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Abstract. The dream of software obfuscation is to take programs, as they are, and then compile
them into obfuscated versions that hide their secret inner workings. In this work we investigate
notions of obfuscations weaker than virtual black-box (VBB) but which still allow obfuscating
cryptographic primitives preserving their original functionalities as much as possible.
In particular we propose two new notions of obfuscations, which we call oracle-differing-input
obfuscation (odiO) and oracle-indistinguishability obfuscation (oiO). In a nutshell, odiO is a natural
strengthening of differing-input obfuscation (diO) and allows obfuscating programs for which it is
hard to find a differing-input when given only oracle access to the programs. An oiO obfuscator
allows to obfuscate programs that are hard to distinguish when treated as oracles.
We then show applications of these notions, as well as positive and negative results around them.
A few highlights include:
– Our new notions are weaker than VBB and stronger than diO.
– As it is the case for VBB, we show that there exist programs that cannot be obfuscated with

odiO or oiO.
– Our new notions allow to compile several flavours of secret key primitives (e.g., SKE, MAC,

designated verifier NIZK) into their public key equivalent (e.g., PKE, signatures, publicly verifi-
able NIZK) while preserving one of the algorithms of the original scheme (function-preserving),
or the structure of their outputs (format-preserving).
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1 Introduction

Obfuscation and its (dream) applications. Obfuscation—the ability of running a program hiding
its inner working—is a cryptographer’s dream. This is especially true of its most powerful instantiation,
virtual black-box (VBB) obfuscation: anything a VBB-obfuscated program leaks can be simulated through
oracle access to the function it computes [BGI+12]. It follows that one important application of VBB is to
transform secret key cryptographic primitives into their public key counterparts (an approach sometimes
referred to as white-box cryptography). For example, the seminal work of Diffie and Hellman [DH76]
already imagined compiling secret key encryption (SKE) into public key encryption (PKE) by letting
the public key consist of the obfuscated encryption program Enc(k, ·). Note that this compiler has the
advantage of preserving the format of the underlying ciphertext, as well as the function used to perform
decryption.

Transforming primitives, nicely. In this paper, we are interested in obfucators that allow structure
preserving transformation of cryptographic primitives i.e., obfuscators that allow to compile crypto-
graphic primitives while preserving parts of the original primitive. For instance, like in the Diffie and
Hellman example, compile a SKE into a PKE in a function-preserving way (e.g., the decryption algorithm
of the PKE is the same as the SKE), or at least in a format-preserving way (e.g., the PKE ciphertext is
of the same format as the SKE one). We see this as an interesting design approach to transformation of
primitives, worth of study of its own. Structure-preserving compilers—as we dub those preserving either
function or format—are desirable because of: (i) reusability/retrocompatibility and (ii) efficiency. First,
with function-preserving transformations we can reuse existing code, programs, libraries, constructions
and their cryptanalysis. Cryptographic primitives deployed in hardware could reuse that same hardware
for the transformed primitive, instead of having to be redesigned from scratch and possibly replaced in
a production environment. Moreover, transformations that preserve the format of their output allow to
reuse parsing-related software and to be retrocompatible with older standards (particularly important
for legacy systems). Also, a structure-preserving transformation maintains some of the scheme’s origi-
nal efficiency guarantees, either preserving the running time of the (possibly heavily optimized) original
function or its communication complexity.

Nice transformations from weaker obfuscation? The seminal work in [BGI+01, BGI+12] has
shown that the “dream version” of obfuscation, VBB, is in general impossible. Since then cryptogra-
phers have defined new, weaker notions of obfuscations that could hopefully be constructed. One of
the plausible weaker candidates in this sense is indistinguishability obfuscation (iO) that guarantees the
indistinguishability of a pair obfuscated programs, only if the latter have the exact same input-output
behavior. It is truly surprising that a notion of obfuscation as weak as iO has managed to generate so
many applications [SW14]. However, most of the applications of iO are out of the spectrum of the “design
once; obfuscate later”-approach that was dreamed in the beginning. In fact, most iO based constructions
are quite involved and only carefully designed programs can be successfully obfuscated with iO. It is
therefore natural to ask the following question:

Can we obtain structure-preserving transformations from notions of obfuscation weaker than VBB?

Our results: new primitives, compilers, connections to prior notions. In this work we propose
two new definitions of obfuscation, oracle-differing-input obfuscation (odiO) and oracle-indistinguishability
obfuscation (oiO), and apply them to structure-preserving transformations for several classes of primi-
tives.

Recall that iO [BGI+12] only guarantees indistinguishability of obfuscations between pair of programs
that have the exact same input/output behaviour. Differing-input obfuscation (diO) [BGI+12, ABG+13,
BCP14] is a stronger kind of obfuscation which guarantees the same indistinguishability property of iO but
for pair of programs which might have different input/output behaviour, as long as it is computationally
hard to find inputs on which the output of the programs differ, even when looking at the code of the
programs. Our first notion, odiO, enriches the class of programs that can be securely obfuscated including
any pair of programs for which it is hard to find differing-inputs, but when the distinguisher is given
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Fig. 1: The transformations (1)-(5) of this work: function-preserving on top row; format-preserving on
bottom row. By odiO/oiO we denote an algorithm obtained through direct obfuscation of the one on
the left; by ≡ one that is completely unchanged; by ∼= one with minor changes but still able to take
the same input; by (PPRF) we denote where we modify the algorithm through puncturable PRFs before
obfuscation.

only oracle access to the programs. oiO then takes it a step further and allows to obfuscate any pair of
programs that are indistinguishable when given as oracle.

In the paper we formally study the relationship between our new notions of obfuscation and the
existing one. Note that:

VBB > oiO > odiO > diO > iO

meaning that a VBB-obfuscator is also an oiO-obfuscator, and so on. Intuitively, the separation are
strict. Again, focusing only on the first inequality: while a VBB-obfuscator cannot leak anything about
the program that cannot be learned by the oracle version of the program, an oiO-obfuscator is allowed
to leak any secret contained in its circuit, as long as these secrets do not allow to distinguish between
the oracle programs. Focusing on oiO, odiO, diO, and iO, we have that all these notions provide the same
flavor of security (i.e., two obfuscations are indistinguishable) but for different classes of circuits, each
progressively contained into the other. For this reason, we have that oiO > odiO > diO > iO.

Note that odiO is stronger than diO. Since we do not have any candidate obfuscator for diO, we are
then unable to provide any plausible candidate obfuscator for odiO and oiO (as for diO, one might use
current candidates of iO obfuscator and “hope for the best”). Still, since oiO and odiO are weaker than
VBB, it is plausibly easier to build oiO and odiO obfuscators than VBB ones (at least for specific classes
of programs).

We then show that our new notions of obfuscation are enough for structure-preserving transformations
of important cryptographic primitives. In particular we provide the following transformation (see also
Figure 1):

1. A function-preserving transformation from selectively sound succinct designated verifier non-interactive
argument systems (dv-SNARG) into publicly verifiable ones (pv-SNARG) (Section 5.1); The same
transformation allows transforming non-interactive argument systems that satisfy straight-line knowl-
edge soundness, i.e., it is possible to extract (through a trapdoor) a valid witness from verifying proofs
without interacting with the adversary;3

2. A function-preserving transformation from strong existentially unforgeable MACs into digital signa-
tures that remains strongly unforgeable only in the presence of adversaries that can ask signatures
of arbitrary messages in a selective fashion (Section 5.2);

3. A format-preserving transformation that leverages puncturable PRFs to convert selectively existen-
tially unforgeable MACs into selectively existentially unforgeable digital signatures (Section 5.3). In

3 As for straight-line knowledge soundness, we do not consider succinctness (i.e., we do not cover
dv-SNARG/pv-SNARG) since, in order to have a straight-line extraction, the size of the proof is proportional
to the size of the witness.
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constrast to the previous (MACs to signatures) transformation, this is only format-preserving but
achieves existential unforgeability under the standard notion of chosen message attacks (i.e., the
adversary has adaptive oracle access to the signature algorithm);

4. A format-preserving transformation that leverages puncturable PRFs to convert IV-based selectively
secure SKEs into selectively IND-CPA secure PKEs (Section 5.4). Here, IV-based SKEs refer to
encryption schemes of the form Enc(k,m; iv) = (iv, c) where iv is the initialization vector (i.e., ran-
domness) used to encrypt a message m. Note that most SKE used in practice are IV-based e.g., those
based on block ciphers mode operations such as AES-CBC-mode, AES-CTR-mode, and so on.

5. A function-preserving transformation from any semantically secure and key indistinguishable SKE
into a selective IND-CPA PKE (Section 5.5). Here, the SKE’s key indistinguishability property must
hold under chosen message randomness attacks, i.e., it is infeasible to determine under which key a
target message has been encrypted even if the adversary has oracle access to Enc(k, ·; ·) that accepts
adversarially chosen messages and randomnesses.

We highlight that only the last transformation requires oiO (in order to use the key indistinguishabil-
ity property of the SKE) whereas odiO is sufficient to achieve the other ones. Also, note that all the
transformations that use puncturable PRFs are (only) format-preserving.4

Although both odiO and oiO are weaker than VBB, this does not tell us anything about the plausibility
of these new notions of obfuscation (and their applications). As a last contribution, we investigate whether
VBB’s impossibility results of Barak et al. [BGI+01, BGI+12] extends to either odiO or oiO (or both).
We provide two different negative results by adapting the techniques of [BGI+01, BGI+12] to the case
of odiO and oiO. First, we show that there exists an ensemble of circuits that neither odiO nor oiO
cannot obfuscate, unconditionally (Section 6.1). Second, we show that the oiO-based function-preserving
transformation (5) from any semantically secure and key indistinguishable SKEs into selective IND-CPA
secure PKEs is inherently impossible (no matter what type of obfuscator is used to implement it). We
elaborate further on this later on.

1.1 Technical Overview

Oracle-Differing-Input Obfuscation (odiO). The notion of odiO is a variant of the notion of differing-
input obfuscation, or diO. What is common with diO, for example, is that: (i) we are given a sampler
S that outputs two circuits C0 and C1 and some auxiliary information α; (ii) the output of the sampler
should satisfy some property P (we call such sampler “permissible”); (iii) if the sampler sastisfies property
P then the obfuscated circuits Obf(C0) and Obf(C1) should look indistinguishable to a PPT adversary
given also in input α. Also, in both diO and odiO, the property P corresponds to “no PPT D can find a
differing input x for C0 and C1 (given in input α)”, that is an input x such that C0(x) ̸= C1(x). Where
the two definitions diverge is that in diO algorithm D takes as input the actual representation (the code)
of the two circuits, whereas in odiO D only has oracle access to the functions computed by C0 and C1.

An example of sampler that is permissible for odiO but not diO is the following: consider two programs
C0 and C1 where their only (high-entropy) differing input is encoded as a comment in their code. Given
their code it is easy to find such input, but not with oracle access to them. We provide more examples
when we discuss our transformations below.

Public-key “forgery-based” transformations through odiO. We show that odiO is particularly
suitable for transforming a general class of primitives—which we informally dub forgery-based—from their
secret-key to their public-key version. By forgery-based we mean a primitive where the security is defined
roughly as follows: “No adversary can produce (forge) a string passing a given test without knowledge
of a certain secret (or if a certain condition does not hold)”. Straightforward examples of this type of
primitives include message-authentication codes (MACs) and digital signature, but non-interactive proof
systems and signatures of knowledge [CL06] also capture this intuition.

The properties of odiO are sufficient for compiling the forgery-based primitives (1)-(3) listed above.
We now give the main intuitions behind our transformations and their security. Our goal is to transform

4 We will elaborate on this later, but intuitively this is because the obfuscated program will use the puncturable
PRF to generate a fresh symmetric key for different input (e.g., messages, initialization vectors). Hence, on
decryption/verification, the receiver needs to evaluate the same PRF in order to recompute the symmetric key
used to decrypt/verify a particular ciphertext/signature.
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a primitive allowing us to verify a string through knowledge of secret into one that can do the same
without such knowledge. Let us denote the first generic verification algorithm by Verify(sk, . . . );5 we aim
to transform it into a public key equivalent Verify′(pk, . . . ). Our construction is straightforward: We define
pk as the odiO-obfuscation of Verify(sk, . . . ), and the program Verify′(pk, . . . ) simply runs the program
encoded in pk.

We now argue that the above is secure in a selective-security-flavored setting. In general, in such a
setting, the adversary first claims some input (e.g., a message or an NP statement) for which it would
like to forge a valid string (e.g., a signature or a proof). The rest of the intuition is better conveyed
being specific. We thus focus on the setting of non-adaptive (selective) security in non-interactive proof
systems where the verifier has the syntax Verify(vrs, x, π) and vrs is the (secret) verification key, x is a
public statement (allegedly in a language L), π is the proof. In this security game, for any input x̂ ̸∈ L,
the adversary should not be able to forge a corresponding valid proof after seeing the public parameters
(aka, common reference string or crs). We now show how to reduce the security of the publicly verifiable
construction to that of the original (designated verifier) one applying odiO security. Recall that the
security property of odiO must refer to a given sampler returning pairs of circuits. We require that our
odiO obfuscator is secure against a sampler that returns (C0, C1) (we ignore the auxiliary input here)
where:

– C0 takes as input x and π and returns Verify(vrs, x, π).
– C1 behaves like C0 except that it immediately returns 0 whenever x = x̂.

The two circuits clearly satisfy the odiO permissibility notion since finding a differing input through oracle
access to them would violate the original hypothesis of soundness (the only differing inputs are valid proofs
for x̂). Thus we can move to an hybrid where the crs is an obfuscation of C1, and indistinguishability
of the hybrids follows from the security of the odiO obfuscator. But now note that by construction of
C1, when crs = Obf(C1), an adversary by definition cannot produce a valid for x̂. Moreover, we obtain
(for free) that our transformation preserves zero-knowledge since it is function-preserving and the Prove
algorithm is not modified (see Remark 5.3).

The blueprint for the construction and security proof above can be adapted (with the appropriate
care) to the other forgery-settings (2)-(3) for which we propose transformations. For transformation
(2)—which yields selectively-secure strongly unforgeable signatures—one technical challenge is that we
need to simulate the queries to the signing oracle. Since these queries are selective we can embed them
in one of the circuits we obfuscate during the hybrid arguments. Transformation (3) requires additional
care since it yields a signature scheme secure against an adversary with adaptive queries to the signing
oracle. To do so we slightly modify the signature algorithm and use a (puncturable) PRF to generate
a fresh one-time symmetric-key used to sign a single message. The verification algorithm is similarly
adapted and then obfuscated. Due to the use of the PRF, the transformation is not function-preserving
but only format-preserving.

Compiling extractable argument systems. We are able to extend our result for argument schemes
satisfying soundness to arguments that satisfy knowledge soundness. This is achieved by the exact same
function-preserving construction from odiO.6 We are able to compile an adaptively-secure straight-line
extractable designated verifier argument into an adaptively-secure straight-line extractable publicly veri-
fiable argument. Note that, when considering straight-line extractability, proofs are not succinct anymore;
hence, in this case we cover dv-NIZK and pv-NIZK. In contrast to soundness—which achieves only selective
security—here we are able to preserve adaptive security. Again, the transfomation is function-preserving
and it does not alter the Prove algorithm. Hence, zero-knowledge is preserved (see also Remark 5.3). To
the best of our knowledge ours is the first work applying obfuscation in the context of extractability in
proof schemes.

Using odiO for public-key encryption through puncturable PRFs. So far we discussed how
odiO is particularly useful for forgery-flavored primitives. We observe, however, that we are able to
prove security of another type of primitive, encryption. In Section 5.4, we show how to compile IV-based

5 The rest of the input besides the key is irrelevant for this discussion.
6 Despite the construction is the same, the sampler required to prove knowledge soundness is different.
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selectively secure SKEs (whose ciphertexts have the form Enc(k,m; iv) = (iv, c)) into selectively IND-
CPA secure PKEs. Our obfuscated circuit (that will be our pk) uses two puncturable PRFs: The first
to generate the initialization vector iv from the randomness given to the PKE’s Enc and, the second to
generate a one-time fresh symmetric-key (used to encrypt) from iv.7 The decryption algorithm has access
to the key for the second PRF and takes as input the ciphertext (iv, c). It can then regenerate the key
and thus decrypt. Note that this transformation is only format-preserving since we slightly modify both
encryption and decryption algorithm to embed the evaluation of the PRF.

Oracle-Indistinguishability Obfuscation (oiO). The notion of oiO represents a natural strength-
ening of odiO. It has similar features to diO and odiO in that it requires samplers that output pairs of
circuits satisfying some permissibility predicate P . While the permissibility predicate in diO and odiO
requires hardness of finding a differing-input, in oiO we have a weaker permissibility predicate (which
in turn makes oiO stronger than odiO): in oiO the sampler must output pairs of circuits such that an
adversary (given also as input related auxiliary string α) cannot distinguish the circuits while having
only oracle oracle access to them. An example of a sampler that is permissible for oiO but not odiO is the
one where C0 and C1 are both PRFs but with different keys, since they differ on (almost) every input
but their output distributions are indistinguishable.

Public-key “indistinguishability-based” transformations through oiO. While odiO is intuitively
suitable for transforming forgery-based primitives, oiO has synergies with indistinguishability-based prim-
itives, i.e. where “No adversary can distinguish between two distributions without knowledge of a certain
secret”. Natural examples are encryption schemes where the distributions to distinguish are the encryp-
tion of different messages (e.g., IND-CPA security).

Through oiO we are able to prove the security of a more general transformation (compared to (4)) from
SKEs to PKEs. Starting from a symmetric encryption algorithm Enc(k, ·; ·), our aim is to transform it into
something with the following syntax Enc(pk, ·; ·), where pk is a public key. Our transformation is identical
to the one proposed by Diffie and Hellman [DH76]: We define pk as the oiO-obfuscation of Enc(k, ·; ·)
for some honestly chosen symmetric key k. To claim the IND-CPA security of the above transformation,
we need to assume that the initial SKE is key indistinguishable under (adversarially) chosen message
randomness attacks. The latter allows us to build a sampler that satisfies the permissibility predicate of
oiO. In particular, the sampler returns (C0, C1) (again, we ignore the auxiliary input here) where:

– C0 takes as input m and r and returns Enc(k,m; r).
– C1 is identical to the above except that it uses a different (honestly generated) symmetric key k′.

Intuitively, the circuits satisfy the oiO permissibility notion since any adversary that is able to distinguish
between oracles C0 and C1 would also violates the key indistinguishability security of the SKE. Now,
since the obfuscations of these two circuits are indistinguishable, we can reduce the security of the PKE
to the security of the original SKE. Consider the standard IND-CPA experiment of PKE where pk is
set to the obfuscation of C0 and the challenge ciphertext c is computed as c = pk(mb; r) = Enc(k,mb; r)
for r randomly chosen. We can now do an hybrid where pk is set to the obfuscation of C1 whereas the
challenge ciphertext is still computed as c = Enc(k,mb; r) where k is the key hardcoded in C0. Since the
ciphertext c is computed using a key k that is not the obfuscated one (recall C1 uses an independent
key k′), we can now conclude the proof by doing a reduction to the semantic security of the original
SKE. We highlight that this proof technique works only if we consider selective IND-CPA security. This
is because the sampler needs to output an auxiliary input that is an honest encryption of mb under the
key k (hardcoded into C0). This is fundamental to simulate the challenge ciphertext (of the selective
IND-CPA experiment) and concludes the hybrid argument.

Why aren’t diO/iO sufficient for these transformations above? We observe that each of the
compilation described above would not be feasible with either iO or diO. Intuitively, this is because we

7 If, instead of generating iv using the first PRF, we allow the circuit to take directly in input iv then the PKE
(output by the transformation) is trivially broken. This is because (following the syntax of the IV-based SKE) iv
is included into the ciphertext. Hence, an adversary can break the selective IND-CPA security of the compiled
PKE by simply re-encrypting a message using the iv that is included into the challenge ciphertext.
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would eventually need to reduce the security of our transformations (pv-SNARG, signature, PKE) to the
security of the original secret-key primitive (dv-SNARG, MAC, SKE). However, in the latter experiment
the secret-key sk (e.g., a vrs or a symmetric-key), that we need to obfuscate in order to conclude the
reduction, is sampled and kept secret by the challenger. This makes iO and diO insufficient since we
are not able to satisfy their permissibility notion during this reduction. For the case of iO, during the
reduction, the only thing we could do is to to obfuscate different circuit C1 that does not use the secret-
key sk sampled by the challenger. However, this C1 will have (with overwhelming probability) a different
input/output behavior compared to C0 (the original obfuscated circuit of the transformation that, in
turn, contains sk).

A similar discussion applies to diO. For the sake of concreteness, consider transforming a dv-SNARG
into a pv-SNARG by publishing an obfuscation of the circuit C0 which implements the dv-SNARG ver-
ification algorithm using an hardcoded verification key vrs. During the reduction to the security of the
underlying scheme we are not allowed to use the secret verification key vrs. Thus, during the reduction,
we can only move to a hybrid where we obfuscate a circuit C1 that does not use the vrs. But then we
cannot argue that it is hard to find differing-inputs for C0, C1. In this specific case, the distinguisher
could simply produce proofs π for true statements x and submit them to the circuits. While C0 (using
the vrs) returns 1, C1 (without the vrs) is unable to verify the proof and cannot return a consistent
output. Similar arguments apply to the other transformations.

The Landscape of Limitations of odiO/oiO. The seminal work of [BGI+01, BGI+12] explores
the boundaries of obfuscation in several directions. As it is well known they show that there are (not
necessarily natural) computations which are impossible to obfuscate using VBB. Moreover, [BGI+01,
BGI+12] also shows that VBB-obfuscation cannot be used for securely performing certain structure-
preserving transformations. In this direction, they show a (contrived but secure) SKE that turns into an
insecure PKE scheme when compiled using obfuscation. We show that the results of [BGI+01, BGI+12]
can be extended to the setting of odiO and oiO. In particular, we show that there (unconditionally)
exist samplers that are odiO/oiO permissible but are not obfuscatable. Specifically we sample (somewhat
contrived) circuits Cs with an embedded secret s that remains “hidden enough” when only oracle access is
allowed (thus being odiO/oiO permissible). We then show that, once given access to the obfuscated circuit,
it becomes possible to “partially extract” this secret s. Finally, we show that (since this sampler cannot be
obfuscated) our oiO-based transformation (5) (from semantically secure and key indistinguishable SKE
to selectively IND-CPA PKE) is inherently impossible, regardless of the strength of the obfuscator used.
This is done by using the unobfuscatable circuits to build a contrived SKE (satisfying semantic security
and key indistinguishability) that, once compiled, yields an insecure PKE. As mentioned, a similar
impossibility result was given in [BGI+12, Theorem 4.10]. However their contrived SKE does not satisfy
key indistinguishability and, for this reason, it cannot be directly used to show the infeasibility of our
transformation (5). Thus, our negative result strengthens the one of [BGI+12] since ours apply to a smaller
class of SKEs (i.e., SKEs with stronger notions of security) that satisfy key indistinguishability under
chosen message randomness attacks. Note that while we just argued that the oiO-based transformation in
(5) is inherently impossible, our odiO-based transformations (1)-(4) remain plausible as the impossibility
results do not seem to extend. We elaborate further in Section 6.2.

1.2 Future Directions

Our work opens up several interesting future directions. How to generally formalize structure-preserving
transformations? Can we characterize what type of games can be transformed (from “secret” to “public”
key) through odiO? Several, but not all those we achieve, seem to have a “forgery” flavor to them (MAC,
NIZKs, etc.). What are further connections between our proposed notions of obfuscation and VBB, iO
and diO? While the techniques in [BGI+12] seem to fail to show that some of our transformations are
paradoxical, what are other techniques that could shed light on further limitations of odiO oiO? Can
we leverage our techniques for going from secret-key to public-key variants of different cryptographic
primitives than those we consider here, e.g., proofs of retrievability [SW13]?
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2 Related Work

Barak et al. [BGI+01, BGI+12] investigate the feasibility of obfuscation. They focus on virtual black-
box (VBB) obfuscation, where an obfuscated program/circuit should leak no information except for
its input-output behaviour. They show: 1) that a general VBB obfuscator cannot exist since there are
circuits that cannot be unconditionally obfuscated in the VBB paradigm; 2) that most of the intriguing
applications of VBB are impossible (including the suggestion of Diffie and Hellman’s of building a PKE
by obfuscating the SKE encryption algorithm with an embedded symmetric key). On the positive side,
several works have shown that some restricted classes of circuits can be securely VBB-obfuscated [CRV10,
WZ17, GKW17, Wee05] . Goldwasser and Kalai [GK05, GK13] and Bitansky et al. [BCC+14] extended
VBB’s impossibility results to the case of auxiliary information demonstrating that other “natural”
circuits cannot be VBB obfuscated when some (dependent or independent) auxiliary information are
available. In addition, [BCC+14] demonstrated that the availability of auxiliary information is equivalent
to VBB with universal simulation. Goldwasser and Rothblum [GR07] proposed the notion of best-possible
obfuscation that guarantees that the obfuscation of a circuit leaks as little information as any other
circuit implementing the same functionality. They show that a separation between VBB and best-possible
obfuscation and an impossibility result (for both) in the random oracle model. Other works [MMN16,
LPS04, BGK+14, BR14, CKP15, PS16] studied the (in)feasibility of VBB in different idealized models.

To avoid the VBB paradigm (and its impossibility results), [BGI+12] suggested two weaker security
definitions of obfuscation: indistinguishability obfuscation (iO) and differing-input obfuscation (diO).
The former has obtained a lot of interest thanks to its applications, as initially shown by Sahai and
Waters [SW14]. The first work that proposed a candidate iO construction is by Garg et al. [GGH+13] that
built iO via multilinear maps. Subsequent works [GMM17, BV18, PST14, AJS15, BV15, AJ15, LPST16,
AJL+19, BDGM20, GP21] focused on both the relations of iO and other primitives (e.g., functional
encryption) and new candidates construction from weaker assumptions. These works led to the recent
works of Jain et al. [JLS21] and Wee and Wichs [WW21]. [JLS21] built (sub-exponentially secure) iO from
the sub-exponential hardness of LWE, learning parity with noise, and boolean pseudorandom generators
in NC0. On the other hand, [WW21] proposed the first construction based solely on lattices and LWE.
Their construction relies on a new falsifiable LWE assumption.

As for diO, [ABG+13, BCP14, BCP14, BST14] proposed different formalization of diO (for both
circuits and Turing machines) and showed different applications. On the negative side, [BP15, BSW16,
GGHW17] showed that, in the presence of (some) auxiliary information (e.g., samplers), a general diO
obfuscator may not exist. Notably, Bellare et al. [BSW16] showed that if sub-exponentially secure one-
way functions exist then a sub-exponentially secure general diO obfuscator for Turing machines does not
exist, i.e., there exists a sampler that outputs two Turing machines and some auxiliary information that
cannot be obfuscated through diO. Moreover, they show that the impossibility result extends to diO for
circuits, if SNARKs exist. Garg et al. [GGHW17] showed a similar result for diO for circuits under the
conjecture that a special-purpose obfuscator exists (i.e., an obfuscator that does not follow from diO). All
the negative results of [BP15, BSW16, GGHW17] rely on the fact that the sampler can silently provide
a trapdoor that allows an adversary to distinguish between two obfuscations whereas the trapdoor does
not help in finding a differing-input., Because of this, Ishai et al. [IPS15] proposed the weaker notion
of public-coin diO where the random coins of the sampler are public, i.e., a sampler cannot hide any
trapdoor in the auxiliary information.

Among weaker notions of obfuscation, we also include virtual gray-box obfuscation (VGB) [BC10,
BCKP17]. This notion is close to that of VBB but models the simulator as semi-bounded, i.e., un-
bounded in running time but limited to a polynomial number of oracle queries. VGB is equivalent to
another notion, strong iO (siO), where it holds that Obf(C0) ≈c Obf(C1) whenever the pair (C0, C1) is
sampled from a concentrated distribution D: For every input x, the probability that C0(x) and C1(x) do
not return to common output majD(x) is negligible (wheremajD(·) is defined with respect to the concen-
trated distribution D taken into account). Observe that concentrated distributions are a generalization
of evasive functions [BBC+14]. Intuitively, siO is weaker than odiO (and oiO) since circuits (sampled
from concentrated distributions) are oracle-diffing-input even against semi-bounded adversaries. Also,
note that siO is not powerful enough to achieve structure-preserving transformations. Intuitively, be-
cause siO is able to obfuscate distributions of circuits that “pass” an information theoretical test. This
is a obstacle when trying to implement our structure-preserving transformations since our objective is
to compile/obfuscate primitives whose security follows from computational assumptions.
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3 Preliminaries on Obfuscation

We assume the reader to be familiar with standard cryptographic notation and definitions. To make the
paper self-contained, our notation and all the standard definitions used in the paper can be found in
Appendix A.

Indistinguishability obfuscation and differing-input obfuscation. Let C = {Cλ}λ∈N be an en-
semble of functionally equivalent circuits (of same size), i.e., ∀λ ∈ N,∀C0, C1 ∈ Cλ,∀x ∈ {0, 1}ℓin ,
C0(x) = C1(x) and |C0| = |C1|. Indistinguishability obfuscation (iO) [BGI+01] guarantees that the ob-
fuscation of any two functionally equivalent circuits C0, C1 ∈ Cλ are computationally indistinguishable.
The stronger notion of differing-input obfuscation (diO) [BGI+12, ABG+13, BCP14] considers the larger
class of differing-input circuits, i.e., circuits that differ on hard to find inputs. Below, we introduce the
definition of diO with respect to samplers responsible of sampling two differing-input circuits and (some)
auxiliary information.

Definition 3.1. A sampler S for an ensemble of circuits C = {Cλ}λ∈N is a PPT algorithm that, on input
the security parameter 1λ, it outputs two circuits C0, C1 ∈ Cλ such that |C0| = |C1| and (possibly) some
auxiliary information α.

Definition 3.2. (diO-sampler) We say a sampler S (Definition 3.1) is a diO-sampler if for every PPT
adversary A we have

P
[
C0(x) ̸= C1(x)

∣∣∣(C0, C1, α)←$ S(1λ), x←$ A(1λ, C0, C1, α)
]
≤ negl(λ).

Definition 3.3 (Differing-input obfuscation). Let S be an ensemble of diO-samplers (Definition 3.2).
For every S ∈ S, let CS = {CSλ}λ∈N be the ensemble of circuits output by S. A PPT algorithm Obf is a
(S)-diO-obfuscator for the ensemble S if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CSλ, ∀x ∈ {0, 1}ℓin , we have C ′(x) = C(x) where C ′←$ Obf(1λ, C).

Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈ CSλ, we have |Obf(1λ, C)| ≤
p(|C|).

Indistinguishability. For every S ∈ S, every PPT adversary D, we have that∣∣P[D(1λ,Obf(1λ, C0), α) = 1
]
− P

[
D(1λ,Obf(1λ, C1), α) = 1

]∣∣ ≤ negl(λ),

where (C0, C1, α)←$ S(1λ).

The above definition is parametrized by an ensemble of diO-samplers since some negative results for diO
are known [BSW16, GGHW17] (see next). Because of this, an universal (general) diO-obfuscator may
not exists, i.e., a diO-obfuscator that obfuscates any diO-sampler.

Negative results. In the setting of Turing machines (not covered by this paper), Bellare et al. [BSW16]
show that if sub-exponentially secure one-way functions exist then a sub-exponentially secure diO-
obfuscator Obf for any sampler for Turing machines does not exist (i.e., there exists a particular sampler
that cannot be diO-obfuscated). We stress that the main impossibility result covers Turing machines
but, as described by [BSW16], if SNARKs exist the negative result can be extended to diO for circuits.
Garg et al. [GGHW17] show that under the conjecture that a special-purpose obfuscator exists (i.e., an
obfuscator that does not follow from the existence of a diO-obfuscator) then a diO-obfuscator Obf for any
sampler for circuits does not exist. We highlight that both [BSW16, GGHW17] show that only “some”
diO-samplers cannot be obfuscated. Indeed, both works rely on samplers that output complex auxiliary
information α (α is itself an obfuscation of contrived circuit/Turing machine). Hence, this does not rule
out the possibility of obfuscating the same class of circuits/Turing machines under simpler auxiliary
information.
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Virtual black-box Obfuscation. Virtual black-box obfuscation (VBB) [BGI+01], is the strongest
known notion of obfuscation. In a nutshell, a VBB-obfuscator guarantees that having an obfuscation
of a circuit C is “equivalent” to having oracle access to C. We consider the weakest notion of VBB
that requires the adversary (and the simulator) to output a single bit. This is equivalent to asking the
adversary/simulator to compute/determine an arbitrary predicate π(C) of the original circuit [BGI+01].
Similarly to diO, we consider VBB with respect to samplers responsible to sample a circuit and (some)
auxiliary information. This will allow us to provide a meaningful comparison between VBB and diO,
odiO, oiO.

Definition 3.4. (VBB-sampler) A VBB-sampler S for an ensemble of circuits C = {Cλ}λ∈N is a PPT
algorithm that, on input the security parameter 1λ, it outputs a circuit C ∈ Cλ and some auxiliary
information α.

Definition 3.5 (Virtual black-box obfuscation). Let S be an ensemble of VBB-samplers (Defini-
tion 3.4). For every S ∈ S, let CS = {CSλ}λ∈N be the ensemble of circuits output by S. A PPT algorithm
Obf is a (S)-VBB-obfuscator for the ensemble S if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CSλ, ∀x ∈ {0, 1}ℓin , we have C ′(x) = C(x) where C ′←$ Obf(1λ, C).
Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈ Cλ, we have |Obf(1λ, C)| ≤

p(|C|).
Virtual black-box simulation. For every PPT adversary A, there exists a PPT simulator Sim such

that for every S ∈ S, we have∣∣∣P[A(1λ,Obf(1λ, C), α) = 1
]
− P

[
SimC(·)(1λ, 1|C|, α) = 1

]∣∣∣ ≤ negl(λ),

where (C,α)←$ S(1λ).

Note that VBB is a much stronger flavor of obfuscation than diO and iO for two reasons. First, VBB
defines the concept of ideal/oracle obfuscation, i.e., an obfuscated circuit behaves as an oracle. Second,
VBB is a simulation-based definition (whereas both iO and diO are indistinguishability-based), i.e., any
bit of leakage (that can be retrieved from the obfuscation of a circuit) can be simulated (except with
negligible probability) having only oracle access to the unobfuscated circuit.

Impossibility results. VBB is a very interesting notion of obfuscation since it has several important
applications (e.g., it permits to convert a SKE into PKE). However, VBB-obfuscation turned out to be im-
possible for several and reasonably simple class of circuits/samplers [BCC+14, BGI+01, BGI+12]. More-
over, also several applications of VBB are impossible to achieve. As an example, Barak et al. [BGI+12,
Theorem 4.10] have shown that there exist a SKE that cannot be transformed into a PKE by (simply)
obfuscating the SKE’s encryption algorithm (a similar impossibility result applies also to PRFs, MACs,
and signatures). Still, VBB-obfuscation is still possible for other class of circuits/samplers. Examples
are compute-and-compare programs [WZ17] (also known as lockable obfuscation [GKW17]) and point
functions [Wee05].

4 Oracle-differing-input and oracle-indistinguishability Obfuscation

In this section, we propose two new notions of obfuscation, dubbed oracle-differing-input obfuscation and
oracle-indistinguishability obfuscation (odiO and oiO in short). Both odiO and oiO are the result of two
natural extensions of diO (resp. iO): they introduce the notion of oracle circuits (as in VBB) while keeping
the indistinguishability property of diO (resp. iO). In a nutshell, odiO requires that the obfuscations of
two circuits C0, C1 are computationally indistinguishable if the latter two are differing-input circuits
when treated as oracles, i.e., an adversary cannot find an input x such that C0(x) ̸= C1(x) when given
oracle access to both C0 and C1. On the other hand, oiO provides the same indistinguishability guarantee
with respect to circuits C0, C1 that are computationally indistinguishable when treated as oracles.

As usual, we define odiO and oiO with respect to an ensemble of samplers responsible of generating
the circuits C0, C1 and (possibly) some auxiliary information α.
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Definition 4.1. (odiO- and oiO-sampler) Let type ∈ {odiO, oiO}. We say a sampler S (Definition 3.1)
is an type-sampler if for every PPT adversary A we have

If type = odiO:

P
[
C0(x) ̸= C1(x)

∣∣∣x←$ AC0(·),C1(·)(1λ, 1|C0|, α)
]
≤ negl(λ),

If type = oiO: ∣∣∣P[AC0(·)(1λ, 1|C0|, α) = 1
]
− P

[
AC1(·)(1λ, 1|C1|, α) = 1

]∣∣∣ ≤ negl(λ),

where (C0, C1, α)←$ S(1λ).8

Definition 4.2 (Oracle-differing-input and oracle-indistinguishability obfuscation). For type
∈ {odiO, oiO}, let S be an ensemble of type-samplers (Definition 4.1). For every S ∈ S, let CS = {CSλ}λ∈N
be the ensemble of circuits output by S. A PPT algorithm Obf is a (S)-type-obfuscator for the ensemble
S if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CSλ, ∀x ∈ {0, 1}ℓin , we have C ′(x) = C(x) where C ′←$ Obf(1λ, C).
Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈ CSλ, we have |Obf(1λ, C)| ≤

p(|C|).
Indistinguishability. For every S ∈ S, every PPT adversary D, we have that∣∣P[D(1λ,Obf(1λ, C0), α) = 1

]
− P

[
D(1λ,Obf(1λ, C1), α) = 1

]∣∣ ≤ negl(λ),

where (C0, C1, α)←$ S(1λ).

Comparing diO-, odiO-, oiO-, and VBB-obfuscation. We now study the relations between diO,
odiO, oiO, and VBB. In order to provide a meaningful comparison, we work in terms of best-possible
universal obfuscators, i.e., we compare the classes of circuits/samplers that each flavor of obfuscation
is able to handle. We start by defining the notion of best-possible universal type-obfuscator Obf (for
type ∈ {diO, odiO, oiO,VBB}) whose definition is tied with the (universal) set Stype composed of all the
type-samplers that can be securely type-obfuscated (as defined in Definitions 4.2 to 3.4).

Definition 4.3 (Best-possible universal type-obfuscator). Let type ∈ {diO, odiO, oiO,VBB}. Con-
sider the ensemble Stype composed of every type-sampler S (Definitions 4.1, 3.2 and 3.4) that can be
securely type-obfuscated (Definitions 4.2, 3.3 and 3.5), i.e.,

Stype = {type-sampler S | ∃ Obf s.t. Obf is a ({S})-type-obfuscator}.

A PPT algorithm Obf is a best-possible universal type-obfuscator if Obf is a (Stype)-type-obfuscator
(Definitions 4.2, 3.3 and 3.5).

Remark 4.4. There are two technical reasons behind the need of considering only best-possible universal
obfuscators, while comparing diO, odiO, oiO, and VBB. First, for any notion of type-obfuscation, it is
possible to find two contrived type-obfuscators Obf0 and Obf1 that result to be incomparable, even within
the same flavor of obfuscation. As an example, we could have that Obf0 (resp. Obf1) is able to type-
obfuscate S0 (resp. S1) but not S1 (resp. S0) where S0,S1 are two type-samplers.9 The same argument
holds between different notions. For example, if we consider diO and odiO, we could have that Obf0
diO-obfuscates a diO-sampler S (that in turn, as we will see, is also a odiO-obfuscator) but Obf1 does
not odiO-obfuscate S. Also, we can have the symmetric case: there exist two obfuscators Obf ′0 and Obf ′1
such that Obf ′1 odiO-obfuscates S but Obf ′0 does not diO-obfuscate S. Hence by changing the obfuscator
we could reach any conclusions: (i) odiO and diO are incomparable, (ii) odiO implies diO, or (iii) diO
implies odiO. This clearly does not allow for a meaningful comparison. Definition 4.3 naturally solves
the above problem since a best-possible universal type-obfuscator uniquely represents the power of a
particular notion of obfuscation, i.e., the set Stype of samplers that can be securely type-obfuscated. This
allows us to have a meaninful (and unique) formal comparison between diO, odiO, oiO, and VBB.

8 Recall that |C0| = |C1| by definition of sampler (Definition 3.1).
9 For instance, we can have that Sb only outputs circuits whose description starts with a bit b, and that Obfb
rejects any circuit whose description starts with the bit 1− b.
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Second, Definition 4.3 allows us to exclude from the comparison the known impossibility results
of VBB [BGI+01, BCC+14] (and odiO, oiO as we will show in Section 6). This is because, instead of
quantifying over any possible type-sampler, best-possible universal type-obfuscation is defined over any
possible type-sampler that can be type-obfuscated.

In the setting of best-possible universal obfuscation, odiO (resp. oiO) is stronger than diO since (i)
any diO-sampler is also an odiO-sampler (resp. oiO-sampler) and (ii) both diO and odiO (resp. oiO) have
the same indistinguishability-based security definition. The same argument applies to odiO and oiO, i.e.,
oiO is stronger than odiO.

Theorem 4.5 (oiO ⇒ odiO ⇒ diO). For type ∈ {diO, odiO, oiO}, we have that SdiO ⊆ SodiO ⊆ SoiO
where Stype as defined in Definition 4.3.

Proof. (Case odiO⇒ diO). Consider a diO-sampler S ∈ SdiO. By definition, we have that for every PPT
adversary A, that takes as input (C0, C1, α) (output by S), it is infeasible for A to find a differing-input x
such that C0(x) ̸= C1(x) (Definition 3.2). As a consequence, it is also hard for A to find such a differing-
input x when A has only oracle access to C0 and C1. Hence, S is also an odiO-sampler (Definition 4.1).
Moreover, by definition of SdiO, ObfdiO is a ({S})-diO-obfuscator. Since the indistinguishability property
of odiO is identical to that of diO, it follows that ObfdiO is also a ({S})-odiO-obfuscator. As a consequence,
we conclude that S ∈ SodiO.

(Case oiO⇒ odiO). For S ∈ SodiO, we have that for every PPT adversary A, that takes as input α, it
is infeasible to find differing-input x if A has only oracle access to C0 and C1 (where (C0, C1, α) output
by S). As a consequence, these circuits (except with negligible probability) are identical when treated as
oracles. Hence, S is also an oiO-sampler. Moreover, both odiO and oiO have the same indistinguishability
property. This implies that ObfodiO is also a ({S})-oiO-obfuscator and, in turn, this implies that S ∈ SoiO.

⊓⊔

About (best-possible universal) odiO-, oiO-, and VBB-obfuscation, we have that VBB is stronger than
odiO (resp. oiO) for two main reasons:

1. VBB leverages a simulation-based definition: any bit of information that can be leaked from an
obfuscated circuit C can be simulated by only having oracle access to C. On the other hand, odiO
(resp. oiO) provides a much weaker security guarantee: the obfuscation of two circuits C0, C1 (output
by an odiO-sampler (resp. oiO-sampler)) are computationally indistinguishable. This implies that a
odiO-obfuscator (resp. oiO-obfuscator) could leak significant information about the circuit, as long as
the leaked information does not help in distinguishing (except with negligible probability) between
the obfuscations of C0 and C1.

2. Both VBB and odiO (resp. oiO) incorporate the notion of oracle circuits in their definitions. However,
oracles are used to define two different concepts. VBB uses oracle circuits to define the amount of
information a VBB-obfuscator may leak. Since oracles leak no information (except their input-output
behavior), this implies that a VBB-obfuscator does not leak any information, except with negligible
probability.
Conversely, odiO and oiO leverage the notion of oracle circuits to characterize the class of circuits
(or samplers) that an odiO-/oiO-obfuscator can handle. The definition of security (i.e., the indistin-
guishability property of Definition 4.2) is independent from the oracles. Both odiO and oiO “only”
guarantee that the information leaked by the obfuscation of two circuits are the same. This does
not imply that the odiO-/oiO-obfuscated circuits must “behave” as oracles (as required by VBB
(Definition 3.5)).

The relation between VBB, oiO, and odiO is formalized by the following theorem, whose proof appears
in Appendix B.1.

Theorem 4.6 (VBB ⇒ oiO and VBB ⇒ odiO). Let S be a sampler (Definition 3.1). For b ∈ {0, 1},
let Sb be a sampler such that (Cb, α) = Sb(1

λ; r) where r ∈ {0, 1}∗, and (C0, C1, α) = S(1λ; r). If
S0,S1 ∈ SVBB then S ∈ Stype where SVBB and Stype are defined in Definition 4.3.

By leveraging a similar argument to that used to prove Theorem 4.5, we can demonstrate that any
negative result for diO extends to odiO. This because any diO-sampler S is also an odiO-sampler and,
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since diO and odiO leverage the same indistinguishability-based definition, if S ̸∈ SdiO then S ̸∈ SodiO.10
The same applies between odiO and oiO, and between oiO and VBB (with respect to samplers as defined
in Theorem 4.6).

Corollary 4.7. For type ∈ {diO, odiO, oiO,VBB}, let Stype be an ensemble of type-samplers as defined
in Definition 4.3. The following conditions holds:

1. For every diO-sampler S such that S ̸∈ SdiO then S ̸∈ SodiO.
2. For every odiO-sampler S such that S ̸∈ SodiO then S ̸∈ SoiO.
3. For every oiO-sampler S and every pair of VBB-samplers (S0,S1) such that (Cb, α) = Sb(1

λ; r) where
r ∈ {0, 1}∗, (C0, C1, α) = S(1λ; r) and b ∈ {0, 1} (as defined in Theorem 4.6), if S ̸∈ SoiO then
S0 ̸∈ SVBB or S1 ̸∈ SVBB.

Lastly, odiO (resp. oiO) does not imply VBB, i.e., both odiO and oiO are strictly weaker than VBB.
This follows by leveraging two observations. First, Barak et al. [BGI+01, Lemma 3.5, Corollary 3.8]
have demonstrated that there (unconditionally) exists a distribution of circuits that cannot be VBB-
obfuscated (see also Section 6.1). This, in turn, implies that there exists a VBB-sampler S0 ̸∈ SVBB, i.e.,
S0 outputs (C,⊥) where C comes from the distribution of [BGI+01, Lemma 3.5]. Second, we have that
any sampler S1, that outputs (C0, C1,⊥) such that C0 = C1, is an odiO-sampler (resp. oiO-sampler)
that can be easily odiO-obfuscated (resp. oiO-obfuscated).11 By combining these two observations, we
conclude that if S1 outputs (C0, C1,⊥) where C0 = C1 and (C0,⊥)←$ S0(1

λ), it follows that neither C0

nor C1 (sampled by S0) can be VBB-obfuscated but S1 can be odiO-obfuscated (resp. oiO-obfuscated).
While this counterexample might be trivial at first sight, it indeed captures the fact that an odiO-/oiO-
obfuscator is allowed to reveal any information which is common to the two circuits, as long as this
information does not allow to win the respective distinguishing game between the oracles.

Theorem 4.8 (odiO ̸⇒ VBB and oiO ̸⇒ VBB). Let S0 be a VBB-sampler (Definition 3.4). Consider
the odiO-sampler (resp. oiO-sampler) S1 defined as (C0, C1, α) = S1(1

λ; r) where C0 = C1 and (C0, α) =
S0(1

λ; r) for r ∈ {0, 1}∗. For type ∈ {odiO, oiO}, there exists a VBB-sampler S0 such that S0 ̸∈ SVBB and
S1 ∈ Stype where SVBB and Stype as defined in Definition 4.3.

5 Applications of odiO and oiO

In this section, we show that odiO and oiO are able to compile several symmetric key primitives into
their corresponding public key versions and designated verifier non-interactive argument systems into
their public verifiable version. These transformations achieve (and use) different flavors of security whose
definitions can be found in Appendix A. In more details, we demonstrate the following transformations:

Function-Preserving PV-NIZK from DV-NIZK: odiO is able to compile any designated verifier
non-interactive argument system (that satisfies either selective soundness or straight-line knowledge
soundness) into its public verifiable version (Section 5.1).

Function-Preserving Signatures from MACs: odiO is able to compile any (q)-sEUF-sel-CMAMAC
into a (q)-sEUF-sel-CMA signature scheme (Section 5.2).

Format-Preserving Signatures from MACs: odiO is able to compile EUF MAC into a sel-EUF-
CMA digital signature scheme, using puncturable PRF (Section 5.3).

Format-Preserving PKE from IV-based SKE: odiO is able to compile semantically secure IV-based
SKE (i.e., SKE whose encryption algorithm has the following sintax Enc(k,m; iv) = (iv, c)) into a
sel-IND-CPA PKE, using puncturable PRF (Section 5.4).

Function-Preserving PKE from SKE: oiO is able to compile any semantically and sel-IND-CPRA-
key secure SKE into a sel-IND-CPA PKE (Section 5.5).

Note that transformations that use the puncturable PRFs are only format-preserving whereas the others
are fully function-preserving.
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CVerify
vrs (x, π)

return b = Verify∗(vrs, x, π)

CVerify
vrs,x∗(x, π)

If x = x∗, return 0

return b = Verify∗(vrs, x, π)

CVerify
vrs,td,r(x, π)

ω = Ext∗1(1
λ, td, x, π; r)

If Verify∗(vrs, x, π) = 1 and

(x, ω) ∈ R, return 1

return 0

Sx(1
λ; r)

(crs, vrs) = Setup∗(1λ; r)

Set C0 = CVerify
vrs , C1 = CVerify

vrs,x , α = crs

return (C0, C1, α)

SExt∗(1
λ; r)

Let r = (r0, r1)

(crs, vrs, td) = Ext∗0(1
λ,R; r0)

Set C0 = CVerify
vrs , C1 = CVerify

vrs,td,r1
, α = crs

return (C0, C1, α)

Fig. 2: The circuits CVerify
vrs , CVerify

vrs,x∗ , C
Verify
vrs,td,r, and the samplers Sx,SExt∗ . C

Verify
vrs and CVerify

vrs,x∗ (resp. CVerify
vrs and

CVerify
vrs,td,r) are padded to match the size γ = max{|CVerify

vrs |, |CVerify
vrs,x∗ |} (resp. γ = max{|CVerify

vrs |, |CVerify
vrs,td,r|}).

5.1 From designated verifier to public verifiable non-interactive argument systems

Construction 1 Let Π∗ = (Setup∗,Prove∗,Verify∗) and Obf be a DV non-interactive argument system
for a relation R and an obfuscator, respectively. We compile Π∗ into a PV non-interactive argument
system Π = (Setup,Prove,Verify) for the same relation R as follows:

Setup(1λ,R): On input the security parameter 1λ and a relation R, the setup algorithm computes

(crs∗, vrs∗)←$ Setup∗(1λ,R) and outputs crs = crs∗ and vrs = C̃ where C̃←$ Obf(1λ, CVerify
vrs∗ ) and

CVerify
vrs is depicted in Figure 2.

Prove(crs, x, ω): On input the common reference string crs = crs∗, a statement x, and a witness ω, the
prover algorithm outputs π←$ Prove∗(crs∗, x, ω).

Verify(vrs, x, π): On input the verification key vrs = C̃, a statement x, and a proof π, the verification

algorithm returns b = C̃(x, π).

Below we establish the following result whose proof appears in Appendix B.2.

Theorem 5.1. Let Π∗ and Obf as defined in Construction 1. For every x ̸∈ L, consider the sampler Sx
depicted in Figure 2.

1. If Π∗ satisfies selective soundness (Definition A.2) then, for every x ̸∈ L, Sx is an odiO-sampler
(Definition 4.1), and

2. if Obf is a ({Sx}x ̸∈L)-odiO-obfuscator (Definition 4.2) then the publicly verifiable non-interactive
argument system Π of Construction 1 satisfies selective soundness (Definitions A.2 and A.4).

We extend the above result to the case of straight-line knowledge soundness. The proof appears in Ap-
pendix B.3.

Theorem 5.2. Let Π∗ and Obf as defined in Construction 1.

1. If Π∗ satisfies straight-line knowledge soundness (Definition A.3) then the sampler SExt∗ of Figure 2
is an odiO-sampler (Definition 4.1) where Ext∗ = (Ext∗0,Ext

∗
1) is the PPT extractor of Π∗, and

2. if Obf is a ({SExt∗})-odiO-obfuscator (Definition 4.2) then the publicly verifiable non-interactive ar-
gument system Π of Construction 1 satisfies straight-line knowledge soundness (Definitions A.3
and A.4).

10 Otherwise, if S ∈ SodiO, there exists a ({S})-odiO-obfuscator that in turn is also a ({S})-diO-obfuscator.
11 Indeed, any PPT obfuscator Obf that satisfies correctness and polynomial slowdown is a ({S})-odiO-obfuscator

(resp. ({S})-oiO-obfuscator), e.g., Obf is the identity function or Obf is an iO-obfuscator.

13



Remark 5.3 (On zero-knowledge). Observe that Construction 1 preserves zero-knowledge if the under-
lying designated verifier non-interactive argument system Π∗ is zero-knowledge. This is straightforward
and follows intuitively because Construction 1 only obfuscates vrs (that it is known by a malicious ver-
ifier against zero-knowledge) and it does not alter Π∗’s Prove. A proof sketch of the zero-knowledge
property would be as follows. The simulator for the publicly verifiable case is the same as the one for
the designated verifier case. Now assume there exists an adversary Apv distinguishing simulated proofs
from honest ones. We could then design adversary Adv breaking zero-knowledge of the original scheme.
This adversary can in fact internally run Apv passing to it the obfuscation Obf(1λ, CVerify

vrs ). It can do that
because the designated-verifier zero-knowledge has access to vrs.

More on our transformations for arguments. To the best of our knowledge our work is the first
to explicitly study how obfuscation can be used to transform designated verifiability into public verifia-
bility.12 One interesting feature of our transformation is that it fully preserves both the communication
complexity and the prover complexity of the original designated-verifier scheme. Moreover, in certain
cases it also preserves the asymptotic running time of the verifier. For example, if the verifier of the
original dv-NIZK runs in asymptotic time O(polylog (|w|) poly(λ))—where w denotes the witness—so will
the verifier in the compiled publicly verifiable scheme.13 We believe these results can be of interest in
at least two ways. First, they can leverage the efficiency (in terms of prover and proof size) of available
designated-verifier schemes for which we cannot find a more efficient publicly verifiable counterpart. Sec-
ond, they may provide a theoretical connection between designated and publicly verifiable SNARGs. For
example, if both odiO and dv-SNARGs were known to be plausibly obtainable from assumption X, our
transformation would show that pv-SNARGs can also be obtained from assumption X. To the best of our
knowledge, not much is know on a separation between the two (see [CK21, Section 1.2] for a discussion).

We observe that constructions of non-adaptive zero-knowledge pv-SNARGs were already known through
iO from the work in [SW14]. We now compare our results. First, we stress that our goals are different: our
main priority is to obtain a pv-SNARG through a structure-preserving transformation from a weaker prim-
itive (a dv-SNARG). The approach in [SW14] is not structure-preserving since their goal is to construct
a zero-knowledge proof system “from scratch” through iO. Our constructions also differ with respect to
some efficiency metrics. The verifier in [SW14] runs in O(poly (|x|, λ)) while ours can potentially have
worse asymptotics; their proof size is always polynomial in the security parameter and independent of
other parameters. On the other hand, their construction has large parameters—it includes an obfusca-
tion of a program verifying the whole relation—while our transformation preserves the size of the public
parameters in the original dv-SNARG, which may be small.

5.2 From (q)-sEUF-sel-CMA MACs to (q)-sEUF-sel-CMA digital signatures

Construction 2 Let Π∗ = (KGen∗,Tag∗,Verify∗) and Obf be a MAC with message space M and an
obfuscator, respectively. We compile Π∗ into a digital signature scheme Π = (KGen,Sign,Verify) with
message spaceM as follows:

KGen(1λ, 1q): On input the security parameter 1λ, parameter 1q, the key generation algorithm computes

k∗←$ KGen∗(1λ, 1q) and outputs pk = C̃ and sk = k∗ where C̃←$ Obf(1λ, CVerify
k∗ ) and CVerify

k is
depicted in Figure 3.

Sign(sk,m): On input the secret key sk = k∗ and a message m ∈ M, the randomized signing algorithm
outputs σ←$ Tag∗(k∗,m).

Verify(pk,m, σ): On input the public key pk = C̃, a message m ∈M, and a signature σ, the verification

algorithm returns b = C̃(m,σ).

Below we establish the following result whose proof appears in Appendix B.4.

12 The work in [CK21] studies how much we can push succinct designated verifiability in proof schemes to obtain
succinct and (somewhat) publicly verifiable schemes albeit both within a setting and through primitives very
different from ours (e.g., requiring a committee sharing a secret).

13 This holds if the public input x is absent or of size polynomial in the security parameter (e.g., in the case of
the opening of a Merkle tree with given root). In the more general case, the resulting verifier will run in time
O(polylog (|w|) poly(λ) + poly(|x|)).
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CVerify
k (m,σ)

return b = Verify∗(k,m, σ)

CVerify
X (m,σ)

If (m,σ) ̸∈ X , return 0

return 1

SY(1
λ; r)

Let r = (r0, . . . , rq)

Let Y = {m1, . . . ,mq}

k = KGen∗(1λ, 1q; r0)

∀i ∈ [q], σi = Tag∗(k,mi; ri)

Set X = {(mi, σi)}i∈[q]

Set C0 = CVerify
k , C1 = CVerify

X , α = (σ1, . . . , σq)

return (C0, C1, α)

Fig. 3: The circuits CVerify
k , CVerify

X , and the sampler SY . C
Verify
k and CVerify

X are padded to match the size

γ = max{|CVerify
k |, |CVerify

X |}.

CVerify
s (m,σ)

k = KGen∗0(1
λ;F∗

1(s,m))

return b = Verify∗0(k,m, σ)

CVerify
s,m∗ (m,σ)

If m = m∗, return 0

k = KGen∗0(1
λ;F∗

1(s,m))

return b = Verify∗0(k,m, σ)

Sm(1λ; r)

s = Gen∗1(1
λ; r)

s′ = Punct∗1(s,m)

Set C0 = CVerify
s , C1 = CVerify

s′,m , α = s′

return (C0, C1, α)

Fig. 4: The circuits CVerify
s , CVerify

s,m∗ , and the sampler Sm. CVerify
s and CVerify

s,m∗ are padded to match the size

γ = max{|CVerify
s |, |CVerify

s,m∗ |, |CVerify
s′,m∗,k∗ |} where CVerify

s′,m∗,k∗ is defined in Appendix B.5.

Theorem 5.4. Let Π∗ and Obf as defined in Construction 2. For every qinN, every Y ⊆M such that
|Y| = q, consider the sampler SY depicted in Figure 3.

1. If Π∗ is (q)-sEUF-sel-CMA (Definition A.10) then for every Y ⊆ M such that |Y| = q, SY is an
odiO-sampler (Definition 4.1), and

2. for every q ∈ N, if Obf is a ({SY}Y⊂M:|Y|=q)-odiO-obfuscator (Definition 4.2) then the signature
scheme Π of Construction 2 is (q)-sEUF-sel-CMA (Definition A.13).

5.3 From EUF MACs to sel-EUF-CMA digital signatures using puncturable PRFs

Construction 3 Let Π∗0 = (KGen∗0,Tag
∗
0,Verify

∗
0), Π∗1 = (Gen∗1,F

∗
1,Punct

∗
1) and Obf be a MAC with

message space M, a puncturable PRF, and an obfuscator, respectively. We combine Π∗0 and Π∗1 into a
digital signature scheme Π = (KGen,Sign,Verify) with message spaceM as follows:

KGen(1λ): On input the security parameter 1λ, the key generation algorithm computes s←$ Gen∗1(1
λ) and

outputs pk = C̃ and sk = s where C̃←$ Obf(1λ, CVerify
s ) and CVerify

s is depicted in Figure 4.
Sign(sk,m): On input the secret key sk = s and a message m ∈ M, the randomized signing algorithm

outputs σ←$ Tag∗(k,m) where k = KGen(1λ;F∗1(s,m)).

Verify(pk,m, σ): On input the public key pk = C̃, a message m ∈M, and a signature σ, the verification

algorithm returns b = C̃(m,σ).

Below we establish the following result whose proof appears in Appendix B.5.

Theorem 5.5. Let Π∗0 , Π∗1 , and Obf as defined in Construction 3. For every m ∈ M, consider the
sampler Sm depicted in Figure 4.
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CEnc
s1,s2(m, r)

iv = F∗
1(s1, r)

k = KGen∗0(1
λ;F∗

2(s2, iv))

return Enc∗0(k,m; iv)

CEnc
s1,s2,r∗(m, r)

If r = r∗, return 0

iv = F∗
1(s1, r)

k = KGen∗0(1
λ;F∗

2(s2, iv))

return Enc∗0(k,m; iv)

Sm(1λ; r)

Let r = (r0, r1, r2)

s1 = Gen∗1(1
λ; r0), s2 = Gen∗2(1

λ; r1)

iv = F∗
1(s1, r2)

k = KGen∗0(1
λ;F∗

2(s2, iv))

c = Enc∗0(k,m; iv)

s′1 = Punct∗1(s1, r2), s′2 = Punct∗2(s2, iv)

Set C0 = CEnc
s1,s2 , C1 = CEnc

s′1,s
′
2,r2

, α = c

return (C0, C1, α)

Fig. 5: The circuits CEnc
s1,s2 , C

Enc
s1,s2,r∗ and the sampler Sm. CEnc

s1,s2 and CEnc
s1,s2,r∗ (output by Sm) are padded

to match the size γ = max{|CEnc
s1,s2 |, |C

Enc
s′1,s

′
2,r

∗ |, |CEnc
s′1,s2,r

∗ |} where CEnc
s′1,s2,r

∗ is output by the sampler S̃m as

defined in Appendix B.6.

1. If Π∗0 is EUF (Definition A.11) and Π∗1 is secure (Definition A.8) then, for every m ∈M, Sm is an
odiO-sampler (Definition 4.1), and

2. if Obf is a ({Sm}m∈M)-odiO-obfuscator (Definition 4.2) then the signature scheme Π of Construc-
tion 3 is sel-EUF-CMA (Definition A.14).

5.4 From semantically secure IV-based SKEs to sel-IND-CPA PKEs using puncturable
PRFs

Here, we compile IV-based SKEs into PKEs. IV-based SKEs (e.g., AES-CBC-mode) are symmetric key
encryption schemes such that Enc outputs ciphertexts of the form Enc(k,m; iv) = (iv, c) where iv is the
initialization vector (i.e., randomness) used to encrypt the message.14

Construction 4 Let Π∗0 = (KGen∗0,Enc
∗
0,Dec

∗
0), Π

∗
1 = (Gen∗1,F

∗
1,Punct

∗
1), Π

∗
2 = (Gen∗2,F

∗
2,Punct

∗
2), and

Obf be an IV-based SKE with message spaceM, two puncturable PRFs, and an obfuscator, respectively.
We combine Π∗0 , Π∗1 , and Π∗2 into a PKE scheme Π = (KGen,Enc,Dec) with message space M as
follows:

KGen(1λ): On input the security parameter 1λ, the key generation algorithm computes s1←$ Gen∗1(1
λ),

s2←$ Gen∗2(1
λ), and outputs pk = C̃ and sk = s2 where C̃←$ Obf(1λ, CEnc

s1,s2) and CEnc
s1,s2 is depicted

in Figure 5.

Enc(pk,m; r): On input the public key pk = C̃, a message m ∈ M, and randomness r ∈ {0, 1}∗, the
encryption algorithm outputs (iv, c) = C̃(m, r).

Dec(sk, c): On input the secret key sk = s2 and a ciphertext (iv, c), the deterministic decryption algorithm
returns m = Dec(k, (iv, c)) where k = KGen∗0(1

λ;F∗2(s2, iv)).

Below we establish the following result whose proof appears in Appendix B.6.

Theorem 5.6. Let Π∗0 , Π
∗
1 , Π

∗
2 , and Obf as defined in Construction 4. For every m ∈M, consider the

sampler Sm depicted in Figure 5.

1. If Π∗0 is semantically secure (Definition A.18) and Π∗1 , Π
∗
2 are secure (Definition A.8) then, for every

m ∈M, Sm is an odiO-sampler (Definition 4.1), and

2. if Obf is a ({Sm}m∈M)-odiO-obfuscator (Definition 4.2) then the PKE scheme Π of Construction 4
is sel-IND-CPA (Definition A.22).
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CEnc
k (m, r)

return c = Enc∗(k,m; r)

Sm(1λ; r)

Let r = (r0, r1, r2)

k0 = KGen∗(1λ; r0), k1 = KGen∗(1λ; r1)

c = Enc∗(k0,m; r2)

Set C0 = CEnc
k0 , C1 = CEnc

k1 , α = c

return (C0, C1, α)

Fig. 6: The circuit CEnc
k and the sampler Sm. CEnc

k0
and CEnc

k1
(output by Sm) are padded to match the

size γ = max{|CEnc
k0
|, |CEnc

k1
|})

5.5 From semantically and sel-IND-CPRA-key SKEs to sel-IND-CPA PKEs

Construction 5 Let Π∗ = (KGen∗,Enc∗,Dec∗) and Obf be a SKE with message space M and an
obfuscator, respectively. We compile Π∗ into a PKE scheme Π = (KGen,Enc,Dec) with message space
M as follows:

KGen(1λ): On input the security parameter 1λ, the key generation algorithm computes k∗←$ KGen∗(1λ)

and outputs pk = C̃ and sk = k∗ where C̃←$ Obf(1λ, CEnc
k∗ ) and CEnc

k is depicted in Figure 6.

Enc(pk,m; r): On input the public key pk = C̃, a message m ∈ M, and randomness r ∈ {0, 1}∗, the
encryption algorithm outputs c = C̃(m, r).

Dec(sk, c): On input the secret key sk = k∗ and a ciphertext c, the deterministic decryption algorithm
returns m = Dec∗(k∗, c).

Below we establish the following result whose proof appears in Appendix B.7.

Theorem 5.7. Let Π∗ and Obf as defined in Construction 5. For every m ∈ M, consider the sampler
Sm depicted in Figure 6.

1. If Π∗ is sel-IND-CPRA-key (Definition A.19) then, for every m ∈ M, Sm is an oiO-sampler (Defi-
nition 4.1), and

2. If Π∗ is semantically secure (Definition A.16) and Obf is a ({Sm}m∈M)-oiO-obfuscator (Defini-
tion 4.2) then the PKE scheme Π of Construction 5 is sel-IND-CPA (Definition A.22).

6 Extending the impossibility results of Barak et al. [BGI+01, BGI+12] to
the setting of odiO and oiO

In Section 4, we have demonstrated that both odiO and oiO are weaker than VBB and, despite this, these
new notions are enough to implement several of the most important applications of VBB (Section 5). At
this point, the natural question is how weak odiO and oiO are, compared to VBB. In order to give an
answer to this question, we investigate whether the impossibility results for VBB (of Barak et al. [BGI+01,
BGI+12]) extend to either odiO or oiO (or both). Unfortunately, this turned out to be true: As we
show in Section 6.1, for type ∈ {odiO, oiO}, there exist a type-sampler that cannot be type-obfuscated
(unconditionally).

In addition, Barak et al. [BGI+12, Theorem 4.10] have shown that converting an arbitrary SKE into a
PKE (by simply obfuscating the SKE’s encryption algorithm together with a symmetric key) is not pos-
sible: Indeed, there exists a contrived SKE Π that cannot be obfuscated (as described above) into a PKE.
However, such an impossibility result does not apply to our oiO-based transformation from semantically
secure and sel-IND-CPRA-key secure SKEs into sel-IND-CPA PKEs (Section 5.5) since the contrived
SKE Π of [BGI+12] is not sel-IND-CPRA-key. Following the same spirit, we study whether a similar

14 IV-based SKEs are related to nonce-based SKEs [Rog04]. The main difference is that in IV-based SKE the
initialization vectors iv are random whereas in nonce-based SKE iv is replaced with a nonce that not necessarily
needs to be randomly chosen (e.g., the nonce could be a counter).
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C0
k,a,b(x, r)

If x = a, return b

return Enc0(k, 0; r)

C1
k,a(i, r)

Let a = a1|| . . . ||aλ

return Enc0(k, ai; r)

C2
k (c1, c2,⊙, r)

x = Dec0(k, c1)⊙ Dec0(k, c2)

return Enc0(k, x; r)

C3
k,a,b,y,e(d1, . . . , dλ, r)

Let b = b1|| . . . ||bλ
For i ∈ [λ] do:

If Dec0(k, di) ̸= bi,

return Enc0(k, 0; r)

return (k, a, y, e)

C∗
s,(k,a,b,y,e)(ℓ, v, r)

Let v = (x, i, c1, c2,⊙, d1, . . . , dλ)

r′ = F1(s, (ℓ, v, r))

If ℓ = 0, return C0
k,a,b(x, r

′)

If ℓ = 1, return C1
k,a(i, r

′)

If ℓ = 2, return C2
k (c1, c2,⊙, r′)

If ℓ = 3, return C3
k,a,b,y,e(d1, . . . , dλ, r

′)

Fig. 7: The circuit C∗s,(k,a,b,y,e) where (s, k, a, b, y, e) ∈ {0, 1}5λ+1 and ⊙ is the binary representation of a

2× 2 table of an arbitrary binary operator (e.g., AND, OR, NOT).

argument applies to our format- and function-preserving transformations, described in Construction 4
and Construction 5. In this case, we have a negative answer but only for the oiO-based function-preserving
transformation (Construction 5): We demonstrate that there exists a SKE Π that is semantically and
sel-IND-CPRA-key secure that cannot be converted into a sel-IND-CPA PKE by simply obfuscating the
SKE’s encryption algorithm together with a symmetric key, as done by our oiO-based Construction 5.
On the other hand, it remains unclear how we can prove a similar impossibility result for our odiO-based
format-preserving transformation (Construction 4) from SKEs to PKEs (through puncturable PRFs).
See Section 5.4 and Remark 6.6 for more details.

We stress that both our impossibility results leverage similar techniques to that of Barak et al. [BGI+01,
BGI+12] that we describe in the next sections.

6.1 Unobfuscatable odiO-samplers (resp. oiO-samplers) exist unconditionally

We build an ensemble of circuits C = {C∗s,(k,a,b,y,e)} (indexed by (s, k, a, b, y, e) ∈ {0, 1}5λ+1) that (i)

C∗s,(k,a,b,y,e) leaks no information when treated as oracles, and (ii) the obfuscation of any C∗s,(k,a,b,y,e) ∈ C
allows to extract the hardcoded values (k, a, b, y, e). We anticipate that the value e ∈ {0, 1} will allow us
to prove that a circuit C∗s,(k,a,b,y,e) cannot be odiO-obfuscated (resp. oiO-obfuscated) (see Section 6.1).
On the other hand, the value y is a key of a PRF that is fundamental to build a contrived semantically
and sel-IND-CPRA-key secure SKE that cannot be obfuscated (as described in Construction 5) into a
sel-IND-CPA PKE (Section 6.2). We build such an ensemble C (depicted in Figure 7) by using a similar
technique to that of [BGI+01, BGI+12] (for more details, we refer the reader to [BGI+01, BGI+12]).

In a nutshell, C∗s,(k,a,b,y,e) (depicted in Figure 7) is the composition of four circuits (C0
k,a,b, C

1
k,a, C

2
k ,

C3
k,a,b,y,e) and it is defined with respect to a SKE scheme Π0 = (KGen0,Enc0,Dec0) and a PRF Π1 =

(Gen1,F1) (required to generate “fresh” randomnesses). On input (ℓ, v, r) where v = (x, i, c1, c2,⊙, d1, . . . ,
dλ), C

∗
s,(k,a,b,y,e) uses ℓ to select which circuit to execute:

1. If ℓ = 0, C0
k,a,b(x,F1(s, (ℓ, v, r))) is executed. This circuit presents a trigger input a. If x = a,

C0
k,a,b(x,F1(s, (ℓ, v, r))) returns b. Otherwise, it returns Enc0(k, 0;F1(s, (ℓ, v, r))).

2. If ℓ = 1, C1
k,a(i,F1(s, (ℓ, v, r))) is executed. This circuit simply outputs the encryption of the i-th bit

of a, i.e., Enc0(k, ai;F1(s, (ℓ, v, r))).
3. If ℓ = 2, C2

k (c1, c2,⊙,F1(s, (ℓ, v, r))) is executed. This circuit allows an evaluator to perform (gate by
gate) computations over encrypted inputs. In more detail, it outputs the encryption of the evaluation
of w ⊙ z (i.e., Enc0(k, w ⊙ z;F1(s, (ℓ, v, r)))) where ⊙ is a binary operator, and w and z are the bits
encrypted by c1 and c2, respectively.
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4. If ℓ = 3, C3
k,a,b,y,e(d1, . . . , dλ,F1(s, (ℓ, v, r))) is executed. This is another circuit that presents a trigger

input b. In more detail, if each di is the encryption of the i-th of b, the circuit returns (k, a, y, e).
Otherwise, it returns Enc0(k, 0;F1(s, (ℓ, v, r))).

Following [BGI+12, BGI+01], if the SKE scheme Π0 is IND-CCA1 and Π1 is a secure PRF, then

oracle access to C∗s,(k,a,b,y,e) is computationally indistinguishable to oracle access to a circuit C̃k (see Fig-

ure 10 and proof of Theorem 6.1) that, on every input (ℓ, v, r), it always outputs a fresh encryption
of 0. This is because an adversary only sees ciphertexts and, as a consequence, it cannot distinguish
between C∗s,(k,a,b,y,e) and C̃k unless it guesses the trigger inputs a, b ∈ {0, 1}λ. As a consequence, this

implies that (i) an adversary cannot leak the hardcoded values (k, a, b, y, e) and, (ii) the pair of cir-
cuits (C∗s,(k,a,b,y,0), C

∗
s,(k,a,b,y,1)) are both oracle-differing-input and oracle-indistinguishable circuits (Def-

inition 4.1).

On the other hand, on input C̃←$ Obf(1λ, C∗s,(k,a,b,y,e)), an adversary can easily extract (k, a, b, y, e),
i.e., the circuit is partially reversible. This can be done as follows:

– Evaluate C̃(1, ·, ·) to get the encryptions (c1, . . . , cλ) of the a’s bits (see Item 2).
– Use (c1, . . . , cλ) to compute (d1, . . . , dλ) where di is the encryption of b’s i-th bit. Observe that this

can be done by leveraging C̃(2, ·, ·) to evaluate (gate by gate) C̃(0, ·, ·) = C0
k,a,b(·, ·) on a (see Item 3),

and
– Compute (k, a, b, y, e) by C̃(3, ·, ·) on (d1, . . . , dλ) (see Item 4).

The properties of the ensemble C are formalized in Theorem 6.1 whose proof appears in Appendix B.8.
We highlight that our technique of generating Enc0’s randomness as F1(s, (ℓ, v, r)) (instead of F1(s, (ℓ, v))
as done by Barak et al. [BGI+01, BGI+12]) permits to have multiple randomnesses for a fixed pair
(ℓ, v). This is allows us to prove a new property (not achieved by [BGI+01, BGI+12]) named input-
indistinguishability that, in turn, is fundamental to prove the impossibility (Section 6.2) of converting
semantically and sel-IND-CPRA-key secure SKE into sel-IND-CPA PKE. We stress that the ensemble
of circuits built by Barak et al. [BGI+01, Lemma 3.5] does not satisfy input-indistinguishability.

Theorem 6.1. Let Π0 = (KGen0,Enc0,Dec0), Π1 = (Gen1,F1), and C∗s,(k,a,b,y,e) be a SKE scheme with

key space {0, 1}λ, a PRF scheme with key space {0, 1}λ, and the circuit defined in Figure 7 with respect to
Π0 and Π1, respectively. Then, the ensemble C = {C∗s,(k,a,b,y,e)}s,k,a,b,y∈{0,1}λ,e∈{0,1} satisfies the following
properties:

Oracle-differing-input: If Π0 is IND-CCA1 (Definition A.17) and Π1 is secure (Definition A.6) then
for every PPT adversary D, we have

P
[
C∗s,(k,a,b,y,0)(ℓ, v, r) ̸= C∗s,(k,a,b,y,1)(ℓ, v, r)

]
≤ negl(λ),

where (ℓ, v, r)←$ AC∗
s,(k,a,b,y,0)(·,·,·),C

∗
s,(k,a,b,y,1)(·,·,·)(1λ), k←$ KGen0(1

λ), s←$ Gen1(1
λ), y←$ Gen1(1

λ)
and (a, b)←$ {0, 1}2λ.

Input-indistinguishability: If Π0 is IND-CCA1 (Definition A.17) and IND-CPA-key (Definition A.18),
and Π1 is secure (Definition A.6), then for every ℓ, v ∈ {0, 1}∗, every PPT adversary D, we have∣∣∣P[DC∗

s0(k0,a0,b0,y0,0)(·,·,·),C
∗
s1,(k1,a1,b1,y1,1)(·,·,·)(1λ,m0) = 1

]
−

P
[
DC∗

s0,(k0,a0,b0,y0,0)(·,·,·),C
∗
s1,(k1,a1,b1,y1,1)(·,·,·)(1λ,m1) = 1

]∣∣∣ ≤ negl(λ),

where (a0, b0, a1, b1)←$ {0, 1}4λ, kj ←$ KGen0(1
λ) for j ∈ {0, 1}, sj ←$ Gen1(1

λ) for j ∈ {0, 1},
yj ←$ Gen1(1

λ) for j ∈ {0, 1}, and md = C∗sd,(kd,ad,bd,yd,d)
(ℓ, v, rd) for rd←$ {0, 1}∗ and d ∈ {0, 1}.

Partial reversibility: There exists a PPT algorithm Ext such that for every (s, k, a, b, y, e) ∈ {0, 1}5λ+1

and every circuit C̃ such that C̃(ℓ, v, r) = C∗s,(k,a,b,y,e)(ℓ, v, r) for all ℓ, v, r ∈ {0, 1}∗,

P
[
(k, a, b, y, e)←$ Ext(1λ, C̃)

]
= 1.

Theorem 6.1 and Corollary A.20 imply that there exists an odiO-sampler (resp. oiO-sampler) Ŝ that
cannot be odiO-obfuscated (resp. oiO-obfuscated), if OWFs exist.
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Cowf
r,b (x)

If x = r, return b

return 0

Sowf(1
λ; r)

Set C0 = Cowf
r,0 , C1 = Cowf

r,1 , α = ⊥
return (C0, C1, α)

Fig. 8: The circuit Cowf
r,b and the sampler Sowf .

Corollary 6.2. For type ∈ {odiO, oiO}, if OWFs exist then there exists a type-sampler Ŝ (Definition 4.1)

such that Ŝ ̸∈ Stype where Stype is defined in Definition 4.3.

Proof. If a OWF exists then there exist a IND-CCA1 and IND-CPA-key SKE schemeΠ0 (Corollary A.20)
and a secure PRF scheme Π1 = (Gen1,F1). Consider C∗s,(k,a,b,y,e) the circuit (depicted in Figure 7)

defined with respect to Π0 and Π1. Let Ŝ be the sampler that, on input the security parameter 1λ, it
outputs (C0 = C∗s,(k,a,b,y,0), C1 = C∗s,(k,a,b,y,1),⊥) where (a, b)←$ {0, 1}2λ, k←$ KGen0(1

λ), s←$ Gen1(1
λ),

and y←$ Gen1(1
λ). Since Π1 is a secure PRF scheme and Π0 is IND-CCA1 and IND-CPA-key secure,

then C0 and C1 (output by Ŝ) satisfy the oracle-differing-input property of Theorem 6.1. This implies

that Ŝ is both an odiO-sampler and oiO-sampler (recall that any odiO-sampler is also an oiO-sampler
(Theorem 4.5)).

Moreover, the partial reversibility property of Theorem 6.1 implies that Ŝ cannot be odiO-obfuscated
(resp. oiO-obfusated). This is because there always exists a distinguisher D, that on input an obfuscated

circuit C̃←$ Obf(1λ, Cd), executes (k, a, b, y, e)←$ Ext(1λ, C̃) and outputs e (observe that e = d). Hence,

we conclude that Ŝ ̸∈ SodiO (resp. Ŝ ̸∈ SoiO). ⊓⊔

Similarly to VBB, both odiO and oiO imply the existence of OWFs (Theorem 6.3, proof in Appendix B.9).
As a consequence, for type ∈ {odiO, odiO}, a type-unobfuscatable type-sampler exists unconditionally.

Theorem 6.3. s Let Obf and Sowf be an obfuscator and the sampler as defined in Figure 8. Let p(·)
and F = {Fλ}λ∈N be a polynomial and an ensemble of functions such that Fλ is defined as Fλ(b, r0,
r1) = Obf(1λ, Cowf

r0,b
; r1) where (b, r0, r1) ∈ {0, 1} × {0, 1}λ × {0, 1}p(λ). Then, the following statements

hold:

1. Sowf is an odiO-sampler (resp. oiO-sampler), and
2. if Obf is a ({Sowf})-odiO-obfuscator (resp. ({Sowf})-oiO-obfuscator) then Fλ ∈ F is a OWF (Defini-

tion A.5).

Corollary 6.4. For type ∈ {odiO, oiO}, there exists (unconditionally) a type-sampler S such that S ̸∈
Stype where Stype as defined in Definition 4.3.

Proof. By combining Corollary 6.2 and Theorem 6.3, we obtain that either Sowf ̸∈ Stype or Ŝ ̸∈ Stype (for
type ∈ {odiO, odiO}) where Sowf and Ŝ defined in Figure 8 and Corollary 6.2, respectively. ⊓⊔

6.2 Impossibility of obfuscating semantically and sel-IND-CPRA-key secure SKE into
sel-IND-CPA secure PKE schemes

We now demonstrate that it is inherently impossible to convert a semantically secure and sel-IND-CPRA-
key SKEs into sel-IND-CPA PKEs by simply obfuscating the SKE’s encryption algorithm, as described
in our oiO-based Construction 5. We prove this by leveraging a similar technique to that of [BGI+12]:
We construct a SKE Π∗ that satisfies semantic and sel-IND-CPRA-key security that, when obfuscated
into a PKE (as described in Section 5.5), the latter results to be completely insecure. By leveraging the
ensemble C of Theorem 6.1, a PRF Π = (Gen,F), and a semantically and sel-IND-CPRA-key secure SKE

scheme Π̃ = (K̃Gen, Ẽnc, D̃ec), we build the contrived SKE Π∗ (see Appendix B.10) which is defined as
follows:

Enc∗(k∗, (ℓ, v); r) = (Ẽnc(k̃, (ℓ, v); r), C∗
s,(k̂,a,b,y,e)

(ℓ, v, r),F(y, (ℓ, v, r))⊕ k̃), (1)

where k∗ = (k̂, k̃, s, a, b, y, e). Π∗ is a semantically and sel-IND-CPRA-key secure SKE for the following
reasons:
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1. As described in Section 6.1 (see also proof of Theorem 6.1) oracle access to the circuit C∗
s,(k̂,a,b,y,e)

∈ C

is computationally indistinguishable from having oracle access to a circuit C̃k (see Figure 10) that
always returns encryptions of 0. Hence, this implies that C∗

s,(k̂,a,b,y,e)
does not leak the message (ℓ, v)

and that an adversary cannot leak any information about (k̂, a, b, y, e).
2. Conditioned to the above observation, the semantic security of Π∗ easily follows from the semantic

security of Π̃ and the security of Π.
3. As for the sel-IND-CPRA-key security of Π∗, it follows from sel-IND-CPRA-key security of Π̃, the

security of Π, and the fact that C satisfies input-indistinguishability (see Theorem 6.1).

On the other hand, when Enc∗ is obfuscated (as in Construction 5), an adversary can exploit the partial

reversibility of C (Theorem 6.1) to extract y and, in turn, the key k̃ that is used to encrypt the message
m = (ℓ, v). Below, we report the formal result whose proof appears in Appendix B.10.

Theorem 6.5. If OWFs exist then the following statements hold:

1. there exist a SKE Π∗ such that Π∗ is semantically secure (Definition A.16), sel-IND-CPRA-key
(Definition A.19), and

2. the PKE scheme Π = (KGen,Enc,Dec) (output by applying to Π∗ the transformation defined in Con-
struction 5) is not sel-IND-CPA (Theorem 5.7).

We stress that the above result improves the impossibility result of Barak et al. [BGI+12] since ours apply
to the smaller class of SKEs (i.e., SKEs with stronger notions of security) that satisfy sel-IND-CPRA-key
security (Definition A.19).

Remark 6.6 (On Construction 4). We highlight that the technique used to build the contrived SKE
scheme Π∗ of Equation (1) is not enough to contradict the security of our odiO-based construction from
IV-based SKEs to PKEs (through puncturable PRFs). Indeed, consider the following contrived IV-based

SKE Π∗ built starting from an IV-based SKE Π̃:

Enc∗(k∗, (ℓ, v); iv) = (iv, (c′, C∗
s,(k̂,a,b,y,e)

(ℓ, v, iv),F(y, (ℓ, v, iv))⊕ k̃)), (2)

where k∗ = (k̂, k̃, s, a, b, y, e) and Ẽnc(k̃, (ℓ, v); iv) = (iv, c′). The PKE schemeΠ (output by the compilation

of the contrived Π∗ into a PKE Π as described in Construction 4) has public keys of the form pk = C̃

where the obfuscated circuit C̃ internally generates a new symmetric encryption key for each randomness
r (see Figure 5). Although, an adversary A can still exploit the partial reversibility property of C to leak

the symmetric key k̃ (part of k∗, see Equation (2)) generated through a particular randomness r, A will
not be able to leak the one used to encrypt the challenge ciphertext c∗ (of the sel-IND-CPA experiment
of the PKE Π). This is because c∗ is computed using a randomly chosen randomness r∗ (not revealed

to A). Hence, in order to exploit the partial reversibility property to leak the symmetric key k̃ (used to
encrypt part of challenge ciphertext c∗), A needs first to guess the randomness r∗. This happens with
negligible probability.

Remark 6.7 (On MACs and non-interactive argument systems). It is worth mentioning that [BGI+12,
Theorem 4.10] also shows an impossibility result for MACs, i.e., there exists a contrived MAC whose
Tag algorithm cannot be obfuscated. This impossibility result does not apply to our two transformations
(described in Sections 5.2 and 5.3) since odiO transforms a MAC scheme into a digital signature by
obfuscating the MAC’s verification algorithm Verify (see Construction 2 and Construction 3). Indeed,
note that the contrived MAC scheme described in [BGI+12] heavily relies on the fact that Tag outputs
long strings (in order to leak the MAC’s symmetric key). However, Verify’s output is a single bit and
this is a main obstacle while trying to extend their result to our transformations. Intuitively because we
would need to build a contrived Verify algorithm that leaks information when obfuscated. However, since
the Verify’s output is a single bit, this would break the unforgeability of the MAC. The same argument
applies to non-interactive argument systems.
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toolbox for more efficient universal and updatable zksnarks and commit-and-prove extensions. In
International Conference on the Theory and Application of Cryptology and Information Security,
pages 3–33. Springer, 2021.

CK21. Matteo Campanelli and Hamidreza Khoshakhlagh. Succinct publicly-certifiable proofs. In Interna-
tional Conference on Cryptology in India, pages 607–631. Springer, 2021.

CKP15. Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with random oracles. In Theory
of Cryptography Conference, pages 456–467. Springer, 2015.

CL06. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Annual International Cryp-
tology Conference, pages 78–96. Springer, 2006.

22



CRV10. Ran Canetti, Guy N Rothblum, and Mayank Varia. Obfuscation of hyperplane membership. In
Theory of Cryptography Conference, pages 72–89. Springer, 2010.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976.

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors.
In Annual International Cryptology Conference, pages 152–168. Springer, 2005.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science (FOCS), pages 40–49. IEEE Computer Society,
2013.

GGHW17. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. Algorithmica, 79(4):1353–1373,
2017.

GK05. Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary input.
In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pages 553–562.
IEEE, 2005.

GK13. Shafi Goldwasser and Yael Tauman Kalai. A note on the impossibility of obfuscation with auxiliary
input. IACR Cryptol. ePrint Arch., 2013:665, 2013.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 612–621. IEEE, 2017.

GMM17. Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does functional encryption
imply obfuscation? In Theory of Cryptography Conference, pages 82–115. Springer, 2017.

GP21. Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 736–749, 2021.

GR07. Shafi Goldwasser and Guy N Rothblum. On best-possible obfuscation. In Theory of Cryptography
Conference, pages 194–213. Springer, 2007.

HKW15. Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure puncturable pseudoran-
dom functions in the standard model. In International conference on the theory and application of
cryptology and information security, pages 79–102. Springer, 2015.

IPS15. Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation and its appli-
cations. In Theory of Cryptography Conference, pages 668–697. Springer, 2015.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assump-
tions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
60–73, 2021.

LPS04. Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for obfuscation.
In International conference on the theory and applications of cryptographic techniques, pages 20–39.
Springer, 2004.

LPST16. Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation with non-
trivial efficiency. In Public-Key Cryptography–PKC 2016, pages 447–462. Springer, 2016.

MMN16. Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. On the impossibility of virtual
black-box obfuscation in idealized models. In Theory of Cryptography Conference, pages 18–48.
Springer, 2016.

PS16. Rafael Pass and Abhi Shelat. Impossibility of vbb obfuscation with ideal constant-degree graded
encodings. In Theory of Cryptography Conference, pages 3–17. Springer, 2016.

PST14. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In Annual Cryptology Conference, pages 500–517. Springer, 2014.

Rog04. Phillip Rogaway. Nonce-based symmetric encryption. In International workshop on fast software
encryption, pages 348–358. Springer, 2004.

SW13. Hovav Shacham and Brent Waters. Compact proofs of retrievability. Journal of cryptology, 26(3):442–
483, 2013.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages
475–484, 2014.

Wee05. Hoeteck Wee. On obfuscating point functions. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 523–532, 2005.

WW21. Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 127–
156. Springer, 2021.

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under lwe. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 600–611. IEEE,
2017.

23



A Further Preliminaries

A.1 Notation

We use the notation [n]
def
= {1, . . . , n}. Capital boldface letters (such as X) are used to denote random

variables, small letters (such as x) to denote concrete values, calligraphic letters (such as X ) to denote
sets, and serif letters (such as A) to denote algorithms. All of our algorithms are modeled as (possibly
interactive) Turing machines. For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents
the cardinality of X . When x is chosen randomly in X , we write x←$ X . If A is an algorithm, we write
y←$ A(x) to denote a run of A on input x and output y; if A is randomized, y is a random variable
and A(x; r) denotes a run of A on input x and (uniform) randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of A(x; r)
terminates in a polynomial number of steps (in the input size).

Negligible functions. We denote by λ ∈ N the security parameter and we implicitly assume that
every algorithm takes as input the security parameter (written in unary). A function ν : N → [0, 1] is
called negligible in the security parameter λ if it vanishes faster than the inverse of any polynomial in
λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We sometimes write negl(λ) (resp., poly(λ)) to
denote an unspecified negligible function (resp., polynomial function) in the security parameter.

Computational indistinguishability. We say that X and Y are computationally indistinguishable,
denoted X ≈c Y, if for all PPT distinguishers D we have that

∣∣P[D(1λ,X) = 1
]
− P

[
D(1λ,Y) = 1

]∣∣ ≤
negl(λ).

A.2 Non-Interactive Argument systems

Let R be a decidable binary relation composed of pairs (x, ω) where x and ω are called statement and
witness, respectively. Also, let L be the language composed of all statements for which there exists a
witness ω in R, i.e., L = {x}(x,ω)∈R. A non-interactive argument system Π for a relation R is composed
of the following polynomial-time algorithms:

Setup(1λ,R): The randomized setup algorithm takes as input the security parameter 1λ and a relation
R. It outputs a common reference string crs and a verification key vrs.

Prove(crs, x, ω): The randomized prover algorithm takes as input the common reference string crs, a
statement x, and a witness ω. It outputs a proof π.

Verify(vrs, x, π): The deterministic verification algorithm takes as input the verification key vrs, a state-
ment x, and a proof π. It outputs a decision bit b.

We require a non-interactive argument system to be complete, i.e., honest proofs correctly verify.
As for security, we consider two different definitions with respect to DV setting: selective soundness
and straight-line knowledge soundness. The former says that it must be infeasible to find a proof that
correctly verifies with respect to a statement x ̸∈ L where x is chosen before the execution of Setup.
On other hand, the latter says that there exists a universal extractor Ext that, on input a trapdoor td,
is able to extract a witness ω (such that (x, ω) ∈ R) from any pair (x, π) that correctly verifies, i.e.,
Verify(vrs, x, π) = 1. Both definitions are for the designated verifier (DV) setting, i.e., vrs is kept secret
and the adversary has oracle access to Verify(vrs, ·, ·)

Definition A.1 (Completeness). A non-interactive proof system Π for a relation R is complete if
∀λ ∈ N, ∀(x, ω) ∈ R we have:

P
[
Verify(vrs, x,Prove(crs, x, ω)) = 1

∣∣(crs, vrs)←$ Setup(1λ,R)
]
≥ 1− negl(λ).

Definition A.2 (Selective Soundness). A non-interactive argument system Π for a relation R sat-
isfies selective soundness if, for every x ̸∈ L, for every PPT adversary A, we have:

P
[
Verify(vrs, x, π) = 1

∣∣∣∣ (crs, vrs) ←$ Setup(1λ,R)
π ←$ AVerify(vrs,·,·)(1λ, crs)

]
≤ negl(λ).
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The following definition models the ability of an extractor to be able to output a prover immediately,
without having to further invoke the adversary. These extractors are often called straight-line and have
been shown to be interesting for compiling both interactive and idealized proof schemes into concrete
non-interactive ones [Fis05, CFF+21].

Definition A.3 (Straight-line Knowledge Soundness). A non-interactive argument system Π for
a relation R satisfies straight-line knowledge soundness if there exists a PPT algorithm Ext = (Ext0,Ext1)
such that:

Indistinguishability. For every PPT adversary D, we have:∣∣∣P[D(1λ, crs, vrs) = 1
∣∣∣(crs, vrs)←$ Setup(1λ,R)

]
−

P
[
D(1λ, crs, vrs) = 1

∣∣∣(crs, vrs, td)←$ Ext0(1
λ,R)

]∣∣∣ ≤ negl(λ).

Extractability. For every PPT adversary A, we have:

P

 (x, ω) ̸∈ R
∧

Verify(vrs, x, π) = 1

∣∣∣∣∣
(crs, vrs, td) ←$ Ext0(1

λ,R)
(x, π) ←$ AVerify(vrs,·,·)(1λ, crs)
ω ←$ Ext1(1

λ, td, x, π)

 ≤ negl(λ).

Definitions A.2 and A.3 are for designated verifier (DV) non-interactive argument systems. We extend
them to the publicly verifiable (PV) case.

Definition A.4 (Public Verifiability). A non-interactive argument system Π for a relation R is
publicly verifiable (PV) if selective soundness (resp. Straight-line Knowledge Soundness) holds even if
the verification key vrs is given to the adversary A.

A.3 One-way and (Puncturable) Pseudorandom Functions

One-way functions. Let ℓin(·), ℓout(·), and F = {Fλ : {0, 1}ℓin(λ) → {0, 1}ℓout(λ)}λ∈N be two polyno-
mials and an ensemble of functions, respectively. We say a function Fλ ∈ F is a one-way function (OWF)
if it is computationally infeasible to find x′ ∈ {0, 1}ℓin(λ) such that Fλ(x) = Fλ(x

′) where x←$ {0, 1}ℓin(λ).

Definition A.5. We say Fλ ∈ F is a OWF if for every PPT adversary A, we have:

P
[
Fλ(A(1

λ,Fλ(x))) = Fλ(x)
∣∣∣x←$ {0, 1}ℓin(λ)

]
≤ negl(λ).

Pseudorandom functions. A pseudorandom function (PRF) scheme Π = (Gen,F) with input space
{0, 1}ℓin and output space {0, 1}ℓout is composed of the following polynomial-time algorithms:

KGen(1λ): The randomized key generation algorithm takes as input the security parameter 1λ and out-
puts a key s.

F(s, x): The deterministic function evaluation algorithm takes as input a key s and an input x ∈ {0, 1}ℓin ,
it outputs a value y ∈ {0, 1}ℓout .

A PRF Π is considered secure (i.e., pseudorandom) if its output distribution is indistinguishable to the
one of a truly random function.

Definition A.6 (Security of PRF). A PRF Π is secure if for every PPT adversary D, we have:∣∣∣P[DF(s,·)(1λ) = 1
]
− P

[
DFrnd(·)(1λ) = 1

]∣∣∣ ≤ negl(λ),

where s←$ Gen(1λ) and Frnd : {0, 1}ℓin → {0, 1}ℓout is a truly random function.
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Puncturable pseudorandom functions [HKW15]. A puncturable PRF schemeΠ = (Gen,F,Punct)
offers an additional polynomial-time algorithm Punct defined as follows:

Punct(s, x): The deterministic puncturing algorithm takes as input a key s and an input x ∈ {0, 1}ℓin , it
outputs a punctured key s′.

We require a puncturable PRF to be correct under puncturing and pseudorandom at punctured inputs.

Definition A.7 (Correctness of puncturable PRF). A puncturable PRF Π is correct if ∀λ ∈ N,
∀x, x′ ∈ {0, 1}ℓin such that x ̸= x′, we have

P
[
F(s, x′) = F(s′, x′)|s←$ Gen(1λ), s′ = Punct(s, x)

]
= 1.

Definition A.8 (Security of puncturable PRF). A PRF Π is secure if for every x ∈ {0, 1}ℓin ,
every PPT adversary D, we have:∣∣P[D(1λ, s′,F(s, x)) = 1

]
− P

[
D(1λ, s′, y) = 1

]∣∣ ≤ negl(λ),

where s←$ KGen(1λ), s′ = Punct(s, x), and y←$ {0, 1}ℓout .

A.4 Message Authentication Codes

Amessage authentication code (MAC)Π with message spaceM is composed of the following polynomial-
time algorithms:

KGen(1λ): The randomized key generation algorithm takes as input the security parameter 1λ and out-
puts a key k. Optionally, KGen takes as input an additional parameter 1q and k’s size can depend on
1q.

Tag(k,m): The randomized tagging algorithm takes as input a key sk and a message m. It outputs a tag
σ.

Verify(k,m, σ): The deterministic verification algorithm takes as input a key k, a message m ∈ M, and
a tag σ. It outputs a decision bit b.

We consider MACs that are correct and strong existentially unforgeable under selective chosen message
attacks ((q)-sEUF-sel-CMA), i.e., fresh valid tags are unforgeable if the adversary can ask a fixed number
q of tags (for arbitrary messages) in a selective fashion (note that this is weaker than the standard sEUF-
CMA security in which the adversary has adaptive and unbounded access to tagging oracle Tag).

Definition A.9 (Correctness of MACs). A MAC scheme Π is correct if ∀λ ∈ N, ∀m ∈M, we have
that:

P
[
Verify(k,m,Tag(k,m)) = 1|k←$ KGen(1λ)

]
≥ 1− negl(λ).

Definition A.10 ((q)-sEUF-sel-CMA security of MACs). A MAC scheme Π with message space
M is strong existentially unforgeable under selective chosen message attacks in the (q)-bounded setting
((q)-sEUF-sel-CMA) if for every (m1, . . . ,mq) ∈Mq, every PPT adversary A, we have that:

P

∀i ∈ [q], (m,σ) ̸= (mi, σi)
∧

Verify(k,m, σ) = 1

∣∣∣∣∣k←
$ KGen(1λ, 1q)

∀i ∈ [q], σi←$ Tag(k,mi)
(m,σ)←$ A(1λ, σ1, . . . , σq)

 ≤ negl(λ).

In addition, we also consider a weaker definition of security, named existential unforgeability (EUF). In
this definition, the adversary does not have oracle access to Tag.

Definition A.11 (EUF security of MACs). A MAC scheme Π with message spaceM is existentially
unforgeable (EUF) if for every m ∈M, every PPT adversary A, we have that:

P
[
Verify(k,m, σ) = 1|k←$ KGen(1λ), σ←$ A(1λ,m)

]
≤ negl(λ).
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A.5 Digital Signatures

A signature scheme Π with message spaceM is composed of the following polynomial-time algorithms:

KGen(1λ): The randomized key generation algorithm takes as input the security parameter 1λ and out-
puts a signing key sk and a public key pk. Optionally, KGen takes as input an additional parameter
1q and pk’s size can depend on 1q.

Sign(sk,m): The randomized signing algorithm takes as input a signing key sk and a message m. It
outputs a signature σ.

Verify(pk,m, σ): The deterministic verification algorithm takes as input the public key pk, a message
m ∈M, and a signature σ. It outputs a decision bit b.

Similarly to MACs, we consider correctness and strong existential unforgeability under selective chosen
message attacks in the (q)-bounded setting ((q)-sEUF-sel-CMA). In addition, we consider the notion
of selective existential unforgeability under (adaptive) chosen message attacks (sel-EUF-CMA), i.e., the
adversary must commit on a target message m before getting adaptive access to the oracle Sign.

Definition A.12 (Correctness of signatures). A digital signature scheme Π is correct if ∀λ ∈ N,
∀m ∈M, we have that:

P
[
Verify(pk,m,Sign(sk,m)) = 1|(sk, pk)←$ KGen(1λ)

]
= 1.

Definition A.13 ((q)-sEUF-sel-CMA security of signatures). A signature scheme Π with mes-
sage spaceM is strong existentially unforgeable under selective chosen message attacks in the (q)-bounded
setting ((q)-sEUF-sel-CMA) if for every (m1, . . . ,mq) ∈Mq, every PPT adversary A, we have that:

P

∀i ∈ [q], (m,σ) ̸= (mi, σi)
∧

Verify(pk,m, σ) = 1

∣∣∣∣∣ (sk, pk)←
$ KGen(1λ, 1q)

∀i ∈ [q], σi←$ Sign(sk,mi)
(m,σ)←$ A(1λ, pk, σ1, . . . , σq)

 ≤ negl(λ).

Definition A.14 (sel-EUF-CMA security of signatures). A signature scheme Π with message
space M is selectively existentially unforgeable under chosen message attacks (sel-EUF-CMA) if for
every m ∈M, every PPT adversary A, we have that:

P

[
m ̸∈ QSign ∧ Verify(pk,m, σ) = 1

∣∣∣∣∣ (sk, pk)←$ KGen(1λ)
σ←$ ASign(sk,·)(1λ, pk,m)

]
≤ negl(λ),

where QSign is the set of messages submitted to the oracle Sign.

A.6 Symmetric Key Encryption

A symmetric encryption (SKE) scheme with message spaceM is composed of the following polynomial-
time algorithms:

KGen(1λ): The randomized key generator takes as input the security parameter 1λ and outputs a sym-
metric key k.

Enc(k,m): The randomized encryption algorithm takes as input a symmetric key k and a message m ∈
M, it outputs a ciphertext c.

Dec(k, c): The deterministic decryption algorithm takes as input a symmetric key k and a ciphertext c,
it outputs a message m.

A SKE is correct if honest ciphertexts correctly decrypt.

Definition A.15 (Correctness of SKE). A SKE Π with message space M is correct if ∀λ ∈ N,
∀m ∈M, we have

P
[
Dec(k,Enc(k,m)) = m|k←$ KGen(1λ)

]
= 1.
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GSKEsec
Π,A,m0,m1

(λ)

k←$ KGen(1λ)

b←$ {0, 1}
c←$ Enc(k,mb)

b
′←$ A(1λ, c)

If b
′
= b, return 1

return 0

GSKEcprakey
Π,A,m (λ)

k0←$ KGen(1λ), k1←$ KGen(1λ)

b←$ {0, 1}
c←$ Enc(kb,m)

b
′←$ AEnc(k0,·;·),Enc(k1,·;·)

(1
λ
, c)

If b
′
= b, return 1

return 0

GPKEcpa
Π,A,m0,m1

(λ)

(sk, pk)←$ KGen(1λ)

b←$ {0, 1}
c←$ Enc(pk,mb)

b
′←$ A(1λ, pk, c)

If b
′
= b, return 1

return 0

GSKEcca1
Π,A (λ)

k←$ KGen(1λ)

m0,m1←$ A
Enc(k,·),Dec(k,·)
0 (1

λ
)

b←$ {0, 1}
c←$ Enc(k,mb)

b
′←$ A

Enc(k,·)
1 (1

λ
, c)

If b
′
= b, return 1

return 0

GSKEcpakey
Π,A (λ)

k0←$ KGen(1λ), k1←$ KGen(1λ)

m←$ A
Enc(k0,·),Enc(k1,·)
0 (1

λ
)

b←$ {0, 1}
c←$ Enc(kb,m)

b
′←$ A

Enc(k0,·),Enc(k1,·)
1 (1

λ
, c)

If b
′
= b, return 1

return 0

Fig. 9: Game defining semantic, IND-CCA1, IND-CPA-key, sel-IND-CPRA-key of SKE and sel-IND-CPA
of PKE. The top three games (that define semantic, sel-IND-CPRA-key, and sel-IND-CPA security) are
parametrized by two (or one) messages since they only cover selective security, while the bottom games
cover also the adaptive case where the adversary is allowed to choose the messages after seeing the public
key.

We now define different flavors of security in both selective and adaptive setting.

First, we consider the standard semantic security and security under chosen ciphertext attacks (IND-
CCA1). In the IND-CCA1 experiment, the adversary has oracle access to Enc and Dec where Dec is
available only before the selection of the messages m0 and m1.

Definition A.16 (Semantic security of SKE). We say that a SKE Π with message space M is
semantically secure if for every m0,m1 ∈M, every PPT adversaries A, we have:∣∣∣∣P[GSKEsec

Π,A,m0,m1
(λ) = 1

]
− 1

2

∣∣∣∣ ≤ negl(λ),

where the experiment GSKEsec
Π,A,m0,m1

(λ) is depicted in Figure 9.

Definition A.17 (IND-CCA1 security of SKE). We say that a SKE Π with message space M is
secure under chosen ciphertext attacks (IND-CCA1) if for every PPT adversaries A = (A0,A1), we have:∣∣∣∣P[GSKEcca1

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where the experiment GSKEcca1
Π,A (λ) is depicted in Figure 9.

Second, we consider SKEs that are key indistinguishable, i.e., a computationally bounded adversary
A cannot determine which key (between k0←$ KGen(λ) and k1←$ KGen(λ)) has been used to encrypt an
adversarially chosen message m. We define key indistinguishability with respect to two different models:
(i) adaptive message and chosen plaintext attacks (IND-CPA-key) and (ii) selective message and chosen
plaintext randomness attacks (sel-IND-CPRA-key). The IND-CPA-key experiment allows an adversary,
with oracle access to Enc(k0, ·) and Enc(k1, ·), to adaptively choose the message m. On the other hand,
in the sel-IND-CPRA-key experiment, the adversary is required to commit on the message m before
getting oracle access to Enc(k0, ·; ·) and Enc(k1, ·; ·) where the latter oracles accept adversarially chosen
plaintexts and randomnesses.

28



Definition A.18 (IND-CPA-key security of SKE). We say that a SKE Π with message space
M is key indistinguishable under chosen plaintext attacks (IND-CPA-key) if for every PPT adversaries
A = (A0,A1), we have: ∣∣∣∣P[GSKEcpakey

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where the experiment GSKEcpakey
Π,A (λ) is depicted in Figure 9.

Definition A.19 (sel-IND-CPRA-key of SKE). We say that a SKE Π with message space M is
selectively key indistinguishable under chosen plaintext randomness attacks (sel-IND-CPRA-key) if for
every m ∈M, every PPT adversaries A, we have:∣∣∣∣P[GSKEcprakey

Π,A,m (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where the experiment GSKEcprakey
Π,A,m (λ) is depicted in Figure 9.

Through the paper, we leverage the above definitions of security to prove two main results. In Sec-
tion 5.5, we show that oiO is (potentially) able to compile any semantically secure and sel-IND-CPRA-key
SKE Π into a sel-IND-CPA PKE Π ′ (see Appendix A.7 and definition A.22). On the other hand, in Sec-
tion 3, we make use of the adaptive IND-CCA1 and IND-CPA-key definitions to prove some unconditional
impossibility results for both odiO and oiO.

Lastly, we stress that all the above definitions follow from OWFs. Indeed, the well known Enc(k,m; r) =
(F(k, r) ⊕m, r) (where F is a PRF) satifies both IND-CCA1 (and in turn semantic security) and IND-
CPA-key. Moreover, any sel-IND-CPA-key SKE scheme Π = (KGen,Enc,Dec) can be transformed
into a sel-IND-CPRA-key SKE scheme Π∗ = (KGen∗,Enc∗,Dec) by simply setting Enc∗(k∗,m; r) =
Enc(k,m;F(s, (m, r))) where k∗ = (k, s)←$ KGen∗(1λ).15

Corollary A.20. If OWFs exist then there exists a SKE scheme Π that satifies Definitions A.15 to A.19.

A.7 Public Key Encryption

A public key encryption (PKE) scheme with message spaceM is composed of the following polynomial-
time algorithms:

KGen(1λ): The randomized key generator takes as input the security parameter 1λ and outputs a secret
key sk and a public key pk.

Enc(pk,m): The randomized encryption algorithm takes as input a public key pk and a message m ∈M,
it outputs a ciphertext c.

Dec(sk, c): The deterministic decryption algorithm takes as input a secret key sk and a ciphertext c, it
outputs a message m.

We consider PKEs that are correct and selectively secure under chosen plaintext attacks (sel-IND-CPA),
i.e., the messages m0,m1 are chosen before executing KGen.

Definition A.21 (Correctness of PKE). A PKE Π with message space M correct if ∀λ ∈ N,
∀m ∈M, we have

P
[
Dec(sk,Enc(pk,m)) = m|(pk, sk)←$ KGen(1λ)

]
= 1.

Definition A.22 (sel-IND-CPA security of PKE). We say that a PKE Π is selectively secure
under chosen plaintext attacks (sel-IND-CPA) if for every m0,m1 ∈M, every PPT adversary A:∣∣∣∣P[GPKEcpa

Π,A,m0,m1
(λ) = 1

]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game GPKEcpa
Π,A,m0,m1

(λ) is depicted in Figure 9.

Sometimes, we will consider the (standard) adaptive version of the above definition of security, i.e.,
security under chosen plaintext attacks (IND-CPA).

15 We stress that the same transformation achieves adaptive security, i.e., any IND-CPA-key SKE scheme can be
transformed into a IND-CPRA-key scheme (the adaptive flavor of Definition A.19).
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B Supporting Proofs

B.1 Proof of Theorem 4.6

VBB ⇒ oiO. We start by proving the following lemma.

Lemma B.1. If there exists a PPT Obf obfuscator such that Obf is a ({S0,S1})-VBB-obfuscator (Defi-
nition 3.5) then Obf is a ({S})-oiO-obfuscator (Definition 4.2).

Proof. By contradiction, assume that Obf is not a ({S})-oiO-obfuscator, i.e., there exist a PPT adversary
D such that ∣∣P[D(1λ,Obf(1λ, C0), α) = 1

]
− P

[
D(1λ,Obf(1λ, C1), α) = 1

]∣∣ ≥ ϵ, (3)

where (C0, C1, α)←$ S(1λ) and ϵ non-negligible. By definition of S0,S1, the following condition holds:

∀r ∈ {0, 1}∗, C0 = C ′0 ∧ C1 = C ′1 ∧ α = α′, b

where (C0, C1, α) = S(1λ; r),(C ′0, α
′) = S0(1

λ; r), and (C ′1, α
′) = S1(1

λ; r). Hence, we can rewrite Equa-
tion (3) as follows:∣∣P[D(1λ,Obf(1λ, C ′0), α′) = 1

]
− P

[
D(1λ,Obf(1λ, C ′1), α

′) = 1
]∣∣ ≥ ϵ, (4)

where r←$ {0, 1}∗, (C ′0, α′) = S0(1
λ; r), and (C ′1, α

′) = S1(1
λ; r). By leveraging the fact that Obf is

a ({S0,S1})-VBB-obfuscator, we conclude that there exists a PPT simulator Sim such that for every
Sb ∈ {S0,S1}: ∣∣∣∣∣P[D(1λ,Obf(1λ, C ′b), α′) = 1

]
− P

[
SimC′

b(·)(1λ, 1|C
′
b|, α′) = 1

]∣∣∣∣∣ ≤ negl(λ), (5)

where r←$ {0, 1}∗ and (Cb, α
′)←$ Sb(1

λ). By combining Equations (3) to (5) we conclude that∣∣∣∣∣P[SimC′
0(·)(1λ, 1|C

′
0|, α′) = 1

]
− P

[
SimC′

1(·)(1λ, 1|C
′
1|, α′) = 1

]∣∣∣∣∣ ≥ ϵ+ negl(λ), (6)

where r←$ {0, 1}∗, (C ′0, α′) = S0(1
λ; r), and (C ′1, α

′) = S1(1
λ; r). Since ϵ is non-negligible, Equation (6)

contradicts the fact that S is an oiO-sampler. This concludes the proof. ⊓⊔

We now use Lemma B.1 to prove Theorem 4.6. By contradiction, suppose S ̸∈ SoiO. This implies
that, for every ensemble of oiO-samplers S such that S ∈ S, it does not exists a PPT Obf that is a
(S)-oiO-obfuscator. By leveraging Lemma B.1, we can also conclude that it must not exists a PPT Obf ′

that is a ({S0,S1})-VBB-obfuscator. As a consequence, it must be that either S0 ̸∈ SVBB or S1 ̸∈ SVBB.
This concludes the proof.

VBB ⇒ odiO. This case follows by combining the above argument and the fact that oiO ⇒ odiO
(Theorem 4.5).

B.2 Proof of Theorem 5.1

(Part one) Sx is an odiO-sampler. By contradiction, suppose there exists x∗ ̸∈ L such that Sx∗ is
not an odiO-sampler, i.e., there exists a PPT adversary A such that

P
[
C0(v) ̸= C1(v)

∣∣∣v←$ AC0(·),C1(·)(1λ, 1|C0|, α)
]
≥ ϵ,

where (C0, C1, α)←$ Sx∗(1λ) and ϵ non-negligible. We build an adversary A′ that breaks the selective
soundness of Π∗ with respect to the statement x∗ ̸∈ L. The adversary A′ proceeds as follows:

1. Receive crs∗ from the challenger.
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2. Let C∗0 = CVerify
vrs∗ ,C1 = CVerify

vrs∗,x∗ and α = crs∗ (note that both C∗0 and C∗1 are unknown to A′ since vrs∗

is kept secret by the challenger).
3. Send α and 1γ (where γ as defined in Figure 2) to A and answer to the incoming queries as follows:

(a) On input (x, π) for C∗0 , A
′ forwards (x, π) to the oracle Verify∗(vrs∗, ·, ·) and returns the answer.

(b) On input (x, π) for C∗1 , if x = x∗, return 0. Otherwise, forward (x, π) to the oracle Verify∗(vrs∗, ·, ·)
and return the answer.

4. Finally, A′ receives v = (x̂, π̂) from A. It forwards π̂ to the challenger.

It is easy to see that A′ perfectly simulates the view of A. This because crs∗ and vrs∗ (generated by the
challenger) have the exact same distribution to the one generated by Sx∗ . Moreover, we have that A′

perfectly simulates both circuits C∗0 and C∗1 . Observe that v = (x̂, π̂) is a differing-input for C∗0 and C∗1
only if x̂ = x∗ and Verify∗(vrs∗, x∗, π̂) = 1. Hence, A′ breaks selective soundness property of Π∗ with the
same non-negligible advantage ϵ of A. This concludes the proof.

(Part two) Π satisfies (publicly verifiable) selective soundness. Let x∗ ̸∈ L. Consider the
following hybrid experiments:

Hybx
∗

0 (λ): This is the standard selective soundness experiment (with respect to the statement x∗ ̸∈ L) for
publicly verifiable argument systems (Definition A.2). Recall that in the publicly verifiable setting,
both crs∗ and vrs∗ are given in input to the adversary (Definition A.4).

Hybx
∗

1 (λ): Same as Hybx
∗

0 , except that the challenger obfuscates the circuit CVerify
vrs∗,x∗ of Figure 2 (instead of

CVerify
vrs∗ ). Formally, the challenger computes vrs←$ Obf(1λ, CVerify

vrs∗,x∗) where (crs∗, vrs∗)←$ Setup∗(1λ,R).

Lemma B.2. For every x∗ ̸∈ L, Hybx
∗

0 (1λ) ≈c Hyb
x∗

1 (1λ).

Proof. By contradiction, assume there exists x∗ ̸∈ L such that Hybx
∗

0 and Hybx
∗

1 are not computationally
indistinguishable, i.e., there exists a PPT distinguisher D that has a non-negligible advantage in dis-
tinguishing between Hybx

∗

0 and Hybx
∗

1 . We build a distinguisher D′ that breaks the indistinguishability
property of Obf for the odiO-sampler Sx∗ . The distinguisher D′ proceeds as follows:

1. Receive in input an obfuscated circuit C̃ and α. Recall that C̃←$ Obf(1λ, Cb) and α = crs∗ where
b←$ {0, 1} is the unknown challenge bit and (C0, C1, α)←$ Sx∗(1λ).

2. Send crs = crs∗ and vrs = C̃ to D.
3. Return whatever D outputs.

It is easy to see that, if b = 0 then D′ simulates Hybx
∗

0 . On the other hand, if b = 1 then D′ simulates

Hybx
∗

1 . Hence, D′ retains the same non negligible advantage of D. ⊓⊔

Observe that, for every x∗ ̸∈ L, A has advantage 0 against the selective soundness experiment of
Hybx

∗

1 . This because, for every π ∈ {0, 1}∗, Verify(vrs, x∗, π) returns 0 since vrs←$ Obf(1λ, CVerify
vrs∗,x∗) (see

the definition of CVerify
vrs∗,x∗ depicted in Figure 2). This concludes the proof.

B.3 Proof of Theorem 5.2

(Part one) SExt∗ is an odiO-sampler. By contradiction, suppose SExt∗ is not an odiO-sampler, i.e.,
there exists a PPT adversary A such that:

P
[
C0(v) ̸= C1(v)

∣∣∣v←$ AC0(·),C1(·)(1λ, 1|C0|, α)
]
≥ ϵ,

where (C0, C1, α)←$ SExt∗(1
λ) and ϵ non-negligible. We build an adversary A′ that breaks the extractabil-

ity property of Π∗. The adversary A′ proceeds as follows:

1. Receive crs∗ from the challenger.
2. Let C∗0 = CVerify

vrs∗ ,C1 = CVerify
vrs∗,td∗,r∗1

and α = crs∗ for random r∗1 ←$ {0, 1}∗ (note that both C∗0 and C∗1
are unknown to A′ since both vrs∗ and td∗ is kept secret by the challenger).

3. Send α and 1γ (where γ as defined in Figure 2) to A and answer the incoming queries as follows:
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(a) On input (x, π) for the circuit C∗i for i ∈ {0, 1}, A′ forwards (x, π) to the oracle Verify∗(vrs∗, ·, ·)
and returns the answer.

4. Receive v = (x̂, π̂) from A.
5. Sample a random bit b←$ {0, 1}. If b = 0, A′ returns (x′, π′)←$QC∗

1
where QC∗

1
are the queries

submitted by A to the oracle C∗1 . Otherwise, if b = 1, A′ returns (x′, π′) = (x̂, π̂).

First, note that (C∗0 , C
∗
1 , α) comes from a distribution that is identical to that of SExt∗ ; this is because

vrs∗ and td∗ are generated by executing Ext∗0 and r∗1 is sampled at random from {0, 1}∗ (as done by
SExt∗).

In addition, observe that

1. If A′ correctly simulates A’s view with respect to (C∗0 , C
∗
1 , α) then (x̂, π̂) (output by A) contradicts

the Straight-line Knowledge Soundness property of Π∗.
2. On the other hand, if A′ fails to correctly simulate A’s view with respect to (C∗0 , C

∗
1 , α) then there

exists (x′, π′) ∈ QC∗
1

(submitted by A) that contradicts the Straight-line Knowledge Soundness
property of Π∗.

Consider the following events defined with respect to (crs∗, vrs∗, td∗, r∗1):

Sim : ∃(x, π) ∈ QC∗
1
,Verify∗(vrs∗, x, π) = 1 ∧ (x, ω) ̸∈ R

where ω = Ext∗1(1
λ, td∗, x, π; r∗1),

Win : Verify∗(vrs∗, x′, π′) = 1 ∧ (x′, ω′) ̸∈ R
where ω′ = Ext∗1(1

λ, td∗, x′, π′; r∗1),

Bit : b = 1.

We can bound the advantage of A′ as follows:

P[Win] = P[Win|Sim,Bit] · P[Sim] · P[Bit]

+ P[Win|Sim,¬Bit] · P[Sim] · P[¬Bit]

+ P[Win|¬Sim,Bit] · P[¬Sim] · P[Bit]

+ P[Win|¬Sim,¬Bit] · P[¬Sim] · P[¬Bit]

≥ P[Win|¬Sim,Bit] · P[¬Sim] · P[Bit]

+ P[Win|Sim,¬Bit] · P[Sim] · P[¬Bit]

= P[Win|¬Sim,Bit] · 1− pSim
2

+ P[Win|Sim,¬Bit] · pSim
2

, (7)

for pSim = P[Sim] and P[Bit] = P[¬Bit] = 1/2. A differing-input v = (x, π) for C∗0 = CVerify
vrs∗ and

C∗1 = CVerify
vrs∗,td∗,r∗1

needs to satisfy the following condition

Verify∗(vrs∗, x, π) = 1 ∧ (x, ω) ̸∈ R.

We consider two cases:

– When ¬Bit happens, A′ outputs (x′, π′)←$QC∗
1
. Moreover, when Sim happens, we are guaranteed

that there exists (x, π) ∈ QC∗
1
such that Verify∗(vrs∗, x, π) = 1∧ (x, ω) ̸∈ R. Hence, we conclude that

P[Win|Sim,¬Bit] = 1/|QC∗
1
|.

– When Bit happens, A′ outputs (x′, π′) = (x̂, π̂) where (x̂, π̂) is the final output of A. Observe
that, conditioned to the event ¬Sim, A′ correctly simulates the view of A. As a consequence,
A outputs a valid differing-input v = (x̂, π̂) with non-neglibile probability. Hence, we have that
P[Win|¬Sim,Bit] ≥ ϵ.

By combining Equation (7) and the above conditions we conclude that

P[Win] ≥ ϵ · 1− pSim
2

+
1

|QC∗
1
|
· pSim

2
̸∈ negl(λ).

This concludes the proof.
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(Part two) Π satisfies (publicly verifiable) straight-line knowledge soundness. Let Ext∗ =
(Ext∗0,Ext

∗
1) be the extractor of the designated verifier non-interactive proof system Π∗. Consider the

following extractor Ext = (Ext0,Ext1) for Π:

Ext0(1
λ,R): On input the security parameter 1λ and a relation R, the algorithm outputs the common

reference string crs = crs∗, the verification key vrs←$ Obf(1λ, CVerify
vrs∗,td∗,r∗1

), and the trapdoor td =

(td∗, r∗1) where (crs∗, vrs∗, td∗)←$ Ext∗0(1
λ,R) and r∗1 ←$ {0, 1}∗.

Ext1(1
λ, td, x, π): On input the security parameter 1λ, a trapdoor td = (td∗, r∗1), a statement x, and a

proof π, the algorithm returns ω = Ext
∗

1(1
λ, td∗, x, π; r∗1).

We prove the following lemmas.

Lemma B.3. For every PPT adversary D, we have:∣∣∣∣P[D(1λ, crs, vrs) = 1
∣∣∣(crs, vrs, td)←$ Ext0(1

λ,R)
]
− (8)

P
[
D(1λ, crs∗, vrs) = 1

∣∣∣∣ (crs∗, vrs∗, td∗)←$ Ext∗0(1
λ,R)

vrs←$ Obf(1λ, CVerify
vrs∗ )

]∣∣∣∣ ≤ negl(λ). (9)

Proof. By contradiction, assume there exists a PPT adversary D that distinguishes the above two dis-
tributions with non-neglibile advantage. We build a distinguisher D′ that breaks the indistinguishability
property of Obf with respect to the odiO-sampler SExt∗ . The distinguisher D′ proceeds as follows:

1. Receive in input an obfuscated circuit C̃ and α. Recall C̃←$ Obf(1λ, Cb) where b←$ {0, 1} is the
unknown challenge bit and (C0, C1, α)←$ SExt∗(1

λ).

2. Send crs = α and vrs = C̃ to D.
3. Return the output of D.

Let C∗0 = CVerify
vrs∗ , C∗1 = CVerify

vrs∗,td∗,r∗1
, and α = crs∗. If b = 0, D’s view is distributed as in Equation (9);

on the hand, if b = 1, D’s view is distributed as Equation (8). Hence, D′ has the same non-negligible
advantage of D. This concludes the proof. ⊓⊔

Lemma B.4. For every PPT adversary D, we have:∣∣∣∣P[D(1λ, crs∗, vrs) = 1
∣∣∣ (crs∗, vrs∗, td∗)←$ Ext∗0(1

λ,R)
vrs←$ Obf(1λ, CVerify

vrs∗ )

]
− (10)

P
[
D(1λ, crs, vrs) = 1

∣∣∣(crs, vrs)←$ Setup(1λ,R)
]∣∣∣∣ ≤ negl(λ). (11)

Proof. By contradiction, assume there exists a PPT adversary D that distinguishes the above two dis-
tributions with non-neglibile advantage. We build an adversary D′ that breaks the indistinguishability
property of Π∗ (Definition A.3). D′ proceeds as follows:

1. Receive (crs∗, vrs∗) from the challenger.

2. Send (crs∗, vrs) to D where vrs←$ Obf(1λ, CVerify
vrs∗ ).

3. Return the output of D.

Observe that if the challenger generates (crs∗, vrs∗) by executing Ext∗0 then D simulates the distribution
of Equation (10); on the other hand, if (crs∗, vrs∗) are generated by executing Setup∗ then D′ simulates
the distribution of Equation (11). Hence, D′ has the same advantage of D. This concludes the proof. ⊓⊔

We now prove that Π satisfies (publicly verifiable) straight-line knowledge soundness Definitions A.3
and A.4.

Lemma B.5. For every PPT adversary A, we have:

P

(x, ω) ̸∈ R ∧ Verify(vrs, x, π) = 1

∣∣∣∣∣ (crs, vrs, td) ←
$ Ext0(1

λ,R)
(x, π) ←$ A(1λ, crs, vrs)
ω ←$ Ext1(1

λ, td, x, π)

 = 0.
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Proof. Observe that Verify(vrs, x, π) = 1 if CVerify
vrs∗,td∗,r∗1

(x, π) = 1 where r∗1 ←$ {0, 1}∗, (crs∗, vrs∗, td∗)←$

Ext∗0(1
λ,R), td = (td∗, r∗1), vrs←$ Obf(1λ, CVerify

vrs∗,td∗,r∗1
). In turn, the circuit CVerify

vrs∗,td∗,r∗1
(x, π) outputs 1 only

if Verify∗(vrs∗, x, π) = 1 and (x, ω) ∈ R where ω←$ Ext∗1(1
λ, td∗, x, π; r∗1) (recall that Ext

∗
1(1

λ, td∗, x, π; r∗1)
= Ext1(1

λ, td, x, π; r) for every r ∈ {0, 1}∗). Hence, A’s advantage is 0. This concludes the proof. ⊓⊔

By combining Lemmas B.3 and B.4 we conclude that Π satisfies the indistinguishability property of Def-
inition A.3. Moreover, Lemma B.5 implies that Π satisfies the extraction property (Definitions A.3
and A.4).

B.4 Proof of Theorem 5.4

(Part one) SY is an odiO-sampler. By contradiction, suppose there exists a q ∈ N, Y ⊂M such that
|Y| = q and SY is not an odiO-sampler, i.e., there exists a PPT adversary A such that

P
[
C0(v) ̸= C1(v)

∣∣∣v←$ AC0(·),C1(·)(1λ, 1|C0|, α)
]
≥ ϵ,

where (C0, C1, α)←$ SY(1
λ) and ϵ non-negligible. We build an adversary A′ that breaks the (q)-sEUF-

sel-CMA security of Π∗ with respect to the messages (mi)mi∈Y ∈ Mq. The adversary A′ proceeds as
follows:

1. Receive (σ∗1 , . . . , σ
∗
q ) from the challenger.

2. Let C∗0 = CVerify
k∗ ,C∗1 = CVerify

X∗ and α = (σ∗1 , . . . , σ
∗
q ) where X ∗ = {(mi, σ

∗
i )}i∈[q] (note that C∗0 is

unknown to A′ since k∗ is kept secret by the challenger).
3. Send α and 1γ (where γ as defined in Figure 3) to A and answer the incoming queries as follows:

(a) On input (m,σ) for the circuit C∗i for i ∈ {0, 1}, if (m,σ) ∈ X ∗ returns 1. Otherwise, return 0.
4. Receive v = (m̂, σ̂) from A.
5. Sample a random bit b←$ {0, 1}. If b = 0, A′ returns (m′, σ′)←$QC∗

1
where QC∗

1
are the queries

submitted by A to the oracle C∗1 . Otherwise, if b = 1, A′ returns (m′, σ′) = (m̂, σ̂).

Note that (C∗0 , C
∗
1 , α) comes from a distribution that is identical to that of SY ; this because k

∗←$ KGen(1λ, 1q)
and σ∗i ←$ Tag∗(k∗,mi) for i ∈ [q].

We now demonstrate the following two points:

1. If A′ correctly simulates A’s view with respect to (C∗0 , C
∗
1 , α) then (m̂, σ̂) (output by A) contradicts

the (q)-sEUF-sel-CMA security of Π∗.
2. On the other hand, if A′ fails to correctly simulate A’s view with respect to (C∗0 , C

∗
1 , α) then there

exists (x′, π′) ∈ QC∗
1
(submitted by A) that breaks the (q)-sEUF-sel-CMA security of Π∗.

Consider the following events defined with respect to k∗:

Sim : ∃(m,σ) ∈ QC∗
1
,Verify∗(k∗,m, σ) = 1 ∧ (m,σ) ̸∈ X ∗,

Win : Verify∗(k∗, x′, σ′) = 1 ∧ (m′, σ′) ̸∈ X ∗,
Bit : b = 1.

We can bound the advantage of A′ as follows:

P[Win] = P[Win|Sim,Bit] · P[Sim] · P[Bit]

+ P[Win|Sim,¬Bit] · P[Sim] · P[¬Bit]

+ P[Win|¬Sim,Bit] · P[¬Sim] · P[Bit]

+ P[Win|¬Sim,¬Bit] · P[¬Sim] · P[¬Bit]

≥ P[Win|¬Sim,Bit] · P[¬Sim] · P[Bit]

+ P[Win|Sim,¬Bit] · P[Sim] · P[¬Bit]

= P[Win|¬Sim,Bit] · 1− pSim
2

+ P[Win|Sim,¬Bit] · pSim
2

, (12)

for pSim = P[Sim] and P[Bit] = P[¬Bit] = 1/2. A differing-input v = (m,σ) for C∗0 = CVerify
k∗ and

C∗1 = CVerify
X∗ needs to satisfy the condition Verify∗(k∗,m, σ) = 1 ∧ (m,σ) ̸∈ X ∗. We consider two cases:
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– When ¬Bit happens, A′ outputs (m′, σ′)←$QC∗
1
. Moreover, when Sim happens, we are guaranteed

that there exists (m,σ) ∈ QC∗
1
such that Verify∗(k∗,m, σ) = 1 ∧ (m,σ) ̸∈ X ∗. Hence, we conclude

that P[Win|Sim,¬Bit] = 1/|QC∗
1
|.

– When Bit happens, A′ outputs (m′, σ′) = (m̂, σ̂) where (m̂, σ̂) is the final output of A. Observe
that, conditioned to the event ¬Sim, A′ correctly simulates the view of A. As a consequence,
A outputs a valid differing-input v = (m̂, σ̂) with non-neglibile probability. Hence, we have that
P[Win|¬Sim,Bit] ≥ ϵ.

By combining Equation (12) and the above conditions we conclude that

P[Win] ≥ ϵ · 1− pSim
2

+
1

|QC∗
1
|
· pSim

2
̸∈ negl(λ).

This concludes the proof.

(Part two) Π is (q)-sEUF-sel-CMA secure. Let q ∈ N and Y ⊂ M such that |Y| = q. Consider
the following hybrid experiments:

Hybq,Y0 (λ): This is the standard (q)-sEUF-sel-CMA experiment for signatures with respect to messages
(mi)mi∈Y (Definition A.13).

Hybq,Y1 (λ): Same as Hybq,Y0 , except that the challenger sets pk∗ to the obfuscation of the circuit CVerify
X∗

of Figure 3 (instead of CVerify
k∗ ). Formally, the challenger computes pk∗←$ Obf(1λ, CVerify

X∗ ) where X ∗ =
{(mi, σ

∗
i )}i∈[q], σ∗i ←$ Tag(k∗,mi) for i ∈ [q], and k∗←$ KGen∗(1λ, 1q).

Lemma B.6. For every q ∈ N, every Y ⊆M such that |Y| = q, Hybq,Y0 (1λ) ≈c Hyb
q,Y
1 (1λ).

Proof. By contradiction, assume there exists q ∈ N, Y ⊂ M such that |Y| = q and Hybq,Y0 (λ) and

Hybq,Y1 (λ) are not computationally indistinguishable, i.e., there exists a PPT distinguisher D that has a

non-negligible advantage in distinguishing between Hybq,Y0 (λ) and Hybq,Y1 (λ). We build a distinguisher
D′ that breaks the indistinguishability property of Obf for the odiO-sampler SY . The distinguisher D′

proceeds as follows:

1. Receive in input an obfuscated circuit C̃ and α. Recall C̃←$ Obf(1λ, Cb) and α = (σ1, . . . , σq) where
b←$ {0, 1} is the unknown challenge bit, σi←$ Tag∗(k∗,mi) for i ∈ [q], and (C0, C1, α)←$ SY(1

λ).
2. Send pk∗ = C̃ and (σ1, . . . , σq) to D.
3. Return whatever D outputs.

It is easy to see that, if b = 0 then D′ simulates Hybq,Y0 (λ). On the other hand, if b = 1 then D′ simulates

Hybq,Y1 (λ). Hence, D′ retains the same non negligible advantage of D. ⊓⊔

Observe that, for every q ∈ poly(λ), every Y ⊆ M such that |Y| = q, A has advantage 0 in Hybq,Y1 .

This because, for every (m,σ), Verify(pk,m, σ) returns 0 if (m,σ) ̸∈ X ∗ (see the definition of CVerify
X∗

depicted in Figure 3). This concludes the proof.

B.5 Proof of Theorem 5.5

(Part one) Sm is an odiO-sampler. Let m∗ ∈M. Consider the following hybrid experiments:

Hybm
∗

0 (λ): This is the experiment oracle-differing-input experiment with respect to sampler Sm∗ (Defi-
nition 4.1).

Hybm
∗

1 (λ): Same as Hybm
∗

0 (λ), except that Sm∗ is replaced with a sampler Ŝm∗ that computes C0 differ-

ently. Formally, Ŝm∗ is defined as follows:

CVerify
s,m∗,k∗(m,σ)

If m = m∗, return b = Verify∗0(k
∗,m∗, σ)

k = KGen∗0(1
λ;F∗

1(s,m))

return b = Verify∗0(k,m, σ)

Ŝm∗(1λ; r)

Let r = (r0, r1)

s = Gen∗1(1
λ; r0)

s′ = Punct∗1(s,m
∗)

k∗ = KGen∗0(1
λ; r1)

Set C0 = CVerify
s′,m∗,k∗ , C1 = CVerify

s′,m∗ , α = s′

return (C0, C1, α)
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where C1 = CVerify
s′,m∗ is depicted in Figure 4. CVerify

s′,m∗,k∗ and CVerify
s′,m∗ are padded to match the size γ as

defined in Figure 4. Observe that the distribution of (C1, α) output by Sm∗ and Ŝm∗ are identically
distributed.

Lemma B.7. For every m∗ ∈M, Hybm
∗

0 (λ) ≈c Hyb
m∗

1 (λ).

Proof. The lemma follows by leveraging the security and correctness of the puncturable PRF scheme
Π∗1 . ⊓⊔

Lemma B.8. For every m∗ ∈M, P
[
Hybm

∗

1 (λ) = 1
]
≤ negl(λ).

Proof. By contradiction, suppose there exists a message m∗ ∈M such that Ŝm∗ is not an odiO-sampler,
i.e., there exists a PPT adversary A such that

P
[
Hybm

∗

1 (λ) = 1
]
= P

[
C0(v) ̸= C1(v)

∣∣∣v←$ AC0(·),C1(·)(1λ, 1|C0|, α)
]
≥ ϵ,

where (C0, C1, α)←$ Ŝm∗(1λ) and ϵ non-negligible. We build an adversary A′ that breaks the EUF
security of Π∗0 with respect to the message m∗ ∈M. The adversary A′ proceeds as follows:

1. Receive m∗ from the challenger.
2. Compute s←$ Gen∗1(1

λ) and s′ = Punct∗1(s,m
∗).

3. Let C∗0 = CVerify
s′,m∗,k∗ ,C1 = CVerify

s′,m∗ and α = s′ (note that C∗0 is unknown to A′ since k∗ is kept secret by
the challenger).

4. Send α and 1γ (where γ as defined in Hybm
∗

1 (λ)) to A and answer the incoming queries as follows:
(a) On input (m,σ) for the circuit C∗i for i ∈ {0, 1}, if m = m∗ returns 0. Otherwise, return

Verify∗0(k,m, σ) where k = KGen∗0(1
λ;F∗1(s

′,m)).
5. Receive v = (m̂, σ̂) from A.
6. Sample a random bit b←$ {0, 1}. If b = 0, A′ returns (m′, σ′)←$QC∗

0
where QC∗

0
are the queries

submitted by A to the oracle C∗0 . Otherwise, if b = 1, A′ returns (m′, σ′) = (m̂, σ̂).

Note that (C∗0 , C
∗
1 , α) comes from a distribution that is identical to that of Ŝm∗ ; this because k∗ (generated

by the challenger) is generated by executing KGen∗0 on uniform random coins.
We now demonstrate the following two points:

1. If A′ correctly simulates A’s view with respect to (C∗0 , C
∗
1 , α) then (m̂, σ̂) (output by A) contradicts

the EUF security of Π∗0 .
2. On the other hand, if A′ fails to correctly simulate A’s view with respect to (C∗0 , C

∗
1 , α) then there

exists (x′, π′) ∈ QC∗
0
(submitted by A) that contradicts the EUF security of Π∗0 .

Consider the following events defined with respect to k∗:

Sim : ∃(m,σ) ∈ QC∗
0
,Verify∗0(k

∗,m, σ) = 1 ∧m = m∗,

Win : Verify∗0(k
∗,m′, σ′) = 1 ∧m = m∗,

Bit : b = 1.

We can bound the advantage of A′ as follows:

P[Win] = P[Win|Sim,Bit] · P[Sim] · P[Bit]

+ P[Win|Sim,¬Bit] · P[Sim] · P[¬Bit]

+ P[Win|¬Sim,Bit] · P[¬Sim] · P[Bit]

+ P[Win|¬Sim,¬Bit] · P[¬Sim] · P[¬Bit]

≥ P[Win|¬Sim,Bit] · P[¬Sim] · P[Bit]

+ P[Win|Sim,¬Bit] · P[Sim] · P[¬Bit]

= P[Win|¬Sim,Bit] · 1− pSim
2

+ P[Win|Sim,¬Bit] · pSim
2

, (13)

for pSim = P[Sim] and P[Bit] = P[¬Bit] = 1/2. A differing-input v = (m,σ) for C∗0 = CVerify
s′,m∗,k∗ and

C∗1 = CVerify
s′,m∗ needs to satisfy the condition Verify∗(k∗,m, σ) = 1 ∧m = m∗. We consider two cases:
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– When ¬Bit happens, A′ outputs (m′, σ′)←$QC∗
0
. Moreover, when Sim happens, we are guaranteed

that there exists (m,σ) ∈ QC∗
0
such that Verify∗0(k

∗,m, σ) = 1 ∧m = m∗. Hence, we conclude that
P[Win|Sim,¬Bit] = 1/|QC∗

0
|.

– When Bit happens, A′ outputs (m′, σ′) = (m̂, σ̂) where (m̂, σ̂) is the final output of A. Observe that,
conditioned to the event ¬Sim, A′ correctly simulates the view of A. As a consequence, A outputs a
valid differing-input v = (m̂, σ̂) (i.e., Verify∗0(k

∗, m̂, σ̂) = 1 ∧ m̂ = m∗) with non-neglibile probability.
Hence, we have that P[Win|¬Sim,Bit] ≥ ϵ.

By combining Equation (13) and the above conditions we conclude that

P[Win] ≥ ϵ · 1− pSim
2

+
1

|QC∗
0
|
· pSim

2
̸∈ negl(λ)

This concludes the proof. ⊓⊔

By combining Lemmas B.7 and B.8, we conclude that Sm∗ is an odiO-sampler.

(Part two) Π is sel-EUF-CMA secure. Let m∗ ∈M. Consider the following hybrid experiments:

Hybm
∗

0 (λ): This is the standard sel-EUF-CMA experiment for signatures with respect to message m∗

(Definition A.14).

Hybm
∗

1 (λ): Same as Hybm
∗

0 , except that the challenger sets pk∗ to the obfuscation of the circuit CVerify
s′,m∗

of Figure 4 (instead of CVerify
s ). Formally, the challenger computes pk∗←$ Obf(1λ, CVerify

s′,m∗) where

s←$ Gen∗1(1
λ) and s′ = Punct∗1(s,m

∗).

Lemma B.9. For every m∗ ∈M, Hybm
∗

0 (1λ) ≈c Hyb
m∗

1 (1λ).

Proof. By contradiction, assume there exists a message m∗ ∈M such that Hybm
∗

0 (λ) and Hybm
∗

1 (λ) are
not computationally indistinguishable, i.e., there exists a PPT distinguisher D that has a non-negligible
advantage in distinguishing between Hybm

∗

0 (λ) and Hybm
∗

1 (λ). We build a distinguisher D′ that breaks the
indistinguishability property of Obf for the odiO-sampler Sm∗ . The distinguisher D′ proceeds as follows:

1. Receive in input an obfuscated circuit C̃ and α. Recall C̃←$ Obf(1λ, Cb) and α = s′ where b←$ {0, 1}
is the unknown challenge bit and (C0, C1, α)←$ Sm∗(1λ).

2. Send pk∗ = C̃ and m∗ to D and answer the incoming queries as follows:

(a) On input m for Sign, return Tag∗0(k,m) where k = KGen∗0(1
λ;F∗1(s

′,m)).

3. Return whatever D outputs.

In order to be valid, D cannot submit the message m∗ to the oracle Sign. By leveraging this fact and the
correctness of the puncturable PRF scheme Π∗1 , D’s view is correctly simulated. In particular, if b = 0

then D′ simulates Hybm
∗

0 (λ). On the other hand, if b = 1 then D′ simulates Hybm
∗

1 (λ). Hence, D′ retains
the same non negligible advantage of D. ⊓⊔

Observe that, for every m∗ ∈ M, A has advantage 0 in Hybm
∗

1 (λ). This is because, for every σ,

Verify(pk,m∗, σ) returns 0 (see definition of CVerify
s′,m∗ depicted in Figure 4). This concludes the proof.

B.6 Proof of Theorem 5.6

(Part one) Sm is an odiO-sampler. Let m∗ ∈M. Consider the following hybrid experiments:

Hybm
∗

0 (λ): This is the experiment oracle-differing-input experiment with respect to sampler Sm∗ (Defi-
nition 4.1).

Hybm
∗

1 (λ): Same as Hybm
∗

0 (λ), except that Sm∗ is replaced with a sampler Ŝm∗ that computes C0 differ-

ently. Formally, Ŝm∗ is defined as follows:
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Ŝm∗(1λ; r)

Let r = (r0, r1, r2, r3)

s1 = Gen∗1(1
λ; r0), s2 = Gen∗2(1

λ; r1)

iv = r3

k = KGen∗0(1
λ;F∗

2(s2, iv))

c = Enc∗0(k,m; iv)

s′1 = Punct∗1(s1, r2), s′2 = Punct∗2(s2, iv)

Set C0 = CEnc
s′1,s2,r2

, C1 = CEnc
s′1,s

′
2,r2

, α = c

return (C0, C1, α)

where CEnc
s′1,s2,r2

and CEnc
s′1,s

′
2,r2

are defined as in Figure 5. CEnc
s′1,s2,r2

and CEnc
s′1,s

′
2,r2

are padded to match the

size γ as defined in Figure 5.
Hybm

∗

2 (λ): Same as Hybm
∗

1 (λ), except that Ŝm∗ is replaced with a sampler Sm∗ that computes C0 differ-
ently. Formally, Sm∗ is defined as follows:

Sm∗(1λ; r)

Let r = (r0, r1, r2, r3, r4)

s1 = Gen∗1(1
λ; r0), s2 = Gen∗2(1

λ; r1)

iv = r3

k = KGen∗0(1
λ; r4)

c = Enc∗0(k,m; iv)

s′1 = Punct∗1(s1, r2), s′2 = Punct∗2(s2, iv)

Set C0 = C1 = CEnc
s′1,s

′
2,r2

, α = c

return (C0, C1, α)

where CEnc
s′1,s

′
2,r2

is depicted in Figure 5. CEnc
s′1,s

′
2,r2

is padded to match the size γ as defined in Figure 5.

Lemma B.10. For every m∗ ∈M, Hybm
∗

0 (λ) ≈c Hyb
m∗

1 (λ).

Proof. The lemma follows by leveraging the security and correctness of the puncturable PRF scheme Π∗1
and the fact that r2 is sampled at random, i.e., the adversary cannot guess the punctured point r2 (that
is also a differing-input) except with negligible probability. ⊓⊔

Lemma B.11. For every m∗ ∈M, Hybm
∗

1 (λ) ≈c Hyb
m∗

2 (λ).

Proof. The lemma follows by leveraging the security and correctness of the puncturable PRF scheme Π∗2
and the fact that r2 is sampled at random, i.e., the adversary cannot guess the punctured point r2 (that
is also a differing-input) except with negligible probability. ⊓⊔

By combining Lemmas B.10 and B.11 and observing that in Hybm
∗

2 (λ) the sampler Sm∗ outputs two
identical circuits, we conclude that Sm∗ is an odiO-sampler.

(Part two) Π is sel-IND-CPA secure. Let m∗0,m
∗
1 ∈M. Consider the following hybrid experiments:

Hyb
m∗

0 ,m
∗
1 ,b

0 (λ): This is the standard sel-IND-CPA experiment for PKE with respect to messages m∗0,m
∗
1

and the challenge bit b (Definition A.22). In particular, the challenge ciphertext c∗ is computed as

c∗ = C̃(m∗b , r
∗) where r∗←$ {0, 1}∗ and pk = C̃.

Hyb
m∗

0 ,m
∗
1 ,b

1 (λ): Same as Hyb
m∗

0 ,m
∗
1 ,b

0 , except that the challenger sets pk∗ to the obfuscation of the circuit
CEnc

s′1,s
′
2,r

∗ of Figure 5 (instead of CEnc
s1,s2) where s1←$ Gen∗1(1

λ), s2←$ Gen∗2(1
λ), r∗←$ {0, 1}∗, s′1 =

Punct∗1(s1, r
∗), s′2 = Punct∗2(s2,F

∗
1(s1, r

∗)). Recall that r∗ is the randomness of the challenge ciphertext
c∗. Moreover, the challenge ciphertext c∗ is computed as c∗ = Enc∗0(k,m

∗
b , iv) where iv = F∗1(s1, r

∗),

k = KGen∗0(1
λ;F∗2(s2, iv)). Therefore, c

∗ is computed as in Hyb
m∗

0 ,m
∗
1 ,b

0 (λ).

38



Hyb
m∗

0 ,m
∗
1 ,b

2 (λ): Same as Hyb
m∗

0 ,m
∗
1 ,b

1 , except that the challenger changes how it computes the challenge

ciphertext c∗. First, the challenger computes pk∗ as in Hyb
m∗

0 ,m
∗
1 ,b

1 (λ) and then it computes c∗ =
Enc∗0(k,m

∗
b ; iv) where iv←$ {0, 1}∗ and k = KGen∗0(1

λ;F∗2(s2, iv)).

Hyb
m∗

0 ,m
∗
1 ,b

3 (λ): Same as Hyb
m∗

0 ,m
∗
1 ,b

2 , except that the challenger changes how it computes the challenge

ciphertext c∗. First, the challenger computes pk∗ as in Hyb
m∗

0 ,m
∗
1 ,b

2 (λ) and then it computes c∗ =
Enc∗0(k,m

∗
b ; iv) where iv←$ {0, 1}∗ and k←$ KGen∗0(1

λ).

Lemma B.12. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1 ,b

0 (1λ) ≈c Hyb
m∗

0 ,m
∗
1 ,b

1 (1λ).

Proof. By contradiction, assume there exist m∗0,m
∗
1 ∈M such that Hyb

m∗
0 ,m

∗
1 ,b

0 (λ) and Hyb
m∗

0 ,m
∗
1 ,b

1 (λ) are
not computationally indistinguishable, i.e., there exists a PPT distinguisher D that has a non-negligible

advantage in distinguishing between Hyb
m∗

0 ,m
∗
1 ,b

0 (λ) and Hyb
m∗

0 ,m
∗
1 ,b

1 (λ). We build a distinguisher D′ that
breaks the indistinguishability property of Obf for the odiO-sampler Sm∗

b
. The distinguisher D′ proceeds

as follows:

1. Receive in input an obfuscated circuit C̃ and α. Recall C̃←$ Obf(1λ, Cd) and α = c where d←$ {0, 1}
is the unknown challenge bit and (C0, C1, α)←$ Sm∗

b
(1λ).

2. Send pk = C̃ and c to D.

3. Return whatever D outputs.

If d = 0 then D′ simulates Hyb
m∗

0 ,m
∗
1 ,b

0 (λ). On the other hand, if b = 1 then D′ simulates Hyb
m∗

0 ,m
∗
1 ,b

1 (λ)
Hence, D′ retains the same non-negligible advantage of D. ⊓⊔

Lemma B.13. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1 ,b

1 (1λ) ≈c Hyb
m∗

0 ,m
∗
1 ,b

2 (1λ).

Proof. The lemma follows by leveraging the security and correctness of the puncturable PRF scheme
Π∗1 . ⊓⊔

Lemma B.14. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1 ,b

2 (1λ) ≈c Hyb
m∗

0 ,m
∗
1 ,b

3 (1λ).

Proof. The lemma follows by leveraging the security and correctness of the puncturable PRF scheme
Π∗2 . ⊓⊔

Lemma B.15. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1 ,b

3 (1λ) ≈c Hyb
m∗

0 ,m
∗
1 ,1−b

3 (1λ).

Proof. By contradiction, assume there exist m∗0,m
∗
1 ∈M such that Hyb

m∗
0 ,m

∗
1 ,b

3 (λ) and Hyb
m∗

0 ,m
∗
1 ,1−b

3 (λ)
are not computationally indistinguishable, i.e., there exists a PPT distinguisher D that has a non-

negligible advantage in distinguishing between Hyb
m∗

0 ,m
∗
1 ,b

3 (λ) and Hyb
m∗

0 ,m
∗
1 ,1−b

3 (λ). We build an adver-
sary A that breaks the semantic security of Π∗0 with respect to messages m∗0,m

∗
1 ∈M. The distinguisher

A proceeds as follows:

1. Receive c∗ = (iv, c) from the challenger.

2. Compute pk←$ Obf(1λ, CEnc
s′1,s

′
2
) where s1←$ Gen∗1(1

λ), s2←$ Gen∗2(1
λ), r∗←$ {0, 1}∗, s′1 = Punct∗1(s1, r

∗),

and s′2 = Punct∗2(s2, iv).

3. Send pk and c∗ to D.

4. Return whatever D outputs.

Observe that A simulates Hyb
m∗

0 ,m
∗
1 ,b

3 (λ) where b ∈ {0, 1} is the challenge bit sampled by the challenger.
Hence, A retains the same non-negligible advantage of D. ⊓⊔

By combining Lemmas B.12 to B.15, we conclude that Π is sel-IND-CPA.
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B.7 Proof of Theorem 5.7

(Part one) Sm is an oiO-sampler. By contradiction, suppose there exists m∗ ∈ M such that Sm∗ is
not an oiO-sampler, i.e., there exists a PPT adversary D such that∣∣∣P[DC0(·)(1λ, 1|C0|, α) = 1

]
− P

[
DC1(·)(1λ, 1|C0|, α) = 1

]∣∣∣ ≥ ϵ, (14)

where (C0, C1, α)←$ Sm(1λ) where ϵ non-negligible.
We build an adversary A that breaks the sel-IND-CPRA-key security of Π∗ with respect to the

message m∗ ∈M. The adversary A proceeds as follows:

1. Receive c∗ from the challenger.
2. Let C∗0 = CEnc

k∗0
, C1 = CEnc

k∗1
, and α = c∗ (note that both C∗0 and C∗1 are unknown to A since k∗0 and

k∗1 are kept secret by the challenger).
3. Send α and 1γ (where γ as defined in Figure 6) to D and answer to the incoming queries as follows:

(a) On input (m, r), forward (m, r) to the oracle Enc∗(k∗0, ·; ·) and returns the answer.
4. Output whatever D outputs.

Note that k∗0, k
∗
1, and c∗ (generated by the challenger) have the same distribution to the one generated

by Sm∗ . Moreover,

1. if b = 0 (the challenge bit sampled by the challenger), A simulates the left distribution of Equa-
tion (14). This because c∗ is encrypted using the same key (i.e., k∗0) hardcoded in the oracle C∗0 (see
definition of Sm∗ (Figure 6)) that, in turn, is simulated by A using the oracle Enc∗(k∗0, ·; ·).

2. On the other hand, if b = 1, A simulates the right distribution of Equation (14), i.e., c∗ is encrypted
using (a random) key k∗1 that is completely independent from the one of oracle C∗1 since the latter is
simulated using the oracle Enc∗(k∗0, ·; ·).

Hence, A breaks the sel-CPRA-key-ind security of Π∗ with the same non-negligible advantage of D. This
concludes the proof.

(Part two) Π is sel-IND-CPA. Let m∗0,m
∗
1 ∈M. Consider the following hybrid experiments:

Hyb
m∗

0 ,m
∗
1 ,b

0 (λ): This is the standard sel-CPA-sec experiment (with respect to the messages m∗0,m
∗
1 ∈M)

for PKE (Definition A.22) where the challenge bit is b.

Hyb
m∗

0 ,m
∗
1 ,b

1 (λ): Same as Hyb
m∗

0 ,m
∗
1 ,b

0 , except that the challenger computes k∗0←$ KGen∗(λ), k∗1←$ KGen∗(λ),
pk←$ Obf(1λ, CEnc

k∗1
) and set the challenge ciphertext to c∗←$ Enc∗(k∗0,m

∗
b).

Lemma B.16. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1 ,b

0 (1λ) ≈c Hyb
m∗

0 ,m
∗
1 ,b

1 (1λ).

Proof. By contradiction, assume there exist m∗0,m
∗
1 ∈M such that Hyb

m∗
0 ,m

∗
1 ,b

0 (λ) and Hyb
m∗

0 ,m
∗
1 ,b

1 (λ) are
not computationally indistinguishable, i.e., there exists a PPT distinguisher D that has a non-negligible

advantage in distinguishing between Hyb
m∗

0 ,m
∗
1 ,b

0 (λ) and Hyb
m∗

0 ,m
∗
1 ,b

1 (λ). We build a distinguisher D′ that
breaks the indistinguishability property of Obf for the oiO-sampler Sm∗

b
. The distinguisher D′ proceeds

as follows:

1. Receive in input an obfuscated circuit C̃ and α. Recall C̃←$ Obf(1λ, Cd) and α = c where d←$ {0, 1}
is the unknown challenge bit and (C0, C1, α)←$ Sm∗

b
(1λ).

2. Send pk = C̃ and c to D.
3. Return whatever D outputs.

If d = 0 then D′ simulates Hyb
m∗

0 ,m
∗
1 ,b

0 (λ). This because C̃ encodes a random key k∗0 that is the same
used to compute c←$ Enc∗(k∗0,m

∗
b) (see definition of Sm∗

b
depicted in Figure 6). On the other hand, if

b = 1 then D′ simulates Hyb
m∗

0 ,m
∗
1 ,b

1 (λ) since c←$ Enc∗(k∗0,m
∗
b) and the key k∗0 is completely independent

to the one that is encoded into C̃ since C̃←$ Obf(1λ, CEnc
k∗1

) for k∗1←$ KGen∗(1λ). Hence, D′ retains the
same non-negligible advantage of D. ⊓⊔
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C̃0
k (x, r)

return Enc0(k, 0; r)

C̃1
k (i, r)

return Enc0(k, 0; r)

C̃2
k (c1, c2,⊙, r)

return Enc0(k, 0; r)

C̃3
k (d1, . . . , dλ, r)

return Enc0(k, 0; r)

Crnd
(k,a,b,y,e)(ℓ, v, r)

Let v = (x, i, c1, c2,⊙, d1, . . . , dλ)

r′ = Frnd(ℓ, v, r)

If ℓ = 0, return C0
k,a,b(x, r

′)

If ℓ = 1, return C1
k,a(i, r

′)

If ℓ = 2, return C2
k (c1, c2,⊙, r′)

If ℓ = 3, return C3
k,a,b,y,e(d1, . . . , dλ, r

′)

Ĉ(k,a,b)(ℓ, v, r)

Let v = (x, i, c1, c2,⊙, d1, . . . , dλ)

r′ = Frnd(ℓ, v, r)

If ℓ = 0, return C0
k,a,b(x, r

′)

If ℓ = 1, return C1
k,a(i, r

′)

If ℓ = 2, return C2
k (c1, c2,⊙, r′)

If ℓ = 3, return C̃3
k (d1, . . . , dλ, r

′)

C̃(k,a,b)(ℓ, v, r)

Let v = (x, i, c1, c2,⊙, d1, . . . , dλ)

r′ = Frnd(ℓ, v, r)

If ℓ = 0, return C0
k,a,b(x, r

′)

If ℓ = 1, return C̃1
k (i, r

′)

If ℓ = 2, return C̃2
k (c1, c2,⊙, r′)

If ℓ = 3, return C̃3
k (d1, . . . , dλ, r

′)

C̃k(ℓ, v, r)

Let v = (x, i, c1, c2,⊙, d1, . . . , dλ)

r′ = Frnd(ℓ, v, r)

If ℓ = 0, return C̃0
k (x, r

′)

If ℓ = 1, return C̃1
k (i, r

′)

If ℓ = 2, return C̃2
k (c1, c2,⊙, r′)

If ℓ = 3, return C̃3
k (d1, . . . , dλ, r

′)

Fig. 10: The circuits Crnd
(k,a,b,y,e), Ĉ(k,a,b), C̃(k,a,b), and C̃k where Frnd(·, ·, ·) denotes an arbitrary truly

random function.

Lemma B.17. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1 ,b

1 (1λ) ≈c Hyb
m∗

0 ,m
∗
1 ,1−b

1 (1λ).

Proof. By contradiction, assume there exist m∗0,m
∗
1 ∈M such that Hyb

m∗
0 ,m

∗
1 ,b

1 (λ) and Hyb
m∗

0 ,m
∗
1 ,1−b

1 (λ)
are not computationally indistinguishable, i.e., there exists a PPT distinguisher D that has a non-

negligible advantage in distinguishing between Hyb
m∗

0 ,m
∗
1 ,b

1 (λ) and Hyb
m∗

0 ,m
∗
1 ,1−b

1 (λ). We build an adver-
sary A that breaks the semantic security of Π∗ with respect to messages m∗0,m

∗
1 ∈M. The distinguisher

A proceeds as follows:

1. Receive c∗ from the challenger.
2. Compute pk←$ Obf(1λ, CEnc

k ) where k←$ KGen∗(1λ).
3. Send pk and c∗ to D.
4. Return whatever D outputs.

A correctly simulates D’s view. Indeed, A simulates Hyb
m∗

0 ,m
∗
1 ,b

1 where b ∈ {0, 1} is the challenge bit
sampled by the challenger. Hence, A retains the same non-negligible advantage of D. ⊓⊔

By combining Lemmas B.16 and B.17 we conclude that Π is sel-IND-CPA.

B.8 Proof of Theorem 6.1

(Part one) C satisfies oracle-differing-input. Let p(·) be a polynomial in the security parameter
λ. Without loss of generality, we assume that A submits p(λ) queries to the oracles C∗s,(k,a,b,y,0) and
C∗s,(k,a,b,y,1). Consider the following hybrid experiments:

Hyb0(λ) This is the oracle-differing-input experiment of Theorem 6.1.
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Hyb1(λ): Same as Hyb0(λ), except that the oracle access to C∗s,(k,a,b,y,0) and C∗s,(k,a,b,y,1) are simulated as

Crnd
(k,a,b,y,0) and Crnd

(k,a,b,y,1) (defined in Figure 10), respectively.

Hyb02(λ): Same as Hyb1(λ), except that Crnd
(k,a,b,y,0) and Crnd

(k,a,b,y,1) are both simulated as Ĉ(k,a,b) (Fig-

ure 10).
Hybj2(λ): Same as Hybj−12 (λ), except that the challenger changes how it answers to the last j-th queries.

Formally, on input the j′-th query (ℓ, v, r), if j′ ≥ p(λ)− j+1, the challenger returns C̃(k,a,b)(ℓ, v, r).

Otherwise (i.e., j′ < p(λ)− j + 1), it returns Ĉ(k,a,b)(ℓ, v, r).

Hyb3(λ): Same as Hyb
p(λ)
2 (λ), except that the two oracle circuits simulated as C̃k, instead of being

simulated as C̃(k,a,b) (see Figure 10).

Lemma B.18. Hyb0(λ) ≈c Hyb1(λ).

Proof. The lemma follows by the security of the PRF scheme Π1. ⊓⊔

Lemma B.19. For every j ∈ [p(λ)], Hybj2(λ) ≈c Hyb
j−1
2 (λ).

Proof. Let (ℓ, v, r) be the j-th query of A. We have the following cases:

1. If ℓ ∈ {0, 3} by definition of Ĉ(k,a,b) and C̃(k,a,b)(ℓ, v, r) we have that Ĉ(k,a,b)(ℓ, v, r) = C̃(k,a,b)(ℓ, v, r).

Thus, the two hybrids Hybj2(λ) and Hybj−12 (λ) are identically distributed.

2. On the other hand, if ℓ ∈ {1, 2}, we can show that Hybj2(λ) and Hybj−12 (λ) are computationally
indistinguishable by leveraging the IND-CCA1 security of Π0. This can be done by using an identical
argument to that of Barak et al. [BGI+12, Claim 3.6.1].

This concludes the proof. ⊓⊔

Lemma B.20. Hyb
p(λ)
2 (λ) ≈c Hyb3(λ).

Proof. The only way to distinguish these two hybrids is to guess the trigger input a ∈ {0, 1}λ that
happens with negligible probability. ⊓⊔

Lemma B.21. Hyb1(λ) ≈c Hyb
0
2(λ).

Proof. Suppose there exists a PPT D that distinguishes between Hyb1(λ) and Hyb02(λ). By definition

of Crnd
(k,a,b,y,e) (for e ∈ {0, 1}) and Ĉ(k,a,b), this implies that D submits, with non-negligible probabil-

ity ϵ, a query (3, v∗, r∗) such that Ĉ(k,a,b)(3, v
∗, r∗) ̸= Crnd

(k,a,b,y,e)(3, v
∗, r∗) for e ∈ {0, 1}, i.e., v∗ =

(x, i, c1, c2,⊙, d1, . . . , dλ) and ∀i ∈ [λ],Dec0(k, di) = bi. By leveraging Lemmas B.20 and B.21, we have
that Hyb02(λ) ≈c Hyb3(λ); hence, D must the same query (3, v∗, r∗) during the experiment Hyb3(λ) with
the same non-negligible probability ϵ. However, in Hyb3(λ) any distinguisher D has a negligible advan-

tage in guessing b since it is sampled at random and Hyb3(λ) is defined with respect to C̃k that does
not depend on b. As a consequence, D can not submit such a query (3, v∗, r∗), except with negligible
probability. This concludes the proof. ⊓⊔

By combining Lemmas B.18 to B.21, we conclude that the ensemble C satisfies the oracle-differing-
input.

(Part two) C satisfies input-indistinguishability. Let p0(·), p1(·) be two polynomials in the secu-
rity parameter λ. Without loss of generality, we assume that D submits pd(λ) queries to the oracles
C∗sd,(kd,ad,bd,yd,d)

for d ∈ {0, 1}. Consider the following hybrid experiments:

Hybd0(λ) This is the input-indistinguishability experiment of Theorem 6.1 where the challenge bit is d,
i.e., the adversary receives in input md.

Hybd1(λ): Same as Hybd0(λ), except that the oracle access to C∗s0,(k0,a0,b0,y0,0)
and C∗s1,(k1,a1,b1,y1,1)

are

simulates as Crnd0
(k0,a0,b0,y0,0)

and Crnd1
(k1,a1,b1,y1,1)

(depicted in Figure 10), respectively. We stress that

Crnd0
(k0,a0,b0,y0,0)

and Crnd1
(k1,a1,b1,y1,1)

are simulated using two independent truly random functions Frnd0(·, ·, ·)
and Frnd1(·, ·, ·).
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Hybd,02 (λ): Same as Hybd1(λ), except that the oracle access to Crnd0
(k0,a0,b0,y0,0)

is simulated as Ĉ(k0,a0,b0)

(depicted in Figure 10).

Hybd,j2 (λ): Same as Hybd,j−12 (λ), except that the challenger changes how it answers to the last j-th

queries of Ĉ(k0,a0,b0). Formally, on input the j′-th query (ℓ, v, r) for Ĉ(k0,a0,b0), if j
′ ≥ p0(λ)−j+1, the

challenger returns C̃(k0,a0,b0)(ℓ, v, r). Otherwise (i.e., j′ < p0(λ)− j +1), it returns Ĉ(k0,a0,b0)(ℓ, v, r).

Hybd3(λ): Same as Hyb
d,p0(λ)
2 (λ), except that the oracle access to Ĉ(k0,a0,b0) is simulated as C̃k0 (see Fig-

ure 10).

Hybd,04 (λ): Same as Hybd3(λ), except that the oracle access to Crnd1
(k1,a1,b1,y1,1)

is simulated as Ĉ(k1,a1,b1)

(Figure 10).

Hybd,j4 (λ): Same as Hybd,j−14 (λ), except that the challenger changes how it answers to the last j-th

queries of Ĉ(k1,a1,b1). Formally, on input the j′-th query (ℓ, v, r) for Ĉ(k1,a1,b1), if j
′ ≥ p1(λ)−j+1, the

challenger returns C̃(k1,a1,b1)(ℓ, v, r). Otherwise (i.e., j′ < p1(λ)− j +1), it returns Ĉ(k1,a1,b1)(ℓ, v, r).

Hybd5(λ): Same as Hyb
d,p1(λ)
4 (λ), except that the oracle access to Ĉ(k1,a1,b1) is simulated as C̃k1 (see Fig-

ure 10).

Lemma B.22. Hybd0(λ) ≈c Hyb
d
1(λ).

Proof. The lemma follows by the security of the PRF scheme Π1. ⊓⊔

Lemma B.23. For every j ∈ [p0(λ)], Hyb
d,j
2 (λ) ≈c Hyb

d,j−1
2 (λ).

Proof. The lemma follows by the security of the IND-CCA1 security of Π0 and using a similar argument
to that of Lemma B.19. ⊓⊔

Lemma B.24. Hyb
d,p0(λ)
2 (λ) ≈c Hyb

d
3(λ).

Proof. The proof is identical to that of Lemma B.20. The only way to distinguish these two hybrids is
to guess the trigger input a0 ∈ {0, 1}λ that happens with negligible probability. ⊓⊔

Lemma B.25. Hybd1(λ) ≈c Hyb
d,0
2 (λ).

Proof. The lemma follows by using a similar argument to that of Lemma B.21. ⊓⊔

Lemma B.26. For every j ∈ [p1(λ)], Hyb
d,j
4 (λ) ≈c Hyb

d,j−1
4 (λ).

Proof. The lemma follows by the security of the IND-CCA1 security of Π0 and using a similar argument
to that of Lemma B.19. ⊓⊔

Lemma B.27. Hyb
d,p1(λ)
4 (λ) ≈c Hyb

d
5(λ).

Proof. The proof is identical to that of Lemma B.20. The only way to distinguish these two hybrids is
to guess the trigger input a1 ∈ {0, 1}λ that happens with negligible probability. ⊓⊔

Lemma B.28. Hybd3(λ) ≈c Hyb
d,0
4 (λ).

Proof. The lemma follows by using a similar argument to that of Lemma B.21. ⊓⊔

Lemma B.29. Hybd5(λ) ≈c Hyb
1−d
5 (λ).

Proof. The lemma follows by leveraging the IND-CPA-key security of Π0. ⊓⊔

By combining Lemmas B.22 to B.29, we conclude that the ensemble C satisfies input-indistinguishability.
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(Part three) C satisfies partial reversability. The reversability property follows by using an identical

argument to that discussed in [BGI+01, Lemma 3.5]. Consider the following PPT algorithm Ext(1λ, C̃):

1. Let vi = (⊥, i,⊥, . . . ,⊥).
2. For every i ∈ [λ], evaluate ci = C̃(1, vi, ri) where ri←$ {0, 1}∗.
3. Consider the gate representation of the circuit C(·, ·) = C̃(0, ·, ·).
4. Let (d1, . . . , dλ) be the output of the gate-by-gate computation of C(·, ·) over the ciphertexts (c1, . . . , cλ)

of a (this can be accomplished by leveraging the access to C̃(2, ·, ·) that correspond to the C2
k of Fig-

ure 7 that, in turn, permits to perform arbitrary homomorphic computation over encrypted inputs).
Observe that di will be the encryption of bi since each ci is an encryption of ai and C returns b if
evaluated over a.

5. Compute (a, k, e, y) = C̃(3, v, r) where v = (⊥,⊥,⊥,⊥,⊥, d1, . . . , dλ) and r←$ {0, 1}∗.
6. Compute b = C̃(0, v′, r′) v′ = (a,⊥, . . . ,⊥) and r′←$ {0, 1}∗.
7. Output (k, a, b, y, e).

By leveragng both the correctness of Π0 (Definition A.15) and the definition of C̃ (Theorem 6.1), it is
easy to see that Ext always output the correct (k, a, b, y, e).

B.9 Proof of Theorem 6.3

(Part one) Sowf is an odiO-sampler. Let A be a PPT adversary. The only input x ∈ {0, 1}λ on which
C0 = Cr,0, C1 = Cr,1 (output by Sb) differ is x = r where r←$ {0, 1}λ. Since α = ⊥ and A has only
oracle access to C0 and C1 we conclude that A cannot do better than guessing r, i.e.,

P[Cr,0(x) ̸= Cr,1(x)] = P[x = r] =
1

2λ
,

where (Cr,0, Cr,1,⊥)←$ Sowf(1
λ) and x←$ ACr,0(·),Cr,1(·)(1λ, 1|Cr,0|,⊥).16

(Part two) Fλ is a OWF. By contradiction, suppose Fλ is not a OWF, i.e., there exists a PPT
adversary A such that

P
[
Fλ(A(1

λ,Fλ(b, r0, r1))) = Fλ(b, r0, r1)|(b, r0, r1)←$ {0, 1} × {0, 1}λ × {0, 1}p(λ)
]
≥ ϵ,

where ϵ non-negligible. We build an adversary D that breaks the indistinguishability property of Obf
(Definition 4.2). D proceeds as follows:

1. Receive an obfuscated circuit C̃.
2. Execute A(1λ, C̃) and receive (b, r0, r1) ∈ {0, 1} × {0, 1}λ × {0, 1}p(λ).
3. Compute C ′ = Obf(Cr0,b; r1).

4. If C ′ = C̃, return b.

Observe that A’s view is perfectly simulated. Indeed, Sowf chooses r0 ∈ {0, 1}λ at random and the

obfuscated circuit C̃ is computed using a fresh randomness r1←$ {0, 1}p(λ). Hence, the distribution C̃
is the same of Fλ on random inputs (b, r0, r1) ∈ {0, 1} × {0, 1}λ × {0, 1}p(λ). This imply that D has the
same non-negligible advantage ϵ in distinguishing between the obfuscations C0 and C1 output by Sowf .
This concludes the proof.

B.10 Proof of Theorem 6.5

If OWFs exist then the following primitives exists:

1. A secure PRF scheme Π = (Gen,F) with key space {0, 1}λ,
2. a SKE Π̂ = (K̂Gen, Ênc, D̂ec) with key space {0, 1}λ that is IND-CCA1 and IND-CPA-key secure

(Corollary A.20),

16 Recall that |Cr,0| = |Cr,1| by definition of sampler (Definition 3.1).
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3. an ensemble of circuits C = {C∗s,(k,a,b,y,e)}s,k,a,b,y∈{0,1}λ,e∈{0,1} (defined with respect to Π̂ and Π) that
satisfies Theorem 6.1, and

4. a SKE Π̃ = (K̃Gen, Ẽnc, D̃ec) with key space {0, 1}λ that is semantically and sel-IND-CPRA-key
secure (Corollary A.20).

Consider the following SKE schemeΠ∗ = (KGen∗,Enc∗,Dec∗) with message spaceM = {(ℓ, v)}ℓ,v∈{0,1}∗ :

KGen∗(1λ): On input the security parameter 1λ, the key generation algorithm computes k̂←$ K̂Gen(1λ),

k̃←$ K̃Gen(1λ), s←$ Gen(1λ), y←$ Gen(1λ), (a, b, e)←$ {0, 1}2λ+1, and returns k∗ = (k̂, k̃, s, a, b, y, e).

Enc∗(k,m; r): On input the key k∗ = (k̂, k̃, s, a, b, y, e), a message m = (ℓ, v) ∈ M, and randomness
r ∈ {0, 1}∗, the encryption algorithm outputs c = (c0, c1, c2) where c0 = C∗

s,(k̂,a,b,y,e)
(ℓ, v, r), c1 =

Ẽnc(k̃, (ℓ, v); r), and c2 = F(y, (ℓ, v, r))⊕ k̃.

Dec∗(k, c): On input the key k∗ = (k̂, k̃, s, a, b, y, e) and a ciphertext c = (c0, c1, c2), the deterministic

decryption algorithm returns m = D̃ec(k̃, c1).

First, we prove that Π∗ is both semantically and sel-IND-CPRA-key secure. Second, we show that Π is
not sel-IND-CPA where Π is the PKE scheme output by the application of Construction 5 to Π∗.

Π∗ is semantically secure. Let m∗0,m
∗
1 ∈M. Consider the following hybrid experiments:

Hyb
m∗

0 ,m
∗
1

0 (λ) This is the standard experiment of semantic security (Definition A.16) with respect to the
messages m∗0,m

∗
1 ∈M.

Hyb
m∗

0 ,m
∗
1

1 (λ): Same as Hyb
m∗

0 ,m
∗
1

0 (λ), except that the challenger replaces the execution of C∗
s,(k̂,a,b,y,e)

(that is done by the encryption algorithm Enc∗) with the execution of C̃k̂,a,b (depicted in Figure 10).

Hyb
m∗

0 ,m
∗
1

2 (λ): Same as Hyb
m∗

0 ,m
∗
1

1 (λ), except that the challenger samples the challenge bit b←$ {0, 1} and
computes c2 = Frnd(ℓ

∗
b , v
∗
b , r) ⊕ k̃ (instead of F(y, (ℓ∗b , v

∗
b , r)) ⊕ k̃) where Frnd(·, ·, ·) is a truly random

function, m∗b = (ℓ∗b , v
∗
b ), and r←$ {0, 1}∗.

Hyb
m∗

0 ,m
∗
1

2 (λ): Same as Hyb
m∗

0 ,m
∗
1

1 (λ), except that the challenger computes c1 = Ẽnc(k̃, (0, 0); r) (instead

of c1 = Ẽnc(k̃, (ℓ∗b , v
∗
b ); r)).

Lemma B.30. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1

0 (λ) ≈c Hyb
m∗

0 ,m
∗
1

1 (λ).

Proof. The lemma follows by leveraging the fact that Π is a secure PRF scheme and Π̂ is IND-CCA1
secure. The proof is similar to that of oracle-differing-input of Theorem 6.1. ⊓⊔

Lemma B.31. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1

1 (λ) ≈c Hyb
m∗

0 ,m
∗
1

2 (λ).

Proof. The lemma follows by leveraging the fact that Π is a secure PRF scheme. ⊓⊔

Lemma B.32. For every m∗0,m
∗
1 ∈M, Hyb

m∗
0 ,m

∗
1

1 (λ) ≈c Hyb
m∗

0 ,m
∗
1

2 (λ).

Proof. The lemma follows by the semantic security of Π̃. ⊓⊔

By combining Lemmas B.30 to B.32, we obtain that Π∗ is semantically secure.

Π∗ is sel-IND-CPRA-key secure. Let m∗ ∈M. Consider the following hybrid experiments:

Hybd,m
∗

0 (λ) This is the standard sel-IND-CPRA-key experiment (Definition A.19) with respect to the
message m∗ ∈M and the challenge bit d.

Hybd,m
∗

1 (λ): Same as Hybd,m
∗

0 (λ), except that the challenger changes how it computes c∗0 of the chal-
lenge ciphertext c∗ = (c∗0, c

∗
1, c
∗
2). Formally, the challenger computes c∗0 = C∗

s1−d,(k̂0,a0,b0,y0,e0)
(ℓ∗, v∗, r)

(instead of computing c∗0 = C∗
sd,(k̂d,ad,bd,yd,ed)

(ℓ∗, v∗, r)) where m∗ = (ℓ∗, v∗) and r←$ {0, 1}∗.

Hybd,m
∗

2 (λ): Same as Hybd,m
∗

1 (λ), except that the challenger changes how it answers to the oracle queries
for Enc∗(k∗0, ·; ·) and Enc∗(k∗1, ·; ·). Formally, on input (m = (ℓ, v), r) for Enc∗(k∗i , ·; ·), the challenger

computes c0 = C̃k̂i,ai,bi
(ℓ, v, r) (depicted in Figure 10).
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Hybd,m
∗

3 (λ): Same as Hybd,m
∗

2 (λ), except that the challenger changes how Enc∗(k∗0, ·; ·) computes c2.
Formally, on input a message m = (ℓ, v) and a randomness r for Enc∗(k0, ·; ·), the challenger computes

c2 = Frnd0(ℓ, v, r)⊕ k̃0 (instead of F(y0, (ℓ, v, r))⊕ k̃0) where Frnd0(·, ·, ·) is a truly random function.

Hybd,m
∗

4 (λ): Same as Hybd,m
∗

3 (λ), except that the challenger changes how Enc∗(k∗1, ·; ·) computes c2.
Formally, on input a message m = (ℓ, v) and a randomness r for Enc∗(k1, ·; ·), the challenger computes

c2 = Frnd1(ℓ, v, r)⊕ k̃1 (instead of F(y1, (ℓ, v, r))⊕ k̃1) where Frnd1(·, ·, ·) is a truly random function.

Lemma B.33. For every m∗ ∈M, Hybd,m
∗

0 (λ) ≈c Hyb
d,m∗

1 (λ).

Proof. The lemma follows by leveraging the input-indistinguishability property of C (Theorem 6.1). ⊓⊔

Lemma B.34. For every m∗ ∈M, Hybd,m
∗

1 (λ) ≈c Hyb
d,m∗

2 (λ).

Proof. The lemma follows by leveraging the fact that Π is a secure PRF scheme and Π̂ is IND-CCA1
and IND-CPA-key secure. The proof uses a similar argument to that of input-indistinguishability of The-
orem 6.1. ⊓⊔

Lemma B.35. For every m∗ ∈M, Hybd,m
∗

2 (λ) ≈c Hyb
d,m∗

3 (λ).

Proof. The lemma follows by leveraging the fact that Π is a secure PRF scheme. ⊓⊔

Lemma B.36. For every m∗ ∈M, Hybd,m
∗

3 (λ) ≈c Hyb
d,m∗

4 (λ).

Proof. The lemma follows by leveraging the fact that Π is a secure PRF scheme. ⊓⊔

Lemma B.37. For every m∗ ∈M, Hybd,m
∗

4 (λ) ≈c Hyb
1−d,m∗

4 (λ).

Proof. The lemma follows by leveraging the fact that Π̃ is sel-IND-CPRA-key secure ⊓⊔

By combining Lemmas B.33 to B.37, we obtain that Π is sel-IND-CPRA-key secure.

Π is not sel-IND-CPA secure. Let Π be the PKE scheme output by the application of Theorem 5.7,
starting from the SKE scheme Π∗. It is easy to see that Π is not sel-IND-CPA (Definition A.22). This

because there always exists an adversary A that, on input pk = C̃ (recall that C̃ is the obfuscation of the
circuit CEnc

k (Figure 6) with respect to the SKE scheme Π∗), is able to correctly decrypt the challenge
ciphertext. More formally, let m∗0,m

∗
1 ∈M such that m∗0 ̸= m∗1 and A be the following adversary (against

the sel-IND-CPA security of Π∗ with respect to the messages m∗0,m
∗
1 ∈M):

1. Receive the challenge ciphertext c∗ = (c∗0, c
∗
1, c
∗
2) and the public key pk = C̃.

2. Compute c′ = (c′0, c
′
1, c
′
2) = C̃(ℓ′, v′, r′) for some arbitrary ℓ′, v′, r′ ∈ {0, 1}∗.

3. Let C ′ be the circuit (composed by the gates of C̃) representing the computation of C̃ that, on input
(ℓ, v, r), output c0, i.e.,

∀(ℓ, v, r) ∈ {0, 1}∗, c0 = c′0 where (c0, c1, c2) = C̃(ℓ, v, r) and c′0 = C ′(ℓ, v, r).

4. Compute (k̂, a, b, y, e)←$ Ext(1λ, C ′) where Ext is the PPT algorithm satisfying the partial reversibil-
ity property of Theorem 6.1.

5. Compute c′2 ⊕ F(y, (ℓ′, v′, r′)) = k̃.

6. Decrypt c∗1, i.e., D̃ec(k̃, c
∗
1) = m.

7. If m = m∗0, return 0. Otherwise, return 1.

By leveraging the partial reversability property of C (Theorem 6.1), A correctly extracts k̃. As a conse-
quence, A breaks the sel-IND-CPA security of Π.
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