Triangulating Rebound Attack on AES-like Hashing

Xiaoyang Dong ${ }^{1,3(\boxtimes)}$, Jian Guo ${ }^{2(\boxtimes)}$, Shun $\mathrm{Li}^{2,4(\boxtimes)}$, and Phuong Pham ${ }^{2(\boxtimes)}$
${ }^{1}$ Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
xiaoyangdong@tsinghua.edu.cn
${ }^{2}$ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
guojian@ntu.edu.sg, shun.li@ntu.edu.sg, pham0079@e.ntu.edu.sg
${ }^{3}$ National Financial Cryptography Research Center, Beijing, China
${ }^{4}$ Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The rebound attack was introduced by Mendel et al. at FSE 2009 to fulfill a heavy middle round of a differential path for free, utilizing the degree of freedom from states. The inbound phase was extended to 2 rounds by the Super-Sbox technique invented by Lamberger et al. at ASIACRYPT 2009 and Gilbert and Peyrin at FSE 2010. In ASIACRYPT 2010, Sasaki et al. further reduced the requirement of memory by introducing the non-full-active Super-Sbox. In this paper, we further develop this line of research by introducing Super-Inbound, which is able to connect multiple 1-round or 2-round (non-full-active) Super-Sbox inbound phases by utilizing fully the degrees of freedom from both states and key, yet without the use of large memory. This essentially extends the inbound phase by up to 3 rounds. We applied this technique to find classic or quantum collisions on several AES-like hash functions, and improved the attacked round number by 1 to 5 in targets including AES-128 and SKINNY hashing modes, Saturnin-Hash, and Grøstl-512. To demonstrate the correctness of our attacks, the semi-free-start collision on 6round AES-128-MMO/MP with estimated time complexity 2^{24} in classical setting was implemented and an example pair was found instantly on a standard PC.

Keywords: Triangulating Rebound • Quantum Computation • Collision Attacks • Rebound Attacks • Triangulation Algorithm • Super-Inbound

1 Introduction

Cryptographic hash function compresses a binary string of arbitrary length into a short fixed-length digest. It is one of the most fundamental cryptographic primitives that act as the underlying building blocks in various advanced cryptographic protocols, including digital signatures, authenticated encryption, secure multiparty computation and post-quantum public-key cryptography, etc.

A cryptographic hash function must fulfill three basic security properties: collision resistance, preimage resistance, and second-preimage resistance. Due to the breakthroughs in collision attacks [75,76,73] on the hash functions MD5 and SHA -1 , the academic communities advanced new hashing designs, including the best-known SHA-3 [10]. AES-like hashing, inspired by the elegant yet secure and efficient design strategies of Advanced Encryption Standard (AES) [21], is another new hashing design. It adopts block ciphers or permutations with similar features to AES as the underlying building blocks, such as Whirlpool [6], Grøstl [32], AES-MMO, Grindahl [51], ECHO [8], Haraka v2 [52], etc. These hash functions are commonly known as AES-like hashing.

Rebound Attacks [61], introduced by Mendel, Rechberger, Schläffer, and Thomsen at FSE 2009, is one of the most effective tools on the cryptanalysis of AES-like hash functions. It can be applied to both block cipher based and permutation based constructions. The idea of the rebound attack is to divide an attack into two phases, an inbound and an outbound phase. In the inbound phase, degrees of freedom are used to realize part of the differential characteristic deterministically. The remainder of the characteristic in the outbound phase is fulfilled in a probabilistic manner.

In order to penetrate more rounds, at ASIACRYPT 2009, Lamberger et al. [55] proposed the multiple inbound phases and connected them by leveraging the degrees of freedom of the key. Later, Gilbert and Peyrin [33] and Lamberger et al. [55] further extended the inbound phase by treating two consecutive AES-like rounds as the Super-Sbox [20]. At ASIACRYPT 2010, Sasaki et al. [69] reduced the memory cost by exploiting the differential property of non-full-active Super-Sboxes. At CRYPTO 2011, Naya-Plasencia [65] improved the rebound attack by introducing advanced algorithms for merging large lists. At CRYPTO 2012, Dinur et al. [26] further reduced the memory cost of the rebound attack by proposing the dissection technique. The rebound attack has since become a basic cryptanalysis tool to evaluate hash functions against collision attacks or distinguishing attacks [59,44,70,45,62,25,50,30,58]. Interestingly, the idea of the rebound attack was in turn used to improve the Demirci-Selçuk MITM attacks [24,31] and biclique attack [11].

Quantum Cryptanalysis attracts more and more attention due to Shor's quantum attacks [72] breaking the security of public-key crypto-systems RSA and ECC. For symmetric ciphers, the community has also witnessed many important quantum cryptanalysis results recently, such as quantum distinguisher on 3-round Feistel [53], key-recovery attack on Even-Mansour construction [54], keyrecovery attacks or forgeries on MACs and authenticated encryption schemes [46], and more [56,13]. However, most attacks need to query the online quantum oracles with superposition states, which is believed to be an impractical projection for quantum physics. Thereafter, the quantum attacks $[12,14,47,19,34,66,37]$ only using offline quantum computers are considered to be of more practical relevance.

Since hash functions can be implemented in offline quantum circuit, the attackers can freely make offline quantum superposition queries. There are several quantum generic (multi-target) preimage attacks [2,19] and multicollision attacks $[41,40,57]$. For generic quantum collision attacks, three quantum generic algorithms exist under different assumptions of the availability of quantum and classical memory resources:

- Condition 1: Exponentially large quantum random access memory (qRAM) is available. Brassard, Høyer, and Tapp [15] introduced the generic quantum collision attack (named as BHT algorithm) with $2^{n / 3}$ quantum time complexity and $2^{n / 3}$ qRAM.
- Condition 2: Neither exponentially large qRAM nor classic RAM is available. The quantum version of parallel rho's algorithm [74,9,38] achieves a timespace trade off of time $\frac{2^{n / 2}}{S}$ with S computers.
- Condition 3: Exponentially large qRAM is not available but large classical RAM is. Chailloux, Naya-Plasencia, and Schrottenloher [19] introduced the CNS algorithm to find collision in time $2^{2 n / 5}$ with classical RAM of size $2^{n / 5}$.
At EUROCRYPT 2020, Hosoyamada and Sasaki [38] introduced the first quantum dedicated collision attacks by converting the classical rebound attacks into quantum rebound attacks. This showed that, under their respective bounds of generic algorithms, quantum attacks are able to penetrate more rounds than classical attacks. At ASIACRYPT 2020, Dong et al. [28] reduced the requirement of qRAM in the quantum rebound attack by exploiting non-full-active SuperSbox technique [69]. At CRYPTO 2021, Hosoyamada and Sasaki [39] introduced the quantum collision attacks on reduced SHA-2. At ASIACRYPT 2021, Dong et al. [29] studied the quantum free-start collision attacks.

1.1 Our Contributions

In order to extend the attacked round by the rebound attack, Lamberger et al. [55] connected two local inbound phases by consuming the degree of freedom in the key. Later, Super-Sbox [55,33] and non-full-active Super-Sbox [69] were proposed. In this paper, we further generalize this idea by bridging multiple inbound phases with available degrees of freedom both from the key and the internal data path, to build the Super-Inbound. With the help of Khovratovich et al.'s [49] triangulation algorithm, we identify truncated differential trails for AES hashing modes with sound configurations on the positions of several local inbound parts, as well as relatively low complexity to bridge the multiple local inbound parts. We name this method as triangulating rebound attack. With this advanced method in hand, we achieve the following results:

AES-MMO. The MMO-mode (shown in Figure 2) instantiated with AES [21] is a popular AES-like hashing design, which is standardized by Zigbee [1] and also suggested by ISO [42]. Many advanced cryptographic protocols, e.g., multi-party computation [36,48], adopt AES-MMO due to its high efficiency when implemented with AES-IN. The best classical collision attacks are for 6 rounds [33,55]. At EUROCRYPT 2020, Hosoyamda and Sasaki [38] introduced two 7-round quantum
collision attacks better than BHT algorithm [15] or parallel rho's algorithm [74]. At ASIACRYPT 2020, Dong et al. [28] introduced 7-round quantum collison better than CNS algorithm [19].

We extend the previous 2 -round inbound phase into 3 - or 4 -round SuperInbound for AES-128. Thereby, we build the first 7 -round semi-free-start collision attack on AES-128-MMO/MP in classical setting, while the previous classical collision attack reaches 6 rounds $[33,55]$. In addition, a 6 -round practical instance of semi-free-start collision and an 8 -round quantum semi-free-start collision attack are given. Moreover, the first 8-round quantum collision attack on AES-128-MMO/MP is given, with time complexity better than parallel rho's algorithm [74,9,38].

Saturnin-Hash. It is the hash function among the post-quantum lightweight cipher family Saturnin designed by Canteaut et al. [17]. It is one of the round 2 candidates of the NIST lightweight cryptography competition. The designers of Saturnin introduced the 10 -round related-key recovery attack on the Saturnin block cipher [16]. At ASIACRYPT 2021, Dong et al. [29] proposed several quantum and classical collision attacks on Saturnin-Hash and its compression function, including a 7 -round semi-free-start quantum collision attack and an 8 -round free-start quantum collision attack.

We extend the previous 2 -round inbound phase to the 4 -round Super-Inbound. Finally, the time complexity of the 8-round free-start quantum collision attack is significantly reduce from $2^{122.5}$ to $2^{89.65}$. Further, the first 10 -round free-start quantum collision attack is derived with two more rounds than Dong et al.'s result [29].

SKINNY-128-384-MMO. As SKINNY [7] is running for ISO standard, it is natural to build lightweight hash with the ISO suggested hashing mode MMO. At ASIACRYPT 2021, Dong et al. [29] introduced the 16 -round quantum free-start collision attack on SKINNY-128-384-MMO. In this paper, by exploring the large degrees of freedom of the key schedule for SKINNY-128-384-MMO, we extend the previous 2 -round inbound phase into a 5 -round Super-Inbound, and finally achieve 5 more rounds on the free-start quantum collision attack. In addition, a 19-round classical free start collision attack is given, which is even better than previous quantum attack.

Grøstl. Gr ϕ stl is one of the five finalists of SHA-3. In this paper, by bridging the differences with degrees of freedom from the states, we propose the memoryless method to solve the 3 -round non-full-active inbound part for Grøstl-512. Thereafter, the improved semi-free-start collisions with one more round than before for both Grøstl-512 and its predecessor are derived. The results are summarized in Table 1.

1.2 Novelty and Comparison with Previous Works

Both rebound attack [61] and triangulation algorithm [49] are existing techniques. However, combining these two techniques together as one cryptanalysis
tool has not appeared before. When using these two techniques together, we can exploit many more degrees of freedom (DoF) from the key schedule algorithm, which greatly extends the inbound part of our rebound attack. Therefore, the number of possible truncated differential trails for the rebound attack increases significantly than before. In previous rebound attacks on AES-MMO (including $[38,28]$), the authors place a 2-round full/non-full active Super-Sbox in the inbound phase, and extend it forwards and backwards in the outbound phases to find a useful rebound-attack trail. However, in our attack, we have to use 3-/4round truncated differentials as the multiple inbound phases, which have many more choices than a 2-round Super-Sbox before. Moreover, not all those 3-/4round inbound can be solved efficiently by triangulation algorithm (actually, it is time consuming to compute a compatible pair for most 3 -/4-round truncated differentials), and we have to pick a good trail from many choices.

Therefore, as another contribution, we introduce a heuristic automatic tool (CP-based) to identify good trails for our rebound attacks, which succeeds to find the 7 -/8-round collision attacks on AES-MMO and gains 1-round improvement.

We note that the multiple inbound phases technique was already introduced and used many times before, see for instance the rebound attacks on the LANE [58], ECHO [43], JH [67], etc. The additional degrees of freedom were in these cases given by bigger states. The truncated differences affect both the number of rounds covered by the inbound phases, and the differential probabilities of the outbound phases. In the previous works, the choices of these truncated differences are made in ad hoc ways. In our paper, we introduce triangulation algorithm into the rebound attack, as well as the automated search of configuration for the rebound attack with multiple inbound phases, which is the main novelty comparing to previous ad hoc ways.

2 Preliminaries

2.1 AES-like Hashing

AES [21] operates on a 4×4 column-major order array of bytes, whose round function contains four major transformations as illustrated in Figure 1: SubBytes (SB), ShiftRows (SR), MixColumns (MC), and AddRoundKey (AK). By making changes to the numbers of rows and columns, the sizes of the cells, the order of the transformations, one can produce new designs named as AES-like round functions. Usually, the MixColumns is to multiply an MDS matrix to each column of the state. An exception is SKINNY [7], which uses the non-MDS matrix.

By using (keyed) permutations with AES-like round functions in certain hashing modes (like MD, MMO, and MP hashing modes [63, Section 9.4] in Figure 2), compression functions (denoted as CF) can be constructed. Plugging such compression functions into the Merkle-Damgård construction [64,22], one arrives at AESlike hashings. Concrete designs include AES-128-MMO, AES-128-MP, Saturnin-Hash [17], Whirlpool [6] Grøstl [32].

Table 1: A summary of the results.

AES-128-MMO/MP							
Target	Attack	Rounds	Time	C-Mem	qRAM	Setting	Ref.
Hash	Collision	5/10	2^{56}	2^{4}	0	Classic	[61]
		6/10	2^{56}	2^{32}	0	Classic	[33,55]
		7/10	$2^{42.50}$	0	2^{48}	Quantum	[38]
		7/10	$2^{59.5}$	0	0	Quantum	[38]
		7/10	$2^{45.8}$	0	0	Quantum	[28]
		8/10	$2^{55.53}$	0	0	Quantum	Sect. 4.3
	Preimage	7/10	2^{125}	2^{8}	-		[68]
		7/10	2^{123}	2^{8}	-	Classic	[3]
		8/10	2^{125}	2^{8}	-		[4]
Compression function	Semi-free	6/10	2^{24}	-	-	Classic	Sect. 4.2
	Semi-free	7/10	2^{56}	2^{16}	-	Classic	Sect. 4.1
	Semi-free	8/10	2^{34}	-	-	Quantum	Sect. 4.2
	any	any	2^{64}	-	-	any	[74,38,9]
	any	any	$2^{42.7}$	-	$2^{42.7}$	Quantum	[15]
	any	any	$2^{51.2}$	$2^{25.6}$	-	Quantum	[19]
Saturnin-Hash							
Hash	Collision	5/16	2^{64}	2^{66}	0	Classic	[29]
		7/16	$2^{113.5}$	-	-	Quantum	[29]
	Preimage	7/16	2^{232}	2^{48}	-	Classic	[27]
Compression function	Free-start	6/16	2^{80}	2^{66}	-	Classic	[29]
	Semi-free	7/16	$2^{90.1}$	-	-	Quantum	[29]
	Semi-free	7/16	2^{86}	-	-	Quantum	Sect. D
	Free-start	8/16	$2^{122.5}$	-	-	Quantum	[29]
	Free-start	8/16	$2^{89.65}$	-	-	Quantum	Sect. 5.1
	Free-start	10/16	$2^{127.2}$	-	-	Quantum	Sect. 5.2
	any	any	2^{128}	-	8	any	[74,38,9]
	any	any	$2^{85.3}$	-	$2^{85.3}$	Quantum	[15]
	any	any	$2^{102.4}$	$2^{51.2}$	-	Quantum	[19]
Grøstl-512							
Compression function	Distinguisher	10/14	2^{392}	2^{64}	-	Classic	[44]
		11/14	2^{72}	2^{56}	-	Classic	[18]
	Semi-free	6/14	2^{180}	2^{64}	-	Classic	[71]
		7/14	2^{214}	-	-	Quantum	Sect. G
Compression function v0	Semi-free	7/14	2^{152}	2^{64}	-	Classic	[60]
		7/14	2^{152}	2^{56}	-	Classic	[69]
		8/14	2^{244}	-	-	Quantum	Sect. G
	any	any	2^{256}	-		any	[74,38,9]
	any	any	$2^{170.7}$	-	$2^{170.7}$	Quantum	[15]
	any	any	$2^{204.8}$	$2^{102.4}$	-	Quantum	[19]
SKINNY-128-384-MMO/MP							
Compression function	Free-start	16/56	$2^{59.8}$	-		Quantum	[29]
		19/56	$2^{51.2}$	-		Classic	Sect. 6.2
		21/56	$2^{46.2}$	-		Quantum	Sect. 6.1
	any	any	2^{64}	-		any	[74,38,9]
	any	any	$2^{42.7}$	-	$2^{42.7}$	Quantum	[15]
	any	any	$2^{51.2}$	$2^{25.6}$	-	Quantum	[19]

Fig. 1: The round function of AES

Fig. 2: Common Hashing Modes

2.2 The Rebound Attack

The rebound attack was first introduced by Mendel et al. in [61]. It consists of an inbound phase and an outbound phase as shown in Figure 3, where F is an internal block cipher or permutation which is split into three subparts, then $F=F_{f w} \circ F_{i n} \circ F_{b w}$.

- Inbound phase. In the inbound phase, the attackers efficiently fulfill the low probability part in the middle of the differential trail with a meet-in-the-middle technique. The degree of freedom is the number of matched pairs in the inbound phase, which will act as the starting point for the outbound phase.
- Outbound phase. In the outbound phase, the matched values of the inbound phase, i.e., starting points, are computed backward and forward through $F_{b w}$ and $F_{f w}$ to obtain a pair of values which satisfy the outbound differential trail in a bruteforce fashion.

Overall, the rebound attack is essentially a technique to efficiently generate a message pair fulfilling the inbound phase, which utilizes a truncated differential rather than a single differential characteristic. Suppose the probability of the outbound phase is p, then we have to prepare $1 / p$ starting points in the inbound phase to expect one pair conforming to the differential trail of the outbound phase. Hence, the degree of freedom should be larger than $1 / p$.

Fig. 3: The Rebound Attack

2.3 The Super-Sbox Technique

The Super-Sbox technique proposed by Gilbert and Peyrin [33] and Lamberger et al. [55] extends Mendel et al.'s [61] inbound part into 2 S-box layers by regarding them as four Super-Sboxes as shown in Figure 4 (a). In [69], Sasaki et al. further reduced the the memory complexity by considering non-full-active Super-Sboxes as shown in Figure 4 (b). In both the two techniques, AK acts as a constant addition operation and does not provide any degree of freedom.

Fig. 4: The Two-Round Differential

Super-Sbox Technique. For the j th Super-Sbox SSB_{j} and given input difference $\Delta x_{i}^{(j)}(j=0$ in Figure $4(\mathrm{a}))$, compute $\Delta y_{i+1}^{(j)}=\operatorname{SSB}_{j}\left(x \oplus \Delta x_{i}^{(j)}\right) \oplus \operatorname{SSB}_{j}(x)$ for $x \in \mathbb{F}^{32}$. Store the pair $\left(x, x \oplus \Delta x_{i}^{(j)}\right)$ in a table $\mathbb{L}^{(j)}\left[\Delta y_{i+1}^{(j)}\right]$. Given $\Delta y_{i+1}^{(j)}$, we find a pair conforming the two-round differential with $\left(\Delta x_{i}^{(j)}, \Delta y_{i+1}^{(j)}\right)$ by assessing $\mathbb{L}^{(j)}\left[\Delta y_{i+1}^{(j)}\right]$. The memory cost is about 2^{32}.

Non-full-active Super-Sbox. In Figure 4 (b), the Property 1 of MDS in MC is used. Look at $\Delta w_{i}=\operatorname{MC}\left(\Delta z_{i}\right)$, by guessing the differences of one active byte, we can determine other differences according to Property 1. Then, for a fixed input-output differences $\left(\Delta x_{i}^{(j)}, \Delta y_{i+1}^{(j)}\right)$ of SSB_{j}, we deduce all the input-output differences for the active cells of two S-box layers for each guess and then deduce their values by accessing the differential distribution table (DDT) of the S-box.

Property 1. Suppose MC is an $n \times n \operatorname{MDS}$ matrix and MC $\cdot(z[1], \ldots, z[n])^{T}=$ $(w[1], \ldots, w[n])^{T}$, the knowledge of any n out of $2 n$ bytes of (z, w) is necessary and sufficient to determine the rest. (z, w) here can be either value or difference.

2.4 Triangulation Algorithm

At CT-RSA 2009, Khovratovich, Biryukov, and Nikolić [49] introduced the triangulation algorithm tool, an efficient Gaussian-based-algorithm to solve system of bijective equations, to automatically detect a way to solve the nonlinear system. The algorithm models an AES-like block cipher as a system of key schedule and round function equations, and the state bytes and key bytes as variables. At first, the system is determined by n initial state bytes and k initial key bytes. Therefore, when m bytes are fixed, the algorithm will return $n+k-m$ "free variables" to form a basis of the system. The algorithm can output exactly the "free variables" when the system is deterministically solvable, and improve the
guessing and checking the "free variables" when the system is probabilistically solvable. The idea of triangulation algorithm is roughly described following.

1. Construct a system of equations whose variables are the bytes. The predefined values are fixed to constants.
2. All variables and equations are marked as non-processed.
3. Mark the variable which is involved in only one non-processed equation as processed. Also mark this equation as processed. If no such variable exist, exit.
4. Return to Step 3 if still have non-processed equations.
5. Return all non-processed variables as "free variables".

After the "free variables" are identified, we randomly assign values for them and deduce a solution for the whole nonlinear system. For details, please refer to [49].

2.5 Collision Attacks and Its Variants

Given a hash function H, a standard collision message pair $\left(m, m^{\prime}\right)$ satisfies $H(I V, m)=H\left(I V, m^{\prime}\right)$, where the initial vector $I V$ is a fixed inital value. A semi-free-start collision is to find a pair (u, m) and $\left(u, m^{\prime}\right)$, such that $H(u, m)=$ $H\left(u, m^{\prime}\right)(u \neq I V)$. A free-start collision is to find a pair (v, m) and $\left(v^{\prime}, m^{\prime}\right)$, so that $H(v, m)=H\left(v^{\prime}, m^{\prime}\right)\left(v \neq v^{\prime}\right)$. When the hash function H is built by iterating the compression function (CF) with Merkle-Damgård construction, we can similarly define the semi-free-start collision and free-start collision attack on the compression function. Taking the MMO and MP hashing modes in Figure 2 as examples, when considering the semi-free-start or free-start collision attack, the attackers can explore the degrees of freedom from the chaining value h_{i-1} through the key shedule algorithm, which may lead to better attacks such as [55,70]. We would like to emphasize the importance of semi-free-start and freestart collision attacks: The Merkle-Damgård security reduction assumes that any type of collision for the compression function should be intractable for the attacker, including semi-free-start and free-start collisions.

3 Triangulating Rebound Attack

3.1 Solving Non-Full-Active Super-Sbox by Key Bytes

In previous collision attacks, both Super-Sbox $[55,33]$ and non-full-active SuperSbox [69] techniques, the subkeys are prefixed in advance (as shown in Section 2.3). In other words, the degree of freedom of the subkeys was not be utilized. We observe that, by carefully choosing the values of subkeys, state pairs conforming the given differential can be obtained without additional computation only at a cost of memory for storing the differential distribution table (DDT). This observation enables utilization of the degrees of freedom from the corresponding subkeys and leads to collision attacks without the need of building large lists of compatible pairs for Super-Sboxes. Here we describe this new Super-Sbox technique through a concrete example in Figure 5.

Fig. 5: An example of Super-Sbox with degrees of freedom from the subkey
Given the pair of non-full difference of $\left(\Delta x_{i}, \Delta y_{i+1}\right)$ and zero difference in key of an Super-Sbox (marked as red for the corresponding column), we are to generate state pairs and corresponding subkey k_{i+1} conforming to that difference. First, we randomly assign a difference Δ compatible with $\Delta y_{i+1}[0]$ to $\Delta x_{i+1}[0]$ and asset to DDT to get an actual value for $x_{i+1}[0]$ conforming the difference $\left(\Delta, \Delta y_{i+1}[0]\right)$. Since there is no difference in the subkey k_{i+1}, the difference $\Delta w_{i}[0]$ is equal to Δ as well. We use a simple property of maximum distance separable (MDS) matrix to determine all the rest bytes of Δw_{i} and Δz_{i}.

With the knowledge of 4 bytes of Δz_{i} and $\Delta w_{i}\left(\Delta z_{i}[0]=\Delta w_{i}[1,3]=0\right.$ and $\Delta w_{i}[0]=\Delta$), all bytes of Δz_{i} and Δw_{i} are uniquely determined, and so for the entire differential characteristic ($\Delta x_{i}, \Delta z_{i}, \Delta w_{i}, \Delta x_{i+1}, \Delta y_{i+1}$) of the Super-Sbox. By looking up DDT, the byte values before and after the active Sboxes, e.g., $x_{i}[5,10,15], z_{i}[1,2,3], x_{i+1}[0,2]$ and $y_{i+1}[0,2]$, are determined as well. Next, we randomly assign a value to $k_{i+1}[0]$, then $w_{i}[0]$ can be calculated as $w_{i}[0]=x_{i+1}[0] \oplus k_{i+1}[0]$. Again, Property 1 allows to determine the remaining bytes $z_{i}[0]$ and $w_{i}[1,2,3]$ since 4 bytes $z_{i}[1,2,3]$ and $w_{i}[0]$ are known. Finally, the key byte $k_{i+1}[2]$ is determined as $k_{i+1}[2]=w_{i}[2] \oplus x_{i+1}[2]$. In summary, after randomly assigning (compatible) values to $\Delta x_{i+1}[0]$ and $k_{i+1}[0]$, all the values and differences of the active bytes in the state as well as the subkey bytes corresponding to the active state bytes positions of AK are determined, with time complexity 1 .

3.2 Connecting Multiple Inbound Phases by Key Bytes

In this section, we present a 3 -round inbound phase by extending the SuperSbox backward by one round. Since the Super-Sbox and the extended round are not solved in two inbound phases, this technique is also referred to as "multiple inbound phases". These phases are connected by free bytes of the corresponding subkeys, and so one has to ensure the value assignments to the subkeys from different rounds are not over-defined through the key schedule algorithm. This new technique is illustrated through an example of 3-round truncated differential trail depicted in Figure 6.

Fig. 6: An example of 3-round multiple inbound phases

Given the differences $\Delta x_{i-1}, \Delta x_{i}, \Delta y_{i+1}$ and zero difference in key, we are to generate state and key pairs conforming the differential path with low memory requirement by utilizing the degrees of freedom from subkeys k_{i} and k_{i+1}. First, applying the Super-Sbox technique presented above to the given Δx_{i} and Δy_{i+1}, both value and difference of $\Delta x_{i}[5,10,15]$ and value of $k_{i+1}[0,2]$ will be determined. Then, with fixed Δx_{i-1} and Δx_{i}, standard inbound phase of the original rebound attack can be applied, i.e., lookup DDT with input/output differences $\left(\Delta x_{i-1}, \mathrm{SR}^{-1}\left(\Delta z_{i-1}=\mathrm{MC}^{-1}\left(\Delta x_{i}\right)\right)\right)$, values of the last three columns of z_{i-1} and so w_{i-1} are determined. Hence, $\Delta k_{i}[5,10,15]$ can be calculated as $\Delta w_{i-1}[5,10,15] \oplus \Delta x_{i}[5,10,15]$. Note, there is no direct implication between any assignment of $k_{i}[5,10,15]$ and $k_{i+1}[0,2]$ through the AES key schedule. The whole process costs 17 DDT lookups and memory hosting the DDT lookup table.

3.3 The Triangulating Rebound Attack

Fig. 7: Super-Inbound: bridging multiple local inbound parts

Generally speaking, the development of the rebound attack can be viewed as a continuous process to find as many degrees of freedom (DoF) as possible, to either reduce the overall inbound solving complexity, or to extend for more rounds. As shown in Figure 7, the multiple local inbound parts form a SuperInbound. Given the input/output differences $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$ of the super inbound phase, bridging the multiple local inbound parts is to find the conforming pair for $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$, while the exact differentials and values of the internal rounds are up to attacker's control. Usually, $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$ are chosen from a truncated differential in the rebound attack. In summary, the source of DoF for the whole rebound attack can come from the choices of

S1 truncated differential of the internal rounds of the Super-Inbound,
S2 input/output differences and values of the active Sboxes of the state,
S3 values of the inactive Sboxes of the state,
S4 differences of key bytes,
S5 values of key bytes.
The differences and values of the active Sboxes of the state are listed together, as once differences are fixed, values can be derived from DDT, and vice versa. This is not the case for key bytes, as it is not necessarily for each of the key bytes to
pass through Sbox depending on the key schedule algorithm. Then the SuperSbox technique can be viewed as a way to connect two 1-round inbound parts by fully utilizing the DoF from S2, i.e., the output differences of first round and input differences of the second round. Our techniques presented in Section 3.1, 3.2 is from (S2,S5), (S2,S5), respectively. Under this generic view, connecting multiple inbound parts to form a Super-Inbound can be seen as a system of nonlinear equations, where all DoF serve as variables and DoF from subkeys are constrained by key schedule, and our goal is to find a procedure to solve this system, efficiently. There are two main considerations.
I. The system of nonlinear equations must have solutions. In other words, the system should not be over-defined. Hence, the number DoF should be larger than the number of equations.
II. The system must be solvable efficiently, which for most of the time can be translated into a procedure of consuming degrees of freedom by fixing certain variables involved, and the final complexity is determined by the number variables which can not be fixed and have to be brute-forced.

We adopt the triangulation algorithm [49] as shown in Section 2.4 to solve the nonlinear system and bridge the multiple inbound parts. The algorithm can output exactly the "free variables" when the system is deterministically solvable, and improve the guessing and checking the "free variables" when the system is probabilistically solvable. We name this method as triangulating rebound attack.

Heuristic Method to Determine a Trail. So far, we have not mentioned the use of DoF from S1 and S4 yet. While S4 determines whether difference is allowed in key hence resulting in semi-free-start or free-start collision for attacks against hash functions, S1 directly determines the system of nonlinear equations, hence the number of rounds covered by the Super-Inbound and complexity as well. For collision attack on n-bit hash, the overall steps to identify a rebound attack trail are as follows:

1. Find a truncated differential trail following the Constrained Programming based search model from [5].
2. Choose certain consecutive rounds as the Super-Inbound (i.e., S1), which includes several local inbound parts. For example, in Figure 7 a Super-Inbound includes three local inbound parts. Usually, 2 to 4 consecutive rounds are chosen as possible Super-Inbound. Following this search, all the input/output differences of the active Sboxes are fixed, and therefore corresponding values are fixed.
3. Build equation system that connects the inbound parts and through key schedule. Check if the system is solvable by triangulation algorithm.

Before checking the solvability of the system, a potential truncated trail must satisfy the condition that the number of active Sboxes in the Super-Inbound does not exceed the DoF from both key and state. This is because the system of state
bytes and keys bytes are determined by the initial k key bytes and n plaintext bytes, then for any set of fixed bytes in advance, the system is potentially solvable if the number of fixed bytes is not larger than $n+k$. Our observation shows that the ideal case is when the number of active bytes in the Super-Inbound equals to $n+k-1$ and only 1 free byte is left, since the scenario without free byte is likely to form an over-defined system. Therefore, this constraint is also added to our model. For classical collision attacks, after the Super-Inbound is fixed, the probability of the outbound phase can be computed and denoted as Pr, which should meet $\operatorname{Pr}>2^{-n / 2}$. For quantum collision attacks, let $\operatorname{Pr}^{5}>2^{-n}$. Similarly to previous models [38], for the attacks based on the truncated differentials, P_{r} is the probability for the cancellation of MC operator in the backward and forward trunks, as well as the cancellation for the feed-forward operator of hashing modes. After checking the potential truncated trails satisfying the above conditions for inbound and outbound phases, the triangulation algorithm is applied to detect the free bytes left followed by the step to generate sufficient data pairs for the outbound phase.

4 Improved Collision Attacks on AES-128-MMO

In this section, by applying the triangulating rebound, we introduce a 7 -round classical semi-free-start collision attack and an 8-round quantum semi-free-start collision attack on AES-MMO. Moreover, we identify the first 8 -round quantum collision attack, which is better than parallel rho's algorithm [74].

4.1 Semi-Free-Start Collision Attack on 7-Round AES-128

New 7-round AES-128 Truncated Differential Trail. We introduce here our new differential trail in Figure 8. Our Super-Inbound phase covers 3 middle rounds with 2 inbound phases (marked with red and blue dashed lines), which consumes 31 bytes of degree of freedom for the fixed state bytes, i.e., 16 active bytes in $x_{3}, 9$ active bytes in x_{4}, and 6 active bytes in x_{5}. Since we have 32 bytes in total (16 bytes in key and 16 bytes in the state), only 1 free byte is left. By triangulating algorithm, the 1 free byte is identified to be $k_{5}[12]$. The remaining outbound phase happens with probability $p_{\text {out }}=2^{-56}$ including the MC cancellation in round 1 and 4-byte cancellation for $\Delta P=\Delta C$.
The Super-Inbound Phase. As shown in Figure 8, the Super-Inbound phase divides into 2 parts, the Inbound II marked with blue dashed line makes use of k_{5} to link round 4 and round 5 , and the Inbound I marked with red dashed line connects with Inbound II via k_{4}. To generate a data pair conforming a given difference ($\Delta z_{2}, \Delta w_{3}, \Delta w_{5}$), assuming $\Delta Z_{5}=\mathrm{MC}^{-1}\left(\Delta w_{5}\right)$ keeps the truncated differential in Figure 8, we perform the following steps:

[^0]

Fig. 8: Semi-free-start collision attack on 7-round AES-128

- Perform the Inbound II:

1. Randomly assign a difference to $\Delta x_{5}[4,9,12]$. Then $\Delta w_{4}[4,9,12]$ are known accordingly, implies all the differences at these active cells of z_{4} and the remaining active cells of w_{4} are determined as a result of the Property 1. From Δz_{4}, we deduce $\Delta y_{4}=\operatorname{SR}^{-1}\left(\Delta z_{4}\right)$.
2. Compute the difference $\Delta y_{5}=\operatorname{SR}^{-1}\left(\mathrm{MC}^{-1}\left(\Delta w_{5}\right)\right)$. Next, we deduce the values of the active cells at x_{4} and x_{5} by assessing to the DDT for each cell of $\left(\Delta x_{4}, \Delta y_{4}\right)$ and $\left(\Delta x_{5}, \Delta y_{5}\right)$. The active byte values of y_{4} and y_{5} are determined respectively.

- Perform the Inbound I:

1. Compute $\Delta x_{3}=\operatorname{MC}\left(\Delta z_{2}\right)$ and $\Delta y_{3}=\operatorname{SR}^{-1}\left(\operatorname{MC}^{-1}\left(\Delta w_{3}\right)\right)$.
2. Deduce full state values x_{3} and y_{3} by assessing the DDT. We compute the full state values of w_{3} by the action $w_{3}=\operatorname{MC}\left(\operatorname{SR}\left(y_{3}\right)\right)$.

- Connect the phases by the subkeys:

1. Since the full state of w_{3} and the active bytes of x_{4} are known, we obtain $k_{4}[1,3,6,7,8,9,11,13,14]=x_{4}[1,3,6,7,8,9,11,13,14] \oplus w_{3}[1,3,6,7,8,9,11,13,14]$ (marked as black dots).
2. Add constrains on the related cells of k_{5} to the system of equations of the subkeys. We solve the constrains on k_{4} and k_{5} by triangulation algorithm and obtain a free byte $k_{5}[12]$.
3. The steps (shown in Figure 9) to recover k_{5} and compute a starting point are shown as follows (equations are also given in Table 2) :
(a) As shown in Figure 9(1), all the differences marked by 'D' are known. In Figure 9(2), by assessing the DDT, we know the values of $x_{3}[V]$, $x_{4}[V]$, and $x_{5}[V]$. Then deduce $k_{4}[V]=w_{3}[V] \oplus x_{4}[V]$.
(b) In Figure $9(3)$, randomly assign a value for $k_{5}[12]$ marked by ' V ', compute $w_{4}[12]=k_{5}[12] \oplus x_{5}[12]$. According to Property 1, deduce all the bytes marked by ' V ' in z_{4} and w_{4}. Then, $k_{5}[14]=x_{5}[14] \oplus w_{4}[14]$. From $z_{4}[V]$, we get $x_{4}[V]$. Then $k_{4}[V]$ is deduced.
(c) In Figure 9(4), following the key schedule of AES-128, compute the $k_{5}[V]: k_{5}[8]=k_{4}[12] \oplus k_{5}[12], k_{5}[10]=k_{4}[14] \oplus k_{5}[14], k_{5}[11]=$ $k_{4}[11] \oplus k_{5}[7], k_{5}[4]=k_{4}[8] \oplus k_{5}[8], k_{5}[7]=k_{5}[3] \oplus k_{4}[7], k_{5}[1]=$ $k_{4}[1] \oplus \mathrm{SB}\left(k_{4}[14]\right) \oplus r_{c}, k_{5}[3]=k_{4}[3] \oplus \mathrm{SB}\left(k_{4}[12]\right) \oplus r_{c}$.
(d) In Figure 9(5), deduce $w_{4}[4]=k_{5}[4] \oplus x_{5}[4]$ and $w_{4}[11]=k_{5}[11] \oplus$ $x_{5}[11]$, then acorrding to Property 1, all the bytes in w_{4} and z_{4} marked by ' V ' are deduced. Then, two bytes marked by ' V ' in k_{5} are deduced, i.e., $k_{5}[6]=w_{4}[6] \oplus x_{5}[6]$ and $k_{5}[9]=w_{4}[9] \oplus x_{5}[9]$. Moreover, compute two bytes marked by ' V ' in k_{4}, i.e., $k_{4}[2]=x_{4}[2] \oplus w_{3}[2]$ and $k_{4}[4]=x_{4}[4] \oplus w_{3}[4]$.
(e) In Figure 9(6), following the key schedule, deduce the bytes marked by ' V ' in k_{5}, i.e., $k_{5}[0]=k_{4}[4] \oplus k_{5}[4], k_{5}[2]=k_{4}[6] \oplus k_{5}[6], k_{5}[5]=$ $k_{4}[9] \oplus k_{5}[9], k_{5}[13]=k_{4}[13] \oplus k_{5}[9], k_{4}[15]=\mathrm{SB}^{-1}\left(k_{4}[2] \oplus k_{5}[2]\right)$, $k_{5}[15]=k_{4}[15] \oplus k_{5}[11]$.
4. Finally, full state w_{3} and full subkey k_{5} are obtained by using 34 DDT assesses.
Due to the probability of the outbound phase is 2^{-56}, we need to check 2^{56} starting points to find the collision. The final complexity is 2^{56} and memory needed is 2^{16} for DDT storing.

Remark. In a rebound attack [61], we typically have a probability $\frac{1}{2}$ to have a solution for each active SBox, so that we have to repeat the attack with new differences, but when the differences are compatible we obtain many solutions and the amortized cost is close to 1 . In our attack, when $\left(\Delta x_{3}, \Delta y_{3}\right),\left(\Delta x_{4}, \Delta y_{4}\right)$ and $\left(\Delta x_{5}, \Delta y_{5}\right)$ are fixed, we have 31 active Sboxes. Therefore, one compatible differential characteristic is found in roughly 2^{31} time, which leads to 2^{31} solutions for the active bytes of $\left(x_{3}, x_{4}, x_{5}\right)$. Moreover, since we can randomly assign k_{5} [12] (Step $3(\mathrm{~b})$), we totally have about $2^{31+8}=2^{39}$ starting points, which is lower than the final time 2^{56}. Briefly speaking, for a given $\left(\Delta x_{3}, \Delta y_{3}\right),\left(\Delta x_{4}, \Delta y_{4}\right)$, $\left(\Delta x_{5}, \Delta y_{5}\right)$ and $k_{5}[12]$, we find one starting point with time complexity of 1 on average.

Fig. 9: Steps to recover k_{5}. The bytes marked by 'D' mean that the differences are known. The bytes marked by 'V' mean that the values are known. In subfigures, the bytes marked by ' V ' are deduced from those marked by ' V '.

1. $w_{4}[12]=x_{5}[12] \oplus k_{5}[12]$	15. $k_{5}[7]=k_{5}[3] \oplus k_{4}[7]$
2. $z_{4}[12], w_{4}[13,14,15]=\operatorname{MC}\left(w_{4}[12], z_{4}[13,14,15]\right)$	16. $k_{5}[11]=k_{4}[11] \oplus k_{5}[7]$
3. $k_{5}[14]=w_{4}[14] \oplus x_{5}[14]$	17. $w_{4}[11]=k_{5}[11] \oplus x_{5}[11]$
4. $x_{4}[12]=\mathrm{SB}^{-1}\left(z_{4}[12]\right)$	18. $z_{4}[10], w_{4}[8,9,10]=\mathrm{MC}\left(z_{4}[8,9,11], w_{4}[11]\right)$
5. $k_{4}[12]=w_{3}[12] \oplus x_{4}[12]$	19. $k_{5}[9]=w_{4}[9] \oplus x_{5}[9]$
6. $k_{5}[8]=k_{4}[12] \oplus k_{5}[12]$	20. $k_{5}[13]=k_{5}[9] \oplus k_{4}[13]$
7. $k_{5}[1]=k_{4}[1] \oplus \mathrm{SB}\left(k_{4}[14]\right) \oplus r_{c}$	21. $k_{5}[5]=k_{4}[9] \oplus k_{5}[9]$
8. $k_{5}[10]=k_{4}[14] \oplus k_{5}[14]$	22. $k_{4}[5]=k_{5}[1] \oplus k_{5}[5]$
9. $k_{5}[4]=k_{4}[8] \oplus k_{5}[8]$	23. $k_{4}[4]=w_{3}[4] \oplus \mathrm{SB}^{-1}\left(z_{4}[4]\right)$
10. $w_{4}[4]=k_{5}[4] \oplus x_{5}[4]$	24. $k_{5}[0]=k_{4}[4] \oplus k_{5}[4]$
11. $z_{4}[4], w_{4}[5,6,7]=\mathrm{MC}^{-1}\left(w_{4}[4], z_{4}[5,6,7]\right)$	25. $x_{4}[2]=\mathrm{SB}^{-1}\left(z_{4}[10]\right)$
12. $k_{5}[6]=w_{4}[6] \oplus x_{5}[6]$	26. $k_{4}[2]=w_{3}[2] \oplus x_{4}[2]$
13. $k_{5}[2]=k_{4}[6] \oplus k_{5}[6]$	27. $k_{4}[15]=\mathrm{SB}^{-1}\left(k_{4}[2] \oplus k_{5}[2]\right)$
14. $k_{5}[3]=k_{4}[3] \oplus \mathrm{SB}\left(k_{4}[12]\right) \oplus r_{c}$	28. $k_{5}[15]=k_{5}[11] \oplus k_{4}[15]$

Table 2: Steps to recover the subkey k_{5} from known bytes

4.2 Semi-Free-Start Collision Attack on 8-Round AES-128-MMO

As shown in Figure 10, there are three inbound parts in the Super-Inbound phase. For given fixed differences of $\Delta z_{1}, \Delta z_{2}, \Delta w_{4}$, and Δw_{5}, assuming $\Delta w_{1}=$ $\operatorname{MC}\left(\Delta z_{1}\right)$ and $\Delta z_{5}=\operatorname{MC}^{-1}\left(\Delta w_{5}\right)$ keep the truncated differential of Figure 10, we perform inbound part I, II, and III without the key information. Then, we connect the three inbound part by determining certain key values and get the starting point for the outbound phase. The probability of the outbound phase is 2^{-64}, including the condition $\Delta P=\Delta C$.

Given fixed differences of $\Delta z_{1}, \Delta z_{2}, \Delta w_{4}$, and Δw_{5}, the procedures to get one starting point are as follows:

1. Deduce values $\left(x_{5}[0,5,10], x_{5}^{\prime}[0,5,10]\right)$ with Δw_{4} and $\Delta z_{5}=\mathrm{MC}^{-1}\left(\Delta w_{5}\right)$ by accessing the DDT.
2. Deduce values $\left(x_{2}[0,1,2], x_{2}^{\prime}[0,1,2]\right)$ with $\Delta w_{1}=\operatorname{MC}\left(\Delta z_{1}\right)$ and Δz_{2} by accessing the DDT. Then $z_{2}[0,10,13]$ are known as well.
3. For $\operatorname{SSB}^{(0)}$ in Inbound III (marked in red), we compute $\Delta x_{3}=\operatorname{MC}\left(\Delta z_{2}\right)$ and $\Delta y_{4}=\operatorname{SR}^{-1}\left(\operatorname{MC}^{-1}\left(\Delta w_{4}\right)\right)$.
4. Randomly choose $\Delta w_{3}[0,2] \in \mathbb{F}_{2}^{8} \times \mathbb{F}_{2}^{8}$,
(a) Compute other active differences $\Delta z_{3}[0,2,3]$ and $\Delta w_{3}[3]$ by Property 1
(b) Deduce $\left(z_{3}[0,2,3], z_{3}^{\prime}[0,2,3]\right)$ and $\left(x_{4}[0,2,3], x_{4}^{\prime}[0,2,3]\right)$ by assessing DDT
5. Repeat Step 4 for random differences $\Delta w_{3}[4,5], \Delta w_{3}[8,9], \Delta w_{3}[13,14]$ to compute all active bytes of x_{3} and x_{4}. Next, we compute $w_{4}[0,5,10]=$ $\operatorname{MC}\left(\operatorname{SR}\left(\operatorname{SB}\left(x_{4}\right)\right)\right)[0,5,10]$ and then $k_{5}[0,5,10]=w_{4}[0,5,10] \oplus x_{5}[0,5,10]$.
6. Assign random values to $k_{3}[6], k_{4}[0]$, and $k_{4}[4]$. We recover the full key k_{5} by the following steps in Table 3. There exists a filter of 2^{-8} in the step to recover $k_{3}[3]$.

Since Step 6 has a filter of 2^{-8} to meet the condition " $k_{3}[3]=w_{2}[3] \oplus x_{3}[3] \stackrel{?}{=}$ $\mathrm{SB}\left(k_{3}[12]\right) \oplus k_{4}[3] \oplus r_{c}$ " in Table 3, the time complexity to find a starting point

Fig. 10: Quantum semi-free-start collision attack on 8-round AES-128
(including a data pair and a key value conforming the inbound parts from Δz_{1} to $\left.\Delta w_{5}\right)$ is 2^{8}. The probablity of the outbound phase is 2^{-64}, we need 2^{64} starting points to find one collision. In other words, given 21 bytes of $\Delta z_{1}, \Delta z_{2}, \Delta w_{4}$, $\Delta w_{5}, \Delta w_{3}[0,2], \Delta w_{3}[4,5], \Delta w_{3}[8,9], \Delta w_{3}[13,14]$ and $k_{3}[6] k_{4}[0], k_{4}[4]$, we get one collision with probability of 2^{-72}. Since $21 \times 8=168>72$, we have enough degrees of freedom to find one collision.

The Quantum Attack. Given input-output differences of the active Sbox, it is expected to find one pair on average, e.g. $\left(x, x^{\prime}\right)$, satisfying the differences. In inbound phase of the quantum rebound attacks, given a valid input-output differences of l active Sboxes, we obtain about $2^{l} / 2$ choices for starting points. To indicate which starting point to choose among $2^{l} / 2$ choices, Hosoyamda and

1. $w_{3}[0]=k_{4}[0] \oplus x_{4}[0]$	23. $k_{3}[10]=k_{4}[6] \oplus k_{4}[10]$
2. $w_{3}[2,3]=\mathrm{MC}^{-1}\left(w_{3}[0], z_{3}[0,2,3]\right)$	24. $k_{5}[4]=k_{5}[0] \oplus k_{4}[4]$
3. $k_{4}[2,3]=w_{3}[2,3] \oplus x_{4}[2,3]$	25. $w_{3}[10]=x_{4}[10] \oplus k_{4}[10]$
4. $k_{4}[13]=\mathrm{SB}^{-1}\left(k_{4}[0] \oplus k_{5}[0] \oplus r_{c}\right)$	26. $w_{3}[8,9]=\mathrm{MC}^{-1}\left(w_{3}[10], z_{3}[8,9,10]\right)$
5. $w_{3}[13]=x_{4}[13] \oplus k_{4}[13]$	27. $k_{4}[8,9]=w_{3}[8,9] \oplus x_{4}[8,9]$
6. $w_{3}[14,15]=\mathrm{MC}^{-1}\left(w_{3}[13], z_{3}[12,13,15)\right.$	28. $k_{3}[9]=k_{4}[5] \oplus k_{4}[9]$
7. $k_{4}[14,15]=w_{3}[14,15] \oplus x_{4}[14,15]$	29. $k_{3}[8]=k_{4}[4] \oplus k_{4}[8]$
8. $k_{5}[14]=k_{5}[10] \oplus k_{4}[14]$	30. $w_{2}[8,9,10]=x_{3}[8,9,10] \oplus k_{3}[8,9,10]$
9. $k_{4}[6]=k_{4}[2] \oplus k_{3}[6]$	31. $w_{2}[11]=\mathrm{MC}^{-1}\left(w_{2}[8,9,10], z_{2}[10]\right)$
10. $w_{3}[4]=x_{4}[4] \oplus k_{4}[4]$	32. $k_{3}[11]=w_{2}[11] \oplus x_{3}[11]$
11. $w_{3}[5,7]=\mathrm{MC}^{-1}\left(w_{3}[4], z_{3}[5,6,7]\right)$	33. $k_{4}[11]=k_{4}[7] \oplus k_{3}[11]$
12. $k_{4}[5,7]=w_{3}[5,7] \oplus x_{4}[5,7]$	34. $k_{3}[13]=k_{4}[9] \oplus k_{4}[13]$
13. $k_{3}[4]=k_{4}[0] \oplus k_{4}[4]$	35. $k_{3}[15]=k_{4}[11] \oplus k_{4}[15]$
14. $k_{3}[7]=k_{4}[3] \oplus k_{4}[7]$	36. $w_{2}[13,14,15]=k_{3}[13,14,15] \oplus x_{3}[13,14,15]$
15. $k_{5}[1]=k_{4}[5] \oplus k_{5}[5]$	37. $w_{2}[12]=\mathrm{MC}^{-1}\left(w_{2}[13,14,15], z_{2}[13]\right)$
16. $k_{4}[1]=k_{5}[1] \oplus \mathrm{SB}\left(k_{4}[14]\right) \oplus r_{c}$	38. $k_{3}[12]=x_{3}[12] \oplus w_{2}[12]$
17. $k_{3}[5]=k_{4}[5] \oplus k_{4}[1]$	39. $k_{3}[0]=\mathrm{SB}\left(k_{3}[13]\right) \oplus k_{4}[0] \oplus r_{c}$
18. $k_{5}[2]=k_{4}[2] \oplus \mathrm{SB}\left(k_{4}[15]\right) \oplus r_{c}$	40. $k_{3}[2]=\mathrm{SB}\left(k_{3}[15]\right) \oplus k_{4}[2] \oplus r_{c}$
19. $k_{5}[6]=k_{5}[2] \oplus k_{4}[6]$	41. $w_{2}[0,1,2]=x_{3}[0,1,2] \oplus k_{3}[0,1,2]$
20. $k_{4}[10]=k_{5}[6] \oplus k_{5}[10]$	42. $w_{2}[3]=\mathrm{MC}^{-1}\left(w_{2}[0,1,2], z_{2}[0]\right)$
21. $k_{3}[14]=k_{4}[10] \oplus k_{4}[14]$	43. $k_{3}[3]=w_{2}[3] \oplus x_{3}[3] \stackrel{?}{=} \mathrm{SB}\left(k_{3}[12]\right) \oplus k_{4}[3] \oplus r_{c}$
22. $k_{3}[1]=\mathrm{SB}\left(k_{3}[14]\right) \oplus k_{4}[1] \oplus r_{c}$	

Table 3: Steps to recover the subkey k_{3} from known bytes

Sasaki [38, Sect. 6.2, Page 22] introduce $l-1$ auxiliary qubits. In Hosoyamda and Sasaki's attack, l is usually small, e.g. $l=4$, then the increased time complexity due to the $l-1$ auxiliary qubits is marginal. However, in our 8 -round attack of Figure 10, we have to compute pairs for $l=3+3+12+12=30$ active Sboxes with given input-output differences. If we follow Hosoyamda and Sasaki's idea [38], we have to introduce $l-1=29$ auxiliary qubits, which can not be ignored anymore. To deal with the problem, we introduce a trick in Supplementary Material A, which introduces the auxiliary qubits nearly for free. By our new trick, we perform the 8 -round quantum semi-free-start collision attack. According to Equation 5, we have $l=3+3+12+12=30$, and choose 9 bytes out of the 21 bytes to act as " $\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|$ " to find the collision with time complexity roughly $30 \cdot 2^{72 / 2} / 128 \approx 2^{34} 8$-round AES, which is roughly the square root of 2^{72}.

Practical Semi-Free-Start Collision Attack on 6-Round AES-128. To prove the correctness of the 8 -round semi-free-start collision, we give a 6 -round practical semi-free-start collision by cutting the differential characteristic depicted in Figure 10 to 6 rounds (round 1 to 6). The total complexity to find the collision is 2^{24}, including 2^{8} time for solving the Super-Inbound phase and 2^{16} for the condition $\Delta x_{1}=\Delta z_{6}$. We have verified the validity and complexity of the attack by implementing the 6 -round attack. One such example collision is presented in Table 4 in Supplementary Material C.

4.3 Quantum Collision Attack on 8-Round AES-128

Fig. 11: Matyas-Meyer-Oseas (MMO) hashing mode with two blocks

Remove the Inbound I/II from Figure 10, we get the trail for 8-round collision attack (also shown in Figure 15). The inbound phase covers states z_{2} to w_{4}. The probability of the outbound phase is 2^{-96}. For a random given $\Delta z_{2}, \Delta w_{4}$ and the master key, the steps to get one starting point are as follows:

1. Deduce Δx_{3} and Δy_{4} from Δz_{2} and Δw_{4}.
2. For $\mathrm{SSB}^{(0)}$ marked in red, randomly choose $\Delta w_{3}[0,2] \in \mathbb{F}_{2}^{16}$,
(a) Compute other active differences $\Delta z_{3}[0,2,3]$ and $\Delta w_{3}[3]$ by Property 1
(b) Deduce the values for active bytes by accessing DDT to get $\left(z_{3}[0,2,3], z_{3}^{\prime}[0,2,3]\right)$ and $\left(x_{4}[0,2,3], x_{4}^{\prime}[0,2,3]\right)$
(c) Deduce $\left(w_{4}[0,2,3]\right.$, $\left.w_{4}^{\prime}[0,2,3]\right)$ by XORing ($\left.x_{4}[0,2,3], x_{4}^{\prime}[0,2,3]\right)$ with k_{4}
(d) Check if $\mathrm{MC}\left(z_{3}[0,2,3]\right) \stackrel{?}{=} w_{4}[0,2,3]$, which is a 16 -bit filter by Pro. 1
3. Repeat Step 2 in parallel for $\operatorname{SSB}^{(1)}, \operatorname{SSB}^{(2)}$, and $\operatorname{SSB}^{(3)}$ to get one starting point on average.
Hence, we need 2^{16} time complexity to get one starting point for a random given a random given $\Delta z_{2}, \Delta w_{4}$ and the master key. Since the probability of the outbound phase is 2^{-96}, we need 2^{96} starting points to get one collision. Since $\left|\Delta z_{2}\right| \times\left|\Delta w_{4}\right|=2^{48}<2^{96}$, we need two blocks as shown in Figure 11 to get additional degrees of freedom from the first block. The overall time complexity of the classical time is 2^{112}. According to the quantum analysis by [38,28], we apply Grover's algorithm and get a quantum collision attack with roughly 2^{56} quantum time complexity. Supplementary Material B gives a very detailed quantum collision attack on 8 -round AES, whose time complexity is $2^{55.53} 8$-round AES, which is very close to the estimated 2^{56}.

5 Improved Quantum Attacks on Saturnin-Hash

Saturnin is a block cipher with a 256 -bit state and 256 -bit key that was designed as the derivative of AES with efficient implementation by Canteaut et al. [17]. It is among the round 2 candidates of the NIST lightweight cryptography competition. The composition of two consecutive rounds starting from even round is called super-round, which is very similar to an AES round operating on 16-bit words except that the SR is replaced by a transposition. Saturnin-Hash is built on 16 -super-round Saturnin block cipher with the MMO hashing mode.

5.1 Improved 8-Round Quantum Free-Start Collision

The differential trail we use here was found in [29]. As shown in Figure 12, our new method extends the inbound phase by covering round 0 to round 4 in inbound phase, and the probability of the outbound phase becomes $2^{-135.8}$.

Fig. 12: Free-start collision attack on 8-round Saturnin-Hash

Super-Inbound Phase. In Dong et al.'s [29] attack, the inbound phase covers states from y_{0} to x_{3}. However, our Super-Inbound covers two more rounds from state y_{0} to x_{5}. Hence, the probabilities $\operatorname{Pr}\left(\Delta x_{3} \mapsto \Delta y_{3}\right)=2^{-12}$ and $\operatorname{Pr}\left(\Delta x_{4} \mapsto\right.$ $\left.\Delta z_{4}\right)=2^{-59.8}$ in Dong et al.'s attack are removed in ours.

To perform the 4-round Super-Inbound phase, we first randomly assign arbitrary differences for all unfixed differences in $\Delta z_{0}=\operatorname{MR}\left(\Delta y_{0}\right), \Delta z_{1}$ and Δz_{4}.

Together with the prefixed differences of Δz_{2} and Δz_{3}, we do the following steps to find a pair to confirm the given differences in the Super-Inbound phase.

Fig. 13: Solving the inbound part for 8-round Saturnin-Hash

1. Deduce the differences of $\Delta y_{1}, \Delta y_{4}$. Compute all the active byte values of $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ by assessing the DDT. Then z_{1} is known. As shown in Figure 13, we pick out round 2 to round 4 to clarify the steps to compute a conforming pair for the inbound part. As shown Figure 13 (2), compute $K[V]=z_{1} \oplus x_{2}[V]$. Compute $K^{\prime}[V]=x_{3}[V] \oplus z_{2}[V]$. Similarly, compute all other cells marked by "V" and "V".
2. In Figure 13 (3), deduce "V" and "V" cells by the "V" cells. Guess $z_{3}[0]$ to compute $y_{3}[V]$ and $z_{3}[V]$ by Property 1 . Compute $z_{2}[V]=K^{\prime}[V] \oplus x_{3}[V]$. Guess $z_{2}[9,10]$ to deduce $z_{2}[V]$ and $y_{2}[V]$ by Property 1. Then, compute $K[V]=x_{2}[V] \oplus z_{1}$ and $x_{3}[V]=z_{2}[V] \oplus K^{\prime}[V]$.
3. In Figure $13(4)$, guess $z_{2}[0,1,2]$ to deduce $y_{2}[V]$ and $z_{2}[V]$. Deduce $K[V]$ and $K^{\prime}[V]$. Compute $K^{\prime}[V]=x_{3}[V] \oplus z_{2}[V]$.
4. In Figure $13(5)$, guess $z_{3}[3]$ to deduce $z_{3}[V]$ and $y_{2}[V]$. Compute $K^{\prime}[V]=$ $x_{3}[V] \oplus z_{2}[V]$ and $z_{2}[V]=K^{\prime}[V] \oplus x_{3}[V]$. Compute $x_{2}[V]=K[V] \oplus z_{1}$.
5. In Figure 13 (6), compute $z_{2}[V]$ and $y_{2}[V]$. Compute $K[V]=x_{2}[V] \oplus z_{1}$. Compute $y_{3}[V]$, so that the 2 nd column and 3 rd column of y_{3} and z_{3} form a filter of 2^{-32}.

Totally, we guess 7 -cell $\left(z_{3}[0,3], z_{2}[9,10,0,1,2]\right)$ to deduce the conforming pair. In Step 5 , there is a filter of 2^{-32}, together with the outbound probability $2^{-135.8}$, we get a collision with total probability of $2^{-32-135.8}=2^{167.8}$. We have $2^{9 \times 16}=2^{144}$ choices for $\Delta z_{0}=\operatorname{MR}\left(\Delta y_{0}\right), \Delta z_{1}$ and Δz_{4}. Together with the 7-cell $\left(z_{3}[0,3], z_{2}[9,10,0,1,2]\right)$, the total degree of freedom is $2^{144+16 \times 7}=2^{256}>2^{167.8}$. Hence, we have enough degree of freedom to find the collision. Since we do not have the quantum circuit for the DDT of Saturnin like AES, we have to use Equation 4 to estimate the time complexity. With $l=27$, the time is roughly $27 \cdot 2^{167.8 / 2+16 / 2} /(16 \times 8)=2^{89.65}$ 8-round Saturnin-Hash.

5.2 Extend the Attack to 10-round Free-Start Collision

The 10 -round differential trail is easily obtained by repeating the path of Figure 12 round 5 and round 6 one more time before entering round 7 . The figure for 10 -round Saturnin-Hash is given in Figure 17 in Supplementary Material E. By this way, the probability of the outbound phase decreases by $2^{-16-59.8}=2^{-75.8}$ while the Super-Inbound phase maintains the same probability 2^{-32}. Finally, we obtain the free-start collision attack with probability $2^{167.8-75.8}=2^{-243.6}$. Since the number of degrees of freedom 2^{256} is still larger than $2^{243.6}$, so that we can find a collision. According to Equation $4, l=27$, the time is roughly $27 \cdot 2^{243.6 / 2+16 / 2} /(16 \times 10)=2^{127.2} 10$-round Saturnin-Hash. Additionally, we present an improved 7-round quantum semi-free-start collision in Supplementary Material D.

6 Quantum Collision Attack on SKINNY-128-384-MMO

SKINNY is a family of lightweight block ciphers designed by Beierle et al. [7]. In this section, we focus on the hashing mode of SKINNY-128-384. Please find the structure of SKINNY-n-3n in [7]. The MC operation is non-MDS:

$$
\operatorname{MC}\left(\begin{array}{l}
a \tag{1}\\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
a \oplus c \oplus d \\
a \\
b \oplus c \\
a \oplus c
\end{array}\right) \quad \text { and } \quad \mathrm{MC}^{-1}\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right)=\left(\begin{array}{c}
\beta \\
\beta \oplus \gamma \oplus \delta \\
\beta \oplus \delta \\
\alpha \oplus \delta
\end{array}\right) .
$$

6.1 21-Round Quantum Free-Start Collision Attack

In quantum setting, we derive the free-start collision attack on hashing modes (MMO/MP) with 21-round SKINNY-128-384 using the differential characteristic shown in Figure 18 in Supplementary Material F. The new differential trail is
found by using the automatic tool in [23]. The 5-round Super-Inbound covers from state w_{9} to x_{14}. The outbound phase happens with probability $2^{-103.4}$.

We pick out the 5 -round Super-Inbound phase from the whole rebound attack trail of Figure 18 to get Figure 14 (a). To launch the rebound attack, we first precompute a pair satisfying the 5-round inbound trail as shown in Figure 14 (b). Then thanks to the large degrees of freedom from the tweakey, we get enough starting points by changing the 384 -bit tweakey.

Fig. 14: 5-round Super-Inbound of SKINNY-128-384: (a) Differences, (b) Values. The values of k_{i} are the XOR of subkeys and constants of AC operator.

Precomputation in the Super-Inbound Phase. We build several steps to compute the conforming data pairs for the Super-Inbound phase.

1. In Figure $14(\mathrm{a})$, focusing on states z_{10} to x_{11}, the values in $z_{10}[8,12]=$ $\operatorname{SR}\left(x_{10}[10,13]\right)$ and all active bytes of w_{10} are deduced by assessing DDT with fixed differences in Figure 14(a). In the 1 st column z_{10} and w_{10}, i.e., $z_{10}^{(0)}$ and $w_{10}^{(0)}$, we have a condition " $w_{10}[4] \oplus w_{10}[12]=z_{10}[8]$ " due to Equation 1 , which is a filter of 2^{-8}. In our trail, the differences are dedicatedly
chosen, so that we have enough pairs to verify the filters for the given differences. For example, in the condition " $w_{10}[4] \oplus w_{10}[12]=z_{10}[8]$ ", we choose $\left(w_{10}[4], w_{10}[12], z_{10}[8]\right) \in\left(\operatorname{DDT}\left[\mathrm{b} 0_{\mathrm{x}}\right]\left[80_{\mathrm{x}}\right] \times \operatorname{DDT}\left[21_{\mathrm{x}}\right]\left[\mathrm{aO}_{\mathrm{x}}\right] \times \mathrm{DDT}\left[2 \mathrm{f}_{\mathrm{x}}\right]\left[91_{\mathrm{x}}\right]\right)$, where $\operatorname{DDT}\left[\mathrm{bO} \mathrm{x}_{\mathrm{x}}\right]\left[80_{\mathrm{x}}\right]$ is the subset of DDT with input-output differences $\left(\mathrm{bO} \mathrm{O}_{\mathrm{x}}, 80_{\mathrm{x}}\right)$. The size $\left|\operatorname{DDT}\left[\mathrm{bO}_{\mathrm{x}}\right]\left[80_{\mathrm{x}}\right] \times \operatorname{DDT}\left[21_{\mathrm{x}}\right]\left[\mathrm{aO}_{\mathrm{x}}\right] \times \operatorname{DDT}\left[2 \mathrm{f}_{\mathrm{x}}\right]\left[91_{\mathrm{x}}\right]\right|=48 \cdot 2^{5} \cdot 2^{3}>2^{8}$.
2. With the choice of $w_{10}[12], z_{11}[15]$ is known as well. $z_{11}[8,9,10,12]$ and all active bytes of w_{11} are deduced by DDT. We have similar conditions to fulfill for the 1 st column of z_{11} and w_{11} with $w_{11}[0] \oplus w_{11}[12]=z_{11}[12]$, which act as a filter of 2^{-8}.
3. Do similar steps from z_{10} to w_{13}, we get a data and key pair as shown in Figure 14(b) conforming the whole 5-round inbound trail.

An additional trick is used in our inbound phase. As only the first two rows of x_{9} are XORed with k_{9}, the last two rows of x_{9} and w_{8} are fully determined by w_{9}. Hence, in the inbound phase, we directly find the pair with $\Delta w_{8}[8]=$ $04_{\mathrm{x}}, \Delta w_{8}[13]=54_{\mathrm{x}}$, and $\Delta w_{8}[14]=54_{\mathrm{x}}$, which increases the probability of the outbound phase from $2^{-103.4}$ to $2^{-92.4}$. The conforming pair for the SuperInbound is given in Figure 14(b), which is generated by the source code at https://www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound. 7 z

Generating Starting Points for Outbound Phase. Now we have the values of subkeys $k_{10}, k_{11}, k_{12}, k_{13}$. Since the key schedule is linear and by solving a linear system on the 384 -bit key with fixed values of subkeys $k_{10}, k_{11}, k_{12}, k_{13}$ in Figure 14 (b), we can derive at most 2^{128} starting points for the outbound phase. We need only $2^{92.4}$ starting points to get a collision. In quantum setting, the $2^{92.4}$ starting points are traversed by Grover's algorithm, which need roughly $2^{46.2}$ time complexity to find the collision.

6.2 Classic Free-Start Collision Attack on 19-Round

The first classical free-start collision attack on 19-round SKINNY-128-384 hash mode is also given with the trail in Figure 19 in Supplementary Material F. The Super-Inbound covers 5 rounds from round 9 to round 13 , and only one data pair, shown in Figure 20 in Supplementary Material F, is needed to confirm the inbound trail in the precomputation phase. Similar to the 21 -round attack, the pre-computed pair of the inbound phase also satisfies the differential of the last two rows of x_{8} to w_{7}. Since the outbound excluding the Sboxes in the last two rows of x_{8} happens with probability $2^{-51.2}$, the final time complexity is $2^{51.2}$.

7 Discussion and Conclusion

7.1 Possible Generalization of Triangulating Rebound

In Section 3, we have shown that the multiple inbound phases can be connected by the key bytes. We may describe the idea in a more generalized way. In fact, for active Sbox or Super-Sbox with fixed input/output differences, the values are fixed. For active Sbox without fixed input/output differences, or inactive Sbox, the values are not fixed and up to attacker's control, which are the source
of the degree of freedom (DoF). In order to identify a data pair conforming the truncated differential, we may consume the degree of freedom from the unfixed Sbox to bridge several fixed values due to active Sboxes or Super-Sboxes with fixed input/output differences. This intuitive idea implies that not only the key bytes are useful to connect the differences, but also the internal states. In Supplementary Material G, we give an example to connect the differences with DoF from internal states and gain some improved collision attacks on Gr ϕ stl.

7.2 Conclusion

In this paper, we extended the number of attacked rounds by the rebound attack by introducing triangulating rebound attack. The core idea is to take full advantage of the available degrees of freedom from both the subkeys and the state to greatly extend the number of rounds covered by the inbound phase, which is named as Super-Inbound. As a consequence, multiple improved classic or quantum collision attacks on AES-like hashing were presented. Possible future works are to investigate more ciphers with our method, as well as to find more applications such as distinguishing attacks based the improved rebound attacks.

Acknowledgments

We would like to thank the anonymous reviewers from EUROCRYPT 2022 and CRYPTO 2022 for their valuable comments. This research is partially supported by Nanyang Technological University in Singapore under Grant 04INS000397C230, and Singapore's Ministry of Education under Grants RG91/20 and MOE2019-T2-1-060. Xiaoyang Dong is supported by National Key R\&D Program of China (2018YFA0704701), the Major Program of Guangdong Basic and Applied Research (2019B030302008), Major Scientific and Technological Innovation Project of Shandong Province, China (2019JZZY010133), Natural Science Foundation of China (61902207).

References

1. Z. Alliance. ZigBee 2007 specification. Online: http://www.zigbee.org/, 2007.
2. G. Banegas and D. J. Bernstein. Low-communication parallel quantum multitarget preimage search. In SAC 2017, Revised Selected Papers, volume 10719, pages 325-335. Springer.
3. Z. Bao, L. Ding, J. Guo, H. Wang, and W. Zhang. Improved meet-in-the-middle preimage attacks against AES hashing modes. IACR Trans. Symmetric Cryptol., 2019(4):318-347, 2019.
4. Z. Bao, X. Dong, J. Guo, Z. Li, D. Shi, S. Sun, and X. Wang. Automatic search of meet-in-the-middle preimage attacks on AES-like hashing. In EUROCRYPT 2021, Proceedings, Part I, volume 12696, pages 771-804. Springer.
5. Z. Bao, J. Guo, S. Li, and P. Pham. Quantum Multi-Collision Distinguishers. Cryptology ePrint Archive, Report 2021/703, 2021. https://ia.cr/2021/703.
6. P. S. Barreto and V. Rijmen. The WHIRLPOOL hashing function. Submitted to NESSIE.
7. C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich, and S. M. Sim. The SKINNY family of block ciphers and its low-latency variant MANTIS. In CRYPTO 2016, Proceedings, Part II, pages 123-153. Springer, 2016.
8. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and Y. Seurin. SHA-3 proposal: ECHO. Submission to NIST (updated), page 113, 2009.
9. D. J. Bernstein. Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete. SHARCS 2009 9: 105.
10. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak sponge function family main document. Submission to NIST (Round 2), 3(30):320-337, 2009.
11. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique cryptanalysis of the full AES. In ASIACRYPT 2011, Proceedings, volume 7073, pages 344-371. Springer.
12. X. Bonnetain, A. Hosoyamada, M. Naya-Plasencia, Y. Sasaki, and A. Schrottenloher. Quantum attacks without superposition queries: The offline Simon's algorithm. In ASIACRYPT 2019, Proceedings, Part I, pages 552-583.
13. X. Bonnetain, M. Naya-Plasencia, and A. Schrottenloher. On quantum slide attacks. In SAC 2019, Waterloo, ON, Canada, August 12-16, 2019, pages 492-519, 2019.
14. X. Bonnetain, M. Naya-Plasencia, and A. Schrottenloher. Quantum security analysis of AES. IACR Trans. Symmetric Cryptol., 2019(2):55-93, 2019.
15. G. Brassard, P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-free functions. In LATIN '98, Campinas, Brazil, April, 20-24, 1998, Proceedings, pages 163-169, 1998.
16. A. Canteaut, S. Duval, G. Leurent, M. Naya-Plasencia, L. Perrin, T. Pornin, and A. Schrottenloher. A note on related-key attacks on Saturnin. https://project. inria.fr/saturnin/files/2020/11/Note-RK-1.pdf.
17. A. Canteaut, S. Duval, G. Leurent, M. Naya-Plasencia, L. Perrin, T. Pornin, and A. Schrottenloher. Saturnin: a suite of lightweight symmetric algorithms for postquantum security. IACR Trans. Symmetric Cryptol., 2020(S1):160-207, 2020.
18. V. Cauchois, C. Gomez, and R. Lercier. Grøstl distinguishing attack: A new rebound attack of an aes-like permutation. IACR Trans. Symmetric Cryptol., 2017(3):1-23, 2017.
19. A. Chailloux, M. Naya-Plasencia, and A. Schrottenloher. An efficient quantum collision search algorithm and implications on symmetric cryptography. In ASIACRYPT 2017, Proceedings, Part II, pages 211-240, 2017.
20. J. Daemen and V. Rijmen. Understanding two-round differentials in AES. In $S C N$ 2006, Proceedings, volume 4116, pages 78-94. Springer.
21. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, 2002.
22. I. Damgård. A design principle for hash functions. In CRYPTO '89, Proceedings, pages 416-427, 1989.
23. S. Delaune, P. Derbez, and M. Vavrille. Catching the fastest boomerangs. IACR Transactions on Symmetric Cryptology, pages 104-129, 2020.
24. P. Derbez, P. Fouque, and J. Jean. Improved key recovery attacks on reducedround AES in the single-key setting. In EUROCRYPT 2013, Proceedings, volume 7881, pages 371-387.
25. P. Derbez, P. Huynh, V. Lallemand, M. Naya-Plasencia, L. Perrin, and A. Schrottenloher. Cryptanalysis results on Spook - bringing full-round Shadow-512 to the light. In CRYPTO 2020, Proceedings, Part III, volume 12172, pages 359-388.
26. I. Dinur, O. Dunkelman, N. Keller, and A. Shamir. Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems. In CRYPTO 2012, Proceedings, volume 7417, pages 719-740. Springer.
27. X. Dong, J. Hua, S. Sun, Z. Li, X. Wang, and L. Hu. Meet-in-the-middle attacks revisited: Key-recovery, collision, and preimage attacks. In CRYPTO 2021, Proceedings, Part III, volume 12827, pages 278-308.
28. X. Dong, S. Sun, D. Shi, F. Gao, X. Wang, and L. Hu. Quantum collision attacks on AES-like hashing with low quantum random access memories. In S. Moriai and H. Wang, editors, ASIACRYPT 2020, Proceedings, Part II, volume 12492, pages 727-757.
29. X. Dong, Z. Zhang, S. Sun, C. Wei, X. Wang, and L. Hu. Automatic classical and quantum rebound attacks on AES-like hashing by exploiting related-key differentials. In M. Tibouchi and H. Wang, editors, ASIACRYPT 2021, Singapore, December 6-10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in Computer Science, pages 241-271. Springer, 2021.
30. A. Duc, J. Guo, T. Peyrin, and L. Wei. Unaligned rebound attack: Application to Keccak. In FSE 2012, Revised Selected Papers, volume 7549, pages 402-421.
31. O. Dunkelman, N. Keller, and A. Shamir. Improved single-key attacks on 8 -round AES-192 and AES-256. In ASIACRYPT 2010, Proceedings, volume 6477, pages 158-176. Springer.
32. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. Grøstl - a SHA-3 candidate. In Symmetric Cryptography, 11.01. - 16.01.2009, 2009.
33. H. Gilbert and T. Peyrin. Super-Sbox cryptanalysis: Improved attacks for AES-like permutations. In FSE 2010, Seoul, Korea, February 7-10, 2010, pages 365-383, 2010.
34. L. Grassi, M. Naya-Plasencia, and A. Schrottenloher. Quantum algorithms for the k-xor problem. In ASIACRYPT 2018, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I, pages 527-559, 2018.
35. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212-219, 1996.
36. C. Guo, J. Katz, X. Wang, and Y. Yu. Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers. In 2020 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, May 18-21, 2020, pages 825-841, 2020.
37. A. Hosoyamada and Y. Sasaki. Cryptanalysis against symmetric-key schemes with online classical queries and offline quantum computations. In CT-RSA 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 198-218.
38. A. Hosoyamada and Y. Sasaki. Finding hash collisions with quantum computers by using differential trails with smaller probability than birthday bound. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Proceedings, Part II, volume 12106, pages 249-279.
39. A. Hosoyamada and Y. Sasaki. Quantum collision attacks on reduced SHA-256 and SHA-512. In CRYPTO 2021, volume 12825, pages 616-646. Springer.
40. A. Hosoyamada, Y. Sasaki, S. Tani, and K. Xagawa. Improved quantum multicollision-finding algorithm. In PQCrypto 2019, Revised Selected Papers, volume 11505, pages 350-367. Springer.
41. A. Hosoyamada, Y. Sasaki, and K. Xagawa. Quantum multicollision-finding algorithm. In ASIACRYPT 2017, Proceedings, Part II, volume 10625, pages 179-210.
42. ISO/IEC. 10118-2:2010 Information technology - Security techniques - Hashfunctions - Part 2: Hash-functions using an n-bit block cipher. 3rd ed., International Organization for Standardization, Geneve, Switzerland, October, 2010.
43. J. Jean and P. Fouque. Practical near-collisions and collisions on round-reduced ECHO-256 compression function. In A. Joux, editor, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers, volume 6733, pages 107-127.
44. J. Jean, M. Naya-Plasencia, and T. Peyrin. Improved rebound attack on the finalist Grøstl. In FSE 2012, Washington, DC, USA, March 19-21, 2012, pages 110-126, 2012.
45. J. Jean, M. Naya-Plasencia, and T. Peyrin. Multiple limited-birthday distinguishers and applications. In SAC 2013, Burnaby, BC, Canada, August 14-16, 2013, pages 533-550, 2013.
46. M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia. Breaking symmetric cryptosystems using quantum period finding. In CRYPTO 2016, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 207-237, 2016.
47. M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia. Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol., 2016(1):71-94, 2016.
48. M. Keller, E. Orsini, and P. Scholl. MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages 830-842, 2016.
49. D. Khovratovich, A. Biryukov, and I. Nikolic. Speeding up collision search for byte-oriented hash functions. In CT-RSA 2009, Proceedings, volume 5473, pages 164-181.
50. D. Khovratovich, I. Nikolic, and C. Rechberger. Rotational rebound attacks on reduced Skein. J. Cryptol., 27(3):452-479, 2014.
51. L. R. Knudsen, C. Rechberger, and S. S. Thomsen. The Grindahl hash functions. In FSE 2007, Revised Selected Papers, volume 4593, pages 39-57.
52. S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger. Haraka v2 - efficient short-input hashing for post-quantum applications. IACR Trans. Symmetric Cryptol., 2016(2):1-29, 2016.
53. H. Kuwakado and M. Morii. Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings, pages 2682-2685, 2010.
54. H. Kuwakado and M. Morii. Security on the quantum-type Even-Mansour cipher. In ISITA 2012, Honolulu, HI, USA, October 28-31, 2012, pages 312-316, 2012.
55. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. Rebound distinguishers: Results on the full Whirlpool compression function. In ASIACRYPT 2009, Tokyo, Japan, December 6-10, 2009. Proceedings, pages 126-143, 2009.
56. G. Leander and A. May. Grover Meets Simon - quantumly attacking the FXconstruction. In ASIACRYPT 2017, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, pages 161-178, 2017.
57. Q. Liu and M. Zhandry. On finding quantum multi-collisions. In EUROCRYPT 2019, Proceedings, Part III, volume 11478, pages 189-218. Springer.
58. K. Matusiewicz, M. Naya-Plasencia, I. Nikolic, Y. Sasaki, and M. Schläffer. Rebound attack on the full LANE compression function. In ASIACRYPT 2009, Proceedings, volume 5912, pages 106-125.
59. F. Mendel, T. Peyrin, C. Rechberger, and M. Schläffer. Improved cryptanalysis of the reduced grøstl compression function, ECHO permutation and AES block cipher. In SAC 2009, Revised Selected Papers, volume 5867, pages 16-35. Springer.
60. F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. Rebound attacks on the reduced Grøstl hash function. In CT-RSA 2010, Proceedings, volume 5985, pages 350-365.
61. F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In FSE 2009, Leuven, Belgium, February 22-25, 2009, pages 260-276, 2009.
62. F. Mendel, V. Rijmen, and M. Schläffer. Collision attack on 5 rounds of Grøstl. In FSE 2014, London, UK, March 3-5, 2014, pages 509-521, 2014.
63. A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.
64. R. C. Merkle. A certified digital signature. In CRYPTO '89, 1989, Proceedings, pages 218-238, 1989.
65. M. Naya-Plasencia. How to improve rebound attacks. In CRYPTO 2011, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 188-205, 2011.
66. M. Naya-Plasencia and A. Schrottenloher. Optimal merging in quantum k-xor and k-xor-sum algorithms. In EUROCRYPT 2020, Proceedings, Part II, volume 12106, pages 311-340. Springer.
67. M. Naya-Plasencia, D. Toz, and K. Varici. Rebound attack on JH42. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, Proceedings, volume 7073, pages 252-269. Springer.
68. Y. Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes and an application to Whirlpool. In FSE 2011, Revised Selected Papers, pages 378-396.
69. Y. Sasaki, Y. Li, L. Wang, K. Sakiyama, and K. Ohta. Non-full-active Super-Sbox analysis: Applications to ECHO and grøstl. In ASIACRYPT 2010, Singapore, December 5-9, 2010. Proceedings, pages 38-55, 2010.
70. Y. Sasaki, L. Wang, S. Wu, and W. Wu. Investigating fundamental security requirements on Whirlpool: Improved preimage and collision attacks. In X. Wang and K. Sako, editors, ASIACRYPT 2012, Proceedings, volume 7658, pages 562-579.
71. M. Schläffer. Updated differential analysis of Grøstl. Grøstl website (January 2011), 2011.
72. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 124-134, 1994.
73. M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first collision for full SHA-1. In J. Katz and H. Shacham, editors, CRYPTO 2017, Proceedings, Part I, volume 10401, pages 570-596. Springer, 2017.
74. P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. J. Cryptol., 12(1):1-28, 1999.
75. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup, editor, CRYPTO 2005, Proceedings, volume 3621, pages 17-36. Springer, 2005.
76. X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer, editor, EUROCRYPT 2005, Proceedings, volume 3494, pages 19-35. Springer, 2005.

Supplementary Material

A Quantum Rebound Attack with Quantum Amplitude Amplification

The quanutm oracle of a function $f: \mathbb{F}_{2}^{m} \mapsto \mathbb{F}_{2}^{n}$ is the unitary operator \mathcal{U}_{f} that $\mathcal{U}_{f}|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle$ with $x \in \mathbb{F}_{2}^{m}$ and $y \in \mathbb{F}_{2}^{n}$.

Variations on Grover's Algorithm. The task is to find a marked element from a set X. We denote by $M \subset X$ the subset of marked elements and assume that we know the fraction $\epsilon=|M| /|X|$ of marked elements. A classical algorithm to solve this problem is to repeat $O(1 / \epsilon)$ times. The quantum algorithm can therefore be expressed as a function of two parameters:

- The Setup operation, which is to sample a uniform element from X. Denote the Setup cost (running time) as $\mid S$ etup $\left.\right|_{R T}$.
- The Checking operation, which is to check if an element is marked. Denote the Checking cost (running time) as \mid Checking $\left.\right|_{R T}$.

The cost of the quantum algorithm can be the time or the number of queries to the input. It suffices to consider specifically one of those resources when quantifying the Setup and Checking cost. Similarly, Grover's algorithm [35] is a quantum search procedure that finds a marked element, and whose complexity can be written as a function of the quantum Setup cost $\left|S_{\text {etup }}\right|_{R T}$, which is the cost of constructing a uniform superposition of all elements in X, and the quantum Checking cost \mid Checking $\left.\right|_{R T}$, which is the cost of applying a controlled-phase gate to the marked elements. Notice that a classical or a quantum algorithm that checks membership to M can easily be modified to get a controlled-phase. The time complexity of Grover's algorithm is $\sqrt{1 / \epsilon} \cdot\left(\mid\right.$ Setup $\left.\right|_{R T}+\mid$ Checking $\left.\left.\right|_{R T}\right)$. Assuming that the Setup and Checking procedures are easy, Grover's algorithm can then find an element $x \in M$ a cost $\sqrt{1 / \epsilon}$.

Grover's algorithm can also be written as a special case of quantum amplitude amplification (QAA), a quantum technique introduced by Brassard, Høyer and Tapp in order to boost the success probability of quantum algorithms [15]. Intuitively, assume that a quantum algorithm \mathcal{A} produces a superposition of outputs in a good subspace $G \subset X$ and outputs in a bad subspace $B \subset X$. Then there exists a quantum algorithm that calls \mathcal{A} as a subroutine to amplify the amplitude of good outputs. Suppose \mathcal{A} was a classical algorithm, repeating it $O(1 / a)$ times to produce a good output, where a is the probability of producing a good output. Just as Grover's algorithm, the quantum amplitude amplification (QAA) technique achieves the same result with a quadratic improvement. The time complexity of QAA is about

$$
\begin{equation*}
\sqrt{1 / a} \cdot\left(|\mathcal{A}|_{R T}+\mid \text { Checking }\left.\right|_{R T}\right) \tag{2}
\end{equation*}
$$

Hosoyamda and Sasaki [38]'s Quantum Rebound Attack With Auxiliary Variables. At EUROCRYPT 2020, Hosoyamda and Sasaki [38] applied Grover's algorithm to the rebound attack. In the inbound phase, we are going to compute the pair (S, S^{\prime}), i.e. the so-called starting point, for the active Sboxes or Super-Sboxes that satisfying the inbound differential trail. Suppose the state S consists of l active Sboxes (denoted as $\mathrm{SB}^{(i)}$ with $1 \leq i \leq l$) with arbitrary non-zero input/output differences $\left(\delta_{\text {in }}^{(i)}, \delta_{\text {out }}^{(i)}\right)(1 \leq i \leq l)$ in parallel. Let $\Delta_{\text {in }}=\delta_{\text {in }}^{(1)}\left\|\delta_{\text {in }}^{(2)}\right\| \cdots \| \delta_{\text {in }}^{(l)}$ and $\Delta_{\text {out }}=\delta_{\text {out }}^{(1)}\left\|\delta_{\text {out }}^{(2)}\right\| \cdots \| \delta_{\text {out }}^{(l)}$. Randomly given a value for $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right) \in \mathbb{F}_{2}^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|}\left(\left|\Delta_{\text {in }}\right|\right.$ is the bit length of $\left.\Delta_{\text {in }}\right)$, if there exists one input-output pair $\left(x_{i}, x_{i}^{\prime}\right)$ and $\left(y_{i}, y_{i}^{\prime}\right)$ that satisfies the differential $\delta_{\text {in }}^{(i)} \mapsto \delta_{o u t}^{(i)}$ for each $\mathrm{SB}^{(i)}$ with $1 \leq i \leq l$, there will be $2^{l} / 2=2^{l-1}$ choices to construct a whole state S as a starting point for the outbound phase, e.g. $S=x_{1}\left\|x_{2}^{\prime}\right\| x_{3}\|\cdots\| x_{l}$. To indicate which state S to choose, Hosoyamda and Sasaki introduced ($l-1$)-bit $\alpha \in \mathbb{F}_{2}^{l-1}$ as the auxiliary variable to indicate the choice. They built a function $F\left(\Delta_{\text {in }}, \Delta_{\text {out }}, \alpha\right)$ and run Grover's algorithm on $F(\cdot)$ to find collisions. Suppose the probability of the outbound phase to find one collision is $2^{-\left(\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|\right)}$, in classical setting one has to traverse a domain of size $2^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|}$ for one collision. In contrast, one has to traverse $2^{\left|\Delta_{i n}\right|+\left|\Delta_{\text {out }}\right|+l-1}$ in the quantum setting. Suppose the Sbox is of c-bit. The quantum time complexity will be

$$
\begin{equation*}
\sqrt{2^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|+l-1}} \cdot\left(l \cdot 2^{\frac{c}{2}}\right) \approx l \cdot 2^{\frac{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|+l+c}{2}} \quad \text { Sbox evaluations. } \tag{3}
\end{equation*}
$$

The drawback of this approach is that if there are many active Sboxes to match, the factor $l \cdot 2^{l / 2}$ will have a non-negligible impact on the overall time complexity.

Our Improved Quantum Rebound Attack With QAA. Generally, as shown by Lamberger et al. [55], for any permutation Q (to be more precise, for any injective map) the expected number of solutions to $Q\left(\Delta_{\text {in }} \oplus x\right) \oplus Q(x)=\Delta_{\text {out }}$ is always 1 . Hence, given a random $\left(\Delta_{i n}, \Delta_{\text {out }}\right)$, it is expected to find one inputoutput pair as the starting point. Taking the Sbox of AES as an example, for random given $\delta_{\text {in }}^{(i)} \mapsto \delta_{o u t}^{(i)}$ for $\mathrm{SB}^{(i)}$ with $1 \leq i \leq l, \mathrm{SB}^{(i)}\left(\delta_{\text {in }}^{(i)} \oplus x_{i}\right) \oplus \mathrm{SB}^{(i)}\left(x_{i}\right)=\delta_{\text {out }}^{(i)}$ has solution with probability about $\frac{1}{2}$, which means half of $\delta_{\text {in }}^{(i)} \mapsto \delta_{o u t}^{(i)}$ are impossible differentials. For a randomly given $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$, it is possible differential with probability about $\left(\frac{1}{2}\right)^{l}$. Hence, we have $\left(\frac{1}{2}\right)^{l} \cdot 2^{l}=1$ solution on average. Therefore, one can use the filter $\left(\frac{1}{2}\right)^{-l}$ to first identify the valid $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$, then traverse only those valid $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$ to generate the starting points.

Concretely, we propose to use quantum amplitude amplification (QAA) algorithm for this stage. Define $g: \mathbb{F}_{2}^{c} \rightarrow \mathbb{F}_{2}$ to be a Boolean function such that $g\left(\delta_{\text {in }}, \delta_{\text {out }}, \beta=0 ; x\right)=1$ if and only if $\mathrm{SB}(x) \oplus \mathrm{SB}\left(x \oplus \delta_{\text {in }}\right)=\delta_{\text {out }}$ and $x \leq x \oplus \delta_{\text {in }}$, and $g\left(\delta_{\text {in }}, \delta_{\text {out }}, \beta=1, x\right)=1$ if and only if $\mathrm{SB}(x) \oplus \mathrm{SB}\left(x \oplus \delta_{\text {in }}\right)=\delta_{\text {out }}$ and $x>x \oplus \delta_{\text {in }}$. Define $f: \mathbb{F}_{2}^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|} \mapsto \mathbb{F}_{2}$, such that $f\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)=1$ with $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right) \in \mathbb{F}_{2}^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|}$ if and only if $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$ is a valid differential (not impossible differential). The probability of $f\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)=1$ is 2^{-l}. The implementation of \mathcal{U}_{f} is in Algorithm 1. The time complexity of f is $l \cdot 2^{c / 2}$ in the worst case.

```
Algorithm 1: Implementing \(\mathcal{U}_{f}\)
    Input: \(\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle|y\rangle\)
    Output: \(\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle\left|y \oplus f\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)\right\rangle\)
    for \(i=1,2, \ldots, l\) do
        Deduce the input-output difference for \(\mathrm{SB}^{(i)}\), i.e., \(\left(\delta_{\text {in }}^{(i)}, \delta_{\text {out }}^{(i)}\right)\)
        Run Grover's algorithm on \(g_{i}\left(\delta_{i n}^{(i)}, \delta_{i n}^{(j)}, 0 ; \cdot\right): \mathbb{F}_{2}^{c} \mapsto \mathbb{F}_{2}\). Let \(x_{i}\) be the output
        if \(\mathrm{SB}^{(i)}\left(x \oplus \delta_{\text {in }}^{(i)}\right) \oplus \mathrm{SB}^{(i)}(x) \neq \delta_{\text {out }}^{(i)}\) then
            Return \(\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle|y\rangle\)
    Return \(\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle|y \oplus 1\rangle\)
```

Define the set $X:=\left\{\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right):\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right) \in \mathbb{F}_{2}^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|}\right\}$ and $X^{\prime}:=$ $\left\{\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right):\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)\right.$ is valid differential $\} \subset X$. The size of X^{\prime} is about $\left|X^{\prime}\right|=2^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|-l}$. The Setup oracle \mathcal{A} is to run Grover's algorithm on $f(\cdot)$: $\mathbb{F}_{2}^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|} \mapsto \mathbb{F}_{2}$ to get the superposition $|\phi\rangle=\sum_{\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right) \in X^{\prime}}\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle$. Among X^{\prime}, only one ($\Delta_{\text {in }}, \Delta_{\text {out }}$) can produce the good starting points and leads to the final collision. Hence, the probability of producing the good output when measuring $|\phi\rangle$ is $a=2^{-\left(\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|-l\right)}$. Then, $|\mathcal{A}|_{R T} \approx 2^{l / 2} \cdot l \cdot 2^{c / 2}=l \cdot 2^{\frac{l+c}{2}}$.

Given $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right) \in X$, define $G: \mathbb{F}_{2}^{l-1} \mapsto \mathbb{F}_{2}$ as $G\left(\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right)$ with $\alpha \in \mathbb{F}_{2}^{l-1} \cdot G\left(\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right)=1$ if and only if $\left(\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right)$ leads to a collision. Only one $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right) \in X^{\prime}$ together with the right $\alpha \in \mathbb{F}_{2}^{l-1}$ lead to a collision. Hence, $G\left(\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right)=1$ with probability about $2^{-\left(\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|\right)}$. The implementation of \mathcal{U}_{G} is given in Algorithm 2 with time complexity of $l \cdot 2^{c / 2}$. Define the Check operator $\mathcal{P}: \mathbb{F}_{2}^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|} \mapsto \mathbb{F}_{2}$ as $\mathcal{P}\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$ with $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right) \in X^{\prime} . \mathcal{P}\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)=1$ if and only if $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$ leads to a collision. The implementation of $\mathcal{U}_{\mathcal{P}}$ is given in Algorithm 3 with time complexity $\left|\mathcal{U}_{\mathcal{P}}\right|_{R T}=2^{(l-1) / 2} \cdot l \cdot 2^{c / 2}=l \cdot 2^{\frac{l+c-1}{2}} \cdot \mathcal{P}\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)=1$ with probability of $a=\frac{1}{\left|X^{\prime}\right|}=2^{-\left(\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|-l\right)}$. Hence, according to Equation 2, the total time complexity is

$$
\begin{align*}
\sqrt{1 / a} \cdot\left(|\mathcal{A}|_{R T}+\left|\mathcal{U}_{\mathcal{P}}\right|_{R T}\right) & =\sqrt{2^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|-l}} \cdot\left(l \cdot 2^{\frac{l+c}{2}}+l \cdot 2^{\frac{l+c-1}{2}}\right) \\
& \approx l \cdot 2^{\frac{\left|\Delta_{\text {in }}\right|+\left|\left.\right|_{\text {out }}\right|+c}{2}} \text { Sbox evaluations. } \tag{4}
\end{align*}
$$

Compared with [38] of complexity in Equation 3, our approach leads to a reduction of time complexity by a factor of roughly $2^{l / 2}$, so that the number of active Sboxes to be matched only has a linear rather than exponential impact.

A Case Study of AES. At ToSC 2019, Bonnetain, Naya-Plasencia, and Schrottenloher [14] proposed the quantum circuit of DDT for AES's Sbox.

Property 2 ([14]). There exists a quantum unitary for the DDT of AES Sbox that, for a given ($\delta_{\text {in }}, \delta_{o u t}$), finds a solution x conforming the difference pair and outputs ($x, O K$) if such an x exists, and (0 , none) otherwise. The circuit comes with

```
Algorithm 2: Implementing \(\mathcal{U}_{G}\)
    Input: \(\left|\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right\rangle|y\rangle, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l-1}\right) \in \mathbb{F}_{2}^{l-1}\)
    Output: \(\left|\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right\rangle\left|y \oplus G\left(\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right)\right\rangle\)
    for \(i=1,2, \ldots, l-1\) do
        Deduce the input-output difference for \(\mathrm{SB}^{(i)}\), i.e., \(\left(\delta_{\text {in }}^{(i)}, \delta_{o u t}^{(i)}\right)\)
        Run Grover's algorithm on \(g_{i}\left(\delta_{i n}^{(i)}, \delta_{i n}^{(j)}, \alpha_{i} ; \cdot\right): \mathbb{F}_{2}^{c} \mapsto \mathbb{F}_{2}\). Let \(x_{i}\) be the
        output
    Run Grover's algorithm on \(g_{l}\left(\delta_{i n}^{(l)}, \delta_{i n}^{(l)}, 0 ; \cdot\right): \mathbb{F}_{2}^{c} \mapsto \mathbb{F}_{2}\). Let \(x_{l}\) be the output
    Let \(x_{1}\left\|x_{2}, \ldots,\right\| x_{l}\) be the starting point
    if \(x_{1}\left\|x_{2}, \ldots,\right\| x_{l}\) leads to a collision then
        return \(\left|\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right\rangle|y \oplus 1\rangle\)
    else
        return \(\left|\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right\rangle|y\rangle\)
```

```
Algorithm 3: Implementing \(\mathcal{U}_{\mathcal{P}}\) : Checking if \(\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)\) leads to a
collision
    Input: \(\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle|y\rangle\)
    Output: \(\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle\left|y \oplus \mathcal{P}\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)\right\rangle\)
    Run Grover's algorithm on \(G\left(\Delta_{\text {in }}, \Delta_{\text {out }} ; \cdot\right): \mathbb{F}_{2}^{l-1} \mapsto \mathbb{F}_{2}\). Let \(\alpha \in \mathbb{F}_{2}^{l-1}\) be the
        output
    /* If \(\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)\) leads to a collision, which happens with
        probability of \(\frac{1}{\left|X^{\prime}\right|}=2^{-\left(\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|-l\right)}\), the right \(\alpha\) will output in
        Step 1; Else, a random \(\alpha\) will output */
    if \(G\left(\Delta_{\text {in }}, \Delta_{\text {out }} ; \alpha\right)=1\) then
        return \(\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle|y \oplus 1\rangle\)
    else
        return \(\left|\Delta_{\text {in }}, \Delta_{\text {out }}\right\rangle|y\rangle\)
```

22 ancilla qubits and a time complexity equivalent with 2 SBox computations. If the goal is only to decide whether a solution exists but not to find out it explicitly, the cost drops to 1 SBox computation and 15 ancilla qubits.

According to Property $2,|\mathcal{A}|_{R T}=2^{l / 2} \cdot l \cdot 1=l \cdot 2^{l / 2}$ and $\left|\mathcal{U}_{\mathcal{P}}\right|_{R T}=2^{(l-1) / 2}$. $l \cdot 2=l \cdot 2^{l+1}$. Then, Equation 4 becomes:

$$
\begin{align*}
\sqrt{\left|X^{\prime}\right|} \cdot\left(|\mathcal{A}|_{R T}+\left|\mathcal{U}_{\mathcal{P}}\right|_{R T}\right) & =\sqrt{2^{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|-l}} \cdot\left(l \cdot 2^{\frac{l}{2}}+l \cdot 2^{\frac{l+1}{2}}\right) \\
& \approx l \cdot 2^{\frac{\left|\Delta_{\text {in }}\right|+\left|\Delta_{\text {out }}\right|}{2}} \quad \text { Sbox evaluations. } \tag{5}
\end{align*}
$$

B Detailed Quantum Collision Attack on 8-round AES-128

As shown in Figure 15, focusing on the first Super-Sbox SSB $^{(0)}$ marked by red box, for the fixed chosen difference $\Delta x_{3}, \Delta y_{4}$ and a given k_{3}, we apply

Fig. 15: Quantum collision attack on 8-round AES-128

QAA algorithm to compute the conforming pair for the Super-Sbox SSB ${ }^{(0)}$. Define $g_{0}\left(\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right): \mathbb{F}_{2}^{8+8} \mapsto \mathbb{F}_{2}$, where $\left(\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)}\right)$ are marked by red box and involved in $\operatorname{SSB}^{(0)}$. It marks the valid $\Delta w_{3}[0,2]$ that makes $\Delta x_{3}^{(0)} \rightarrow \Delta w_{3}[0,2] \rightarrow y_{4}^{(0)}$ a possible differential. The implementation of $\mathcal{U}_{g_{0}}$ is given in Algorithm 4 with time complexity of about 6 Sbox evaluations. The probability of $g_{0}\left(\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right)=1$ is about 2^{-6}. Define set $S_{\left(\Delta x_{3}, \Delta y_{4}\right)}:=\left\{\Delta w_{3}[0,2]: \Delta x_{3}^{(0)} \rightarrow \Delta w_{3}[0,2] \rightarrow y_{4}^{(0)}\right.$ is a possible differential $\}$. The size $\left|S_{\left(\Delta x_{3}, \Delta y_{4}\right)}\right|=2^{16-6}=2^{10}$. The setup oracle \mathcal{A}_{0} is to run Grover's
algorithm on $g_{0}\left(\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \cdot\right): \mathbb{F}_{2}^{16} \mapsto \mathbb{F}_{2}$ to get the superposition $|\phi\rangle=$ $\sum_{\Delta w_{3}[0,2] \in S_{\left(\Delta x_{3}, \Delta y_{4}\right)}}\left|\Delta w_{3}[0,2]\right\rangle$ with time complexity of $\frac{\pi}{4} \cdot \sqrt{2^{6}} \cdot 6=2^{5.238}$ Sbox evaluations.

```
Algorithm 4: Quantum Implementation of \(\mathcal{U}_{g_{0}}\)
    Input: \(\left|\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right\rangle|y\rangle\)
    Output: \(\left|\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right\rangle\left|y \oplus g_{0}\left(\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right)\right\rangle\)
    1 Deduce \(\Delta z_{3}[0,2,3], \Delta w_{3}[3]\) with known differences \(\Delta w_{3}[0,2]\) and
        \(\Delta z_{3}[1]=0, \Delta w_{3}[1]=0\) according to Property 1
    2 For \(\left(\delta_{\text {in }}, \delta_{\text {out }}\right)\) of the Sbox, apply quantum circuit of DDT to check if \(\left(\delta_{\text {in }}, \delta_{\text {out }}\right)\)
        is a valid differential. Define \(\mathcal{U}_{\text {DDT }}\left(\delta_{\text {in }}, \delta_{\text {out }}\right)=1\) if and only if \(\left(\delta_{\text {in }}, \delta_{\text {out }}\right)\) is a
        valid differential
3 /* According to Property 2, the cost equals to 1 Sbox computation
        with 15 ancilla qubits
    if \(\mathcal{U}_{\text {DDT }}\left(\Delta x_{3}[0], \Delta y_{3}[0]\right)=0\) then
        return \(\left|\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right\rangle|y\rangle\)
    if \(\mathcal{U}_{\mathrm{DDT}}\left(\Delta x_{3}[10], \Delta y_{3}[10]\right)=0\) then
        return \(\left|\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right\rangle|y\rangle\)
    8 !
    9 if \(\mathcal{U}_{\text {DDT }}\left(\Delta x_{4}[3], \Delta y_{4}[3]\right)=0\) then
        return \(\left|\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right\rangle|y\rangle\)
    /* Totally, six input-output differences are checked */
    2 return \(\left|\Delta x_{3}^{(0)}, \Delta y_{4}^{(0)} ; \Delta w_{3}[0,2]\right\rangle|y \oplus 1\rangle\)
```

For a given key $k_{4}^{(0)} \in \mathbb{F}_{2}^{32}$ involved in $\operatorname{SSB}^{(0)}$, define the projector \mathcal{P}_{0} : $\mathbb{F}_{2}^{16} \mapsto \mathbb{F}_{2}$, where $\mathcal{P}_{0}\left(k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4} ; \Delta w_{3}[0,2]\right)=1$ if and only if there is a pair conforming $\Delta x_{3} \mapsto \Delta w_{3}[0,2] \mapsto \Delta y_{4}$ under $k_{4}^{(0)}$. Before implement $\mathcal{U}_{\mathcal{P}_{0}}$, we define a new $\mathcal{U}_{f_{0}}: \mathbb{F}_{2}^{6} \mapsto \mathbb{F}_{2}$, where $\mathcal{U}_{f_{0}}\left(k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}, \Delta w_{3}[0,2] ; \alpha\right)=1$ if and only if ($k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}, \Delta w_{3}[0,2] ; \alpha$) outputs a valid pair for the differential with $\alpha \in \mathbb{F}_{2}^{6}$. The implementation of $\mathcal{U}_{f_{0}}$ is given in Algorithm 5 with time complexity of 15 Sbox evalutions. The $\mathcal{U}_{\mathcal{P}_{0}}$ is implemented in Algorithm 6 with time complexity of about $\frac{\pi}{4} \cdot \sqrt{2^{6}} \cdot 15=2^{6.56}$ Sbox evalutions.

At last, given $\left(k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}\right)$ for $\operatorname{SSB}^{(0)}$, by applying QAA algorithm (defined as $\mathcal{U}_{\text {SSB }}(0)$, we find the right $\Delta w_{3}[0,2]=\mathcal{U}_{\text {SSB }}\left(k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}\right)$ with time complexity $\frac{\pi}{4} \cdot \sqrt{\left|S_{\left(\Delta x_{3}, \Delta y_{4}\right)}\right|} \cdot\left(2^{5.238}+2^{6.56}\right)=2^{11.7}$ Sbox evaluations according to Equation 2.

Similarly, we define $\mathcal{U}_{\text {SSB }^{(1)}}, \mathcal{U}_{\text {SSB }^{(2)}}, \mathcal{U}_{\text {SSB }^{(3)}}$ to compute $\Delta w_{3}[4,5], \Delta w_{3}[8,9]$, $\Delta w_{3}[13,14]$ in parallel.

We use two blocks to build the collision as shown in Figure 11. We define $G\left(m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right)$, where $\Delta z_{2} \in \mathbb{F}_{2}^{24}, \Delta w_{4} \in \mathbb{F}_{2}^{24}$, and $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right) \in \mathbb{F}_{2}^{3}$. $G\left(m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right)=1$ if and only if $\left(m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right)$ leads to a collision.

```
Algorithm 5: Quantum Implementation of \(\mathcal{U}_{f_{0}}\)
    Input: \(\left|k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}, \Delta w_{3}[0,2] ; \alpha\right\rangle, \alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}\right) \in \mathbb{F}_{2}^{6}\)
    Output: \(\left|k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}, \Delta w_{3}[0,2] ; \alpha\right\rangle \mid y \oplus f_{0}\left(k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}, \Delta w_{3}[0,2] ; \alpha\right\rangle\)
    1 Deduce \(\Delta z_{3}[0,2,3], \Delta w_{3}[3]\) with known differences \(\Delta w_{3}[0,2]\) and
    \(\Delta z_{3}[1]=0, \Delta w_{3}[1]=0\) according to Property 1.
    2 For \(\left(\delta_{\text {in }}, \delta_{\text {out }}\right)\) of the Sbox, apply quantum circuit of DDT to output the
        conforming value. Let \(\mathcal{U}_{\mathrm{DDT}}^{\prime}\left(\delta_{\text {in }}, \delta_{\text {out }}\right)=x\), where \(\mathrm{SB}\left(x \oplus \delta_{\text {in }}\right) \oplus \mathrm{SB}(x)=\delta_{\text {out }}\)
    3 /* According to Property 2, the cost equals to 2 Sbox computation
        with 22 ancilla qubits
    if \(\alpha_{0}=1\) then
        \(x_{3}[0]=\mathcal{U}_{\mathrm{DDT}}^{\prime}\left(\Delta x_{3}[0], \Delta y_{3}[0]\right)\)
    else
            \(x_{3}[0]=\mathcal{U}_{\mathrm{DDT}}^{\prime}\left(\Delta x_{3}[0], \Delta y_{3}[0]\right) \oplus \Delta x_{3}[0]\)
    if \(\alpha_{1}=1\) then
        \(x_{3}[10]=\mathcal{U}_{\mathrm{DDT}}^{\prime}\left(\Delta x_{3}[10], \Delta y_{3}[10]\right)\)
    else
        \(x_{3}[0]=\mathcal{U}_{\mathrm{DDT}}^{\prime}\left(\Delta x_{3}[10], \Delta y_{3}[10]\right) \oplus \Delta x_{3}[10]\)
    \(\vdots\)
    if \(\alpha_{5}=1\) then
        \(x_{4}[3]=\mathcal{U}_{\mathrm{DDT}}^{\prime}\left(\Delta x_{4}[3], \Delta y_{4}[3]\right)\)
    else
        \(x_{4}[3]=\mathcal{U}_{\mathrm{DDT}}^{\prime}\left(\Delta x_{4}[3], \Delta y_{4}[3]\right) \oplus \Delta x_{4}[3]\)
    Compute \(w_{3}[0,2,3]=k_{4}[0,2,3] \oplus x_{4}[0,2,3]\) and \(z_{3}[0,2,3]=\mathrm{SB}\left(x_{3}[0,10,15]\right)\)
    if \(w_{3}[0,2,3]=\operatorname{MC}\left(z_{3}[0,2,3]\right) / *\) According to Property 1, it holds with
        probability of \(2^{-16} \quad\) */
    then
        \(\left|k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}, \Delta w_{3}[0,2] ; \alpha\right\rangle|y \oplus 1\rangle\)
    else
        \(\left|k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}, \Delta w_{3}[0,2] ; \alpha\right\rangle|y\rangle\)
```

The complexity to implement \mathcal{U}_{G} in Algorithm 7 is bounded by Line 4 to 4 , which is about $2^{11.7} \times 4=2^{13.7}$ Sbox evaluations. Since the probability of the outbound phase is 2^{-96}, together with the three auxiliary qubits β, $G\left(m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right)=1$ with probability of 2^{-99}. We build U_{F} in Algorithm 8 to finally obtain the collision, whose time complexity is bounded by Line 1 with $\frac{\pi}{4} \cdot \sqrt{2^{99}} \cdot 2^{13.7}=2^{62.85}$ Sbox evaluations. There are 160 Sboxes in an 8 -round AES. Hence, the total time complexity to get the collision $\left(m_{0}, m_{1}, m_{1}^{\prime}\right)$ is about $2^{62.85} / 160=2^{55.53} 8$-round AES computations.

```
Algorithm 6: Quantum Implementation of \(\mathcal{U}_{\mathcal{P}_{0}}\)
    Input: \(\left|k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4} ; \Delta w_{3}[0,2]\right\rangle\)
    Output: \(\left|k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4} ; \Delta w_{3}[0,2]\right\rangle \mid y \oplus f_{0}\left(k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4} ; \Delta w_{3}[0,2]\right\rangle\)
    Run Grover's algorithm on \(\mathcal{U}_{f_{0}}\left(k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}, \Delta w_{3}[0,2] ; \cdot\right): \mathbb{F}_{2}^{6} \mapsto \mathbb{F}_{2}\), let \(\alpha\) as
        output
    Run Line to of Algorithm 5 with \(\alpha\) to output \(w_{3}[0,2,3]\) and \(z_{3}[0,2,3]\)
    if \(w_{3}[0,2,3]=\operatorname{MC}\left(z_{3}[0,2,3]\right)\) then
            \(\left|k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4} ; \Delta w_{3}[0,2]\right\rangle|y \oplus 1\rangle\)
    else
        \(\left|k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4} ; \Delta w_{3}[0,2]\right\rangle|y\rangle\)
```

```
Algorithm 7: Quantum Implementation of \(\mathcal{U}_{G}\)
    Input: \(\left|m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right\rangle, \beta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right) \in \mathbb{F}_{2}^{3}\)
    Output: \(\left|m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right\rangle\left|y \oplus G\left(m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right)\right\rangle\)
    Comput \(k_{4}\) for the second block from \(m_{0}\)
    Deduce \(\Delta x_{3}, \Delta y_{4}\) from \(\Delta z_{2}\) and \(\Delta y_{4}\)
    3 Compute \(x_{3}[0,10,15]\) by accessing the quantum circuit of DDT with
        input-output differences, then \(z_{3}[0,2,3]\) are known
    4 Compute \(\Delta w_{3}[0,2]=\mathcal{U}_{\text {SSB }}(0)\left(k_{4}^{(0)}, \Delta x_{3}, \Delta y_{4}\right)\)
    5 Compute \(\Delta w_{3}[4,5]=\mathcal{U}_{\text {SSB }}{ }^{(1)}\left(k_{4}^{(1)}, \Delta x_{3}, \Delta y_{4}\right)\)
    6 Compute \(\Delta w_{3}[8,9]=\mathcal{U}_{\text {SSB }}{ }^{(2)}\left(k_{4}^{(2)}, \Delta x_{3}, \Delta y_{4}\right)\)
    7 Compute \(\Delta w_{3}[13,14]=\mathcal{U}_{\mathrm{SSB}}{ }^{(3)}\left(k_{4}^{(3)}, \Delta x_{3}, \Delta y_{4}\right)\)
    8 Run \(\mathcal{U}_{\mathcal{P}_{0}}\) with \(\Delta w_{3}[0,2]\), let \(w_{3}[0,2,3]\) and \(z_{3}[0,2,3]\). Compute \(x_{4}[0,1,2,3]\)
        from \(w_{3}[0,2,3], z_{3}[0,2,3]\) and \(k_{4}\). Let \(x_{4}[0,1,2,3]\) as starting point if \(\beta_{0}=1\),
        else \(x_{4}[0,1,2,3] \oplus \Delta x_{4}[0,1,2,3]\) as starting point
    9 Run \(\mathcal{U}_{\mathcal{P}_{1}}\) with \(\Delta w_{3}[4,5]\), let \(w_{3}[4,5,7]\) and \(z_{3}[5,6,7]\). Compute \(x_{4}[4,5,6,7]\)
        from \(w_{3}[4,5,7]\) and \(z_{3}[5,6,7]\) and \(k_{4}\). Let \(x_{4}[4,5,6,7]\) be the starting point if
        \(\beta_{1}=1\), else \(x_{4}[4,5,6,7] \oplus \Delta x_{4}[4,5,6,7]\) be starting point
\(10 \operatorname{Run} \mathcal{U}_{\mathcal{P}_{2}}\) with \(\Delta w_{3}[8,9]\), let \(w_{3}[8,9,10]\) and \(z_{3}[8,9,10]\). Compute \(x_{4}[8,9,10,11]\)
        from \(w_{3}[8,9,10]\) and \(z_{3}[8,9,10]\) and \(k_{4}\). Let \(x_{4}[8,9,10,11]\) be the starting
        point if \(\beta_{2}=1\), else \(x_{4}[8,9,10,11] \oplus \Delta x_{4}[8,9,10,11]\) be starting point
11 Run \(\mathcal{U}_{\mathcal{P}_{3}}\) with \(\Delta w_{3}[13,14]\), let \(w_{3}[13,14,15]\) and \(z_{3}[12,13,15]\). Compute
    \(x_{4}[12,13,14,15]\) from \(w_{3}[13,14,15]\) and \(z_{3}[12,13,15]\) and \(k_{4}\). Let
    \(x_{4}[12,13,14,15]\) be the starting point
    if Check if the starting point lead to a collision then
        return \(\left|m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right\rangle|y \oplus 1\rangle\)
    else
        return \(\left|m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right\rangle|y\rangle\)
```

```
Algorithm 8: Quantum Implementation of \(\mathcal{U}_{F}\)
    Output: \(m_{0}, m_{1}, m_{1}^{\prime}\)
    1 Run Grover's algorithm on \(G(\cdot): \mathbb{F}_{2}^{128+24+24+3} \mapsto \mathbb{F}_{2}\) and let
    \(\left(m_{0}, \Delta z_{2}, \Delta w_{4}, \beta\right)\) be the output
    2 Run Line 1 to 11 of Algorithm 7 to get the \(x_{4}\)
    3 Compute \(x_{4}^{\prime}=x_{4} \oplus \Delta x_{4}\)
    4 Compute \(m_{1}\) from \(x_{4}\) and \(m_{0}\)
    5 Compute \(m_{1}^{\prime}\) from \(x_{4}^{\prime}\) and \(m_{0}\)
    6 return \(m_{0}, m_{1}, m_{1}^{\prime}\)
```


C Practical Semi-Free-Start Collision 6-round AES-128

Table 4 presents an example semi-free-start collision on 6 -round AES. The code to generate the collision is given at https://www.dropbox.com/s/2n4d9zwufkpigqt/ Find_inbound. 7 z

D Quantum 7-Round Semi-Free-Start Collision Attack on Saturnin-Hash

We derive a semi-free-start collision attack on 7-round Saturnin by using the new truncated differential trail shown in Figure 16. The inbound phase is separated into 2 phases, while the outbound phase happens with probability 2^{-96} for the MC cancellation at round 5 . Combine with 4 -byte cancellation feed-forward operator, we obtain an collision attack with probability 2^{-160}.

Inbound phase details. Given $\left(\Delta y_{1}, \Delta w_{3}, \Delta w_{4}\right)$ as 3 prefixed differences of the inbound phase. Our following details describe an efficient way to generate the data pairs and a key conforming the inbound path.

1. Compute $\Delta x_{2}=\operatorname{MC}\left(\Delta y_{1}\right), \Delta y_{3}=\operatorname{MC}^{-1}\left(\Delta w_{3}\right), \Delta y_{4}=\operatorname{MR}^{-1}\left(\Delta w_{4}\right)$, and $\Delta x_{4}=$ Δw_{3}.
2. Deduce the active bytes value of $\left(x_{4}, x_{4}^{\prime}\right)$ by assessing to the DDT.
3. Assign random values to first column of K, i.e. byte $k_{0}, k_{4}, k_{8}, k_{12}$, then compute $x_{3}[0,4,8,12]=\mathrm{SB}^{-1}\left(\mathrm{MC}^{-1}\left(x_{4}[0,4,8,12] \oplus k_{\{0,4,8,12\}}\right)\right)$ and the corresponding $\Delta x_{3}[0,4,8,12]$.
4. From $\Delta w_{2}[0,4,8,12]=\Delta x_{3}[0,4,8,12]$ and Property 1 , we know all the differences of Δy_{2} and Δw_{2}. The active byte values of x_{2} and y_{2} are determined as well.
5. Since $\Delta x_{3}=\Delta w_{2}$, we assess to the DDT to obtain the remaining active byte values of x_{3} and y_{3}. We also obtain the remaining byte values at second and third column of w_{3}.
6. Connect w_{3} and x_{4} by choosing $k_{\{1,5,9,13,2,6,10,14\}}$, then the first and second columns of K^{\prime} are known as well.

Table 4: Pair found by semi-free-start collision attack on 6-round AES-128
7. Compute the first two columns $w_{2}[0,4,8,12,1,5,9,13]=x_{3}[0,4,8,12,1,5,9,13] \oplus$ $k_{\{5,9,13,1,6,10,14,2\}}$.
8. With known values for the two active columns of y_{2} and two deduced columns of w_{2} in Step 7, all the unknown values for states y_{2} and w_{2} are known by Property 1. Then, we deduce the last unknown key cells: $k_{\{7,11,15,3\}}=$ $x_{3}[2,6,10,14] \oplus w_{2}[2,6,10,14]$.

The probability of the outbound phase is 2^{-160}. According to Equation 4, $l=8+12+12=32$, the time complexity is $32 \cdot 2^{160 / 2+16 / 2} /(7 \times 16)=2^{86}$ 7 -round Saturnin-Hash.

Fig. 16: Semi-free-start collision attack on 7-round Saturnin

E The 10-round Differential Characteristic of Saturinin-Hash

The 10 -round rebound-attack trail on Saturnin-Hash is given in Figure 17. The probability of the outbound phase is $2^{-12-59.8-16-59.8-64}=2^{-211.6}$. Together with a filter of 2^{-32} in the inbound phase, the total probability is $2^{-211.6-32}=$ $2^{-243.6}$.

F Figures on the Quantum Collision Attack on SKINNY-128-384

The 21-round SKINNY-128-384 using the differential characteristic shown in Figure 18 in quantum setting.

The classical free-start collision attack and a 5 -round inbound data pair of 19-round SKINNY-128-384 hash mode which are shown in Figure 19 and Figure 20 respectively. The source code to generate the data of Figure 20 is at https: //www.dropbox.com/s/2n4d9zwufkpigqt/Find_inbound.7z

G Quantum Collision Attacks on Reduced Grøstl

In this section, we describe an example technique to bridge the differences with the degree of freedom from the internal states. At FSE 2011, Jean et al. [44] considered the inbound phase covering three rounds on Grøstl-256 and Grøstl-512. Given input and output differences, Jean et al. built several tables for Super-Sboxes, and connect them with a guess-and-determine approach. At EUROCRYPT 2020, Hosoyamada and Sasaki [38] proposed a memoryless method to solve the 3 -round inbound phase for the case like Grøstl-256 and Whirlpool, where the Sboxes in the 3-round inbound phase are all active. For the case Grøstl-512, the 3-round inbound phase is non-full-active, which means we may have many degrees of freedom from the internal states to link the differences.

Denote ' V ' as the byte with known value and difference, and ' D ' as the byte with known difference but no value. Denote $S[\mathrm{~V}]$ as the bytes of state S marked by 'V', and $S[\mathrm{D}]$ as the bytes marked by 'D'. We explain our technique with the problem shown in Figure 21 (a) as a start: given input values $\left(S_{1}[0], S_{1}^{\prime}[0]\right)$ and ($S_{1}[1], S_{1}^{\prime}[1]$), output differences $\Delta S_{3}[0], \Delta S_{3}[2]$ (marked by blue) and $\Delta S_{3}[1,3]=0$, the goal is to find a pair that conforms to the truncated differential. Formally, the pair finding is equivalent with solving the following nonlinear equation system:

$$
\left\{\begin{array}{l}
\mathrm{SB}\left(2 S_{1}[0] \oplus 3 S_{1}[1] \oplus S_{1}[2] \oplus S_{1}[3]\right) \oplus \mathrm{SB}\left(2 S_{1}^{\prime}[0] \oplus 3 S_{1}^{\prime}[1] \oplus S_{1}^{\prime}[2] \oplus S_{1}^{\prime}[3]\right)=\Delta S_{3}[0] \tag{6}\\
\mathrm{SB}\left(S_{1}[0] \oplus 2 S_{1}[1] \oplus S_{1}[2] \oplus 3 S_{1}[3]\right) \oplus \mathrm{SB}\left(S_{1}^{\prime}[0] \oplus 2 S_{1}^{\prime}[1] \oplus 3 S_{1}^{\prime}[2] \oplus S_{1}^{\prime}[3]\right)=0 \\
\mathrm{SB}\left(S_{1}[0] \oplus S_{1}[1] \oplus 2 S_{1}[2] \oplus 3 S_{1}[3]\right) \oplus \mathrm{SB}\left(S_{1}^{\prime}[0] \oplus S_{1}^{\prime}[1] \oplus 2 S_{1}^{\prime}[2] \oplus 3 S_{1}^{\prime}[3]\right)=\Delta S_{3}[2] \\
\mathrm{SB}\left(3 S_{1}[0] \oplus S_{1}[1] \oplus S_{1}[2] \oplus 2 S_{1}[3]\right) \oplus \mathrm{SB}\left(3 S_{1}^{\prime}[0] \oplus S_{1}^{\prime}[1] \oplus 2 S_{1}^{\prime}[2] \oplus S_{1}^{\prime}[3]\right)=0
\end{array}\right.
$$

Fig. 17: Free-start collision attack on 10-round Saturnin-Hash
where the blue bytes are known, i.e., the equation system has 4 variables (they act as the degrees of freedom) and four equations. Hence, it is expected to have one solution on average. However, solving the nonlinear system directly is not easy. The trivial way is to traverse the 4-byte ($\left.S_{1}[2], S_{1}[3], S_{1}^{\prime}[2], S_{1}^{\prime}[3]\right)$ and check

Fig. 20: 5-round inbound phase of 19-round SKINNY-128-384: (a) Differences, (b) Values
if the equation system holds, which comes with a time complexity of 2^{32}. Here, we give an efficient method to deduce the red bytes from blue bytes, and find the solution with time complexity 1 :

1. With difference $\Delta S_{1}[0,1]$ and 2 inactive bytes in S_{2}, all other byte differences in both S_{1} and S_{2} can be deduced according to Property 1,
2. With $\Delta S_{2}[0]$, and $\Delta S_{3}[0]$, one value solution of ($\left.S_{2}[0], S_{2}^{\prime}[0]\right)$ on average can be found by looking up DDT, and similarly for ($\left.S_{2}[2], S_{2}^{\prime}[2]\right)$,
3. With $S_{2}[0,2]$ and $S_{1}[0,1]$, all byte values of S_{1} and S_{2}, and hence S_{3} are determined, again by Property 1.

Fig. 21: Connecting differences with DoF from internal states

Property 3. For the case in Figure 21 (b) with known values $S_{0}[0]$ and $S_{0}^{\prime}[0]$, known difference $\Delta S_{3}[0,2]$, and zero difference in $\Delta S_{3}[1,3], 4$ equations with 6 -bytes degree of freedom can be established, hence 2^{16} solutions are expected on average. We randomly guess the byte value $S_{2}[0]$, then $S_{2}^{\prime}[0]$ can be computed as $\mathrm{SB}^{-1}\left(\mathrm{SB}\left(S_{2}[0]\right) \oplus \Delta S_{3}[0]\right)$. Together with 2 zero-difference bytes $\Delta S_{2}[1,3]$ and known $\Delta S_{1}[0]$, all differences ΔS_{1} and ΔS_{2} can be deducted, and so the value $S_{2}[2]$ by looking up DDT with $\left(\Delta S_{2}[2], \Delta S_{3}[2]\right)$. The overall time complexity is 1 .

Property 4. For the case in Figure 21 (c) with known values $S_{0}[0,1]$ and $S_{0}^{\prime}[0,1]$, known difference $\Delta S_{3}[2]$, and zero difference in $\Delta S_{3}[0,1,3], 4$ equations with 4 -byte degrees of freedom can be established, and one solution is expected on average. Since there are 5 input/output bytes of MC with known differences, i.e., $\Delta S_{1}[0,1]$ and $\Delta S_{2}[0,1,3]$, the system is over-defined and has solution with probability 2^{-8} due to Property 1. Then, both byte difference and value of $S_{2}[2]$ are determined. For each value of $S_{2}[0]$, all the values of S_{2} are determined, and there are 2^{8} possibilities of $S_{2}[0]$ leading to 2^{8} solution pairs. Hence, for a random given $S_{1}[\mathrm{~V}]$ and $S_{3}[\mathrm{D}]$, it is expected to find $2^{-8} \times 2^{8}=1$ solution on average. The average time complexity is 1 .

Property 5. For the case in Figure 21 (d) with known values $S_{0}[0,1]$ and $S_{0}^{\prime}[0,1]$, known difference $\Delta S_{3}[0,1,2]$, and zero difference in $\Delta S_{3}[3]$, 4 equations with 4byte degrees of freedom can be established, and one solution is expected on average. We first guess one byte $S_{2}[0]$, the $S_{2}^{\prime}[0]$ is deduced as $\mathrm{SB}^{-1}\left(\mathrm{SB}\left(S_{2}[0]\right) \oplus\right.$ $\left.\Delta S_{3}[0]\right)$, and all difference bytes of ΔS_{2} including $\Delta S_{2}[1,2]$ are determined due to knowledge of $\Delta S_{1}[0,1]$ and $\Delta S_{2}[0,3]$ together with Property 1. By looking up DDT with $\left(\Delta S_{2}[1,2], \Delta S_{3}[1,2]\right)$, values $S_{2}[1,2]$ are deduced. However, for MC between S_{1} and $S_{2}, 5$ input/output bytes are known now, i.e., $S_{1}[0,1]$ and $S_{2}[0,1,2]$, the system is over-defined and consistent with probability 2^{-8}. Hence, $2^{8} \times 2^{-8}=1$ solution is expected with time complexity 1 per solution on average.

It is important to note that, other cases can be solved following a similar way from one of the 4 cases above. An application to Grøstl-512 hash function solves a 3 -round inbound phase without qRAM.

We describe the steps solving the 3-round inbound phase in a more detailed way in Figure 22, 23 and 24. The first SH and last SH and MB are omitted. Let $S^{(i)}[j]$ be the j th byte of the i th column for state S. For given ΔS_{1} and ΔS_{7}, as shown in Figure 22, in Step 1, we first guess the 32 -byte (2^{256}) values $S_{6}[\mathrm{~V}]$. With ΔS_{7}, deduce $S_{6}^{\prime}[\mathrm{V}]$. We introduce Algorithm 9 to find the conforming pair.

Complexity. The time complexity of Algorithm 9 is about $2^{8 \times 32-3 \times 8+9 \times 8}=$ 2^{304}. Given $\left(\Delta S_{1}, \Delta S_{7}\right)$, it is expected to find $2^{256-24+72-8 \times 4-16 \times 2-240}=1$ conforming pair with 2^{16} memory cost to store DDT. At FSE 2012, Jean et al's [44] solved the 3 -round inbound with time complexity 2^{280} and memory complexity 2^{64}. Our algorithm is very friendly to quantum implementation without qRAM together with Property 2, since Grøstl adopts the same Sbox with AES.


```
Algorithm 9: Deduing the conforming pair with given \(\left(\Delta S_{1}, \Delta S_{7}\right)\)
    for \(S_{6}[V] \in \mathbb{F}_{2}^{8 \times 32}\) in Figure 22 (Step 1) do
        Compute backward to \(S_{3}\).
        if \(\left(\Delta S_{2}^{(3)}, \Delta S_{3}^{(3)}\right),\left(\Delta S_{2}^{(4)}, \Delta S_{3}^{(4)}\right),\left(\Delta S_{2}^{(6)}, \Delta S_{3}^{(6)}\right)\) satisfy Pro. 1 then
            In Figure 22 (Step 1): Deduce \(S_{3}^{(2)}[\mathrm{D}]\) with 2-byte \(S_{3}^{(2)}[\mathrm{V}]\) and 6
                nonactive bytes \(S_{2}^{(2)}\) by Property 1. Together with \(\Delta S_{1}\), deduce
                \(S_{2}^{(2)}[\mathrm{V}] ;\) Similarly, deduce \(S_{2}^{(3,5,7)}[\mathrm{V}], S_{3}^{(3)}[\mathrm{D}]\) and \(S_{3}^{(5,7)}[\mathrm{V}]\)
                for \(\left(S_{2}^{(4)}[0], S_{2}^{(6)}[0], S_{2}^{(3)}[0], S_{2}^{(2)}[0], S_{2}^{(1)}[0], S_{6}^{(15)}[0], S_{2}^{(0)}[0], S_{6}^{(14)}[0]\right.\),
                \(\left.S_{2}^{(15)}[0]\right) \in \mathbb{F}_{2}^{8 \times 9}\) do
                    In Figure 22 (Step 1): Deduce \(S_{3}^{(4,6)}[\mathrm{V}]\) with guessed
                        \(\left(S_{2}^{(4)}[0], S_{2}^{(6)}[0]\right)\); Deduce \(S_{5}^{(15)}[\mathrm{D}], S_{6}^{(15)}[\mathrm{D}]\) with 2-byte \(S_{5}^{(15)}[\mathrm{V}]\)
                and 6 inactive bytes in \(S_{6}^{(15)}\); Deduce \(S_{5}^{(0)}[\mathrm{D}]\) and \(S_{5}^{(0)}[\mathrm{V}]\)
                    In Figure 22 (Step 2): Deduce \(S_{3}[\mathrm{~V}]\) and \(S_{4}[\mathrm{~V}]\) by DDT; Deduce
                    \(S_{5}^{(0)}[\mathrm{V}], S_{6}^{(0)}[\mathrm{V}]\) by Properyty 1; Deduce \(S_{3}^{(1)}[\mathrm{D}], S_{2}^{(1)}[\mathrm{V}]\) by
                \(S_{3}^{(1)}[0,1]\) and 6 inactivey bytes in \(S_{2}^{(1)}\)
                    In Figure 22 (Step 3): Deduce \(S_{3}[\mathrm{~V}], S_{4}[\mathrm{~V}]\) by DDT; Deduce \(S_{2}[\mathrm{~V}]\)
                and \(S_{3}[\mathrm{~V}]\) with guessed \(S_{2}^{(3)}[0]\); Deduce \(S_{5}[\mathrm{D}]\) and \(S_{6}[\mathrm{~V}]\)
                    In Figure 22 (Step 4): Deduce \(S_{3}[\mathrm{~V}]\) and \(S_{4}[\mathrm{~V}]\); Deduce \(S_{2}[\mathrm{~V}]\),
                    \(S_{3}[\mathrm{~V}]\) with guessed \(S_{2}^{(2)}[0]\); Deduce \(S_{5}[\mathrm{D}], S_{6}[\mathrm{~V}]\)
                    In Figure 22 (Step 5): Deduce \(S_{3}[\mathrm{~V}]\); Deduce \(S_{2}[\mathrm{~V}], S_{3}[\mathrm{~V}]\) with
                    guessed \(S_{2}^{(1)}[0]\); Deduce \(S_{5}[D], S_{6}[\mathrm{~V}]\)
                    In Figure 22 (Step 6): Deduce \(S_{5}[\mathrm{~V}], S_{6}[\mathrm{~V}]\) with guessed \(S_{6}^{15}[0]\);
                    Deduce \(S_{2}[\mathrm{~V}], S_{3}[D]\) with guessed \(S_{2}^{(0)}[0]\)
                    In Figure 23 (Step 7): Deduce \(S_{3}[\mathrm{~V}], S_{4}[\mathrm{~V}]\) with DDT; Deduce
                    \(S_{3}\) [V] with MB;
                    In Figure 23 (Step 8): Deduce \(S_{5}[\mathrm{~V}], S_{6}[\mathrm{~V}]\) with gessed \(S_{6}^{(14)}[0]\);
                    Deduce all the differences in \(\Delta S_{2}^{(15)}\) and \(\Delta S_{3}^{(15)}\) with known bytes
                \(S_{3}^{(15)}[0,1,7]\) and the guessed \(S_{2}^{(15)}[0]\); Deduce \(S_{3}^{(15)}[2,3]\) with
                DDT; Deduce all values of this column with 5 known bytes
                \(S_{3}^{(15)}[0,1,2,3,7]\) and 4 known bytes \(S_{2}^{(15)}[0,1,6,7]\) (a filter of \(2^{-8}\) )
                    In Figure 23 (Step 9): The red bytes in \(S_{4}\) are deduced in Step 8;
                    With the red and blue bytes, deduce \(S_{5}[\mathrm{~V}], S_{6}[\mathrm{~V}]\)
                    In Figure 23 (Step 10 ): with 4-byte \(S_{3}^{(14)}[\mathrm{V}]\) and 5 inactive bytes
                    \(S_{3}^{(14)}\), we first deduce all the differences of the same column,
                which is a filter of \(2^{-8}\); Then, with deduced difference \(\Delta S_{3}^{(14)}[1]\)
                and known \(\Delta S_{4}^{(14)}[1]\), get the value \(S_{3}^{(14)}\) [1] by DDT; With values
                    \(S_{3}^{(14)}[0,1,2,3,7]\) and \(S_{2}^{(14)}[0,1,2]\), deduce bytes marked by red
                    In Figure 24 (Step 11): Deduce \(S_{5}[\mathrm{~V}], S_{6}[\mathrm{~V}]\); Deduce \(S_{5}^{(10)}[\mathrm{D}]\) with
                    \(4 S_{5}^{(10)}[\mathrm{V}]\) and 5 inactive bytes in \(S_{6}^{(10)}\), which is also
                a filter of \(2^{-8}\); Deduce \(S_{2}[\mathrm{~V}]\) and \(S_{3}[\mathrm{~V}]\)
                    In Figure 24 (Step 12): Deduce \(S_{4}[\mathrm{~V}]\) from \(S_{3}\), where the known
                \(\Delta S_{4}^{(13)}[3]\) acts as a filter of \(2^{-8}\); Deduce \(S_{5}[\mathrm{~V}]\) and \(S_{6}[\mathrm{~V}]\)
                    In Figure 24 (Step 13): We deduce \(S_{4}[\mathrm{~V}]\) from \(S_{5}\) of Step 12;
                    Deduce \(S_{2}[\mathrm{~V}], S_{3}[\mathrm{~V}]\) from the blue and red bytes (a filter of \(2^{-16}\) )
                    In Figure 24 (Step 14): Deduce \(S_{5}[\mathrm{~V}], S_{6}[\mathrm{~V}]\) with Property 5;
                    Deduce \(S_{2}[\mathrm{~V}], S_{3}[\mathrm{~V}]\) (a filter of \(2^{-16}\) )
                    In Figure 24 (Step 15): Deduce \(S_{5}[\mathrm{~V}], S_{6}[\mathrm{~V}]\); Deduce the last three
                    bytes \(S_{3}^{(9)}[3], S_{3}^{(10)}[4], S_{3}^{(11)}\) [5]. Building similar equations to
                Equation (6), we deduce the filter in this step is
                \(2^{-16-16-48-48-48-64}=2^{-240}\)
```


G. 1 Finding the Conforming Pair in Quantum Way

Given $\left(\Delta S_{1}, \Delta S_{7}\right)$, we convert Algorithm 9 into a quantum one. We use the quantum amplitude amplification algorithm. For Line 1 to Line 3 in Figure 22 (Step 1), we define $g: \mathbb{F}_{2}^{256} \mapsto \mathbb{F}_{2}$ as $g\left(\Delta S_{1}, \Delta S_{7} ; x\right)$, where $x=S_{6}[\mathrm{~V}] \in \mathbb{F}_{2}^{256}$. $g\left(\Delta S_{1}, \Delta S_{7} ; x\right)=1$ if and only if $\left(\Delta S_{1}, \Delta S_{7} ; x\right)$ satisfy the condition in Line 3, i.e., check if the computed $\left(\Delta S_{2}^{(3)}, \Delta S_{3}^{(3)}\right),\left(\Delta S_{2}^{(4)}, \Delta S_{3}^{(4)}\right)$ and $\left(\Delta S_{2}^{(6)}, \Delta S_{3}^{(6)}\right)$ satisfy Property 1, where the probability is 2^{-24}. Let $T_{\left(\Delta S_{1}, \Delta S_{7}\right)}:=\{x: x \in$ $\left.\mathbb{F}_{2}^{256}, g\left(\Delta S_{1}, \Delta S_{2} ; x\right)=1\right\}$, whose size is $\left|T_{\left(\Delta S_{1}, \Delta S_{7}\right)}\right|=2^{256-24}=2^{232}$. Then, \mathcal{A} is to apply Grover's algorithm to $g\left(\Delta S_{1}, \Delta S_{7} ; \cdot\right)$ to produce the superposition state $|\phi\rangle=\sum_{x \in T_{\left(\Delta S_{1}, \Delta S_{7}\right)}}|x\rangle$. Hence, the time complexity $|\mathcal{A}|_{R T} \approx \sqrt{2^{24}}=2^{12}$.

The projector \mathcal{P} is to identify the good state $|x\rangle$, such that it leads to a good pair conforming to $\left(\Delta S_{1}, \Delta S_{7}\right)$. Given $|x\rangle$, we traverse $\left(S_{2}^{(4)}[0], S_{2}^{(6)}[0], S_{2}^{(3)}[0]\right.$, $\left.S_{2}^{(2)}[0], S_{2}^{(1)}[0], S_{6}^{(15)}[0], S_{2}^{(0)}[0], S_{6}^{(14)}[0], S_{2}^{(15)}[0]\right) \in \mathbb{F}_{2}^{72}$ in Line 5 of Algorithm 9 to check if $|x\rangle$ leads to the good pair. We define $f: \mathbb{F}_{2}^{72} \mapsto \mathbb{F}_{2}$ as $f\left(\Delta S_{1}, \Delta S_{7}, x ; y\right)$, where $y=\left(S_{2}^{(4)}[0], S_{2}^{(6)}[0], S_{2}^{(3)}[0], S_{2}^{(2)}[0], S_{2}^{(1)}[0], S_{6}^{(15)}[0], S_{2}^{(0)}[0], S_{6}^{(14)}[0], S_{2}^{(15)}[0]\right) \in$ $\mathbb{F}_{2}^{72} \cdot f\left(\Delta S_{1}, \Delta S_{7}, x ; y\right)=1$ if and only if $\left(\Delta S_{1}, \Delta S_{7}, x ; y\right)$ leads to a good pair. The quantum oracle $\mathcal{U}_{\mathcal{P}}$ of the projector \mathcal{P} is to apply Grover's algorithm to $f\left(\Delta S_{1}, \Delta S_{7}, x ; \cdot\right)$ to find the good one. The complexity $\left|\mathcal{U}_{\mathcal{P}}\right|_{R T} \approx \sqrt{2^{72}}=2^{36}$.

In the superpostion $|\phi\rangle=\sum_{x \in T_{\left(\Delta S_{1}, \Delta S_{2}\right)}}|x\rangle$ derived by applying \mathcal{A}, the amplitude α of the good $|x\rangle$ that leads to a good pair conforming ($\Delta S_{1}, \Delta S_{2}$) is 2^{-232}. Hence, according to Equation (2), the totall complexity of is about $\sqrt{2^{232}} \cdot\left(2^{12}+2^{36}\right) \approx 2^{152}$.

If we convert Jean et al.'s method [44] into a quantum one, a 2^{64} qRAM will be needed with time complexity of 2^{140}. In the Time \times Space scenario, our method reduces the overal complexity by $2^{140+64-152}=2^{52}$, which essentially makes our quantum semi-free-start collision on 7 -round Gr \varnothing stl-512 possible.

G. 2 7-round Quantum Semi-free Start Collision Attack

As shown in Figure 25, we perform the rebound attacks in both P and Q permutations. In P permutation, the 3 -round inbound phase covers P_{2} to P_{5}. The outbound phase includes P_{2} to P_{0} and P_{5} to P_{7}, whose probability is 2^{-112}. Given $\left(\Delta P_{2}, \Delta P_{5}\right) \in \mathbb{F}_{2}^{64+64}$, let $F: \mathbb{F}_{2}^{128} \mapsto \mathbb{F}_{2} . F_{P}\left(\Delta P_{2}, \Delta P_{5}\right)=1$ if and only if the pair generated by solving the 3-round inbound part with given $\left(\Delta P_{2}, \Delta P_{5}\right)$ satisfies the outbound part. Applying Grover's algorithm to $F_{P}(\cdot)$, we get the superposition $|\rho\rangle=\sum_{F_{P}\left(\Delta P_{2}, \Delta P_{5}\right)=1}\left|\Delta P_{2}, \Delta P_{5}\right\rangle$. The time complexity is about $\sqrt{2^{112}} \cdot 2^{152}=2^{208}$. Similarly, we define function F_{Q} and get $|\sigma\rangle=\sum_{F_{Q}\left(\Delta Q_{2}, \Delta Q_{5}\right)=1}\left|\Delta Q_{2}, \Delta Q_{5}\right\rangle$ with time 2^{208}.

We perform the amplitude amplification algorithm. Let \mathcal{A} send the $|0\rangle$ to $|\rho\rangle \otimes|\sigma\rangle$. With the above analysis, we know $|\mathcal{A}|_{R T} \approx 2^{208}$. The unitary operator $\mathcal{U}_{\mathcal{P}}$ check if $\left|\Delta P_{2}, \Delta P_{5}\right\rangle \otimes\left|\Delta Q_{2}, \Delta Q_{5}\right\rangle$ produce a semi-free start collision, whose probability is $2^{-16} \cdot\left|\mathcal{U}_{\mathcal{P}}\right|_{R T} \approx 1$. Hence, the total time is $\sqrt{16} \cdot\left(2^{208}+1\right) \approx 2^{214}$.

G. 3 Quantum Semi-free Start Collision Attack on 8-round Grøstl-512 v0

Similarly, we build quantum semi-free start collision attack on 8-round Grøstl512 v0. As shown in Figure 26, the probability of the outbound phase is also 2^{-112}. Hence, $|\mathcal{A}|_{R T}$ is also 2^{208}. However, after generating $|\rho\rangle \otimes|\sigma\rangle$, the probability of $\Delta Q_{0}=\Delta P_{0}$ and $\Delta Q_{8}=\Delta P_{8}$ is 2^{-72}. Hence, the total complexity is $\sqrt{2^{72}} \cdot\left(2^{208}+1\right)=2^{244}$.

[^0]: ${ }^{5}$ As shown in the introduction, we consider three quantum attack conditions. $\operatorname{Pr}>$ $2^{-2 n / 3}$ is to be better than the BHT algorithm, $\operatorname{Pr}>2^{-n}$ is to be better than quantum time-space tradeoff, $\operatorname{Pr}>2^{-4 n / 5}$ is to be better than CNS algorithm. So we let $\operatorname{Pr}>$ 2^{-n} to keep all characteristics that may lead to possible attacks.

