoretic Transformation, Polynomial Multiplication, KYBER, Lattice-
Based Cryptography.

1 Introduction

A small portion of people notices the small padlock symbol that is visible on the left of the
search bar in internet browsers which is significant while shopping, bank, email, and social
media accounts are visited. It is a sign of whether or not these mentioned websites are
secure and use encryption for communication on the internet. This symbol verifies that
the data is guarded while traveling through the internet.

Symmetric and asymmetric schemes are the two cryptosystems that provide security
for today’s digital information. Symmetric Cryptography (also referred to as secret key
cryptography) utilizes one previously agreed on and shared key between the sender and
receiver to encrypt and decrypt messages among them. On the other hand, asymmetric
cryptography, which is also known as public-key cryptography, makes use of two keys that
are referred to as public and private keys. The public key (publicly known as the name
suggests) is used by senders to encrypt and send over messages (known as plaintexts) and
the receiver on the other end uses a unique and solely known private key to decrypt the
message. These two oftentimes are used along with each other. For instance, internet

nstitute of Applied Mathematics, Middle East Technical University, 06800 Cankaya, Ankara, Turkey.
E-Mail: chenar80@hotmail.com

2Institute of Applied Mathematics, Middle East Technical University, 06800 Cankaya, Ankara, Turkey.
E-Mail: oguz@metu.edu.tr



browsers use public-key schemes for validation and obtainment of a shared key afterward
symmetric key schemes for encrypting future communications.

The lack of security of any kind of credentials that goes through the internet often
referred to as an insecure channel, could lead to significant ramifications that are much more
aggravating for government, intelligence communities, and business companies who handle
quite sensitive information than it is for individuals. The reason for this is that the current
computational power is not yet strong to compromise that security despite being still
under development. Albeit, quantum computers can compromise that and it is anticipated
in a decade or so they could become somewhat of a threat to the currently deployed
cryptographic protocols. It is for this reason that government intelligence agencies, bank
companies, and researchers are all competing to create new methods and cryptographic
protocols that would resist quantum computer attacks.

It is well-known that for classical computers, it takes thousands of years to break the
presently deployed cryptosystems for which we can conclude that they are practically secure
and they cannot pose a great threat.

Quantum computers are machines that take advantage of quantum phenomena such as
entanglement and superposition for solving difficult mathematical problems that are infea-
sible for classical computers. In fact, there has been a significant amount of research in the
past few years. Moreover, having said that if a large enough quantum computer comes into
play, that would in fact put in danger all the integrity and confidentially of all the informa-
tion everywhere on the internet. Therefore, it is the primary goal of post-quantum cryp-
tography (also known as quantum-safe cryptography) to advance a cryptographic scheme
safe from attacks by classical as well as quantum computers.

As research institutes and companies are all racing for quantum supremacy, according
to P. Shor’s algorithm [21] that is published in 1999 the currently hard problems such as
Integer Factorization and Discrete Log problems are all breakable in polynomial time by
a quantum computer with high enough number of qubits. Although no efficient quantum
computer is built yet, it is anticipated that it may happen in a decade or so. That’s why it is
thoroughly been worked on in industry and academia as well as by government intelligence
agencies. That is why new crypto schemes safe toward quantum computer attacks are of
great interest to NIST.

NIST furthermore demonstrates the significance of building post-quantum cryptogra-
phy schemes with the statement “Historically, it has taken almost two decades to deploy our
modern public key cryptography infrastructure. Therefore, regardless of whether we can
estimate the exact time of the arrival of the quantum computing era, we must begin now to
prepare our information security systems to be able to resist quantum computing.” There-
fore, back in 2016 NIST started a quantum-safe standardization process and requested sub-
missions. For that reason, cryptosystems based on five main classes of quantum-resistant
problems are proposed, namely, lattice-based, code-based, hash-based, multivariate-based,
and supersingular elliptic curve isogeny-based cryptography. So far, lattice-based cryptog-
raphy is the most promising, and the finalists of round three of NIST’s competition 3 out
4 Key Encapsulation Mechanism and 2 out of 3 Digital Signatures are based on lattices.

In contrast, lattice-based algorithms possess two very time-consuming operations; de-



spite random number generation, polynomial multiplication is the other most time-consuming
operation. Additionally, the RLWE and MLWE based schemes are built upon operations
with polynomials from polynomial rings Z,[z]/ f(z) where p is a prime and f is an irre-
ducible polynomial over Z,. Furthermore, as polynomial multiplication is relatively the
highest time-consuming operation in lattice-based cryptosystems, by using Number The-
oretic Transform (NTT) one can obtain fast polynomial multiplication if the rings and
primes are selected in a specific way. Thus, it is of great interest in the research commu-
nity to explore the utilization of NTT for this polynomial multiplication which reduces the
time complexity from O(n?) to O(nlogn) as well as to see how far can we optimize it in
different settings.

The discrete Fourier transform (DFT) is perhaps one of the most elegant results of the
twentieth century which uses the FFT algorithm for sequence multiplication in the complex
field. A lot of the currently used technologies rely on it such as GSM, WIFI and etc. In
fact, any technologies using signal processing make use of the concept of DFT with different
underlying rings. Moreover, if we restrict the underlying ring in the DFT algorithm to be a
finite field, we then get a variant of DFT called number theoretic transform (NTT), which
is primarily used for optimizing integer and polynomial multiplication.

In addition, despite its simplicity, the schoolbook polynomial multiplication has a
quadratic time complexity and it takes a lot of processing cycles. To overcome that there
are other polynomial multiplication approaches to be used such as Karatsuba, Toom-Cook,
and more importantly the number-theoretic transform which is a very efficient way to com-
pute polynomial multiplication for some lattice-based schemes.

Some of the proposed post quantum schemes which utilize NTT for polynomial multi-
plications are NewHope [I], 4], NewHope Compact [2], Kyber [5], NTTRU [I§].

Our contribution in this paper is that we define the radix-3 NTT, develop a Cooley-
Tukey-like butterfly as well as utilizing it for polynomial multiplication along with a
Python implementation. Moreover, we use these results to propose two parameter sets
for CRYSTALS-KYBER, a post-quantum KEM.

This paper is organized as follows. Followed by this introduction is Section 2 that gives
the necessary mathematical background to this work. In Section 3, we present the radix-3
NTT, how it functions and arithmetic complexity. We propose two parameter sets for
KYBER in Section 4. The benchmarking and comparison to the implemented radix-3 NTT
is given in Section 5. And we conclude this work in Section 6.

2 Mathematical Definitions

In this section, we recall and give some of the basics and definitions to provide the reader
with the necessary mathematical background to better understand the topics covered.
Most of the concepts follow from [12].

Definition 1. For a positive integer n and a finite field F,, the n'"* root of unity is w € F
such that w™ = 1.



Definition 2. A primitive n' root of unity for a positive integer n in the field F is a root
of unity w € F such that w* # 1 for any k < n.

Definition 3 (Irreducible Polynomial). A monic polynomial f(x) in the field F|x] is called
irreducible if it does not have nontrivial factors over Flz].

Definition 4 (Cyclotomic Polynomial). For a positive integer m, the m'™ cyclotomic poly-
nomial is an irreducible polynomial defined over the field Fx] that divides ™ — 1 but not
aF — 1 for a positive integer k < m.

Cyclotomic polynomials are monic as well as their roots are roots of unity. It is well
known that there exits a unique polynomial that interpolates n+ 1 distinct pairs (a;, b;) € F
for i =0,1,...,n of degree at most n [13].

2.1 Schoolbook Polynomial Multiplication

Schoolbook or naive polynomial multiplication is the conventional way of polynomial mul-
tiplication. Suppose that f(z) and g(z) be two n-term polynomials, that is of degree
n — 1. Then, their multiplication h(x) = f(x)g(x) of 2n-term is calculated as follows.
flz) =30 fia' and g(z) = 377 gia’, therefore,

on—1 i

h(z) = Z h;z' such that h; = Z figi—;-
i=0 Jj=0

The multiplication h(z) has a complexity of order n?.
There are several approaches in the literature for polynomial multiplication such as the
schoolbook method, Karatsuba method, Took-Cook method, NTT method, etc.

2.2 Radix-2 NTT

The NTT polynomial multiplication evaluates the two polynomials at roots of unity, mul-
tiply them coefficient-wise, and then uniquely interpolates the results to the resulting
polynomial. Figure (1| below illustrates this process.

In order to multiply two polynomials g, h € R, = Z,[x]/(xz" 4 1) for the parameters: an
integer n power of 2 and a prime p such that p =1 mod 2n which provides the existence
of w, a primitive n'* root of unity. Then one can efficiently compute the polynomial
multiplication f = gh mod (2" + 1) with NTT transformation. The multiplication is
calculated by NTT as follows:

§=INTT(NTT(g) o NTT(h))

where NTT is forward NTT transformation, INTT is the inverse operation and o is the
componentwise multiplication of the vector elements. The formulas of NTT and INTT are
given by

n—1 n—1
Gg=NTT(a) = Zgixi where g; = Z g;w”  mod p,
i=0 §=0
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Figure 1: Number Theoretic Transform Algorithm

n—1 n—1
g=INTT(g) = Zgixi where g; = 1/nzgjw_ij mod p.
i=0 =0

To carry out these transformations there are two separate methods. The first method
is FFT (Fast Fourier Transform) method which uses the Cooley-Tukey butterfly algorithm
[11] for calculating NTT and Gentleman-Sande butterfly algorithm [I5] for INTT. The sec-
ond method is called the Twisted FF'T method which uses the Gentleman-Sande butterfly
algorithm for both NTT and INTT transformations.
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Figure 2: Cooley-Tukey Butterfly
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Figure 3: Gentleman-Sande Butterfly

3 Radix-3 NTT

The radix-3 NTT is defined on a modular polynomial ring R, = Z,[z]/(f(x)) where the
modulus f(x) is a cyclotomic polynomial allowing to evaluate a polynomial at its roots.
The conventional definition is to evaluate a polynomial at the roots of unity w existing in
the Z,, that is, for f(z) = 2" — 1 where n = 3¢, £ € Z. However, computation over rings
with such modulus f(x) is not safe for cryptographic schemes based on the LWE problem
as there are algebraic attacks against them [17]. Nevertheless, this could be used in other
fields such as signal processing. Here, our focus is on targeting cryptographic applications,
and so we omit f(z) = 2™ — 1. A cyclotomic polynomial that suits our goal here is f(x)
of the form f(x) = 2% + 2™ + 1 of degree 2 - 3°, that is, two times the length of three
polynomials. It is worth noting that, ”Mixed-based FFT Multiplication Algorithms” [19]
are introduced of length n = k - 2° whereas considered multiples ¢ include 1 and the first
three odd primes. Two recent works [2, [I8] consider a ring of degree 3 - 2% and [3].

The ring R, = Z,[z]/(x** + 2™ + 1) allows efficient computation of full level NTT of
polynomials at the roots of 22" +2"+1 for p = 1 mod 3n. The ring possesses the following
Chinese Remainder Theorem (CRT) isomorphism,

Rp = Lylz]/ (@™ + 2" + 1) = Zy[a]/ (2" — ) x Zy[2]/(a" = B)

for o, 3 € Zy, af =1 and a + 8 = —1.

Therefore, if we have a polynomial in R, and we would like to compute its NTT, we
can instead map it to the frequency domain of the above CRT isomorphism, carry out its
NTT over both rings, and finally use the inverse CRT map to get back the results in R,,.
Although this method would increase the arithmetic complexity, that is the best we could
do.

The problem, now, has reduced to computing NTT in the rings of the form Z,[z]/(z" —
(). In the following section, we shall discuss this process.

3.1 NTT over Z,[z]/(z" — )

Recall, NTT is just the evaluation of a polynomial at some special roots of the modulus
f(z) in the modular polynomial ring Z,[z]/(z™ — ). In this section, we develop what is
called a radix-3 NTT over a finite field. Assume we have a polynomial a(z) of length n
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that we would like to find its NTT where n is a power of 3. The algorithm evaluates the
polynomial a(x) at all the roots of f(x). In order for the ring to allow computing NTT, it
should contain a primitive n'® root of unity w and an n'* root of ~ that we shall denote
by (. Note that multiplying ¢ by the powers of w yields all the roots of ™ — . As stated
in the previous section, the modulus prime p is of the form p =1 mod 3n.

Since w™ = 1 mod p, this implies that w™ —1 =0 mod p or (w™?3 — 1) (w?"/3 4+ w™/3 +
1) = 0 mod p, and so only (w?"/3 +w™3 +1) = 0 mod p as w™? # 1 mod p. For
simplicity we use p = w?¥3. Thus, it is not difficult to prove that 2" — (" = (z™/3 —
3 (a3 — p¢n3) (a™? — p2¢"3). Therefore, according to CRT, the ring decomposes as
follows:

Ry = Lylal/ (" = (") = Lyla]/(a"* — ¢"1P)
X Lyla] /(" = uC"®) x Lyla] /(@™ — u¢™?) (1)

In order to find the NTT of a polynomial a(z) € Z,[z]/(z™ — 7), we need to reduce a(z)
iteratively according to this above CRT map, as shown in Example [ However, we would
rather prefer to follow the definition below to compute it. We will denote the NTT form
of a(z) by a(x).

Ezample 1. Suppose that a(z) and b(x) be two polynomials over Z,[z]/(z°—63) for p = 109,
where a(z) = x + 5z? + 22° + Ta* + 1002° + 432° + 1052" + 1727 and b(z) = 3 + 77z +
2122 + 9923 + 532* + 292° + 28 + 27 + 42°. Note that w = 16 is 9" root of unity and
p = 63,u* = 45. Now, we would like to find c(x) = a(z)b(z) mod (2 — 63) using the
NTT method. For that purpose, we first split the modulus as:

2 —63 = (2°—27)-(2® —66) - (z* — 16)
= (z—3)(z —80)(x — 16)
(x — 81)(z — 89)(z — 48)
(x = T)(x = 5)(z—97) (2)

We divide the solution in a few steps, and in each step the polynomials are expressed
in smaller rings.

Step 1: Write a(z) and b(x) in Z,[x]/(2* — 27), Zy[z]/(2* — 66) and Z,[z]/(2* — 16) :
a(x) — [53 + 108z + 5622, 87 + 43z + 10622, 78 4 70x + T1x?]

b(z) — [142® + 572 + 26,662 + 837 + 102,922% + 91z + 99].
Step 2: We now write each of these component in their rings, according to the order
appears in Equation (2) :
NTT(a) =[9,90,60,19,98, 35, 14, 23, 88]
NTT(b) = [105, 10,72, 36,99, 62, 12, 20, 47].



In order to compute NTT'(c), we point-wise multiply N7T(a) and NT'T'(b) and obtain
NTT(c) = [73,28,69, 30, 1,99, 59, 24, 103)].

To compute ¢(z), we now need to compute INTT(NTT(c)), which can be done in the
reverse order and obtained as

¢ = [54, 25,70, 6,90, 29, 41, 37, 69)].

Definition 5 ([20]). The NT'T form of a polynomial a(x) € Z,|x]/(x"™ — ) represented in

coefficient form as a = [ag, a1, a9, . .., an_1] s defined by
n—1 n—1
a(x) =Y afila’ where alk] =Y alj] ¢ w'*,
i=0 =0

h

where w is a primitive nt"-root of unity and ¢ is an n'™ root of 7.

Therefore, from this definition,

alk) = 3 alj] (Cu'y
2/371 n/3—1

= af35] (Cu™) + > al3j + 1] (Cu*)*H!

J=0 J=0

+ Z al3j + 2] (Cw*)¥+?

J
n/3—1 n/3—1

= af37] (Cw*)¥ +¢uw* D~ af35 + 1] (Cw*)™

j=0 7=0
A

Aﬁ] B‘[,k’]
n/3—1

+ (G > af3j+ 2] (Cwk)¥

=0

S

J/

-

Clk]
= A[k] + Cw" Bli] + C*w? C[i] (3)

Remark 1. From the definition of A we can derive the following :

n/3—1 n/3—1

1Ak /3] = 3 al3j)(Cut Y =% al3j)(Cut) = Alk,
n/3—1 ' n/3—1 '

2 Alk+2n/3) = 3 al3j](Cut Y = al3j)(Cut)Y = AR,



for k = 1,2,...,n/3. Similarly, the same equalities hold for Blk] and C[k] for k =
1,2,...,n/3..

From the this remark, we obtain that,

alk+n/3] = A[k] + Cw*"PBlk] + Cw?* A Ck]
= Alk] + pCuw" Bk + p* C w? C[K]
alk +2n/3] = A[k] + p* Cw" Blk] + p ¢ w?* C[k).

Therefore, for 0 < k < n/3,

alk] = A[K] + ¢w" Blk] + (*w* C[k],
alk +n/3] = A[k] + pCw"Blk] + p* ¢ w** C[k],
alk +2n/3] = A[k] + p* Cw” Blk] + p 2w C[k]. (4)

Moreover, we can trade two multiplications by p? to four additions. Since we have that
p? 4 i+ 1 = 0 substituting this for x? in , we get:

alk] = Alk] + Cw® Blk] + Cw®* C[k]
alk +n/3] = Alk] — ¢ w* C[k] + p (Cw" B[k] — ¢* w** C[k])
alk +2n/3] = Alk] - Cw* Blk] — p(Cw" Blk] — ¢*w? C[k]) (5)

In Algorithm 1, we give a pseudo-code to computing the NTT according to (5)).



Algorithm 1 NTT algorithm based on a Cooley-Tukey-like butterfly
Input: A polynomial a(x) € Z,[z|/(z™ — (") where a[i]. i < n is the i"" coefficient

LT

of a(x). The list pre-computed " of (u”, j € [0,n/3). Also, p = w mod p where

th

w is a primitive n™ root of unity.

Output: i « NTT(a) = [Ag. Ay ... A,_4].

1: A = scramble(a,n) t> To arrange a so that A will be in normal ordering.
2 £+ loggm

3. for each level € [1,1 + 1) do

It m 4 Jlevel

5: for each j € [0,m/3) do

6: w; + L[j]~/™

7: for each k € [0, n/m) do

8: a +— Alkm + jl.b +— Alkm + j + Z].c « Alkm + j + 2]
9: a « a+ w;b+ wic

10: bia- u:_f- c+ p(wib— u:f c)

11: cia—w;b— p(w;b— ur_f )

12: Alkm + j] + a, Alkm + j+ 2] « b Alkm + j 4+ 22] + ¢
13: end for

14: end for

15: end for

16: return A

Theorem 1. The arithmetic complexity of calculating a radiz-3 NTT of length n is given
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by the recurrence relation:
n 7
TNTT(n) =3- TNTT <§) +n- M -+ gn <A (6)

where Txrr(1) = 0, n is a power of 3, M stands for multiplication and A stands for
addition.

Proof. In order to calculate the complexity, we will follow Algorithm ??. The first line
scrambles the polynomial according to a ternary reversal function. This helps in returning
the resulting polynomial in normal ordering. In fact, the butterflies are in line 9, 10 and 11,
the other lines can all be pre-computed. Assume 6; = w;b, 0y = wjzc and 3 = (6 — ).
Thus, line 9 could be computed with 2 multiplications and 2 additions. Line 10, can be
computed with 1 multiplication and 3 additions. Moreover, line 11 can be computed with
just 2 additions. Note that some operations are carried out in the steps before. Therefore,
it takes 3 multiplications and 7 additions, each of length n/3. O

Remark 2. Forn = 3% ( € Z, Equation @ can be written as

3.2 Inverse NTT over Z,[z]/(z" — )

In the last section, we developed a Cooley-Tukey-like butterfly to compute the forward
NTT. In the present section, we shall take this further and reverse it to develop a similar
butterfly to compute its inverse operation.

To find the inverse transformation, recall Equation ({):

alk] = A[k] + Cw”® Blk] + Cw?* O[K]
alk +n/3] = A[k] + pCw*B[k] + p? * w?* C[k]
alk +n/3] = A[k] + p?Cw” Blk] + ¢ w* O[]

In matrix-vector form, this can be written as

alk] 11 1 Alk]
alk+n/3) | =1 pn p? Cw” B[k]
alk + 2n/3] 1 w? u Cw* Ok

By inverting the intermediate matrix, we can obtain that

A[K] (111 alk]
Cw*Blk] | = 3 1w alk +n/3]
¢ w** Clk] Loy p?) \alk+2n/3]
equivalently
Al = % (al] + alk +n/3) + alk +2n/3)

11



1
ggflw*k (a[k] + p*alk + n/3]) + palk + 2n/3])
1
Clk] = gg*w*% (a[k] + palk +n/3] + p*alk + 2n/3]) . (8)
for 0 < k < n/3. Furthermore, we can again trade two multiplications by u? to four
additions. Since we have that p? 4+ u + 1 = 0 substituting this for 2 in , we get:

AR = % (a[k] + afk + n/3] + alk + 2n/3])
BlH - %(_lw_k (a[k] — alk + /3] — p(alk +n/3) — alk +2n/3)))
Clk = %C‘Qw_% (alk] — alk +2n/3) + p(alk +n/3) —alk +2n/3)) ()

The above butterflies are inverse of the NTT transformation and it is a Gentleman-Sande-
like butterfly. However, the definition of calculating the inverse NTT as provided in Defini-
tion 6. We prefer to follow the Gentleman-Sande-like butterflies to calculating the inverse
of the NTT transformation.

Definition 6 ([20]). The inverse NTT of a polynomial a(z) € Z,[x]/(z"™ — ~y) represented
in coefficient form as a = |ag, a1, a2, . . ., an_1] is defined by

n—1 n—

1
where alk] = alj] ¢ w ik,
0

S|

~
Il

o
<

h

for w is a primitive n'"-root of unity and ¢ is an n' root of 7.

In Algorithm 2, we propose a pseudo-code to compute the inverse NTT using the
Gentleman-Sande-like butterflies according to Equation @

12



Algorithm 2 Inverse NTT algorithm based on a Gentleman-Sande like butterfly

Input: A polynomial A(x) € Z,|z|/(x" — ") where Ali].i < n is the i"" coefficient
of a(x). The list pre-computed I'~! of (~'w=7.j € [0.n/3). Also, p=! = w4
maod p where w is a primitive n'" root of unity.

Output: a + INTT(A) = |ag.ay..... 1.

1: £+ loggn

2: for each level € [{. —1) do

3: m +— 3level

4; for each j € [0.m/3) do

5: wy Ve ryj)pefm

6: for each k € [0, n/m) do

7. a+ Alkm+ jl.b+— Alkm + j+ B, e « Alkm + j + 23|
8: a+ (a+b+e)

g: b w;'(a—b—p"(b—rc))

10: cewiia—ec+pt(b—c))

11: Alkm 4+ jl—a Alkm +j 4+ Z| < b Alkm 4+ 5+ 23] ¢
12: end for

13: end for

14: end for

15: A+ 14

16: a = seramble(A.n) t= To get a in normal ordering.
17: return a

Theorem 2. The arithmetic complexity of calculating a radiz-3 inverse NTT of length n

13



15 given by the recurrence relation:
n 7
Tinrr(n) =3 - TNt (g) +2n- M+ 3" A (10)

whereas Tinrr(1) = 0. Moreover, n, which is a power of 3, is the number of coefficients.
M stands for multiplication and A stands for addition.

Proof. Similar to the approach we took above for calculating the cost of NTT, we shall
again turn to the pseudo-code in Algorithm ??. Lines 1,3 and 5 can be skipped. The
butterflies are in line 8,9 and 10. Thus, line 8 could be computed with 2 additions. Line 9,
can be computed with 2 multiplication and 3 additions. Moreover, line 11 can be computed
with 1 multiplication and 2 additions. Note that some operations are carried out in the
steps before. Therefore, it takes 3 multiplications and 7 additions, each of length n/3.

Moreover, at the end there is n multiplications by 1/n.
O

Remark 3. Forn =3 (€ Z, the equation can be written as

TINTT(n):2€n-M—I-§€n-A. (11)

3.3 NTT Polynomial Multiplication over Z,[z]/(z" — 7) and Its
Complexity

Let a(x) and b(x) be two polynomials in Z,[z]|/ (2" —~), their multiplication ¢(x) = a(z)b(z)
mod (™ — ) utilizing NTT can be carried out via

¢ = INTT(NTT(a) o NTT(b)), (12)

where o represents point-wise multiplication.

Therefore, in order to multiply two polynomials, it takes two N'TT operations and one
inverse NT'T operation as well as n point-wise multiplication. From Equations @ and ,
we can conclude that the cost of multiplying a(x) and b(x) is given by:

T(n)=40n-M+7(n- A. (13)

3.4 NTT Polynomial Multiplication over Z,[x]/(z*" + 2" + 1) and
Its Complexity

Recall that
Ry = Lpla]/ (™" + 2" + 1) 2 Zy[a]/(z" — ) x Ly[a]/(z" — B)

for o, € Zp, af =1 and a + 8 = —1.

14



Hence, in order to multiply two polynomials in R, we can map them to the frequency
domain, and perform the multiplication there with the NTT multiplication developed in
the last sections. And at the end, by inverse CRT map, we get the multiplication result in
R,

It is not so difficult to compute the aforementioned CRT map for 2n = 2 - 3°. Let
a(z) = ag + a1x + asx® + ... + ag,_12*"' € R, then we have

a(z) mod (2" —a) = (ag +a-a,) + (a1 + - anp)T + ...+ (Gpoy + @ - agp_1)z™
a(x) mod (z"+ (a+1)) = ((ap — an) — a-a,) + (a1 — apy1) — - api1)z + ...
+ ((an—l - a2n—1) — Q- a2n—1)xn_1 (14)

with merely n— 1 multiplications, n — 1 additions and 2(n — 1) subtractions. Since addition
and subtraction have the same cost, we can just say n — 1 multiplication and 3(n — 1)
additions. Note that to reduce the number of multiplications in this CRT conversion we
benefited from the fact that 5 = —1 — a and increase the number of additions in return.
This is a good idea to perform as the cost of multiplication is much more than that of
addition.

On the other hand, the inverse CRT map to R, can be performed as follows. Let
c(x) € R, and c,(x) = ¢(x) mod (2" — a) and cs(x) = ¢(z) mod (2™ — ), c(x) can be

recovered with
1 1

c(x) = Co (2" —B) +

The arithmetic cost of calculating c¢(x) can be done with only 2n multiplications and n
additions, apart from the coefficients in front. The multiplication of ¢, and cg by 2" can
be dealt with just a shift in coefficients of ¢, and cg, respectively.

The total complexity of multiplying two polynomials in R, can now be computed as

cg - (2" — a). (15)

T(n) = [(8C+3)n—1]- M+ [(140+ 4)m —1] - A (16)

where ¢ = logg n.

4 Parameter Proposal for Kyber

Kyber [0, ] is one of the round three finalists of the NIST post-quantum competition
based on lattices. It is a post-quantum Key Encapsulation Mechanism that uses a mod-
ified Fujisaki-Okamoto Transformation [14] constructs what is called a Kyber. CCA.KEM
from a Kyber.CPA.PKE. KYBER depends on the Module-LWE [16] unlike the other cryp-
tosystems such as Frodo [7] and NewHope [I, 4] that depend on LWE and RLWE problems,
respectively, where operations are of the form As+e for all the variables being polynomials
from the underlying ring. In Kyber, those variables are no longer polynomials. Instead, A
is a square matrix of polynomial components, and s and e are vectors of polynomials. The
scheme utilizes NTT polynomial multiplication over an NTT friendly ring Z,[z]/(z™ + 1)
where n is a power of two and p is a prime such that p — 1 is divisible by n. Moreover, the

15



polynomial ring is of fixed length throughout all the parameter sets. This transition helps
to scale the security level between different parameter sets mainly through the dimension
of the matrix/vectors.

Furthermore, the NT'T utilized in Kyber is radix-2 NTT. That is, the dimension of the
modulus is a power of two. In this section, we attempt to change the polynomial ring to
what we considered in the last section.

We start with providing the algorithmic specifications of Kyber [6], the key generation,
encryption, and decryption algorithms are given in Algorithms [I} 2] and

Algorithm 1 KYBER.CPAPKE.KeyGen(): key generation
1 p,o« {0,1}*
2: A ~ R := Sam(p)
3: (s, ) ~ Br x BF :=Sam(o)
4
5

m

ct:=As + e
: return (pk = (t,p), sk :=s)

Algorithm 2 KYBER.CPA.Enc(pk = (t, p), m € M): encryption
r <« {0,1}*

A ~ R .= Sam(p)

(r,er,ex) ~ BE x BE x B, == Sam(r)

u:= Compressp(ATr +e,dy)

v := Compress,, (t"r + ey + [2] - m, d,)

return ¢ := (u,v)

Algorithm 3 KYBER.CPA.Dec(sk = s, ¢ := (u,v)): decryption
1: u := Decompress,(u, d,)
2: v := Decompress (v, d,)
3: return Compress, (v —s’u, 1)

To examine the ring Z,[x]/(z*" + 2" + 1) for Kyber, we consider that n is a power of
three. A suitable p that allows utilizing a full level NTT is of the form p = 1(mod 3n).
Throughout the rest of this work, we assume n = 3% and n = 3%. Moreover, we consider
k = 2,3,5 and 6 so that we obtain parameter sets as close as to what was proposed in Kyber
submission. In addition, we denote the secret distribution by n; and the error distribution

by ns.
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Table 1: Proposed Parameter Set 1

n 2n k
KYBER486 81 162 3
KYBER&10 81 162 5
KYBER972 81 162 6
Table 2: Proposed Parameter Set 2
n 2n k
KYBER972 243 486 2
KYBER1458 243 486 3

The natural question, now, is how do we compute the security level, failure probability
and communication cost. In the sections ahead, we endeavor these concerns.

4.1 Calculating Security Level

The security level does not depend on the ring structure and instead it depends mainly on
the hardness of the module-LWE. The parameters that impact the security are dk and the
primes p as well as the secret distribution ;.

In that respect, the Kyber scripts can still be used to calculate the security level. We
investigate two primes p = 1459 and p = 2917. There are smaller primes that satisfy ¢ = 1
mod 3n, but they would not give us a negligible probability of failure. We only consider
the latter prime for the second parameter set. In Tables [3] [4] and [5] the security levels are
shown for both sets.

Table 3: Security estimates for 2n = 162 the prime p = 1459
BKZ block Classical Quantum

size (3 Hardness Hardness
KYBER486
Primal Attack 365 106 96
Dual Attack 361 105 95
KYBER&10
Primal Attack 678 198 179
Dual Attack 666 194 176
KYBER972
Primal Attack 840 245 222
Dual Attack 823 240 218
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Table 4: Security estimates for 2n = 162 and the prime p = 2917
BKZ block Classical Quantum

size 3 Hardness Hardness
KYBER486
Primal Attack 365 106 96
Dual Attack 363 106 96
KYBERS&10
Primal Attack 620 181 164
Dual Attack 610 178 161
KYBER972
Primal Attack 770 225 204
Dual Attack 757 221 200

Table 5: Security estimates for 2n = 486 and the prime p = 2917
BKZ block Classical Quantum

size (3 Hardness Hardness
KYBER9T72
Primal Attack 779 225 204
Dual Attack 757 221 200
KYBER1458
Primal Attack 1237 361 328
Dual Attack 1208 353 320

4.2 Calculating Failure Probability

The decryption failure very much depends on the coefficients under multiplication in the
decryption equation as well as the number of bits that are dropped in the Compress and
Decompress functions of the ciphertexts u and v in the decryption equation. The nature
of these functions is the same, except that the public key is not compressed anymore.
However, the coefficients under multiplication will increase due to the extra middle term,
that is, ™. Therefore below we will analyze the effect of the coefficients.

The decryption equation receives the two ciphertexts u and v and calculates,

v—slu=elr+e+c,+r—sle —slc, (17)

failure occurs if the coefficient of this equation, in absolute value, happens to be greater
than ¢/4.

To illustrate how these multiplications work, we will work on an example. Let a(x) and
b(z) be two polynomials defined over Z,[z]/(z%+2*+1), and we would like to compute their
multiplication ¢(z) = a(z)b(z) mod (z%+2*+1). This modular polynomial multiplication
can be seen as follows:

ab mod (z°+2°+1) = a (Z bixi> mod (2% + 2% + 1)
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— (Z ar’ mod (2% + 2% + 1)> bi (18)

Writing this on matrix-vector form

Co ) —as —0y —as a5 — Gz a4 — ag bo
1 ar  ag —as —ay —az  as—az | | b
Co| | Q2 ay Qo —das —ay —as by
| las as—as a1 —as ag—as —a2 — b3
C4 Q4 as a2 — a5 ap — a4 Gaop — ag —ag by
Cs as Q4 as az —Aas a1 — a4 Qo — Aag bs

Observe that c; = [azby + (ag — as)bs] + [asby + (a1 — a4)bs] + [azve + (ag — a3)bs]. If you
notice the last three rows, they are all sum of three independently randomly distributed
variables of of the form

c=ab+ (a —a)l/, where a,d’,b, b’ < f,. (19)

Moreover, the first three rows also follow a certain formula. However, the general distri-
bution is established by the bottom three rows. In general, the multiplication of a(x) and
b(z) in R, = Zy[x]/(z*" + " + 1) is the sum (or difference) of n randomly distributed
variables as in ((19)), and so the tail bounds of this one is computed.

In order to calculate the decryption error over R,, we can still keep using the KYBER
scripts having changed the coefficient distribution to in the script. Tables [6] and
present our proposed parameter set 1 and 2. The probability of failure is denoted by 9.

Table 6: Proposed Parameter Set 1, p = 1459

n 2n k p m 12 (dpv du,dy) 0
KYBER486 81 162 3 1459 1 2 (11,11,5) g~ 144
KYBERS&10 81 162 5 1459 1 1 (11,11,5) 2135
KYBER972 81 162 6 1459 1 1 (11,11,6) 2~ 120

Table 7: Proposed Parameter Set 1, p = 2917

n 2n k p m  ne  (dp,dy,d,) 6
KYBERAS6 81 162 3 2917 2 2 (10,10,5) 2
KYBERS810 81 162 5 2917 1 1 (10,10, 3) 2152
KYBER9T72 81 162 6 2917 1 1 (10,10,4) 217

Table 8: Proposed Parameter Set 2, p = 2917

n 2n k D m M2 (dp7 dy,d,) 6
KYBER972 243 486 2 2917 1 2 (11,10,4) 2~ 108
KYBER145H8 243 486 3 2917 1 1 (11,10,4) 2135

19



4.3 Calculating Communication Cost

For the communication cost, the public key pk size is composed of (p,t), therefore it is
calculated by 256 + k- (2n) - d,, where d,, is the number of bits in the prime p. Furthermore,
the ciphertext consists of u and v, therefore the size of the ciphertext is the size of u and
v together, that is, k- (2n) - d,, + (2n) - d, where d,, is the number of bits in the u and d, is
the number of the bits in v. Table [L0|shows the communication cost for the two parameter
sets.

Table 9: Communication Cost (byte) for Parameter Set 1

Set 1, p = 1459 Set 1, p = 2917

pk ct pk ct
Kyber486 700 749 639 708
Kyber810 1145 1215 1044 1073
Kyber972 1368 1458 1247 1296

Table 10: Communication Cost (byte) for Parameter Set 2

Set 2, p = 2917

pk ct
Kyber972 1368 1458
Kyber1458 2036 2065

5 Benchmarking and Comparison

In this section, we test our implementation of the radix-3 NTT polynomial multiplication
developed in Section 3. In Table [I2] we measure the runtime for our parameters and
compare it to the runtime of the radix-2 NT'T used for KYBER parameters. We perform
the tests for both the parameter sets we proposed in Section 4.

Implementations and Details. The NTT implementations are in SageMath pro-
gramming language and can be found in the GitHub repository https://github.com/
ChenarHassan/NTT. The benchmarking was carried out on Windows operating system
with an Intel Core i7-5600U processor running at a base speed of 2.6 GHz . Moreover, the
mean, maximum and minimum runtime of 10000 executions are reported.

In order to calculate the security level, as pointed out before, one can still use the
KYBER scripts. The KYBER scripts are available in https://github.com/pgq-crystals/
security-estimates. However, for the decryption failure, we modified the coefficient
distribution functions in the file proba util.py as well as a very minor change in the file
Kyber _failure.py. We also put these files in the GitHub repository above.

Due to the coefficient increase under multiplication, we observe that the complexity of
multiplication in Z,[x]/(2*" + 2™ +1) increases. Table|11|depicts the arithmetic complexity
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of radix-2 NTT where degree of the modulus polynomial is n’ = 2¥ k = 8 and our radix-3
NTT where degree of the modulus polynomial isd =2n =2 x 3 ¢=4and £ =5

Table 11: Arithmetic complexity of radix-2 NTT and radix-3 NTT polynomial multiplica-
tion

d multiplications additions
radix-2 NTT [2] 256 3328 6144
radix-3 NTT [this work] 162 2834 4859
radix-3 NTT [this work] 486 10448 17981

Table 12: The runtime of NTT multiplication for the proposed parameter sets and KYBER’s
parameter

runtime (in seconds)

d prime p minimum average maximum
162 [this work] 1459 0.021 0.024 0.113
162 [this work] 2917 0.021 0.024 0.274
256 [2] 3329 0.028 0.032 0.123
486 [this work] 2917 0.074 0.081 0.332

6 Conclusion

In 2016, the NIST announced a post-quantum standardization process and called for the
submission of cryptosystems that are quantum-safe. The scope of the competition included
submissions of digital signatures and KEM /PKE schemes. In the beginning, there were 86
submissions, and then 69 of the submissions were deemed qualified for further consideration
in the first round that was held in 2017. The second round was held in 2019 and 26 of the
submissions made it to the third round. Amongst the finalists of the second round were 12
lattice-based schemes, 3 digital signatures, and 9 KEM /PKEs. Performance and security
were the two major criteria in the process. In 2020, the third round of the competition
was carried out and there were 7 finalists along with 8 alternatives. Although it is not yet
disclosed when the fourth round will be, it is anticipated that the fourth round will be the
last and that a scheme or two will be selected as standardized.

The lattice-based cryptosystems thus far have proven to be the most promising candi-
date for a quantum-resistant scheme. The competitions for the post-quantum standard-
ization project of NIST is still going on. There were 4 public key encryption finalists in
the third round, namely, Classic McEliece [10], Kyber [6], NTRU [9], and Saber [22]. The
last three of these are based on lattices in fact.

In this paper, we investigated the polynomial multiplication using the number-theoretic
transform which is a powerful method for polynomial multiplications for schemes based on
RLWEs and MLWEs. Furthermore, improvements of the number-theoretic transform come

21



in the form of more efficient modular reduction algorithms as well as different parameter
sets of the underlying ring.

As discussed, the NTT is widely used for polynomial multiplication over cyclotomic
rings of a certain structure. Most of the schemes, if not all, adopt what is called a radix-2
NTT variant. In this paper, we considered the radix-3 NTT into account and developed
a Cooley-Tukey-like algorithm to compute it. Moreover, we defined the NTT in the ring
Z,[x]/(x®™ + 2™ + 1) which could be utilized for polynomial multiplication. Furthermore,
we compute its computational complexity.

In Section 4, based on the radix-3 NTT, we proposed some parameters for Kyber and
calculated their security level, probability of failure and communication cost. In addition
to that, in the last section, we provided the required number of arithmetic operations as
well as tested the runtime of the radix-3 NTT and compared it with the radix-2 NTT used
in KyBER. We have observed that for the first parameter set, the radix-3 NTT is more
efficient than the radix-2 NTT used in KYBER. However, this does not remain true for the
second parameter set.
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