
Integral Cryptanalysis of WARP based on
Monomial Prediction

Hosein Hadipour and Maria Eichlseder

Graz University of Technology, Graz, Austria
hossein.hadipour@iaik.tugraz.at, maria.eichlseder@iaik.tugraz.at

Abstract. WARP is a 128-bit block cipher published by Banik et al. at SAC 2020 as
a lightweight alternative to AES. It is based on a generalized Feistel network and
achieves the smallest area footprint among 128-bit block ciphers in many settings.
Previous analysis results include integral key-recovery attacks on 21 out of 41 rounds.
In this paper, we propose integral key-recovery attacks on up to 32 rounds by
improving both the integral distinguisher and the key-recovery approach substantially.
For the distinguisher, we show how to model the monomial prediction technique
proposed by Hu et al. at ASIACRYPT 2020 as a SAT problem and thus create
a bit-oriented model of WARP taking the key schedule into account. Together with
two additional observations on the properties of WARP’s construction, we extend the
best previous distinguisher by 2 rounds (as a classical integral distinguisher) or 4
rounds (for a generalized integral distinguisher). For the key recovery, we create a
graph-based model of the round function and demonstrate how to manipulate the
graph to obtain a cipher representation amenable to FFT-based key recovery.
Keywords: Lightweight cryptography · WARP · GFN · Integral cryptanalysis ·
Monomial prediction · CP · SAT · FFT key recovery

1 Introduction
Lightweight cryptographic primitives protect an increasing number of interconnected,
highly resource-constrained devices transmitting sensitive information in our daily life,
such as healthcare devices, the Internet of Things, or sensor networks. Cryptographers have
designed a variety of new symmetric-key primitives fitting the constraints of these settings.
The most prominent effort in this direction is the ongoing NIST LWC project aiming to
standardize a lightweight authenticated encryption algorithm, as well as a lightweight
hash function. Among the symmetric primitives, lightweight block ciphers have attracted
attention as a building block of lightweight authenticated encryption schemes occupying a
very small hardware footprint. While the first generation of lightweight block ciphers such
as PRESENT [BKL+07] and LED [GPPR11] mainly focused on hardware footprint, more
recent (tweakable) block cipher designs often target different criteria, such as low latency
in QARMA [Ava17] or low energy consumption in MIDORI [BBI+15].

WARP is a lightweight 128-bit block cipher presented by Banik et al. at SAC 2020
[BBI+20] as a low-area drop-in replacement of AES-128. Such a lightweight, low-area
alternative to AES-128 with the same interface size is attractive as it is easy to integrate
in existing systems. Previous 128-bit designs like MIDORI and GIFT-128 [BPP+17] pre-
dominantly follow a Substitution-Permutation Network (SPN) structure. However, SPN
ciphers are not perfect in terms of the area, particularly where a unified encryption and
decryption circuit is required since designing fully involutory components with minimal
area is challenging [GPV19]. Banik et al. thus designed WARP using the Generalized Feistel
Structure (GFS) design paradigm which is involutory in nature. With its nibble-oriented

mailto:hossein.hadipour@iaik.tugraz.at
mailto:maria.eichlseder@iaik.tugraz.at

2 Integral Cryptanalysis of WARP based on Monomial Prediction

4-bit branches, the F -function consists only of a small 4-bit S-box followed by the key
addition – an order of operations inspired by PICCOLO [SIH+11]. The resulting design
shares similarities with LBlock [WZ11] and LBlock-like functions, but provides better
diffusion of active S-boxes. At the same time, the design is significantly smaller than the
prior ones for both encryption-only and unified encryption and decryption implementations.

The designers of WARP also provide security analysis against differential, linear, im-
possible differential, and integral attacks [BBI+20]. Regarding impossible differential
attacks, they show a 21-round impossible differential distinguisher. Applying the method
of Sasaki and Todo [ST17], we find that zero-correlation distinguishers also reach 21
rounds (ei+120 9 ei+60 and ei+56 9 ei+124 for 0 ≤ i ≤ 3). For integral attacks, the
designers argue that (nibble-oriented) integral distinguishers can cover no more than 20
rounds, and key-recovery attacks can extend these by at most 1 round. Additionally,
there are a few third-party analysis results focusing primarily on WARP’s differential prop-
erties [KY21a,TB21]. Teh and Biryukov [TB21] provided a more accurate analysis against
differential attacks taking the clustering effect into account. They also investigate the
security of WARP against boomerang attacks. The results are summarized in Table 1.

Table 1: Distinguishers and key-recovery attacks on round-reduced WARP. Gen. integral
refers to generalized integral properties where the sum is taken over a function of the
ciphertext bits rather than directly over the bits.
#R Data Time Memory Attack Dist. / Key rec. Reference
20 2124 - - Integral � / � [BBI+20]
20 2123 - - Integral � / � Subsection 3.2
21 2124 - - Integral � / � Subsection 3.2
22 2127 - - Integral � / � Subsection 3.2
22 2123 - - Gen. integral � / � Subsection 4.1
23 2124 - - Gen. integral � / � Subsection 4.1
24 2127 - - Gen. integral � / � Subsection 4.1
21 2124 - - Integral � / � [BBI+20]
32 2127 2127 2108 Integral � / � Section 4
18 2104.62 - - Differential � / � [TB21]
21 - - - Impossible diff. � / � [BBI+20]
21 - - - Zero-correlation � / � Section 1
21 2113 2113 272 Differential � / � [KY21b]
23 2106.62 2106.62 2106.62 Differential � / � [TB21]
24 2126.06 2125.18 2127.06 Rectangle � / � [TB21]

Our contributions. In this paper, we show how to improve both integral distinguishers
and key-recovery techniques for WARP to extend the previous integral attack by 11 rounds to
32 (out of 41) rounds. While the previous distinguishers are based on a nibble-wise model,
we provide a bit-oriented analysis using the recently introduced monomial prediction
technique [HSWW20]. To apply the technique, we show how to encode the properties as a
Constraint Programming (CP) or a SAT problem based on a Monomial Prediction Table
(MPT). Our implementation is available in the following Github repository and can be
applied to other designs as well:

https://github.com/hadipourh/mpt

Additionally, we offer two observations following from WARP’s choice of adding the key
after the S-box. Overall, this allows us to extend the previous integral distinguishers
by 4 rounds. To the best of our knowledge, the resulting 24-round generalized integral
distinguisher is the longest distinguisher for WARP.

https://github.com/hadipourh/mpt

Hosein Hadipour and Maria Eichlseder 3

We then extend the distinguisher to a 32-round key-recovery attack. Due to the high
data complexity of 2127 queries for the distinguisher, we are quite constrained in the key-
recovery phase, and need to carefully restructure the dependency graph in such a way that
efficient key-recovery techniques such as the Meet-in-the-Middle (MitM) [SW12] and Fast
Fourier Transform (FFT) [TA14] techniques become applicable. With a semi-automated
graph-based approach, we still manage to add 8 rounds. The final attack complexity is
dominated by the 2127 chosen-plaintext queries and thus close to generic attacks. If desired,
the attack can easily be converted to a 31-round attack with complexity 2125. In any case,
the attack covers substantially more rounds than other published key-recovery attacks.

Outline. We recall the specification of WARP and background on integral cryptanalysis
and monomial trails in Section 2. In Section 3, we show how to model monomial prediction
for block ciphers as a CP or SAT problem, and apply our tool to find longer integral
distinguishers for WARP. In Section 4, we extend our distinguisher to a key-recovery attack
on 32-round WARP by representing many rounds as a directed acyclic graph to make them
amenable to the MitM FFT key-recovery technique.

2 Preliminaries and Notation
In this section, we provide a brief specification of WARP and also introduce the notation
used in this paper, as well as background on integral attacks and monomial prediction.

2.1 Specification of WARP

WARP is a 128-bit block cipher aiming at small-footprint circuit in the field of 128-bit
lightweight block ciphers and follows a variant of the 32-branch GFS design paradigm. It
receives a 128-bit plaintext with a 128-bit key and performs 40 full rounds plus 1 partial
round to produce a 128-bit ciphertext. The internal state of WARP can be represented as
X = X0|| · · · ||X31, where Xi ∈ {0, 1}4. WARP splits the 128-bit master key K into two
64-bit halves, i.e., K = K0||K1, and K(r−1) mod 2 is used as the round-key in the rth
round. The ith nibble of the round-key K(b) in round b = (r − 1) mod 2 is denoted by
K

(b)
i , where b ∈ {0, 1}, and 0 ≤ i ≤ 15. We denote the ith nibble in the input of rth round

by X(r−1)
i , where 1 ≤ r ≤ 41 and 0 ≤ i ≤ 31. We also sometimes use bitwise indexing,

denoting the ith bit of X(r−1) counting from the left (MSB) by x(r−1)
i , where 0 ≤ i ≤ 127.

When it is clear from the context, we only use a number between 0 and 127 to represent a
certain bit of the internal state.

X0 X1

X′0 X′1

S

K
(b)
0

X2 X3

X′2 X′3

S

K
(b)
1

X4 X5

X′4 X′5

S

K
(b)
2

X6 X7

X′6 X′7

S

K
(b)
3

X8 X9

X′8 X′9

S

K
(b)
4

X10 X11

X′10 X′11

S

K
(b)
5

X12 X13

X′12 X′13

S

K
(b)
6

X14 X15

X′14 X′15

S

K
(b)
7

X16 X17

X′16 X′17

S

K
(b)
8

X18 X19

X′18 X′19

S

K
(b)
9

X20 X21

X′20 X′21

S

K
(b)
10

X22 X23

X′22 X′23

S

K
(b)
11

X24 X25

X′24 X′25

S

K
(b)
12

X26 X27

X′26 X′27

S

K
(b)
13

X28 X29

X′28 X′29

S

K
(b)
14

X30 X31

X′30 X′31

S

K
(b)
15rc0 rc1

Figure 1: The round function of WARP.

As Figure 1 illustrates, the round function of WARP first applies the same S-box
S : {0, 1}4 → {0, 1}4 as well as the round-key addition on each of two consecutive nibbles
of internal state. Next, a round constant is added and a permutation π : {0, . . . , 31} →
{0, . . . , 31} is applied on the position of nibbles. The last round of WARP does not include
the nibble permutation. Table 2 describes the nibble permutation π. Table 3 shows the

4 Integral Cryptanalysis of WARP based on Monomial Prediction

lookup table of WARP’s S-box S, while Table 4 lists its Algebraic Normal Form (ANF). We
refer to the WARP specification [BBI+20] for full details.

Table 2: Nibble permutation π of WARP.
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26

Table 3: 4-bit S-box S of WARP.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Table 4: Algebraic Normal Form (ANF) of the WARP S-box S.
Bit 0, MSB x0 x1 x3 + x1 x2 x3 + x0 x1 + x1 x3 + x2 x3 + 1
Bit 1 x0 x1 x2 + x0 x1 x3 + x1 x2 x3 + x0 x3 + x0 + x3 + 1
Bit 2 x0 x2 + x0 x3 + x2 x3 + x0 + x2
Bit 3, LSB x0 x1 x2 + x0 x1 x3 + x1 x2 x3 + x0 x2 + x0 x3 + x1

2.2 Boolean Functions

To represent bit vectors, we use bold italic lowercase letters, e.g., x ∈ Fn2 denotes the n-bit
vector x = (x0, · · · , xn−1). We also denote the n-bit zero vector by 0, and ei represents a
unit vector in which all coordinates are zero except for the ith coordinate which is equal
to one. We also define a partial order over the set of n-bit vectors, such that for any
n-bit vectors x and y, x ≤ y if xi ≤ yi for all i. A Boolean function f : Fn2 → F2 can be
uniquely represented by a multivariate polynomial in F2[x0,...,xn−1]

〈x2
0+x0,...,x2

n−1+xn−1〉 which is called
its algebraic normal form (ANF) and is defined as follows:

f(x) = f(x0, . . . , xn−1) =
∑

u∈Fn
2

au ·

(
n−1∏
i=0

xui
i

)
, where au ∈ F2.

To compactly represent a monomial
∏n−1
i=0 x

ui
i , we use xu or πu(x). Moreover, given a

Boolean function f =
∑

u∈Fn
2
au ·xu, the coefficients of its ANF can be uniquely determined

from its values and vice versa:

au =
∑
x≤u

f(x), and f(u) =
∑
x≤u

ax, for all u ∈ Fn2 .

A vectorial Boolean function is a function f : Fn2 → Fm2 whose m coordinates are Boolean
functions in n variables and it is compactly denoted by y = f(x). To show the presence
and the absence of monomial πu(x) in the ANF of πv(y), we use πu(x) → πv(y), and
πu(x) 9 πv(y), respectively.

Hosein Hadipour and Maria Eichlseder 5

2.3 Integral Cryptanalysis
The idea of integral analysis was first introduced as a theoretical generalization of differential
cryptanalysis by Lai [Lai94] and as a practical attack by Daemen et al. [DKR97]. Knudsen
and Wagner formalized the concept [KW02]. The core idea of integral cryptanalysis is
finding a set of inputs such that sum of the resulting outputs is key-independent in some
positions. In the context of symmetric-key cryptography, any primitives can be represented
as a vectorial Boolean function in a combination of secret and public variables. The
set of inputs in bit-based integral analysis usually consists of inputs taking all possible
combinations in d input bits, whereas the remaining bits take a fixed value. Such input sets
form a linear subspace of dimension d, so the resulting output sets are the dth derivative
of the corresponding vectorial Boolean function with respect to the active input bits, i.e.,
those bits that are not fixed [Lai94]. An approach to find the key-independent output
positions is detecting those output bits whose ANF do not include monomials containing
key bits as well as active input bits, since the dth derivative of such output bits with
respect to the active bits is constant (zero-sum or one-sum).

However, in terms of the computational complexity, the vectorial Boolean functions
corresponding to cryptographic primitives are usually very hard to construct directly, and
hence cryptographers have to use indirect approaches to inspect the algebraic properties
of vectorial Boolean functions. Monomial prediction [HSWW20] is a new technique
to determine the presence of a particular monomial in the product of the coordinate
functions of a vectorial Boolean function, when directly constructing it is computationally
infeasible. This technique exploits the fact that a cryptographic vectorial Boolean function
f : Fn0

2 → Fnr
2 is usually a composition of several simpler vectorial Boolean functions

fi : Fni−1
2 → Fni

2 , such that x(i) = fi
(
x(i−1)) for 1 ≤ i ≤ r, i.e., f = fr ◦· · ·◦f1, where the

algebraic representation of each smaller vectorial Boolean function fi is available. Assuming
that x(i) = fi

(
x(i−1)), for any u(i) ∈ Fni

2 , we can describe πu(i)(x(i)) in variables x(i−1)

as follows:
πu(i)(x(i)) =

∑
π

u(i−1) (x(i−1))→π
u(i) (x(i))

πu(i−1)(x(i−1))

Accordingly, to follow the presence of monomials in a sequence of vectorial Boolean
functions that are applied one after another, Hu et al. [HSWW20] defined the concept of
monomial trails and proposed how to model them using MILP.

Definition 1 (Monomial Trail [HSWW20]). Let x(i) = fi(x(i−1)) for 1 ≤ i ≤ r. A
sequence of monomials (πu(0)(x(0)), . . . , πu(i)(x(i)), . . . , πu(r)(x(r))) is an r-round monomial
trail connecting πu(0)(x(0)) and πu(r)(x(r)) with respect to the composition function
f = fr(x(r−1)) ◦ . . . ◦ f1(x(0)) if

πu(0)(x(0))→ · · · → πu(i)(x(i))→ · · · → πu(r)(x(r)).

If there is at least one monomial trail from πu(0)(x(0)) to πu(r)(x(r)), we write πu(0)(x(0))
πu(r)(x(r)). Otherwise, πu(0)(x(0)) 6 πu(r)(x(r)).

For a given composition sequence of vectorial Boolean functions, the following lemma
guarantees the absence of a monomial in the ANF of the resulted composite function.

Lemma 1 ([HSWW20]). If πu(0)(x(0))→ πu(r)(x(r)), then πu(0)(x(0)) πu(r)(x(r)); or,
equivalently, πu(0)(x(0)) 6 πu(r)(x(r)) implies πu(0)(x(0)) 9 πu(r)(x(r)).

Hu et al. [HSWW20] also show that the parity of the number of monomial trails
connecting πu(0)(x(0)) and πu(r)(x(r)) perfectly determines the presence or absence of
πu(0)(x(0)) in the ANF of πu(r)(x(r)). This requires counting the monomial trails. Moreover,
Hu et al. prove that the monomial prediction technique and the 3-Subset Division Property
without Unknown subset (3SDPwoU) [HLM+20] are equivalent and perfect detection

6 Integral Cryptanalysis of WARP based on Monomial Prediction

algorithms to detect the presence or absence of monomials in the ANF of Boolean functions.
The downside is that for composite vectorial Boolean functions coming from cryptographic
primitives, the number of monomial trails between two monomials can be extremely large,
which makes counting the number of monomial trails computationally difficult. However,
as we will show in the next sections, Lemma 1 is sufficient to detect key-independent bits
in integral cryptanalysis.

Key-recovery for integral attacks. The easiest way to extend an integral distinguisher
where some bit positions sum to 0 across N queries to a key-recovery attack is to evaluate
the sum for each of the 2k key candidates, if k key bits are necessary to partially decrypt
the ciphertext to the relevant target bits. Several techniques have been proposed to reduce
this key-recovery complexity of O(N · 2k) partial decryptions under certain circumstances,
including the partial-sum technique by Ferguson et al. [FKL+00], the Meet-in-the-Middle
(MitM) technique by Sasaki and Wang [SW12], and the Fast Fourier Transform (FFT)
technique by Todo and Aoki [TA14]. We refer to Subsection 4.2 for more details.

3 Modeling Monomial Prediction for Block Ciphers
Denoting the key, plaintext and ciphertext variables by k,x, and y respectively, a block
cipher y = E(k,x) can be considered as a family of functions indexed by k:

Ek : Fn2 → Fn2
(k,x) 7→ y = E(k,x).

Hence, any product of ciphertext bits yv can be expressed as a Boolean function f(k,x):

∑
(u,v)∈Fn

2×Fk
2

au,v · kvxu =
∑

u∈Fn
2

∑
v∈Fk

2

au,v · kv

 · xu =
∑

u∈Fn
2

au(k) · xu, (1)

where k denotes the key size, au,v ∈ F2, for all (u,v) ∈ Fn2 ×Fk2 , and au(k) =
∑

v∈Fk
2
au,v ·

kv. In the single-key setting, x is a public variable, whereas k takes a fixed unknown value.
For a fixed key k and for any u ∈ Fn2 , the coefficient of xu in Equation 1 is determined by

au(k) =
∑
x≤u

f(k,x).

If πv(k) · πu(x) 6 f(k,x) for all v ∈ Fk2 , then according to Lemma 1, au,v = 0 for
all v ∈ Fk2 , and hence au(k) = 0 for any k ∈ Fk2 . Moreover, if πv(k) · πu(x) 6 f(k,x)
holds for all v ∈ Fk2 \ {0}, then au,v = 0 for all v ∈ Fk2 \ {0}, and as a result, au(k) is
still key-independent, though it may not be zero. Given that an attacker can compute
au(k) =

∑
x≤u f(k,x) by querying the encryption of Cu = {x ∈ Fn2 : x ≤ u} in the

chosen plaintext scenario, au(k) yields a distinguisher when it is key-independent. In
addition, if πv(k) · πw(x) 6 f(k,x), for all w ≥ u and for all v ∈ Fk2 , then aw(k) is
key-independent for all w ≥ u, and hence

∑
x∈Cu

f(k,x) is key-independent, where Cu is
a set of plaintexts such that variables in {xi : ui = 1} are taking all possible combinations
and the remaining variables are fixed to some arbitrary values.

3.1 CP Encoding of Monomial Prediction
Every cryptographic primitive can be divided into some smaller vectorial Boolean functions
whose ANF are available. Therefore, modeling the propagation of monomial trails through
the building blocks of cryptographic primitives, such as S-box, Xor, and Copy, or generally

Hosein Hadipour and Maria Eichlseder 7

small Boolean functions is sufficient to model the whole primitive. To model the behavior
of a small vectorial Boolean function in terms of the propagation of monomial trails, we
define the monomial prediction table (MPT).

Definition 2 (Monomial Prediction Table (MPT)). For a vectorial Boolean function
f : Fm2 → Fn2 with y = f(x), the monomial prediction table (MPT) of f is a 2m × 2n
array such that for any u ∈ Fm2 and v ∈ Fn2 , MPT(u, v) = 1 if πu(x) → πv(y), and
MPT(u, v) = 0 otherwise.

Table 5: Monomial Prediction Table (MPT) of WARP’s S-box.
u \v 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 1 · · · 1 · · · 1 · · · 1 · · ·
1 · · 1 · 1 · · · · · 1 · 1 · · ·
2 · 1 · · · 1 · · · 1 · · · 1 · ·
3 · · · 1 · 1 · · 1 1 1 · · 1 · ·
4 · · 1 · · · 1 · · · 1 · · · 1 ·
5 · 1 1 1 · · 1 · · 1 1 1 · · 1 ·
6 · · · 1 · · · 1 · · · 1 · · · 1
7 · 1 · · 1 1 1 · · 1 · · · · · 1
8 · · · · 1 · · · · · · · 1 · · ·
9 · 1 1 · 1 · · · · 1 1 · 1 · · ·
a · · · · · 1 · · 1 1 · · · 1 · ·
b · 1 · 1 1 · · · 1 · 1 · · 1 · ·
c · · 1 · · · 1 · 1 · 1 · · · 1 ·
d · · · 1 · · 1 · · · 1 1 · · 1 ·
e · 1 · 1 1 · · 1 1 · · 1 · · · 1
f · · · · · · · · · · · · · · · 1

Application to WARP’s S-box. Table 5 represents the MPT of WARP’s S-box. Given
that MPT(u,v) can be interpreted as a Boolean function in variables (u,v), we can
utilize the Quine-McCluskey [Qui52] or Espresso [BHMSV84] algorithms to minimize
its conjunctive normal form (CNF) in our CP and SAT models. For instance, all valid
monomial propagations (u0, u1, u2, u3)→ (v0, v1, v2, v3) through the WARP’s S-box can be
encoded as the satisfying solutions of the following CNF, where u0 and v0 correspond to
the MSB of input and output, respectively:

(u2 ∨ ¬v1 ∨ ¬v3) ∧ (¬u1 ∨ ¬v0 ∨ ¬v1 ∨ v2) ∧ (¬u0 ∨ ¬u1 ∨ ¬u2 ∨ ¬v2 ∨ v3)
∧ (u2 ∨ u3 ∨ ¬v3) ∧ (¬u0 ∨ ¬u1 ∨ ¬u3 ∨ v2) ∧ (¬u0 ∨ ¬u3 ∨ v0 ∨ ¬v1 ∨ ¬v3)
∧ (u1 ∨ ¬v1 ∨ ¬v2) ∧ (¬u1 ∨ u2 ∨ v0 ∨ v2 ∨ v3) ∧ (¬u0 ∨ ¬u1 ∨ ¬u3 ∨ v0 ∨ v1 ∨ v3)
∧ (u1 ∨ u3 ∨ ¬v2) ∧ (u2 ∨ ¬u3 ∨ v1 ∨ v2 ∨ v3) ∧ (¬u0 ∨ ¬u2 ∨ ¬u3 ∨ ¬v0 ∨ v1 ∨ ¬v3)
∧ (u0 ∨ ¬u2 ∨ u3 ∨ v3) ∧ (u1 ∨ ¬v0 ∨ ¬v2 ∨ ¬v3) ∧ (¬u1 ∨ ¬u2 ∨ ¬u3 ∨ v1 ∨ ¬v2)
∧ (u0 ∨ ¬u1 ∨ u3 ∨ v2) ∧ (¬u0 ∨ u1 ∨ u3 ∨ v0 ∨ v1) ∧ (¬u1 ∨ ¬u2 ∨ ¬u3 ∨ v1 ∨ v3)
∧ (¬u2 ∨ v0 ∨ v1 ∨ v3) ∧ (¬u1 ∨ u3 ∨ ¬v0 ∨ v2 ∨ ¬v3) ∧ (u0 ∨ u1 ∨ ¬u3 ∨ v0 ∨ v1 ∨ v2)
∧ (u0 ∨ u1 ∨ u2 ∨ ¬v3) ∧ (u0 ∨ u1 ∨ ¬u2 ∨ ¬v1 ∨ v3) ∧ (¬u3 ∨ v0 ∨ ¬v1 ∨ ¬v2 ∨ ¬v3)
∧ (u1 ∨ u2 ∨ ¬v2 ∨ ¬v3) ∧ (u1 ∨ ¬u2 ∨ u3 ∨ ¬v1 ∨ v3) ∧ (¬u0 ∨ u1 ∨ u2 ∨ v1 ∨ v2 ∨ v3)
∧ (¬u2 ∨ ¬v0 ∨ ¬v1 ∨ v3) ∧ (¬u1 ∨ u3 ∨ ¬v1 ∨ v2 ∨ ¬v3).

General propagation rules. The propagation rules for monomial prediction of other
building blocks of block ciphers and their CP/SAT encoding are summarized as follows.

8 Integral Cryptanalysis of WARP based on Monomial Prediction

Proposition 1 (And or Multiplication in F2). . For f : Fn2 → F2, f(x0, x1, . . . , xn−1) =
x0 · x1 · · ·xn−1, all valid monomial propagation (u0, . . . , un−1)→ (v) can be encoded as:(

n−1∧
i=0

(v ∨ ¬ui)
)
∧

(
n−1∧
i=0

(¬v ∨ ui)
)
.

Proposition 2 (2-bit Xor or Addition in F2). For f : F2
2 → F2, f(x0, x1) = x0 ⊕ x1, all

valid monomial propagation (u0, u1)→ (v) can be encoded as

(¬u0 ∨ ¬u1) ∧ (¬u0 ∨ v) ∧ (¬u1 ∨ v) ∧ (u0 ∨ u1 ∨ ¬v).

Proposition 3 (3-bit Xor). For f : F3
2 → F2, f(x0, x1, x2) = x0 ⊕ x1 ⊕ x2, all valid

monomial propagation (u0, u1, u2)→ (v) through f can be encoded as:

(¬u0∨¬u1)∧(¬u0∨¬u2)∧(¬u1∨¬u2)∧(¬u0∨v)∧(¬u1∨v)∧(¬u2∨v)∧(u0∨u1∨u2∨¬v).

Proposition 4 (Negation of 3-bit Xor). For f : F3
2 → F2, f(x0, x1, x2) = x0⊕x1⊕x2⊕1,

the valid monomial propagation (u0, u1, u1)→ (v) through f can be encoded as:

(¬u0 ∨ ¬u1) ∧ (¬u0 ∨ ¬u2) ∧ (¬u1 ∨ ¬u2) ∧ (¬u1 ∨ v) ∧ (¬u2 ∨ v) ∧ (¬u0 ∧ v).

Proposition 5 (Branching Point or Copy). For f : F2 → Fn2 , f(x) = (x, x, . . . , x), all
valid monomial propagation (u)→ (v0, . . . , vn−1) through f can be encoded as:

u =
n−1∨
i=0

vi.

Model for WARP. To denote the monomials corresponding to the input of the i + 1th
round, we use πu(i)(x(i)). Accordingly, assuming that we are analyzing r rounds of WARP,
πu0(x(0)), and πu(r)(x(r)) represent the monomials corresponding to the plaintext and
ciphertext, respectively, where 1 ≤ r ≤ 41. To model the key schedule of WARP, we denote
by πv(i)(k(i)) the round key of the ith round, and πv(0)(k(0)) represents the monomials in
variables of the master key k.

f1 · · ·
u(0) u(1)

v(1)

v(0)

fi · · ·
u(i−1) u(i)

v(i)

Key Schedule

fr
u(r−1) u(r)

v(r)

Figure 2: Main variables in our CP model for block ciphers

Given that a monomial πu(i)(x(i)) · πv(i)(k(i)) is uniquely specified by u(i) and v(i),
as illustrated in Figure 2, our CP and SAT models are described based on variables in
u(i) and v(i), for 0 ≤ i ≤ r. In addition to the main variables represented in Figure 2, we
define some additional variables corresponding to the input and output of S-boxes as well.
Next, using the propagation rules for S-box, Copy, and Xor with constant, we link the
variables of our model to encode the propagation of monomial trails through r rounds
of WARP, taking the key schedule into account. As a result, any feasible solution of the
constructed CP model corresponds to a valid monomial trail. To check the absence of a
monomial πv(k(0)) · πu(x(0)) for a certain u ∈ Fn2 and any possible values of v ∈ Fk2 in

Hosein Hadipour and Maria Eichlseder 9

the ANF of the ith output bit, we check the satisfiability of the model, where u(0) = u
and u(r) = ei. If the model becomes unsatisfiable, then there is no valid monomial trail
starting from πv(0)(k(0)) · πu(x(0)), which guarantees that the ith output bit is balanced
over the set of inputs Cu := {x ∈ Fn2 : x ≤ u}, according to Lemma 1.

If we only fix the variables in u(0) corresponding to the nonzero values of u and let the
rest of its variables be free, then the unsatisfiality of the model guarantees the absence of
πv(k(0)) · πw(x(0)) in the ANF of the ith output bit for all v ∈ Fk2 and for all w ≥ u. The
advantage is that the constant part of the resulting cube of plaintexts over which the ith
output bit is balanced should not necessarily take zero value, which gives us more freedom
to adjust the overall complexity of the resulting integral attack. Moreover, we can include
the constraint v(0) 6= 0 to check whether the ith output bit is key-independent, and detect
the one-sum property as well.

We implemented the automatic method to search for integral distinguishers based
on monomial prediction with three popular encoding methods: CP, MILP, and SAT. It
is worth noting that, during our experiments, SAT encoding resulted in a much better
performance than the MILP or CP encoding methods. Our approach to taking the key
schedule into account is applicable for linear and nonlinear key schedules. However, the
efficiency of solving the resulting model may decrease where the key schedule involves
many basic operations.

3.2 Improved Integral Distinguishers of WARP

The best previous integral distinguisher for WARP was reported by its designers [BBI+20],
who propose a 20-round integral distinguisher discovered by a nibble-wise model based
on 2-Subset Division Property (2SDP) [Tod15]. The designers of WARP also claimed that
finding an integral distinguisher with a lower data complexity is only possible for less
than 20 rounds. Here, thanks to the higher accuracy of our bit-wise model based on
monomial prediction to search for integral distinguishers, we not only find a 20-round
integral distinguisher with lower data complexity and more balanced output bits, but
we are also able to find integral distinguishers for up to 22 rounds of WARP. Exploiting
the intrinsic properties of WARP, we also prove that the distinguishers derived from our
automatic search can be extended by one round further at the end as well as the beginning.
As a result, we can improve the integral distinguishers of WARP by 4 rounds in total.

To look for the longest integral distinguishers of WARP, we check all of the 128 possible
plaintext structures with only one constant bit to see whether they yield a key-independent
bit at the output. Accordingly, we discovered that for 26 out of 128 possible positions for
the constant bit at the input, there is at least one output bit with zero-sum property after
22 rounds. Setting bits (2) or (66) to a constant value results in the highest number of
balanced bits at the following output positions:

(2) 22 rounds−−−−−−→ (20, 21, 22, 23, 118, 60, 61, 62, 63), (2)

(66) 22 rounds−−−−−−→ (54, 84, 85, 86, 87, 124, 125, 126, 127). (3)

To find an integral distinguisher with a lower data complexity, we also implemented
the method introduced by Eskandari et al. [EKKT18] to minimize the number of active
bits taking the one-sum property into account as well. Consequently, we verified that there
is no integral distinguisher with a lower data complexity for 22 rounds. Next, applying the
same strategy for 21 rounds, we found the following distinguishers which are optimal for
21 rounds in terms of data complexity:

(24, 25, 26, 27) 21 rounds−−−−−−→ (22), (88, 89, 90, 91) 21 rounds−−−−−−→ (86). (4)

For 20 rounds, we discovered a distinguisher with one constant nibble at the input yield-
ing 13 more output bits with zero-sum property in comparison to the integral distinguisher

10 Integral Cryptanalysis of WARP based on Monomial Prediction

proposed by the designers:

(64, 65, 66, 67) 20 rounds−−−−−−→ (6, 20, 21, 22, 23, 52, 53, 54, 55, 60, 61, 62, 63, 76, 77, 78, 79,
84, 85, 86, 87, 116, 117, 118, 119, 124, 125, 126, 127).

To disprove the implicit claim of the designers regarding the nonexistence of a 20-round
integral distinguisher with data complexity lower than 2124 chosen plaintexts, we provide
the following 20-round distinguishers with a data complexity of 2123 chosen plaintexts:

(24, 25, 26, 27, i) 20 rounds−−−−−−→ (20, 21, 22, 23, 60, 61, 62, 63), for 28 ≤ i ≤ 31. (5)

Extension to a generalized integral distinguisher. The designers of WARP put the Xor
with sub-key operation after the S-box application to avoid the complementary property
of Feistel-type structure. However, as shown in the following theorem, this property lets
us extend all of our discovered integral distinguishers by one round further.
Theorem 1. Any integral distinguisher for WARP built upon a multiset of even size which
yields at least one key-independent bit after r rounds, can be extended to an r + 1-round
generalized integral distinguisher with the same data complexity.

Proof. Let C denote the multiset of input plaintexts. If the jth bit of
∑

CX
(r)
2i is key-

independent for some 0 ≤ i ≤ 15, then the same position in
∑

CX
(r+1)
π(2i) must be key-

independent as well, since X(r+1)
π(2i) = X

(r)
2i . If the jth bit

∑
CX

(r)
2i+1 is key-independent for

some 0 ≤ i ≤ 15, then the jth bit of
∑

C(S(X(r+1)
π(2i))⊕X(r+1)

π(2i+1)) is key-independent since
we have: ∑

C
X

(r)
2i+1 =

∑
C

(
S(X(r+1)

π(2i))⊕X(r+1)
π(2i+1)

)
⊕
∑
C
K

(b)
i ,

and
∑

CK
(b)
i = 0 for any fixed master key, where b ∈ {0, 1}.

In Subsection 4.1, we show how to prepend another initial round to the distinguishers.

Experimental verification. To experimentally validate the outcomes of our automatic tool
to search for integral distinguishers, we also discovered some practical integral distinguishers
with very low data complexity for up to 15 rounds of WARP which are summarized in Table 6.
The very low data complexity of these distinguishers makes anyone able to evaluate their
correctness with very limited computational resources.

Table 6: Practical integral distinguishers for 10 to 15 rounds of WARP.
#Rounds Active Input Nibbles Output Nibbles with Zero-Sum Property

10 (15) (0,1,3,7,9,10,12,15,16,18,19,20,25,27,29,31)
11 (15) (13,15,17,25,31)
12 (0,1) (1,9,15,29,31)
13 (4,5,11) (1,9,15,29,31)
14 (6,7,8,9,29) (13,15,17,25,31)
15 (1,2,3,7,28,29,30,31) (13,15,17,25,31)

4 Key-Recovery Attack Based on Integral Distinguishers
We now extend our 22-round integral distinguisher from Equation 2 to a 32-round key-
recovery attack by prepending 1 initial round and appending 9 final rounds. The alternative
22-round distinguisher from Equation 3 could be similarly extended.

Hosein Hadipour and Maria Eichlseder 11

4.1 Prepending 1 Round
We first prepend an initial round to the 22-round integral distinguisher from Equation 2.
This distinguisher requires an input set of all 2127 chosen plaintexts X(1) where bit 2 in
nibble X(1)

0 is constant. Let Lc = {(x0, x1, x2, x3) ∈ F4
2 | x2 = c} denote the set of suitable

values for X(1)
0 with constant c. If we prepend one round, this nibble is computed as

X
(1)
0 = S(X(0)

10)⊕X(0)
11 ⊕K

(0)
5 ,

where K(0)
5 is constant, as illustrated in Figure 3. Thus, we get X(1)

0 ∈ Lc with c equal to
the constant bit 2 of K(0)

5 if we choose the input set S with 2127 chosen plaintexts:

S = {X(0) ∈ F128
2 | S(X(0)

10)⊕X(0)
11 ∈ L0}.

** **ssssssss
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

X
(0)
0 X

(0)
1

S

K
(0)
0

X
(0)
2 X

(0)
3

S

K
(0)
1

X
(0)
4 X

(0)
5

S

K
(0)
2

X
(0)
6 X

(0)
7

S

K
(0)
3

X
(0)
8 X

(0)
9

S

K
(0)
4

X
(0)
10 X

(0)
11

S

K
(0)
5

X
(0)
12 X

(0)
13

S

K
(0)
6

X
(0)
14 X

(0)
15

S

K
(0)
7

X
(0)
16 X

(0)
17

S

K
(0)
8

X
(0)
18 X

(0)
19

S

K
(0)
9

X
(0)
20 X

(0)
21

S

K
(0)
10

X
(0)
22 X

(0)
23

S

K
(0)
11

X
(0)
24 X

(0)
25

S

K
(0)
12

X
(0)
26 X

(0)
27

S

K
(0)
13

X
(0)
28 X

(0)
29

S

K
(0)
14

X
(0)
30 X

(0)
31

S

K
(0)
15rc0 rc1

S

** ***c

22-round distinguisher from Equation 2

X
(1)
0

X
(23)
0

X
(1)
1

X
(23)
1

X
(1)
2

X
(23)
2

X
(1)
3

X
(23)
3

X
(1)
4

X
(23)
4

X
(1)
5

X
(23)
5

X
(1)
6

X
(23)
6

X
(1)
7

X
(23)
7

X
(1)
8

X
(23)
8

X
(1)
9

X
(23)
9

X
(1)
10

X
(23)
10

X
(1)
11

X
(23)
11

X
(1)
12

X
(23)
12

X
(1)
13

X
(23)
13

X
(1)
14

X
(23)
14

X
(1)
15

X
(23)
15

X
(1)
16

X
(23)
16

X
(1)
17

X
(23)
17

X
(1)
18

X
(23)
18

X
(1)
19

X
(23)
19

X
(1)
20

X
(23)
20

X
(1)
21

X
(23)
21

X
(1)
22

X
(23)
22

X
(1)
23

X
(23)
23

X
(1)
24

X
(23)
24

X
(1)
25

X
(23)
25

X
(1)
26

X
(23)
26

X
(1)
27

X
(23)
27

X
(1)
28

X
(23)
28

X
(1)
29

X
(23)
29

X
(1)
30

X
(23)
30

X
(1)
31

X
(23)
31

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

Figure 3: Prepending 1 initial round to the 22-round integral distinguisher from Equation 2
to obtain a 23-round distinguisher with data complexity 2127 and 9 zero-sum bits in X(23).

Combined with the extension of Theorem 1, we obtain a generalized, set-based integral
distinguisher for 1 + 22 + 1 = 24 rounds with the same data complexity of 2127. To the best
of our knowledge, this is the best distinguisher for WARP so far. The approach can similarly
be applied to the 21-round distinguisher with data complexity 2124 in Equation 4 and the
20-round distinguisher with 2123 in Equation 5 to obtain distinguishers for 1 + 21 + 1 = 23
and 1 + 20 + 1 = 22 rounds, respectively, with the previous complexities.

4.2 Cost Model for Appending Key-Recovery Rounds
The 1 + 22-round distinguisher of Figure 3 gives us 9 zero-sum bits at the output of
2127 queried plaintexts. In the design document [BBI+20, Appendix B.3], the designers
discuss a 20-round integral distinguisher and claim that due to the high data complexity,
a key-recovery attack can only extend the distinguisher by at most one round and the
resulting complexity is “almost close to an exhaustive key search”. However, this estimate
appears to assume a straightforward key-recovery approach where each of the queried
plaintexts is partially decrypted under each of the key guesses, which would require 2124+4

1-round decryptions in their example1.

1We remark that due to the effect described in Theorem 1, a 1-round key-recovery attack actually
cannot recover any key material, as the key simply cancels out.

12 Integral Cryptanalysis of WARP based on Monomial Prediction

MitM FFT key-recovery approach. With more advanced approaches for integral attacks
such as the Meet-in-the-Middle (MitM) technique [SW12] and the Fast Fourier Transform
(FFT) technique [TA14], as well as a dedicated analysis exploiting WARP’s properties such
as the position of key addition, we can cover substantially more rounds. Consider a target
nibble

⊕
CX

(r)
i = 0 with i odd for an r-round integral distinguisher with an input structure

C of even size |C|. When we want to recover this nibble based on some key guess and a
given set of ciphertexts, WARP’s Feistel structure permits us to use the Meet-in-the-Middle
approach and independently recover its two contributing branches as⊕

C
X

(r)
i =

⊕
C
S(X(r+1)

π(i−1))⊕X
(r+1)
π(i) ⊕K

(r mod 2)
(i−1)/2 =

⊕
C
S(X(r+1)

π(i−1))⊕
⊕
C
X

(r+1)
π(i)

!= 0 ,

where the key sum
⊕

CK
(r mod 2)
(i−1)/2 = 0 cancels out for an even-sized set C. We refer to

these two nibbles XL = S(X(r+1)
π(i−1)) and XR = X

(r+1)
π(i) = X

(r+2)
π(π(i)) as the left and right

target nibbles, respectively. For both nibbles XL, XR and each of their 24 possible values⊕
CXL,

⊕
CXR, we want to construct a list of key candidates that generates this value.

By matching these two lists based on the value (and potentially consistency checks between
the two partial key candidates), we obtain all combined key guesses that satisfy the integral
property

⊕
CX

(r)
i = 0. For a 4-bit property and a 128-bit involved key, we expect a list

of 2124 remaining key candidates that we can then check by brute-force evaluation. Note
that we could also take additional integral conditions into account before brute-forcing
(in our distinguishers, we have 9 rather than just 4 zero-sum bits); however, this won’t
substantially improve the overall attack complexity, so for simplicity, we focus on just one
target nibble with its two branches XL and XR in the following.

To recover each of these branches, we need to compute the targeted nibbles as a function
of the ciphertext and key nibbles. Ideally, in case we can represent the target nibble as
a function X = F (K̃ ⊕ C̃) that depends only on the Xor of a partial k-bit ciphertext
C̃ and key K̃, then we can recover

⊕
CX with a complexity of O(k · 2k) using the FFT

technique for integral attacks [TA14], plus the initial cost of |C| queries. As the FFT
approach works with Boolean functions, we actually need to repeat this 4 times in parallel
for the 4 bits of the target nibble; in the following, f(·) : Fk2 → F2 refers to a Boolean
coordinate function of F (·) : Fk2 → F4

2. More specifically, the FFT approach can compute
uK̃ =

∑
C∈C f(C̃ ⊕ K̃) for all K̃ with the help of the Fast Walsh-Hadamard Transform

(FWHT) and two k-dimensional vectors v (encoding f) and w (encoding the set C):

vi = f(i) ∈ {0, 1}, wi = #{C ∈ C | C̃ = i} mod 2 ∈ {0, 1}, 0 ≤ i < 2k.

Here, wi ∈ {0, 1} counts the number of appearances of the partial ciphertext value i in
C, where we first eliminate all duplicate appearances as they cancel out in

⊕
C f(·). The

results uK̃ are computed using the 2k-dimensional Walsh matrix H2k as

u = V× w = 1
2kH2k × diag(H2kv)×H2kw

using 4 · k · 2k additions and can be converted to the desired integral sum
⊕

C f(C̃ ⊕ K̃)
by reduction modulo 2 [TA14].

Dependency DAG for WARP. To find the function F (·) and thus evaluate the cost of
recovering each of these branches, we construct a directed acyclic graph (DAG), the
dependency DAG, to compute the targeted nibbles as a function of the ciphertext and
key nibbles. Each node of the DAG represents a nibble of the internal state or key of
WARP. A directed edge from one node (parent) to another (child) indicates that the parent
node depends on the child node. Here, we can take advantage of the properties of WARP to
compress the DAG and thus the input bitsize k of F .

Hosein Hadipour and Maria Eichlseder 13

• Nodes in WARP have one of the following types:
– Temporary (T): any internal state nibble X(r)

i starts as a temporary node
and can be expanded into one of the following types based on the cipher
definition. In particular, a node X(r)

i turns either into a X node (if i odd and
r ≤ R − 1, spawning children for the left and right cells X(r+1)

π(i−1), X
(r+1)
π(i) and

the key K(r mod 2)
(i−1)/2 ; or similarly if i even and r ≤ R− 2 via X(r+1)

π(i)) or into a C
node (otherwise).

– Xor (X): a nibble that is computed as the Xor of its children.
– Key (K): either a key nibble K(r)

i or a synthetic key nibble corresponding to the
Xor of several key nibbles.

– Ciphertext (C): either a ciphertext nibble C(R)
i = X

(R)
i or a synthetic ciphertext

nibble S(C(R)
i−1)⊕ C(R)

i . In particular, a temporary node X(R−1)
i is expanded

into a C-node C(R)
i if i is even, or into an X-node with two children: a C-node

S(C(R)
i−1)⊕ C(R)

i and a K-node.

• Edges in WARP always link children with a parent of type X, so the parent is computed
as the Xor-sum of (a function of) its children. The dependency can be of two types,
representing the function applied to the child before Xoring:
– Identity (I) uses the child directly.
– S-box (S) uses S(child).

When constructing the DAG, starting from the target nibble as the root node, each node
is first created as a temporary T-node and then expanded based on the definition of the
cipher as described above. Each node is created based on a given nibble position and with
a specified parent and edge type, with the following additional rules:

• If the parent of an X-node is another X-node, it is merged with its parent upon
creation, and all the child node’s children are directly attached to its parent.

• If the nibble is a key or ciphertext nibble, and the parent node already has a child
(sibling) of type K or C, respectively, then no new node is created; instead, the sibling
is converted to a synthetic nibble and merged with the given nibble.
– If the sibling previously had multiple parents, it is split into two nodes and only

the copy for the target parent is updated with the new cell.
– Conversely, if the updated synthetic nibble now equals a previously created

synthetic nibble, these two are merged into one node by adding the parent to
the previously created nibble

• If the nibble already exists as a node, this node is reused, i.e., it has multiple parents.

We now want to point out some special properties of the WARP dependency DAG. Unlike
typical Feistel constructions, WARP does not add the round keys at the beginning of each
F -function, but at the end, together with the Feistel-Xor in an X-node. Additionally,
the permutation after the F -function step will move each right (odd-indexed) branch to
a left (even-indexed) and then back to a right branch, corresponding to another X-node.
These X-nodes will be merged, and thus the corresponding keys will also be merged into
synthetic key nibbles. This continues recursively until reaching the ciphertext. As a result,
all involved keys in a path will be merged into a synthentic key nibble that will end up as
a sibling to a synthetic ciphertext node. In other words, the resulting function F will be
of a form F (K̃ ⊕ C̃) with the synthetic key nibbles K̃ and synthetic ciphertext nibbles
C̃. If we consider the diffusion of the target nibble, then the number of distinct synthetic
ciphertext nibbles equals the number of activated nibbles before the last round, in X(R−1)

14 Integral Cryptanalysis of WARP based on Monomial Prediction

(based on the definition of C-nodes). The number of synthetic key nibbles and thus the
value k determining the complexity may be higher, as some C-nodes may appear as siblings
to multiple K-nodes. Still, we observed that the number of K-nodes in our construction
is typically lower than a naive count of involved key nibbles. Additional optimizations
can take the rank of the equivalent key into account, i.e., the rank of the matrix M such
that K̃ = M ·K. We discuss this in more detail for the specific dependency DAGs in our
attack in the following.

4.3 Key-Recovery Attack on 32 Rounds
Based on the previous discussion, the number of key-recovery rounds is essentially upper-
bounded by the number of rounds required for full diffusion. WARP generally achieves full
diffusion after 10 rounds; the following additional factors impact the number of rounds we
can attack:

• Full diffusion in WARP is after 10 rounds for even-indexed branches, but 9 rounds for
odd-indexed branches.

• For the MitM attack, the limit is full diffusion of the left branch XL, which is an
odd-indexed; but we gain the additional first round, where the target nibble is split
into XL and XR.

• We require that diffusion is not full before the last round, thus gaining one round: in
the last round, we can work with synthetic ciphertext nibbles.

Based on these limitations, we can hope to add no more than 10 rounds. Considering
the potential target nibbles in the distinguishers of Equation 2 and 3, 10 rounds activate
between 29 and 31 of the 32 output nibbles in the left branch XL, but depend on all 128
bits of key material. The resulting complexity of FFT key recovery would thus probably
be above the generic brute-force complexity, depending on the assumed conversion factor
of the complexity of additions versus cipher evaluations and other details. We thus focus
on 9 rounds appended to the 23-round distinguisher, or 32 rounds (out of 41) overall.

In the distinguisher of Equation 2 illustrated in Figure 3, we can choose one of two
target nibbles, X(23)

5 or X(23)
15 . Their properties are similar, but not identical: X(23)

15
activates fewer nibbles before the last round and thus creates fewer synthetic ciphertext
nodes (24 for X(23)

15 , 26 for X(23)
5), but both require the same amount of key material. We

focus on X(23)
5 for simplicity.

Overall, the target nibble X(23)
5 appears to depend on all ciphertext nibbles and all

key nibbles. Applying our dependency algorithm to the right and left branches of the
MitM approach in Figure 4, we obtain the dependency DAGs in Figure 5 and Figure 6,
respectively. We can now use them to separately recover

⊕
CXR =

⊕
CX

(24)
12 (right �)

and
⊕

CXL =
⊕

C S(X(24)
1) (left �) bit-by-bit under each key guess and then merge the

results to obtain 2128−4 = 2124 candidates for the full key. Among these, we can brute-force
for the correct key.

Right branch:
⊕

C XR =
⊕

C X
(24)
12 =

⊕
C FR(C̃R, K̃R). According to the dependency

DAG illustrated in Figure 5, X(24)
12 can be recovered as a function FR(K̃R, C̃R) using 84

bits (21 nibbles) of key information and 80 bits (20 distinct nibbles) of partial ciphertext,
of which one appears twice. In a straightforward analysis based on Figure 4, on the other
hand, the nibble XR appears to depend on 27 distinct key nibbles and 26 ciphertext
nibbles. Here, the key information corresponds to an equivalent key K̃R computed as a
linear function with full rank of the original key. Similarly, the ciphertext information
corresponds to an equivalent ciphertext C̃R whose nibbles are nonlinear combinations of
the original ciphertext nibbles. We will recover the equivalent key based on the equivalent
ciphertexts.

Hosein Hadipour and Maria Eichlseder 15

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

X
(23)
0 X

(23)
1

S

K
(1)
0

X
(23)
2 X

(23)
3

S

K
(1)
1

X
(23)
4 X

(23)
5

S

K
(1)
2

X
(23)
6 X

(23)
7

S

K
(1)
3

X
(23)
8 X

(23)
9

S

K
(1)
4

X
(23)
10 X

(23)
11

S

K
(1)
5

X
(23)
12 X

(23)
13

S

K
(1)
6

X
(23)
14 X

(23)
15

S

K
(1)
7

X
(23)
16 X

(23)
17

S

K
(1)
8

X
(23)
18 X

(23)
19

S

K
(1)
9

X
(23)
20 X

(23)
21

S

K
(1)
10

X
(23)
22 X

(23)
23

S

K
(1)
11

X
(23)
24 X

(23)
25

S

K
(1)
12

X
(23)
26 X

(23)
27

S

K
(1)
13

X
(23)
28 X

(23)
29

S

K
(1)
14

X
(23)
30 X

(23)
31

S

K
(1)
15rc0 rc1

S

K
(1)
2

X
(24)
0 X

(24)
1

S

K
(0)
0

X
(24)
2 X

(24)
3

S

K
(0)
1

X
(24)
4 X

(24)
5

S

K
(0)
2

X
(24)
6 X

(24)
7

S

K
(0)
3

X
(24)
8 X

(24)
9

S

K
(0)
4

X
(24)
10 X

(24)
11

S

K
(0)
5

X
(24)
12 X

(24)
13

S

K
(0)
6

X
(24)
14 X

(24)
15

S

K
(0)
7

X
(24)
16 X

(24)
17

S

K
(0)
8

X
(24)
18 X

(24)
19

S

K
(0)
9

X
(24)
20 X

(24)
21

S

K
(0)
10

X
(24)
22 X

(24)
23

S

K
(0)
11

X
(24)
24 X

(24)
25

S

K
(0)
12

X
(24)
26 X

(24)
27

S

K
(0)
13

X
(24)
28 X

(24)
29

S

K
(0)
14

X
(24)
30 X

(24)
31

S

K
(0)
15rc0 rc1

S

K
()
0

X
(25)
0 X

(25)
1

S

K
(1)
0

X
(25)
2 X

(25)
3

S

K
(1)
1

X
(25)
4 X

(25)
5

S

K
(1)
2

X
(25)
6 X

(25)
7

S

K
(1)
3

X
(25)
8 X

(25)
9

S

K
(1)
4

X
(25)
10 X

(25)
11

S

K
(1)
5

X
(25)
12 X

(25)
13

S

K
(1)
6

X
(25)
14 X

(25)
15

S

K
(1)
7

X
(25)
16 X

(25)
17

S

K
(1)
8

X
(25)
18 X

(25)
19

S

K
(1)
9

X
(25)
20 X

(25)
21

S

K
(1)
10

X
(25)
22 X

(25)
23

S

K
(1)
11

X
(25)
24 X

(25)
25

S

K
(1)
12

X
(25)
26 X

(25)
27

S

K
(1)
13

X
(25)
28 X

(25)
29

S

K
(1)
14

X
(25)
30 X

(25)
31

S

K
(1)
15rc0 rc1

S

K
()
15

S

K
()
12

X
(26)
0 X

(26)
1

S

K
(0)
0

X
(26)
2 X

(26)
3

S

K
(0)
1

X
(26)
4 X

(26)
5

S

K
(0)
2

X
(26)
6 X

(26)
7

S

K
(0)
3

X
(26)
8 X

(26)
9

S

K
(0)
4

X
(26)
10 X

(26)
11

S

K
(0)
5

X
(26)
12 X

(26)
13

S

K
(0)
6

X
(26)
14 X

(26)
15

S

K
(0)
7

X
(26)
16 X

(26)
17

S

K
(0)
8

X
(26)
18 X

(26)
19

S

K
(0)
9

X
(26)
20 X

(26)
21

S

K
(0)
10

X
(26)
22 X

(26)
23

S

K
(0)
11

X
(26)
24 X

(26)
25

S

K
(0)
12

X
(26)
26 X

(26)
27

S

K
(0)
13

X
(26)
28 X

(26)
29

S

K
(0)
14

X
(26)
30 X

(26)
31

S

K
(0)
15rc0 rc1

S

K
()
10

S

K
()
3

S

K
()
5

X
(27)
0 X

(27)
1

S

K
(1)
0

X
(27)
2 X

(27)
3

S

K
(1)
1

X
(27)
4 X

(27)
5

S

K
(1)
2

X
(27)
6 X

(27)
7

S

K
(1)
3

X
(27)
8 X

(27)
9

S

K
(1)
4

X
(27)
10 X

(27)
11

S

K
(1)
5

X
(27)
12 X

(27)
13

S

K
(1)
6

X
(27)
14 X

(27)
15

S

K
(1)
7

X
(27)
16 X

(27)
17

S

K
(1)
8

X
(27)
18 X

(27)
19

S

K
(1)
9

X
(27)
20 X

(27)
21

S

K
(1)
10

X
(27)
22 X

(27)
23

S

K
(1)
11

X
(27)
24 X

(27)
25

S

K
(1)
12

X
(27)
26 X

(27)
27

S

K
(1)
13

X
(27)
28 X

(27)
29

S

K
(1)
14

X
(27)
30 X

(27)
31

S

K
(1)
15rc0 rc1

S

K
()
8

S

K
()
9

S

K
()
10

S

K
()
6

S

K
()
1

X
(28)
0 X

(28)
1

S

K
(0)
0

X
(28)
2 X

(28)
3

S

K
(0)
1

X
(28)
4 X

(28)
5

S

K
(0)
2

X
(28)
6 X

(28)
7

S

K
(0)
3

X
(28)
8 X

(28)
9

S

K
(0)
4

X
(28)
10 X

(28)
11

S

K
(0)
5

X
(28)
12 X

(28)
13

S

K
(0)
6

X
(28)
14 X

(28)
15

S

K
(0)
7

X
(28)
16 X

(28)
17

S

K
(0)
8

X
(28)
18 X

(28)
19

S

K
(0)
9

X
(28)
20 X

(28)
21

S

K
(0)
10

X
(28)
22 X

(28)
23

S

K
(0)
11

X
(28)
24 X

(28)
25

S

K
(0)
12

X
(28)
26 X

(28)
27

S

K
(0)
13

X
(28)
28 X

(28)
29

S

K
(0)
14

X
(28)
30 X

(28)
31

S

K
(0)
15rc0 rc1

S

K
()
4

S

K
()
7

S

K
()
6

S

K
()
13

S

K
()
8

S

K
()
12

S

K
()
15

S

K
()
14

X
(29)
0 X

(29)
1

S

K
(1)
0

X
(29)
2 X

(29)
3

S

K
(1)
1

X
(29)
4 X

(29)
5

S

K
(1)
2

X
(29)
6 X

(29)
7

S

K
(1)
3

X
(29)
8 X

(29)
9

S

K
(1)
4

X
(29)
10 X

(29)
11

S

K
(1)
5

X
(29)
12 X

(29)
13

S

K
(1)
6

X
(29)
14 X

(29)
15

S

K
(1)
7

X
(29)
16 X

(29)
17

S

K
(1)
8

X
(29)
18 X

(29)
19

S

K
(1)
9

X
(29)
20 X

(29)
21

S

K
(1)
10

X
(29)
22 X

(29)
23

S

K
(1)
11

X
(29)
24 X

(29)
25

S

K
(1)
12

X
(29)
26 X

(29)
27

S

K
(1)
13

X
(29)
28 X

(29)
29

S

K
(1)
14

X
(29)
30 X

(29)
31

S

K
(1)
15rc0 rc1

S

K
()
13

S

K
()
2

S

K
()
11

S

K
()
3

S

K
()
12

S

K
()
9

S

K
()
4

S

K
()
7

S

K
()
0

S

K
()
5

S

K
()
3

S

K
()
11

S

K
()
4

X
(30)
0 X

(30)
1

S

K
(0)
0

X
(30)
2 X

(30)
3

S

K
(0)
1

X
(30)
4 X

(30)
5

S

K
(0)
2

X
(30)
6 X

(30)
7

S

K
(0)
3

X
(30)
8 X

(30)
9

S

K
(0)
4

X
(30)
10 X

(30)
11

S

K
(0)
5

X
(30)
12 X

(30)
13

S

K
(0)
6

X
(30)
14 X

(30)
15

S

K
(0)
7

X
(30)
16 X

(30)
17

S

K
(0)
8

X
(30)
18 X

(30)
19

S

K
(0)
9

X
(30)
20 X

(30)
21

S

K
(0)
10

X
(30)
22 X

(30)
23

S

K
(0)
11

X
(30)
24 X

(30)
25

S

K
(0)
12

X
(30)
26 X

(30)
27

S

K
(0)
13

X
(30)
28 X

(30)
29

S

K
(0)
14

X
(30)
30 X

(30)
31

S

K
(0)
15rc0 rc1

S

K
()
14

S

K
()
9

S

K
()
0

S

K
()
1

S

K
()
2

S

K
()
10

S

K
()
0

S

K
()
5

S

K
()
7

S

K
()
6

S

K
()
13

S

K
()
2

S

K
()
11

S

K
()
15

S

K
()
6

S

K
()
1

S

K
()
9

S

K
()
10

S

K
()
2

S

K
()
8

S

K
()
13

X
(31)
0 X

(31)
1

C
(32)
0 C

(32)
1

S

K
(1)
0

X
(31)
2 X

(31)
3

C
(32)
2 C

(32)
3

S

K
(1)
1

X
(31)
4 X

(31)
5

C
(32)
4 C

(32)
5

S

K
(1)
2

X
(31)
6 X

(31)
7

C
(32)
6 C

(32)
7

S

K
(1)
3

X
(31)
8 X

(31)
9

C
(32)
8 C

(32)
9

S

K
(1)
4

X
(31)
10 X

(31)
11

C
(32)
10 C

(32)
11

S

K
(1)
5

X
(31)
12 X

(31)
13

C
(32)
12 C

(32)
13

S

K
(1)
6

X
(31)
14 X

(31)
15

C
(32)
14 C

(32)
15

S

K
(1)
7

X
(31)
16 X

(31)
17

C
(32)
16 C

(32)
17

S

K
(1)
8

X
(31)
18 X

(31)
19

C
(32)
18 C

(32)
19

S

K
(1)
9

X
(31)
20 X

(31)
21

C
(32)
20 C

(32)
21

S

K
(1)
10

X
(31)
22 X

(31)
23

C
(32)
22 C

(32)
23

S

K
(1)
11

X
(31)
24 X

(31)
25

C
(32)
24 C

(32)
25

S

K
(1)
12

X
(31)
26 X

(31)
27

C
(32)
26 C

(32)
27

S

K
(1)
13

X
(31)
28 X

(31)
29

C
(32)
28 C

(32)
29

S

K
(1)
14

X
(31)
30 X

(31)
31

C
(32)
30 C

(32)
31

S

K
(1)
15rc0 rc1

S

K
()
4

S

K
()
7

S

K
()
6

S

K
()
12

S

K
()
15

S

K
()
14

S

K
()
5

S

K
()
0

S

K
()
13

S

K
()
8

S

K
()
15

S

K
()
6

S

K
()
1

S

K
()
11

S

K
()
3

S

K
()
12

S

K
()
14

S

K
()
9

S

K
()
0

S

K
()
1

S

K
()
2

S

K
()
10

S

K
()
3

S

K
()
12

S

K
()
15

S

K
()
14

S

K
()
6

S

K
()
13

S

K
()
8

S

K
()
5

S

K
()
0

S

K
()
7

S

K
()
14

S

K
()
9

Figure 4: Key recovery for 9 rounds of WARP after the 23-round distinguisher of Figure 3.

16 Integral Cryptanalysis of WARP based on Monomial Prediction

S
S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

+X
(25)
25

+X
(26)
11

+X
(27)
3

+X
(28)
29

+X
(29)
9

K
(1)
4 ⊕K

(1)
14

S(C
(32)
28)⊕ C

(32)
29

+X
(30)
27

C
(32)
16

K
(0)
13

+X
(31)
19

S(C
(32)
18)⊕ C

(32)
19

K
(1)
9

K
(0)
14 ⊕K

(0)
8

C
(32)
22

+X
(31)
15

S(C
(32)
14)⊕ C

(32)
15

K
(1)
7

K
(1)
1 ⊕K

(1)
11 ⊕K

(1)
5

S(C
(32)
10)⊕ C

(32)
11

+X
(30)
5

+X
(31)
1

S(C
(32)
0)⊕ C

(32)
1

K
(1)
0

C
(32)
12

K
(0)
2K

(0)
5 ⊕K

(0)
15 ⊕K

(0)
9

C
(32)
30

+X
(29)
7

+X
(30)
21

+X
(31)
17

S(C
(32)
16)⊕ C

(32)
17

K
(1)
8

C
(32)
28

K
(0)
10

K
(1)
3 ⊕K

(1)
13

S(C
(32)
26)⊕ C

(32)
27

+X
(31)
13

S(C
(32)
12)⊕ C

(32)
13

K
(1)
6

K
(1)
12 ⊕K

(1)
6 ⊕K

(1)
0 ⊕K

(1)
10

S(C
(32)
20)⊕ C

(32)
21

+X
(28)
25

+X
(29)
11

+X
(30)
3

+X
(31)
29

K
(1)
14

C
(32)
14

K
(0)
1

K
(1)
5 ⊕K

(1)
15

S(C
(32)
30)⊕ C

(32)
31

K
(0)
12 ⊕K

(0)
6

+X
(31)
25

S(C
(32)
24)⊕ C

(32)
25

K
(1)
12

C
(32)
4

+X
(30)
31

+X
(31)
7

S(C
(32)
6)⊕ C

(32)
7

K
(1)
3

C
(32)
26

K
(0)
15

� Internal nibbles of FR(K̃R, C̃R)
� Ciphertext nibbles of C̃R
� Whitening key nibbles of K̃R
� Ciphertext and key nibbles which cancel out

Figure 5: Dependency DAG for right branch of 9-round MitM key recovery in Figure 4.

Observe that one nibble of key information is irrelevant for recovering the integral
sum: The nibble K(1)

12 ⊕ K
(1)
6 ⊕ K(1)

0 ⊕ K(1)
10 appears linearly in the sum and will thus

cancel out when summed over the total, even number of ciphertexts. The corresponding
ciphertext nibble S(C(32)

20)⊕ C(32)
21 sums to a constant that we can evaluate immediately

upon collection of the ciphertexts. The remaining 20 equivalent key and 19 ciphertext
nibbles appear in paired sums K̃Ri⊕C̃Ri, 0 ≤ i < 20, except S(C(32)

28)⊕C(32)
29 which appears

twice with different keys; we can simply include this nibble twice when transforming the
ciphertexts C into the compressed ciphertexts C̃R for the right branch XR. This means
that K̃R essentially serves as a whitening key, and the function FR(K̃R, C̃R) is actually a
function FR(K̃R ⊕ C̃R) with input size k = 80.

Thus, we can apply the FFT approach as discussed in Subsection 4.2 to each of the 4
bits of XR. With a complexity of 4 · 4 · k · 2k = 16 · 80 · 280 = 290.32 additions, we obtain a
table that maps each of the 24 possible values of

⊕
CXR =

⊕
CX

(24)
12 to a list of about

280−4 = 276 values of the partial key K̃R that produce this sum. By applying an invertible
linear function, we can transform the key candidates to the simpler equivalent form

K̃R = K
(0)
1 ,K

(0)
2 ,K

(0)
5 ⊕K(0)

9 ,K
(0)
6 ⊕K(0)

12 ,K
(0)
8 ⊕K(0)

14 ,K
(0)
10 ,K

(0)
13 ,K

(0)
15 ,

K
(1)
0 ,K

(1)
1 ⊕K(1)

5 ⊕K(1)
11 ,K

(1)
3 ,K

(1)
4 ,K

(1)
5 ⊕K(1)

15 ,K
(1)
6 , . . .K

(1)
9 ,K

(1)
12 ,K

(1)
13 ,K

(1)
14 .

Hosein Hadipour and Maria Eichlseder 17

Left branch:
⊕

C XL =
⊕

C S(X
(24)
1) =

⊕
C FL(C̃L, K̃L). Similarly to the right branch,

we automatically generate the dependency DAG for the left branch with the algorithm of
Subsection 4.2. According to the dependency DAG, X(24)

1 can be recovered as a function
FL(K̃L, C̃L) using 104 bits (26 distinct nibbles) of partial ciphertext, of which several
appear in multiple tree branches, and 128 bits (32 nibbles) of key information. However,
these 32 key nibbles only correspond to a space of 228·4 actual key candidates, as some key
terms are linearly dependent. For example, it is easy to see in Figure 4 that K(0)

12 ,K
(0)
15 are

not involved in this DAG. Unfortunately, it is not trivial to exploit these dependencies
when using the FFT key-recovery approach: For example, if 3 linearly dependent key
nodes appear together with 3 distinct ciphertext nodes in completely different parts of the
DAG, we still have to first recover the full 3-nibble key material (with the corresponding
cost) and can only then filter out inconsistent keys. Furthermore, we cannot handle the
multiple shared ciphertext nodes in the same way as in the right branch, as the resulting
complexity would be prohibitive.

Postprocessing the DAG. We thus first apply an additional postprocessing step to the
DAG. Consider again the DAG for the right branch, as illustrated in Figure 5, where one
of the C-nodes, S(C(32)

28)⊕C(32)
29 , is shared by two parent X-nodes. Both parents also share

the key nibble K(1)
14 , but due to our merging steps, this is part of two different K-nodes.

Instead of linking the merged parent X(29)
9 only with the C-node, we can link it directly

with the other X-node X(31)
29 and update its K-child from K

(1)
4 ⊕K(1)

14 to K(1)
4 ; in other

words, we can un-merge the two original Xors combined in X(29)
9 . The remaining K-node

K
(1)
4 now becomes an internal key without a corresponding C-node. This situation occurs

similarly 6 times in the DAG for the left branch, and we update the DAG in the same way,
thus creating 6 internal key nodes. In total, we now have 26 ciphertext nodes paired with
key nodes, plus the 6 internal key nodes. We refer to the paired key nodes as whitening
key nodes. Of the 6 new internal key nodes, 2 involve the same key nibble as a paired
whitening key node (K(0)

6 and K(1)
12). The resulting, postprocessed dependency DAG is

illustrated in Figure 6.
Key-recovery approach. To take advantage of the linear dependencies between some

of the key nodes, we split the key nibbles into three categories (internal keys �, whitening
keys �, and internal+whitening keys � that appear in both roles), and proceed as follows:

• Repeat for each guessed value of the internal+whitening keys � K
(0)
6 , K(1)

12 (28×):

1. Transform the nodes depending only on these two keys plus any ciphertext
nodes into new synthetic ciphertext nodes �:

– X
(31)
25 = K

(1)
12 ⊕ S(C(32)

24) ⊕ C(32)
25 , which is now paired with the previous

internal key K(1)
8 ⊕K(1)

2 , turning it into a whitening key.
– X

(29)
19
′ = S(S(K(1)

12 ⊕ S(C(32)
24)⊕C(32)

25)⊕C(32)
5 ⊕K(0)

6)⊕ S(C(32)
6)⊕C(32)

7 ,
which is paired with the previous whitening key K(1)

9 ⊕K(1)
3 .

2. Repeat for each guessed value of internal keys � K
(0)
8 ,K

(1)
7 ,K

(1)
10 ⊕K

(1)
4 (212×):

(a) With these 5 internal key bytes fixed, we get a reduced DAG with 25
ciphertext nodes and whitening keys: the 2 new synthetic ones created in
the previous step �, plus 23 regular ones �.

(b) Run the FFT key recovery approach with k = 4·25 = 100 as before on each of
the 4 bits ofXL = S(X(24)

1), with a total complexity of 4·4·100·2100 = 2110.64

additions.
(c) The result is a map from each of the 24 values of

⊕
CXL to a list of about

2100−4 = 296 values of the partial key K̃ that produce this sum. As some of

18 Integral Cryptanalysis of WARP based on Monomial Prediction

the involved key nodes are linearly dependent, we can check for consistency
and thus reduce this set to 296−4−4 = 288 candidates per value:
– Check that K(1)

8 ⊕K(1)
2 , K(1)

8 , and K(1)
2 are consistent

– Check that K(1)
9 ⊕K(1)

3 ⊕K(1)
13 ⊕K

(1)
15 , K(1)

9 ⊕K(1)
3 , K(1)

13 ⊕K
(1)
7 , K(1)

7 ,
and K(1)

15 are consistent
– Then, we can apply a linear function to the remaining key candidates

to transform them back to the values of the 28 key nibbles K(0)
0 ,

K
(0)
1 ⊕ K(0)

7 , K(0)
2 , K(0)

3 ⊕ K(0)
7 , K(0)

4 ⊕ K(0)
14 , K(0)

5 , K(0)
6 , K(0)

8 , . . . ,
K

(0)
11 , K(0)

13 , K(1)
0 , . . . , K(1)

15 .

S
SS

S

S

S

S

S

S

S

S

S
SS

S

S

S

S

S

SS

S

S

S

SS

S

S

S

S

S

S

S

S

+X
(24)
1

+X
(25)
31

+X
(26)
7

+X
(27)
21

K
(1)
10 ⊕K

(1)
4

+X
(28)
17 +X

(29)
15

K
(1)
7

+X
(31)
3

+X
(30)
23

C
(32)
24

K
(0)
11

+X
(31)
5

S(C
(32)
4)⊕ C

(32)
5

K
(1)
2

K
(0)
8

+X
(31)
1X
(31)
1

S(C
(32)
0)⊕ C

(32)
1

K
(1)
0

+

+X
(30)
27

+X
(31)
19

S(C
(32)
18)⊕ C

(32)
19

K
(1)
9

C
(32)
16

K
(0)
13

+X
(31)
29

K
(0)
3 ⊕K

(0)
13 ⊕K

(0)
7

C
(32)
10

+X
(29)
19

+X
(30)
13

+X
(31)
25

S(C
(32)
24)⊕ C

(32)
25

K
(1)
12

C
(32)
4

K
(0)
6

K
(1)
9 ⊕K

(1)
3

S(C
(32)
6)⊕ C

(32)
7

+X
(31)
23

S(C
(32)
22)⊕ C

(32)
23

K
(1)
11

K
(1)
15 ⊕K

(1)
9 ⊕K

(1)
3 ⊕K

(1)
13

S(C
(32)
26)⊕ C

(32)
27

+X
(28)
13 +X

(29)
25

+X
(30)
11

S(C
(32)
2)⊕ C

(32)
3

K
(1)
1

C
(32)
0

K
(0)
5

+X
(31)
13

+X
(31)
31X
(31)
31

S(C
(32)
30)⊕ C

(32)
31

K
(1)
15

+X
(31)
6

+X
(30)
21

+X
(31)
17

S(C
(32)
16)⊕ C

(32)
17

K
(1)
8

C
(32)
28

K
(0)
10

K
(0)
0 ⊕K

(0)
10 ⊕K

(0)
4 ⊕K

(0)
14

C
(32)
20

+X
(27)
17

+X
(28)
15

+X
(29)
23

+X
(30)
5

C
(32)
12

K
(0)
2

S(C
(32)
10)⊕ C

(32)
11

K
(1)
11 ⊕K

(1)
5

S(C
(32)
28)⊕ C

(32)
29

K
(1)
14

K
(0)
7 ⊕K

(0)
1

C
(32)
14

+X
(30)
1

C
(32)
6

K
(0)
0

K
(1)
8 ⊕K

(1)
2

+X
(29)
27

+X
(30)
19

S(C
(32)
12)⊕ C

(32)
13

K
(1)
6

C
(32)
30

K
(0)
9K

(1)
13 ⊕K

(1)
7

S(C
(32)
14)⊕ C

(32)
15

+X
(31)
9

S(C
(32)
8)⊕ C

(32)
9

K
(1)
4

S

� Internal nibbles of FL(K̃L, C̃L)
� Ciphertext nibbles of C̃L
� Whitening key nibbles of K̃L
� Internal key nibbles of K̃L
� Preprocessed key and ciphertext nibbles

Figure 6: Dependency DAG for left branch of 9-round MitM key recovery in Figure 4.

Hosein Hadipour and Maria Eichlseder 19

As a result, for each of the 24 potential values of
⊕

CXL and each of the 220 values
of the internal key, we have 288 whitening key candidates K̃L that map to this value.
With the rough estimate that 1 addition (of less than 128 bits) has the same cost as
1 cipher round or 1

32 = 2−5 cipher evaluations, the total cost of this process is about
28+12 ·2110.64 ·2−5 = 2125.64 cipher evaluations and thus less than the data collection phase.

Combining the key information. After the previous step, for each of the 24 possible
matching values of

⊕
CXL and

⊕
CXR, we have 2108 key candidates for the 28-nibble key

K̃L = K
(0)
0 ,K

(0)
1 ⊕K(0)

7 ,K
(0)
2 ,K

(0)
3 ⊕K(0)

7 ,K
(0)
4 ⊕K(0)

14 ,K
(0)
5 ,K

(0)
6 ,K

(0)
8 , . . . ,K

(0)
11 ,K

(0)
13 ,

K
(1)
0 , . . . ,K

(1)
15

and 276 candidates for the 21-nibble key

K̃R = K
(0)
1 ,K

(0)
2 ,K

(0)
5 ⊕K(0)

9 ,K
(0)
6 ⊕K(0)

12 ,K
(0)
8 ⊕K(0)

14 ,K
(0)
10 ,K

(0)
13 ,K

(0)
15 ,

K
(1)
0 ,K

(1)
1 ⊕K(1)

5 ⊕K(1)
11 ,K

(1)
3 ,K

(1)
4 ,K

(1)
5 ⊕K(1)

15 ,K
(1)
6 , . . .K

(1)
9 ,K

(1)
12 ,K

(1)
13 ,K

(1)
14 .

We can match them efficiently by sorting the values for K̃L and K̃R based on the 12 nibbles
of K(1) involved in K̃R and the 4 nibbles K(0)

2 , K(0)
10 , K(0)

13 , K(0)
5 ⊕K(0)

9 , leaving about
276−4·16 = 212 candidates for K̃R and 2108−4·16 = 244 candidates for K̃L per matching
value. Then, for each of the 24 · 24·16 = 268 values of the combined matching value (target
sum X and partial key), we get 212 · 244 = 256 candidates for the complete key, as the
rest of K̃L and K̃R together fully determines the key. The resulting 268 · 256 = 2124 key
candidates can be tested with brute-force search.

Complexity. Overall, the time and data complexity is dominated by the data requirement
of 2127 chosen-plaintext queries for the distinguisher. When using a shorter distinguisher
to achieve a less marginal complexity, the dominating complexity is 2124 for exhaustively
testing the remaining key candidates. The memory complexity depends on the required
memory for FWHT with k = 100 using about 2100 counters, plus storing the corresponding
partial ciphertexts using 226·4 = 2104 bits, plus 2108 partial key candidates (all for the left
branch in our 32-round integral attack), so in total less than 2108 128-bit states with some
optimization potential by rearranging the key-combining step.

5 Conclusion
WARP achieves its design goals with the help of a generalized Feistel network with a high
number of small branches as well as some special design choices like a low-area S-box
and a key addition after this S-box in the Feistel-F -function. Since the focus is on low
area, the function has a relatively slow diffusion. Previous analysis results only take these
properties into account to a limited extent. For example, the previous 21-round integral
attack sketched by the designers takes neither the bitwise S-box definition nor the key
position into account for potential improvements.

We show how a more detailed analysis of these properties, such as the ANF and bitwise
Monomial Prediction properties of the S-box, allow us to target significantly more rounds
with a comparable complexity. For our 32-round attack, we used our implementation of Hu
et al.’s monomial prediction as well as manual observations to extend the distinguisher by
4 rounds. To cover as many rounds as possible in the key-recovery phase despite the high
data complexity of the underlying distinguisher, we implemented a graph-based model
of the intermediate variables required for key recovery as a directed acyclic graph. We
showed how to restructure this graph in order to obtain a representation that works well
with optimized key-recovery techniques, particularly FFT key recovery. Our improvements
provide a tighter estimate of the security margin of WARP, but do not threaten its security.

20 Integral Cryptanalysis of WARP based on Monomial Prediction

References
[Ava17] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over

rings with zero divisors, nearly symmetric Even-Mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017. doi:10.13154/tosc.
v2017.i1.4-44.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In ASIACRYPT 2015, volume 9453 of LNCS,
pages 411–436. Springer, 2015. doi:10.1007/978-3-662-48800-3_17.

[BBI+20] Subhadeep Banik, Zhenzhen Bao, Takanori Isobe, Hiroyasu Kubo, Fukang
Liu, Kazuhiko Minematsu, Kosei Sakamoto, Nao Shibata, and Maki Shigeri.
WARP: Revisiting GFN for lightweight 128-bit block cipher. In SAC 2020,
volume 12804 of LNCS, pages 535–564. Springer, 2020. doi:10.1007/
978-3-030-81652-0_21.

[BHMSV84] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis,
volume 2 of The Kluwer International Series in Engineering and Computer
Science. Springer, 1984.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In CHES 2007, volume 4727 of
LNCS, pages 450–466. Springer, 2007. doi:10.1007/978-3-540-74735-2_
31.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present – towards reaching
the limit of lightweight encryption. In CHES 2017, volume 10529 of LNCS,
pages 321–345. Springer, 2017. doi:10.1007/978-3-319-66787-4_16.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher
Square. In FSE 1997, volume 1267 of LNCS, pages 149–165. Springer, 1997.
doi:10.1007/BFb0052343.

[EKKT18] Zahra Eskandari, Andreas Brasen Kidmose, Stefan Kölbl, and Tyge Tiessen.
Finding integral distinguishers with ease. In SAC 2018, volume 11349 of
LNCS, pages 115–138. Springer, 2018. doi:10.1007/978-3-030-10970-7_6.

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael.
In FSE 2000, volume 1978 of LNCS, pages 213–230. Springer, 2000. doi:
10.1007/3-540-44706-7_15.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED block cipher. In CHES 2011, volume 6917 of LNCS, pages 326–341.
Springer, 2011. doi:10.1007/978-3-642-23951-9_22.

[GPV19] Kishan Chand Gupta, Sumit Kumar Pandey, and Ayineedi Venkateswarlu.
Almost involutory recursive MDS diffusion layers. Des. Codes Cryptogr.,
87(2-3):609–626, 2019. doi:10.1007/s10623-018-0582-2.

https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-030-81652-0_21
https://doi.org/10.1007/978-3-030-81652-0_21
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-030-10970-7_6
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/s10623-018-0582-2

Hosein Hadipour and Maria Eichlseder 21

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju
Wang. Modeling for three-subset division property without unknown subset
– improved cube attacks against Trivium and Grain-128AEAD. In EU-
ROCRYPT 2020, volume 12105 of LNCS, pages 466–495. Springer, 2020.
doi:10.1007/978-3-030-45721-1_17.

[HSWW20] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and
key-independent sums. In ASIACRYPT 2020, volume 12491 of LNCS, pages
446–476. Springer, 2020. doi:10.1007/978-3-030-64837-4_15.

[KW02] Lars R. Knudsen and David A. Wagner. Integral cryptanalysis. In FSE
2002, volume 2365 of LNCS, pages 112–127. Springer, 2002. doi:10.1007/
3-540-45661-9_9.

[KY21a] Manoj Kumar and Tarun Yadav. MILP based differential attack on round
reduced WARP. In SPACE 2021, volume 13162 of LNCS, pages 42–59.
Springer, 2021. doi:10.1007/978-3-030-95085-9_3.

[KY21b] Manoj Kumar and Tarun Yadav. MILP based differential attack on round
reduced WARP. In SPACE 2021, volume 13162 of LNCS, pages 42–59.
Springer, 2021. doi:10.1007/978-3-030-95085-9_3.

[Lai94] Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Com-
munications and cryptography, pages 227–233. Springer, 1994.

[Qui52] Willard V Quine. The problem of simplifying truth functions. The American
mathematical monthly, 59(8):521–531, 1952.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In
CHES 2011, volume 6917 of LNCS, pages 342–357. Springer, 2011. doi:
10.1007/978-3-642-23951-9_23.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects – revealing structural properties of several
ciphers. In EUROCRYPT 2017, volume 10212 of LNCS, pages 185–215.
Springer, 2017. doi:10.1007/978-3-319-56617-7_7.

[SW12] Yu Sasaki and Lei Wang. Meet-in-the-middle technique for integral attacks
against Feistel ciphers. In SAC 2012, volume 7707 of LNCS, pages 234–251.
Springer, 2012. doi:10.1007/978-3-642-35999-6_16.

[TA14] Yosuke Todo and Kazumaro Aoki. FFT key recovery for integral attack.
In CANS 2014, volume 8813 of LNCS, pages 64–81. Springer, 2014. doi:
10.1007/978-3-319-12280-9_5.

[TB21] Je Sen Teh and Alex Biryukov. Differential cryptanalysis of WARP. Cryptol-
ogy ePrint Archive, Report 2021/1641, 2021. URL: https://ia.cr/2021/
1641.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
EUROCRYPT 2015, volume 9056 of LNCS, pages 287–314. Springer, 2015.
doi:10.1007/978-3-662-46800-5_12.

[WZ11] Wenling Wu and Lei Zhang. LBlock: A lightweight block cipher. In
ACNS 2011, volume 6715 of LNCS, pages 327–344, 2011. doi:10.1007/
978-3-642-21554-4_19.

https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-030-95085-9_3
https://doi.org/10.1007/978-3-030-95085-9_3
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-642-35999-6_16
https://doi.org/10.1007/978-3-319-12280-9_5
https://doi.org/10.1007/978-3-319-12280-9_5
https://ia.cr/2021/1641
https://ia.cr/2021/1641
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-642-21554-4_19

	Introduction
	Preliminaries and Notation
	Specification of WARP
	Boolean Functions
	Integral Cryptanalysis

	Modeling Monomial Prediction for Block Ciphers
	CP Encoding of Monomial Prediction
	Improved Integral Distinguishers of WARP

	Key-Recovery Attack Based on Integral Distinguishers
	Prepending 1 Round
	Cost Model for Appending Key-Recovery Rounds
	Key-Recovery Attack on 32 Rounds

	Conclusion

