
Multiparty Private Set Intersection Cardinality and Its Applications

Jiahui Gao∗ Ni Trieu∗ Avishay Yanai†

September 10, 2023

Abstract

We describe a new paradigm for multi-party private set intersection cardinality (PSI-CA)
that allows n parties to compute the intersection size of their datasets without revealing any
additional information. We explore a variety of instantiations of this paradigm. Our protocols
avoid computationally expensive public-key operations and are secure in the presence of a semi-
honest adversary.

We demonstrate the practicality of our PSI-CA with an implementation. For n = 16 parties
with data-sets of 220 items each, our server-aided variant takes 71 seconds. Interestingly, in the
server-less setting, the same task takes only 7 seconds. To the best of our knowledge, this is the
first ‘special purpose’ implementation of a multi-party PSI-CA from symmetric-key techniques
(i.e., an implementation that does not rely on a generic underlying MPC).

We study two interesting applications – heatmap computation and associated rule learning
(ARL) – that can be computed securely using a dot-product as a building block. We analyse
the performance of securely computing heatmap and ARL using our protocol and compare that
to the state-of-the-art.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to jointly invoke a distributed com-
putation while ensuring correctness, privacy, and more. Garbled circuit [49, 23, 6] is a popular
generic technique for secure computation, which has been enjoyed notable optimizations in recent
years (e.g. [41]). However, for concrete applications, special-purpose protocols significantly improve
performance compared to circuit-based approaches.

In this work, we study Private Set Intersection Cardinality (PSI-CA), a special case of MPC,
that allows multiple parties to compute the intersection size of their private sets without revealing
additional information. PSI itself has been motivated by many real-world applications such as
contact discovery [27]. Over the last several years PSI has become truly practical with extremely
fast cryptographically secure implementations [12, 40, 37, 22]. In the setting of two parties, PSI
with post-processing (a.k.a circuit-based PSI), especially PSI-CA, has recently drawn more attention
with several applications, such as measuring the effectiveness of online advertising [26], limiting
the spread of Child Sexual Abuse Material (CSAM) [8], and private contact tracing related to
COVID-19 [7, 18, 15]. However, the state-of-the-art PSI-CA is only efficient in the two-party
setting [26, 18, 15]. This work considers a natural generalization to the multi-party setting, which

∗Arizona State University, {jhgao, nitrieu}@asu.edu
†VMware Research, ay.yanay@gmail.com

1

opens the opportunity for richer applications, like the two we showcase below. The state-of-the-art
protocol for PSI-CA in the multi-party setting [11] relies on secret-shared computation [13], which
might not scale well for a large number of parties. In this work we present a scalable protocol for
PSI-CA in the multi-party setting.

Moreover, we present a new protocol, called DotProd, where n parties may compute a sum of
element-wise products of their binary vectors without revealing any additional information. Mathe-
matically, suppose party Pi holds the m-element vector xi, then the parties obtain

∑m
j=1

∏n
i=1 xi[j],

where xi[j] is the jth element of the vector xi. Note that in the two-party case, the computation
is exactly of the dot product x1 · x2. We demonstrate the efficiency of our protocols through two
real-world applications: a COVID-19 heatmap computation based on PSI-CA and an associated
rule learning (ARL) based on DotProd.

In the rest of this section, we will present the related work of PSI-CA and its applications.
Additionally, we will delve into the technical overview and outcomes of our proposed protocols.
To establish a foundation, Section 2 presents the necessary preliminaries. Furthermore, we will
introduce two novel cryptographic gadgets, namely Server-Aided Shuffled OPRF and Server-Aided
OPPRF, in Section 3. These gadgets serve as the fundamental building blocks for our PSI-CA
protocols, which will be discussed in Section 4. The practical applications of PSI-CA will be explored
in Section 5. Lastly, in Section 6, we will evaluate the performance of our PSI-CA protocols and
provide a comparison with existing approaches.

1.1 State-of-the-Art for PSI Cardinality

Private Set Intersection Cardinality (PSI-CA) is a variant of PSI in which the parties learn the
intersection size and nothing else. In this work, we also focus on server-aided PSI-CA constructions.
By “server-aided”, we refer to cases where the parties perform PSI-CA computation with the help
of semi-honest cloud server(s). To the best of our knowledge, this work proposes the first special-
purpose PSI-CA protocols from symmetric-key techniques that work in the multi-party setting.

We start with discussing PSI-CA works in the two-party setting. Clearly, one can use circuit-
based PSI [38] to implement PSI-CA. However, this generic solution is expensive due to the se-
cure computation inside the circuit. For the special-purpose two-party PSI-CA constructions, the
work [26] extends the classic DH-based PSI protocol [34] to support two-party PSI-CA by having
a sender shuffle the PRFs of their items before returning to the receiver. Epione [46] also proposed
a protocol that is suitable to the unbalanced, client-server setting, in which the server has a large
database of m1 items and the client has a small database of m2 items. The protocol, however, re-
quires O(m1+m2) expensive public-key operations (group exponentiation). Delegated PSI-CA[18]
improves the efficiency of the two-party PSI-CA protocol on the client’s device, Catalic [18] proposes
a delegated system in which the client (i.e. PSI-CA receiver) can shift most of its PSI-CA com-
putation to multiple untrusted servers while preserving privacy. However, Catalic system requires
at least two non-colluding cloud servers with a heavy computation/communication cost. Based on
oblivious switching network (OSN), [21] proposes a two-party PSI-CA (so-called OSN-based PSI-
CA) which is better than circuit-based PSI-CA protocol [38] in terms of communication cost and
running time in the WAN setting. However, it has both communication and computation com-
plexity O(m log(m)) for a set size m due to the expensive OSN construction. Dittmer et al. [15]
introduces a variant of two-party PSI-CA (so-called weighted PSI-CA) in which each token of the
client has an associated secret weight. The weighted PSI-CA is based on cheap Function Secret
Sharing (FSS) constructions [9, 10], thus it is efficient on both client’s and server’s sides. However,

2

their construction assumes that there exist two non-colluding servers, each holding an identical
input set.

A multi-party PSI-CA protocol was first proposed by Kissner and Song [30]. The protocol of [30]
is based on oblivious polynomial evaluation which is implemented using additively homomorphic
encryption. The basic idea is to represent a dataset as a polynomial whose roots are its elements,
and send the homomorphic encryptions of the coefficients to other parties so that they can evaluate
the encrypted polynomial on their inputs. The protocol of [30] has a quadratic computation and
communication complexity in both the size of dataset and the number of parties.

Mohassel et al. [36] proposed a PSI-CA protocol, but on secret shared data in the honest-
majority three-party setting, which is different than the setting in this paper, as we consider a
setting with any number of parties, in which the input does not have to be in a secret-sharing
form. However, one can extend the protocol of [36] to support the multi-party PSI-CA where all
the parties secret-share their input to the three parties of [36] which then jointly compute the
final output. We discuss the extension and compare the performance of our protocol and [36]’s in
Section 6.2.

Chandran et al. [11] proposed an efficient PSI (not PSI-CA), which can be extended to circuit-
based PSI. Hence, one could combine their extended protocol with a circuit that computes the size
of the intersection to obtain a protocol for PSI-CA. At the technical core, [11] is built on n-party
secret-sharing functionalities introduced by [13]. Their use of generic secure computation protocol
for a specific problem (of PSI-CA) makes their extended protocol less attractive. We also compare
the performance of our protocols and [11] in Section 6.2.

Very recently, Fenske et al. [19] proposed an efficient multi-party PSI-CA procotol in the out-
sourcing setting. Their approach makes use of K servers, with the assumption that at least one of
the servers is not colluding with other participants. When K = 1, their protocol is comparable to
our server-aided one, as both require a non-colluding server. However, our protocol outperforms
theirs in this scenario, as we employ symmetric-key operations while [19] heavily relies on the ad-
ditiviely homomorphic encryption. For instance, in the case of n = 8 and m = 216, our protocol
can compute PSI-CA within 3 seconds. In contrast, the protocol [19] necessitates approximately 2
hours for n = 5 and m = 30000, as indicated in their Figure 10. This demonstrates the efficiency
and superiority of our approach in terms of computational time. It is also worth noting that the
protocol [19] only works in the server-aided setting, whereas in this work we also propose a way to
work without such an entity, which we call the “server-less” setting.

1.2 Secure Dot Product and Its Applications

Dot-product plays a key role in machine learning and data analysis tasks. Its implementation in
a privacy-preserving setting remains expensive as it requires either generating Beaver triples [5] or
using fully homomorphic encryption (FHE). There is a long list of results for secure computation
of dot product or linear algebra in general [1, 25, 45, 51, 50, 14, 4]. For the applications that
we consider in this paper, namely, Covid-heatmap and ARL, dot-product of sparse vectors would
be sufficient. Many algorithms for linear algebra operations, like matrix multiplication, leverage
an apriori knowledge of the operands being sparse, and sometimes these algorithms can even be
computed securely, without degrading their asymptotic complexity. None of the above works,
however, address the problem of dot product in a setting where the vectors are sparse. The most
relevant works to ours are [47, 48, 16, 4, 44].

To the best of our knowledge, Vaidya and Clifton [47] were the first to study secure computation

3

of scalar product of two m-element vectors in the two-party setting and its application to privacy-
preserving association rule learning (ARL). Their dot product protocol heavily relies on public-
key operations, and requires four communication rounds, communication complexity of O(m) and
computation complexity of O(m2).

Their follow-up work [48] is based on PSI, which makes the complexity dependent only of t,
where t is the upper-bound on the Hamming weight of the vectors. They also propose a protocol
for the multi-party setting, which requires a commutative one-way hash function so that the input
from each party can be encrypted by a common set of keys. The resulting ciphertexts are the same
if the original values are the same. Although efficient, their protocol introduces an undesirable
leakage; specifically, it leaks the items in the intersection (rather only their sum). Moreover, their
protocol is insecure when the input domain is relatively small (e.g. of size 230) as one party could
easily perform a brute force attack [39]. To handle the latter security issue, [16] studied a two-
party ARL and proposed a solution via PSI that is built on the Goldwasser-Micali Encryption [24]
and Oblivious Bloom Intersection [17]. Their protocol still leaks the items in the intersection, and
became much more expensive than the protocol we present in this paper. In addition, they did not
consider an extension to the multi-party case.

Recently, Bampoulidis et al. [4] studies COVID-19 heatmap computation and proposes secure
dot product based on homomorphic encryption with several optimizations. However, the number
of required HE operations is O(m) (regardless of the Hamming weight of the vectors), which makes
their protocol expensive. Schoppmann et al. [44] presents efficient two-party protocols for several
common sparse linear algebra operations including sparse matrix-vector multiplication. The main
building block of their protocols is a new functionality – Read-Only Oblivious Map (ROOM).
Using ROOM, the cost of the secure matrix-vector multiplication is dependent only on the number
of non-zero entries, instead of the operands’ size. However, in all three ROOM constructions the
parties invoke generic secure computation in order to obtain a secret-shared output. We compare
the performance of our protocol to a ROOM-based dot-product in Section 6.1.

1.3 Our Results and Techniques

1.3.1 Our PSI-CA Approach:

We present a new multi-party PSI-CA protocol paradigm with an assumption that a subset of
particular parties does not collude. We offer two variants of our protocol. The first protocol
relies on a non-colluding semi-honest server that has no input. It is optimized for the number of
communication rounds between parties; that is, the protocol leverages a star network topology,
where parties mostly communicate with the server. The second protocol removes the need of a
server by reducing the problem of n-party PSI-CA to the problem of server-aided (n−1)-party PSI-
CA with use of a semi-honest party Pn who may have an input. The base case with n = 2 can be
instantiated efficiently by two-party server-aided PSI protocol of Kamara et al. [28]. However, [28]
is only for PSI itself (not PSI-CA)1. We simplify their PSI protocol and present a new server-aided
two-party PSI-CA in Section 4.1.

The main building blocks of our multiparty PSI-CA protocols are oblivious key-value store
(OKVS) data structure [22], and/or Oblivious Programmable PRF (OPPRF) [31]. To this end,
we propose a very simple and efficient protocol for server-aided OPPRF, which we believe to be

1Note that [28] has a protocol for multiparty PSI, but it reveals intersection items of each pair-wise parties sets
to the server and is non-trivial to support PSI-CA.

4

of independent interest. Our server-aided OPPRF is based on a two-party server-aided shuffled
OPRF, a functionality we formally define in Section 3.1.

We provide an implementation of server-aided and server-less variants of our PSI-CA approach
for n > 2. To the best of our knowledge, this is the first ‘special-purpose’ implementation of multi-
party PSI-CA from symmetric-key techniques that does not rely on generic secure computation.
We find that multi-party PSI-CA is practical, by evaluating our protocols over settings with million
items sets and 16 parties. The main reason for the efficiency of our protocol is its reliance on
fast symmetric-key primitives. This is in contrast with prior multi-party PSI-CA protocols, which
require expensive public-key operations for each item [30] or computation on secret-shared data [11].

Interestingly, the server-less PSI-CA variant is about 10× faster than the server-aided one. We
consider colluding model in the semi-honest setting which is introduced in detail in Section 2.1.
The two variants, however, offer different security guarantees. Specifically, the former is secure in
the presence of an adversary who may passively corrupt any subset from {P3, . . . , Pn} or one of
P1,P2 or Pn (i.e. P1, P2 and Pn are non-colluding). The latter (server-aided PSI-CA) is secure in
the presence of an adversary who may passively corrupt any strict subset of {P1, P3, . . . , Pn} or
{P2, P3, . . . , Pn} (i.e. P1 and P2 do not collude) or passively corrupt the cloud server C. In some
sense, one may look at the server-less variant as a multi-server-aided PSI-CA but the servers have
their private input. Hence, we can use our efficient server-aided OPPRF (instead of the two-party
OPPRF [31]) in the server-less PSI-CA protocol, which may explain why it is possible to get a
better performance in this case. In the server-less variant, we assign the non-colluding party P1

the role of a server in the server-aided OPPRF protocol.
The security model employed in this work deviates from the commonly known concept of

“threshold security”. Rather, we adopt a specific but sufficiently general access structure, in which
a designated subset of parties does not collude. Although this approach differs from the conven-
tional notion of threshold security, we do believe our approach can be used as a stepping stone
toward achieving security in the ‘standard’ threshold access structure.

Note that in practice, a server-aided model can be reasonable. Performance is critical and often
it makes sense given that the alternative has a weaker security guarantee. For example, in the
federated learning setting, there is a server and many clients where the server helps training a
machine learning model for the benefit of the clients. In this work, we motivate our protocols with
two real-world applications in which using a non-colluding, but semi-honest server, makes complete
sense. For example, in the Covid-19 heatmap computation, an established company (e.g. Google
or Apple) can play the role of the server.

1.3.2 Our Multi-party Dot-Product of Binary Vectors (DotProd):

We propose a new protocol for computing the sum of element-wise products of n sparse binary
vectors (so-called multiple dot product, DotProd). Let us begin with the simpler case, where
n = 2, known as secure dot product. One would expect a solution for a dot product of m-elements
vectors to incur communication overhead of at least O(m), for the very fact that the parties need
to first input those elements (which usually involves some sort of encryption or secret sharing on
each element). In this work, we show that the communication and computation complexity is
independent of m and can be reduced to O(t), where t is the upper bound on the Hamming weight
of the vectors. This improvement is significant when the vectors are sparse (i.e. t = o(m)).

For an m-element binary vector x we define idx(x) = {i ∈ [m] | x[i] = 1} to be the set
of non-zero indices in x. Suppose the receiver P0 and the sender P1 hold an m-element binary

5

sparse vector x0 and x1, respectively. The vectors are sparse and have the number of non-empty
elements bounded by t = o(m). As a very simple warm-up, we consider a non-secure dot product
computation with the communication complexity cost of O(t). Given the input vector x0, the
receiver computes A0 = idx(x0) and the sender computes A1 = idx(x1). The sender then sends A0

to the receiver, who is able to compute the dot product x · y by computing the intersection A0∩A1

and outputting its cardinality |A0 ∩A1|.
The main advantage of the above solution is to reduce dependency on the length of the vectors,

especially when the input vectors are sparse. To compute x0 · x1 securely, the parties run a private
set intersection cardinality protocol (PSI-CA) where P0 inputs A0 and P1 inputs A1. This idea,
however, has received little attention due to the large overhead required to compute PSI-CA. In
this work, we propose a lightweight server-aided PSI-CA construction to improve the performance
of the secure dot product. Our two-party protocol relies on only PRF. As a result, our protocols
are simple and efficient, with a communication and computation complexity O(t), so is our secure
dot product DotProd.

We then extend DotProd to the multi-party case. Given an input vector xi, party Pi computes
Ai = idx(xi). It is easy to see that the sum of element-wise products of the vectors is equal to
the size of their intersection, namely,

∑m
j=1

∏n
i=1 xi[j] = |

⋂n
i=1Ai|. We implement the multi-party

DotProd using our multi-party PSI-CA.

1.3.3 Application to PSI-CA and DotProd:

We show that our PSI-CA and DotProd techniques can be used to implement and improve the
performance of several privacy-preserving applications. More specifically, we consider two running
examples: COVID-19 heatmap computation and associated rule learning (ARL).

In the COVID-19 heatmap problem, we consider a scenario where the Department of Health
and Human Services (HHS) wants to learn areas with a higher chance of getting infected with the
disease without knowing the travel route of infected individuals. The heatmap can be implemented
by computing the vector-matrix multiplication as x⊤Y , where x and Y are as follows: x is a binary
vector of size N , held by the HHS, such that x[i] = 1 if the ith user has tested positive to COVID-19
and x[i] = 0 otherwise; and Y = (y1, . . . , ym) ∈ ZN×m

2 is a user-location matrix, held by a network
operator, such that the ith element of the column vector yj indicates whether the ith user has
recently visited the jth location. In that case yj [i] = 1 and otherwise yj [i] = 0. Clearly, z = x⊤Y is
an m-element vector where the ith element is equal to the number of users who have tested positive
and recently visited the ith location. [4] proposes different optimizations on HE to implement
a secure dot product, which still requires O(Nm) independent multiplications (regardless of the
Hamming weight of the vectors). In the heatmap example above, we observe that the vector x is
sparse because the proportion of diagnosed individuals per day among all N subscribed individuals
is small (e.g, 0.01-1% would be a large percentage [2]). Similarly, the matrix Y is also sparse
due to people’s localized travel habits. In Section 5.2, we apply our DotProd protocol to compute
COVID-19 heatmap. In addition, [4] only supports a two-party computation between the HHS
and a network provider. In real-world scenarios, there are many network providers. We modify
our two-party PSI-CA protocol to support heatmap computation between the HHS and multiple
network providers without revealing additional information.

Second, we study associated rule learning (ARL) as an application of DotProd. ARL is a rule-
based machine learning method that is used to discover rules/relations of the type (X ⇒ Y)
between variables X,Y in databases. As a typical example in the sales database of a supermarket,

6

a rule/relation {onions, potatoes⇒ burger} indicates that if a customer buys onions and potatoes
together, they are likely to also buy hamburger meat. In market design, such information can be
used as the basis for decisions about product placements, promotional pricing, and more. However,
the ARL training process requires a large transaction database, which may be collected from
different sources. Thus, it is highly desirable to maintain the privacy of each source. We study
a common ARL training algorithm, called Apriori [3, 43], and adapt it to the privacy-preserving
setting. Most steps in Apriori can be computed locally except a step in which the parties want
to compute a confidence score of how many transactions across a joint database that contains all
attributes/items in both X and Y . This step can be implemented by computing a sum of bit-wise
products of multiple binary vectors. We first apply multi-party DotProd for ARL and make its
learning process in a privacy-preserving manner.

2 Preliminaries

Computational and statistical security parameters are denoted by κ, λ, respectively. We use [x] to
denote the set {1, 2, . . . , x} and [x, y] to denote the set {x, x + 1, . . . , y}. A set is a collection of
distinct. We denote the concatenation of two bit strings x and y by x||y. For a pseudorandom
function (PRF) F , a key k and a set A, we define F (k,A) = {F (k, a) | a ∈ A}. For an m-element
binary vector x, we define idx(x) = {i ∈ [m] | x[i] = 1}.

The functionality FD
Coin for coin tossing between any number of parties is defined by {⊥,⊥, . . . ,⊥} 7→

x where x is drawn uniformly from D. Depending on D, the result from FD
Coin can be used as a

PRF key or a random value in any format. Secure protocol that computes FD
Coin can be achieved

in the dishonest majority setting by [29, 33].

2.1 Security Model

Secure computation allows mutually untrusted parties to jointly compute a function on their private
inputs without revealing any additional information. There are two classical security models:
colluding model is modeled by considering a single monolithic adversary that captures the possibility
of collusion between the dishonest participants; and non-colluding model is modeled by considering
independent adversaries, each captures the view of each independent dishonest party. There are
also two adversarial models, which are usually considered. In the semi-honest (passive) model, the
adversary is assumed to follow the protocol, but may try to learn information from the protocol
transcript. In the malicious (active) model, the adversary follows an arbitrary polynomial-time
strategy to learn additional information.

This paper introduces two variations of PSI-CA, each providing distinct security guarantees.
Firstly, the server-aided variant of PSI-CA ensures security in the presence of an adversary who
may passively corrupt any subset of {P1, P3, . . . , Pn} or {P2, P3, . . . , Pn} (i.e. P1 and P2 do not
collude) or passively corrupt the server C. The “server-less” protocol guarantees security in the
presence of an adversary who may passively corrupt any subset from {P3, . . . , Pn} or passively
corrupt one of P1,P2 or Pn.

2.2 Oblivious Key-Value Store (OKVS)

A Key Value Store (KVS) consists of two algorithms: i) Encode takes as input a set of (ki, vi)
key-value pairs from the key-value domain, K × V, and outputs an object S (or, with negligible

7

probability, an error indicator ⊥); ii) Decode takes as input an object S, a key x and outputs a
value y.

A KVS is correct if, for all A ⊆ K × V with distinct keys: i) Pr[Encode(A) = ⊥] is negligible,
and ii) if Encode(A) = S ̸= ⊥ and (k, v) ∈ A then Decode(S, k) = v.

EXPERIMENT 2.2.1.
(
ExpA(K = (k1, . . . , km))

)
1. for i ∈ [m]: choose uniform vi ← V
2. return A

(
Encode({(k1, v1), . . . (km, vm)})

)
We say that a KVS is oblivious if for allK1,K2 of sizem and all PPT adversariesA:

∣∣Pr[ExpA(K1) =

1]− Pr[ExpA(K2) = 1]
∣∣ = 1

2 + ε where ε ≤ negl(κ). In other words, if the values vi are chosen uni-
formly then the output of Encode hides the choice of the keys ki. Oblivious Key-Value Store
(OKVS)[22] is given in Experiment 2.2.1, where A is an arbitrary PPT algorithm.

2.3 Oblivious PRF (OPRF) and Programmable PRF (OPPRF)

An oblivious PRF (OPRF) [20] is a 2-party protocol in which the sender learns a PRF key k and
the receiver learns F (k, q1), . . . , F (k, qm). Here, F is a PRF and (q1, . . . , qm) are inputs chosen by
the receiver. Functionality 1 presents a variant of OPRF where the receiver obtains outputs of
multiple statically chosen queries.

FUNCTIONALITY 1.
(
Oblivious PRF - Fm

oprf

)
Parameters: A PRF F , and a bound m on the number of queries.
Behavior: Wait for distinct queries (q1, . . . , qm) from the receiver where qi ∈ {0, 1}κ. Sample a random
PRF key k and give it to the sender. Give {F (k, q1), . . . , F (k, qm)} to the receiver.

An oblivious programmable PRF (OPPRF) [31] functionality is given in Functionality 2. It is
similar to the plain OPRF functionality except that (1) it allows the sender to initially provide a set
of points P which will be programmed into the PRF; (2) it additionally gives the public auxiliary
information “hint” value to the receiver. Depending on the underlying OPPRF construction, the
“hint” can be the random polynomial or bloom filter. For example, for polynomial construction, the
program is done by interpolating the key-value pair into a polynomial and sending the coefficient
as a hint so that the receiver can evaluate it. Other constructions may lead to hints of different
forms. In general, a hint can be viewed as a data structure that allows the receiver to evaluate his
input while not leaking any information for the sender’s set. For further details about the hint, we
direct the reader to [31, 37].

FUNCTIONALITY 2.
(
Oblivious Programmable PRF - Fm1,m2

opprf

)
Parameters: A PRF F , an upper bound m1 on the number of points to be programmed, and a bound
m2 on the number of queries.
Behavior: Wait for points P = {(a1, t1), . . . , (am1 , tm1)}, with distinct keys ai’s, from the sender S,
and distinct queries (q1, . . . , qm2) from the receiver R. Run (k, hint)← KeyGen(κ,P). Give (k, hint) to
S and (hint, F (k, hint, q1), . . . , F (k, hint, qm2

)) to R, where “hint” is the public auxiliary information.

2.4 Unconditional Zero Sharing

The unconditional zero sharing provides the parties with a sharing function S : {0, 1}κ×{0, 1}ℓ →
{0, 1}κ and a key Ki for party Pi, such that for every x ∈ {0, 1}ℓ, we have that si = S(Ki, x) is
Pi’s random share, and

⊕n
i=1 si = 0. The functionality and its construction from [31] are given in

Functionality 3 and Protocol 17.

8

FUNCTIONALITY 3.
(
Zero-Sharing - FZS

)
Parameters: n parties. The dictionary store is initialized to ∅.
Behavior: Pi obtains a zero-sharing key Ki for a sharing function S. Upon an input x from Pi, if
storex does not exist, generate random values s1, . . . , sn where si = S(Ki, x) s.t.

⊕n
i=1 si = 0 and store

storex,i = si for i ∈ [n]. Output Ki, storex,i to Pi.

2.5 Private Set Intersection Cardinality

Private set intersection cardinality (PSI-CA) allows n parties, each holding a set of m items, to
learn the intersection size of their private sets without revealing anything else. In the server-aided
PSI-CA, we assume there is a distrusted server that has no input and does not collude with the
parties. The server is involved in the PSI-CA protocol while learning nothing. PSI-CA and server-
aided PSI-CA are formally presented in Functionality 4. The highlighted text is required for the
server-aided case.

FUNCTIONALITY 4.
(
PSI Cardinality - FPSI−CA

)
Parameters: n parties P1, . . . , Pn; an untrusted server C; the set size m.
Behavior:
• Wait for input set Xi of m distinct items from Pi.
• Give the server C nothing .

• Give P1 an intersection set size |
⋂n

i=1 Xi|.

2.6 Secure Dot Product of Binary Vectors

Secure dot product functionality allows n parties, each holding an m-element binary vector, to learn
the dot product of their private vectors without revealing any additional information. In this work,
we consider the problem of the secure dot product of n binary vectors, in a server-aided setting, in
which we make use of a non-colluding distrusted server. Our protocols are extremely efficient when
the upper bound on the Hamming weight of the vectors, denoted t, is in o(m). The dot product
of n vectors x1, . . . , xn, each with m elements, is defined by

∑m
j=1

∏n
i=1 xi[j] and is called DotProd.

DotProd is presented in Functionality 5. The highlighted text is required for the server-aided case.

FUNCTIONALITY 5.
(
Secure Dot Product - FDotProduct

)
Parameters: n parties: Pi∈[n]; an untrusted server C; an upper-bound t.
Behavior:
• Wait for input m-element binary vector xi from Pi.
• Give the server C nothing .

• Give to
∑m

j=1

∏n
i=1 xi[j] the party P1.

3 Server-Aided OPRF and OPPRF

In this section, we introduce new OPRF and OPPRF constructions which make use of a semi-honest
non-colluding cloud server.

3.1 Server-Aided Shuffled OPRF

The server-aided OPRF functionality involves a sender S, a receiver R and a server C. It is defined
as follows: S has a key-pair k = (k1, k2) where ki ∈ {0, 1}κ, R has a set of queries {yi}i∈[m] and the
server C has no input. S does not receive an output whereas R obtains one of the keys, specifically

9

k1, and {y′π(1), . . . , y
′
π(m)} where y′i = F ′(k, yi) and π : [m] → [m] is a random permutation. The

output of C is one of the keys, specifically k2, and the permutation π . Clearly, R cannot associate
the response y′i with the query yi as all responses are pseudorandom. Figure 6 formally presents

the ideal functionality of F (m)
soprf .

FUNCTIONALITY 6.
(
Server-Aided Shuffled OPRF - F (m)

soprf

)
Parameters: S, R and C, the set size m, a pseudorandom permutation F ′ : {0, 1}2κ×{0, 1}ℓ → {0, 1}ℓ
where F ′(k1, k2, x) = F (k2(F (k1, x)) where F is a PRP.
Behavior: Upon receiving a key k = (k1, k2) ∈ ({0, 1}κ)2 from S.
• Give C a key k2, and a random permutation π : [m]→ [m].
• Give R the key k1.
Then, upon receiving a set of distinct queries {yi}i∈[m] from R, send {F (k1, yi)}i∈[m] to C and send
{y′π(1), . . . , y

′
π(m)} to R where y′i = F ′(k, yi).

We first define F ′((k1, k2), x) = F (k2, F (k1, x)) where F is a PRF. It is easy to see that F ′ is a

PRF. In protocol Π
(m)
soprf , the S has the key k = (k1, k2), so it can send k1 to R and k2 to C as a part

of their protocol’s output. Having k1, R computes Y ′ = F (k1, Y) and sends Y ′ to C. The server C
then computes Y ′′ = F (k2, Y

′), and applies a random permutation π on Y ′′. This protocol takes
into account the presence of a semi-honest sender and a semi-honest receiver.

Theorem 1. Protocol Π
(m)
soprf securely implements its functionality F (m)

soprf in the presence of an
adversary who may passively corrupt either S, R, or C.

The formal proof of Theorem 1 is present in Appendix A.1.

PROTOCOL 7.
(
Server-Aided Shuffled OPRF - Π

(m)
soprf

)
Parameters:
• Set size m; a pseudorandom permutation (PRP) F .
• A sender S, a receiver R, a non-colluding semi-honest server C

Inputs:
• Sender S has input k = (k1, k2)
• Receiver R has input a set of m items Y = {y1, . . . , ym}
• Cloud server C has no input.

Protocol:
1. S sends k1 to R and k2 to C.
2. R computes Y ′ = F (k1, Y) and sends Y ′ to C.
3. C computes Y ′′ = F (k2, Y

′) and sends a random permutation π of Y ′′ to R.

3.2 Server-Aided OPPRF

The server-aided OPRF functionality involves a sender S, a receiver R, and a non colluding server
C. It is defined as follows: S has a set of m1 points P = {(xi, vi)}i∈[m1] with (pseudo)random vi’s,
and R has a set Y = {yi}i∈[m2]. C has no input. Denote the set of first (resp. second) entries of
the pairs in P by X (resp. V). S and C do not have an output whereas R, for every yi, obtains vi
iff yi ∈ X, and some other pseudorandom value otherwise. This is denoted by Fsopprf and formally
described in Functionality 8.

10

FUNCTIONALITY 8.
(
Server-Aided OPPRF - F (m1,m2)

sopprf

)
Parameters: S, R and C, m1 the size of P and m2 the number of queries.
Behavior:
• Wait for a set of m1 points P = {(xi, vi)}i∈[m1] with distincts xi’s and (pseudo)random vi’s, from S.
• Wait for a set Y = {yi}i∈[m2] from R.
• For every i ∈ [m2] set v

′
i = vj if yi = xj for some j ∈ [m1] and otherwise assign a random value to

v′i. Let V
′ = {v′i}i∈[m2].

• Send V ′ to R.
In the protocol, S, R and C invoke a non-shuffled version of OPRF, where S inputs the key

k = (k1, k2), R inputs Y , and a sets Y ′ = {y′1, . . . , y′m2
} as a part of the output with y′i = F ′(k, yi).

Then, S constructs an OKVS T ← Encode({(xi, F ′(k, xi) ⊕ vi}i∈[m1]) and sends T to R, which
outputs wj = y′j ⊕ Decode(T, yj) for j ∈ [m2]. In terms of the correctness, R obtains v′j =
F ′(k, yj)) ⊕ Decode(T, yj) for all yj ∈ Y . If yj = xi, then Decode(T, yi) = F ′(k, xi) ⊕ vj , thus,
v′j = vi. Otherwise, Decode(T, yi) gives R a pseudorandom value which makes v′j pseudorandom as
well.

PROTOCOL 9.
(
Server-Aided OPPRF - Π

(m1,m2)
sopprf

)
Parameters:
• Parties are sender S, receiver R, and a server C. Set sizes m1,m2. A PRP F ′ : {0, 1}2κ × {0, 1}ℓ →
{0, 1}ℓ where F ′(k1, k2, x) = F (k2(F (k1, x)) where F is a PRF.

Inputs:
• S has P = {(xi, vi)}i∈[m1] with (pseudo)random vi’s.
• R has the set Y = {yi}i∈[m2].
• C has no input.

Protocol:
1. S, R, and C jointly invoke F (m2)

soprf where S inputs a random key k = (k1, k2)← {0, 1}2κ, by which C
obtains k2 and R obtains k1. Then R inputs Y , and obtains Y ′ = {y′1, . . . , y′m2

} as output, where
y′i = F ′(k, yi). Note that we use a non-shuffled version of OPRF.

2. S constructs an OKVS over T ← Encode({(xi, F
′(k, xi)⊕ vi}i∈[m1]) and sends T to R.

3. For every j ∈ [m2], R outputs v′j = y′j ⊕ Decode(T, yj).

Theorem 2. Protocol Π
(m1,m2)
sopprf securely computes functionality F (m1,m2)

sopprf in the F (m)
soprf-hybrid model,

in the presence of an adversary who may passively corrupt either S, R, or C.

The formal proof of Theorem 2 is present in Appendix A.2.

4 PSI Cardinality Protocol

In this section we present three protocols:
• In Section 4.1, we simplify the server-aided PSI protocol of [28] and formally present a new
server-aided two-party PSI-CA protocol. Unlike previous “server-less” protocols (see Section
1.1) that are based on oblivious transfer [18] or on the Diffie Hellman proble [46, 26], which in
turn are based on public-key primitives, our two-party PSI-CA protocol uses only symmetric-key
operations. This is possible, among other improvements, due to the replacement of their OPRF
constructions with a server-aided version, which is much simpler and more efficient.

• In Section 4.2, we show an extension of the protocol to the multiparty case, where the adversary
may passively corrupt (almost) any strict subset of the parties or passively corrupt the server. To

11

the best of our knowledge, this is the first ‘special-purpose’ protocol for privately computing the
intersection cardinality of more than two parties, for which we present interesting applications
(see Section 5).

• In Section 4.3, we show that a server is not necessary when some parties are assumed to be
semi-honest and non-colluding.

4.1 Server-Aided Two-Party PSI-CA

We consider sender S and receiver R who want to compute the intersection size of their private
sets X = {x1, . . . , xm1} and Y = {y1, . . . , ym2}, respectively. To do so, they use a non-colluding,
semi-honest cloud server C. The formal description is given in Protocol 10. The protocol is inspired
by the size-hiding server-aided PSI of Kamara et al. [28]. For completeness, a description of their
PSI protocol is given in Appendix E.

For correctness, notice that for a value z ∈ X ∩Y , the value F (k, z) appears in both X ′ and Y ′.
On the other hand, if z /∈ X then F (k, z) /∈ X ′; and if z /∈ Y then F (k, z) /∈ Y ′. The protocol is
extremely efficient because of the efficiency of the shuffled Fsoprf . In terms of communication cost,
it only requires S to send m1 values to R. The construction for Fsoprf , in turn, requires only m2

messages from R to C and m2 messages back from C to R. We prove the following:

PROTOCOL 10.
(
Server-Aided Two-party PSI-CA

)
Parameters:
• The protocol runs between a sender S, a receiver R, and a server C. S and R have input size of m1

and m2, resp. A PRP F ′ : {0, 1}2κ × {0, 1}ℓ → {0, 1}ℓ.

Inputs:
• Sender S has input X = {x1, . . . , xm1

}
• Receiver R has input Y = {y1, . . . , ym2

}
• Cloud server C has no input.

Protocol:
1. S, R, and C jointly invoke F (m2)

soprf as follows: S inputs a random key k = (k1, k2) ∈ {0, 1}2κ, upon
which R obtains k1 and C obtains k2 and π (recall that π : [m2]→ [m2] is a random permutation).
Then R inputs Y and obtains Y ′ = {y′π(1), . . . , y

′
π(m2)

}, where y′π(i) = F ′(k, yi).

2. S sends a random permutation of X ′ = F ′(k,X) to R.
3. R outputs |X ′ ∩ Y ′|.

Theorem 3. Protocol 10 securely implements Functionality 4 (FPSI−CA) with n = 2 in the Fsoprf-
hybrid model, in the presence of an adversary who may passively corrupt either S, R, or C.

The formal proof of Theorem 3 is present in Appendix A.3.

4.2 Server-Aided Multi-Party PSI-CA

In this section, we assume that all parties have the same set size m. Protocol 11 may be seen as if
we have one receiver, who is P1, and multiple senders, who are P2, . . . , Pn. The role of the server is
to shuffle PRF results from the senders before delivering them to the receiver. As a simplification
to Protocol 11, suppose that we want the receiver to obtain n − 1 shares of zero for each of its
items that is in the intersection. This can be done by querying the senders on each of their items
and collecting the results. Each sender programs the responses such that if the query is on one of
its items, then it responds with its (pseudorandom) share of zero, otherwise, it responds with some

12

other pseudorandom value. Given the senders’ responses on a query, if they sum up to zero then
the receiver knows that its query is in the intersection. Since the server shuffles the responses to
the queries, the receiver does not know, for a given set of responses which are shares of zero, to
which query it is associated, thus, the output leaks nothing but the intersection size. Formally,
1. P2, . . . , Pn (the senders) generate keys for a zero sharing function S, so Pi obtains Ki such that

for every x it holds that
⊕n

i=2 S(Ki, x) = 0.
2. P1 (the receiver) sends to the server its queries X1.
3. The server runs an OPPRF instance with every sender, using the queries X1. A sender Pi

(i ∈ [2, n]) programs the responses such that on query x ∈ Xi the response is S(Ki, x) whereas
on any other query the response is another pseudorandom value.

4. The server obtains the set Y ′
i∈[2,n], of n−1 OPPRF responses, on every query xi ∈ X1. It chooses

a random permutation π : [m]→ [m] and sends to P1 the set {Y ′
π(1), . . . , Y

′
π(m)}.

5. P1 checks for every response set Yi whether its values are valid shares of zero. If so, it adds 1 to
the cardinality.
In the above simplification, there are several security issues: first, the server learns P1’s queries

in the clear; second, the server mediates all PRF responses and therefore it learns whenever there is
a set of responses that are valid shares of zero, thus it can learn the intersection size as well; third,
if the receiver colludes with one of the senders, together they can reverse the server’s permutation
on items that are in the intersection and by that leak the intersection itself (rather than only its
size).

PROTOCOL 11.
(
Server-Aided Multi-Party PSI-CA

)
Parameters:
• The protocol runs between parties P1, . . . , Pn for n > 2, and a cloud server C. A PRP F : {0, 1}κ ×
{0, 1}ℓ → {0, 1}ℓ.

Inputs:
• Pi has Xi = {xi,1, . . . , xi,m}.
• Cloud server C has no input .

Protocol:
1. Parties P2, . . . , Pn invoke FZS (Functionality 3 with no input) and each party Pi obtains the key Ki

for a sharing function S.
2. Parties P1 and P2 agree on m random values Γ = (γ1, . . . , γm) using FCoin.
3. Parties P1, . . . , Pn agree on a random PRF key k using FCoin.
4. Party Pi for i ∈ [2, n] computes the set of points Pi where:

• P2 =
{(

F (k, x2,j), S(K2, x2,j) ⊕ γπ(j)
)}

j∈[m]
where π : [m] → [m] is a random permutation

chosen by P2.

• For i ∈ [3, n], Pi =
{(

F (k, xi,j), S(Ki, xi,j)
)}

j∈[m]
.

5. P1 sends X ′
1 = F (k,X1) = {F (k, x1,j)}j∈[m] to C.

6. C and Pi (for every i ∈ [2, n]) invoke Fopprf , where Pi acts as a sender with input Pi and C acts as a
receiver with input X ′

1. C obtains the result yi,j on the query x1,j .
7. For every j ∈ [m], C computes wj =

⊕n
i=2 yi,j and sets W to be a random permutation of

{w1, . . . , wm}. C sends W to P1.
8. P1 outputs |W ∩ Γ|.

The first issue is easily solved by having all parties P1, . . . , Pn agree on a PRF key k, so instead
of computing |

⋂n
i=1Xi| their objective is to compute |

⋂n
i=1 F (k,Xi)|. This way, the server does

13

not know P1’s set. Hiding the intersection size from the server (the second issue above) is trickier.
We solve it by having P1 and P2 agree on a set of random values Γ = {γ1, . . . , γm} so that instead
of programming the responses with the ‘zero shares’, on a value x ∈ X2, P2 programs the response
S(K2, x)⊕ γ for some γ ∈ Γ. Now, for items that are in the intersection, the server C sees a set of
responses that constitutes a valid share of some γ ∈ Γ, but since the C does not know Γ, this looks
random indistinguishable from the responses on values that are not in the intersection. Finally,
we propose a protocol under a relaxed setting, that solves the third issue above. Concretely, the
protocol is secure as long as P1 and P2 do not collude. This is done by adding one step to the above
description: before the server forwards the responses set W to P1, it sums its items and forwards
only the sum to P1. This means that now Pi (i ≥ 3) could not trace back and learn the intersection
itself. This is formally presented in Protocol 11.

Theorem 4. Protocol 11 securely computes Functionality 4 (FPSI−CA) for arbitrary n, in the
(Fopprf ,FZS,FCoin)-hybrid model, in the presence of an adversary who may passively corrupt any
subset of {P1, P3, . . . , Pn} or {P2, P3, . . . , Pn}, or passively corrupt the server C.

We note that, in our protocol, parties use zero shares to mask their actual input. This step is
similar to the one in [22]. The formal proof of the Theorem 4 is present in Appendix A.4.

PROTOCOL 12.
(
Multi-Party PSI-CA

)
Parameters:
• The protocol runs between parties P1, . . . , Pn for n > 2, and a cloud server C. A PRP F : {0, 1}κ ×
{0, 1}ℓ → {0, 1}ℓ.

Inputs: Pi has Xi = {xi,1, . . . , xi,m}.

Protocol:
1. Parties P2, . . . , Pn invoke FZS (Functionality 3) and each party Pi obtains the key Ki for a sharing

function S.
2. Parties P1 and P2 agree on a random PRF key s using FCoin.
3. Parties P2, . . . , Pn agree on a random PRF key k using FCoin.
4. Party Pi for i ∈ [2, n− 1] computes the set of points Pi where:

• P2 =
{(

F (k, x2,j), S(K2, x2,j)⊕ F (s, x2,j)
)}

j∈[m]
.

• For i ∈ [3, n− 1], Pi =
{(

F (k, xi,j), S(Ki, xi,j)
)}

j∈[m]
.

5. Pn and Pi (for every i ∈ [2, n− 1]) invoke an instance of the server-aided OPPRF F (m,m)
sopprf where:

• Pi acts as a sender with input Pi,

• P1 acts as a cloud server with no input

• Pn acts as a receiver with input X ′
n = F (k,Xn). Pn obtains the result yi,j on the query xn,j .

6. For every j ∈ [m], Pn computes wj =
⊕n−1

i=2 yi,j⊕S(Kn, xn,j). Then, Pn sets W to be {w1, . . . , wm}.
7. P1 and Pn invoke the server-aided FPSI−CA functionality with P2 as a server, where

• Pn acts as a sender with input W

• P2 acts as a cloud server with no input

• P1 acts as a receiver with input V = F (s,X1), and obtains |W ∩ V |.

14

4.3 Multi-party PSI-CA

We now describe our “server-less” multi-party PSI-CA protocol. The main idea is to convert the
problem of n-party server-aided PSI-CA to the problem of (n−1)-party with the use of an untrusted
party Pn who, however, has a private input set Xn. Recall that in the server-aided PSI-CA protocol,
the cloud server C has no input, but obtains from P1 the PRF values F (k,X1) which are used to
invoke an OPPRF with parties Pi∈[2,n]. In the problem of (n− 1)-parties, however, party Pn (who
plays the role of C) does have input Xn. Thus, Pn can compute its PRF values F (k,Xn) on its own
since it knows k. Similar to the server-aided version, Pn computes the exclusive-or of the OPPRF
results and its zero share S(Kn, xn,j), with the j-th result denoted by wj . Note that wj is equal to
γj if all parties Pi∈[2,n] has xn,j , otherwise, wj is random. At this point, if Pn sends all values wj

to P1, P1 can only compute the intersection size of n − 1 sets
⋂n

i=2Xi since there was nothing to
do with the input set X1.

Instead, to have P1 output |
⋂n

i=1Xi|, we propose the following steps. Instead of using a random
set Γ in Step (2) of Protocol 11, P2 uses PRF to compute γj ← F (s, x2,j) where s is known by only
P1 and P2. We observe that if x1,j is an intersection item, the corresponding PRF value F (s, x1,j)
should be equal to a value wk hold by Pn because of wk = γk = F (s, x2,k) = F (s, x1,j). Therefore,
the intersection size |

⋂n
i=1Xi| can be computed by counting how many PRF values F (s, x1,j) are

in the set W = {w1, . . . , wn}. P1 and Pn can do this by invoking a two-party PSI-CA, where P1

acts as a receiver with an input set {F (s,X1)} and Pn acts as a sender with an input set W .
We implement the two-party PSI-CA using our server-aid protocol described in Protocol 10 in

which any party Pi∈[2,n−1] (say P2) can play the role of the cloud server. The two party PSI-CA
Protocol 10 requires that both sender and receiver do not collude with the semi-honest server. Thus,
in our multi-party protocol, we assume that P2 is semi-honest and non-colluding with both P1 and
Pn. In addition, given this assumption, we can improve the performance of our multi-party OPPRF.
Particularly, unlike Protocol 11 in the above section, we use our server-aided OPPRF construction
described in Section 3.2 to execute an OPPRF instance between Pn and each Pi∈[2,n−1], where P1

plays the role of the OPPRF server (thus, P1 is non-colluding). We formally present our server-
less multi-party PSI-CA in Protocol 12, and its security statement below (see the formal proof in
Appendix A.5).

Theorem 5. Protocol 12 securely computes Functionality 4 (FPSI−CA) for arbitrary n, in the
(Fsopprf ,FZS,FCoin,FPSI−CA, server-aided two-party PSI-CA)-hybrid model, in the presence of an
adversary who may passively corrupt any subset from {P3, . . . , Pn} or passively corrupt P1 or P2

(i.e. P1 and P2 are non-colluding).

5 Applications

We demonstrate that our PSI-CA can be used for several privacy-preserving applications by im-
plementing two running example applications which are built on our two-party and multi-party
PSI-CA protocols, respectively.

5.1 Secure Dot Product Construction

Given a secure protocol for computing the cardinality of the intersection of the parties’ sets, the
protocol for dot product is simple. Let xi be an m-element binary vector of party Pi, and let

15

Ai = idx(xi). It is easy to see that the dot product of the xi’s is exactly the cardinality of the
intersection of the Ai’s, that is,

∑m
j=1

∏n
i=1 xi[j] = |

⋂n
i=1Ai|. Thus, to securely compute the dot

product, we can use the PSI-CA functionality described in the previous section. Note that even
though the input size is O(m), the communication complexity of the protocol is only O(t), which
makes it extremely efficient when t = o(m), where t is the upper bound on the Hamming weight of
the vectors.

One subtle issue is that in the PSI-CA protocols the parties know the number of elements in
each other’s set, which leaks more information than required. Here, we assume that there is a
known upper bound, t, on the Hamming weight of the vectors Xi’s, and require that the parties’
input to the PSI-CA contains exactly t items. That is, if the Hamming weight of Xi is t

′ < t then
Pi adds random “dummy” items to its input to the PSI-CA. Formally, for a given upper bound t,
Pi inputs Ai to the PSI-CA where Ai ← idx′(Xi, t) and idx′(X, t) is defined as follows: let t′ be
the Hamming weight of X, set A = idx(X), pick t− t′ random values D = {d1, . . . , dt−t′} from the
domain D = {m+1, . . . , 2λ+log(t) +m} and output A = A∪D. The choice of the domain D allows
the collision probability of dummy items to be negligible and equals to 2−λ.

The formal description is given in Protocol 15 in Appendix D. Note that it is possible to compute
dot product DotProd with or without the help of a cloud server C, so both variants are presented.
The protocol’s correctness, complexity and security follow directly from the underlying PSI-CA
protocol presented in Section 4 with different corruption structures.

Theorem 4. Protocol 15 securely computes Functionality 5 (FDotProduct) in the (FPSI−CA)-hybrid
model. In particular, if π is a protocol that securely computes FPSI−CA in the presence of an
adversary A then, when instantiated with π, Protocol 15 is secure in the presence of adversary A
as well.

5.2 Heatmap Computation

As stated in [4], the heatmap can be considered as a two-party computation between HHS and a
mobile network operator (MNO). HHS has a list of individuals who have reported positive for the
disease. MNO knows an approximated location data of their subscribers as the subscriber connects
to a certain cell tower when traveling (unless the user does not have a phone or disconnects to
their network provider). Mathematically, HHS generates a binary vector x ∈ ZN

2 which indicates
whether the user i ∈ [1, N] amongst N subscribed individuals has tested positive (x[i] = 1) or not
(x[i] = 0). For each cell tower j ∈ [1,m], the MNO initializes a vector yj of n elements, where
yj [i] corresponds to the i-th subscriber (say that HHS and MNO agree on the subscribers’ identifier
and on their positions in the vectors). If the i-th subscriber connects to a cell tower j within some
period of time, then yj [i] = 1, and yj [i] = 0 otherwise. To learn how many individuals visit a
certain area (e.g. the area covered by the j-th cell tower, HHS and MNO run a secure dot product
protocol to obtain x · yj .

The solution proposed in [4] relies on HE to implement the secure dot product for the heatmap
problem. Even with the HE optimizations, [4] requires O(N) independent secure multiplications
to compute x · yj for each cell tower. Therefore, their protocol costs O(mN) HE multiplications
to compute secure vector-matrix multiplications x · Y , where Y consists of m columns y1, . . . , ym.
Each element of x · Y corresponds to how many diagnosed subscribers visited a cell town.

In this work, we observe that the proportion of diagnosed individuals among all N subscribed
individuals is usually small (e.g. 0.01− 0.1% new positive cases per day [2]), thus, the vector x is

16

sparse. In addition, the vector yj is also sparse due to people’s localized travel habits. Therefore,
the heatmap computation is a perfect application for our DotProd where the input vectors are
sparse. By applying DotProd, we show that the computational complexity of the dot product in
the heatmap example can be reduced from O(N) to O(t), where t is the maximum between the
upper bound on the number of new positive test cases and the upper bound on the number of
individuals visiting a geographical area covered by a cell tower.

PROTOCOL 13.
(
Server-aided Heatmap Construction

)
Parameters:

• Parameters k, N , t.
• A HHS and n MNO P1, . . . , Pn, and a cloud server C
• A PRF F : {0, 1}κ × {0, 1}⋆ → {0, 1}κ

Inputs:
• A HHS P0 has input a binary vector x of length N
• Each MNO Pk∈[n] has input a binary matrix Yk of size N ×m

• Cloud server C has no input.

Protocol n = 1: For each j ∈ [m], the HHS and the MNO P1 invoke DotProd where P0 input is x
and P1 input is y1j . The HHS outputs x · y1j
Protocol n > 1:
1. HHS computes a set A← idx(x) and pads A with dummy items to the upper-bound set size t.
2. P0, P1, . . . , Pn agree on a random PRF key s using FCoin.
3. For each j ∈ [m]:

(a) Pk∈[n] computes a set Bk ← idx(ykj), and pads Bk with dummy items to the upper-bound set
size t.

(b) Each MNO Pk∈[n], the HHS, and the cloud server C jointly invoke a modified shuffled-OPRF:

• Pk chooses two PRF keys sk,1, sk,2 ← {0, 1}κ

• Pk sends sk,1 to HHS and sends sk,1 to C
• HHS computes and sends A′

k = F (sk,1, A) to C.
• C computes A′′

k = F (sk,2, A
′
k).

C sends a permutation of A′′ ← {A′′
1 , . . . , A

′′
n} to HHS

(c) Each Pk∈[n] sends B′′′
k = F

(
s, F (sk,2, F (sk,1, Bk))

)
to C who sends a permutation of B⋆ ←

{B′′′
1 , . . . , B′′′

n } to HHS.

(d) HHS computes A⋆ = F (s,A′′) and outputs |A⋆ ∩B⋆|.

Multiple MNOs. We support a heatmap computation between one HHS, P0, and multiple
MNOs, P1, . . . , Pn. For a cell tower j ∈ [1,m], the MNO Pk (k ∈ [n]) has the vector ykj of N

elements. ykj [i] indicates whether a subscriber i connects to a cell tower j of the MNO Pk (we
assume that the j-th cell tower of all MNOs covers the same geographical area, this should be
adjusted in practice). The sum of the dot products

∑n
k=1(x · ykj) indicates how many individuals,

across different MNOs, visit a certain area. In our multi-party heatmap, if P0 invokes DotProd with
each MNO Pk where P0’s input is x and Pk’s input is y

k
j , P0 learns extra information – each term

of the sum
∑n

k=1(x · ykj). To address the issue, we modify the underlying shuffled-opprf protocol of
DotProd. At the high-level idea, C computes PRF values of all MNOs Pk∈[n], permutes them before
returning to the P0. The formal description of our multi-party heatmap computation is presented
in Protocol 13.

17

In real-world scenarios, HHS prefers to minimize bandwidth cost and computation workload
on their side. Our protocol makes this happen by making use of the untrusted server. For the
heatmap computation, HHS only needs to compute nmt and 2nmt symmetric-key operations in
the two-party and multi-party settings, respectively. In terms of communication cost, HHS sends
and receives 3nmt elements. Finally, our protocol requires only 1-round communication.

5.3 Association Rule Learning

Association rules learning (ARL) aims to discover regularities/rules between variables in transaction
data. In this work, we use our DotProd protocol to mitigate information leakage in ARL when
training the model on a vertical partitioning of the private database between multiple parties. We
study the ARL definition in [3] and adapt it to the privacy-preserving context (see Definition 1 in
Appendix B). We consider only a vertically-partitioned database since if the data is horizontally-
partitioned, each party can locally compute ARL. For whom are not familiar with ARL, we provide
a detailed explanation of the algorithm in Appendix C.

PROTOCOL 14.
(
Privacy-Preserving ARL

)
Parameters:

• A ARL threshold τ , α attributes, empty lists Ln, . . . , Lα.
• n parties: P1, . . . , Pn.
• An DotProd functionality described in Functionality 5.
• An apriori-gen algorithm described in Figure 1.

Inputs: Pi∈[n] has input a vertically-partitioned database Ti∈[n].

Protocol:
1. Pi∈[n] locally computes a list Li

1 of frequent itemsets that has only 1 attribute.
2. Pi∈[n] invoke a DotProd with each attribute input ji ∈ Li

1, and add ji into a published list Ln if
the output of the DotProd is great than τ (e.g. a sum of element-wise products of multiple sparse
binary vectors T [ji] as

∑m
v=1

∏n
i=1 T [ji][v] > τ)

3. For k = n+ 1 to α, if Lk is empty, the parties do the following:
(a) Pi∈[n] locally computes Ck = apriori-gen(Lk−1).
(b) For each candidate c ∈ Ck, let J = {j1, . . . , jm} be a set of attributes in c.

• Assume that each Pi∈[n] have hi attributes Ji = {ji1 , . . . , jihi
}. Pi locally computes an

element-wise product of multiple binary vectors T [jiv] as Xi ←
∏hi

v=1 T [jiv]
• Parties invoke a DotProd execution:
– Pi inputs Xi.
– P1 obtains the output s, and adds c to Lk+1 if s > τ

Privacy-preserving ARL (PPARL) consists of two subproblems (see Appendix B). The second
subproblem can be publicly solved since the frequent itemsets are a part of the ARL result. Accord-
ing to [47], one can reduce the first subproblem of PPARL to securely computing the dot products
of the binary vectors with minor leakage information. For simplicity, consider the candidate itemset
has only two attributes. Let x and y represent columns in the database. i.e., x[i] = 1 iff row i has
value 1 for attribute X (similar for y and Y). Each party P1 and P2 holds a vertically-partitioned
database of the transaction x and y respectively. The dot product of two m-element vectors x and
y as x · y =

∑m
i=0 x[i]y[i] is the support count which indicates how many times the itemset XY

appears in the joint transaction set. The dot product computation requires the joint database from
both parties, thus, it should be computed in a privacy-preserving manner. Given s ← x · y, the
parties can check whether the obtained support count is greater or equal to the threshold τ . If yes,

18

the candidate itemset is a frequent itemset. In the ideal world, if s < τ , the exact value of s is not
revealed to the parties. Thus, the information is considered as leakage information in our PPARL
scheme as well as previous work [47, 16]. Note that [47, 16] reveal more information than ours -
they leak indexes that x[i] = y[i] = 1 (i.e. intersection items).

In this work, we consider n-party setting with global rules where every vertically-partitioned
transaction database Ti∈[n] has at least one item in the frequent itemset. Protocol 14 presents our
PPARL construction which closely follows the Apriori algorithm [3, 47]. The first two steps aim to
find a list of itemsets that (1) appear in the transaction set T at least τ times; and (2) every party
has at least one attribute in the itemset. We denote the obtained list to be Ln. Given Ln, the
party locally computes a list of candidates Cn+1 for itemsets of size n+ 1 using the apriori-gen

algorithm [3]. At the high-level idea, the function apriori-gen is done by generating a superset
of possible candidate itemsets and pruning this set. We present the apriori-gen algorithm in
Figure 1, and refer the reader to [3] for more detail. Note that apriori-gen is computed on the
public list Ln, thus it leaks no additional information. The parties jointly execute Step (3) to
compute Lt>n until it is empty.

6 Implementation and Performance

We evaluate the performance of our PSI-CA (or DotProd) protocols and estimate the performance of
heatmap computation and ARL. Protocols are evaluated under different network settings, number
of parties, and input set sizes to demonstrate their scalability.

Choice of Parameters. We run experiments on a single machine 2× 36-core Intel Xeon 2.30GHz
CPU and 256GB of RAM and simulated network using the Linux tc command. We consider two
network settings: the LAN setting has 0.02ms round-trip latency and 10 Gbps network bandwidth;
the WAN setting has 96ms round-trip latency and 200 Mbps network bandwidth. In our implemen-
tation, each party uses a separate thread to communicate with other parties. The computational
security parameter κ = 128 and the statistical security parameter σ = 40. The number of parties
is in a range of {2, 4, 8, 16}. The set size m of PSI-CA or the upper-bound Hamming weight t of
DotProd is in {212, 216, 220, 224}.

Choice of PRF, OPPRF, and OKVS We instantiate the PRF F using AES-NI. We use
OKVS and OPPRF as a black box in the implementation. Our implementation uses the table-
based OPPRF code from [31]. While there are different OKVS constructions [22], we choose the
most efficient Encode and Decode of 3-cuckoo PaXoS data structure. The number of bins in the
cuckoo table is 1.3m with 3 hash functions.

PSI-CA and DotProd protocols. Recall that the steps of PSI-CA and DotProd protocols are
similar, except for a small cost overhead in Step (1) of DotProd where each party locally computes
a function idx(). In the DotProd protocol, we assume that there is a known upper bound, t, on the
Hamming weight of the party’s input vector X. To implement DotProd using PSI-CA, we require
that the parties’ input to the PSI-CA contains exactly t items. Thus, we only report the detailed
computational and communication performance results of our PSI-CA protocols for the set size m.
It indicates that the DotProd protocols are evaluated with the upper bound t = m.

19

Table 1: Run time (in second) and communication cost (in MB) of our “server-less” multiparty PSI-CA
protocols for n parties on sets of size m.

m
n = 4 n = 8 n = 16

P1 P2 P(3:n−1) Pn P1 P2 P(3:n−1) Pn P1 P2 P(3:n−1) Pn

Runtime 212 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.08 0.08 0.06 0.08
LAN 216 0.40 0.37 0.21 0.33 0.40 0.38 0.22 0.34 0.430 0.39 0.23 0.36

(second) 220 6.01 5.69 3.99 6.38 6.32 5.77 4.26 7.02 6.75 6.43 4.60 7.16

Runtime 212 1.52 1.33 0.06 0.75 1.73 1.54 0.06 0.96 1.74 1.55 0.06 0.97
WAN 216 4.21 3.61 0.98 2.37 4.59 4.00 1.17 2.76 6.09 5.49 1.46 4.26

(second) 220 21.60 21.24 11.32 20.20 33.75 33.34 19.86 32.34 59.63 59.27 36.72 58.26

Comm. 212 0.52 0.28 0.16 0.71 1.02 0.28 0.16 1.85 2.02 0.29 0.16 4.12
Cost 216 8.27 4.54 2.54 11.35 16.27 4.54 2.54 29.51 32.27 4.54 2.54 65.83
(MB) 220 132.32 72.64 40.64 181.60 260.32 72.64 40.64 472.16 516.32 72.64 40.64 1053.28

Table 2: Run time (in second) and communication cost (in MB) of[11] and our protocols for 4 parties and
no collusion. Each party has a set size m. The numbers of [11] are for PSI itself (not, PSI-CA).

PSI [11] PSI-CA Protocol 11 PSI-CA Protocol 12
(server-less, semi-honest) (server-aided, semi-honest) (server-less, semi-honest)

m 212 216 220 212 216 220 212 216 220

LAN 0.23 1.6 23.8 0.19 1.38 19.65 0.07 0.4 6.38

WAN 1.9 7 108.2 1.89 6.9 106.08 1.52 4.21 21.6

Comm. 3.2 49.4 790.2 3.41 53.86 967.32 0.84 13.35 213.6

Table 3: Run time (in second) and communication cost (in MB) of[36] and our server-less protocol for n
parties. Each party has a set size m.

Three-party PSI-CA [36] Our PSI-CA Protocol 12

(m,n) (8, 214)/(4, 215) (8, 218)/(4, 219) (8, 222)/(4, 223) (8, 214) (8, 218) (8, 222) (4, 215) (4, 219) (4, 223)

LAN 0.2 3.1 74 0.14 1.72 28.16 0.14 1.68 27.20

WAN 1.8 15.8 267 2.37 13.19 134.29 2.21 9.25 104.01

Comm. 32.6 521.5 8344 7.88 187.00 1008.32 6.68 106.80 1708.80

6.1 Performance of Two-party Protocols

PSI-CA Protocol. We evaluate our two-party PSI-CA protocol in the LAN and WAN settings.
We consider both balanced and unbalanced set sizes as our heatmap computation is built on the
asymmetric two-party PSI-CA. In our protocol, the parties do not need to involve in the entire
protocol’s computation. The sender S send F ((k1, k2), X) and k1 to the receiver, send k2 to the
server C at the same time and complete its computation. Similarly, the C does not need to be
online during the whole process. Instead, the C start its computation when receiving the S’s key
PRF k2 and the set of receiver’s queries. Therefore, we report the performance of each participant
separately in Table 6 (in Appendix). We find that our protocol scales well in the experiments as
it contains only AES calls. For instance, the total run time of our PSI-CA with the input set size
m1 = m2 = 220 is only 1.5 seconds.

Comparison with Prior Work. Both DH-based and delegated PSI-CA [18] protocols are secure
against a semi-honest adversary, but the latter requires two non-colluding servers. Note that one can

20

use the protocol proposed in [35] to implement PSI-CA, however, the protocol is much expensive
compared to DH-based PSI-CA. The PSI-CA implementation of [46, 15] is not available2, thus
we omit to compare theirs with ours. In addition, we compare our protocol with ROOM-based
protocol [44]. The two-party DotProd of [44] consists of two expensive steps: ROOM and a generic
dense matrix multiplication. In Table 4, we only report the performance of ROOM in settings
where [44] performs best.

We use DH-based PSI code implemented by [42] with the fastest Curve25519 implementation
from libsodium. For a fair comparison, we run the implementation of delegated PSI-CA [18] and
DH-based PSI on the same benchmark machine and network settings. Note that [18] only provides
the implementation of their protocol building blocks, thus, there are no performance results on the
WAN setting. The times3 for ROOM are taken from [44, Figure 17] and [32, Table 2], initially
provided for a database 50, 000 and a number of queries 5, 000 and 50, 000. Table 4 presents the
performance of each PSI-CA protocol. When comparing the protocols, we find that the running
time of our protocol is 10 − 100× faster than that of the prior works. In addition, our protocol
requires 2− 5× less bandwidth cost compared to them. The results show the benefit of using our
protocols in a reasonable server-aided model.

Performance of Heatmap Computation. In the two-party setting, executing the heatmap
computation essentially involves multiple DotProd or PSI-CA executions. Similar to [4], we want
to evaluate our protocol for smaller nation-states such as New York City or Singapore which has a
population around N = 223. Concretely, we consider a case in which the MNO has a matrix Y of
size N ×m and the HHS has a vector x of N , where N = 223 and m = 215. The parties need to
perform m DotProd instances as x · yj∈[m], where yj is the j

th column of Y . Recall the x and yj are
binary vectors that indicate whether an individual tested positive to COVID-19, and whether this
individual visited a place nearby the network town yj , respectively. Among N = 223, we assume
that there are t2 = 212 new positive cases per day [2], and each patient visits 4 places per day
on average. We run m = 215 instances of our two-party PSI-CA protocol with the MNO’s set size
t1 = 214 and the HHS’s set size t2 = 212, and find that our protocol costs about 10 minutes using a
single thread. On the other hand, [4] reports about 90 minutes but using 96 threads and stronger
benchmark machine 4. Therefore, we estimate that our protocol is at least 50× faster than [4]. It
dues to the fact that our protocol is based on symmetric-key operations while [4] heavily relies
on public-key operations. In addition, [4] requires that the participants agree on database indices
(i.e. data alignment before running heatmap computation). Using PSI-CA, we can remove this
requirement. The party’s input can be a set of patient/visitor ids (instead of the vector/matrix).

Performance of ARL Based on the DotProd performance, we estimate the performance of our
ARL. In two-party setting, each party Pi∈[2] locally computes a list Li

1 of frequent itemsets that
has only one attribute. The parties sequentially invoke DotProd to compute lists Lk of frequent
itemsets that has exactly k attributes where Lk+1 is empty (say Lm+1 is empty). Assume that
each attribute/vector in Lj∈[2,m] has a Hamming weight tj . Also, assume that each Cj has |Cj |
candidates. The performance of our ARL is

∑m
i=2 |Cj |[Π

(tj ,2)
DotProduct], where [Π

(tj ,2)
DotProduct] is the cost

2[46] requires a non-colluding server that is similar to ours, but their protocol heavily replies on DH based PSI.
[15] requires two non-colluding senders, each holds an identical input set.

3Unknown benchmark machine
4an c5.24xlarge AWS EC2 instance (96 vCPU @ 3.6 GHz, 192 GiB RAM)

21

of two-party DotProd with Hamming weight tj . According to Table 6, we estimate that our ARL
would take under hours to compute ARL of the database with million records.

6.2 Performance of Multi-party Protocols

PSI-CA Protocol. The running times and communication overhead of our server-aided multi-
party PSI-CA are shown in Table 5 (Appendix). The protocol is asymmetric with respect to the
server, the receiver P1 and other parties Pi∈[2,n], thus, we report the performance results of these
parties separately. In our protocol, the workload of the receiver is light as it only requires to call
m AES instances. The majority of the receiver’s running time is to wait for other parties to finish
their work. For example, P1 takes 33.86 seconds to compute PSI-CA (or DotProd) with n = 8 and
m = 220 (or t = 220) in the LAN setting. Also, the server plays the role of the receiver in most
OPPRFs, his communication cost is highest amongst other participants. For n = 8 and m = 220

(or t = 220), the protocol PSI-CA (or DotProd) requires 3305 MB on the server’s side.
Table 1 presents the performance of our “server-less” multiparty PSI-CA protocol in both LAN

and WAN settings. Similar to the server-aided protocol, we separately report the performance
results of P1, P2, Pn and other parties Pi∈[3,n−1]. Unlike server-aided protocol, this protocol only
relies on OKVS (i.e. makes use of symmetric-key operations only). We find that our protocol scales
to large input sets (e.g. m = 220) with a large number of participants (e.g. n = 16). For n = 16
and m = 220 (or t = 220), our protocol requires only 6 seconds with the total communication cost
1GB.

Comparison with Prior Work. The three-party PSI-CA protocol [36] can be applied to multi-
party cases by letting all the n parties secret-share their set of m items to their three parties/leaders
S1, S2, S3, then the three leaders jointly compute the PSI-CA output. The three leaders conduct the
computation in the honest-majority model, which might achieve the similar security assumption in
our server-less protocol in which P1, P2, Pn acts as leaders. To implement a n-party PSI-CA, each
having m input items, the protocol of [36] requires to run PSI-CA on the total of mn secret-shared
input items. Note that [36] only consider computing the PSI-CA for two sets, each of m items.
Thus, the running time and communication cost of their protocol reported in [36, Figure 8] is for
computing PSI-CA on the total of 2m secret-shared input items. To have a fair comparison, we
report the performance of ours and [36]’s protocol for the total mn input items. For example,
computing PSI-CA for n = 23 parties, each with m = {214, 218, 222}, results in the computation
of the total mn ∈ {217, 221, 225} elements. This is equivalent to the experiential results for the
two-party PSI-CA using [36] with the set size {2 ∗ 216, 2 ∗ 220, 2 ∗ 224}, which are reported in [36,
Figure 8] where each party has {216, 220, 224} input items, respectively (i.e., one needs to execute
the two-party PSI-CA of [36] with each input set of mn/2 items). Since the implementation of [36]
is not publicly available, we take numbers from the publication and have the comparison with our
protocol. We present the detailed performance comparison in Table 35. Our protocol shows about
2.5× faster than [36] for sufficient large m. We also note that when these leaders servers collude,
our protocol only reveals the intersection items while [36] leaks all input items to the adversary.

As far as we know, [11]’s implementation is not publicly available. Thus, we take their reported
run times from [11, Table 2-5]. For the most direct comparison, we used the same configured
machine (2x 36-core Intel Xeon 2.30GHz 256GB of RAM) and network settings to evaluate their
and our protocols. We compare our “server-less” protocol with [11] for the case of n = 4, one

5we estimate the running time by linear interpolation

22

dishonestly colluding (no collusion), each with m ∈ {212, 216, 220}. We show an improvement of
1.6− 5× in the run time, and 3.5− 4× in the bandwidth cost. We report the performance numbers
in Table 2. Our server-less protocol with n = 16 requires only 6.38s in the LAN setting and m = 220

(see Table 1). From Table 2, the [11] with n = 4 requires 23.8s in the same setting. Our protocol
with n = 16 is already 3.74× faster than [11] with n = 4, thus, we do not present the comparison
of the two protocols for larger n.

Performance of Heatmap Computation. The complexity of our heatmap protocol is linear
in the number of MNOs. Using the suitable parameters of the two-party heatmap where each MNO
has a matrix of size 223×215, and HHS has a vector of size 223, we estimate that our protocol takes
about one hour if there are 6 MNOs involved in the protocol execution. Note that our protocol does
not reveal additional information other than the output – how many patients visit a certain area.
In contrast, [4] only works in the two-party setting. In real-world scenarios, there are many MNOs.
If using only their protocol where the HHS executes vector-matrix multiplication with each MNO
and then computes the “global” heatmap, this solution leaks extra information – the individual
result of each vector-matrix multiplication.

Performance of ARL Similar to the two-party ARL, the performance of our multi-party ARL is∑m
i=n |Cj |[Π

(tj ,n)
DotProduct], where [Π

(tj ,n)
DotProduct] is the cost of n-party DotProd with Hamming weight tj .

Here, we assume that each attribute/vector in Lj∈[n,m] has a Hamming weight tj . According to the
performance of our multi-party DotProd (or multi-party PSI-CA) shown in Table 5&1, we estimate
that our ARL would take under a day to compute ARL of the database with million records.

References

[1] Outsourcing scalar products and matrix products on privacy-protected unencrypted data
stored in untrusted clouds. Information Sciences, 2018.

[2] Covid-19 coronavirus pandemic, 2021. =https://www.worldometers.info/coronavirus/.

[3] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in
large databases. SIGMOD Rec., 22(2):207–216, June 1993.

[4] A. Bampoulidis, A. Bruni, L. Helminger, D. Kales, C. Rechberger, and R. Walch. Privately
connecting mobility to infectious diseases via applied cryptography. Cryptology ePrint Archive,
Report 2020/522, 2020. https://ia.cr/2020/522.

[5] D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum,
editor, CRYPTO, volume 576 of LNCS, pages 420–432. Springer, 1991.

[6] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. STOC, 1990.

[7] A. Berke, M. Bakker, P. Vepakomma, R. Raskar, K. Larson, and A. Pentland. Assessing
disease exposure risk with location histories and protecting privacy: A cryptographic approach
in response to a global pandemic. arXiv preprint arXiv:2003.14412, 2020.

[8] A. Bhowmick, D. Boneh, S. Myers, K. Talwar, and K. Tarbe. The apple psi system, 2021.
[Online; accessed 18-Sept-2021].

23

=
https://ia.cr/2020/522

[9] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In E. Oswald and M. Fischlin, edi-
tors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 337–367. Springer, Heidelberg,
Apr. 2015.

[10] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and extensions. In
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS
2016, pages 1292–1303. ACM Press, Oct. 2016.

[11] N. Chandran, N. Dasgupta, D. Gupta, S. L. B. Obbattu, S. Sekar, and A. Shah. Efficient
linear multiparty psi and extensions to circuit/quorum psi. CCS, 2021.

[12] M. Chase and P. Miao. Private set intersection in the internet setting from lightweight oblivious
PRF. In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 34–63. Springer, Heidelberg, Aug. 2020.

[13] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation.
In A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 572–590. Springer, Hei-
delberg, Aug. 2007.

[14] D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for efficient mixed-protocol
secure two-party computation. In NDSS 2015. The Internet Society, Feb. 2015.

[15] S. Dittmer, Y. Ishai, S. Lu, R. Ostrovsky, M. Elsabagh, N. Kiourtis, B. Schulte, and A. Stavrou.
Function secret sharing for psi-ca: With applications to private contact tracing. Cryptology
ePrint Archive, Report 2020/1599, 2020.

[16] C. Dong and L. Chen. A fast secure dot product protocol with application to privacy preserving
association rule mining. In PAKDD, 2014.

[17] C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an efficient
and scalable protocol. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 2013,
pages 789–800. ACM Press, Nov. 2013.

[18] T. Duong, D. H. Phan, and N. Trieu. Catalic: Delegated PSI cardinality with applications
to contact tracing. In S. Moriai and H. Wang, editors, ASIACRYPT 2020, Part III, volume
12493 of LNCS, pages 870–899. Springer, Heidelberg, Dec. 2020.

[19] E. Fenske, A. Mani, A. Johnson, and M. Sherr. Accountable private set cardinality for dis-
tributed measurement. ACM Trans. Priv. Secur., 25(4), jul 2022.

[20] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudo-
random functions. In J. Kilian, editor, TCC, 2005.

[21] G. Garimella, P. Mohassel, M. Rosulek, S. Sadeghian, and J. Singh. Private set operations
from oblivious switching. In J. A. Garay, editor, Public-Key Cryptography – PKC 2021, pages
591–617, Cham, 2021. Springer International Publishing.

[22] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Oblivious key-value stores and
amplification for private set intersection. In T. Malkin and C. Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 395–425, Virtual Event, Aug. 2021. Springer, Heidelberg.

24

[23] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In A. Aho, editor, 19th ACM STOC, pages 218–
229. ACM Press, May 1987.

[24] S. Goldwasser and S. Micali. Probabilistic encryption how to play mental poker keeping secret
all partial information. STOC ’82, 1982.

[25] C. Hu, R. Li, W. Li, J. Yu, Z. Tian, and R. Bie. Efficient privacy-preserving schemes for
dot-product computation in mobile computing. PAMCO ’16, 2016.

[26] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth, M. Raykova, D. Shanahan,
and M. Yung. On deploying secure computing: Private intersection-sum-with-cardinality. In
EuroS&P, pages 370–389. IEEE, 2020.

[27] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert. Mobile private contact
discovery at scale. In USENIX, August 14-16, 2019.

[28] S. Kamara, P. Mohassel, M. Raykova, and S. S. Sadeghian. Scaling private set intersection
to billion-element sets. In N. Christin and R. Safavi-Naini, editors, Financial Cryptography
and Data Security - 18th International Conference, FC 2014, Christ Church, Barbados, March
3-7, 2014, Revised Selected Papers, volume 8437 of Lecture Notes in Computer Science, pages
195–215. Springer, 2014.

[29] J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a
dishonest majority. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
578–595. Springer, Heidelberg, May 2003.

[30] L. Kissner and D. X. Song. Privacy-preserving set operations. In V. Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, Heidelberg, Aug. 2005.

[31] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu. Practical multi-party private
set intersection from symmetric-key techniques. In B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, editors, ACM CCS 2017, pages 1257–1272. ACM Press, Oct. / Nov. 2017.

[32] T. Lepoint, S. Patel, M. Raykova, K. Seth, and N. Trieu. Private join and compute from pir
with default. Cryptology ePrint Archive, Report 2020/1011, 2020. https://ia.cr/2020/1011.

[33] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. In J. Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 171–189. Springer, Heidelberg, Aug. 2001.

[34] C. Meadows. Formal verification of cryptographic protocols: A survey (invited lecture). In
J. Pieprzyk and R. Safavi-Naini, editors, ASIACRYPT’94, volume 917 of LNCS, pages 135–
150. Springer, Heidelberg, Nov. / Dec. 1995.

[35] P. Miao, S. Patel, M. Raykova, K. Seth, and M. Yung. Two-sided malicious security for private
intersection-sum with cardinality. In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020,
Part III, volume 12172 of LNCS, pages 3–33. Springer, Heidelberg, Aug. 2020.

[36] P. Mohassel, P. Rindal, and M. Rosulek. Fast database joins and PSI for secret shared data.
In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages 1271–1287. ACM
Press, Nov. 2020.

25

https://ia.cr/2020/1011

[37] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. PSI from PaXoS: Fast, malicious private set
intersection. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part II, volume 12106
of LNCS, pages 739–767. Springer, Heidelberg, May 2020.

[38] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient circuit-based PSI with linear
communication. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part III, volume
11478 of LNCS, pages 122–153. Springer, Heidelberg, May 2019.

[39] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on OT extension.
In K. Fu and J. Jung, editors, USENIX Security 2014, pages 797–812. USENIX Association,
Aug. 2014.

[40] P. Rindal and P. Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE.
In A. Canteaut and F.-X. Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of
LNCS, pages 901–930. Springer, Heidelberg, Oct. 2021.

[41] M. Rosulek and L. Roy. Three halves make a whole? Beating the half-gates lower bound for
garbled circuits. In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 94–124, Virtual Event, Aug. 2021. Springer, Heidelberg.

[42] M. Rosulek and N. Trieu. Compact and malicious private set intersection for small sets. CCS,
2021. https://ia.cr/2021/1159.

[43] C. Rudin. Mit lecture notes: Machine learning and statistics,
2012. https://ocw.mit.edu/courses/sloan-school-of-management/

15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/

MIT15_097S12_lec01.pdf.

[44] P. Schoppmann, A. Gascón, M. Raykova, and B. Pinkas. Make some ROOM for the zeros:
Data sparsity in secure distributed machine learning. In L. Cavallaro, J. Kinder, X. Wang,
and J. Katz, editors, ACM CCS 2019, pages 1335–1350. ACM Press, Nov. 2019.

[45] B. Siabi, M. Berenjkoub, and W. Susilo. Optimally efficient secure scalar product with appli-
cations in cloud computing. IEEE Access, 2019.

[46] N. Trieu, K. Shehata, P. Saxena, R. Shokri, and D. Song. Epione: Lightweight contact tracing
with strong privacy. arXiv, 2020.

[47] J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically partitioned
data. KDD, 2002.

[48] J. Vaidya and C. Clifton. Secure set intersection cardinality with application to association
rule mining. Journal of Computer Security, 13:593–622, 10 2005.

[49] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, Oct. 1986.

[50] J. Zhang, X. Wang, S.-M. Yiu, Z. Jiang, and J. Li. Secure dot product of outsourced encrypted
vectors and its application to svm. 2017.

26

https://ia.cr/2021/1159
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf

Table 4: Run time (in second), communication cost (in MB), and system requirement of the two-party
PSI-CA (or DotProd) protocols: DH-based PSICA [26, 34], OSN-based PSI-CA [21], Catalic [18], ROOM as
a building block in DotProd [44], and ours (a simpler variant of the [28] PSI protocol) for the sender set size
m1 and receiver set size m2. Cells with − denote trials that are not supported by the protocol.

DH-PSICA [26] OSN-based PSI-CA [21] ROOM [44] Catalic [18] Ours
m1 216 220 216 220 216 220 216 220 216 220

m2 212 216 216 220 212 216 216 220 212 216 216 220 212 216 216 220 212 216 216 220

LAN 8.31 10.21 112.51 191.87 - 6.56 - 84.88 14.3 144.17 - - 6.41 8.92 85.1 166.12 0.1 0.13 1.01 1.5

WAN 11.26 11.5 150.14 248.32 - 24.57 - 284.62 - - - - - - - - 1.54 2.37 4.85 8.24

Comm. 2.82 4.78 46.14 77.59 - 55.49 - 1030 863 13788 878 13837 6.29 6.29 100.66 100.66 1.18 3.15 18.87 50.33

System server-less two non-colluding servers one non-colluding server

Req. semi-honest parties semi-honest parties/servers semi-honest parties/servers

[51] Y. Zhu, Z. Wang, B. Hassan, Y. Zhang, J. Wang, and C. Qian. Fast secure scalar product
protocol with (almost) optimal efficiency. In S. Guo, X. Liao, F. Liu, and Y. Zhu, editors,
Collaborative Computing: Networking, Applications, and Worksharing, pages 234–242, Cham,
2016. Springer International Publishing.

A Correctness and Security Proof

A.1 Server-Aided Shuffled OPRF

Theorem 1. Protocol Π
(m)
soprf securely implements its functionality F (m)

soprf in the presence of an
adversary who may passively corrupt either S, R, or C.

Proof. We exhibit simulators SimS , SimR, and SimC for simulating the view of corrupt S, R, and
C respectively which consists of the randomness, input, output, and received messages during the
execution of the protocol. And then we argue the indistinguishability of the produced transcript
from the real execution.
• Corrupted S. S does not receive anything during the execution of the protocol. So it is trivial
to simulate his view.

• Corrupted R. SimR randomly select a pair of keys (k1, k2) and appends the k1 to the view.
Given the PRF F , SimR computes Y ′′ = F (k2, F (k1, Y)) for the input set Y and appends a
permutation of Y ′′ to the view. Now we argue that the view output by SimR is indistinguishable
from the real one. The way that SimR selects keys is identical to the real execution. Outputs
of the PRF given different keys are computationally indistinguishable. So this simulated view is
computationally indistinguishable from the real execution.

• Corrupted C. SimC randomly select a pair of keys (k1, k2) and appends the k2 to the view. Given
the PRF F , SimC computes Y ′ = F (k1, Y) for the randomly selected input set Y and appends it
to the view. Now we argue that the view output by SimC is indistinguishable from the real one.
The way that SimC selects keys is identical to the real execution. Outputs of the PRF given are
computationally indistinguishable. So this simulated view is computationally indistinguishable
from the real execution.

A.2 Server-Aided OPPRF

Theorem 2. Protocol Π
(m1,m2)
sopprf securely computes functionality F (m1,m2)

sopprf in the F (m)
soprf-hybrid model,

in the presence of an adversary who may passively corrupt either S, R, or C.

27

Table 5: Run time (in second) and communication cost (in MB) of our server-aided multiparty PSI-CA
protocols for n parties on sets of size m.

m
n = 4 n = 8 n = 16

P1 P(2:n) Server P1 P(2:n) Server P1 P(2:n) Server

Runtime 212 0.19 0.18 0.19 0.35 0.28 0.35 0.54 0.39 0.54
LAN 216 1.38 1.02 1.37 2.31 1.22 2.3 4.56 1.97 4.55

(second) 220 19.65 15.6 19.39 33.86 16.8 33.61 71.17 32.36 70.89

Runtime 212 1.89 1.15 1.84 2.47 1.16 2.08 3.04 1.25 2.66
WAN 216 6.9 3.18 6.01 14.07 4.1 13.28 26.09 6.01 25.3

(second) 220 106.08 23.98 97.49 197.35 39.43 196.87 409.13 71.26 408.65

Comm. 212 0.13 1.64 5.05 0.13 1.64 11.61 0.13 1.64 24.73
Cost 216 2 25.93 79.79 2 25.93 183.51 2 25.93 390.95
(MB) 220 32 467.66 1434.98 32 467.66 3305.62 32 467.66 7046.9

Table 6: Running time (in second) and communication cost (in MB) of our two-party PSI-CA
protocols for the sender set size m1 and receiver set size m2.

Comm. LAN WAN
m2 m1 Receiver Sender Server Receiver Sender Server Receiver Sender Server

28
28 0.012 0.004 0.008 0.002 0.001 0.002 0.481 0.001 0.289
210 0.025 0.016 0.008 0.002 0.002 0.002 0.482 0.002 0.29
212 0.074 0.066 0.008 0.008 0.006 0.006 0.679 0.005 0.486

212
212 0.197 0.066 0.131 0.01 0.005 0.008 1.066 0.005 0.681
214 0.393 0.262 0.131 0.029 0.019 0.02 1.274 0.02 0.888
216 1.18 1.049 0.131 0.099 0.065 0.065 1.537 0.066 1.144

216
216 3.146 1.049 2.097 0.132 0.058 0.102 2.374 0.065 1.579
218 6.291 4.194 2.097 0.315 0.209 0.203 2.924 1.42 2.097
220 18.874 16.777 2.097 1.007 0.583 0.553 4.853 3.732 3.597

220
220 50.332 16.777 33.554 1.501 0.964 1.206 8.235 5.745 7.681
222 100.663 67.109 33.554 4.814 2.637 4.247 19.535 15.373 18.772
224 301.99 268.435 33.554 19.123 9.625 17.305 66.244 54.594 64.089

Proof. We exhibit simulators SimS , SimR, and SimC for simulating the view of corrupt S, R, and C
respectively, and argue the indistinguishability of the produced transcript from the real execution.
• Corrupted S. SimS simulates the view of corrupt S, which consists of S’s randomness, input,
output, and received messages. SimS proceeds as follows. It chooses a random key k = (k0, k1)←
{0, 1}2κ, calls a Simsoprf

S of the server-aided OPPRF, and appends its output to the view. Since

the Simsoprf
S is trivial, it is easy to see the view of SimS is computationally indistinguishable from

the real execution.
• Corrupted R. SimR simulates the view of corrupt R, which consists of R’s randomness, input,
output, and received messages. SimR proceeds as follows. It calls a Simsoprf

R with input Y
and appends the output to the view. To simulate Step 3, SimR generates m1 random points
(xi, vi) ← {0, 1}ℓ × {0, 1}ℓ, constructs an OKVS over T ← Encode({(xi, vi)}, and appends it to
the view.
We now argue that the output of SimR is indistinguishable from the real execution. For this, we

28

formally show the simulation by proceeding with the sequence of hybrid transcripts T0;T1;T2,
where T0 is the real view of S, and T3 is the output of SimR.

– Hybrid 1. Let T1 be the same as T0, except the output of server-aid OPRF execution is
replaced by the output of the Simsoprf

R . It is easy to see T0 and T1 are computationally
indistinguishable.

– Hybrid 2. Let T2 be the same as T1, except the OKVS T is constructed on randomly selected
points (xi, vi). Since the value F ′(k, xi) ⊕ vi are also pseudorandom in the real execution,
the two constructed OKVS tables T are computationally indistinguishable.

• Corrupted C. Since the C only participates in the execution of server-aid OPRF as the C, the
construction of SimC can inherit from the SimC in the proof of Theorem 1 directly. So it is
computationally indistinguishable from the real execution and we omit the proof here.

A.3 Server-Aided Two-party PSI-CA

Theorem 3. Protocol 10 securely implements Functionality 4 (FPSI−CA) with n = 2 in the Fsoprf-
hybrid model, in the presence of an adversary who may passively corrupt either S, R, or C.

Proof. We exhibit simulators SimS , SimR, and SimC for simulating the view of corrupt S, R, and C
respectively, and argue the indistinguishability of the produced transcript from the real execution.

• Corrupted S. SimS simulates the view of corrupt S, which consists of S’s randomness, input,
output, and received messages. SimS proceeds as follows. It chooses a random key k =
(k0, k1) ← {0, 1}2κ, calls a Simsoprf

S , and appends its output to the view. Since the Simsoprf
S

does not receive any messages in the protocol, it is easy to see the view of SimS and the view
in the real execution are identical.

• Corrupted R. SimR simulates the view of corrupt R, which consists of R’s randomness,
input, output, and received messages. SimR proceeds as follows. It calls a Simsoprf

R with
input Y and appends the output to the view. To simulate Step 2, SimR generates a random
set of m1 values X = {x1, ..., xm1}, chooses random key k′ = (k′1, k

′
2) ← {0, 1}2κ, computes

X ′′ = F ′(k,X) and appends it to the view. The PRF values X ′′ received from the simulator
are computationally indistinguishable from the random permutation of X ′ received from the
real execution.

• Corrupted C. Since the C only participates in the execution of server-aid OPRF as the C, the
construction of SimC can inherit from the SimC in the proof of Theorem 1 directly. So it is
computationally indistinguishable from the real execution and we omit the proof here.

A.4 Server-Aided Multi-Party PSI-CA

Correctness. We consider three following cases based on whether x is in the intersection of all
sets Xi∈[n] :

29

• Case 1: Suppose x ∈
⋂
Xi∈[n]. In other words, ∀i ∈ [n],∃xi,ji ∈ Xi, such that xi,ji = x. Thus,

we have (i) all PRF values x′i,ji = F (k, xi,ji) = F (k, x) are equal, (ii) XORing all zero shares
S(Ki, xji), i ∈ [2, n] is equal to zero. When querying the OPPRF programmed Pi∈[3,n] using
the common PRF value x′1 = F (k, x), the cloud server obtains yi,j . Based on the correctness of
OPPRF, we have yi,ji = S(Ki, xji). In addition, the cloud server obtains y2,j2 = S(K2, xj2)⊕ γj2
when querying on x′1. Therefore, the value wj =

⊕n
i=2 yi,ji is equal to γj2 which belongs to the

set Γ known by P1. Thus, P1 can count how many wj in Γ to output the intersection size.
• Case 2: Suppose x is in X1 and is not an element in some sets Xi∈[2,n]. Some OPPRF output yi,j
is a random value since F (k, x) was never used in the OPPRF programming process. Therefore,
wj =

⊕n
i=2 yi,j is random and does not belong to the set Γ.

• Case 3: Suppose x is an element in some sets Xi∈[2,n], but not in X1. Some OPPRF output yi,j
is a random value. Therefore, wj =

⊕n
i=2 yi,j is random and does not belong to the set Γ.

Theorem 4. Protocol 11 securely computes Functionality 4 (FPSI−CA) for arbitrary n, in the
(Fopprf ,FZS,FCoin)-hybrid model, in the presence of an adversary who may passively corrupt any
subset of {P1, P3, . . . , Pn} or {P2, P3, . . . , Pn} or passively corrupt the cloud server C.

Proof. We separate the proof to the maximal collusion, from which a security to non-maximal ones
can be derived. We exhibit simulators in three different cases and argue the indistinguishability of
the produced transcript from the real execution.

• Case 1: P1, P3, . . . , Pn are corrupted. The simulator first calls the FZS simulator SimZS and
appends the parties keys Ki’s for a zero sharing to the view of P1, P3, . . . , Pn. In addition,
the simulator calls the FCoin simulator SimFCoin, appends the set Γ to the view of P1, and
appends a PRF key k to the view of P1, P3, . . . , Pn. The simulator now calls the Fopprf

simulator SimOPPRF
S with input Pi = {(F (k,Xi), S(Ki, Xi))} and appends the output to

the view of P3, . . . , Pn. Then the simulator calls the Fopprf simulator SimOPPRF
R with input

F (k,X1) = {F (k, x1,j)}j∈[m] for each instance of P3, . . . , Pn, receives Yi = {yi,j}i∈[2,...,n],j∈[m],
computes set W = {wj}j∈[m] where wj =

⊕n
i=2 yi,j , and appends a random permutation of

W to the view of P1 ({y2,j}j∈[m] are obtained by randomly choose m values from {0, 1}ℓ).
The joint view of the parties P1, P3, . . . , Pn is identically distributed in the simulation, and in
the real execution, the messages seen by them are identically distributed and so is the output
given to P1 (who is the only party receiving output).

• Case 2: P2, P3, . . . , Pn are corrupted. Most of the simulation is similar to the case above.
The simulator first calls the FZS simulator SimZS and appends the parties keys Ki’s for a zero
sharing to the view of P2, . . . , Pn. In addition, the simulator calls the FCoin simulator SimFCoin,
appends the set Γ to the view of P2, and appends a PRF key k to the view of P2, . . . , Pn. The
simulator now calls the Fopprf simulator SimOPPRF

S with input Pi = {(F (k,Xi), S(Ki, Xi))}
and appends the output to the view of P2, . . . , Pn. This concludes the simulation. The joint
view of the parties is identically distributed in the simulation and in the real execution, the
messages seen by them are identically distributed and these corrupted parties do not receive
outputs.

• Case 3: C is corrupted. The server C has no input or output. In the protocol it receives the
pseudorandom values X ′ from P1 and the pseudorandom values yi,j for i ∈ [2, n] and j ∈ [m].
These m · n values can be easily simulated by handing C m · n random values. The output of

30

all parties P1, . . . , Pn are identically distributed in the simulation and the real execution. It
only remains to argue that the view of C is computationally indistinguishable in both cases,
which follows from the security of the PRP F and the OPPRF functionality.

A.5 Multi-party PSI-CA

Correctness. We consider three following cases based on whether x is in the intersection of all
sets Xi∈[n] :
• Case 1: Suppose x ∈

⋂
Xi∈[n]. In other words, ∀i ∈ [n],∃xi,ji ∈ Xi, such that xi,ji = x.

Thus, we have (i) all PRF values F (k, xi,ji) = F (k, x) are equal, (ii) XORing all zero shares
S(Ki, xji), i ∈ [2, n] is equal to zero. When querying the OPPRF points Pi∈[2,n] using the
common PRF value F (k, x), the party Pn obtains yi,ji . Based on the correctness of OPPRF, we
have yi,ji = S(Ki, x) for i ∈ [3, n − 1] and y2,j2 = S(Ki, x) ⊕ PRF (s, x). Therefore, the value
w =

(⊕n−1
i=2 yi,ji

)
⊕ S(Kn, x) is equal to PRF (s, x) as

⊕n
i=2 S(Ki, x) = 0. Step (7) allows P1 to

count x to output the intersection set by checking whether w ∈ F (s,X).
• Case 2: Suppose x is in X1 and is not an element in some sets Xi∈[2,n]. Clearly, w ̸∈ F (s,X1)
with the high probability.

• Case 3: Suppose x is an element in some sets Xi∈[2,n], but not in X1. The value wj might equal to
F (s, x2) for x2 ∈ X or random. However, x2 ̸∈ X1, thus w ̸∈ F (s,X1) with the high probability.

Theorem 5. Protocol 12 securely computes Functionality 4 (FPSI−CA) for arbitrary n, in the
(Fsopprf ,FZS,FCoin,FPSI−CA, server-aided two-party PSI-CA)-hybrid model, in the presence of an
adversary who may passively corrupt any subset from {P3, . . . , Pn} or passively corrupt P1 or P2

(i.e. P1 and P2 are non-colluding).

Proof. We separate the proof into multiple cases, depending on the adversary’s corruption. As
before, we assume maximal corruption and stress that the security in the case of non-maximal
corruption can be easily derived. We exhibit simulators in three different cases and argue the
indistinguishability of the produced transcript from the real execution.

• Case 1: P3, . . . , Pn are corrupted. The simulator first calls the FZS simulator SimZS and ap-
pends the parties keysKi’s for a zero sharing to the view of P3, . . . , Pn. In addition, the simula-
tor calls the FCoin simulator SimFCoin, appends a PRF key k to the view of P3, . . . , Pn. The sim-
ulator now calls the Fopprf simulator SimOPPRF

S with input Pi = {(F (k,Xi), S(Ki, Xi))} and
appends the output to the view of P3, . . . , Pn−1. Then the simulator calls the Fopprf simulator

SimOPPRF
R with input F (k,Xn) = {F (k, xn,j)}j∈[m] for each instance of P2, . . . , Pn−1, receives

Yi = {yi,j}i∈[2,...,n−1],j∈[m], computes set W = {wj}j∈[m] where wj =
⊕n−1

i=2 yi,j ⊕ S(Kn, xn,j).

Then the simulator calls the two-party server-aided FPSI−CA simulator SimPSI−CA
S with input

W , and appends the output to the view of Pn.

This concludes the simulation. The joint view of P3, . . . , Pn is computationally indistinguish-
able for the simulation and in the real execution.

• Case 2: Corrupted P2. The simulator first calls the FZS simulator SimZS and appends the
key K2’s for a zero sharing to the view of P2. In addition, the simulator calls the FCoin

simulator SimFCoin, appends PRF keys s and k to the view of P2. In the F (m,m)
sopprf invocation

31

between P2 and Pn the simulator obtains P2, from which it can extract X2 (since it knows
k and can invert F). The simulator now calls the Fopprf simulator SimOPPRF

S with input
P2 = {(F (k,X2), S(K2, X2)⊕ F (s,X2))} and appends the output to the view of P2. Finally
to simulating the server-aided FPSI−CA, the simulator calls the simulator SimSPSI−CA

C and
appends the output to the view of P2 This concludes the simulation. The view of P2 is
computationally indistinguishable for the simulation and in the real execution.

• Case 3: Corrupted P1. The simulator first calls the FCoin simulator SimFCoin, appends a PRF
key s to the view of P2. Then the simulator calls the two-party server-aided OPPRF simulator
SimSOPPRF

C without input, and appends the output to the view of P1. Finally the simulator
calls the simulator SimSPIS−CA

R with input V = F (s,X1) and appends the output to the view
of P1. This concludes the simulation. The view of P1 is computationally indistinguishable for
the simulation and in the real execution.

B Multi-party ARL

Definition 1. In the privacy-preserving ARL (PPARL) problem, there are n parties P1, . . . , Pn,
each holding a private vertically-partitioned database of transactions T1, . . . , Tn, respectively. Let
T = T1|| . . . ||Tn be a jointed vertically database of n parties. Let I = {i1, i2, ..., im} be a public set
of binary attributes, called items. Each transaction (row) t ∈ T is represented as a binary vector,
with t[k] = 1 if the transaction contains item ik ∈ I, and t[k] = 0 otherwise. We say that the
transaction t satisfies idx(t). Denote an association rule by ⇒. Let X,Y ⊆ [m], we consider the
following association rules:
1. The rule X ⇒ Y holds in T with support factor of 0 ≤ s ≤ 1 iff at least s% of transactions in

T satisfy X ∪ Y
2. The rule X ⇒ Y holds in T with confidence factor of 0 ≤ c ≤ 1 iff at least c% of transactions

in T that satisfy X also satisfy Y .
3. The rule X ⇒ Y is global if every transaction in T has at least one item in X ∪ Y .

The goal of PPARL is to allow all parties P1, . . . , Pn to find all global rules having high support
and confidence on their jointed database T while maintaining the privacy of each individual database.

Generally speaking, the support factor indicates how frequently the itemset appears in the
dataset. The support of X with respect to T is defined as the proportion of transactions in the
dataset which contains the itemset X. That is, supp(X) = |{X⊆T}|

|T | .
The confidence factor indicates how often the rule X ⇒ Y is true. The confidence value of a

rule, X ⇒ Y , in a set of transactions T , is the proportion of the transactions that contain X which
also contain Y . conf(X ⇒ Y) = supp(X∪Y)

supp(X) . Thus confidence can be interpreted as an estimate of
the conditional probability.

Given the definitions of support and confidence factors, the method for finding an association
rule [3] can be decomposed into two subproblems.

(1) Find the frequent itemset: The frequent itemset is defined as the itemset that appears in the
transaction set T at least τ times, where τ is predefined minimum support (also called a thresh-
old).

32

(2) Use the frequent itemsets to generate the association rules: For every large itemset X, find all
non-empty subsets A of X. For every such subset A, output a rule of the form A ⇒ (X \ A) if
the ratio of supp(X) to supp(A) is at least τ .

C Example of the ARL algorithm

For simplicity, we consider two parties P1 and P2, each holding a vertical-partitioned database
T1 and T2, respectively. Assume that T1 has 3 attributes/columns {a1, a2, a3}, and T2 has 2
attributes/columns {b1, b2}.

One important step of the ARL algorithm is to find all “global” frequent itemsets. For example,
we want to compute how many transactions that contain 2 attributes (a1, b1). If the number of
these transactions is greater than a threshold t, we say that (a1, b1) is a frequent itemset.

For a better protocol explanation. We define “global” vs “local” frequent itemset. A frequent
itemset is global if each party has at least one item in the frequent itemset (this aligns with the
global rule mentioned in Definition 1). A frequent itemset is local if the frequent itemset contains
only items belonging to one party.

If (a1, b1) is a “global” frequent itemset, the attribute a1 itself should be a “local” frequent
itemset. Thus, before any interaction between parties, each party Pi needs to locally compute a list
Li
1 that has only 1 attribute. For example, if the attribute a1 appears more than or equal t times

in T1, then a1 is a local frequent itemset, and thus a1 is added to L1
1. In contrast, if the attribute

a2 appears less than t times in the T1, then a2 is not a local frequent itemset, and thus a2 ̸∈ L1
1.

Assume that from Step 1, we have L1
1 = {a1, a3}, and L2

1 = {b1, b2}.
Step 2 of Protocol 14 aims to find a list Ln of “global” frequent itemsets, where each item-

set has n items (n = 2 in the two-party setting). To do so, the parties run DotProd where
the party’s input is each itemset in L1

1 and L2
1. For example, the parties check whether each

of pairs (a1, b1), (a1, b2), (a3, b1), (a3, b2) are “global” frequent items. Assume that the column a1 is
(1, 1, 1, 0, 0) and the column b1 is (1, 1, 1, 1, 0). The dot product a1 · b1 is 3. E.g. a pair (a1, b1)
appears 3 times in the database. If the threshold t = 2, the (a1, b1) is a “global” frequent itemset.

Step 3 of the protocol aims to find a list Lk of “global” frequent itemsets, where each itemset
has k items (here, k > 2). For example, the parties want to check whether (a1, a3, b1) is a “global”
frequent itemset (in this case, k = 3). They first need to compute the dot product a1 · a3 · b1. To
do so, P1 locally computes a dot product of a1 and a3 before running a secure DotProd with P2

(see Step 3b). The function apriori-gen is for improving the computation – it helps to generate the
set of candidate itemsets for Lk.

D Our Secure Dot Product Protocol

See Protocol 15.

33

Algorithm 1 apriori-gen(Lt)

1: Find all pairs of itemsets in Lt where the first t− 1 items are identical.
e.g., t = 5 and two pairs {a, b, c}, {a, b, d}

2: Union them (lexicographically) to get a list of candidates C ′
t+1

e.g., {a, b, c}, {a, b, d} → {a, b, c, d}
3: Prune Ct+1 = {c ∈ C ′

t+1 | ∀sc ̸∈ Lt}, where sc is a t-subsets of c.
4: Return Ct+1

Figure 1: A Simplest apriori-gen Algorithm [3, 43]

PROTOCOL 15.
(
Secure Dot Product - Π

(t,n)
DotProduct

)
Parameters:

• An upper-bound t.
• n parties: P1, . . . , Pn; an untrusted server C;
• A PSI-CA functionality FPSI−CA in Functionality 4.
• A function idx′ : Z⋆

2 × {0, 1}⋆ → ({0, 1}⋆)⋆ in Section 5.1

Inputs:
• Pi∈[n] has Xi = {xi,1, . . . , xi,m}.
• Cloud server C has no input.

Protocol:
1. Each party Pi∈[n] computes Ai ← idx′(Xi, t).

2. All parties invoke FPSI−CA where Pi inputs Ai, C inputs nothing , and P1 obtains the output

|
⋂n

i=1 Ai|.

E Server-Aided 2-Party PSI Protocol[28]

See Protocol 16.

34

PROTOCOL 16.
(
Server-Aided 2-Party PSI [28]

)
Parameters: There are 2 parties P1, P2 and a third-party server S. P1 and P2 have sets X1 and X2

as input, respectively. The server S does not have input. Let F be a PRF, and parameter d > 0.

Protocol:

1. P1 chooses sets D0, D1, D2 and a key k1 such that |D0| = |D1| = |D2| = d, sends them to P2 and
set Y1 ← X1 ∪D0 ∪D1.

2. P2 sets Y2 ← X2 ∪D0 ∪D2.

3. P2 chooses a random key k2 and sends it to the server S.

4. Party P1 sends a shuffled version of Y ′
1 = {F (k1, x)}x∈Yi

to S.

5. The server returns a shuffled version π of Y ′′
1 = {F (k2, y)}y∈Y ′

1
to P1

6. Party P2 sends a shuffled version of Y ′′
2 = {F (k2, F (k1, x))}x∈Y2

to P1.

7. P1 computes I = Y ′′
1 ∩ Y ′′

2 and sends the result to P2

8. P2 computes I−1 = {F−1(k1, F
−1(k2, x))|∀x ∈ I}

9. P2 check that I has the right form and aborts if:

(a) Either D0 ̸⊂ I−1 or D2 ∩ I−1 ̸= ∅
(b) There exists x ∈ X2 and α, β ∈ [λ] such that x||α ∈ I−1 and x||β /∈ I−1

10. If P2 does not abort, it notifies S who sends the shuffled function π to P1. P1 uses π learns the
values in the set I−1

11. P1 checks that I has the right form as in Step (9) and aborts if the check fails.

12. The parties output distinct items in I−1 \D0.

F Zero Sharing Protocol [31]

See Protocol 17.

PROTOCOL 17.
(
Zero-Sharing - ΠZS [31]

)
Parameters: There are n parties P1, . . . , Pn. There is a PRF F : {0, 1}κ × {0, 1}ℓ → {0, 1}κ.

Protocol:

1. Each party Pi picks a random seed ri,j for j ∈ [i+1, n] and sends ri,j to Pj . The key Ki of party
Pi is (k1,i, . . . , ki−1,i, ki,i+1, . . . , ki,n).

2. To obtain its share for value x, party Pi computes

S(Ki, x) =

⊕
j<i

Fkj,i(x)

⊕
⊕

j>i

Fki,j (x)



35

	Introduction
	State-of-the-Art for PSI Cardinality
	Secure Dot Product and Its Applications
	Our Results and Techniques
	Our PSI-CA Approach:
	Our Multi-party Dot-Product of Binary Vectors (DotProd):
	Application to PSI-CA and DotProd:

	Preliminaries
	Security Model
	Oblivious Key-Value Store (OKVS)
	Oblivious PRF (OPRF) and Programmable PRF (OPPRF)
	Unconditional Zero Sharing
	Private Set Intersection Cardinality
	Secure Dot Product of Binary Vectors

	Server-Aided OPRF and OPPRF
	Server-Aided Shuffled OPRF
	Server-Aided OPPRF

	PSI Cardinality Protocol
	Server-Aided Two-Party PSI-CA
	Server-Aided Multi-Party PSI-CA
	Multi-party PSI-CA

	Applications
	Secure Dot Product Construction
	Heatmap Computation
	Association Rule Learning

	Implementation and Performance
	Performance of Two-party Protocols
	Performance of Multi-party Protocols

	Correctness and Security Proof
	Server-Aided Shuffled OPRF
	Server-Aided OPPRF
	Server-Aided Two-party PSI-CA
	Server-Aided Multi-Party PSI-CA
	Multi-party PSI-CA

	Multi-party ARL
	Example of the ARL algorithm
	Our Secure Dot Product Protocol
	Server-Aided 2-Party PSI ProtocolDBLP:conf/fc/KamaraM0S14
	Zero Sharing Protocol CCS:KMPRT17

