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In 1985, Dolev and Reischuk proved a fundamental communication lower bounds on protocols achieving fault tolerant synchronous

broadcast and consensus: any deterministic protocol solving those tasks requires at least a quadratic number of message to be sent by

nonfaulty parties. Followup work by Abraham, Chun, Dolev, Nayak, Pass, Ren and Shi shows a similar lower bound for randomized

protocols. With the rise of blockchain systems, there have been many real-world systems that achieve consensus with seemingly linear

communication per instance. We bridge this discrepancy in two ways. First, we generalize the lower bound to Crusader Broadcast

protocols, and to all-but𝑚 Crusader Broadcast. Second, we discuss the ways these lower bounds relate to the security of blockchain

systems. Specifically, we show how eclipse style attacks in such systems can be viewed as specific instances of Dolev-Reischuk style

attacks. Our observation suggests a more systematic way of analyzing and thinking about eclipse style attacks through the lens of

the Dolev-Reischuk family of attacks. Finally, we present an example of a simple subquadratic Crusader Broadcast protocol whose

security is highly dependent on insights from the presented lower bounds.

1 INTRODUCTION

Two of the foundational and highly related tasks in the world of distributed systems are consensus, and broadcast.

In a consensus protocol, all parties have some input and they must agree on an output. On the other hand, in a

broadcast protocol a designated sender attempts to send a specific message to all parties, and all parties must output the

same message sent by the sender. These tasks have been widely researched both in theoretic settings and in practical

settings. Ideally we would like to be able to design efficient protocols for solving these tasks in the presence of faults.

A foundational limit on the efficiency of such protocols has been shown in the work of Dolev and Reischuk in 1985

[7]. They prove that any deterministic protocol solving fault tolerant broadcast must send at least Ω(𝑛 · 𝑓 ) messages,

where 𝑛 is the number parties overall and 𝑓 is the number of omission-faulty parties, whose incoming and outgoing

messages can be dropped. Since broadcast and consensus reduce to each other [5], the lower bound also provides a

lower bound on consensus. A work by Abraham et al. [1] then generalized this work to probabilistic protocols, showing

that with 𝑓 Byzantine faults, a broadcast protocol with a
3

4
+ 𝜖 probability of success requires Ω(𝜖𝑛𝑓 ) messages to be

sent in expectation.

Recent years have seen growing interest in blockchain protocols and systems. In essence, these systems are designed

to solve the task of consensus [16, 19], or more precisely, state machine replication. Many of these systems actually

achieve consensus in a linear number of messages per agreed upon value. This fact seems to be in direct conflict with

the lower bounds of Dolev-Reischuk and Abraham et al., suggesting that at least quadratic (Ω(𝑛𝑓 )) messages are

required. One way we could try to make sense of this contradiction is by looking at the details of the lower bounds.

Dolev-Reischuk prove such lower bounds for protocols in which parties are required to output some value eventually,

even without hearing any message. In real-world systems however, it is entirely reasonable not to make a decision

unilaterally without hearing about it. In this work we think of that as outputting a special value ⊥, signifying not

knowing.

We explore this gap between theory and practice even further. First, we show that, perhaps surprisingly, similar

lower bounds exist even for the task of Crusader Broadcast, in which parties are allowed to remain undecided when the

sending is fualty. This is done by showing an attack on such protocol, executed by a strongly adaptive adversary that
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can simulate other parties. We then explore the connections between the attack style used in our lower bounds and the

eclipse style attacks in proof-of-work blockchain systems. We show that in practice, many of these attacks can in fact

be executed by a highly static adversary, not requiring strong adaptivity. In addition, one would think that an adversary

cannot simulate other parties in proof-of-work systems with virtually unbreakable cryptography. However, we show

that some of the eclipse attacks suggested in the literature exactly rely on the ability to simulate certain behaviour of

other nodes. This can be done by dropping all of their communication, or even worse, by filtering some information to

them and making them “simulate themselves”. Finally, we show that when the adversary is not adaptive and cannot

simulate, then in fact, subquadratic is possible. We provide a simple subquadratic protocol, which is secure as long as

the adversary is static and cannot simulate other parties, but is not secure if that is not the case.

In more detail, our work makes three contributions:

(1) From a theory and foundations point of view, we extend the Dolev-Reischuk type attacks (lower bound) by

showing in Theorem 1 that similar attacks holds for easier tasks. While Dolev-Reischuk shows that broadcast

(and consensus) needs Ω(𝑛𝑓 ) messages, we extend this to show that even the weaker Crusader Broadcast (and

Crusader Consensus) needs Ω(𝑛𝑓 ) messages, with 𝑓 being the number of Byzantine parties. In a Crusader

Broadcast protocol, if the sender is nonfaulty, all parties output the message it sent. However, if the sender is

faulty, there exists some value 𝑣 such that all nonfaulty parties either output 𝑣 or ⊥, making the task strictly

easier than broadcast. As most of these protocols are designed to be secure in the face of a constant fraction of

Byzantine parties, this implies that at least Ω(𝑛2) messages need to be sent in Crusader Broadcast protocols as

well. Similar to how Abraham et al. [1] extend the Dolev-Reischuk lower bound to the randomized setting given

a strongly adaptive adversary, we also extended our lower bound on Crusader Broadcast to the randomized

setting given a strongly adaptive adversary in Theorem 2. We generalize the lower bound even further to the

task of all-but𝑚 Crusader Broadcast. In this task all parties must output the same value 𝑣 or ⊥, except for𝑚
parties which are each allowed to output any 𝑣 ′ ∉ {𝑣,⊥}. Theorem 3 shows that an all-but (𝑓 𝑐 − 1) protocol
requires Ω(𝑛𝑓 1−𝑐 ) messages to be sent for any 𝑐 ∈ [0, 1].
The extension of Dolev-Reischuk from broadcast to Crusader Broadcast is non-trivial and requires more from

the adversary. In particular all the adversary needs to do in the classic Dolev-Reischuk is to omit messages. In

fact it has been observed that Dolev-Reischuk holds even for omission failures [3]. In contrast, for Crusader

Broadcast, the adversary needs to act in a Byzantine manner. Moreover, similar to the classic lower bound of

Fischer, Lynch, and Merritt [10], for our lower bounds to hold, the adversary needs to be able to simulate a

non-trivial number of non-faulty parties.

(2) Our second contribution is making the conceptual connection between the classic Dolev-Reischuk type attacks

on protocols with 𝑜 (𝑛𝑓 ) messages and the practical eclipse type attacks on blockchain systems.

Concretely we show that eclipse type attacks can be viewed as attacks on specific Crusader Broadcast protocols

that use 𝑜 (𝑛𝑓 ) messages. We discuss the similarities between isolating parties in real-world eclipse attacks

and in the lower bounds presented in this paper. We then discuss how performing a double spend attack, a

51% percent attack, and selfish mining attacks are specific cases of the attacks presented in our lower bounds.

Note that attacks that require an adaptive adversary, as formulated in our lower bounds, are extremely hard

to execute in the real world. Such attacks would require an adversary to to corrupt parties on the fly, using

information it sees throughout the run to choose which parties to corrupt. A strongly adaptive attack is even

harder to execute, requiring an adversary to intercept messages before they are delivered, corrupt the sending
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parties, and replace the messages with different ones. Unfortunately, many of the real-world eclipse attacks

could be executed even by a highly static adversary which preemptively influences the communication network.

This suggests that some blockchain systems did not force the adversary to be “as adaptive” as it needs to be in

order to execute the strongest Dolev-Reischuk style attacks.

(3) Building on the two previous contributions, we suggest a new and more principled method of defending against

eclipse attacks. Instead of patching each eclipse attack as they appear, we suggest that in practice, for 𝑜 (𝑛2)
type protocols to be safe they should be built in a way that either (1) forces the adversary to be highly adaptive;

or (2) to actively simulate a large portion of the network, or both. Said differently, any suggested protocol with

𝑜 (𝑛2) messages should be built in such a way that it does not succumb to a Dolev-Reischuk type attack of a

highly static non-simulating adversary. For completeness, we show a specific 𝑜 (𝑛2) algorithm and prove that it

is secure against a static non-simulating adversary. This protocol is used as an example because it is simple

and straight forward to understand. It can be improved upon with techniques used in randomized broadcast

protocols.

2 COMMUNICATION AND ADVERSARY MODEL

In this work we consider a synchronous fully-connected network of 𝑛 parties. In a synchronous network, there is a

commonly known bound Δ on message delay. This means that if a party sends a message at time 𝑡 , it is guaranteed to

be delivered by time 𝑡 + Δ. The adversary can choose exactly how long each message is delayed within the range [0,Δ].
The lower bounds presented in this work deal with an even stronger synchrony assumption: lockstep communication.

In such a setting communication proceeds in rounds. Parties can send messages in the beginning of each round, which

are then delivered by the end of the round. Note that this actually limits the power of the adversary, seeing as it could

choose to allow lockstep communication, and thus strengthens the lower bound. For example, an adversary could

choose to make communication proceed in rounds by delivering all pending message at intervals of Δ time, i.e. at time

𝑖 · Δ for every 𝑖 ∈ N.
This work deals with two different types of Byzantine adversary: a static Byzantine adversary and a strongly adaptive

Byzantine adversary. In both cases, the adversary can corrupt up to 𝑓 parties, causing them to arbitrarily deviate from

the protocol. A static Byzantine adversary must choose which parties to corrupt in the beginning of the protocol. On

the other hand, a strongly adaptive adversary can choose which parties to corrupt at any given time. Furthermore, it

can even choose to corrupt parties after they send messages, but before they are delivered. If it chooses to do so, it can

delete those message and send different messages instead. Regardless of the type of adversary, in this work we assume

the adversary can simulate other parties if required.

3 DEFINITIONS

The Binary Crusader Broadcast task is very similar to the Binary Broadcast task, except parties are also allowed to

output ⊥ if the sender is faulty. Formally, such a protocol is defined as follows:

Definition 1. A Binary Crusader Broadcast protocol has a designated sender 𝑠 with some input 𝑥 ∈ {0, 1}. Every party

outputs some value 𝑦𝑖 ∈ {0, 1,⊥}. A protocol solving Binary Crusader Broadcast has the following properties:

• Validity. If the sender is nonfaulty, then every nonfaulty party outputs 𝑥 .

• Correctness. If two nonfaulty parties 𝑖 ≠ 𝑗 output 𝑦𝑖 , 𝑦 𝑗 ∈ {0, 1}, then 𝑦𝑖 = 𝑦 𝑗 .

• Termination. If all nonfaulty parties participate in the protocol, they all complete it.
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A weaker version of the Binary Crusader Broadcast task is the almost-everywhere Binary Crusader Broadcast

protocol, similar to the almost-everywhere agreement problem [8, 18]. Whereas in a regular Binary Crusader Broadcast

protocol all parties that don’t output ⊥ must output the same value even when the sender is faulty, in an almost-

everywhere Binary Crusader Broadcast protocol a small number of parties are allowed to output a different value when

the sender is faulty. In a Binary Crusader Broadcast protocol, this is equivalent to saying that either the number of

parties that output 0 or the number of parties that output 1 must be small. A protocol solving Binary Crusader protocol

allowing𝑚 parties to disagree is called an all-but𝑚 Binary Crusader protocol, and is defined as follows:

Definition 2. An all-but𝑚 Binary Crusader Broadcast protocol has a designated sender 𝑠 with some input 𝑥 ∈ {0, 1}.
Every party outputs some value in 𝑦𝑖 ∈ {0, 1,⊥}. A protocol solving all-but𝑚 Binary Crusader Broadcast has the following

properties:

• Validity. If the sender is nonfaulty, then every nonfaulty party outputs 𝑥 .

• Correctness. Either at most𝑚 nonfaulty parties output 0 or at most𝑚 nonfaulty parties output 1.

• Termination. If all nonfaulty parties participate in the protocol, they all complete it.

A protocol is said to be deterministic if all nonfaulty parties’ actions are chosen as a deterministic function of their

input and the messages they receive, and probabilistic otherwise. A protocol is said to be 𝑝-correct if for any adversary

all of its properties hold with probability 𝑝 or greater.

3.1 Relationship to Crusader Consensus

The notion of Crusader Broadcast is highly related to that of Crusader Consensus. We define the task of Crusader

Consensus as follows:

Definition 3. In a Binary Crusader Consensus protocol, every party 𝑖 has an input 𝑥𝑖 ∈ {0, 1}. Every party outputs

some value 𝑦𝑖 ∈ {0, 1,⊥}. A protocol solving Binary Crusader Consensus has the following properties:

• Validity. If all nonfaulty parties have the same input 𝑥 , then they all output 𝑥 .

• Correctness. If two nonfaulty parties 𝑖 ≠ 𝑗 output 𝑦𝑖 , 𝑦 𝑗 ∈ {0, 1}, then 𝑦𝑖 = 𝑦 𝑗 .

• Termination. If all nonfaulty parties participate in the protocol, they all complete it.

These tasks reduce to each other in the same way regular consensus and broadcast reduce to each other when

𝑛 ≥ 2𝑓 + 1 with 𝑓 Byzantine parties [5]. In short, assume we have a Crusader Broadcast protocol. In order to achieve

Crusader Consensus, every party broadcasts its input 𝑥𝑖 and waits to complete all broadcasts. After completing all 𝑛

broadcasts, if there exists some value 𝑦 which was received in at least 𝑛 − 𝑓 broadcasts, output 𝑦. Otherwise output ⊥.
If all nonfaulty parties have the same input 𝑥 , then from the Validity property they will receive that value in at least the

𝑛 − 𝑓 broadcasts with nonfaulty senders and output it. On the other hand, if some nonfaulty party outputs a value

𝑦 ≠ ⊥, then it received it in at least 𝑛 − 𝑓 broadcasts. From the Correctness property, every other party either outputs 𝑦

or ⊥ in those broadcasts, and thus can output some 𝑦′ such that 𝑦′ ∉ {𝑦,⊥} only in the 𝑓 remaining broadcasts. We

know that 𝑛 ≥ 2𝑓 + 1, and thus 𝑓 ≤ 𝑛 − (𝑓 + 1) < 𝑛 − 𝑓 , which means that it won’t output 𝑦′ ∉ {𝑦,⊥}, as required.
In the other direction, assume that there exists a Crusader Consensus protocol. In order to implement broadcast, the

sender sends its input to all parties. Each party that doesn’t receive a value within Δ time chooses a default value, e.g.

0. They then all participate in the Crusader Consensus protocol with their received value as input, and output their

output from the Crusader Consensus protocol. If the sender is nonfaulty with the input 𝑥 , then all nonfaulty parties will

receive that value in Δ time. They then all participate the Crusader Consensus protocol with the input 𝑥 , and therefore
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from the Validity property output 𝑥 as well. In addition, if two nonfaulty parties output 𝑦,𝑦′ ∈ {0, 1}, then from the

Correctness property 𝑦 = 𝑦′, as required.

4 LOWER BOUNDS

This section provides several communication lower bounds on protocols solving Binary Crusader Broadcast. The lower

bounds use ideas from the Dolev-Reischuk lower bound [7], and from the subsequent work of Abraham et al. [1].

All of the following lower bounds are stated as lower bounds on the number of messages sent, as done in previous

works. However, the lower bounds actually only use the number of messages as a bound on the number edges in the

communication graph. That is, if fewer than𝑚 messages are sent in the network, then there are fewer than𝑚 pairs

of parties that communicate with each other. These lower bounds cannot be avoided by increasing the number of

messages without increasing the number of edges in the communication graph of the protocol. This means that the

lower bounds might be more accurately stated in terms of edges in the communication graph instead of messages sent.

The first lower bound uses the fact that few messages are sent in order to isolate a single party 𝑖 and cause it to

communicate only with faulty parties. The faulty parties then simulate a run with the input 1 for party 𝑖 when a

nonfaulty sender has the input 0, causing it to output 1. The faulty parties also make sure that the rest of the network

doesn’t notice that 𝑖 was isolated by simulating its messages in a run with the sender’s input being 0 and having the

faulty parties respond accordingly when communicating with other parties. Note that in order for the theorem to hold,

the content of the messages actually can be probabilistic, as long as parties always communicate with the same parties

throughout the protocol. All of the following bounds also include an upper bound on the number of faulty parties. This

is done in order to make sure that the required number of nonfaulty parties remain in order to reach a contradiction.

Clearly, if the adversary can actually corrupt a larger number of parties, it can choose not to do so and achieve the

same lower bounds, slightly adjusting the exact number of messages. In all cases however, 𝑓 is allowed to be a constant

fraction of 𝑛.

Theorem 1. Let there be a deterministic protocol solving Binary Crusader Broadcast in lockstep synchrony. If the protocol

is resilient to 𝑓 static Byzantine corruptions, then there must be at least one run of the protocol in which at least 1

4
(𝑛 − 1) 𝑓

messages are sent for 𝑛 ≥ 𝑓 + 2.

Proof. Assume by way of contradiction that fewer than
1

4
(𝑛 − 1) 𝑓 messages are sent overall throughout any run of

the protocol. Let𝑊0 be a run in which the adversary does not corrupt any party and the sender has input 0. Similarly, let

𝑊1 be a run in which the adversary does not corrupt any party and the sender has input 1. From the Validity property

of the protocol all parties output 0 in𝑊0 and 1 in𝑊1. By assumption, the total number of messages sent in either run is

less than
1

4
(𝑛 − 1) 𝑓 , and thus the total number of messages in both runs is less than

1

2
(𝑛 − 1) 𝑓 . Now assume by way of

contradiction that at least 𝑛 − 1 parties send or receive at least 𝑓 messages in total in both runs. When summing over

the messages sent or received by all parties, each message is counted twice: once when it is sent and once when it is

received. Therefore, the total number of messages sent in both𝑊0 and𝑊1 is at least
1

2
(𝑛 − 1) 𝑓 , reaching a contradiction

to the stated above. This means that at least 2 parties send or receive no more than 𝑓 messages in total in both runs. Let

𝑖 be one of those parties such that 𝑖 is not the sender 𝑠 . Let 𝑃0, 𝑃1 be the sets of parties with which 𝑖 communicated in

𝑊0 and𝑊1 respectively. By the stated above, |𝑃0 ∪ 𝑃1 | ≤ 𝑓 .

Now observe the run𝑊ℎ𝑦𝑏𝑟𝑖𝑑 in which 𝑠 has the input 0 and the adversary acts according to the following strategy:

the adversary corrupts all parties in 𝑃0 ∪ 𝑃1, all of those parties communicate with all parties that aren’t 𝑖 as nonfaulty

parties would in the protocol, and communicate with 𝑖 as nonfaulty parties would if 𝑠 had the input 1. More precisely,
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parties in 𝑃0 ∪ 𝑃1 simulate all of 𝑖’s messages internally when communicating with all parties other than 𝑖 and act as if

they received those messages, but don’t send resulting messages to 𝑖 . On the other hand, when communicating with

𝑖 they simulate all of the messages from all other parties with a nonfaulty 𝑠 having the input 1 and act accordingly,

but only send resulting messages to party 𝑖 . Note that both in𝑊0 and in𝑊1, all parties not in 𝑃0 ∪ 𝑃1 ∪ {𝑖} don’t
communicate directly with party 𝑖 . All nonfaulty parties see communication that is identical to the one in𝑊0 and since

they are not in 𝑃0, they don’t send any messages to 𝑖 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 as well. Similarly, 𝑖 sees communication that is identical

to the one in𝑊1 and thus doesn’t send any messages to parties other than those in 𝑃1 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . Therefore the view

of all parties not in 𝑃0 ∪ 𝑃1 ∪ {𝑖} is identical to their view in𝑊0, and thus as stated above, they all output 0. On the

other hand, 𝑖’s view is identical to its view in𝑊1, and thus it outputs 1. Note that 𝑛 ≥ 𝑓 + 2, so there are at least two
nonfaulty parties. Party 𝑖 and all parties not in 𝑃0 ∪ 𝑃1 ∪ {1} are nonfaulty, so this is a violation of the Correctness

property of the protocol, reaching a contradiction and completing the proof. □

The second lower bound uses ideas from [1] and generalizes them to the task of probabilistic Crusader Broadcast.

The first part of the lower bound shows that if no more than
𝜖
4
𝑓 2 messages are sent in expectation in the protocol, then

there is at least one non-sender party that communicates with a small number of parties with probability 𝜖 . Using this

insight, an adversary can isolate that party and perform a similar attack to the one described in the previous theorem.

The last part of the theorem shows that the probability that if the original protocol is purported to be ( 2
3
+ 𝜖)-correct,

then the isolated party and the rest of the nonfaulty parties output different values with at least
1

3
probability, reaching

a contradiction.

Theorem 2. Let there be a probabilistic ( 2
3
+𝜖)-correct protocol solving Binary Crusader Broadcast in lockstep synchrony

for some 𝜖 ∈
(
0, 1

3

]
. If the protocol is resilient to 𝑓 strongly adaptive Byzantine corruptions, then the expected number of

messages sent in the protocol is at least 𝜖
4
(𝑛 − 1) 𝑓 for 𝑛 ≥ 𝑓 + 2.

Proof. Assume that is not the case. This means that there exists a ( 2
3
+ 𝜖)-correct Binary Crusader Broadcast

protocol with expected message complexity smaller than
𝜖
4
(𝑛 − 1) 𝑓 . Similarly to the previous theorem, we will define

𝑊0 and𝑊1 as runs in which the adversary does not corrupt any party and the sender has inputs 0 and 1 respectively.

In both of these worlds, the probability that all parties terminate and output the sender’s input must be at least
2

3
+ 𝜖 .

Define 𝑀0 and 𝑀1 to be random variables indicating the number of messages sent by nonfaulty parties in𝑊0 and

𝑊1 respectively. In addition, define 𝑀 = 𝑀0 + 𝑀1 to be the number of messages sent in both runs. By assumption,

E[𝑀] = E[𝑀0] + E[𝑀1] < 𝜖
2
(𝑛 − 1) 𝑓 . For every 𝑖 ∈ [𝑛], let 𝑋𝑖 be a random variable indicating the total number of

messages sent or received by party 𝑖 in total both in𝑊0 and in𝑊1. Assume by way of contradiction that for at least

𝑛 − 1 parties 𝑖 ∈ [𝑛], E[𝑋𝑖 ] > 𝜖 𝑓 . First note that𝑀 = 1

2

∑𝑛
𝑖=1 𝑋𝑖 because when summing over all the messages that each

party sent and received, we count every message twice. Therefore, E[𝑀] = 1

2

∑𝑛
𝑖=1 E[𝑋𝑖 ] >

𝜖
2
(𝑛 − 1) 𝑓 , in contradiction.

Therefore, there exist at least two parties 𝑖, 𝑗 ∈ [𝑛] for which E[𝑋𝑖 ],E[𝑋 𝑗 ] ≤ 𝜖 𝑓 . Let 𝑖 be a non-sender party for which

E[𝑋𝑖 ] ≤ 𝜖 𝑓 . From the Markov inequality, Pr[𝑋𝑖 ≥ 𝑓 ] ≤ E[𝑋𝑖 ]
𝑓
≤ 𝜖 𝑓

𝑓
= 𝜖 .

We will now define an adversary’s attack in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . The sender 𝑠 has the input 0. Whenever a party 𝑗 sends a

message to party 𝑖 , the adversary corrupts 𝑗 and erases the message. In addition, whenever 𝑖 sends a message to party

𝑗 , the adversary corrupts 𝑗 . In parallel, the adversary simulates party 𝑖’s responses in𝑊0, given all of the messages it

was sent. If party 𝑖 ever sends a message to party 𝑗 in that simulation in a given round, the adversary corrupts party

𝑗 , erases its outgoing messages for that round, and makes it act as a nonfaulty party would if it received all of the

messages it already received and the messages sent by 𝑖 in the simulated run. Finally, the adversary simulates all of the
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communication between all parties in𝑊1 given the messages sent by 𝑖 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . This is done by internally running

all parties in each round of the protocol except 𝑖 , and using 𝑖’s messages in each round. Whenever a party 𝑗 sends 𝑖 a

message in the simulated run of𝑊1, the adversary corrupts it in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 and sends that message to 𝑖 . If at any point the

adversary is required to corrupt more than 𝑓 parties, it aborts. Before analyzing the probability that the attack succeeds,

we will define several random variables. Let 𝐴0 be the event that all nonfaulty parties except 𝑖 output 0 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . Let

𝐴1 be the event that 𝑖 outputs 1 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . Similarly, let 𝐵0 be the event that all nonfaulty parties except 𝑖 output 0 in

𝑊0, and let 𝐵1 be the event that 𝑖 outputs 1 in𝑊1. Note that the definitions of 𝐴0, 𝐵0 allows 𝑖 to output 0 as long as all

other nonfaulty parties output 0. Define 𝐺 to be the event that no more than 𝑓 parties communicate with 𝑖 in total in

𝑊0 and𝑊1 combined. Finally, define 𝐺ℎ𝑦𝑏𝑟𝑖𝑑 to be the event that the adversary does not abort in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 .

Our goal is to show that Pr[𝐴0 ∩𝐴1] > 1

3
− 𝜖 . This contradicts the fact that the protocol is ( 2

3
+ 𝜖)-correct, because

with more than
1

3
− 𝜖 probability, all honest parties except for 𝑖 output 0, and 𝑖 outputs 1. By assumption 𝑛 ≥ 𝑓 + 2,

so there actually are at least two nonfaulty parties. Before doing so, note that as long as the adversary isn’t required

to corrupt more than 𝑓 parties, the view of all nonfaulty parties except 𝑖 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 is identical to the view they

would have in𝑊0, given that no more than 𝑓 parties communicate with 𝑖 in both𝑊0 and𝑊1. Similarly, as long as

that event doesn’t happen, 𝑖’s view is identical to the view it would have in𝑊1, given that no more than 𝑓 parties

communicate with 𝑖 in both𝑊0 and𝑊1. Therefore, we know that Pr[𝐺] = Pr[𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ], Pr[𝐴0 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] = Pr[𝐵0 |𝐺]
and Pr[𝐴1 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] = Pr[𝐵1 |𝐺]. We are now ready to analyze Pr[𝐴0 ∩𝐴1]:

Pr[𝐴0 ∩𝐴1] = Pr[𝐴0] + Pr[𝐴1] − Pr[𝐴0 ∪𝐴1]

≥ Pr[𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ]
(
Pr[𝐴0 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] + Pr[𝐴1 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ]

)
− 1

= Pr[𝐺]
(
Pr[𝐵0 |𝐺] + Pr[𝐵1 |𝐺]

)
− 1

= Pr[𝐵0 ∧𝐺] + Pr[𝐵1 ∧𝐺] − 1

= Pr[𝐵0] − Pr[𝐵0 ∧𝐺] + Pr[𝐵1] − Pr[𝐵1 ∧𝐺] − 1

≥ Pr[𝐵0] + Pr[𝐵1] − 2 Pr[𝐺] − 1

= Pr[𝐵0] + Pr[𝐵1] − 2 Pr[𝑋𝑖 > 𝑓 ] − 1

≥ ( 2
3

+ 𝜖) + ( 2
3

+ 𝜖) − 2𝜖 − 1 = 1

3

>
1

3

− 𝜖 ,

reaching a contradiction, and completing the proof. □

The main insight of the previous theorem was that if fewer than Ω(𝑛𝑓 ) messages are sent in a protocol in expectation,

then there is a good probability that at least one party communicates with 𝑓 parties or fewer, and can be isolated. The

next lower bound generalizes this insight and shows that if for some 𝑐 ∈ [0, 1] fewer than Ω(𝑛𝑓 1−𝑐 ) messages are sent

in expectation, there exist 𝑓 𝑐 parties that can be isolated. From this point, the proof is extremely similar to the one of

the previous theorem. Note that the exact same techniques can be used in the deterministic case with a static adversary,

but the theorem is omitted due to its similarity. It is also important to note that similar theorems with different choices

instead of 𝑓 𝑐 − 1 can easily be formulated for more general results. This specific choice was made as it simplifies some

calculations, and it is enough to show that as the number of messages approaches a 𝑂 (𝜖𝑛), the number of isolated

parties approaches Ω(𝑓 ).
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Theorem 3. Let there be a probabilistic ( 2
3
+ 𝜖)-correct protocol solving all-but (𝑓 𝑐 − 1) Binary Crusader Broadcast

in lockstep synchrony for some 𝑐 ∈ [0, 1] and 𝜖 ∈
(
0, 1

3

]
. If the protocol is resilient to 𝑓 < 𝑛

3
strongly adaptive Byzantine

corruptions, then the expected number of messages sent in the protocol is at least 𝜖
8
(𝑛 − 1) 𝑓 1−𝑐 for 𝑛 ≥ 3𝑓 1.

Proof. Assume that is not the case. This means that there exists a ( 2
3
+ 𝜖)-correct all-but (𝑓 𝑐 − 1) Binary Crusader

Broadcast protocol with expected message complexity smaller than
𝜖
8
(𝑛 − 1) 𝑓 1−𝑐 . Similarly to the previous theorem,

we will define𝑊0 and𝑊1 as runs in which the adversary does not corrupt any party and the sender has inputs 0

and 1 respectively. In both of these worlds, the probability that all parties terminate and output the sender’s input

must be at least
2

3
+ 𝜖 . Define𝑀0 and𝑀1 to be random variables indicating the number of messages sent by nonfaulty

parties in 𝑊0 and 𝑊1 respectively. In addition, define 𝑀 = 𝑀0 + 𝑀1 to be the number of messages sent in both

runs. By assumption, E[𝑀] = E[𝑀0] + E[𝑀1] < 𝜖
4
(𝑛 − 1) 𝑓 1−𝑐 . Similarly to before, the adversary will seek a set

of ⌊𝑓 𝑐 ⌋ > 𝑓 𝑐 − 1 parties that don’t contain the sender and don’t send many messages. In order to do that, assume

without loss of generality that the sender is party 𝑛. Let𝑚 = ⌊𝑓 𝑐 ⌋, ℓ = ⌈𝑛−1𝑚 ⌉, and define ℓ sets of𝑚 parties as follows:

∀𝑖 ∈ {0, . . . , ℓ − 2} 𝑃𝑖 = {𝑖 ·𝑚 + 1, . . . , (𝑖 + 1)𝑚} and 𝑃ℓ−1 = {𝑛 −𝑚, . . . , 𝑛 − 1}. We would like to guarantee that the

sender is not in any of the sets 𝑃𝑖 , and that every other party appears in one of the sets, but in no more than two of the

sets. First note that the sender is not in 𝑃ℓ−1 by definition. The largest number in any of the other 𝑃𝑖 sets is (ℓ − 2 + 1)𝑚.

Using the definition of ℓ , (ℓ − 2 + 1)𝑚 = (⌈𝑛−1𝑚 ⌉ − 1)𝑚 ≤
𝑛−1
𝑚 ·𝑚 < 𝑛, and thus the sender (party 𝑛) is not in any of

those sets. Secondly, note that all of the sets up to 𝑃ℓ−2 are disjoint. This means that every party appears at most once

in one of the sets 𝑃0, . . . , 𝑃ℓ−2 and at most once more in 𝑃ℓ−1. Finally, the sets 𝑃0, . . . , 𝑃ℓ−2 exactly contain the parties

1, . . . , (ℓ − 2 + 1)𝑚. Note that (ℓ − 2 + 1)𝑚 = (⌈𝑛−1𝑚 ⌉ − 1)𝑚 ≥ (
𝑛−1
𝑚 − 1)𝑚 = 𝑛 − 1 −𝑚, and thus 𝑃ℓ−1 contains all of the

rest of the parties, except for the sender.

As defined in the previous lower bound, for every 𝑖 ∈ [𝑛], let 𝑋𝑖 be a random variable indicating the total number

of messages sent or received by party 𝑖 in total both in𝑊0 and in𝑊1. In addition, for every 𝑖 ∈ {0, . . . , ℓ − 1} let 𝑌𝑖
be the total number of messages sent or received by all parties 𝑗 ∈ 𝑃𝑖 in total both in𝑊0 and in𝑊1. It is always the

case that

∑
𝑗 ∈𝑃𝑖 𝑋 𝑗 ≥ 𝑌𝑖 because

∑
𝑗 ∈𝑃𝑖 𝑋 𝑗 counts all messages sent or received by parties in 𝑃𝑖 , and might even count

some of those messages twice. Assume by way of contradiction that for every 𝑖 ∈ {0, . . . , ℓ − 1}, E[𝑌𝑖 ] > 𝜖 𝑓 . First note

that𝑀 = 1

2

∑𝑛
𝑖=1 𝑋𝑖 because when summing over all the messages that each party sent and received, we count every

message twice. In addition, seeing as each party 𝑗 appears in at most two of the sets 𝑃𝑖 , 2
∑𝑛
𝑖=1 𝑋𝑖 ≥

∑ℓ−1
𝑖=0

∑
𝑗 ∈𝑃𝑖 𝑋 𝑗 .

1
It is actually enough that 𝑛 ≥ 𝑓 + 2𝑓 𝑐 , since all we need is 𝑓 faulty parties and 2 sets of at least 𝑓 𝑐 nonfaulty parties to disagree on the output.
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Combining these observations:

E[𝑀] = E[ 1
2

𝑛∑︁
𝑖=1

𝑋𝑖 ]

=
1

4

E[2
𝑛∑︁
𝑖=1

𝑋𝑖 ]

≥ 1

4

E[
ℓ−1∑︁
𝑖=0

∑︁
𝑗 ∈𝑃𝑖

𝑋 𝑗 ]

≥ 1

4

ℓ−1∑︁
𝑖=0

E[𝑌𝑖 ]

≥ 1

4

ℓ𝜖 𝑓

=
1

4

⌈𝑛 − 1
𝑚
⌉𝜖 𝑓

≥ 1

4

· 𝑛 − 1⌊𝑓 𝑐 ⌋ 𝜖 𝑓

≥ 1

4

𝑛 − 1
𝑓 𝑐

𝜖 𝑓 =
𝜖

4

(𝑛 − 1) 𝑓 1−𝑐

in contradiction. This means that there exists at least one 𝑘 ∈ {0, . . . , ℓ − 1} for which E[𝑌𝑘 ] ≤ 𝜖 𝑓 . Let 𝑃𝑘 be such a set.

From the Markov inequality, Pr[𝑌𝑘 ≥ 𝑓 ] ≤ E[𝑌𝑘 ]
𝑓
≤ 𝜖 𝑓

𝑓
= 𝜖 . In other words, the probability that in total all parties in

𝑃𝑘 send and receive more than 𝑓 messages in𝑊0 and in𝑊1 combined is no greater than 𝜖 .

We will now define an adversary’s attack in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 , similar to the attack in Theorem 2. The sender 𝑠 has the input 0.

Whenever a party 𝑗 ∉ 𝑃𝑘 sends a message to a party 𝑖 ∈ 𝑃𝑘 , the adversary corrupts 𝑗 and erases the message. In addition,

whenever a party 𝑖 ∈ 𝑃𝑘 sends a message to a party 𝑗 ∉ 𝑃𝑘 , the adversary corrupts 𝑗 . In parallel, the adversary simulates

all of the messages parties 𝑖 ∈ 𝑃𝑘 send in𝑊0, given all of the messages they were sent by parties not in 𝑃𝑘 . If any party

𝑖 ∈ 𝑃𝑘 ever sends a message to party 𝑗 ∉ 𝑃𝑘 in that simulation in a given round, the adversary corrupts party 𝑗 , erases

its outgoing messages for that round, and makes it act as a nonfaulty party would if it received all of the messages it

already received and the messages sent by all parties in 𝑃𝑘 in the simulated run. Finally, the adversary simulates all of

the communication between all parties in𝑊1 given the messages sent by all parties 𝑖 ∈ 𝑃𝑘 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . This is done by

internally running all parties in each round of the protocol except for parties in 𝑃𝑘 , and using the messages sent by

parties in 𝑃𝑘 in each round. Whenever a party 𝑗 ∉ 𝑃𝑘 sends some party 𝑖 ∈ 𝑃𝑘 a message in the simulated run of𝑊1, the

adversary corrupts 𝑗 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 and sends that message to 𝑖 . If at any point the adversary is required to corrupt more

than 𝑓 parties, it aborts. The adversary never corrupts any party 𝑖 ∈ 𝑃𝑘 , so all parties in 𝑃𝑘 remain nonfaulty. Before

analyzing the probability that the attack succeeds, we will define several random variables. Let 𝐴0 be the event that all

nonfaulty parties except parties in 𝑃𝑘 output 0 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 . Let 𝐴1 be the event that all parties in 𝑃𝑘 output 1 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 .

Similarly, let 𝐵0 be the event that all nonfaulty parties except parties in 𝑃𝑘 output 0 in𝑊0, and let 𝐵1 be the event that

all parties in 𝑃𝑘 output 1 in𝑊1. Note that the definitions of 𝐴0, 𝐵0 allow all parties in 𝑃𝑘 to output 0, as long as all other

nonfaulty parties do so as well. Define𝐺 to be the event that no more than 𝑓 parties communicate with parties in 𝑃𝑘 in

total in𝑊0 and𝑊1 combined. Finally, define 𝐺ℎ𝑦𝑏𝑟𝑖𝑑 to be the event that the adversary does not abort in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 .

Our goal is to show that Pr[𝐴0 ∩ 𝐴1] > 1

3
− 𝜖 . Note that in this case, all parties in 𝑃𝑘 output 1 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 and all

other nonfaulty parties output 0. There are 𝑓 𝑐 parties in 𝑃𝑘 and at least 𝑛 − 𝑓 − 𝑓 𝑐 ≥ 𝑛 − 2𝑓 ≥ 𝑓 ≥ 𝑓 𝑐 nonfaulty
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parties not in 𝑃𝑘 . Therefore, with probability greater than ( 1
3
− 𝜖) at least 𝑓 𝑐 nonfaulty parties output 0 and at least

𝑓 𝑐 nonfaulty parties output 1, contradicting the fact that the protocol is an ( 2
3
+ 𝜖)-correct all-but (𝑓 𝑐 − 1) Binary

Crusader Broadcast protocol. Before doing so, note that as long as the adversary isn’t required to corrupt more than 𝑓

parties, the view of all nonfaulty parties except parties in 𝑃𝑘 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 is identical to the view they would have in𝑊0,

given that no more than 𝑓 parties communicate with parties in 𝑃𝑘 in both𝑊0 and𝑊1. Similarly, as long as that event

doesn’t happen, the view of all parties in 𝑃𝑘 in𝑊ℎ𝑦𝑏𝑟𝑖𝑑 is identical to the view they would have in𝑊1, given that no

more than 𝑓 parties communicate with parties in 𝑃𝑘 in both𝑊0 and𝑊1. Therefore, we know that Pr[𝐺] = Pr[𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ],
Pr[𝐴0 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] = Pr[𝐵0 |𝐺] and Pr[𝐴1 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] = Pr[𝐵1 |𝐺]. We are now ready to analyze Pr[𝐴0 ∩𝐴1]:

Pr[𝐴0 ∩𝐴1] = Pr[𝐴0] + Pr[𝐴1] − Pr[𝐴0 ∪𝐴1]

≥ Pr[𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ]
(
Pr[𝐴0 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ] + Pr[𝐴1 |𝐺ℎ𝑦𝑏𝑟𝑖𝑑 ]

)
− 1

= Pr[𝐺]
(
Pr[𝐵0 |𝐺] + Pr[𝐵1 |𝐺]

)
− 1

= Pr[𝐵0 ∧𝐺] + Pr[𝐵1 ∧𝐺] − 1

= Pr[𝐵0] − Pr[𝐵0 ∧𝐺] + Pr[𝐵1] − Pr[𝐵1 ∧𝐺] − 1

≥ Pr[𝐵0] + Pr[𝐵1] − 2 Pr[𝐺] − 1

= Pr[𝐵0] + Pr[𝐵1] − 2 Pr[𝑌𝑘 > 𝑓 ] − 1

≥ ( 2
3

+ 𝜖) + ( 2
3

+ 𝜖) − 2𝜖 − 1 = 1

3

>
1

3

− 𝜖 ,

reaching a contradiction, and completing the proof. □

5 ECLIPSE ATTACKS IN BLOCKCHAIN SYSTEMS

Recent years have seen wide interest in blockchain systems, both in practice and in theory. As such, the security of such

systems has been widely researched as well. Much of the research in this field focused on the security of the protocols

assuming that once sent, blocks propagate quickly throughout the network, for example in [4, 9, 14, 16]. Other parts of

the literature focus on researching the underlying peer-to-peer communication network in many real-world blockchain

systems and the ways it might affect the security of the system as a whole. Some of these works dealt with “eclipse

attacks” [11, 15], in which an adversary isolates a specific party (or group of parties), and filters its communication in

advantageous ways.

While important and foundational to the body of blockcahin research, these works have often ignored the connections

between current security threats and classic results known in the world of distributed systems. One such important

result is that of Dolev and Reischuk [7] (and its extensions by Abraham et al. [1]). These works provide communication

lower bounds for implementing broadcast algorithms, which are known to reduce to consensus algorithms as well [5].

The lower bounds show that at least a quadratic number of messages needs to be sent in order to achieve a broadcast

protocol. The proofs uses the fact that in the classic definition of broadcast protocols, parties are always required to

eventually output some value. This is true even if they don’t hear anything throughout the whole run (silent run). This

means that it is enough to isolate a party and drop all communication to it in order to break safety. The isolated party

has to choose some value to output in a manner independent from what the rest of the network sees. Choosing the

party to isolate and setting up the rest of the network in a specific manner then causes different nonfaulty parties to

output different values.
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The lower bounds of Dolev and Reischuk, and its extensions and all of the lower bounds shown in Section 4 actually

construct an adversary that attacks the protocol, assuming not enough messages are sent. We suggest viewing the known

eclipse attacks as specific instances of the attacks described in the Dolev-Reischuk paper and in related lower bounds.

This allows to more systematically consider this type of attack and possibly try to find general solutions as opposed to

patching the specific attack found in a specific paper. As suggested in [11, 15], after isolating a node (or several nodes),

the adversary can perform several types of attacks. Some of these attacks are direct attacks on the consensus protocol,

e.g. a double-spend attack. More precisely, nodes briefly locally confirm different conflicting transactions, each thinking

that the transaction they output took place. This is entirely analogous to outputting different values in the attacks

shown in this work, in which parties output different non-⊥ values from the crusader broadcast protocol. Even more

extreme, [11, 15] suggest using the eclipse attack to then perform a 51% attack, allowing an adversary to repeatedly

perform such double-spend attacks, as well as other attacks. It is important to note that eclipsing communication can

also allow an adversary to perform additional attacks that aren’t directly attacks on the agreement between parties. For

example, as suggested in [11], an attacker could eclipse a portion of the network in order to perform selfish mining

attacks [4, 9]. In the suggested attack, the adversary would filter communication to and from the eclipsed nodes, and

use the nodes’ mining power to its advantage. This attack is also strikingly similar to the one described in Theorem 3,

which suggests that these lower bounds could be of interest also when not directly attacking the agreement of the

protocol, but rather notions like liveness or fairness of a consensus protocol.

Unfortunately, the classic Dolev-Reischuk attack has a slightly annoying feature: it relies on silence. It assumes that

parties that don’t hear anything must output some value and cannot remain undecided. This is of course not the case in

some real world systems. For example, in cryptocurrency systems, a node wouldn’t suddenly decide that a transaction

took place without seeing a block including that transaction. For that reason, in this paper we chose to focus on the

task of Crusader Broadcast instead. In Crusader Broadcast, parties are allowed to output a special value ⊥, that is not a
possible input to the system. This can be thought of as choosing to remain undecided, or not to agree on a specific value.

One important caveat is that a natural desired property in such a protocol is that a value broadcasted by a nonfaulty

sender should be received and agreed upon by all parties eventually. The lower bounds of Theorems 1 and 2 show that

the classic result of Dolev and Reischuk can be generalized to this task as well both for deterministic and probabilistic

protocols. It is important to note that a big part of the difference between the attacks described in Theorems 1 and 2

stems from the probabilistic nature of the communication graph, and not from difference in the content of messages.

The proof of Theorem 1 would not change in a probabilistic protocol for a 1-correct Binary Crusader Broadcast protocol

with a static communication graph. In addition, Theorem 3 generalizes the result even further and shows that as the

number of messages decreases, or more precisely the number of edges in the communication graph decreases, a larger

number of nonfaulty parties can be isolated and made to output a different value. Note that as the number of edges in

the communication graph tends towards 𝑂 (𝜖 · 𝑛), the number of isolated parties tends towards Ω(𝑓 ). This allows a
large adversary to partition the nonfaulty parties into two large groups that disagree on the output of the protocol.

5.1 Limitations of Real-World Adversaries

The attacks descibed in Section 4 assume extremely strong adversaries. First of all, in all lower bounds, the adversary

is assumed to be able to simulate other parties. This assumption does not hold in real-world systems. For example,

adversaries have limited compute-power. This means that they generally cannot arbitrarily simulate other parties in

proof-of-work systems. Furthermore, in systems with a public key infrastructure, adversaries cannot forge other parties’

signatures or break other cryptographic primitives during the simulation of the protocol. The adversary in Theorems 2
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and 3 is also assumed to be strongly adaptive. In the real world, adversaries generally cannot corrupt parties at will, let

alone retroactively delete their messages and replace them. Given all of these limitations, one could reasonably ask: are

the attacks described in these lower bounds even applicable to the real world?

Surprisingly, the answer seems to be that they are applicable to the real world, as evidenced by previous works

on eclipse attacks. At first we will tackle the need for strong adaptivity. As shown in [11, 15], in both Bitcoin’s and

Ethereum’s peer-to-peer communication protocols an adversary can monopolize a node’s connections. When nodes

restart, they initiate outgoing connections from tables storing addresses of known peers. In order to monopolize a

node’s connections, an adversary fills its tables in advance with the addresses of nodes controlled by the adversary, and

then causes it to restart. After restarting, the node will choose nodes from those tables, and potentially only connect to

the adversary’s nodes. In addition, nodes may receive incoming connections from peers. After causing a node to restart,

the adversary also sends incoming connection requests and monopolizes all of the incoming connections. These attacks

are performed in advance, allowing the adversary to essentially structure the communication graph in an advantageous

manner. When relating these attacks to the setting of the lower bounds above, the adversary does not need to be

adaptive, let alone strongly adaptive. Even worse, the lower bound in Theorem 1 only shows that there is some party

that can be isolated. In that attack the adversary has to have some special knowledge of that specific party and tailor its

attack to it. On the other hand, in the real-world attacks described in [11, 15], the adversary can choose whichever node

it wants and isolate it in a static manner, without the need to find out which node can be isolated.

The second problematic assumption on the adversary’s power is the ability to simulate. In the lower bounds above,

that requirement stems from the fact that we do not know what the parties may do in the protocol. For example, parties

may use cryptography in order to guarantee that a large portion of the network saw some value (see [2, 20] for such

examples). In order to fully simulate the behaviour of the nonfaulty parties, an adversary would have to be able to

break some of the cryptographic assumptions made in the design of the protocol. On the other hand, in many current

blockchain systems simulating the actions required in the consensus “only” entails mining blocks with the correct

information. Of course an adversary is limited by its own compute-power, so it can’t actually fully simulate the rest of

the network for the isolated parties. However, some of the uses for eclipse attacks have suggested ways to mitigate

this issue. Note that the following attacks are well-known, and we mention them as examples of ways the adversary

can simulate parts of the network as required by our lower bounds in practice. For example, eclipsing a fraction of

the network could allows the adversary to effectively increase the fraction of compute power it has in the rest of the

network. In this sense, the only thing the adversary needs to be able to “simulate” is some nodes going offline. As

suggested in [11], this can be done gradually in order not to be detected. Even worse, the adversary could conceivably

utilize honest nodes to simulate the protocol for it. This can be done by simply letting only parts of the network see

a given block. The adversary could then use the fact that nodes would continue to mine on top of it as a means of

simulating the work required, and then showing the mined blocks to the rest of the network when needed.

In short, at first glance the adversary described in the lower bounds of Section 4 seems too powerful to be of interest

when discussing real-world systems. However, some of the biggest real-world systems used today actually don’t require

it to be so powerful in order to levy attacks. This suggests possible ways to defend against such an adversary. The

first obvious way is simply raising the number of links in the system, as suggested in other works. In addition to

this making intuitive sense, from a theoretic standpoint the conditions of the lower bounds shown above would stop

holding. As suggested by [11, 15], measures could be taken in order to make it harder to fill the outgoing ink tables with

the adversary’s nodes’ addresses. In that case, Theorem 1 suggests that if the number of edges in the communication

graph isn’t large enough, a large enough adversary should be able to isolate some party. One could think of ways to
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require the adversary to actually be strongly adaptive in order to eclipse communications. This could take form in more

extreme countermeasures, such as having a dynamically changing communication graph with outgoing edges being

chosen randomly. In that case, an adversary seeking to isolate a node would have to adaptively corrupt all random

incoming and outgoing links to it, which would be prohibitively expensive.

Alternatively, one could make it harder to simulate parts of the protocol. For example, this could be done by requiring

more nodes to sign blocks, or by making more use of cryptography in the communication layer itself. Note that simply

requiring a number of signatures would not be enough because the adversary could generate many signing keys and

provide the required signatures. As is standard in preventing such Sybil attacks, the signatures should represent a

portion of the compute-power in the network instead. Such defenses should be very carefully implemented seeing

as nodes could then refuse to sign certain blocks, or simply go offline, impeding the progress of the honest network.

Previous works, such as ByzCoin [13] have suggested ways to implement protocols that rely on a large enough number

of parties signing blocks. However, these protocols are still susceptible to network partitioning attacks.

6 SUBQUADRATIC CRUSADER BROADCAST PROTOCOL

In this section, we start by presenting a quadratic crusader broadcast protocol for ease of explanation. A second protocol

is then constructed, using ideas from the first one. In the second protocol, an expensive all-to-all round is replaced by

a gossip procedure [17], lowering the overall communication cost in a standard way. Note that crucially the gossip

protocol is actually random, in the sense that parties choose peers randomly in every round. This gossip protocol is

secure and efficient against a static adversary. However, in order to be secure against an adaptive adversary, it has

to send a larger number of messages. In addition, we assume the existence of a public key infrastructure (PKI), used

in a signature scheme. An adversary being able to simulate messages from the sender needs to be able to break the

signature scheme, leading to it breaking the validity of the protocol. In other words, in some sense this protocol is a

sort of “minimal example” showing that it is easy to force the adversary to either be adaptive or to be able to simulate

other parties in order to break subquadratic crusader broadcast protocols.

The simplified 𝑂 (𝑛2) protocol, presented in Algorithm 1, proceeds in two rounds. In the first round, the sender 𝑠

sends a signed message with its input to all parties. Parties then inform each other of the message they’ve seen. Finally,

any party that received a message𝑚 from the sender without seeing any conflicting message outputs𝑚. If either of

these conditions doesn’t hold, that party outputs ⊥ instead. This protocol is captured in Algorithm 1. In general for

a protocol 𝑋 , denote 𝑋𝑖 to be the code for party 𝑖 executing protocol 𝑋 . We assume the existence of a PKI such that

every party 𝑖 knows a signing key sk𝑖 and all parties know the associated public key pk𝑖 . The PKI is used in a signature

scheme consisting of the signing algorithm Sign and verification algorithm Verify. We analyze the signature scheme as

perfectly secure, meaning that only 𝑖 can produce signatures which verify with respect to pk𝑖 . A similar analysis can be

done allowing for a negligible probability of error (meaning that the resulting protocol is 1 − negl(_) correct, with _

being the security parameter).

The protocol consists of a single multicast requiring 𝑂 (𝑛) messages, and a single all-to-all round requiring 𝑂 (𝑛2)
messages. A proof of the protocol follows:

Theorem 4. The CrusaderBroadcast protocol is a Crusader Broadcast protocol resilient to any number of Byzantine

corruptions 𝑓 in a synchronous system.

Proof. Each property is proven individually. Denote 𝑣𝑎𝑙𝑖 to be the variable 𝑣𝑎𝑙 stored by party 𝑖 .
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Algorithm 1 CrusaderBroadcast𝑖

1: 𝑣𝑎𝑙 ← ⊥
2: if 𝑖 is the sender 𝑠 with input 𝑥 then
3: 𝜎 ← Sign(sk𝑖 , 𝑥)
4: send the message ⟨“sender”, 𝑥, 𝜎⟩ to all parties

5: wait Δ time

6: if a ⟨“sender”,𝑚, 𝜎⟩ message was received from 𝑠 while waiting such that Verify(pk𝑠 ,𝑚, 𝜎) = 1 then
7: 𝑣𝑎𝑙 ←𝑚

8: send ⟨“forward”,𝑚, 𝜎⟩ to all parties

9: wait Δ time

10: if a ⟨“forward”,𝑚′, 𝜎 ′⟩ message was received while waiting such that𝑚′ ≠ 𝑣𝑎𝑙 and Verify(pk𝑠 ,𝑚′, 𝜎 ′) = 1 then
11: 𝑣𝑎𝑙 ← ⊥
12: output val and terminate

Validity. Assume the sender 𝑠 is nonfaulty with input 𝑥 . In the beginning of the protocol it produces a signature 𝜎

for x, and sends the message ⟨“sender”, 𝑥, 𝜎⟩ to all parties. Every nonfaulty party receives that message up to Δ time

after that, and updates 𝑣𝑎𝑙 to 𝑥 . The sender didn’t sign any other value𝑚′ ≠ 𝑥 , so no nonfaulty party will receive a

⟨“forward”,𝑚′, 𝜎 ′⟩ message with such that𝑚′ ≠ 𝑣𝑎𝑙 and Verify(pk𝑖 ,𝑚′, 𝜎 ′) = 1. Therefore no nonfaulty party reverts

𝑣𝑎𝑙 back to ⊥. Finally, after 2Δ time, all nonfaulty parties output 𝑣𝑎𝑙 = 𝑥 and terminate.

Correctness. Assume by way of contradiction two nonfaulty parties 𝑖 ≠ 𝑗 output two non-⊥ values 𝑚𝑖 ,𝑚 𝑗

respectively such that𝑚𝑖 ≠ 𝑚 𝑗 . Those parties output the variable 𝑣𝑎𝑙 at the end of the protocol, after 2Δ time. By

assumption, they output non-⊥ values, so 𝑣𝑎𝑙𝑖 ≠ ⊥ and 𝑣𝑎𝑙 𝑗 ≠ ⊥. Party 𝑖 only updates 𝑣𝑎𝑙𝑖 to 𝑚𝑖 ≠ ⊥ at time

Δ in line 7, if it received a ⟨“sender”,𝑚𝑖 , 𝜎𝑖 ⟩ message from 𝑠 such that Verify(pk𝑠 ,𝑚𝑖 , 𝜎𝑖 ) = 1. It then sends the

message ⟨“forward”,𝑚𝑖 , 𝜎𝑖 ⟩ to all parties at time Δ. Party 𝑗 receives that message by time 2Δ, sees that𝑚𝑖 ≠𝑚 𝑗 and

Verify(pk𝑠 ,𝑚𝑖 , 𝜎𝑖 ) = 1 and updates 𝑣𝑎𝑙 𝑗 to ⊥. Finally, 𝑗 outputs 𝑣𝑎𝑙 𝑗 = ⊥, contradicting the fact that it output some

value𝑚 𝑗 ≠ ⊥.
Termination. All parties wait for 2Δ overall and terminate. □

Building on the CrusaderBroadcast protocol, we can replace the expensive all-to-all round with a more efficient

randomized procedure. The protocol is parameterized by two constants 𝑐, 𝑑 . In the protocol, parties gossip for𝑂 (𝑐 log𝑛)
rounds and communicate with𝑂 (𝑑 log𝑛) parties in expectation in each round. These values can be adjusted to increase

the probability of success of the protocol. This results in the protocol described in Algorithm 2.

Note that the proof of Theorem 4 could be used in its entirety to prove the security of Algorithm 2 with one exception:

the proof of the Correctness property relies on the fact that if a nonfaulty party 𝑖 updates its 𝑣𝑎𝑙 variable to𝑚, then every

nonfaulty party will see that value before terminating. This means that in order to prove the security of Algorithm 2,

we need to show that if a nonfaulty party updates 𝑣𝑎𝑙 to𝑚, then every nonfaulty party will add𝑚 to 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 before

terminating with all but a small probability 𝑝 . Using the union bound, this will mean that with probability 1 − 𝑛𝑝 , every
nonfaulty party will add 𝑣𝑎𝑙𝑖 to the set 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 for every nonfaulty 𝑖 before terminating. From this point on, the rest of

the proof is identical, yielding a (1 − 𝑛𝑝)-correct Crusader Broadcast protocol.
In the following discussion, we will use well-known results [6, 12, 17] regarding gossip protocols. In short, assume

some party has a value 𝑣 to spread in a network of nonfaulty parties. We know that if every party that knows the value

𝑣 sends it to one random party every round for 𝑐 log𝑛 rounds, then all parties know the value 𝑣 by round 𝑐 log𝑛 with
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Algorithm 2 CrusaderGossip𝑖 (𝑐, 𝑑)
1: 𝑣𝑎𝑙 ← ⊥, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ← ∅
2: if 𝑖 is the sender 𝑠 with input 𝑥 then
3: 𝜎 ← Sign(sk𝑖 , 𝑥)
4: send the message ⟨“sender”, 𝑥, 𝜎⟩ to all parties

5: wait Δ time

6: if a ⟨“sender”,𝑚, 𝜎⟩ message was received from 𝑠 while waiting such that Verify(pk𝑠 ,𝑚, 𝜎) = 1 then
7: 𝑣𝑎𝑙 ←𝑚, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ← 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ∪ {(𝑚,𝜎)}
8: upon receiving a ⟨“forward”, 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑⟩ message, do
9: if ∀(𝑚′, 𝜎 ′) ∈ 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 Verify(pk𝑠 ,𝑚′, 𝜎 ′) = 1 then
10: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ← 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ∪ 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑

11: for 𝑟 ← 1, . . . , 𝑐 log𝑛 do
12: for 𝑗 ∈ [𝑛] do
13: send ⟨“forward”, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑⟩ to 𝑗 with probability

2𝑑 ln𝑛
𝑛

14: wait Δ time

15: if ∃(𝑚′, 𝜎 ′) ∈ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠.𝑡 . 𝑚′ ≠ 𝑣𝑎𝑙 then
16: 𝑣𝑎𝑙 ← ⊥
17: output val and terminate

probability 1− 1

𝑛Ω (𝑐 ) or greater. Using this fact, we will then only observe the communication between nonfaulty parties

and prove the following lemma:

Lemma 1. Let the number of faulty parties be 𝑓 < 𝑛
2
. Assume some nonfaulty party 𝑖 updates 𝑣𝑎𝑙 to𝑚 ≠ ⊥ and adds

(𝑚,𝜎) to its 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 set in line 7. The probability that there exists some nonfaulty party 𝑗 that doesn’t have (𝑚,𝜎) in its

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑗 set by the time it terminates is 𝑂 ( 1

𝑝 (𝑛) ) for some polynomial 𝑝 (𝑛).

Proof. First, we will bound the probability that there exists some nonfaulty party that doesn’t send at least one

message to a nonfaulty party in every round. Let ℎ = 𝑛 − 𝑓 be the number of nonfaulty parties. By assumption 𝑓 < 𝑛
2
,

so ℎ > 𝑛
2
. Observing a single round, the probability that a single nonfaulty party doesn’t send a message to at least one

nonfaulty party in a single round can be bounded by:(
1 − 2𝑑 ln𝑛

𝑛

)ℎ
≤

(
1 − 2𝑑 ln𝑛

𝑛

) 𝑛
2

≤ 𝑒−𝑑 ln𝑛 = 𝑛−𝑑

Using the union bound, the probability that there exists a nonfaulty party that doesn’t send a message to another

nonfaulty in a given round is no greater than 𝑛−𝑑+1. Using the union bound again, the probability that there exists a

round in which there exists a nonfaulty party that doesn’t send at least one message to at least one nonfaulty party is

no greater than
𝑐 log𝑛

𝑛𝑑−1
. Note that a nonfaulty party sends messages to each party with the same probability, meaning

that the message is sent to at least one uniformly sampled nonfaulty party.

Nonfaulty parties only add pairs (𝑚′, 𝜎 ′) to their 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 sets after checking that Verify(pk𝑠 ,𝑚′, 𝜎 ′) = 1. Therefore,

if a nonfaulty party receives a ⟨“forward”, 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑⟩ message from a nonfaulty party, it will add all values from

𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 to its 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 set. Now, observe only the communication between nonfaulty parties that contains the pair

(𝑚,𝜎) described in the lemma. Assume that in every round every nonfaulty party sends at least one message to some

uniformly sampled nonfaulty party. Note that sending more than one such message cannot hurt the spread of the
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information. In this case, as described above, every nonfaulty party will be informed of the pair (𝑚,𝜎) by round 𝑐 log𝑛

and add it to its 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 set with probability 1 − 1

𝑛Ω (𝑐 ) or greater. Combining the two failure probabilities, we find that

the probability that some nonfaulty party doesn’t have the pair (𝑚,𝜎) in its received set by the time it terminates is no

greater than
𝑐 log𝑛

𝑛𝑑−1
+ 1

𝑛Ω (𝑐 ) , as required. □

Using the previous lemma and the union bound, the probability that there exists a nonfaulty party that updates 𝑣𝑎𝑙 to

𝑚 ≠ ⊥ such that not all nonfaulty parties are informed of𝑚 by the end of the protocol is no greater than
𝑐 log𝑛

𝑛𝑑−2
+ 1

𝑛Ω (𝑐 )−1 .

Setting 𝑐 such that the Ω(𝑐) term is at least 2, and 𝑑 to be 4, we get that the probability of failure is 𝑂 ( 1𝑛 ). In other

words, for every 𝜖 > 0, there exists a large enough 𝑛 such that the CrusaderGossip protocol is a (1−𝜖)-correct Crusader
Broadcast protocol, resilient to 𝑓 static Byzantine corruptions if the adversary cannot simulate the nonfaulty parties. In

order to get a failure probability of 𝑂 ( 1

𝑛𝑘
), one could choose 𝑐 = Θ(𝑘) and 𝑑 = 𝑘 + 3 instead.

The protocol consists of one multicast round, requiring 𝑂 (𝑛) messages to be sent, and 𝑂 (𝑐 log𝑛) gossip rounds.

In each such round, every nonfaulty party 𝑖 sends a message to party 𝑗 with probability
2𝑑 ln𝑛

𝑛 , yielding an expected

2𝑑 ln𝑛 messages per round per nonfaulty party. Overall, this results in𝑂 (𝑐𝑑 ·𝑛 log2 𝑛) messages being sent by nonfaulty

parties in expectation. Choosing the 𝑐, 𝑑 as the constants described above yields the message complexity of 𝑂 (𝑛 log2 𝑛)
(and for 𝑛 = 2𝑓 + 1, a complexity of 𝑜 (𝑛𝑓 )).
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