
Side-channel and Fault-injection attacks over Lattice-based Post-quantum
Schemes (Kyber, Dilithium): Survey and New Results

PRASANNA RAVI∗ and ANUPAM CHATTOPADHYAY†, Temasek Labs, Nanyang Technological University,

Singapore and School of Computer Science and Engineering, Nanyang Technological University, Singapore

ANUBHAB BAKSI‡, Temasek Labs, Nanyang Technological University, Singapore

In this work, we present a systematic study of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA) on structured lattice-based

schemes, with main focus on Kyber Key EncapsulationMechanism (KEM) and Dilithium signature scheme, which are leading candidates

in the NIST standardization process for Post-Quantum Cryptography (PQC). Through our study, we attempt to understand the

underlying similarities and differences between the existing attacks, while classify them into different categories. Given the wide-variety

of reported attacks, simultaneous protection against all the attacks requires to implement customized protections/countermeasures for

both Kyber and Dilithium. We therefore present a range of customized countermeasures, capable of providing defenses/mitigations

against existing SCA/FIA. Amongst the presented countermeasures, we propose two novel countermeasures to protect Kyber KEM

against SCA and FIA assisted chosen-ciphertext attacks. We implement the presented countermeasures within two well-known

public software libraries for PQC - (1) pqm4 library for the ARM Cortex-M4 based microcontroller and (2) liboqs library for the

Raspberry Pi 3 Model B Plus based on the ARM Cortex-A53 processor. Our performance evaluation reveals that the presented custom

countermeasures incur reasonable performance overheads, on both the evaluated embedded platforms. We therefore believe our

work argues for usage of custom countermeasures within real-world implementations of lattice-based schemes, either in a standalone

manner, or as reinforcements to generic countermeasures such as masking.

CCS Concepts: • Security and privacy→ Side-channel analysis and countermeasures.

Additional Key Words and Phrases: Lattice-based Cryptography, Side-Channel Attacks, Fault-Injection Attacks, Kyber, Dilithium

1 INTRODUCTION

The NIST standardization process for post-quantum cryptography is currently in the third and final round with seven

finalist candidates and eight alternate candidates for Public Key Encryption (PKE), Key EncapsulationMechanisms (KEM)

and Digital Signatures (DS) [1]. Theoretical post-quantum security guarantees and implementation performance on

different HW/SW platforms served as the primary criteria for selection in the initial rounds of the NIST standardization

process. However, resistance against side-channel attacks (SCA) and fault injection attacks (FIA) as well as the cost

of implementing protections against SCA and FIA, has also emerged as a very important criterion towards the latter

part of the standardization process. This is especially true, when it comes to comparing schemes with tightly matched

security and efficiency [4]. In [1, Sections 3.4 and 2.2.3] NIST states that it encourages additional research regarding

side-channel analysis of the finalist candidates and hopes to collect more information about the costs of implementing

these algorithms in a way that provides resistance to such attacks.

Three out of the seven finalist candidates derive their hardness from the well-known Learning With Error (LWE)

and Learning With Rounding (LWR) problem that operate structured lattices. In particular, SCA and FIA of schemes

such as Kyber [5], Saber [17] and Dilithium [20] has received considerable attention with several works demonstrating

practical attacks [11, 39, 40, 49], particularly on embedded targets. These attacks have been realized using a wide-range

of attack vectors such as power and Electromagnetic Emanation (EM) for SCA and voltage/clock glitching and EM for

Authors’ addresses: Prasanna Ravi, prasanna.ravi@ntu.edu.sg; Anupam Chattopadhyay, anupam@ntu.edu.sg, Temasek Labs, Nanyang Technological

University, Singapore and School of Computer Science and Engineering, Nanyang Technological University, Singapore; Anubhab Baksi, anubhab.baksi@

ntu.edu.sg, anubhab.baksi@ntu.edu.sg, Temasek Labs, Nanyang Technological University, Singapore.

1

2 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

FIA. The proposed attacks have been quite diverse in nature, in terms of the targeted operation, method of constructing

queries to the target device, as well as the mathematical approach for key recovery.

There are existing works such as [34, 44] that have provided a good overview of existing implementations of PQC.

However, a similar overview that covers recent developments in the field of SCA and FIA of PQC, and in particular,

lattice-based schemes is missing. This is especially important, given the ever-growing list of attacks proposed on

practical embedded implementations of lattice-based schemes. As a first contribution, we present a systematic study

of SCA/FIA mounted on lattice-based schemes, with main focus on two leading candidates based on variants of the

LWE problem - Kyber KEM [5] and Dilithium signature scheme [20]. Through our study, we attempt to understand the

underlying similarities and differences between the existing attacks, while classify them into different categories.

On a parallel front, there has also been significant interest in the cryptogaphic community towards development

of SCA and FIA countermeasures for lattice-based schemes. They can be broadly classified into two categories - (1)

Generic and (2) Custom. Generic countermeasures attempt to provide concrete security guarantees agnostic to the attack

strategy, while custom countermeasues are those that offer protection against specific targeted attacks. With respect to

SCA, there have been several works that have proposed generic masking stratgies for lattice-based schemes [10, 14, 37].

However, one can observe several shortcomings with respect to adopting generic countermeasures such as masking.

Firstly, practical attacks have been demonstrated over masked implementations of lattice-based schemes [35], and

non-trivial flaws in theoretically secure masking schemes have also been exploited for key-recovery [11]. Secondly,

masking has been shown to result in significant performance overheads for both lattice-based KEMs as well as signature

schemes, especially on embedded software platforms [10, 14].

This leads us to question, if generic countermeasures such as masking alone are sufficient to offer concrete pro-

tection against SCA, with minimal overhead. If not, what are the specific countermeasures that can be incorporated

to provide additional protection to harden concrete masking schemes. The same question can also be posed with

respect to FIA over lattice-based schemes. In this respect, as a second contribution, we present a range of customized

countermeasures for Kyber and Dilithium, in an attempt to provide protection against most of the SCA and FIA

reported over these two schemes. Notably, we also propose two novel countermeasures, namely CT_Sanity_Check and

Message_Poly_Sanity_Check, for the decryption procedure of Kyber KEM, that offers simultaneous protection against

SCA and FIA assisted chosen-ciphertext attacks, which form a major category of the reported SCA and FIA on Kyber

KEM.

Finally, we also implement all the presented countermeasures in this work, within two well-known public software

libraries for PQC - (1) pqm4 library for the ARM Cortex-M4 based microcontroller [29] and (2) liboqs library [52] for

the Raspberry Pi 3 Model B Plus based on the ARM Cortex-A53 processor. Our performance evaluation reveals that the

presented custom countermeasures incur reasonable performance overheads, on both the evaluated embedded platforms.

We therefore believe our work argues for usage of custom countermeasures within real-world implementations of

lattice-based schemes, either in a standalone manner, or as reinforcements to generic countermeasures such as masking.

2 BACKGROUND

2.1 Notations

Elements in the integer ring Z𝑞 are denoted by regular font letters viz. 𝑎, 𝑏 ∈ Z𝑞 , where 𝑞 is a prime. The 𝑖𝑡ℎ bit in an

element 𝑥 ∈ Z𝑞 is denoted as 𝑥𝑖 . Vectors and matrices of integers in Z𝑞 (i.e.) Z𝑘𝑞 and Z𝑘×ℓ𝑞 are denoted in bold upper case

letters. The polynomial ring Z𝑞 (𝑥)/𝜙 (𝑥) is denoted as 𝑅𝑞 where 𝜙 (𝑥) = (𝑥𝑛 + 1) is its reduction polynomial. We denote

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 3

r ∈ 𝑅𝑘×ℓ𝑞 as a module of dimension 𝑘 × ℓ . Polynomials in 𝑅𝑞 and vectors of polynomials in 𝑅𝑘𝑞 are denoted in bold lower

case letters. Matrices of integers of polynomials (i.e.) 𝑅𝑘×ℓ𝑞 are denoted in bold upper case letters. The 𝑖𝑡ℎ coefficient of

a polynomial a ∈ 𝑅𝑞 is denoted as a[𝑖] and the 𝑖𝑡ℎ polynomial of a given module x ∈ 𝑅𝑘𝑞 as x𝑖 . Multiplication of two

polynomials a and b in the ring 𝑅𝑞 is denoted as c = a · b ∈ 𝑅𝑞 or a × b ∈ 𝑅𝑞 . Byte arrays of length 𝑛 are denoted as

B𝑛 . Pointwise/Coefficient-wise multiplication of two polynomials (𝑎, 𝑏) ∈ 𝑅𝑞 is denoted as 𝑐 = 𝑎 ◦ 𝑏 ∈ 𝑅𝑞 . For a given
element 𝑎 (Z𝑞 or 𝑅𝑞 or 𝑅𝑘×ℓ𝑞), its corresponding faulty value is denoted as 𝑎∗ and we utilize this notation throughout

the paper. The NTT representation of a polynomial 𝑎 ∈ 𝑅𝑞 is denoted as 𝑎 ∈ 𝑅𝑞 , and the same notation also applies to

modules of higher dimension.

2.2 The Learning With Errors Problem [50]

The hardness of both Kyber and Dilithium are based on variants of the well-known Learning With Errors (LWE)

problem. The central component of the LWE problem is the LWE instance.

Definition 2.1 (LWE Instance). For a given dimension 𝑛 ≥ 1, elements in Z𝑞 with 𝑞 > 2 and a Gaussian error

distribution D𝜎 (·), an LWE instance is defined as the ordered pair (A,𝑇) ∈ Z𝑛𝑞 × Z𝑞 where A←U(Z𝑛𝑞) and𝑇 = A · S + 𝐸
with S← D𝜎 (Z𝑛𝑞) and 𝐸 ← D𝜎 (Z𝑞).

Given an LWE instance, one can define two variants of the LWE problem - (1) Search LWE problem - Given

polynomially many LWE instances (A,𝑇) ∈ (Z𝑛𝑞 ,Z𝑞), solve for S ∈ Z𝑛𝑞 and (2) Decisional LWE - Given many random

instances belonging to either (1) valid LWE instances (A,𝑇) ∈ (Z𝑛𝑞 ,Z𝑞) or (2) uniformly random instances drawn from

U(Z𝑛𝑞 × Z𝑞), distinguish the valid LWE instances from randomly selected ones.

Cryptographic schemes built upon the standard LWE problem suffered from quadratic key sizes and computational

times in the dimension 𝑛 of the lattice (i.e.) O(𝑛2) [50]. Thus, most of the lattice-based schemes, especially those

in the NIST standardization process are based on algebraically structured variants of the standard LWE and LWR

problem known as the Ring/Module-LWE (RLWE/MLWE) problems respectively. The ring variant of the LWE problem

(RLWE) [31] deals with computation over polynomials in polynomial rings 𝑅𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 + 1) with s, e← D𝜎 (𝑅𝑞)
such that the corresponding RLWE instance is defined as (a, t = a × s + e) ∈ (𝑅𝑞 × 𝑅𝑞). The module variant deals

with computations over vectors/matrices of polynomials in 𝑅
𝑘1×𝑘2

𝑞 with (𝑘1, 𝑘2) > 1. With A ← U(𝑅𝑘1×𝑘2

𝑞) and
s← D𝜎 (𝑅𝑘2

𝑞) and e← D𝜎 (𝑅𝑘1

𝑞). the corresponding MLWE instance is defined as (a, t = a × s + e) ∈ (𝑅𝑘1×𝑘2

𝑞 , 𝑅
𝑘2

𝑞).

2.3 Number Theoretic Transform (NTT) based Polynomial Multiplication

Polynomial multiplication is one of the most computationally intensive operations in structured lattice-based schemes

such as Kyber and Dilithium. Both Kyber and Dilithium are designed with parameters that allow the use of the well-

known Number Theoretic Transform (NTT) for polynomial multiplication. The NTT is simply a bijective mapping for a

polynomial 𝑝 ∈ 𝑅𝑞 from a normal domain into an alternative represetation 𝑝 ∈ 𝑅𝑞 in the NTT domain as follows:

𝑝 𝑗 =

𝑛−1∑
𝑖=0

𝑝𝑖 · 𝜔𝑖 · 𝑗
(1)

where 𝑗 ∈ [0, 𝑛 − 1] and 𝜔 is the 𝑛th root of unity in the operating ring Z𝑞 . The corresponding inverse operation

named Inverse NTT (denoted as INTT) maps 𝑝 in the NTT domain back to 𝑝 in the normal domain. The use of NTT

requires either the 𝑛th root of unity (𝜔) or 2𝑛th root of unity (𝜓) in the underlying ring Z𝑞 (𝜓2 = 𝜔), which can be

ensured through appropriate choices for the parameters (𝑛, 𝑞). The powers of 𝜔 and𝜓 that are used within the NTT

4 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

computation are commonly referred to as twiddle constants. NTT based multiplication of two polynomials a and b in 𝑅𝑞

is typically done as follows:

c = INTT(NTT(a) ◦ NTT(b)) . (2)

The NTT over an 𝑛 point sequence is performed using the well-known butterfly network, which operates over

log
2
(𝑛) stages. Refer to the algorithmic specification document of Kyber and Dilithium, on more information about the

NTT used in the respective schemes [5, 20].

2.4 Kyber

2.4.1 Algorithmic Description. Kyber is a chosen-ciphertext secure (CCA-secure) KEM based on the Module-LWE

problem and is considered to be a promising candidate owing to its strong theoretical security guarantees and implemen-

tation performance [5]. Computations are performed over modules in dimension (𝑘 ×𝑘) (i.e) 𝑅𝑘×𝑘𝑞 . Kyber provides three

security levels with Kyber-512 (NIST Security Level 1), Kyber-768 (Level 3) and Kyber-1024 (Level 5) with 𝑘 = 2, 3

and 4 respectively. Kyber operates over the anti-cyclic ring 𝑅𝑞 with a prime modulus 𝑞 = 3329 and degree 𝑛 = 256,

which allow the use of Number Theoretic Transform (NTT) for polynomial multiplication. The CCA-secure Kyber

contains in its core, a chosen-plaintext secure Kyber encryption scheme Kyber.CPA which is based on the well-known

framework of the LPR encryption scheme [31].

Refer to Algorithm 1 for a simplified description of the key-generation, encryption and decryption procedures of CPA

secure PKE of Kyber. The function Sample𝑈 samples from a uniform distribution, Sample𝐵 samples from a binomial

distribution; Expand expands a small seed into a uniformly random matrix in 𝑅𝑘×𝑘𝑞 . The function Compress(𝑢,𝑑) lossily
compresses 𝑢 ∈ Z𝑞 into 𝑣 ∈ Z

2
𝑑 with 𝑞 > 2

𝑑
, while Decompress(𝑣, 𝑑) extrapolates 𝑣 ∈ Z

2
𝑑 into 𝑢 ′ ∈ Z𝑞 .

Security and Correctness of CPA Secure Kyber Encryption Scheme
The key generation procedure of Kyber.CPA PKE simply involves generation of an LWE instance (A, t) ∈ (𝑅𝑘×𝑘𝑞 ×𝑅𝑘𝑞)

where t = A · s + e (Line 9 in Alg.1). The module A is sampled from a uniform distribution, while the secrets and errors

s, e are sampled from a CBD distribution. Given that NTT is used for polynomial multiplication, the public key and

secret key are directly represented in the NTT domain. The LWE instance (A, t) is the public key, while the secret s
forms the secret key.

The encryption procedure involves generation of two LWE instances u, v ∈ (𝑅𝑘𝑞 × 𝑅𝑞). The first LWE instance is

generated as u = A𝑇 · r+e1 (Line 18) and the second LWE instance is generated as v𝑝 = t𝑇 · r+e2 (Line 19). Subsequently,

the message to be encrypted (i.e.)𝑚 ∈ B∗ is encoded into a message polynomial m ∈ 𝑅𝑞 , one bit at a time, in the

following manner. If a message bit𝑚𝑖 = 1, then the corresponding coefficient m[𝑖] = ⌈𝑞/2⌋, else m[𝑖] = 0 otherwise.

Then, this message polynomial is additively hidden within v𝑝 as v = v𝑝 +m (Line 20). Subsequently, the coefficients of

u and v are lossily compressed to varying degrees (i.e.) 𝑑1 and 𝑑2 bits respectively, and the compressed versions of u, v
form the ciphertext 𝑐𝑡 (Line 21).

The decryption procedure extracts the polynomials u′ and v′ from the ciphertext 𝑐𝑡 with Δu = u′ − u (resp. v).
Subsequently, the decryption procedure computes m′ = v′ − u′ · s (Line 26), which is nothing but an approximation of

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 5

Algorithm 1: CPA Secure Kyber PKE (Simplified)

1: procedure CPA.KeyGen
2: 𝑠𝑒𝑒𝑑𝐴 ∈ B ← Sample𝑈 () ⊲ Generate uniform 𝑆𝑒𝑒𝑑𝐴
3: 𝑠𝑒𝑒𝑑𝐵 ∈ B ← Sample𝑈 () ⊲ Generate uniform 𝑆𝑒𝑒𝑑𝐵

4: Â = NTT(A) ∈ 𝑅𝑘×𝑘𝑞 ← Expand(𝑠𝑒𝑒𝑑𝐴) ⊲ Expand 𝑠𝑒𝑒𝑑𝐴 into Â in NTT domain

5: s ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑠) ⊲ Sample secret s using (𝑆𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑠)
6: e ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑒) ⊲ Sample error e using (𝑆𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑒)
7: ŝ ∈ 𝑅𝑘𝑞 ← NTT(s) ⊲ NTT(s)
8: ê ∈ 𝑅𝑘𝑞 ← NTT(e) ⊲ NTT(e)
9: t̂ = Â ◦ ŝ + ê ⊲ t = A · s + e in NTT domain

10: Return (𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴, t̂), 𝑠𝑘 = (ŝ))
11: end procedure

12: procedure CPA.Encrypt(𝑝𝑘,𝑚 ∈ {0, 1}256, 𝑠𝑒𝑒𝑑𝑅 ∈ {0, 1}256
)

13: Â ∈ 𝑅𝑘×𝑘𝑞 ← Expand(𝑠𝑒𝑒𝑑𝐴)
14: r ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠0) ⊲ Sample r using (𝑆𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠0)
15: e1 ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠1) ⊲ Sample e1 using (𝑆𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠1)
16: e2 ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠2) ⊲ Sample e2 using (𝑆𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠2)
17: r̂ ∈ 𝑅𝑘𝑞 ← NTT(r) ⊲ NTT(r)
18: u ∈ 𝑅𝑘𝑞 ← INTT(A𝑇 ◦ r̂) + e1 ⊲ u = A𝑇 · r + e1
19: v𝑝 ∈ 𝑅𝑞 ← INTT(𝑡𝑇 ◦ r̂) + e2 ⊲ v𝑝 = t𝑇 · r + e2
20: v = v𝑝 + Encode(𝑚)
21: Return 𝑐𝑡 = Compress(u, 𝑑1),Compress(v, 𝑑2)
22: end procedure

23: procedure CPA.Decrypt(𝑠𝑘, 𝑐𝑡)
24: u′ ∈ 𝑅𝑘𝑞 = Decompress(u, 𝑑1); v′ ∈ 𝑅𝑘𝑞 = Decompress(v, 𝑑2)
25: û′ = NTT(u′)
26: m′ ∈ 𝑅𝑞 = v′ − INTT(û′ ◦ ŝ) ⊲ m′ = v′ − u′ · s
27: 𝑚′ ∈ B∗ = Decode(m′)
28: Return𝑚′

29: end procedure

the message polynomial m (i.e.) m′. This is given as follows:

m′ = v′ − s𝑇 · u′

= v + Δv − (u + Δu) · s

= t𝑇 · r + e2 + Δv + Encode(𝑚) − s𝑇 · (A𝑇 · r + e1 + Δu)

= Encode(𝑚) + (e𝑇 · r + e2 + s𝑇 · e1 + s𝑇 · Δu + Δv)

= Encode(𝑚) + d

(3)

where d = (e𝑇 · r + e2 + s𝑇 · e𝑇
1
+ s𝑇 · Δu + Δv) is the noise component in m′, which is also linearly dependent

on the secret and error (s, e) of the public-private key pair. The approximate message polynomial m′ is decoded into

the message𝑚′ ∈ B∗ one bit at a time in the following manner: If a given message coefficient m[𝑖] is in the range

6 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

[𝑞/4, 3𝑞/4], then𝑚𝑖 = 1, else𝑚𝑖 = 0 otherwise (Line 27). This is computed using a specialized decoding routine, which

is sketched in the code snippet shown in Fig.1. It takes as input the message polynomial m and decodes the coefficients,

one at a time into corresponding bits in the 32-byte message array𝑚.

1 uint16_t t = (((m->coeffs [8*i+j] << 1) + KYBER_Q /2) / KYBER_Q) & 1;
2 m[i] |= t << j;

Fig. 1. Message Decoding Routine in Kyber KEM, which converts the message polynomial m ∈ 𝑅𝑞 into a 32-byte message array𝑚,
where 𝑖 denotes the byte location and 𝑗 denotes the bit location within a given byte.

As long as the absolute value of all the coefficients of the noise d are less than 𝑞/4 (i.e.) ℓ∞ (d) < 𝑞/4, the message

polynomial m′ is decoded to the correct message 𝑚 (i.e.) 𝑚′ = 𝑚. The parameters of the scheme are chosen so as

to attain a negligible decryption failure probability. For recommended parameters of Kyber, the decryption failure

probability is ≈ 2
−164

. While we have only presented a simplified description of Kyber PKE, we refer the reader to [5]

for a detailed description of the same.

2.4.2 CCA Transformation. The aforementioned PKE is only secure against chosen-plaintext attacks (CPA secure), and

thus can be broken in a chosen-ciphertext setting. The CPA secure Kyber is converted into a CCA-secure Kyber KEM

using the well-known Fujisaki-Okamoto transformation [23]. It utilizes a pair of hash functionsH and G and forms a

wrapper around the encryption and decryption procedures, resulting in encapsulation and decapsulation procedures of

a CCA secure KEM (Refer Alg.2).

In theory, the FO transform helps protect the decapsulation procedure of KEMs against chosen-ciphertext attacks

in the following manner. The message𝑚′ obtained after decryption of the received ciphertext 𝑐𝑡 (Line 17) is hashed

with the public key to generate a pre-shared secret
¯𝐾 ′ and a seed 𝑟 (Line 18). The message𝑚′ along with the seed 𝑟 is

fed into a re-encryption procedure to recompute the ciphertext as 𝑐𝑡 ′ (Line 20). A subsequent comparison of 𝑐𝑡 ′ with

the received ciphertext 𝑐𝑡 helps evaluate the validity of 𝑐𝑡 (Line 21). For a valid ciphertext, comparison is successful

with an overwhelming probability, and as a result, a valid shared secret 𝐾 dependent upon the pre-shared secret
¯𝐾 ′

and the received ciphertext 𝑐𝑡 ′ is generated (Line 24). However, for an invalid ciphertext, comparison fails with an

overwhelming probability, resulting in generation of a pseudo-random secret 𝐾 , using a pseudo-random value 𝑧 and

the received ciphertext 𝑐𝑡 ′ (Line 24). This provides strong theoretical security guarantees against chosen-ciphertext

attacks which are possible over IND-CPA secure PKE/KEMs.

2.5 Dilithium

Dilithium is a lattice-based signature scheme secure, whose security is based on the Module LWE (M-LWE) and Module

SIS (M-SIS) problem [20]. Dilithium operates over the module 𝑅𝑘×ℓ𝑞 with (𝑘, ℓ) > 1 where 𝑅𝑞 = Z[𝑥]/(𝑥𝑛 + 1), 𝑛 = 256

and 𝑞 = 2
23 − 2

17 − 1. This choice of parameters allows the use of NTT for polynomial multiplication in 𝑅𝑞 . Dilithium

also comes in three security levels: Dilithium2 with (𝑘, ℓ) = (4, 4) at NIST Level 2, Dilithium3 with (𝑘, ℓ) = (6, 5) at
NIST Level 3 and Dilithium5 with (𝑘, ℓ) = (8, 7) at NIST Level 5. There are two variants of Dilithium: (1) Deterministic

(2) Probabilistic/Randomized, which only subtly differ in the way randomness is used in the signing procedure. The

signing procedure of the deterministic Dilithium does not utilize external randomness and can generate only a single

signature for a given message. The randomized variant however utilizes external randomness and thus generates a

different signature, for a given message in each execution.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 7

Algorithm 2: FO transform of a CPA-secure Kyber PKE into a CCA-secure Kyber KEM

1: procedure CCA.KeyGen
2: 𝑧 ← {0, 1}256

3: (𝑝𝑘, 𝑠𝑘 ′) ← CPA.KeyGen()
4: 𝑠𝑘 = (𝑠𝑘 ′∥H (𝑝𝑘)∥𝑧)
5: Return (𝑝𝑘, 𝑠𝑘)

6: end procedure

7: procedure CCA.Encaps(𝑝𝑘)
8: 𝑚 ← {0, 1}256

9: 𝑚 = H(𝑚)
10: (𝐾, 𝑟) = G(𝑚∥H (𝑝𝑘))
11: 𝑐𝑡 = CPA.Encrypt(𝑝𝑘,𝑚, 𝑟)
12: 𝐾 = KDF(𝐾 ∥H (𝑐))
13: Return (𝑐𝑡, 𝐾)
14: end procedure

15: procedure CCA.Decaps(𝑠𝑘, 𝑐𝑡)
16: (𝑝𝑘,H(𝑝𝑘), 𝑧) ← UnpackSK(𝑠𝑘)
17: 𝑚′ = CPA.Decrypt(𝑠𝑘, 𝑐𝑡)
18: (¯𝐾 ′, 𝑟 ′) = G(𝑚′,H(𝑝𝑘))
19: 𝑇 = ¯𝐾 ′

20: 𝑐𝑡 ′ = CPA.Encrypt(𝑝𝑘,𝑚′, 𝑟 ′)
21: if (CompareCT(𝑐𝑡 ′, 𝑐𝑡) == 0) then
22: 𝑇 = 𝑧 ⊲ Ciphertext Comparison Failure

23: end if
24: Return 𝐾 = KDF(𝑇 ∥H (𝑐𝑡 ′)
25: end procedure

2.5.1 Algorithmic Description. Refer Alg.3-4 for a simplified description of the key generation, signing and verification

procedures of Dilithium. The functions Sample𝑈 , Sample𝐵 and Expand perform the same functions as in Kyber, albeit

with different parameters. Dilithium also uses a number of rounding functions such as Power2Round,HighBits, LowBits,

MakeHint and UseHint, whose details can be found in [20]. The key generation procedure simply involves generation

of an LWE instance t (Line 4). Subsequently, the LWE instance is split into higher and lower order bits t1 and t0
respectively (Line 5), where t1 forms part of the public key, while t0 becomes part of the secret key.

The signing procedure of Dilithium is based on the “Fiat-Shamir with Aborts” framework where the signature is

repeatedly generated and rejected until it satisfies a given set of conditions[30]. The message𝑚 is first hashed with a

public value 𝑡𝑟 to generate ` (Line 11). The abort loop (Line 18-36) starts by generating an ephemeral nonce y ∈ 𝑅ℓ𝑞 ,
using a seed 𝜌 . For the deterministic variant, the seed 𝜌 is obtained by hashing ` with a secret nonce 𝐾 (Line 14),

while the probabilistic variant randomly samples the seed 𝜌 from a uniform distribution (Line 16). This is the only

differentiator between the two variants. The nonce y along with the public key component A is then used to calculate a

sparse challenge polynomial c ∈ 𝑅𝑞 (Line 22), whose 60 coefficients are either ±1, while the other 196 coefficients are 0.

Subsequently, the challenge c, nonce y and secret s1, are used to compute the primary signature component z (Line 24).
Then, a hint vector h is generated and output as part of the signature 𝜎 . The abort loop contains several conditional

8 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

checks (Line 26, 31), which should be simultaneously satisfied to terminate the abort loop and generate the signature

𝜎 = (z, h, 𝑐).
The verification procedure utilizes the signature 𝜎 and the public key 𝑝𝑘 to recompute the challenge polynomial 𝑐

(Line 38), which is then compared with the received challenge c, along with other checks (Line 6 in Alg.4). If all the

checks are satisified, then the verification is successful, else it is a failure. While we have only presented a simplified

description of the Dilithium signature scheme, we refer the reader to [20] for a detailed description of the same.

Algorithm 3: Dilithium Signature scheme (Simplified)

1: procedure KeyGen
2: (𝑠𝑒𝑒𝑑𝐴, 𝑠𝑒𝑒𝑑𝑆 , 𝐾) ∈ B ← Sample𝑈 (); s1, s2 ∈ (𝑅ℓ𝑞 × 𝑅𝑘𝑞) ← Sample𝐵 (𝑠𝑒𝑒𝑑𝑆)
3: A ∈ 𝑅𝑘×ℓ𝑞 ← Expand(𝑠𝑒𝑒𝑑𝐴)
4: t = A · s1 + s2 ⊲ Generate LWE instance t
5: (t1, t0) ← Power2Round(t) ⊲ Split t as t1 · 2𝑑 + t0
6: 𝑡𝑟 ∈ B ← H(𝑠𝑒𝑒𝑑𝐴∥t1)
7: 𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴, t1), 𝑠𝑘 = (𝑠𝑒𝑒𝑑𝐴, 𝐾, 𝑡𝑟, s1, s2, t0)
8: end procedure

9: procedure Sign(𝑠𝑘,𝑀)

10: Â ∈ 𝑅𝑘×ℓ𝑞 ← Expand(𝑠𝑒𝑒𝑑𝐴)
11: ` ∈ {0, 1}512 ←H(𝑡𝑟 ∥𝑀) ⊲ Hash𝑚 with public value 𝑡𝑟

12: ^ ← 0; (z, h) ← ⊥
13: if Deterministic then
14: 𝜌 ∈ 𝑅ℓ𝑞 ←H(𝐾 ∥`) ⊲ Generate seed 𝜌 using message and secret seed 𝐾

15: else
16: 𝜌 ∈ 𝑅ℓ𝑞 ← Sample𝑈 () ⊲ Generate uniform seed 𝜌

17: end if
18: while (z, h) = ⊥ do ⊲ Start of Abort Loop

19: y← Sample𝑌 (𝜌 ∥^)
20: ŷ = NTT(y) ⊲ NTT(𝑦)
21: w← INTT(Â ◦ ŷ); w1 ← HighBits(w) ⊲ w1 = HighBits(A · y)
22: c ∈ 𝑅𝑞 ←H(`∥w1) ⊲ Generate Sparse Challenge 𝑐

23: ĉ = NTT(𝑐) ⊲ NTT(c)
24: z = INTT(ĉ ◦ ŝ1) + y ⊲ z = s1 · c + y
25: r0 = LowBits(w − c · s2)
26: if ∥z∥∞ ≥ 𝛾1 − 𝛽 or ∥r0∥∞ ≥ 𝛾2 − 𝛽 then ⊲ Conditional Checks

27: (z, h) = ⊥
28: ^ = ^ + 1

29: else
30: h = MakeHint(−c · t0,w − cs2 + c · t0, 2𝛾2)
31: if ∥c · t0∥∞ ≥ 𝛾2 or #1’s in h > 𝜔 then ⊲ Conditional Checks

32: (z, h) = ⊥
33: ^ = ^ + 1

34: end if
35: end if
36: end while
37: 𝜎 = (z, h, c)
38: end procedure

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 9

Algorithm 4: Dilithium Signature scheme (Simplified)

1: procedure Verify(𝑝𝑘,𝑀, 𝜎 = (z, h, c))
2: ` ∈ {0, 1}512 ←H(𝑡𝑟 ∥𝑀)
3: ĉ = NTT(c)
4: w′

1
:= UseHint(h,A · z − INTT(ĉ ◦ t̂1 · 2𝑑 , 2𝛾2)

5: c̄ = H(`,w′
1
)

6: if (c̄ == c) and (norm of z and h are valid) then
7: Return Pass
8: else
9: Return Fail
10: end if
11: end procedure

3 SIDE-CHANNEL ATTACKS ON KYBER KEM

Given the variety of SCA/FIA performed on Kyber, we attempt to classify reported attacks along two orthogonal axes -

(1) Based on the goal of the attacker and (2) Based on attacker’s access to inputs/outputs of the target.

Based on the goal of the attacker: Along this axis, we classify SCA into two categories: (1) Message Recovery

Attacks and (2) Key Recovery Attacks. Message recovery attacks attempt to recover the message𝑚 from a valid cipher-

text 𝑐𝑡 , corresponding to a valid key exchange between two legitimate parties. Knowledge of𝑚 leads to recovery of the

shared secret or session key 𝐾 , thereby compromising the confidentiality of the corresponding targeted session. On

the other hand, key recovery attacks attempt to recover the long term secret key 𝑠𝑘 manipulated in the decapsulation

procedure. Recovery of 𝑠𝑘 leads to recovery of all the session keys 𝐾 derived using the recovered 𝑠𝑘 . Thus, key recovery

attacks are more attractive for an attacker, especially when the same key 𝑠𝑘 is used for multiple key exchanges (i.e.) use

of static keys. However, in an epehemeral setting, where 𝑠𝑘 is refreshed for every key-exchange, message recovery

attacks are as effective as key recovery attacks.

Based on attacker’s access to target’s input/output: Along this axis, we classify attacks into two categories: (1)

Known Ciphertext Attacks (KCA) and (2) Chosen Ciphertext Attacks (CCA). Known Ciphertext Attacks are those which

assume that the attacker only has knowledge of the ciphertexts (i.e.) ciphertexts generated from the target encapsulation

procedure or ciphertexts submitted to the target decapsulation procedure. In this setting, the attacker can only passively

observe the target device, while not being able to establish communication with it. For convenience and simplicity,

we also include attacks on the key-generation procedure in this category, where the attacker only has access to the

generated public keys. On the other hand, Chosen Ciphertext Attacks are those which assume the adversary’s capability

to establish communication with the target. This is applicable in a setting where the attacker can query the target

decapsulation device with chosen ciphertexts of his/her choice.

We adopt the following nomenclature to categorize the different types of SCA/FIA onKyber KEM: ⟨SCA/FIA⟩_⟨Attacker
Goal⟩_⟨Access to Inputs and Outputs⟩_⟨Attack Name⟩ where Attack Label refers to the unique label given to identify the
different attacks discussed in this paper. In the following, we present a brief survey of the various types of side-channel

attacks mounted on structured lattice-based KEMs, with main focus on attacks that are applicable to Kyber. We utilize

as reference, the algorithms of CPA secure Kyber PKE in Alg.1 and CCA secure Kyber KEM in Alg.2.

10 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

3.1 Key Recovery Attacks - Known Ciphertext Scenario (SCA_KR_KCA)

Key recovery attacks in the KCA setting typically target leakage from operations that directly manipulate the secret

module s within the decapsulatiom procedure. In this respect, the NTT based polynomial multiplication used in the

decryption procedure, has been shown to be exploitable for key recovery. Primas et al. [41] presented a template style

SCA targeting the NTT, relying on Soft-Analytical Side-Channel Attack (SASCA) based techniques [54] for key recovery.

They were able to recover the entire key in a single side-channel trace (Power/EM) from a Ring-LWE scheme running

on an ARM Cortex-M4 microcontroller. They target leakage from the operation INTT(û′ ◦ ŝ) (Line 26 in Alg.1) in the

decryption procedure. The goal is to recover its input (i.e.) û′ ◦ ŝ which leads to recovery of the secret key s.
The attack works in two phases. Firstly, a profiling phase is used to construct templates for intermediate operations

such as modular multiplication, loads and stores of the inputs and outputs of every butterfly operation in the INTT. In

the attack phase, these templates are matched with the corresponding segments in the attack trace, and the results

are combined using the well-known Belief Propagation (BP) algorithm [38] to recover the secret key. There are a few

downsides of this attack - (1) Requirement of an extensive profiling phase (with more than 100 million templates as

shown in [41]) (2) Detailed knowledge of the INTT’s implementation and (3) Requirement of relatively high SNR for

successful key recovery. We refer to the attacks targeting the NTT using the label NTT_Leakage.

There have also been reported side-channel attacks on other types of polynomial multipliers such as the Toom-Cook,

Karatsuba and the school-book polynomial multipler [6, 13, 33], used in other lattice-based KEMs such as Saber and

NTRU. However, these attacks are not relevant to Kyber as use of NTT is included in the algorithmic specification of

Kyber [5].

3.2 Message Recovery Attacks - Known Ciphertext Scenario (SCA_MR_KCA)

While the aforementioned attack focussed on key recovery, message recovery is also possible in a KCA setting. In this

setting, the attacker only has access to a single execution of the encapsulation/decapsulation procedure to perform

message recovery from the target ciphertext 𝑐𝑡 . These attacks can be split into two categories.

3.2.1 Targeting Message Encoding and Decoding Operation: Message recovery attacks have predominantly targeted

two operations that directly manipulate the sensitive message 𝑚 (i.e.) Encode operation in encryption (Line 20 of

CPA.Encrypt procedure in Alg.1) and Decode operation in decryption (Line 27 of CPA.Decrypt procedure in Alg.1).

Both the encoding and decoding operations manipulate the message one bit at a time, and this bitwise manipulation of

the sensitive message serves as the primary source of leakage for several reported attacks [3, 42, 51]. The first such

attack was demonstrated by Amiet et al. [3] targeting the message encoding operation in NewHope KEM, a Ring-LWE

based KEM on the ARM Cortex-M4 microcontroller. The difference in Hamming Weight of the message polyomial

coefficients (i.e.) m[𝑖] = ⌈𝑞/2⌋ for𝑚𝑖 = 1 and m[𝑖] = 0 for𝑚𝑖 = 0 could be easily distinguishable through SCA, thereby

enabling complete recovery of individual messge bits in a single trace. Subsequently, Sim et al. [51] generalized the

attack technique to target all lattice-based KEMs in the NIST standardization process including Kyber KEM on the same

platform.

Subsequently, Ravi et al. [42] presented novel attacks that exploit leakage from the message decoding operation

in the decryption procedure for message recovery. Though they demonstrated presence of leakage from individual

message bits, they were only able to obtain a success rate of 81% for recovering single message bytes of Kyber, while

a setup with higher SNR could potentially perform perfect single trace message recovery. We refer to these attacks

targeting the encoding/decoding procedure together using the label Encode_Decode_Leakage.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 11

3.2.2 Targeting NTT operation: Pessl et al. [39] demonstrated that the NTT operation can also be targeted for message

recovery. Their idea was to recover the input to the NTT instance over the ephemeral secret r (Line 17) whose knowledge
can be used to recover the message𝑚 from the ciphertext 𝑐𝑡 . They also proposed significant improvements to the

original attack of Primas et al. [41], by reducing the number of templates from 1 million to just 213 templates, while

also presenting several improvements such as relying on an improved BP algorithm for message recovery. This attack

was also shown to be applicable to masking countermeasures, albeit in the presence of a high SNR. We use the same

label NTT_Leakage to refer to the aforementioned attack targeting the NTT in a KCA setting for message recovery.

In the following, we shift focus to key recovery and message recovery attacks that can be performed in a chosen-

ciphertext setting.

3.3 Key Recovery Attacks - Chosen Ciphertext Scenario (SCA_KR_CCA)

Kyber KEM is IND-CCA secure, and therefore enjoys concrete theoretical security guarantees against classical chosen-

ciphertext attacks. This is primarily due to the attacker’s inability to access any information about sensitive intermediate

variables in the decapsulation procedure for malicious and handcrafted chosen ciphertexts. However, several works

have shown that the attacker can craft chosen-ciphertexts, which when decapsulated have the ability to amplify

secret-dependent leakage, from several operations within the decapsulation procedure. In the following, we discuss the

different types of CCAs that have been mounted for key recovery.

3.3.1 Side-Channel Oracle Based Attacks: This forms the major category of key recovery attacks in the CCA setting.

Their modus operandi is given as follows: The attacker queries the decapsulation procedure with handcrafted ciphertexts.

These ciphertexts are crafted such that the decrypted message𝑚′ is very closely related to a targeted portion of the

secret key, or in a few cases, the entire secret key. The attacker utilizes leakage from operations processing the decrypted

message to recover the same, thereby realizing a practical side-channel oracle. Such information obtained over several

carefully crafted ciphertexts, reveals the full secret key. Following are the three major sub-categories of side-channel

oracle based CCAs.

Plaintext-Checking Oracle-Based SCA: The core idea of these attacks is to construct ciphertexts, so as to restrict

the number of possibilites of the decrypted message. Moreover, the value of the decrypted message also depends upon a

single targeted coefficient of the secret key, for the chosen-ciphertexts. Side-channel leakage from operations processing

the message are used to instantiate a Plaintext-Checking (PC) oracle for key recovery. D’Anvers et al. [18] presented PC

oracle-based SCA on PQC schemes such as LAC and RAMSTAKE exploiting the timing-side channel from non-constant

time error correcting codes. Subsequently, Ravi et al. [49] generalized the attack using the EM side-channel to all

LWE/LWR-based KEMs in the second round of the NIST process, including Kyber KEM. We now briefly the same attack

on Kyber KEM. Referring to Alg.1, the attacker chooses a very sparse ciphertext 𝑐𝑡 = (u, v) ∈ (𝑅𝑘𝑞 × 𝑅𝑞) as follows:

u𝑖 =

𝑈 · 𝑥0

if 𝑖 = 0,

0 if 1 ≤ 𝑖 ≤ 𝑘 − 1

(4)

v = 𝑉 · 𝑥0
(5)

12 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

where (𝑈 ,𝑉) ∈ Z+. For this chosen-ciphertext, each bit of the decrypted message𝑚′ (i.e.)𝑚′
𝑖
for 𝑖 ∈ [0, 𝑛 − 1] is given

as:

𝑚′𝑖 =

Decode(𝑉 −𝑈 · s0 [0]), if 𝑖 = 0

Decode(−𝑈 · s0 [𝑖]), for 1 ≤ 𝑖 ≤ 𝑛 − 1

(6)

Thus, every bit𝑚′
𝑖
is only dependent on a single corresponding secret coefficient of s0 (i.e.) s0 [𝑖]. The attacker can

chooses tuples (𝑈 ,𝑉) such that:

𝑚′𝑖 =

F (s0 [0]), if 𝑖 = 0

0, for 1 ≤ 𝑖 ≤ 𝑛 − 1

(7)

Now,𝑚′ can only take two possible values (i.e.)𝑚′ = 0/1, whose value depends upon a single secret coefficient s0 [0].
Thus,𝑚′ = 0/1 for different tuples (𝑈 ,𝑉) can be used as a binary distinguisher for every possible candidate of s0 [0]. In
the similar manner, complete secret key can be recovered one at a time, by appropriate modifying the chosen-ciphertexts.

Instantiating an oracle to distinguish𝑚′ = 0/1 through power/EM side-channels can be done using a single trace, as

shown by Ravi et al. [49]. This is because a single-bit difference in𝑚′ uniformly randomizes all subsequent operations

after decryption due to the use of hash functions in the decapsulation procedure (Line 18 in Alg.2).

Since the attack recovers binary information in every query, full key recovery can be done in ≈ 2𝑘 − 4𝑘 queries

across all the parameter sets of Kyber KEM. One of the main advantages is that, the attack can exploit leakage from the

entire re-encryption procedure (Line 19), and thus can work in a low SNR setting and low-cost SCA equipment. We

refer to this attack using the label PC_Oracle.

Decryption-Failure Oracle-Based SCA: This category of attacks work by querying the decapsulation device with carefully

perturbed ciphertexts, such that the induced decryption failures due to the perturbations, depend upon the secret key.

A side-channel oracle that is able to detect the decryption failures can therefore recover the secret key. The first such

SCA based decryption failure oracle attack was proposed by Guo et al. [26] on Frodo KEM, exploiting the non-constant

time execution of the ciphertext comparison operation to detect decryption failures. Subsequently, Bhasin et al. [11]

generalized the attack to Kyber KEM and demonstrated that power/EM side-channel leakage from the ciphertext

comparison block can be used to detect decryption failures for key recovery.

We briefly explain the same attack on Kyber KEM. The attacker generates a valid ciphertext 𝑐𝑡 = (u, v) for a message

𝑚 and adds single coefficient errors to the second component v (e.g.) v∗ = v + 𝑒 · 𝑥0
(adding error to the first coefficient)

where 𝑒 ∈ Z. This has the effect of perturbing m′[0], by increasing the noise d[0] by 𝑒 (i.e.) d′[0] = d[0] + 𝑒 . As long
as ∥d′[0] ∥ < 𝑞/4, it results in correct decryption (i.e.)𝑚′ =𝑚. However, if the perturbation results in ∥d′[0] ∥ > 𝑞/4,
then it flips the corresponding message bit𝑚′

0
, resulting in a decryption failure. The size of 𝑒 that triggers a decryption

failure provides information about the original noise d[0]. Since the noise d in the message polynomial is linearly

dependent on the secret s (Eqn.3), enough information about s results in full key recovery.

Several recent works [21, 28] have shown that simply recovering the sign of d[0] (i.e.) d[0] > 0 or d[0] < 0 for

several valid ciphertexts (≈ 5𝑘 − 7𝑘), is sufficient to fully recover the secret key. A decryption failure can be easily

identified using side-channel leakage from any operation within the re-encryption procedure (Line 18 in Alg.2) as well

as the ciphertext comparison operation (Line 21). Bhasin et al. [11] and D’Anvers et al. [21] particularly targeted leakage

from the ciphertext comparison operation (Line 21) and were also able to break flawed masked implementations of the

ciphetext comparison operation [7, 37]. We refer to these attacks using the label DF_Oracle.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 13

Full-Decryption Oracle-Based SCA: While the aforementioned PC_Oracle and DF_Oracle attacks only extract binary

information in every query, it raises a natural question if it is possible to instantiate a more powerful oracle to obtain

more than binary information about the decrypted message. In this respect, Xu et al. [56] proposed a novel techinque

to construct chosen ciphertexts which simultaneously provide 256 bits of information about the secret key s. They
construct 𝑐𝑡 = (u, v) ∈ (𝑅𝑘𝑞 × 𝑅𝑞) such that

u𝑖 =

𝑈 · 𝑥0

if 𝑖 = 0,

0 if 1 ≤ 𝑖 ≤ 𝑘 − 1

(8)

v = 𝑉 · (
𝑖=𝑛−1∑
𝑖=0

𝑥𝑖) (9)

where (𝑈 ,𝑉) ∈ Z+. The attacker can choose tuples (𝑈 ,𝑉) such that the decrypted message is nothing but

𝑚′𝑖 =
{
F (s0 [𝑖]), if 0 ≤ 𝑖 ≤ 𝑛 − 1 (10)

where every message bit𝑚′
𝑖
is dependent upon the corresponding secret coefficient of s0 (i.e.) s0 [𝑖]. Moreover, attacker

can choose (𝑈 ,𝑉) such that every message bit𝑚′
𝑖
uniquely identifies corresponding secret coefficient s0 [𝑖]. In this

manner, the attacker has effectively parallelized the PC_Oracle attack. Since key recovery requires access to the complete

decrypted message (i.e.) full decryption oracle, Xu et al. [56] proposed to exploit leakage from the message encoding

operation during re-encryption (Line 20 in Alg.2), which can be used to recover 256 bits in a single trace.

Thus, full key recovery is possible in only 6 queries for Kyber512. Similarly, Ravi et al. [42] and Ngo et al. [35, 36]

demonstrated the possibility of exploiting leakage from the message decoding operation in a chosen-ciphertext setting

for full key recovery, in approximately 6 − 20 traces from schemes such as Kyber and Saber. We refer to these attacks

using the label FD_Oracle. In essence, the PC_Oracle, DF_Oracle FD_Oracle attacks demonstrate that an attacker can

utilize chosen-ciphertexts to extract leakage from different operations within the decapsulation procedure for key

recovery. Table 1 lists side-channel assisted CCAs on IND-CCA secure LWE/LWR-based schemes by their oracle types.

Table 1. Classification of side-channel assisted CCAs on IND-CCA secure LWE/LWR-based schemes according to oracle type. The
anchor variable is denoted by anchor and𝑚𝑥 , with or without subscript, is the decrypted message.

Type of Oracle Oracle Response

Plaintext-Checking (PC) 𝑚′ ∈ {𝑚0,𝑚1}
Decryption-Failure (DF) 𝑚′ ∈ {𝑚

valid
,𝑚

invalid
}

Full-Decryption (FD) 𝑚′ =𝑚

3.3.2 Targeting NTT in a CCA Scenario. While leakage from NTTs have been used for message recovery and key

recovery in a KCA setting in [39, 41], these attacks rely on relatively low-noise measurements for successful key recovery.

Specifically, these attacks could only tolerate a noise with standard deviation 𝜎 in the range 0.5− 0.7. Recently, Hamburg

et al. [27] demonstrated that the sensitivity of these attacks to SNR can be significantly improved in a chosen-ciphertext

setting. Their idea was to craft chosen-ciphertexts so as to feed a sparse input (û′ ◦ ŝ) to the INTT instance in the

decryption procedure (Line 26 in Alg.1). This reportedly improves the effectiveness of the BP algorithm, by allowing

more noise in the measurements, even when targeting masked implementations. They demonstrate a range of key

14 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

recovery attacks with trace complexity ranging from 𝑘 to 2𝑘 where 𝑘 is the dimension of the module in Kyber KEM

(𝑘 = {2, 3, 4}). The improved attack can tolerate much more noise with 𝜎 ≤ 2.2, thereby demonstrating significant

improvement in NTT attacks when performed in a chosen-ciphertext setting. We refer to the attacks targeting the NTT

using the label NTT_Leakage.

3.4 Message Recovery Attacks - Chosen Ciphertext Scenario (SCA_MR_CCA)

We recall that the message recovery attacks targeting the message encoding and decoding operations are capable of

recovering the entire message in a single trace in a known-ciphertext setting [3, 42, 51]. However, these attacks can

be thwarted using a simple shuffling countermeasure, which randomize the order of encoding/decoding of the single

message bits. While shuffling does not remove the source of side-channel leakage, the attacker cannot recover the

correct order of message bits, thereby thwarting single-trace message recovery. However, Ravi et al. [42] showed that

an attacker can break the shuffling countermeasure in a chosen-ciphertext setting, utilizing the ciphertext malleability

property of LWE/LWR-based schemes.

We briefly describe their attack on the shuffling countermeasure, which recovers the message one bit at a time. Given

a target ciphertext 𝑐𝑡 = (u, v), the attacker first submits 𝑐𝑡 to the decapsulation procedure to recover the individual

message bits of𝑚′ through side-channels and subsequently computes its Hamming Weight (HW). Subsequently, the

attacker submits a perturbed ciphertext 𝑐𝑡∗ = (u, v + 𝑞/2 · 𝑥0) (i.e.) 𝑞/2 added to the first coefficient of v. This has the
effect of flipping the first message bit𝑚′

0
, resulting in a perturbed message𝑚′′. The difference in the HW of𝑚′ and𝑚′′

(increase or decrease) can be used to recover the value of the flipped message bit𝑚0. In this way, complete message

recovery is possible in 257 queries for Kyber KEM. Recently, Ngo et al. [36] extended the same attack to also break

the combined shuffling and masking countermeasure for the message decoding operation in Saber. Here again, we

can clearly observe the increase in attacker’s capability to perform improved attacks in a chosen-ciphertext setting ,

compared to the known-ciphertext setting. We refer to these attacks targeting the protected message encoding/decoding

procedure using the label Protected_Encode_Decode_Leakage.

4 FAULT-INJECTION ATTACKS ON KYBER KEM

In this section, we present a brief survey of the fault injection attacks on structured lattice-based KEMs, with main

focus on attacks that are applicable to Kyber.

4.1 Key Recovery and Message Attacks - Known Ciphertext Scenario (FIA_KR_KCA and FIA_MR_KCA)

This category covers attacks on the key-generation and encapsulation procedure, where the attacker can only observe

faulty outputs from the target. Ravi et al. [48] proposed the first practical fault attack applicable to lattice-based KEMs

such as Kyber, NewHope and Frodo. Their attack stems from the observation that the seed used to sample the secret

and errors for the LWE instances only differ by a single byte (i.e.) s and e are sampled from the same seed 𝑠𝑒𝑒𝑑𝐵 , but

with different nonces 𝑐𝑜𝑖𝑛𝑠𝑠 and 𝑐𝑜𝑖𝑛𝑠𝑒 which only differ by a single byte (Line 5,6 in CPA.KeyGen of Alg.1). The same

is also applicable to the encryption procedure (Line 14,15). Thus, the attacker can use faults to force nonce reuse (i.e.)

𝑐𝑜𝑖𝑛𝑠𝑠 = 𝑐𝑜𝑖𝑛𝑠𝑒 , to create LWE instances of the form, t = A · s+ s = A · (s+ 1), that can be trivially solved using Gaussian

elimination. The authors demonstrated practicality of nonce-reuse using Electromagnetic Fault Injection (EMFI) on the

ARM Cortex-M4 microcontroller. While the attack leads to full key recovery and message recovery in a Man In The

Middle (MITM) setting, it requires to inject multiple targeted faults in the key-generation and encapsulation procedure

for practical attacks. We refer to this attack using the label Nonce_Reuse.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 15

Valencia et al. [53] performed a more general study of the susceptibility of CPA secure LWE/LWR-based schemes to

fault attacks. They propose a variety of attacks targeting several operations within key-generation, encryption and

decryption procedures. However, their simulated attacks consider fault models such as zeroization of entire polynomials,

which is hard to achieve in practice. Moreoever, their attack on the decryption procedure only applies to CPA secure

Kyber PKE, and thus is not applicable to CCA secure Kyber KEM.

In the following, we discuss key recovery attacks targeting the decapsulation procedure with chosen-ciphertexts,

which form the major category of FIA on Kyber KEM.

4.2 Key Recovery Attacks - Chosen Ciphertext Scenario (FIA_KR_CCA)

One of the main challenges of targeting the decapsulation procedure through faults is that, it contains an inherent

protection against faults (i.e.) FO transform to detect invalid ciphertexts with a very high probability. This appears as a

natural protection, and therefore presents a significant challenge to perform FIA.

4.2.1 Targeting Ciphertext Equality Check. One obvious target within the decapsulation procedure is to simply skip the

ciphertext equality check through faults (Line 21 in Alg.2). Recently, Xagawa et al. [55] surveyed optimized software

implementations of several PQC schemes on the ARM Cortex-M4 microcontroller and identified that the CCA security of

several schemes including Kyber can be easily broken through a single targeted fault. We analyzed the implementation

of ciphertext equality check operation within the software implementation of Kyber KEM from the pqm4 library [29].

An array 𝑇 holds the sensitive pre-shared secret
¯𝐾 ′ derived from the decrypted message𝑚′ after decryption (Line 19 of

CCA.Decaps in Alg.2). If ciphertext comparison fails (invalid/malicious ciphertext), a pseudo-random value 𝑧 is written

into 𝑇 susing a conditional move operation (Line 22). Subsequently, 𝑇 is used to derive the final shared secret 𝐾 (Line

24).

Thus, the decapsulation procedure writes the sensitive pre-shared secret onto 𝑇 (assuming successful decapsulation),

before checking the validity of the ciphertext. Thus, simply skipping the subsequent conditional move operation ensures

that the sensitive pre-shared secret
¯𝐾 ′ is used to generate the shared secret 𝐾 , even upon failure of the ciphertext

comparison operation. Xagawa et al. showed that the aforementioned vulnerability can be exploited through simple

clock glitches and can subsequently lead to key recovery in a few thousand queries, through a chosen-ciphertext

attack [49]. We refer to this attack using the label Skip_CT_Compare.

4.2.2 Fault Assisted CCAs. Barring the ciphertext equality check, there are no other trivial fault targets within the

decapsulation procedure. However, Pessl and Prokop [40] recently proposed the first generic fault assisted CCA, which

works by injecting targeted faults within the message decoding operation within decryption, such that the resulting

success/failure of decapsulation can be used to infer critical information about the secret key.

We briefly describe the main idea of their attack. The attacker submits a valid ciphertext 𝑐𝑡 for decapsulation, and

injects a single fault to skip the addition with 𝑞/2 during decoding of a single message polynomial coefficient m′[𝑖]
(Refer Fig.1 for the message decoding routine). This has an indirect effect of perturbing m′[𝑖] approximately by 𝑞/4.
This results in a flip of𝑚′

𝑖
(decapsulation failure) only when the corresponding coefficient of the noise component

d[𝑖] < 0. However, there is no change in the𝑚′
𝑖
when d[𝑖] ≥ 0. This helps the attacker build a single linear inequality

using d[𝑖], and the attacker who is able to build 5𝑘 − 7𝑘 such linear inequalities can perform full key recovery over

Kyber KEM. While the attack was demonstrated using clock glitching on the ARM Cortex-M4 microcontroller, the

attack requires to still inject a targeted skipping fault in the message decoding procedure. Thus, this attack can be

thwarted by simply shuffling the message decoding operation.

16 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

Subsequently, Hermelink et al. [28] proposed improvements to the attack of Pessl and Prokop [40], by adopting a

slightly different approach. Instead of using a valid ciphertext 𝑐𝑡 , they propose to submit perturbed ciphertexts, such

that a single coefficient of the second ciphertext component v[𝑖] is perturbed by 𝑞/4. Upon submitting the perturbed

ciphertext, a fault is injected after decryption, to correct the single-bit perturbation in the ciphertext stored in memory.

If the introduced perturbation resulted in correct decryption (d[𝑖] ≥ 0), then the injected fault corrects the perturbation

in the ciphertext ensuring successful decapsulation. However, if the initial perturbation resulted in a decryption failure

(d[𝑖] < 0), then it results in decapsulation failure, even after correcting the perturbation in the stored ciphertext through

faults. This information obtained about d over 5𝑘 − 7𝑘 such queries can recover the full secret key.

Unlike the attack of Pessl and Prokop, the attack of Hermelink et al. [28] does not have any timing constraints for

fault injection, as it only needs to inject a bit-flip fault in memory, anytime between the decryption and ciphertext

comparison operation. However, injecting precise single bit-flip faults in memory requires detailed information about

the target device as well as the implementation, and an extensive profiling of the target device. More recently, Del-

vaux [19] improved the attack of Hermelink et al. [28] by expanding the attack surface to several operations within the

decapsulation procedure, while also working with a variety of more relaxed fault models such as arbitrary bit flips,

set-to-0 faults, random faults and instruction skip faults. However, attacks relying on a relaxed fault model could require

more than 100𝑘 chosen-ciphertext queries for full key recovery, depending upon the practicality of the fault model. We

refer to all the aforementioned attacks, together using the label Fault_Assisted_CCA.

Putting all the aforementioned SCA and FIA together, Please refer Fig.2 for compilation of the reported SCA and FIA

on Kyber KEM, as well as those applicable to the same.

5 PROTECTING KYBER KEM AGAINST SCA/FIA

In the previous section, we have presented a detailed survey of the various SCA and FIA on Kyber KEM. In this section,

we attempt to present a range of customized countermeasures that can be used to protect against the aforementioned

attacks.

5.1 Protection Against SCA/FIA Assisted CCA

We observe that SCA and FIA performed in a chosen-ciphertext setting form the major category of attacks on Kyber

KEM. With respect to protection against SCA, masking is widely considered to offer concrete protection, especially

against multi-trace attacks. However, masking lattice-based schemes in practice has several shortcomings, which might

affect its adoption in real-world applications. Firstly, masking the decapsulation procedure imposes a significant penalty

on performance (speed), as clearly shown by several works [10, 14]. Bos et al. [14] papered a 3.5× increase in runtime

for a first-order masked decapsulation for Kyber KEM on the ARM Cortex-M4, while Beirendonck et al. [10] papered a

2.5× increase in runtime for Saber KEM on the same platform.

Secondly, masking is not foolproof in practice, as shown by Ngo et al. [35] who proposed a side-channel attack on

a first-order masked implementation of Saber KEM, which breaks with an incremental attacker’s effort compared to

attack on an unprotected implementation [42]. Moreover, Bhasin et al. [11] and D’Anvers et al. [21] have demonstrated

practical attacks exploiting flaws in different masking schemes [7, 37] for the ciphertext comparison operation. Thus,

designing a flawless masking scheme for different operations within the decapsulation procedure, appears to be

tricky in practice. Thirdly, it is not clear which order of masking protection is required to achieve security in a given

setting, especially given that the cost of masking significantly increases with order of protection. Finally, masking is a

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 17

Key
Recovery

(KR)

Message
Recovery

(MR)

Known Ciphertext Attack (KCA) Chosen Ciphertext Attack (CCA)

NTT_Leakage [41]

Encode_Decode_Leakage [3,42,51]
NTT_Leakage [39]

PC_Oracle [18, 49]
DF_Oracle [11, 21, 26]

FD_Oracle [35, 36, 42, 56]
NTT_Leakage [27]

Shuffled_Encode_Decode_Leakage [36, 42]

Attacker Goal

Access to Target’s
Inputs/Outputs

(a) Side-Channel Attacks (SCA) on Kyber KEM

Nonce_Reuse [48]

Nonce_Reuse[48]

Skip_CT_Compare [55]
Fault_Assisted_CCA [19, 28, 40]

Key
Recovery

(KR)

Message
Recovery

(MR)

Known Ciphertext Attack (KCA) Chosen Ciphertext Attack (CCA)

Attacker Goal

Access to Target’s
Inputs/Outputs

(b) Fault-Injection Attacks (FIA) on Kyber KEM

Fig. 2. Compilation of the reported SCA and FIA on Kyber KEM, as well as those applicable to the same.

SCA countermeasures, and thus does not offer protection against fault attacks (FIA_KR_CCA [40]), thus additional

countermeasures are required for simultaneous protection against both SCA and FIA.

Thus, in this work, we propose an alternate approach to protect against SCA and FIA assisted CCA. Our approach

relies on a detection strategy, to test/detect whether a received ciphertext is malicious. If detected as malicious, the

target can simply reject the ciphertext and change/refresh the public-private key pair by re-running the key-generation

procedure. An advantage of this approach is that upon detection, further exposure of the secret key is prevented. While

such a protection is already available in the decapsulation procedure, in form of the FO transform, the minimum number

of decapsulation failures that can be tolerated before refreshing the secret key is not clear. Moreover, the FO transform

cannot distinguish between a genuinely invalid ciphertext (due to errors in communication) or a maliciously crafted

ciphertext. Thus, we argue that a more concrete approach to identify malicious ciphertexts used for CCA is required. In

the following, we propose two detection countermeasures against the proposed CCAs for Kyber KEM.

5.1.1 Ciphertext Sanity Check. A close observation of the ciphertexts used in the PC_Oracle-based CCA (Eqn.9) and

FD_Oracle-based CCA (Eqn.9) reveal that most of the coefficients of the ciphertext have a fixed value of 0. However, the

18 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

coefficients of a valid ciphertext are uniformly distributed in the range [0, 𝑞], given that both ciphertext components

are essentially LWE instances. We therefore propose to perform a statistical analysis of the ciphertext, before being

used within the decryption procedure. While this countermeasure was also proposed by Xu et al. [56], a concrete

mathematical analysis and implementation of the same is not presented.

We choose to rely on the mean and standard deviation of the ciphertext coefficients, as the statistical measures

to detect the skew in the received ciphertext. For a given polynomial x ∈ 𝑅𝑞 , we denote the mean (`) and standard

deviation (𝜎) of the coefficients of x as ` (x) and 𝜎 (x) respectively. We performed empirical simulations to calculate

the mean and standard deviation of ` (u) and 𝜎 (u) for single polynomials of the ciphertext component u, as well as
` (v) and 𝜎 (v) for the ciphertext component v, corresponding to valid ciphertexts of Kyber KEM. Refer below for the

obtained values for the mean and standard deviation of all 4 of the statistical metrics.

(` (` (u)), 𝜎 (` (u))) = (1663, 60)

(` (𝜎 (u)), 𝜎 (𝜎 (u))) = (959, 27)
(11)

(` (` (v)), 𝜎 (` (v))) = (1560, 60)

(` (𝜎 (v)), 𝜎 (𝜎 (v)) = (957, 27)
(12)

Based on the standard deviation 𝜎 for each of these metrics, the designer can choose an acceptable range for each

of these 4 metrics. For example, if a tail length of 6 · 𝜎 is chosen, then the acceptable range for ` (u) is [` (` (u)) +
6 · 𝜎, ` (` (u)) − 6 · 𝜎]. Smaller the acceptable range, higher is the possiblity of false positives (i.e.) detecting a valid

ciphertext as invalid. However, a large acceptable range increases the chances of false negatives, thereby resulting in

acceptance of skewed malicious ciphertext as valid.

We deduced through empirical simulations that a tail of length 6𝜎 for both mean and standard deviation leads to a

probability of ≈ 2
−22

for rejection of a valid ciphertext. The implementor/designer can choose an appropriate range,

based on the tolerance to allow false positives and rejection of valid ciphertexts. We henceforth refer to this as the

CT_Sanity_Check countermeasure in this paper. One can also include other kinds of checks such as checking the

number of zero coefficients in the received ciphertext, which can enhance confidence in the detection mechanism.

While this countermeasure is capable of detecting skewed ciphertexts, chosen-ciphertexts used in the DF_Oracle-

based CCA [11] as well as those used in the Fault_Assisted_CCA attacks [19, 28, 40] are uniformly in random. This is

because these attacks involve addition of small errors to a single coefficient of a valid ciphertext. This does not introduce

a detectable skew in the coefficients, thereby defeating the CT_Sanity_Check the countermeasure. In the following,

we propose a novel countermeasure that is also capable of defeating CCA utilizing chosen ciphertexts with uniformly

random cofficients.

5.1.2 Message Polynomial Sanity Check. This countermeasure relies on analysing the coefficients of the noisy message

polynomialm′ = (v′−u′ ·s) obtained during decryption of the received ciphertext 𝑐𝑡 (Line 26 ofCPA.Decrypt procedure
in Alg.1). For valid ciphertexts, we observe that the coefficients of the m′ are distributed according to a very narrow

Gaussian distribution near 𝑞/2 or 0 (i.e.) m[𝑖] = 𝑞/2 ± 𝛿 for𝑚𝑖 = 1 and m[𝑖] = 0 ± 𝛿 for𝑚𝑖 = 0

m[𝑖] =

𝑞/2 ± 𝛿 if𝑚𝑖 = 1,

0 ± 𝛿 if𝑚𝑖 = 0

(13)

where 𝛿 ≪ 𝑞 ∈ Z+. The span 𝛿 depends upon the distribution of the noise component d (Eqn.3). We performed empirical

simulations and estimated a mean of 0 and a standard deviation 𝜎 = 79 for the noisy message polynomial coefficients

clustered around 0 and 𝑞/2.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 19

However, we observe that this distribution is notmaintained in case of theDF_Oracle-based CCA and Fault_Assisted_CCA

attacks. While the fault attack of Pessl et al. [40] adds 𝑞/4 to m′[𝑖] through faults, the attacks of [11, 19, 28] explicitly

add 𝑞/4 to the targeted coefficient of the valid ciphertext. Thus, all these attacks work by directly/indirectly adding 𝑞/4
to one of the targeted coefficients of the message polynomial m′[𝑖]. This ensures that atleast one message polynomial

(i.e.) m′[𝑖] is not within the expected range, corresponding to that of a valid ciphertext.

Based on this observation, we propose to test the distribution of the message polynomial coefficients for the received

ciphertext. Let the acceptable range be (𝑞/2 ± 𝐿 · 𝜎) and (0 ± 𝐿 · 𝜎) where 𝐿 ∈ Z+ is left to the designer’s choice. Larger

the acceptable range 𝐿 · 𝜎 , smaller is the probability of flagging a valid ciphertext (false positive). However, choosing a

smaller range raises the chances of missing detection of a malicious chosen-ciphertext. Thus, it is important to choose a

conservative value for 𝐿 for improved security. For 𝐿 = 6 and we were not able to observe a false positive for more than

2
25

valid decapsulations.

If there is atleast one coefficient outside this acceptable range, then we simply flag the ciphertext as valid, and refresh

the public-private key pair. We observe that this countermeasure requires to decrypt atleast one chosen-ciphertext

for successful detection, however the CCAs in interest require atleast a few tens to few thousand queries for key

recovery. Thus, we argue that allowing a single decapsulation of the chosen-ciphertext is not useful for the attacker.

We henceforth refer to this countermeasure asMessage_Poly_Sanity_Check throughout this paper. It is important to

note that, apart from the oracle-based attacks, this countermeasure is also capable of protection against the attack of

Hamburg et al. [27], targeting the NTT leakage in a chosen-ciphertext setting.

5.2 Protecting Ciphertext Comparison

We propose two levels of protection for the ciphertext comparison operation, targeted by the Skip_CT_Compare attack

of Xagawa et al. [55]. In the first level, we add protection against skipping the ciphertext comparison operation (Line

21 in Alg.2), for which we utilize a dynamic loop counter to keep track of the number of compared cipherext bytes

in the ciphertext comparison operation. If the number of ciphertext bytes to be compared is 𝑑 , then the loop counter

𝑙 is initialized with a random value 𝑘 · 𝑑 where 𝑘 ∈ Z+ is randomly chosen in every execution. Subsequently, 𝑙 is

decremented by 𝑘 for every ciphertext byte compared. Thus, 𝑙 = 0 after ciphertext comparison provides assurance that

all bytes were compared. The use of such a dynamic loop counter (with a variable initial value), adds an extra layer of

protection against higher order fault attacks that also attempt to fault the loop counter.

To protect against skipping of the conditional move operation (Line 22), we ensure that the pre-shared secret
¯𝐾 ′ is

written into a temporary variable 𝑡𝑚𝑝 (initialized with a random value), instead of 𝑇 . ¯𝐾 ′ is copied into 𝑇 if ciphertext

comparison succeeds (𝑙 = 0), else 𝑧 is copied into 𝑇 upon failure of ciphertext comparison. The check of whether

(𝑙 = 0) is done for every byte copied into 𝑇 . This simple implementation fix ensures that skipping the conditional move

operation does not reveal any information about the pre-shared secret
¯𝐾 ′ for invalid ciphertexts, thereby thwarting

key recovery. We refer to the aforementioned fixes together as Protect_CT_Compare countermeasure throughout this

work.

5.3 Protecting the Message Encoding/Decoding Operation

SCA targeting the message encoding (Encode) and decoding procedures (Decode) are very potent, given that an attacker

can perform message recovery in a single trace [3, 42, 51]. Moreover, leakage from these operations can also be utilized

as a FD oracle for for key recovery [56]. Ravi et al. [42] showed that shuffling countermeasure for the message encoding

and decoding operations can be broken in a static-key setting through CCA, in a few hundred to few thousand queries

20 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

and Ngo et al. [36] also demonstrated break of the combined shuffling and masking scheme in the same manner. Though

shuffling does not offer concrete protection, it reasonably increases the attacker’s effort to perform message recovery as

shown in [36]. Moreover, in an ephemeral setting, shuffling provides concrete protection, as all the aforementioned

attacks require a few hundred to few thousand queries for message recovery [42]. Thus, we implement the shuffling

countermeasure for the encoding and decoding operations of Kyber KEM. We henceforth refer to this countermeasure

as Shuffle_Encode_Decode in this paper.

5.4 Protecting the NTT

SCA targeting the NTT are capable of performing key recovery and message recovery in a single trace [39, 41]

or very few traces [27] (NTT_Leakage attacks). Ravi et al. [47] proposed a range of generic shuffling and masking

countermeasures with varying granularity for the NTT to protect against the aforementioned single trace attacks.

Shuffling the order of butterfly operations within the NTT serves as a strong countermeasure against the single trace

attacks targeting the NTT operation. They proposed a range of generic shuffling countermeasures for the NTT - which

provide a well-defined trade-off between the shuffling entropy (security) and performance. Based on the perceived

level of threat from a potential attacker and acceptable performance, the designer can choose the appropriate shuffling

countermeasure for the NTT operation.

They also propose randomization of the twiddle factors within the NTT as a potential countermeasure against

single trace attacks on the NTT. The basic idea is to multiplicatively mask the twiddle constants, such that the twiddle

constants within the NTT are randomized. This has the effect of randomizing the internal computations within the

NTT, while also ensuring that the attacker cannot build templates for multiplication with known twiddle constants in

the butterfly operation. They propose a range of generic masking countermeasures which also establish a well-defined

trade-off between security and performance against single trace attacks. For more details, we refer to [47] for the

proposed masking and shuffling countermeasure for the NTT. We refer to all the aforementioned countermeasures

together as Shuffled_Masked_NTT throughout this paper.

5.5 Protecting the Sampling of Secrets and Errors

Ravi et al. [48] demonstrated that nonce-reuse can be induced through faults, in the key-generation and encryption

procedure of Kyber KEM, for key recovery and message recovery attacks respectively. Thus, a trivial protection against

this attack could be to perform redundant computation of the sampling procedure. While this does not completely offer

complete protection, it significantly increases the attacker’s complexity. We refer to this as the Redundant_Sample

countermeasure in this paper.

Putting it all together, refer Tab.2 for the tabulation of the presented countermeasures against reported SCA and

FIA on Kyber KEM. We observe that the presented countermeasures, together can be used to thwart all but one attack

(i.e.) SCA_MR_CCA_Protected_Encode_Decode_Leakage attack of Ngo et al. [36], which is a message recovery attack

done in a CCA setting. Since the attack utilizes invalid ciphertexts, the only concrete countermeasure is to refresh

the keys upon observing a certain number of decapsulation failures. While they required 257 × 𝑁 (𝑁 = 10) queries

for message recovery over Saber KEM, we anticipate that a similar number of queries might be sufficient to perform

message recovery over Kyber KEM.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 21

Table 2. Tabulation of the effectiveness of the presented countermeasures against reported SCA and FIA on Kyber KEM. We
utilize the following numbers to denote the different countermeasures - (1) Shuffled_Masked_NTT, (2) CT_Sanity_Check, (3)
Message_Poly_Sanity_Check (4) Protect_CT_Compare, (5) Shuffle_Encode_Decode, (6) Redundant_Compare

Attack
Countermeasure

(1) (2) (3) (4) (5) (6)

SCA

SCA_KR_KCA_NTT_Leakage [41] ✓ ✗ ✗ ✗ ✗ ✗

SCA_MR_KCA_Encode_Decode_Leakage [3, 42, 51] ✗ ✗ ✗ ✗ ✓ ✗

SCA_MR_KCA_NTT_Leakage [39] ✓ ✗ ✗ ✗ ✗ ✗

SCA_KR_CCA_PC_Oracle [18, 49] ✗ ✓ ✓ ✗ ✗ ✗

SCA_KR_CCA_DF_Oracle [11, 21] ✗ ✗ ✓ ✗ ✗ ✗

SCA_KR_CCA_FD_Oracle [35, 36, 42, 56] ✗ ✓ ✓ ✗ ✗ ✗

SCA_KR_CCA_NTT_Leakage [27] ✓ ✗ ✓ ✗ ✗ ✗

SCA_MR_CCA_Protected_Encode_Decode_Leakage [36] ✗ ✗ ✗ ✗ ✗ ✗

FIA

FIA_KR_KCA_Nonce_Reuse [48] ✗ ✗ ✗ ✗ ✗ ✓

FIA_MR_KCA_Nonce_Reuse [48] ✗ ✗ ✗ ✗ ✗ ✓

FIA_KR_CCA_Skip_CT_Compare [55] ✗ ✓ ✓ ✓ ✗ ✗

FIA_KR_CCA_Fault_Assisted_CCA [19, 28, 40] ✗ ✗ ✓ ✗ ✗ ✗

6 SIDE-CHANNEL AND FAULT-INJECTION ATTACKS ON DILITHIUM

In this section, we present a brief survey of the side-channel and fault injection attacks, that have targeted the Dilithium

signature scheme or those attacks, that are applicable to the same. We utilize the algorithm of Dilithium in Alg.3-4 for

our analysis.

6.1 Fault Injection Attacks on Dilithium

The signing procedure of Dilithium remains the main target of fault injection attacks, as the signing procedure utilizes

the long-term secret key 𝑠𝑘 to generate signatures. Among all the operations in the signing procedure, generation of

the primary signature component z = s1 · c + y (Line 24 in Alg.3) serves as an attractive target for fault injection attacks.

While both z and c are revealed as part of the signature, y is the ephemeral masking polynomial that is used to mask

the sensitive intermediate variable (s1 · c). We refer to s1 as the primary secret, since the knowledge of s1 is sufficient to

forge signatures of Dilithium, as shown in [46]. Injection of faults in any of the operations used to generate z, helps the
attacker derive a direct relation of the faulty signature z∗ with the primary secret s1, thereby naturally becoming a

target of several reported attacks [12, 16, 22].

6.1.1 Differential Fault Attacks (DFA). The deterministic variant of Dilithium has been target of different style fault

attacks, similar to that of deterministic ECC-based signature schemes [2, 8]. The first such attack was proposed by

Bruinderink and Pessl [16], whose attack only required a single random fault anywhere over a large window of ∼68%
of the execution time of the signing procedure, to recover the full secret key. They demonstrated their attack through

clock glitching on Deterministic Dilithium running on the ARM Cortex-M4 microcontroller. Refer [16] for more details

on the different operations that can be targeted using DFA for key recovery.

22 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

We briefly sketch below the main idea of this attack. The attacker lets the target generate a valid signature for a

message𝑚. Let the corresponding signature be z = s1 · c + y. Subsequently, he queries the target to sign the same

message𝑚, but now injects a random fault, so as to fault the computation of c to c∗, but while also ensuring the use
of same nonce y to generate the faulty signature z∗. The difference between the correct and faulty signature yields

Δz = s1 · Δc, which can be easily solved through Gaussian elimination to recover the secret s1. We refer to this attack

using the label Generic_DFA.

Subsequently, Ravi et al. [46] presented a practical skip-addition fault attack using EMFI on the implementation

of Deterministic Dilithium on the ARM Cortex-M4 microcontroller. They proposed to unmask single coefficients of

the nonce y by faulting the final addition operation of single coefficients of (s1 · c) with the nonce y (Line 24). If the

attacker faults the addition of the first coefficient of z (i.e.) z[0], then Δz yields the first coefficient of s1c (i.e.) s1c[0].
With enough faulty signatures (few hundred), the attacker can build a fully solveable linear system of equations, to

recover the complete secret s1. Since the attack relies on simple skipping faults, it is also possible to perform the attack

using low cost-FIA attack vectors such as clock-glitching or voltage-glitching. We refer to this attack using the label

Skip_Add.

The aforementioned DFA style attacks can only be applied on the deterministic variant, since the attacker requires

to induce the same computations in the target signing procedure across multiple executions. However, this is not

possible in the probabilistic variant, as the nonce y ∈ 𝑅ℓ𝑞 is sampled from random in each execution, thereby thwarting

differential analysis and therefore key recovery.

6.1.2 Loop Abort Fault Attacks. Espitau et al. [22] proposed a novel fault attack to directly target the nonce y in

Fiat-Shamir Abort based signature schemes such as GLP signature scheme [25]. They also practically validated their

attack through clock-glitching on the 8-bit Atmel XMEGA128 microcontroller. They propose to use faults to prematurely

abort the loop, that samples single coefficients of y (Line 19 in Alg.3), thereby resulting in generation of nonces with

low degrees. In other words, by skipping the loop that samples individual coefficients of y, one can ensure that the

remainining cofficients of y are unsampled, and there is a high chance that these unsampled coefficients have a value of

0. If so, the faulted signature z contains several coefficients which are nothing but the unmasked coefficients of the

product s1 · c. The authors show that a single targeted fault in the sampling procedure of y can result in full key recovery.

Though this attack was only demonstrated on the GLP signature scheme [25], this attack can potentially be applied to

Dilithium for full key recovery. Since this attack does not involve differential analysis, it is therefore applicable to both

the probabilistic and deterministic variants of Dilithium. We refer to this attack using the label Loop_Abort.

6.1.3 Attacks targeting the Verification Procedure. While the aforementioned attacks target the signing procedure, the

verification procedure could also serve as a good target for fault injection attacks. One of the main motivation being,

forceful acceptance of invalid signatures through faults, for any message of the attacker’s choice. However, to the best

of our knowledge, we are not aware of a practical fault attack targeting the verification procedure of Dilithium, or any

other related lattice-based signature scheme.

One of the obvious targets for fault injection is to simply skip the final comparison operation that decides the validity

of the received signatures. In particular, bypassing the comparison of the received challenge polynomial c with the

recomputed challenge polynomial c̄ (Line 6 in Alg.4) ensures successful signature verification. This attack is very

similar to the skipping attack demonstrated by Xagawa et al. [55], targeting the ciphertext comparison operation in the

decapsulation procedure. We refer to this attack using the label Verification_Bypass.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 23

6.2 Side-Channel Attacks on Dilithium

Compared to FIA, there have been relatively much fewer works on SCA over the Dilithium signature scheme. Existing

works have mainly targeted the polynomial multiplier used in Dilithium. The first side-channel attack in this direction

was proposed by Ravi et al. [45], who demonstrated a single-trace horizontal style DPA attack targeting the operation

s1 · c, implemented using the school-book polynomial multiplier. However, they only demonstrated a simulated attack

assuming idealized leakage models, and to some extent, evaluated the effect of leakage noise. Moreover, NTT is the

actual polynomial multiplication algorithm used in Dilithium, and thus this attack is no more applicable to the latest

implementations of Dilithium. Given that NTT is used for polynomial multiplication, theNTT_Leakage attacks proposed

in [39, 41] also become relevant for Dilithium, albeit with appropriate modifications. While proof of leakage from other

operations such as the rounding functions (LowBits, HighBits) and rejection sampling has been shown by Migliore

et al. [32], a full key recovery attack on Dilithium has not been performed, targeting any other operation within the

Dilithium signature scheme.

7 PROTECTING DILITHIUM AGAINST SCA/FIA

In this section, we present a range of countermeasures to protect against the different types of SCA/FIA mounted on

the Dilithium signature scheme.

7.1 Protection against DFA

A close observation of the faulty signatures generated by the Generic_DFA attacks in [16, 46] reveal that the generated

faulty signatures are invalid, which cannot be verified correctly. Thus, verifying the generated signatures serves

as a concrete countermeasure against such attacks. While the same countermeasure has been proposed in [16], its

overhead on the performance of the signing procedure has not yet been evaluated in any prior work. We refer to this

countermeasure as the Verify_After_Sign countermeasure for Dilithium. One of the downsides of this countermeasure

is that, it cannot detect faults that are injected directly in the sampling procedure of y (Line 19), such as the Loop_Abort

fault attack of y [22]. This is because the design of the signature scheme ensures that the authenticity of y cannot be

verified through the signatures. Thus, the sampling of y is required to be hardened by other dedicated countermeasures.

7.2 Protecting sampling of nonce y

The Loop_Abort fault attack targets the sampling of y, to create low-degree nonces to generate signatures. This requires
to perform an early abortion of the loop sampling single coefficients of y. This attack can thus be easily prevented

by simply assigning a loop counter to keep track of the number of sampling coefficients of y. This, ensures that an
attacker cannot simply skip the sampling of several coefficients. Moreover, a second level of protection can be added by

initializing y with random values, such that skipping of sampling of y still ensures that y contains non-zero random

values, thereby preventing the attack. A third level of protection can be added by validating the distribution of the

coefficients of the sampled y, similar to the CT_Sanity_Check countermeasure proposed for Dilithium. We refer to

these countermeasures that protect sampling of y against fault attacks together as the Protect_YGen countermeasure

for Dilithium.

24 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

7.3 Protecting the verification procedure

A preliminary analysis of the verification procedure of Dilithium from the pqm4 library [29] suggests that an at-

tacker can use a single skip fault to skip the verification of the computed challenge polynomial c with that of the

received polynomial (Line 44). Thus, we propose to use the same dynamic loop countermeasure proposed for Ky-

ber KEM (Protect_CT_Compare) to keep track of the number of coefficients of c that were successfully compared.

This helps protect against attacks that work by simply skipping the equality check operation. We refer to this as

Protect_Verify_Compare countermeasure for Dilithium.

7.4 Protecting the NTT

Since Dilithium utilizes NTT for polynomial multiplication, the NTT_Leakage attacks mounted on Kyber KEM are also

applicable to Dilithium. We implement the shuffling and masking countermeasures proposed by Ravi et al. [47] for

those NTT instances over the sensitive variables y, s1, s2 and t0 in the signing procedure of Dilithium. We refer to all

the aforementioned countermeasures together as Shuffled_Masked_NTT throughout this report.

Putting it all together, refer Tab.3 for the tabulation of the presented countermeasures against reported SCA and FIA

on Dilithium. We observe that the presented countermeasures, together can be used to thwart all the reported attacks

on Dilithium.

Table 3. Tabulation of the effectiveness of the presented countermeasures against reported SCA and FIA on Dilithium
signature scheme. We utilize the following numbers to denote the different countermeasures - (1) Shuffled_Masked_NTT, (2)
Verify_After_Sign, (3) Verify_YGen (4) Protect_Verify_Compare

Attack
Countermeasure

(1) (2) (3) (4)

SCA

NTT_Leakage ✓ ✗ ✗ ✗

FIA

Generic_DFA ✗ ✓ ✗ ✗

Skip_Add ✗ ✓ ✗ ✗

Loop_Abort ✗ ✗ ✓ ✗

Verification_Bypass ✗ ✗ ✗ ✓

8 EXPERIMENTAL EVALUATION

In this section, we perform a practical performance evaluation of the presented countermeasures when integrated

into optimized software implementations of Kyber and Dilithium, running on the following two embedded platforms

- (1) STM32F4 microcontroller based on the ARM Cortex-M4 processor (2) Raspberry Pi 3 Model B Plus based on

the ARM Cortex-A53 processor. While the STM32F4 microcontroller is a representative for an low-power embedded

microcontroller, the Raspberry Pi 3 device is a representative of a more sophisticated handheld gadget.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 25

8.1 Target Platform and Implementation Details

8.1.1 ARMCortex-M4 based Platform. Our target platform for theARMCortex-M4 processor is the STM32F4DISCOVERY

board (DUT) housing the STM32F407 microcontroller and the clock frequency is 24 MHz. Our countermeasures were

implemented on the M4-optimized implementations of Kyber and Dilithium available in the public pqm4 library [29], a

benchmarking framework for PQC schemes on the ARM Cortex-M4 microcontroller. The M4-optimized implemen-

tation of Kyber is based on the memory efficient high-speed implementation proposed by Botros, Kannwischer and

Schwabe in [15]. The M4-optimized implementation is based on compact Dilithium optimizations reported by Greconici,

Kannwischer and Sprenkels in [24].
1
Their work builds upon the early evaluation optimization by Ravi et al. [43] and

additionally proposes faster asssembly implementations of NTT for the Cortex-M4. All implementations were compiled

with the arm-none-eabi-gcc-7.3.1 compiler using compiler flags -O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard

-mfpu=fpv4-sp-d16.

8.1.2 ARM Cortex-A53 based Platform. Our target platform for the ARM Cortex-A53 processor is the Raspberry Pi 3

Model B Plus Rev 1.3, running Debian GNU/Linux 11 at 1.4 GHz. We perform evaluation of countermeasures on the

NEON-optimized implementations of Kyber and Dilithium available in the liboqs library [52], an open source C library

for quantum-safe cryptographic algorithms. The NEON optimized implementations of Kyber and Dilithium is based

on the work of Becker et al. [9]. All implementations were compiled with the aarch64-none-linux-gnu-10.3-2021.07

compiler at the highest optimization level -O3.

We have implemented the countermeasures on both Kyber and Dilithium such that, the required countermeasures

can be independently turned on/off based on the designer’s security requirements.

8.2 Experimental Results for Kyber KEM

Refer Tab.4 and Tab.6 for the performance overheads due to the Shuffled_Masked_NTT countermeasures against the

NTT_Leakage attacks on Kyber KEM, running on the ARM Cortex-M4 and ARM Cortex-A53 devices respectively. While

we have implemented all the shuffling (3) and masking (4) countermeasures proposed in [47], for brevity, we only report

numbers for the countermeasures referred to as Coarse_Shuffled_NTT and Generic_2_Masked_NTT (Refer to [47] for

the terminology used for the different Shuffled_Masked_NTT countermeasures).

On the ARM Cortex-M4 device, we observe a performance impact in the range of 45− 71% for key generation, 44-75%

for the encapsulation and 53 − 99% for the decapsulation procedure, across all parameters of Kyber KEM. However, on

the ARM Cortex-A53 device, we observe a much higher performance impact between 163-219% for key generation,

189-258% for encapsulation and 226-352% for decapsulation. We note that the optimized NTT implementations on the

target devices are implemented in pure assembly (M4-optimized and NEON optimized), but the countermeasures are

implemented over the C-based NTT/INTT implementations, resulting in high performance overheads, particularly on

the ARM Cortex-A53 device. Thus, we argue that it is possible to obtain significantly improved overheads, provided

that the protected NTT/INTTs are implemented in assembly.

1
Our analysis and experiments were carried out on the implementations of Kyber and Dilithium corresponding to the commit hash

2691b4915b76db8b765ba89e4e09adc6b999763f, and were available in the pqm4 library until Jan 31, 2022. However, our attacks also apply in the

same manner to the most recent NTT implementations in the pqm4 library.

26 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

Table 4. Performance Comparison of the Shuffled_Masked_NTT countermeasures for Kyber KEM, compared to the optimized
unprotected implementations on the ARM Cortex-M4 device. Numbers were obtained on the STM32F407VG microcontroller
mounted on the STM32F407DISCOVERY board, running at 24 MHz. Numbers are provided in terms of ×10

3 clock cycles. Ovh
denotes overhead in percentage.

Scheme
Clock Cycles (×10

3)
KeyGen Encaps Decaps

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Coarse_Shuffled_NTT

Kyber512 457.0 782.9 71.3 552.1 971.1 75.9 511.5 1017.8 99

Kyber768 748.6 1238.0 65.4 903.6 1486.0 64.4 842.4 1506.7 78.8

Kyber1024 1188.2 1840.9 54.9 1378.6 2124.2 54.1 1298.0 2125.5 63.8

Generic_2_Masked_NTT

Kyber512 457.0 728.5 59.4 552.1 898.9 62.8 511.5 933.5 82.5

Kyber768 748.6 1155.5 54.4 903.6 1385.9 53.4 842.4 1399.9 66.2

Kyber1024 1188.2 1731.5 45.7 1378.6 1997.1 44.9 1298.0 1991.7 53.4

Table 5. Performance Comparison of the custom SCA-FIA countermeasures for Kyber KEM, compared to the optimized
unprotected implementation on the ARM Cortex-M4 device. Numbers were obtained on the STM32F407VG microcontroller
mounted on the STM32F407DISCOVERY board, running at 24 MHz. Numbers are provided in terms of ×10

3 clock cycles. Ovh
denotes overhead in percentage.

Scheme
Clock Cycles (×10

3)
Decaps

Unprot. Prot. Ovh.
(%)

CT_Sanity_Check

Kyber512 511.5 690.0 34.9

Kyber768 842.4 1028.6 22.1

Kyber1024 1298.0 1492.3 15

Message_Poly_Sanity_Check

Kyber512 511.5 675.6 32.1

Kyber768 842.4 1006.1 19.4

Kyber1024 1298.0 1474.7 13.6

Protect_CT_Compare

Kyber512 511.5 579.9 13.4

Kyber768 842.4 910.1 8

Kyber1024 1298.0 1365.8 5.2

Shuffle_Encode_Decode

Kyber512 511.5 520.6 1.8

Kyber768 842.4 854.2 1.4

Kyber1024 1298.0 1311.2 1

It is also important to note that the NTT_Leakage attacks have only been demonstrated on the ARM Cortex-M4

device, in a profiled setting, assuming attacker’s in-depth knowledge of the target device as well as implementation.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 27

Thus, these attacks are not trivial to be mounted on more complex platforms such as the ARM Cortex-A53 device,

which run an embedded linux distribution at a much higher frequency (1.4 GHz), compared to the ARM Cortex-M4 (168

MHz). Thus, in a practical setting, Shuffled_Masked_NTT countermeasures for the ARM Cortex-A53 device might not

be necessary and could serve as an overkill.

Table 6. Performance Comparison of the Shuffled_Masked_NTT countermeasures for Kyber KEM, compared to the optimized
unprotected implementations on the ARM Cortex-A53 device. Numbers were obtained on the Raspberry Pi 3 Model B Plus Rev
1.3 based on the ARM Cortex-A53 processor, running Debian GNU/Linux 11 at 1.4 GHz. Numbers are provided in terms of
×10

3 clock cycles. Ovh denotes overhead in percentage.

Scheme
Clock Cycles (×10

3)
KeyGen Encaps Decaps

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Coarse_Shuffled_NTT

Kyber512 108.3 345.7 219 128.7 461.0 258.2 114.5 518.6 352.7

Kyber768 162.5 519.3 219.5 193.1 658.8 241 177.4 714.7 302.9

Kyber1024 244.3 719.1 194.3 285.4 880.1 208.4 267.6 934.9 249.3

Generic_2_Masked_NTT

Kyber512 108.3 308.0 184.2 128.7 429.9 234 114.5 484.2 322.8

Kyber768 162.5 462.1 184.4 193.1 615.6 218.7 177.4 667.8 276.4

Kyber1024 244.3 643.2 163.2 285.4 825.1 189.1 267.6 874.4 226.7

Refer Tab.5 and 7 for the performance overheads due to the CT_Sanity_Check,Message_Poly_Sanity_Check and

Shuffle_Encode_Decode countermeasures for Kyber KEM, implemented on the ARM Cortex-M4 and ARM Cortex-A53

devices respectively
2
. On the ARM Cortex-M4 device, these countermeasures impose very reasonable overheads in

the range of 15-33%, 13-32%, 5-13% and 1-2% for the different parameter sets of Kyber KEM. On the ARM Cortex-A53

device, the overheads are in the range of 3 − 4%, ≈ 0%, 7 − 18% and 19 − 39% for Kyber KEM.

8.3 Experimental Results for Dilithium

Refer Tab.8 and Tab.9 for the performance overheads due to the Shuffled_Masked_NTT countermeasures against the

NTT_Leakage attacks on Dilithium, implemented on the ARM Cortex-M4 and ARM Cortex-A53 devices respectively.

While we have implemented all the shuffling (3) and masking (4) countermeasures proposed in [47], for brevity, we

only report numbers for the countermeasures referred to as Coarse_Shuffled_NTT and Generic_2_Masked_NTT.

On the ARM Cortex-M4 device, we observe a performance impact in the range of 22 − 31% for key-generation and

112− 152% for the signing procedure. However, on the ARM Cortex-A53 device, we observe a much higher performance

impact between 77-109% for key generation, 438-384% for the signing procedure. We note that the optimized NTT

implementations on the target devices are implemented in pure assembly (M4-optimized and NEON optimized), but

the countermeasures are implemented over the C-based NTT/INTT implementations, resulting in high performance

2
We do not report results of the Redundant_Sample countermeasure in the current version, but can report the results in a future version of the

paper.

28 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

Table 7. Performance Comparison of the custom SCA-FIA countermeasures for Kyber KEM, compared to the optimized
unprotected implementations on the ARM Cortex-A53 device. Numbers were obtained on the Raspberry Pi 3 Model B Plus Rev
1.3 based on the ARM Cortex-A53 processor, running Debian GNU/Linux 11 at 1.4 GHz. Numbers are provided in terms of
×10

3 clock cycles. Ovh denotes overhead in percentage.

Scheme
Clock Cycles (×10

3)
Decaps

Unprot. Prot. Ovh.
(%)

CT_Sanity_Check

Kyber512 114.5 120.0 4.8

Kyber768 177.4 189.0 6.6

Kyber1024 267.6 277.7 3.8

Message_Poly_Sanity_Check

Kyber512 114.5 114.1 -0.3

Kyber768 177.4 178.8 0.8

Kyber1024 267.6 268.0 0.2

Protect_CT_Compare

Kyber512 114.5 135.3 18.1

Kyber768 177.4 200.9 13.3

Kyber1024 267.6 288.3 7.7

Shuffle_Encode_Decode

Kyber512 114.5 159.7 39.5

Kyber768 177.4 227.5 28.2

Kyber1024 267.6 320.8 19.9

overheads, particularly on the ARMCortex-A53 device. Thus, we argue that it is possible to obtain significantly improved

overheads, provided that the protected NTT/INTTs are implemented in assembly.

Table 8. Performance Comparison of the Shuffled_Masked_NTT countermeasures for Dilithium, compared to the optimized
unprotected implementation on the ARM Cortex-M4 device. Numbers were obtained on the STM32F407VG microcontroller
mounted on the STM32F407DISCOVERY board, running at 24 MHz. Numbers are provided in terms of ×10

6 clock cycles. Ovh
denotes overhead in percentage.

Scheme
Clock Cycles (×10

6)
KeyGen Sign

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Coarse_Shuffled_NTT

Dilithium2 1.6 2.1 31.9 4.1 9.5 132.1

Dilithium3 2.8 3.5 24.7 6.8 14.4 112.6

Generic_2_Masked_NTT

Dilithium2 1.6 2.0 30.0 4.1 10.4 152.9

Dilithium3 2.8 3.4 22.5 6.7 16.4 142.0

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 29

Table 9. Performance Comparison of the different SCA-FIA countermeasures for Dilithium and the overheads they incur on on
optimized implementations on the ARM Cortex-M4 device. Numbers were obtained on the STM32F407VG microcontroller
mounted on the STM32F407DISCOVERY board, running at 24 MHz. Numbers are provided in terms of ×10

6 clock cycles. Ovh
denotes overhead in percentage.

Scheme
Clock Cycles (×10

6)
Unprot. Prot. Ovh.

(%)
Verify_After_Sign (Sign)

Dilithium2 4.1 4.4 7.7

Dilithium3 6.8 7.2 6.2

Protect_YGen (Sign)

Dilithium2 4.1 5.6 35.5

Dilithium3 6.8 8.5 25.6

Protect_Verify_Compare (Verify)

Dilithium2 1.6 1.6 ≈ 0

Dilithium3 2.7 2.7 ≈ 0

Table 10. Performance Comparison of the Shuffled_Masked_NTT countermeasures for Dilithium, compared to the optimized
unprotected implementation on the ARM Cortex-A53 device. Numbers were obtained on the Raspberry Pi 3 Model B Plus Rev
1.3 based on the ARM Cortex-A53 processor, running Debian GNU/Linux 11 at 1.4 GHz. Numbers are provided in terms of
×10

3 clock cycles. Ovh denotes overhead in percentage.

Scheme
Clock Cycles (×10

3)
KeyGen Sign

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Coarse_Shuffled_NTT

Dilithium2 434.1 908.5 109.3 1329.6 5956.4 348

Dilithium3 745.1 1423.2 91 1987.5 9194.8 362.6

Dilithium5 1205.2 2157.4 79 2527.8 11099.1 339.1

Generic_2_Masked_NTT

Dilithium2 434.0 894.9 106.2 1329.6 5993.8 350.8

Dilithium3 745.1 1415.5 90 1987.5 9628.5 384.5

Dilithium5 1205.2 2138.9 77.5 2527.8 11331.9 348.3

Refer Tab.10 and 11 for the performance overheads due to theVerify_After_Sign,Verify_YGen andProtect_Verify_Compare

countermeasures for Dilithium, implemented on the ARM Cortex-M4 and ARM Cortex-A53 devices respectively. On the

ARM Cortex-M4 device, these countermeasures impose very reasonable overheads in the range of 6-7%, 25-35%, and

≈ 0% for the different parameter sets of Kyber KEM. On the ARM Cortex-A53 device, the overheads are much smaller in

the range of 15 − 24%, 32 − 33% and 3 − 6% for Dilithium.

30 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

Table 11. Performance Comparison of the different SCA-FIA countermeasures for Dilithium and the overheads they incur on
optimized implementations on the ARM Cortex-A53 device. Numbers were obtained on the Raspberry Pi 3 Model B Plus Rev
1.3 based on the ARM Cortex-A53 processor, running Debian GNU/Linux 11 at 1.4 GHz. Numbers are provided in terms of
×10

3 clock cycles. Ovh denotes overhead in percentage.

Scheme
Clock Cycles (×10

3)
Unprot. Prot. Ovh.

(%)

Verify_After_Sign (Sign)

Dilithium2 1329.6 1537.0 15.6

Dilithium3 1987.5 2413.1 21.4

Dilithium5 2527.8 3155.1 24.8

Protect_YGen (Sign)

Dilithium2 1329.6 1764.0 32.7

Dilithium3 1987.5 2697.8 35.7

Dilithium5 2527.8 3368.3 33.2

Protect_Verify_Compare (Verify)

Dilithium2 438.6 452.8 3.2

Dilithium3 699.5 740.8 5.9

Dilithium5 1188.3 1259.4 6

Thus, we can observe that barring the Shuffled_Masked_NTT countermeasure, the other countermeasure impose

very reasonable overheads on the performance of Kyber and Dilithium, on both the evaluated embedded platforms.

9 CONCLUSION

In this work, we present a systematic study of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA) on structured

lattice-based schemes, with main focus on Kyber and Dilithium. Given the inadequacy of generic countermeasues

such as masking to protect against the wide-variety of known attacks [11, 35], we also present a range of custom

countermeasures, to protect against the known SCA and FIA reported on both Kyber and Dilithium. This includes two

novel countermeasures, to protect the decapsulation procedure against SCA and FIA assisted chosen-ciphertext attacks.

Finally, we implement all the presented countermeasures for Kyber and Dilithium, within two well-known public

software libraries for PQC - (1) pqm4 library for the ARM Cortex-M4 based microcontroller and (2) liboqs library for

the Raspberry Pi 3 Model B Plus based on the ARM Cortex-A53 processor. Our performance evaluation reveals that the

presented custom countermeasures incur reasonable performance overheads, on both the evaluated embedded platforms.

We therefore believe our work argues for usage of custom countermeasures within real-world implementations of

lattice-based schemes, either in a standalone manner, or as reinforcements to generic countermeasures such as masking.

REFERENCES
[1] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,

et al. 2020. Status report on the second round of the NIST post-quantum cryptography standardization process. US Department of Commerce, NIST
(2020).

[2] Christopher Ambrose, Joppe W Bos, Björn Fay, Marc Joye, Manfred Lochter, and Bruce Murray. 2018. Differential attacks on deterministic signatures.

In Cryptographers’ Track at the RSA Conference. Springer, 339–353.

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 31

[3] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden. 2020. Defeating NewHope with a single trace. In International Conference on
Post-Quantum Cryptography. Springer, 189–205.

[4] Daniel Apon and James Howe. 2021. Attacks on NIST PQC 3rd Round Candidates. Invited talk at Real World Crypto 2021, https://iacr.org/submit/

files/slides/2021/rwc/rwc2021/22/slides.pdf.

[5] Roberto Avanzi, Joppe W. Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, John Schanck, Peter Schwabe, Gregor Seiler, and

Damien Stehlé. 2021. CRYSTALS-Kyber (version 3.02): Algorithm specifications and supporting documentation (Auguest 4, 2021). https://pq-

crystals.org/kyber/data/kyber-specification-round3.pdf. (2021).

[6] Aydin Aysu, Youssef Tobah, Mohit Tiwari, Andreas Gerstlauer, and Michael Orshansky. 2018. Horizontal side-channel vulnerabilities of post-quantum

key exchange protocols. In 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 81–88.
[7] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim Güneysu. 2020. High-speed masking for polynomial comparison in

lattice-based kems. IACR Transactions on Cryptographic Hardware and Embedded Systems (2020), 483–507.
[8] Alessandro Barenghi and Gerardo Pelosi. 2016. A note on fault attacks against deterministic signature schemes (short paper). In International

Workshop on Security. Springer, 182–192.
[9] Hanno Becker, Vincent Hwang, Matthias J Kannwischer, Bo-Yin Yang, and Shang-Yi Yang. 2022. Neon NTT: Faster Dilithium, Kyber, and Saber on

Cortex-A72 and Apple M1. IACR Transactions on Cryptographic Hardware and Embedded Systems (2022), 221–244.
[10] Michiel Van Beirendonck, Jan-Pieter D’anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede. 2021. A side-channel-resistant

implementation of SABER. ACM Journal on Emerging Technologies in Computing Systems (JETC) 17, 2 (2021), 1–26.
[11] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel van Beirendonck. 2021. Attacking and Defending Masked

Polynomial Comparison for Lattice-Based Cryptography. 2021, 3 (2021), 334–359. https://doi.org/10.46586/tches.v2021.i3.334-359

[12] Nina Bindel, Johannes Buchmann, and Juliane Krämer. 2016. Lattice-based signature schemes and their sensitivity to fault attacks. In Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2016 Workshop on. IEEE, 63–77.

[13] Joppe W Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn Stam. 2018. Assessing the Feasibility of Single Trace Power

Analysis of Frodo. IACR Cryptology ePrint Archive (2018).
[14] Joppe W Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van Vredendaal. 2021. Masking kyber: First-and higher-order implementa-

tions. IACR Transactions on Cryptographic Hardware and Embedded Systems (2021), 173–214.
[15] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. 2019. Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4. In Progress

in Cryptology - AFRICACRYPT 2019 - 11th International Conference on Cryptology in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings (2019).
209–228. https://doi.org/10.1007/978-3-030-23696-0_11

[16] Leon Groot Bruinderink and Peter Pessl. 2018. Differential Fault Attacks on Deterministic Lattice Signatures. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2018, 3 (2018). https://eprint.iacr.org/2018/355.pdf.

[17] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. 2020. SABER: Mod-LWR based KEM (Round 3 Submission).

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf. Submission to the NIST post-quantum project (2020).
[18] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. Timing attacks on error correcting codes in post-quantum

schemes. In Proceedings of ACM Workshop on Theory of Implementation Security Workshop. 2–9.
[19] Jeroen Delvaux. 2021. Roulette: Breaking Kyber with Diverse Fault Injection Setups. Cryptology ePrint Archive (2021), 1622.
[20] Léo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. Crystals–dilithium: Digital signatures

from module lattices. https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf. Submission to the NIST’s post-quantum cryptography
standardization process (2018).

[21] Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel Van Beirendonck, and Ingrid Verbauwhede. 2022. Higher-Order Masked Ciphertext

Comparison for Lattice-Based Cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems 2022, 2 (Feb. 2022), 115–139.
https://doi.org/10.46586/tches.v2022.i2.115-139

[22] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. 2016. Loop-abort faults on lattice-based fiat-shamir and hash-and-sign

signatures. In International Conference on Selected Areas in Cryptography. Springer, 140–158.
[23] Eiichiro Fujisaki and Tatsuaki Okamoto. 1999. Secure integration of asymmetric and symmetric encryption schemes. In Annual international

cryptology conference. Springer, 537–554.
[24] Denisa OC Greconici, Matthias J Kannwischer, and Daan Sprenkels. 2021. Compact dilithium implementations on Cortex-M3 and Cortex-M4. IACR

Transactions on Cryptographic Hardware and Embedded Systems (2021), 1–24.
[25] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. 2012. Practical lattice-based cryptography: A signature scheme for embedded

systems. In International Conference on Cryptographic Hardware and Embedded Systems. Springer, 530–547.
[26] Qian Guo, Thomas Johansson, and Alexander Nilsson. 2020. A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto

transformation and its application on FrodoKEM. In Annual International Cryptology Conference. Springer, 359–386.
[27] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van

Vredendaal. 2021. Chosen ciphertext k-trace attacks on masked CCA2 secure kyber. IACR Transactions on Cryptographic Hardware and Embedded
Systems (2021), 88–113.

[28] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. 2021. Fault-enabled chosen-ciphertext attacks on kyber. In International Conference on
Cryptology in India. Springer, 311–334.

https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.1007/978-3-030-23696-0_11
https://eprint.iacr.org/2018/355.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf
https://doi.org/10.46586/tches.v2022.i2.115-139

32 Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi

[29] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. 2019. PQM4: Post-quantum crypto library for the ARM Cortex-M4.

https://github.com/mupq/pqm4.

[30] Vadim Lyubashevsky. 2009. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 598–616.

[31] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. On Ideal Lattices and Learning with Errors over Rings. J. ACM 60, 6 (2013), 43.

[32] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. 2019. Masking dilithium. In International Conference on Applied
Cryptography and Network Security. Springer, 344–362.

[33] Catinca Mujdei, Arthur Beckers, Jose Bermundo, Angshuman Karmakar, Lennert Wouters, and Ingrid Verbauwhede. 2022. Side-Channel Analysis of

Lattice-Based Post-Quantum Cryptography: Exploiting Polynomial Multiplication. Cryptology ePrint Archive (2022).
[34] Hamid Nejatollahi, Nikil Dutt, Sandip Ray, Francesco Regazzoni, Indranil Banerjee, and Rosario Cammarota. 2019. Post-quantum lattice-based

cryptography implementations: A survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1–41.
[35] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. 2021. A side-channel attack on a masked IND-CCA secure Saber KEM implementation.

IACR Transactions on Cryptographic Hardware and Embedded Systems (2021), 676–707.
[36] Kalle Ngo, Elena Dubrova, and Thomas Johansson. 2021. Breaking Masked and Shuffled CCA Secure Saber KEM by Power Analysis. In Proceedings

of the 5th Workshop on Attacks and Solutions in Hardware Security. 51–61.
[37] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. 2018. Practical CCA2-Secure and Masked Ring-LWE Implementation. IACR

Transactions on Cryptographic Hardware and Embedded Systems (2018), 142–174.
[38] Judea Pearl. 1986. Fusion, propagation, and structuring in belief networks. Artificial intelligence 29, 3 (1986), 241–288.
[39] Peter Pessl and Robert Primas. 2019. More practical single-trace attacks on the number theoretic transform. In International Conference on Cryptology

and Information Security in Latin America. Springer, 130–149.
[40] Peter Pessl and Lukas Prokop. 2021. Fault attacks on CCA-secure lattice KEMs. IACR Transactions on Cryptographic Hardware and Embedded Systems

(2021), 37–60.

[41] Robert Primas, Peter Pessl, and Stefan Mangard. 2017. Single-trace side-channel attacks on masked lattice-based encryption. In International
Conference on Cryptographic Hardware and Embedded Systems. Springer, 513–533.

[42] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay. 2021. On Exploiting Message Leakage in (few) NIST PQC Candidates

for Practical Message Recovery Attacks. IEEE Transactions on Information Forensics and Security (2021).

[43] Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam Bhasin. 2019. Improving speed of Dilithium’s signing procedure. In

International Conference on Smart Card Research and Advanced Applications. Springer, 57–73.
[44] Prasanna Ravi, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. 2021. Lattice-based key-sharing schemes: A survey. ACM Computing

Surveys (CSUR) 54, 1 (2021), 1–39.
[45] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. 2018. Side-channel assisted existential forgery

attack on Dilithium-a NIST PQC candidate. Cryptology ePrint Archive (2018).
[46] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. 2019. Exploiting determinism in lattice-based

signatures: practical fault attacks on pqm4 implementations of NIST candidates. In Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security. 427–440.

[47] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay. 2020. On Configurable SCA Countermeasures Against Single Trace

Attacks for the NTT. In International Conference on Security, Privacy, and Applied Cryptography Engineering. Springer, 123–146.
[48] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. 2019. Number "Not Used" Once-Practical

Fault Attack on pqm4 Implementations of NIST Candidates. In International Workshop on Constructive Side-Channel Analysis and Secure Design.
Springer, 232–250.

[49] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. 2020. Generic Side-channel attacks on CCA-secure lattice-based PKE

and KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 3 (2020), 307–335.
[50] Oded Regev. 2009. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM) 56, 6 (2009), 1–40.
[51] Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Hyojin Yoon, Jihoon Cho, and Dong-Guk Han. 2020. Single-Trace

Attacks on Message Encoding in Lattice-Based KEMs. 8 (2020), 183175–183191.

[52] Douglas Stebila and Michele Mosca. 2016. Post-quantum key exchange for the internet and the open quantum safe project. In International Conference
on Selected Areas in Cryptography. Springer, 14–37.

[53] Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni. 2018. Exploring the Vulnerability of R-LWE Encryption to Fault Attacks. In

Proceedings of the Fifth Workshop on Cryptography and Security in Computing Systems. ACM.

[54] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. 2014. Soft analytical side-channel attacks. In International Conference on
the Theory and Application of Cryptology and Information Security. Springer, 282–296.

[55] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. 2021. Fault-injection attacks against NIST’s post-quantum cryptography

round 3 KEM candidates. In International Conference on the Theory and Application of Cryptology and Information Security. Springer, 33–61.
[56] Zhuang Xu, Owen Michael Pemberton, Sujoy Sinha Roy, David Oswald, Wang Yao, and Zhiming Zheng. 2021. Magnifying side-channel leakage of

lattice-based cryptosystems with chosen ciphertexts: The case study of kyber. IEEE Trans. Comput. (2021).

https://github.com/mupq/pqm4

	Abstract
	1 Introduction
	2 Background
	2.1 Notations
	2.2 The Learning With Errors Problem regev2009lattices
	2.3 Number Theoretic Transform (NTT) based Polynomial Multiplication
	2.4 Kyber
	2.5 Dilithium

	3 Side-Channel Attacks on Kyber KEM
	3.1 Key Recovery Attacks - Known Ciphertext Scenario (SCA_KR_KCA)
	3.2 Message Recovery Attacks - Known Ciphertext Scenario (SCA_MR_KCA)
	3.3 Key Recovery Attacks - Chosen Ciphertext Scenario (SCA_KR_CCA)
	3.4 Message Recovery Attacks - Chosen Ciphertext Scenario (SCA_MR_CCA)

	4 Fault-Injection Attacks on Kyber KEM
	4.1 Key Recovery and Message Attacks - Known Ciphertext Scenario (FIA_KR_KCA and FIA_MR_KCA)
	4.2 Key Recovery Attacks - Chosen Ciphertext Scenario (FIA_KR_CCA)

	5 Protecting Kyber KEM against SCA/FIA
	5.1 Protection Against SCA/FIA Assisted CCA
	5.2 Protecting Ciphertext Comparison
	5.3 Protecting the Message Encoding/Decoding Operation
	5.4 Protecting the NTT
	5.5 Protecting the Sampling of Secrets and Errors

	6 Side-Channel and Fault-Injection Attacks on Dilithium
	6.1 Fault Injection Attacks on Dilithium
	6.2 Side-Channel Attacks on Dilithium

	7 Protecting Dilithium against SCA/FIA
	7.1 Protection against DFA
	7.2 Protecting sampling of nonce y
	7.3 Protecting the verification procedure
	7.4 Protecting the NTT

	8 Experimental Evaluation
	8.1 Target Platform and Implementation Details
	8.2 Experimental Results for Kyber KEM
	8.3 Experimental Results for Dilithium

	9 Conclusion
	References

