
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Side-channel and Fault-injection attacks over Lattice-based Post-quantum
Schemes (Kyber, Dilithium): Survey and New Results

PRASANNA RAVI∗ and ANUPAM CHATTOPADHYAY†, Temasek Labs, Nanyang Technological University,

Singapore and School of Computer Science and Engineering, Nanyang Technological University, Singapore

JAN PIETER D’ANVERS‡, imec-COSIC, KU Leuven, Belgium

ANUBHAB BAKSI§, Temasek Labs, Nanyang Technological University, Singapore

In this work, we present a systematic study of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA) on structured lattice-based

schemes, with a focus on Kyber Key Encapsulation Mechanism (KEM) and Dilithium signature scheme, which are leading candidates in

the NIST standardization process for Post-Quantum Cryptography (PQC). Through our study, we attempt to understand the underlying

similarities and differences between the existing attacks, while classifying them into different categories. Given the wide variety of

reported attacks, simultaneous protection against all the attacks requires to implement customized protections/countermeasures for

both Kyber and Dilithium. We therefore present a range of customized countermeasures, capable of providing defenses/mitigations

against existing SCA/FIA, and incorporate several SCA and FIA countermeasures within a single design of Kyber and Dilithium.

Among the several countermeasures discussed in this work, we present novel countermeasures that offer simultaneous protection

against several SCA and FIA-based chosen-ciphertext attacks for Kyber KEM. We implement the presented countermeasures within

the well-known pqm4 library for the ARM Cortex-M4 based microcontroller. Our performance evaluation reveals that the presented

custom countermeasures incur reasonable performance overheads, on the ARM Cortex-M4 microcontroller. We therefore believe

our work argues for the usage of custom countermeasures within real-world implementations of lattice-based schemes, either in a

standalone manner or as reinforcements to generic countermeasures such as masking.

CCS Concepts: • Security and privacy→ Side-channel analysis and countermeasures.

Additional Key Words and Phrases: Lattice-based Cryptography, Side-Channel Attacks, Fault-Injection Attacks, Kyber, Dilithium

ACM Reference Format:
Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi. 2022. Side-channel and Fault-injection attacks

over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New Results. 1, 1 (November 2022), 50 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

In 2016, the National Institute for Standards and Technology (NIST) initialized a global level standardization process

for quantum attack resistant public-key cryptographic schemes [2], which is otherwise known as Post-Quantum

Cryptography (PQC). Very recently in 2022, after three rounds of evaluation, NIST announced the first standards for PQC

Authors’ addresses: Prasanna Ravi, prasanna.ravi@ntu.edu.sg; Anupam Chattopadhyay, anupam@ntu.edu.sg, Temasek Labs, Nanyang Technological

University, Singapore and School of Computer Science and Engineering, Nanyang Technological University, Singapore; Jan Pieter D’Anvers, janpieter.

danvers@esat.kuleuven.be, janpieter.danvers@esat.kuleuven.be, imec-COSIC, KU Leuven, Belgium; Anubhab Baksi, anubhab.baksi@ntu.edu.sg, anubhab.

baksi@ntu.edu.sg, Temasek Labs, Nanyang Technological University, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

in the category of Public Key Encryption (PKE), Key Encapsulation Mechanisms (KEM) and Digital Signatures (DS) [3].

Theoretical post-quantum security guarantees and implementation performance on different HW/SW platforms served

as the primary criteria for selection in the initial rounds of the NIST standardization process. However, resistance

against side-channel attacks (SCA) and fault injection attacks (FIA) as well as the cost of implementing protections

against SCA and FIA, also emerged as a very important criterion towards the latter part of the standardization process.

This is especially true when it comes to comparing schemes with tightly matched security and efficiency [5]. In [2,

Sections 3.4 and 2.2.3] NIST states that it encourages additional research regarding side-channel analysis of the finalist

candidates and hopes to collect more information about the costs of implementing these algorithms in a way that provides

resistance to such attacks.

Three out of the seven finalist candidates derive their hardness from variants of the well-known Learning With Error

(LWE) and Learning With Rounding (LWR) problems. In this respect, Kyber [6] and Dilithium [25], which are based on

the Module-LWE problem, were selected as the first standards for KEMs and signature schemes respectively. Moreover,

these schemes have received considerable attention with several works demonstrating practical attacks [11, 53, 54, 65],

particularly on embedded targets. These attacks have been realized using a wide range of attack vectors such as power

and Electromagnetic Emanation (EM) for SCA and voltage/clock glitching and EM for FIA. The proposed attacks have

been quite diverse in nature, in terms of the targeted operation, method of constructing queries to the target device, as

well as the mathematical approach for key recovery.

There are existing works such as [46, 60] that have provided a good overview of existing implementations of PQC.

However, a similar overview that covers recent developments in the field of SCA and FIA of PQC, and in particular,

lattice-based schemes is missing. This is especially important, given the ever-growing list of attacks proposed on

practical embedded implementations of lattice-based schemes. The type of attack that is applicable to a given instance

of Kyber or Dilithium, depends upon a variety of factors such as the target procedure, target operation within the

procedure, attack vector, operating mode of the scheme, experimental setup, and many more. Thus, it is important

for a designer to understand the applicability of different attacks for his/her use case. This is especially important if a

designer is tasked with choosing suitable countermeasures to provide concrete protection against SCA and FIA.

There has also been significant interest in the cryptographic community towards the development of SCA and FIA

countermeasures for lattice-based schemes. They can be broadly classified into two categories - (1) Generic and (2)

Custom. Generic countermeasures attempt to provide concrete security guarantees agnostic to the attack strategy,

while custom countermeasures are those that offer protection against specific targeted attacks. With respect to SCA,

there have been several works that have proposed generic masking strategies for lattice-based schemes [10, 13, 50].

However, one can observe several shortcomings with respect to adopting generic countermeasures such as masking.

Firstly, practical attacks have been demonstrated over masked implementations of lattice-based schemes [47], and

non-trivial flaws in theoretically secure masking schemes have also been exploited for key-recovery [11]. Secondly,

masking has been shown to result in significant performance overheads for both lattice-based KEMs as well as signature

schemes, especially on embedded software platforms [13, 33, 44].

In this respect, the contribution of our work is as follows:

(1) We present the first systematic study of SCA/FIA mounted on lattice-based schemes, with the main focus on two

leading candidates based on variants of the LWE problem - Kyber KEM [6] and Dilithium signature scheme [25].

Through our study, we attempt to understand the underlying similarities and differences between the existing

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 3

attacks, while classifying them into different categories. We also discuss appropriate countermeasures for every

attack discussed in this work.

(2) While there are proposals for countermeasures for existing SCA and FIA on Kyber and Dilithium, we are not

aware of a concrete implementation that incorporates multiple countermeasures into a single design. Moreover,

there are existing attacks for which, countermeasures are unknown or not clear. We also, therefore, propose

and implement novel countermeasures for some attacks in this work. In particular, we implement and evaluate

novel countermeasures that offer simultaneous protection against several SCA and FIA-based chosen-ciphertext

attacks for Kyber KEM.

(3) We also implement all the presented countermeasures in this work, within two well-known public software

libraries for PQC - (1) pqm4 library for the ARM Cortex-M4 based microcontroller [38]. Our performance evalu-

ation reveals that the presented custom countermeasures incur reasonable performance overheads, on both the

evaluated embedded platforms. We therefore believe our work argues for the usage of custom countermeasures

within real-world implementations of lattice-based schemes, either in a standalone manner or as reinforcements

to generic countermeasures such as masking.

Organization of the Paper. In Section 2, we provide a generic description of Kyber and Dilithium. In Section 3 and 4,

we describe the known side-channel attacks and fault attacks respectively, along with appropriate countermeasures

applicable to Kyber KEM. In Section 5 and 6, we describe the known fault-injection attacks and side-channel attacks

respectively, along with appropriate countermeasures applicable to Dilithium signature scheme. In Section 7, we

demonstrate performance evaluation of all the different countermeasures against SCA and FIA, for both Kyber and

Dilithium. In Section 8, we provide concluding remarks for the paper.

Availability of Software. We will publish related software used for this paper in public domain upon acceptance of this

work.

2 BACKGROUND

2.1 Notations

Elements in the integer ring Z𝑞 are denoted by regular font letters viz. 𝑎, 𝑏 ∈ Z𝑞 , where 𝑞 is a prime. The 𝑖𝑡ℎ bit in an

element 𝑥 ∈ Z𝑞 is denoted as 𝑥𝑖 . Vectors and matrices of integers in Z𝑞 (i.e.) Z𝑘𝑞 and Z𝑘×ℓ𝑞 are denoted in bold upper

case letters. The polynomial ring Z𝑞 (𝑥)/𝜙 (𝑥) is denoted as 𝑅𝑞 where 𝜙 (𝑥) = (𝑥𝑛 + 1) is its reduction polynomial. We

denote r ∈ 𝑅𝑘×ℓ𝑞 as amodule of dimension 𝑘 × ℓ . Polynomials in 𝑅𝑞 and vectors of polynomials in 𝑅𝑘𝑞 are denoted in bold

lowercase letters. Matrices of integers of polynomials (i.e.) 𝑅𝑘×ℓ𝑞 are denoted in bold upper case letters. The 𝑖𝑡ℎ coefficient

of a polynomial a ∈ 𝑅𝑞 is denoted as a[𝑖] and the 𝑖𝑡ℎ polynomial of a given module x ∈ 𝑅𝑘𝑞 as x𝑖 . Multiplication of two

polynomials a and b in the ring 𝑅𝑞 is denoted as c = a · b ∈ 𝑅𝑞 or a × b ∈ 𝑅𝑞 . Byte arrays of length 𝑛 are denoted as B𝑛 .
The 𝑖th byte in a byte array 𝑥 ∈ B∗ is denoted as 𝑥 [𝑖]. Pointwise/Coefficient-wise multiplication of two polynomials

(𝑎, 𝑏) ∈ 𝑅𝑞 is denoted as 𝑐 = 𝑎 ◦ 𝑏 ∈ 𝑅𝑞 . For a given element 𝑎 (Z𝑞 or 𝑅𝑞 or 𝑅𝑘×ℓ𝑞), its corresponding faulty value is

denoted as 𝑎∗ and we utilize this notation throughout the paper. The NTT representation of a polynomial 𝑎 ∈ 𝑅𝑞 is

denoted as 𝑎 ∈ 𝑅𝑞 , and the same notation also applies to modules of higher dimension.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

2.2 The Learning With Errors Problem [67]

The hardness of both Kyber and Dilithium are based on variants of the well-known Learning With Errors (LWE)

problem. The central component of the LWE problem is the LWE instance.

Definition 2.1 (LWE Instance). For a given dimension 𝑛 ≥ 1, elements in Z𝑞 with 𝑞 > 2 and a Gaussian error

distribution D𝜎 (·), an LWE instance is defined as the ordered pair (A,𝑇) ∈ Z𝑛𝑞 × Z𝑞 where A←U(Z𝑛𝑞) and𝑇 = A · S + 𝐸
with S← D𝜎 (Z𝑛𝑞) and 𝐸 ← D𝜎 (Z𝑞).

Given an LWE instance, one can define two variants of the LWE problem - (1) Search LWE problem - Given

polynomially many LWE instances (A,𝑇) ∈ (Z𝑛𝑞 ,Z𝑞), solve for S ∈ Z𝑛𝑞 and (2) Decisional LWE - Given many random

instances belonging to either valid LWE instances (A,𝑇) ∈ (Z𝑛𝑞 ,Z𝑞) or uniformly random instances drawn from

U(Z𝑛𝑞 × Z𝑞), distinguish the valid LWE instances from randomly selected ones.

Cryptographic schemes built upon the standard LWE problem suffered from quadratic key sizes and computational

times in the dimension 𝑛 of the lattice (i.e.) O(𝑛2) [67]. Thus, most of the lattice-based schemes, especially those

in the NIST standardization process are based on algebraically structured variants of the standard LWE and LWR

problem known as the Ring/Module-LWE (RLWE/MLWE) problems respectively. The ring variant of the LWE problem

(RLWE) [42] deals with computation over polynomials in polynomial rings 𝑅𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 + 1) with s, e← D𝜎 (𝑅𝑞)
such that the corresponding RLWE instance is defined as (a, t = a × s + e) ∈ (𝑅𝑞 × 𝑅𝑞). The module variant deals

with computations over vectors/matrices of polynomials in 𝑅
𝑘1×𝑘2

𝑞 with (𝑘1, 𝑘2) > 1. With A ← U(𝑅𝑘1×𝑘2

𝑞) and
s← D𝜎 (𝑅𝑘2

𝑞) and e← D𝜎 (𝑅𝑘1

𝑞). the corresponding MLWE instance is defined as (a, t = a × s + e) ∈ (𝑅𝑘1×𝑘2

𝑞 , 𝑅
𝑘2

𝑞).

2.3 Number Theoretic Transform (NTT) based Polynomial Multiplication

Polynomial multiplication is one of the most computationally intensive operations in structured lattice-based schemes

such as Kyber and Dilithium. Both Kyber and Dilithium are designed with parameters that allow the use of the well-

known Number Theoretic Transform (NTT) for polynomial multiplication. The NTT is simply a bijective mapping for a

polynomial p ∈ 𝑅𝑞 from a normal domain into an alternative representation p̂ ∈ 𝑅𝑞 in the NTT domain as follows:

p̂[𝑗] =
𝑛−1∑︁
𝑖=0

p[𝑖] · 𝜔𝑖 · 𝑗
(1)

where 𝑗 ∈ [0, 𝑛 − 1] and 𝜔 is the 𝑛th root of unity in the operating ring Z𝑞 . The corresponding inverse operation

named Inverse NTT (denoted as INTT) maps p̂ in the NTT domain back to p in the normal domain. The use of NTT

requires the presence of either the 𝑛th root of unity (𝜔) or 2𝑛th root of unity (𝜓) in Z𝑞 (𝜓2 = 𝜔), which can be ensured

through appropriate choices for the parameters (𝑛, 𝑞). The powers of𝜔 and𝜓 that are used within the NTT computation

are commonly referred to as twiddle constants. NTT based multiplication of two polynomials a and b in 𝑅𝑞 is typically

done as follows:

c = INTT(NTT(a) ◦ NTT(b)) . (2)

The NTT over an 𝑛 point sequence is performed using the well-known butterfly network, which operates over

log
2
(𝑛) stages. Refer to the algorithmic specification document of Kyber and Dilithium, on more information about the

NTT used in the respective schemes [6, 25].

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 5

2.4 Kyber

2.4.1 Algorithmic Description. Kyber is a chosen-ciphertext secure (CCA-secure) KEM based on the Module-LWE

problem that has been selected for standardization of PQC-based KEMs, owing to its strong theoretical security

guarantees and implementation performance [6]. Computations are performed over modules in dimension (𝑘 × 𝑘) (i.e)
𝑅𝑘×𝑘𝑞 . Kyber provides three security levels with Kyber512 (NIST Security Level 1), Kyber768 (Level 3) and Kyber1024

(Level 5) with 𝑘 = 2, 3 and 4 respectively. Kyber operates over the anti-cyclic ring 𝑅𝑞 with a prime modulus 𝑞 = 3329

and degree 𝑛 = 256, which allows the use of Number Theoretic Transform (NTT) for polynomial multiplication. The

CCA-secure Kyber contains in its core, a chosen-plaintext secure encryption scheme of Kyber (IND-CPA secure Kyber

PKE), which is based on the well-known framework of the LPR encryption scheme [42].

Refer to Algorithm 1 for a simplified description of the key-generation, encryption and decryption procedures of IND-

CPA secure Kyber PKE. The function Sample𝑈 samples from a uniform distribution, Sample𝐵 samples from a binomial

distribution; Expand expands a small seed into a uniformly random matrix in 𝑅𝑘×𝑘𝑞 . The function Compress(𝑢,𝑑) lossily
compresses 𝑢 ∈ Z𝑞 into 𝑣 ∈ Z

2
𝑑 with 𝑞 > 2

𝑑
, while Decompress(𝑣, 𝑑) extrapolates 𝑣 ∈ Z

2
𝑑 into 𝑢′ ∈ Z𝑞 .

Security and Correctness of IND-CPA Secure Kyber PKE
The key-generation procedure of Kyber PKE simply involves the generation of an LWE instance (A, t) ∈ (𝑅𝑘×𝑘𝑞 ×𝑅𝑘𝑞)

where t = A · s + e (Line 9 in Alg.1). The module A is sampled from a uniform distribution (Line 4), while the secret s
and errors e are sampled from a centered binomial distribution (CBD, Lines 5-6). Given that NTT is used for polynomial

multiplication, the public key and secret key are directly represented in the NTT domain (Line 10). The LWE instance

(A, t) is the public key, while the secret s forms the secret key.

The encryption procedure involves generation of two LWE instances (u, v) ∈ (𝑅𝑘𝑞 × 𝑅𝑞). The first LWE instance

is generated as u = A𝑇 · r + e1 (Line 18) and the second LWE instance is generated as v𝑝 = t𝑇 · r + e2 (Line 19).

The message to be encrypted (i.e.)𝑚 ∈ B∗ is encoded into a message polynomial m ∈ 𝑅𝑞 , one bit at a time. This is

done using the Encode function in the following manner (Line 20). If a message bit𝑚𝑖 = 1, then the corresponding

coefficient m[𝑖] = ⌈𝑞/2⌋, else m[𝑖] = 0 otherwise . Then, this message polynomial m is additively hidden within v𝑝 as

v = v𝑝 +m (Line 20). Subsequently, the coefficients of u and v are lossily compressed to varying degrees (i.e.) 𝑑1 and 𝑑2

bits respectively using the Compress function, and the compressed versions of u, v form the ciphertext 𝑐𝑡 (Line 21).

The decryption procedure lossily extract the polynomials u′ and v′ from the ciphertext 𝑐𝑡 with Δu = (u′ − u) and
Δv = (v′ − v) (Line 24). Subsequently, the decryption procedure computes m′ = v′ − u′ · s (Lines 25-27), which is

nothing but an approximation of the message polynomial m (i.e.) m′, which is given as follows:

m′ = v′ − s𝑇 · u′

= (v + Δv) − s𝑇 · (u + Δu)

= (t𝑇 · r + e2 + Encode(𝑚) + Δv) − s𝑇 · (A𝑇 · r + e1 + Δu)

= Encode(𝑚) + (e𝑇 · r + e2 + s𝑇 · e1 + s𝑇 · Δu + Δv)

= Encode(𝑚) + d

(3)

where d = (e𝑇 · r + e2 + s𝑇 · e𝑇
1
+ s𝑇 · Δu + Δv) is the noise component in m′, which is also linearly dependent

on the secret and error (s, e) of the public-private key pair. The approximate message polynomial m′ is decoded into

the message𝑚′ ∈ B∗ one bit at a time in the following manner: If a given message coefficient m[𝑖] is in the range

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

Algorithm 1: CPA Secure Kyber PKE (Simplified)

1: procedure CPA.KeyGen
2: 𝑠𝑒𝑒𝑑𝐴 ∈ B ← Sample𝑈 () ⊲ Generate uniform 𝑆𝑒𝑒𝑑𝐴
3: 𝑠𝑒𝑒𝑑𝐵 ∈ B ← Sample𝑈 () ⊲ Generate uniform 𝑆𝑒𝑒𝑑𝐵

4: Â = NTT(A) ∈ 𝑅𝑘×𝑘𝑞 ← Expand(𝑠𝑒𝑒𝑑𝐴) ⊲ Expand 𝑠𝑒𝑒𝑑𝐴 into Â in NTT domain

5: s ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑠) ⊲ Sample secret s using (𝑆𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑠)
6: e ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑒) ⊲ Sample error e using (𝑆𝑒𝑒𝑑𝐵, 𝑐𝑜𝑖𝑛𝑠𝑒)
7: ŝ ∈ 𝑅𝑘𝑞 ← NTT(s) ⊲ NTT(s)
8: ê ∈ 𝑅𝑘𝑞 ← NTT(e) ⊲ NTT(e)
9: t̂ = Â ◦ ŝ + ê ⊲ t = A · s + e in NTT domain

10: Return (𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴, t̂), 𝑠𝑘 = (ŝ))
11: end procedure

12: procedure CPA.Encrypt(𝑝𝑘,𝑚 ∈ {0, 1}256, 𝑠𝑒𝑒𝑑𝑅 ∈ {0, 1}256
)

13: Â ∈ 𝑅𝑘×𝑘𝑞 ← Expand(𝑠𝑒𝑒𝑑𝐴)
14: r ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠0) ⊲ Sample r using (𝑆𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠0)
15: e1 ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠1) ⊲ Sample e1 using (𝑆𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠1)
16: e2 ∈ 𝑅𝑘𝑞 ← Sample𝐵 (𝑠𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠2) ⊲ Sample e2 using (𝑆𝑒𝑒𝑑𝑅, 𝑐𝑜𝑖𝑛𝑠2)
17: r̂ ∈ 𝑅𝑘𝑞 ← NTT(r) ⊲ NTT(r)
18: u ∈ 𝑅𝑘𝑞 ← INTT(A𝑇 ◦ r̂) + e1 ⊲ u = A𝑇 · r + e1
19: v𝑝 ∈ 𝑅𝑞 ← INTT(𝑡𝑇 ◦ r̂) + e2 ⊲ v𝑝 = t𝑇 · r + e2
20: v = v𝑝 + Encode(𝑚)
21: Return 𝑐𝑡 = Compress(u, 𝑑1),Compress(v, 𝑑2)
22: end procedure

23: procedure CPA.Decrypt(𝑠𝑘, 𝑐𝑡)
24: u′ ∈ 𝑅𝑘𝑞 = Decompress(u, 𝑑1); v′ ∈ 𝑅𝑘𝑞 = Decompress(v, 𝑑2)
25: û′ = NTT(u′)
26: 𝑔′ = û′ ◦ ŝ
27: m′ ∈ 𝑅𝑞 = v′ − INTT(𝑔′) ⊲ m′ = v′ − u′ · s
28: 𝑚′ ∈ B∗ = Decode(m′)
29: Return𝑚′

30: end procedure

[𝑞/4, 3𝑞/4], then𝑚𝑖 = 1, else𝑚𝑖 = 0 otherwise (Line 28). This is computed using a specialized decoding routine, which

is sketched in the code snippet shown in Fig.1. It takes as input the message polynomial m and decodes the coefficients,

one at a time into corresponding bits in the 32-byte message array𝑚.

1 uint16_t t = (((m->coeffs [8*i+j] << 1) + KYBER_Q /2) / KYBER_Q) & 1;
2 m[i] |= t << j;

Fig. 1. Message Decoding Routine in Kyber KEM, which converts the message polynomial m ∈ 𝑅𝑞 into a 32-byte message array𝑚,
where 𝑖 denotes the byte location and 𝑗 denotes the bit location within a given byte.

As long as the absolute value of all the coefficients of the noise d are less than 𝑞/4 (i.e.) ℓ∞ (d) < 𝑞/4, the message

polynomial m′ is decoded to the correct message 𝑚 (i.e.) 𝑚′ = 𝑚. The parameters of the scheme are chosen so as

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 7

to attain a negligible decryption failure probability. For recommended parameters of Kyber, the decryption failure

probability is ≈ 2
−164

. While we have only presented a simplified description of Kyber PKE, a more detailed description

can be found in [6].

2.4.2 Security Against Chosen-Ciphertext Attacks. The aforementioned PKE is only secure against chosen-plaintext

attacks (IND-CPA security) and thus is not secure against chosen-ciphertext attacks. These attacks typically work

by querying the decryption procedure with malicious and invalid ciphertexts, and obtaining information about the

corresponding decrypted message𝑚′. This information about𝑚′ for malicious and invalid ciphertexts can be used to

recover the complete secret key.

The CPA secure Kyber PKE is converted into a CCA secure KEM using the well-known Fujisaki-Okamoto trans-

formation [27]. It utilizes a pair of hash functionsH and G and a key-derivation function KDF, and forms a wrapper

around the encryption and decryption procedures, resulting in encapsulation and decapsulation procedures of a CCA

secure KEM (Refer Alg.2).

Algorithm 2: FO transform of a CPA-secure Kyber PKE into a CCA-secure Kyber KEM

1: procedure CCA.KeyGen
2: 𝑧 ← {0, 1}256

3: (𝑝𝑘, 𝑠𝑘′) ← CPA.KeyGen()
4: 𝑠𝑘 = (𝑠𝑘′∥H (𝑝𝑘)∥𝑧)
5: Return (𝑝𝑘, 𝑠𝑘)

6: end procedure

7: procedure CCA.Encaps(𝑝𝑘)
8: 𝑚 ← {0, 1}256

9: 𝑚 = H(𝑚)
10: (𝐾, 𝑟) = G(𝑚∥H (𝑝𝑘)) ⊲ Generation of pre-key 𝐾

11: 𝑐𝑡 = CPA.Encrypt(𝑝𝑘,𝑚, 𝑟) ⊲ Encryption of message𝑚 using public key 𝑝𝑘

12: 𝐾 = KDF(𝐾 ∥H (𝑐)) ⊲ Generation of session key

13: Return (𝑐𝑡, 𝐾)
14: end procedure

15: procedure CCA.Decaps(𝑠𝑘, 𝑐𝑡)
16: (𝑝𝑘,H(𝑝𝑘), 𝑧) ← UnpackSK(𝑠𝑘)
17: 𝑚′ = CPA.Decrypt(𝑠𝑘, 𝑐𝑡) ⊲ Decryption of ciphertext into message

18: (¯𝐾 ′, 𝑟 ′) = G(𝑚′,H(𝑝𝑘)) ⊲ Generation of pre-key 𝐾

19: 𝑇 = ¯𝐾 ′

20: 𝑐𝑡𝑅 = CPA.Encrypt(𝑝𝑘,𝑚′, 𝑟 ′) ⊲ Re-Encryption of decrypted message

21: if (CompareCT(𝑐𝑡𝑅, 𝑐𝑡) == 0) then ⊲ Ciphertext Comparison

22: 𝑇 = 𝑧 ⊲ Ciphertext Comparison Failure

23: end if
24: Return 𝐾 = KDF(𝑇 ∥H (𝑐𝑡 ′) ⊲ Generation of session key

25: end procedure

In theory, the FO transform helps protect the decapsulation procedure of KEMs against chosen-ciphertext attacks in

the following manner. The message𝑚′ obtained after decryption of the received ciphertext 𝑐𝑡 (Line 17) is hashed with

the public key to generate a pre-shared secret
¯𝐾 ′ and a seed 𝑟 (Line 18). The message𝑚′ along with the seed 𝑟 is then

fed into a re-encryption procedure to recompute the ciphertext as 𝑐𝑡 ′ (Line 20). A subsequent comparison of 𝑐𝑡 ′ with
Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

the received ciphertext 𝑐𝑡 helps evaluate the validity of 𝑐𝑡 (Line 21). For a valid ciphertext, 𝑐𝑡 = 𝑐𝑡 ′ with a very high

probability, and as a result, a valid shared secret 𝐾 dependent upon the pre-shared secret
¯𝐾 ′ and the received ciphertext

𝑐𝑡 ′ is generated (Line 24). However, for an invalid ciphertext, comparison fails with an overwhelming probability,

resulting in the generation of a pseudo-random secret 𝐾 , using a pseudo-random value 𝑧 and the received ciphertext 𝑐𝑡 ′

(Line 22,24). Thus, for invalid ciphertexts, an attacker cannot obtain any information about the decrypted message𝑚′,

which provides concrete protection against chosen-ciphertext attacks.

2.5 Dilithium

Dilithium is a lattice-based signature scheme secure, whose security is based on the Module LWE (M-LWE) and Module

SIS (M-SIS) problem [25]. Dilithium operates over the module 𝑅𝑘×ℓ𝑞 with (𝑘, ℓ) > 1 where 𝑅𝑞 = Z[𝑥]/(𝑥𝑛 + 1), 𝑛 = 256

and 𝑞 = 2
23 − 2

17 − 1. This choice of parameters allows the use of NTT for polynomial multiplication in 𝑅𝑞 . Dilithium

also comes in three security levels: Dilithium2 with (𝑘, ℓ) = (4, 4) at NIST Level 2, Dilithium3 with (𝑘, ℓ) = (6, 5) at
NIST Level 3 and Dilithium5 with (𝑘, ℓ) = (8, 7) at NIST Level 5. There are two variants of Dilithium: (1) Deterministic

(2) Probabilistic/Randomized, which only subtly differ in the way randomness is used in the signing procedure. The

signing procedure of the deterministic Dilithium does not utilize external randomness and can generate only a single

signature for a given message. The randomized variant however utilizes external randomness and thus generates a

different signature, for a given message in each execution.

2.5.1 Algorithmic Description. Refer to Alg.3-4 for a simplified description of the key generation, signing and verification

procedures of Dilithium. The functions Sample𝑈 , Sample𝐵 and Expand perform the same functions as in Kyber, albeit

with different parameters. Dilithium also uses a number of rounding functions such as Power2Round,HighBits, LowBits,

MakeHint and UseHint, whose details can be found in [25]. The key generation procedure simply involves generation

of an LWE instance t (Line 6 in Alg.3). Subsequently, the LWE instance is split into higher and lower order bits t1 and
t0 respectively (Line 7), where t1 forms part of the public key, while t0 becomes part of the secret key.

The signing procedure of Dilithium is based on the “Fiat-Shamir with Aborts” framework where the signature is

repeatedly generated and rejected until the signature and its associated intermediate variables, satisfy a given set of

conditions[41]. The message𝑚 is first hashed with a public value 𝑡𝑟 to generate 𝜇 (Line 13). The abort loop (Line 21-39)

starts by generating an ephemeral nonce y ∈ 𝑅ℓ𝑞 , using a seed 𝜌 . For the deterministic variant, the seed 𝜌 is obtained by

hashing 𝜇 with a secret nonce 𝐾 (Line 17), while the probabilistic variant randomly samples the seed 𝜌 from a uniform

distribution (Line 19). This is the only differentiator between the two variants. The nonce y along with the public key

component A is then used to calculate a sparse challenge polynomial c ∈ 𝑅𝑞 (Line 25), whose 60 coefficients are either

±1, while the other 196 coefficients are 0. Subsequently, the challenge c, nonce y and secret s1, are used to compute

the primary signature component z (Line 27). Then, a hint vector h is generated and output as part of the signature 𝜎

(Line 33). The abort loop contains several conditional checks (Line 29, 34), which should be simultaneously satisfied to

terminate the abort loop and generate the signature 𝜎 = (z, h, 𝑐).
The verification procedure utilizes the signature 𝜎 and the public key 𝑝𝑘 to recompute the challenge polynomial

𝑐 (Line 5 in Alg.4), which is then compared with the received challenge c, along with other checks (Line 6). If all the

checks are satisified, then the verification is successful, else it is a failure. While we have only presented a simplified

description of the Dilithium signature scheme, we refer the reader to [25] for a detailed description of the same.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 9

Algorithm 3: Dilithium Signature scheme (Simplified)

1: procedure KeyGen
2: (𝑠𝑒𝑒𝑑𝐴, 𝑠𝑒𝑒𝑑𝑆 , 𝐾) ∈ B ← Sample𝑈 ();
3: s1, s2 ∈ (𝑅ℓ𝑞 × 𝑅𝑘𝑞) ← Sample𝐵 (𝑠𝑒𝑒𝑑𝑆) ⊲ Generate the secrets s1 and s2

4: A ∈ 𝑅𝑘×ℓ𝑞 ← Expand(𝑠𝑒𝑒𝑑𝐴)
5: ŝ1 = NTT(s1) ⊲ Compute NTT of s1

6: t = INTT(A ◦ ŝ1) + ŝ2 ⊲ Generate LWE instance t
7: (t1, t0) ← Power2Round(t) ⊲ Split t as t1 · 2𝑑 + t0
8: 𝑡𝑟 ∈ B ← H(𝑠𝑒𝑒𝑑𝐴∥t1)
9: 𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴, t1), 𝑠𝑘 = (𝑠𝑒𝑒𝑑𝐴, 𝐾, 𝑡𝑟, s1, s2, t0)
10: end procedure

11: procedure Sign(𝑠𝑘,𝑀)

12: Â ∈ 𝑅𝑘×ℓ𝑞 ← Expand(𝑠𝑒𝑒𝑑𝐴)
13: 𝜇 ∈ {0, 1}512 ←H(𝑡𝑟 ∥𝑀) ⊲ Hash𝑚 with public value 𝑡𝑟

14: 𝜅 ← 0; (z, h) ← ⊥
15: ŝ1 = NTT(s1), ŝ2 = NTT(s2), t̂0 = NTT(t0)
16: if Deterministic then
17: 𝜌 ∈ 𝑅ℓ𝑞 ←H(𝐾 ∥𝜇) ⊲ Generate seed 𝜌 using message and secret seed 𝐾

18: else
19: 𝜌 ∈ 𝑅ℓ𝑞 ← Sample𝑈 () ⊲ Generate uniform seed 𝜌

20: end if
21: while (z, h) = ⊥ do ⊲ Start of Abort Loop

22: y← Sample𝑌 (𝜌 ∥𝜅)
23: ŷ = NTT(y) ⊲ NTT(𝑦)
24: w← INTT(Â ◦ ŷ); w1 ← HighBits(w) ⊲ w1 = HighBits(A · y)
25: c ∈ 𝑅𝑞 ←H(𝜇∥w1) ⊲ Generate Sparse Challenge 𝑐

26: ĉ = NTT(𝑐) ⊲ NTT(c)
27: z = INTT(ĉ ◦ ŝ1) + y ⊲ z = s1 · c + y
28: r0 = LowBits(w − c · s2)
29: if ∥z∥∞ ≥ 𝛾1 − 𝛽 or ∥r0∥∞ ≥ 𝛾2 − 𝛽 then ⊲ Conditional Checks

30: (z, h) = ⊥
31: 𝜅 = 𝜅 + 1

32: else
33: h = MakeHint(−c · t0,w − cs2 + c · t0, 2𝛾2)
34: if ∥c · t0∥∞ ≥ 𝛾2 or #1’s in h > 𝜔 then ⊲ Conditional Checks

35: (z, h) = ⊥
36: 𝜅 = 𝜅 + 1

37: end if
38: end if
39: end while
40: 𝜎 = (z, h, c)
41: end procedure

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

Algorithm 4: Dilithium Signature scheme (Simplified)

1: procedure Verify(𝑝𝑘,𝑀, 𝜎 = (z, h, c))
2: 𝜇 ∈ {0, 1}512 ←H(𝑡𝑟 ∥𝑀)
3: ĉ = NTT(c)
4: w′

1
:= UseHint(h,A · z − INTT(ĉ ◦ t̂1) · 2𝑑 , 2𝛾2) ⊲ Generating w′

1

5: c̄ = H(𝜇,w′
1
) ⊲ Recomputing Challenge polynomial

6: if (c̄ == c) and (norm of z and h are valid) then ⊲ Checking validity of received signature

7: Return Pass
8: else
9: Return Fail
10: end if
11: end procedure

Alice

<latexit sha1_base64="uL8TnUHUw7j8ox+upzZrv0CzoRo=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9RLx4jmAcka5id9CZDZh/MzCphyX948aCIV//Fm3/jZLMHTSwYKKq66ZryYsGVtu1vq7Cyura+UdwsbW3v7O6V9w9aKkokwyaLRCQ7HlUoeIhNzbXATiyRBp7Atje+mfntR5SKR+G9nsToBnQYcp8zqo300AuoHik/vRKc4bRfrthVOwNZJk5OKpCj0S9/9QYRSwIMNRNUqa5jx9pNqdScCZyWeonCmLIxHWLX0JAGqNw0Sz0lJ0YZED+S5oWaZOrvjZQGSk0Cz0xmKRe9mfif1020f+mmPIwTjSGbH/ITQXREZhWQAZfItJgYQpnkJithIyop06aokinBWfzyMmmdVZ1a9fyuVqlf53UU4QiO4RQcuIA63EIDmsBAwjO8wpv1ZL1Y79bHfLRg5TuH8AfW5w/ezZLD</latexit>

Bob

<latexit sha1_base64="07HMAa451WlFUpzYM4NEP6jUlSQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZelblxWsA/oDCWTZtrQTDIkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1TJVhHaI5FL1Q6wpZ4J2DDOc9hNFcRxy2gundwu/90SVZlI8mllCgxiPBYsYwcZKvh9jM9FR1pLhfFituXU3B1onXkFqUKA9rH75I0nSmApDONZ64LmJCTKsDCOczit+qmmCyRSP6cBSgWOqgyzPPEcXVhmhSCr7hEG5+nsjw7HWszi0k3nGVW8h/ucNUhPdBhkTSWqoIMtDUcqRkWhRABoxRYnhM0swUcxmRWSCFSbG1lSxJXirX14n3au616hfPzRqzVZRRxnO4BwuwYMbaMI9tKEDBBJ4hld4c1LnxXl3PpajJafYOYU/cD5/AFcTkeQ=</latexit>

ct

<latexit sha1_base64="kgx1gOXYdtvsvnnQjVUg3gvwIAM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB4b9csWtunOQVeLlpAI5Gv3yV28QszTiCpmkxnQ9N0E/oxoFk3xa6qWGJ5SN6ZB3LVU04sbP5pdOyZlVBiSMtS2FZK7+nshoZMwkCmxnRHFklr2Z+J/XTTG89jOhkhS5YotFYSoJxmT2NhkIzRnKiSWUaWFvJWxENWVowynZELzll1dJ66Lq1aqX97VK/SaPowgncArn4MEV1OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AJ4jjW0=</latexit>

(pk, sk) CCA.KeyGen

<latexit sha1_base64="zvEbZK8+aYrTmIjxy1iMR42GOIU=">AAACEHicbVDLSgNBEJyNrxhfUY9eBoMYQcKuRPQYzUHBSwTzgCSE2UlvMuzs7DIzq4Qln+DFX/HiQRGvHr35N04eB00saCiquunuciPOlLbtbyu1sLi0vJJezaytb2xuZbd3aiqMJYUqDXkoGy5RwJmAqmaaQyOSQAKXQ931yyO/fg9SsVDc6UEE7YD0BPMYJdpInexhPvKPsfKPcIuDp4mU4QNuBUT3lZeUyxeFGxhcgRh2sjm7YI+B54kzJTk0RaWT/Wp1QxoHIDTlRKmmY0e6nRCpGeUwzLRiBRGhPulB01BBAlDtZPzQEB8YpYu9UJoSGo/V3xMJCZQaBK7pHJ86643E/7xmrL3zdsJEFGsQdLLIiznWIR6lg7tMAtV8YAihkplbMe0TSag2GWZMCM7sy/OkdlJwioXT22KudDmNI4320D7KIwedoRK6RhVURRQ9omf0it6sJ+vFerc+Jq0pazqzi/7A+vwBJVKcEA==</latexit>

pk

<latexit sha1_base64="zzb1sE+F+z9tiBPLAEBTCANULgc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kIz75Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq16eV+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB6RAjXE=</latexit>

(ct, K) CCA.Encaps(pk)

<latexit sha1_base64="gn/s61aHILq/LnAqEfYswMK0bRI=">AAACEnicbVDLSgNBEJyNrxhfqx69DAYhAQm7EtFjNAiClwjmAUkIs5PZZMjs7DLTq4Ql3+DFX/HiQRGvnrz5N04eB00saCiquunu8iLBNTjOt5VaWl5ZXUuvZzY2t7Z37N29mg5jRVmVhiJUDY9oJrhkVeAgWCNSjASeYHVvUB779XumNA/lHQwj1g5IT3KfUwJG6tj5HIXjmzxuCeYDUSp8wK2AQF/7Sbl8UbiSlER6lIsG+Y6ddQrOBHiRuDOSRTNUOvZXqxvSOGASqCBaN10ngnZCFHAq2CjTijWLCB2QHmsaKknAdDuZvDTCR0bpYj9UpiTgifp7IiGB1sPAM52Tc+e9sfif14zBP28nXEYxMEmni/xYYAjxOB/c5YpREENDCFXc3IppnyhCwaSYMSG48y8vktpJwS0WTm+L2dLlLI40OkCHKIdcdIZK6BpVUBVR9Iie0St6s56sF+vd+pi2pqzZzD76A+vzB2DknLA=</latexit>

(K) CCA.Decaps(ct, sk)

<latexit sha1_base64="DovIdhyiRUvepS9AMef4TLTDoa4=">AAACEnicbVDJSgNBEO2Je9xGPXppDEICEmYkokc1HgQvEYwKmSH0dGpMk56F7holDPkGL/6KFw+KePXkzb+xsxzcHhQ83quiql6QSqHRcT6twtT0zOzc/EJxcWl5ZdVeW7/USaY4NHkiE3UdMA1SxNBEgRKuUwUsCiRcBb360L+6BaVFEl9gPwU/YjexCAVnaKS2XSmfVagnIUSmVHJHvYhhV4d5vX5UPQHOUj0oc9zRvUrbLjlVZwT6l7gTUiITNNr2h9dJeBZBjFwyrVuuk6KfM4WCSxgUvUxDyniP3UDL0JhFoP189NKAbhulQ8NEmYqRjtTvEzmLtO5HgekcXfzbG4r/ea0MwwM/F3GaIcR8vCjMJMWEDvOhHaGAo+wbwrgS5lbKu0wxjibFognB/f3yX3K5W3Vr1b3zWunweBLHPNkkW6RMXLJPDskpaZAm4eSePJJn8mI9WE/Wq/U2bi1Yk5kN8gPW+xdYC5yp</latexit>

Fig. 2. Key-Exchange protocol using IND-CCA secure Kyber KEM

3 SIDE-CHANNEL ATTACKS ON KYBER KEM

3.1 Nomenclature for Attack Classification

Kyber KEM has been subjected to a variety of side-channel attacks, and the type of attack that can be mounted in a

given setting, depends upon several factors such as target procedure, target operation, attack technique, operating

mode of Kyber etc. Understanding the applicability of different attacks, requires one to understand the application of

Kyber KEM when used for key-exchange (i.e.) within a key exchange protocol.

3.1.1 Application of Kyber KEM for Key-Exchange. Refer to Fig.2 for a key-exchange protocol that can be built using

IND-CCA secure Kyber KEM. The protocol is executed between two parties - Alice and Bob. Alice starts by running the

key-generation procedure (KeyGen) to generate her public-private key pair (𝑝𝑘, 𝑠𝑘), and subsequently sends the public

key 𝑝𝑘 to Bob. Bob then runs the encapsulation procedure (Encaps) procedure using the public key 𝑝𝑘 to generate the

ciphertext 𝑐𝑡 and the corresponding shared session key 𝐾 . Bob shares the ciphertext 𝑐𝑡 with Alice, who then uses her

secret key 𝑠𝑘 to decapsulate the ciphertext (Decaps) to generate the same shared session key 𝐾 .

This key-exchange protocol can operate in two settings, depending upon the longevity of the key pair (𝑝𝑘, 𝑠𝑘) used
by Alice.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 11

(1) Static key setting: Alice can choose to reuse (𝑝𝑘, 𝑠𝑘) for multiple key-exchanges and this is referred to as a

static-key setting with ocassional key refreshment (once every 𝑋 key-exchanges). It is also possible that Alice

also uses a single key pair for all key-exchanges without any key refrehsment. For simplicity, we refer to these

scenarios together as the static key setting.

(2) Ephemeral key setting: However, Alice can also choose to use fresh key pairs (𝑝𝑘, 𝑠𝑘) for every new key-exchange,

which we refer to as the ephemeral key setting. In the ephemeral key setting, IND-CCA security is not required,

and thus the key-exchange can be carried out only using IND-CPA secure Kyber PKE. Thus, Bob and Alice can

utilize the CPA.Encrypt and CPA.Decrypt procedures respectively, instead of the CCA.Encaps and CCA.Decaps

to run the key-exchange protocol in the ephemeral key setting. However, key exchange in this setting can also

be carried out using IND-CCA secure Kyber KEM, and this is left upto the choice of the designer. But, this

is generally considered to be overkill, as it is well-known that IND-CPA security is sufficient for ephemeral

key-exchange. For instance, the TLS 1.3 protocol mandates ephemeral key-exchange [1], but the post-quantum

variant of TLS 1.3 implemented in the Open-Quantum Safe project utilizes IND-CCA secure KEMs for ephemeral

key-exchange [17]. Similarly, designers can opt for the stronger IND-CCA secure KEMs, even when performing

ephemeral key-exchanges.

The type of attacks on Kyber KEM primarily depends upon the interplay between the following two factors:

(1) Kyber’s operating mode - ephemeral/static key setting

(2) Attacker’s access to Device Under Test (DUT) - Alice/Bob

3.1.2 Attacking Kyber in Ephemeral Key Setting. In this setting, the secret key 𝑠𝑘 and sensitive message𝑚 are refreshed

for every new key exchange. Recovery of𝑚 leads to recovery of the session key 𝐾 . Recovery of 𝑠𝑘 also leads to recovery

of the session key 𝐾 . This allows the attacker to decrypt future dated secure communication between Alice and Bob,

encrypted using the session key 𝐾 . Thus, in the ephemeral key setting, recovering the message𝑚 (message recovery) is

equivalent to recovering the secret key 𝑠𝑘 (key recovery).

(1) Attacking Alice: If an attacker has access to Alice’s device, then he/she can target the key-generation or

decapsulation procedure. Leakage from the key-generation procedure can be exploited to recover the secret

key 𝑠𝑘 . One of the main challenges of targeting the key-generation procedure is that it is probabilistic and

generates a new key pair for every execution. Thus, the attacker only has access to a single execution/trace

of the key-generation procedure to recover the entire secret key 𝑠𝑘 . Thus, multi-trace side-channel attacks

or fault attacks that require multiple faulty outputs naturally do not apply to the key-generation procedure.

However, in the ephemeral key setting, the key generation procedure is executed for every new instance of

the key-exchange protocol, thus an attacker has the opportunity to attack key generation, every time a key

exchange is initiated by Alice.

An attacker can also exploit leakage from the decapsulation procedure for key recovery (𝑠𝑘) as well as message

recovery𝑚. Similar to targeting the key-generation procedure, the attacker only has a single trace/execution of

the decapsulation procedure to recover the entire secret key 𝑠𝑘 . Thus, only single trace/execution attacks apply,

while multi-trace attacks do not apply.

(2) Targeting Bob: If an attacker has access to Bob’s device in the ephemeral key setting, then he/she can target the

encapsulation procedure for message recovery (i.e.)𝑚. The encapsulation procedure is also probabilistic, and

thus the attacker only has access to a single execution to recover the entire message𝑚.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

3.1.3 Attacking Kyber in Static Key Setting. In this setting, recovering the secret key 𝑠𝑘 is much more attractive for an

attacker, since recovering 𝑠𝑘 results in trivial recovery of the message𝑚 for all the key exchanges carried out by Alice

using 𝑠𝑘 . Thus, recovery of a single long-term secret key 𝑠𝑘 leads to recovery of all the session keys 𝐾 derived using 𝑠𝑘 .

(1) Targeting Alice:An attacker can target Alice’s key-generation and decapsulation procedure. Unlike the ephemeral

key setting where the key-generation procedure is executed for every key exchange, key-generation is only

executed once every 𝑋 times, where 𝑋 is the key refresh rate chosen by the designers based on the application.

Thus, the attacker has less opportunity to attack key generation in a static setting with occasional key refreshes,

compared to the ephemeral key setting. Moreover, only single trace/execution attacks are applicable to the

key-generation procedure.

However, in a static key setting, the decapsulation procedure serves as a better target for the attacker, since it

manipulates the same secret key 𝑠𝑘 for𝑋 key exchanges. Thus, an attacker has access to𝑋 number of executions

of the decapsulation procedure to recover the secret key 𝑠𝑘 , compared to only a single trace/execution in the

ephemeral key setting. Thus, multi-trace attacks apply when targeting the decapsulation procedure in a static

key setting.

(2) Targeting Bob: If an attacker has access to Bob’s device, then he/she can target the encapsulation procedure for

message recovery. Similar to the ephemeral key setting, only single trace attacks apply to the encapsulation

procedure.

From the aforementioned discussion, we can infer the following:

(1) Key-generation procedure and encapsulation procedure can only be targeted by single trace attacks, irrespective

of operating in the static key setting or ephemeral key setting.

(2) In the ephemeral key setting, the decapsulation procedure can be targeted only by single trace attacks. However,

in the static key setting, multi-trace attacks apply to the decapsulation procedure.

3.1.4 Attack Scenarios and Characteristics. We therefore discuss side-channel attacks on Kyber KEM based on four

scenarios:

(1) Targeting Key-generation Procedure (Single Trace)

(2) Targeting Encapsulation Procedure (Single Trace)

(3) Targeting Decapsulation Procedure in Ephemeral Key Setting (Single Trace)

(4) Targeting Decapsulation Procedure in Static Key Setting (Multi Trace)

For every attack discussed in this work, we also describe its characteristics based on the following parameters:

(1) Attacker’s ability to communicate with DUT (DUT_IO_Access): In this respect, we identify two categories:

(a) Observe_DUT_IO: We assume an attacker who can only passively observe the DUT’s communication

channel (I/O), but cannot actively communicate with the DUT. In this scenario, the attackers can only

observe/affect the DUT’s behaviour for valid key exchanges with other parties. The attacker cannot trigger

the operation of the DUT.

(b) Communicate_DUT_IO: We assume an attacker who can passively observe the DUT’s communication

channel, while also being able to actively communicate with the DUT. For instance, when targeting Alice,

an attacker can attempt to establish a key exchange, and submit ciphertext queries to observe behaviour

of Alice. Similarly, when targeting Bob, an attacker can attempt to perform a valid key exchange with

Bob, to observe the behavior of his DUT. This ability to communicate with the DUT provides the attacker

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 13

the opportunity to profile the side-channel behaviour of the DUT when processing the attacker’s chosen

inputs. As we show later in Section 3.6, this serves as an advantage for an attacker, leading to more variety

of attacks.

(2) Profiling and Access to clone device (Profile_𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡): In this respect, we can categorize attacks into three

categories:

(a) Profiled_With_Clone: This category includes profiled attacks, which work with side-channel templates

built using leakage from a clone device of the DUT. Thus, the attacker requires access to a clone device,

which he/she can fully control, including the secret key. The attacker can construct elaborate side-channel

templates, using leakage from the clone device, for every operation done on the DUT.

(b) Profiled_Without_Clone: This category includes profiled attacks, which can work with templates con-

structed using leakage, directly from the DUT. Thus, these attacks do not require access to a clone device.

(c) Non_Profiled: This category includes attacks that do not utilize any side-channel templates, thus these

attacks also do not require access to a clone device.

(3) Number of traces (No_Traces): This characteristic denotes the number of traces from the DUT, required to

perform message recovery/key recovery. We do not take into account the number of traces, required to construct

side-channel templates. We only consider the number of executions of the DUT to carry out the attack. The

exact number of traces for key/message recovery depends upon the experimental setup, and therefore we only

provide approximate numbers for the same in this paper, while the main emphasis is on the scale of the number

of traces, rather than the exact number.

(4) Signal to Noise Ratio (SNR): This characteristic indicates the robustness of the side-channel attack tomeasurement

noise in the acquired traces. We identify two categories: Low_SNR and High_SNR. We clarify that the SNR

comparison is only qualitative and that attacks that work over multiple traces typically require lower SNR,

compared to attacks that work with single traces.

We therefore define the characteristic of each side-channel attack onKyber using the following tuple: (DUT_IO_Access,

Profile_𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 , No_Traces, SNR). For example, a tuple (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR)

indicates a side-channel attack with the following characteristics: one that does not require to communicate with

the DUT, requires a clone device to construct templates, only requires a single trace from the DUT, and requires a

reasonably high SNR in the collected measurements. We believe this representation captures the high-level features

about the attack, and allows us to categorize existing attacks into different categories.

To explain the different attacks, we utilize the algorithm of IND-CPA secure Kyber PKE in Alg.1 and the algorithm of

IND-CCA secure Kyber KEM in Alg.2. In this paper, we consider power/EM side-channels to be equivalent, as attacks

exploiting the power (resp. EM) side-channel can be easily adapted to exploit the EM (power) side-channel, albeit with

a difference in the success rate and effort to carry out the attack.

3.2 SCA on Key Generation

We now discuss single trace attacks applicable to the key-generation procedure of Kyber KEM.

3.2.1 Soft-Analytical Side-Channel Analysis (SASCA). In a single power/EM trace, the attacker has to extract as much

information as possible from a single trace, to recover the target variable. In this respect, Soft-Analytical Side-Channel

Analysis (SASCA) acts as a very potent tool to perform single-trace attacks. They are profiled attacks, which work

by templating leakage from multiple sequential operations, directly processing the secret variable. Subsequently, to

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

carry out the attack, the attacker obtains a single trace, which is then matched with all the templates, and the template

matching information is combined to recover the secret key. The ability of SASCA for key recovery was initially studied

for symmetric key cryptographic schemes such as AES [73], however, its applicability to lattice-based schemes has also

been studied by several works [39, 53, 55]. We can classify existing attacks based on SASCA into two categories, based

on the target operation.

Targeting NTT: Primas et al. [55] showed that a single power/EM trace from the NTT operation operating over

a secret variable x, can be used to recover x (i.e.) input to the NTT. A close observation of the algorithm of IND-CPA

Kyber PKE (Alg.1) reveals that NTT is computed over several sensitive intermediate variables. In particular, within the

key-generation procedure, NTT is computed over the secret key s ∈ 𝑅𝑘𝑞 (Line 7 of KeyGen). Thus, leakage from this

NTT operation can be exploited by SASCA to recover its input (i.e.) s.
The attack works in two phases - (1) Profiling Phase and (2) Key Recovery Phase.

(1) Profiling Phase: Side-channel templates are constructed using leakage from the clone device (Profiled_With_Clone),

for several intermediate computations within the NTT. Some of these operations include storing/loading of

input and output of butterfly operation, modular addition, modular subtraction, and modular multiplication.

(2) Key Recovery Phase: Once templates are constructed, the attacker obtains a single trace corresponding to leakage

from the target NTT operation. The trace is segmented based on the targeted internal operations, which are

then matched with the appropriate templates. Subsequently, results from the template matching are modeled

into a factor graph based on the NTT implementation. The factor graph is fed into the Belief Propagation

algorithm [52] which combines leakage from all the intermediate variables, to recover the secret key s.

The first SASCA-based single trace attack on lattice-based schemes was proposed by Primas et al. [55] on a generic

Ring-LWE-based PKE scheme, implemented on the ARM Cortex-M4 microcontroller. The proposed attack required

over a million templates for successful key recovery. However, the subsequent work of Pessl and Primas [53] proposed

optimizations to reduce the number of templates to just a few hundred (≈ 200), especially when the coefficients of the

input to the target NTT belong to a small range. This is precisely the case with the NTT over the secret s ∈ 𝑅𝑘𝑞 in the

KeyGen procedure (Line 7 in Alg.1). We refer to these attacks targeting NTT using SASCA by the label SASCA_NTT.

Their characteristic can be defined by the following tuple: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR).

Very recently, Li et al. [39] proposed single trace attacks on the reference implementation of the Toom-Cook polyno-

mial multiplier, used in Saber KEM. The aforementioned attacks clearly demonstrate the ability of SASCA-style attacks

to break different algorithms for polynomial multiplication, when used in lattice-based schemes.

Countermeasure: We refer to the work of Ravi et al. [63] who proposed generic shuffling and masking countermea-

sures with varying granularity, to protect the NTT against single trace attacks. They proposed a range of shuffling

countermeasures that provide a well-defined trade-off between shuffling entropy (security) and performance. They

also proposed masked NTTs, which randomize the twiddle factors used in the NTT operation. This has the effect of

randomizing computations within the NTT, which deters the success rate of SASCA-type attacks. For more details,

we refer to [63] for the proposed masking and shuffling countermeasure for the NTT. Recently, the security offered

by the shuffled NTT countermeasures was studied in a detailed manner by Hermelink et al. [35]. We refer to these

countermeasures for the NTT together using the label Shuffled_Masked_NTT.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 15

Targeting KECCAK: KECCAK is used as a building block in several lattice-based schemes including Kyber KEM.

In particular, it is used as a pseudo-random function (PRF) and a pseudo-random number generator (PRNG) across

all the three procedures of Kyber KEM (KeyGen, Encaps and Decaps). In the KeyGen procedure, KECCAK is used as a

PRNG to expand a small secret seed 𝑠𝑒𝑒𝑑𝐵 into a string of pseudo-random bits (Line 5 in Alg.1), which is subsequently

used to sample the secret s. Given the sequential nature of the KECCAK operation, it serves as an ideal target for

SASCA.

In this respect, Kannwischer et al. [37] demonstrated single trace SASCA on KECCAK instances, which can be used to

recover their inputs. Thus, targeting the KECCAK operation over the secret 𝑠𝑒𝑒𝑑𝐵 (Line 5 in Alg.1), can be used to recover

𝑠𝑒𝑒𝑑𝐵 , whose knowledge can be used to recover the secret s. Though the attack was only demonstrated over simulated

traces, the attack in principle is applicable to software implementations, particularly on embedded microcontrollers such

as the ARM Cortex-M4. We henceforth refer to the attack using the label SASCA_KECCAK. The templates required to

perform the attack can only be built using leakage from a clone device. The attack characteristic can be defined by the

tuple: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR). KECCAK is extensively utilized as a PRF and PRNG in

several lattice-based KEMs and also extensively within hash-based signatures, thus the SASCA_KECCAK attack is also

applicable to other PQC schemes, as discussed in [37].

Countermeasure: Similar to the NTT operation, KECCAK can be protected from SASCA_KECCAK style attacks through

shuffling. However, we are not aware of prior work that investigates the cost and effectiveness of partial or full

shuffling of KECCAK instances in lattice-based schemes. We refer to the shuffling countermeasure for KECCAK as

Shuffled_KECCAK throughout this paper.

Though SASCA-based attacks targeting the NTT and KECCAK instances can work with single traces, they suffer

from a few downsides:

(1) Requirement of Elaborate Profiling: Several hundred precisely built templates for low-level arithmetic operations

are required for a successful attack. This requires the attacker to have detailed information about the target and

its internal operations.

(2) Requirement of high Signal to Noise Ratio (SNR): The attack typically requires a relatively high SNR for full key

recovery, which is typical of single trace attacks. Thus, incorporation of low-cost countermeasures such as jitter

could already be sufficient to significantly deter the success rate of the attack.

(3) Applicability of attack to noisy devices: The aforementioned attacks have only been demonstrated on embedded

microcontrollers such as the ARMCortex-M4 with high SNR. But their applicability to more advanced processors

with inherently low SNR is not clear. Moreover, hardware implementations with inherent parallelism introduce

significant algorithmic noise, which can also significantly deter attack success rate.

Refer to Tab.1 for a tabulation of all side-channel attacks on the key-generation procedure of Kyber KEM.

3.3 SCA on Encapsulation

Similar to the key-generation procedure, the encapsulation procedure is also probabilistic and is therefore only suscep-

tible to single trace message recovery attacks, in both the ephemeral key setting as well as static key setting. We now

discuss single trace attacks applicable to the encapsulation procedure of Kyber KEM.

3.3.1 SASCA. The encapsulation procedure is also susceptible to SASCA-based attacks.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

Targeting NTT (SASCA_NTT): Leakage from the NTT over the ephemeral secret r ∈ 𝑅𝑘𝑞 (Line 17 of Encrypt in

Alg.1) can be exploited to recover r in a single trace. Recovery of r leads to straightforward recovery of the message𝑚

for a valid ciphertext 𝑐𝑡 = (u, v) in the following manner:

𝑚 = Compress(v − INTT(t̂ ◦ r̂), 1)

The attack can only be carried out using templates built from the clone device since the attacker does not have

knowledge of the internal variables of the target computation (i.e.) NTT(r). Thus, the attack characteristic can be

defined by the following tuple: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR).

Targeting KECCAK (SASCA_KECCAK): KECCAK is used as a PRF as well as a PRNGwithin the encapsulation procedure.

In the Encaps procedure, it is used as a PRF (denoted as G) to generate the pre-key
¯𝐾 ′ and seed 𝑟 , using the sensitive

message𝑚 and hash of the public key 𝑝𝑘 (Line 10 in Alg : CCAtransform). Thus, exploiting leakage from this KECCAK

instance leads to recovery of the message𝑚 in a single trace.

In the Encrypt procedure, the KECCAK operation is used as a PRNG, to expand a small secret seed (i.e.) 𝑠𝑒𝑒𝑑𝑅 (32

bytes) into a string of pseudorandom bits, which are further used to sample the ephemeral secrets r, e1 and e2 (Lines

14-16 in Alg.1). Exploitation of leakage from this KECCAK instance leads to recovery of 𝑠𝑒𝑒𝑑𝑅 in a single trace, whose

knowledge can be used to recover r and therefore the message𝑚. Similar to SASCA on the NTT, the attack can be

defined using the tuple: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR).

Countermeasure: Shuffling and masking the NTT (Shuffled_Masked_NTT) as well as shuffling the KECCAK oper-

ation (Shuffled_KECCAK) provides concrete protection against attacks relying on SASCA.

3.3.2 Targeting Message Encoding. KEMs based on the LWE/LWR-based problem such as Kyber, inherently involve

bitwise manipulation of the message𝑚. During encryption, the message𝑚 ∈ B32
is encoded one bit at a time into a

polynomial m ∈ 𝑅𝑞 within the Encode procedure (Line 20 of Encrypt in Alg.1). This behaviour has been exploited by

several power/EM side-channel attacks for message recovery [4, 69, 77].

The first such attack was demonstrated by Amiet et al. [4] targeting the message encoding operation in NewHope

KEM, a Ring-LWE based KEM. The encoded message polynomial has only two possible coefficients (i.e.) m[𝑖] = ⌈𝑞/2⌋
for 𝑚𝑖 = 1 and m[𝑖] = 0 for 𝑚𝑖 = 0. For a non-zero modulus 𝑞, the difference in Hamming Weight of m[𝑖] when
𝑚𝑖 = 0/1 (i.e.) m[𝑖] = 0 or m[𝑖] = 𝑞/2, can be easily distinguished through the power/EM side-channel. Thus, leakage

from manipulation of these encoded coefficients (Line 20) can be used to recover the message one bit at a time, from a

single trace.

The attack works in two phases - (1) Profiling Phase and (2) Key Recovery Phase.

(1) Profiling Phase: The attacker builds templates for all message bits𝑚𝑖 = 0 and𝑚𝑖 = 1 for 𝑖 ∈ [0, 256). The templates

can be constructed in two ways. If the attacker can communicate with the DUT (Communicate_DUT_IO), then

he/she can perform several valid key-exchanges with the DUT to build side-channel templates for all message

bits. Thus, the templates can be built directly on the DUT (Profiled_Without_Clone). However, if the attacker

cannot communicate with the DUT (Observe_DUT_IO), then templates have to be built on a clone device to

carry out the attack (Profiled_With_Clone).

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 17

(2) Key Recovery Phase: The attacker obtains a single attack trace, and divides it into smaller segments, corresponding

to the individual message bits𝑚𝑖 for 𝑖 ∈ [0, 256). These segments are matched with the corresponding templates

𝑚𝑖 = 0 and𝑚𝑖 = 1, to recover the entire message in a single trace.

While the attackwas originally demonstrated onNewHope KEM, subsequent works [69, 77] have generalized the same

attack to multiple lattice-based KEMs including Kyber KEM. We refer to these attacks using the label Message_Encode.

Since it is a single-trace attack, masking does not serve as a concrete countermeasure against the attack. In fact,

attacks have been demonstrated exploiting similar bitwise manipulation of the message, on implementations protected

with first-order and higher-order masking countermeasures [47, 49]. These attacks show that an attacker can exploit

leakage from all the individual shares of the message bits for single-trace message recovery. The attack in effect does not

really break the security guarantees of the masked implementation but is merely a second-order attack on a first-order

masked implementation. However, this attack is of interest, because it is expected that the number of traces required for

the attack increases exponentially with the masking order. However, Ngo et al. [47] showed that single trace message

recovery is also possible on a first-order masked implementation, similar to the unprotected implementation. Similarly,

the same attack was extended to higher orders by the same authors [49], thereby clearly demonstrating that masking

alone, does not deter message recovery when the message is manipulated in a bitwise fashion. Though these attacks

exploited the message decoding operation within the decoding procedure of Saber KEM (equivalent to Line 28 of

Decrypt in Alg.1), the same attacks also apply to the encoding procedure.

We refer to these attacks applicable to the masked message encoding procedure asMasked_Message_Encode. All

the aforementioned attacks have been demonstrated on the ARM Cortex-M4 microcontroller, where the encoding

operation is done in a sequential manner, one bit at a time. However, the applicability of these single-trace attacks to

parallelized implementations is not clear. Moreover, leakage from the manipulation of single message bits only spans

for a single clock cycle. Thus, exploitation of such fine-grained leakage requires traces with sufficiently high SNR for

message recovery.

The characteristic of both the Message_Encode and Masked_Message_Encode attacks the encapsulation procedure

can be described using these two tuples: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR) and

(Communicate_DUT_IO, Profiled_Without_Clone, 1, High_SNR).

Countermeasure: Single trace attacks on the message encoding operation can also be concretely prevented by shuffling

the message encoding operation, as proposed by [4]. Shuffling ensures that the attacker can recover all the bits of

the message, but not the order of message bits. This concretely prevents message recovery, since full shuffling has

an entropy of (𝑛!) for an 𝑛-bit message (i.e.) 256! for 𝑛 = 256 bits, which is beyond brute force for an attacker. We

henceforth refer to this countermeasure using the label Shuffled_Encode.

Refer to Tab.1 for a tabulation of all side-channel attacks on the encapsulation procedure of Kyber KEM.

3.4 SCA on Decapsulation Procedure in Ephemeral Key Setting

In this section, we discuss single trace side-channel attacks applicable to the decapsulation procedure in the ephemeral

key setting. We recall that both message recovery and key recovery attacks are possible, and that message recovery

has the same impact as that of performing key recovery in the ephemeral key setting. We reiterate that IND-CPA

secure KEMs are sufficient for concrete security in ephemeral key exchanges, but we consider usage of IND-CCA secure

KEMs in the ephemeral key setting, as the operating mode of KEM is purely the designer’s choice [17]. When IND-CPA

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

secure PKE of Kyber is used for ephemeral key-exchange, then the attacker can only target leakage from the decryption

procedure for key recovery/message recovery (Line 17 of Decaps in Alg.2). However, when IND-CCA secure KEM is

used, the attacker can target leakage from any operation after the decryption procedure for key recovery/message

recovery (Lines 18-24 of Decaps in Alg.2).

3.4.1 SASCA. The encapsulation procedure is also susceptible to SASCA-based attacks.

Targeting NTT in the Decryption Procedure (SASCA_NTT): An attacker can target the INTT operation over 𝑔′ (i.e.) the

product of NTT of ciphertext component u′ and the NTT of secret s (Line 27 of Decrypt in Alg.1). Recovery of 𝑔′ results

in trivial recovery of the secret key s, since the ciphertext component u is known to the attacker. The attack can be

carried out using templates from a clone device. We thus define the characteristic of the attack using the following

tuple: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR).

Targeting NTT in the Re-encryption Procedure (SASCA_NTT): Apart from targeting NTT in the decryption proce-

dure, an attacker can also target NTT instances in the re-encryption procedure, in the same manner as targeting NTT

instances in the encapsulation procedure. In this respect, an attacker can target the NTT operation over the ephemeral

secret r within the re-encryption procedure (Line 20 in Alg.2). This enables the attacker to recover r, whose knowledge
can be used to recover the message𝑚 for a given target ciphertext 𝑐𝑡 .

There is however one subtle difference with respect to profiling when compared to the same attack on the encapsu-

lation procedure. If the attacker is able to communicate with the decapsulation procedure (Communicate_DUT_IO),

he/she can build templates using leakage from decapsulation of valid ciphertexts, directly from the DUT.

This can be done in the following manner: The attacker can construct valid ciphertexts 𝑐𝑡𝑖 for 𝑖 ∈ [0,𝑇 − 1] for which
the attacker knows the value of the ephemeral secret r𝑖 for 𝑖 ∈ [0,𝑇 − 1]. Leakage from the decapsulation of these

ciphertexts can be used to build templates for all internal operations within the NTT over r. In this scenario, we define

the attack characteristic using the tuple: (Communicate_DUT_IO, Profiled_Without_Clone, 1, High_SNR). However,

if the attacker cannot communicate with the DUT, then he/she requires access to a clone device for profiling. In this

scenario, we define the attack characteristic using the tuple: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR).

Targeting KECCAK after Decryption Procedure (SASCA_KECCAK): An attacker can target KECCAK instances after the

decryption procedure, similar to the attack on KECCAK instances in the encapsulation procedure. One can target the

KECCAK instance used as a PRF to generate the pre-key
¯𝐾 ′ (Line 18 of Decaps in Alg.2) for message recovery. Similarly,

the attacker can target the KECCAK used as a PRNG in the re-encryption procedure (Line 14 of Encrypt in Alg.1) to

recover r, leading to message recovery. It is important to note that both operations primarily depend upon the message

𝑚′. Thus, an attacker who can communicate with the DUT can control𝑚′ during valid key exchanges and build tem-

plates directly on the DUT. In this scenario, we define the attack characteristic using the tuple: (Communicate_DUT_IO,

Profiled_Without_Clone, 1, High_SNR). However, if the attacker cannot communicate with the DUT, then templates

can only be built on the clone device (i.e.) (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR).

Countermeasure: Shuffled_Masked_NTT as well as Shuffled_KECCAK countermeasures can be used to protect against

SASCA style attacks.

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 19

3.4.2 Targeting Message Decoding. Similar to the message encoding operation within the Encrypt procedure, the

message decoding operation within the decryption procedure (Decrypt) also performs bitwise manipulation of the

decrypted message𝑚′ (Line 28 of Decrypt in Alg.1). The erroneous message polynomial m′ ∈ 𝑅𝑞 is decoded into the

message𝑚′ ∈ B32
, one coefficient at a time. This bitwise manipulation was shown to be exploitable by Ravi et al. [58]

using single trace attacks on Kyber KEM. We refer to this attack using the labelMessage_Decode. Subsequently, Ngo et

al. [47] demonstrated a similar message recovery attack on the masked decoding procedure in Saber KEM, which has

also been extended to higher order masked implementations as well [49, 58]. We refer to this attack using the label

Masked_Message_Decode.

If the attacker can communicate with the DUT (Communicate_DUT_IO), then templates for the message can be built

directly on theDUT. Thus, the attack characteristic in this scenario is (Communicate_DUT_IO, Profiled_Without_Clone,

1,High_SNR). If the attacker cannot communicate with the DUT (Observe_DUT_IO), then templates have to be built on

a clone device. Thus, the attack characteristic in this scenario is (Observe_DUT_IO, Profiled_With_Clone, 1,High_SNR).

Similar to theMessage_Encode attacks on the message encoding procedure, an attack on the decoding procedure

also requires less noise in the measurements. Moreover, leakage from manipulation of single message bits only spans

for a single clock cycle. Thus, adapting the attack to advanced platforms with inherent measurement or algorithmic

noise is not very trivial.

Countermeasure: Similar to shuffling the message encoding procedure, shuffling the message decoding procedure

provides concrete protection against such single-trace message recovery attacks, as proposed in [4]. We henceforth

refer to this countermeasure as Shuffled_Decode.

Apart from the aforementioned attacks, we observe that single attacks on the encapsulation procedure also apply

to the decapsulation procedure. This is because all operations targeted by side-channel attacks on the encapsulation

procedure are also performed in the decapsulation procedure, due to the use of the FO transform (Refer Sec.3.3).

Refer to Tab.1 for a tabulation of all side-channel attacks on the decapsulation procedure in the ephemeral key setting

of Kyber KEM.

3.5 SCA on Decapsulation Procedure in Static Key Setting

In the static key setting, the decapsulation procedure manipulates the same secret key 𝑠𝑘 for multiple key exchanges.

Thus, the attacker has access to multiple traces from the decapsulation procedure to perform key recovery and message

recovery. Clearly, single trace attacks applicable to the decapsulation procedure in the ephemeral key setting, are also

applicable in the static key setting (Refer Sec.3.4). Thus, we only discuss those attacks that utilize multiple traces from

the decapsulation procedure for key recovery.

3.5.1 Correlation Power Analysis (CPA). We first discuss attacks that assume an Observe_DUT_IO attacker, who can

only passively monitor the I/O of the DUT performing decapsulation. In this respect, Mujdei et al. [45] performed an

extensive study on CPA style attacks and their applicability to different polynomial multiplication strategies, including

NTT. Kyber adopts an incomplete NTT for polynomial multiplication, for efficiency reasons (i.e.) it only computes

(𝑙𝑜𝑔2 (𝑛) − 1) layers of the NTT for an 𝑛 − 1 degree polynomial. Thus, the output of the incomplete NTT is nothing but

a sequence of linear polynomials with degree 1. The decryption procedure computes the incomplete NTT of u′ ∈ 𝑅𝑘𝑞
(Line 25 in Alg.1), which is followed by a pointwise multiplication with the coefficients of the NTT transformed secret

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

ŝ ∈ 𝑅𝑘𝑞 (i.e.) (û′ ◦ ŝ) in Line 26 of Alg.1. This pointwise multiplication is performed using several 2-coefficient schoolbook

multiplication operations.

Mujdei et al [45] showed that leakage from the schoolbook polynomial multiplications after the incomplete NTT can

be exploited through conventional CPA style attacks. The presented attack is a non-profiled attack, similar to other

CPA style attacks, and requires ≈ 200 power traces to recover all the coefficients of ŝ, which enables full key recovery.

Similarly, Chen et al. [16] demonstrated a non-profiled CPA attack targeting the school-book polynomial multiplication

over NTT transformed polynomials used in the signing procedure of Dilithium for key recovery. Their attack can also

be adapted to Kyber, which requires less than 200 power traces for key recovery. We refer to these attacks using the

label NTT_Leakage_CPA. Since these attack work over multiple traces, they can still work with low SNR. The attack

characteristic can be described using the following tuple: (Observe_DUT_IO, Non_Profiled, ≈ 200, Low_SNR).

Countermeasure: Similar to typical CPA style attacks, masking serves as a concrete countermeasure, which splits

the sensitive variable into multiple shares, and operates over each of them independently throughout the implementa-

tion. We refer to this countermeasure using the label Masking [13, 33]. However, one of the disadvantages of masking

is its high cost (≈ 2.5 − 3×) as clearly shown in [13, 33].

In the following, we discuss those attacks which assume a Communicate_DUT_IO attacker, who can submit cipher-

texts of his/her choice for decapsulation by the DUT. Several works have shown that such an attacker can exploit

leakage from the decapsulation procedure in different ways to carry out key recovery attacks [58, 65, 77]. This forms

the largest category of attacks applicable to lattice-based KEMs such as Kyber KEM, which we refer to as side-channel

assisted chosen-ciphertext attacks (SCA-assisted CCA).

3.6 Side-Channel Assisted Chosen-Ciphertext Attacks

Kyber KEM is IND-CCA secure, and therefore enjoys concrete theoretical security guarantees against classical chosen-

ciphertext attacks, which query the target with malformed/handcrafted chosen ciphertexts. This is primarily due to the

attacker’s inability to access any information about sensitive intermediate variables in the decapsulation procedure.

However, an attacker who can utilize side-channel leakage can realize a practical oracle, to obtain critical information

about secret-dependent internal variables within the decapsulation procedure for chosen-ciphertexts, leading to key

recovery.

In the following, we discuss the different types of SCA-assisted CCAs applicable to Kyber KEM. Their modus operandi

is given as follows: The attacker queries the decapsulation procedure with handcrafted ciphertexts. These ciphertexts

are crafted such that the decrypted message𝑚′ is very closely related to a targeted portion of the secret key, or in a

few cases, the entire secret key. The attacker utilizes leakage from the decapsulation procedure to recover information

about𝑚′, thereby realizing a practical side-channel oracle. Such information obtained over several carefully crafted

ciphertexts enables full key recovery. Following are the major sub-categories of side-channel oracle-based CCAs.

(1) Binary Plaintext-Checking (PC) Oracle-Based SCA

(2) Parallel Plaintext-Checking (PC) Oracle-Based SCA

(3) Decryption-Failure (DF) Oracle-Based SCA

(4) Full-Decryption (FD) Oracle-Based SCA

3.6.1 Binary Plaintext-Checking (PC) Oracle-Based SCA. An attacker constructs ciphertexts, so as to ensure that𝑚′

(Line 28 in Alg.1) only depends upon a single targeted coefficient of the secret key. Side-channel leakage from the

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 21

subsequent operations processing𝑚′ (Lines 18-20 in Alg.2) are used to instantiate a Plaintext-Checking (PC) oracle for

key recovery. We briefly explain the PC oracle-based SCA on Kyber KEM, and the same attack can also be adapted to

other LWE/LWR-based schemes such as Saber, as shown in [65]. Referring to Alg.1, the attacker chooses a very sparse

ciphertext 𝑐𝑡 = (u, v) ∈ (𝑅𝑘𝑞 × 𝑅𝑞) as follows:

u𝑖 =

𝑈 · 𝑥0

if 𝑖 = 0,

0 if 1 ≤ 𝑖 ≤ 𝑘 − 1

(4)

v = 𝑉 · 𝑥0
(5)

where (𝑈 ,𝑉) ∈ Z+. For this chosen-ciphertext, each bit of the decrypted message𝑚′ (i.e.)𝑚′
𝑖
for 𝑖 ∈ [0, 𝑛 − 1] is given

as:

𝑚′𝑖 =


Decode(𝑉 −𝑈 · s0 [0]), if 𝑖 = 0

Decode(−𝑈 · s0 [𝑖]), for 1 ≤ 𝑖 ≤ 𝑛 − 1

(6)

Thus, every bit𝑚′
𝑖
is only dependent on a single corresponding secret coefficient of s0 (i.e.) s0 [𝑖]. The attacker can

chooses tuples (𝑈 ,𝑉) such that:

𝑚′𝑖 =


F (s0 [0]), if 𝑖 = 0

0, for 1 ≤ 𝑖 ≤ 𝑛 − 1

(7)

Now,𝑚′ can only take two possible values (i.e.)𝑚′ = 0/1, whose value depends upon a single secret coefficient s0 [0].
Thus,𝑚′ = 0/1 for different tuples (𝑈 ,𝑉) can be used as a binary distinguisher for every possible candidate of s0 [0].
Recovery of𝑚′ = 0/1 is done through side-channels (side-channel based PC oracle). In a similar manner, attackers can

build ciphertexts to recover the other secret coefficients, one at a time, leading to full key recovery.

In this respect, D’Anvers et al. [22] presented the first SCA-assisted CCA, targeting a non-constant time imple-

mentation of LAC, a Ring-LWE based KEM [40]. The targeted design utilized a non-constant time implementation of

the BCH decoding procedure. D’Anvers et al. [22] showed that the time taken to decode𝑚′ = 0 after decryption, is

much smaller than the time taken to decode𝑚′ = 1. This timing side-channel information was used to recover𝑚′ for

chosen-ciphertexts, which resulted in key recovery in a few thousand chosen-ciphertexts for LAC KEM.

Subsequently, Ravi et al. [65] generalized the attack to several constant-time implementations of LWE/LWR-based

KEMs, including Kyber KEM. utilizing the power/EM side-channel. They observed that a single-bit difference in𝑚′

(0/1), uniformly randomizes all subsequent operations after decryption (i.e.) due to the use of hash functions in the

decapsulation procedure (Lines 18-20 in Alg.2). Thus, power/EM side-channel leakage from any of these operations can

be used to realize a practical binary PC oracle to distinguish between𝑚′ = 0 and𝑚′ = 1.

The attack works in two phases - (1) Pre-processing Phase and (2) Key Recovery Phase.

(1) Pre-processing Phase: In this phase, side-channel templates are constructed for leakage from the re-encryption

procedure for𝑚′ = 0 and𝑚′ = 1, using a simple Welch’s 𝑡-test. Templates can be built directly on the DUT,

by querying with valid ciphertexts corresponding to𝑚′ = 0 and𝑚′ = 1. Since leakage from the re-encryption

procedure depends upon both𝑚′ and 𝑝𝑘 , templates have to be built for every new key pair (𝑝𝑘, 𝑠𝑘).

(2) Key Recovery Phase: In this phase, the attacker obtains single traces corresponding to all the chosen-ciphertexts

(Eqn.5) and subsequently, each attack trace is classified as either𝑚′ = 0/1 through simple template matching.

This information is sufficient for full key recovery.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

More recently, Ueno et al. [72] studied the applicability of the aforementioned attack to all KEMs in the NIST

standardization process, and demonstrated that almost all KEMs were susceptible to similar binary PC oracle based

chosen-ciphertext attacks.

One of the main advantages of the attack is that it can be carried out without any knowledge or very minimal

knowledge about the implementation. Moreover, any operation after the decryption procedure (Lines 18-20 of Decaps

in Alg.2) can be exploited to instantiate a practical PC oracle for key recovery, which amounts to a few hundred to

few thousand leakage points. Thus, the attack can also work with low SNR, due to a large number of leakage points,

available for exploitation. However, the attack only recovers a single bit of information about the secret key in each

query. Thus, full key recovery requires a few thousand (≈ 1𝑘 − 3𝑘) chosen-ciphertext queries for Kyber KEM. More

recently, few works have proposed improved methods to construct chosen-ciphertexts to reduce the number of queries

for key recovery [9, 56], and also to perform efficient key recovery in the presence of a non-perfect side-channel binary

PC oracle [68].

We therefore refer to the aforementioned attacks together using the label Binary_PC_Oracle_CCA attack. We de-

fine the attack characteristic using the following tuple: (Communicate_DUT_IO, Profiled_Without_Clone, ≈ 1𝑘 − 3𝑘 ,

Low_SNR).

Countermeasure: Masking the decapsulation procedure serves as a concrete countermeasure against the

Binary_PC_Oracle_CCA attack (Masking [13, 33]). While higher-order attacks are still possible, they incur a cor-

responding exponential increase in the number of traces for key recovery.

3.6.2 Parallel Plaintext-Checking (PC) Oracle-Based SCA. Very recently, Rajendran et al. [57] and Tanaka et al. [71]

demonstrated improved PC oracle based side-channel attacks, which are capable of more than one bit of information

per query. They demonstrated the ability to recover a generic 𝑃 number of bits of information about the secret key in a

single query (𝑃 ∈ Z+) through the construction of modified ciphertexts 𝑐𝑡 = (u, v) ∈ (𝑅𝑘𝑞 × 𝑅𝑞) as follows:

u𝑖 =

𝑈 · 𝑥0

if 𝑖 = 0,

0 if 1 ≤ 𝑖 ≤ 𝑘 − 1

(8)

v = 𝑉 · (
𝑖=(𝑃−1)∑︁

𝑖=0

𝑥𝑖) (9)

where (𝑈 ,𝑉) ∈ Z+. For this chosen-ciphertext, each bit of the decrypted message𝑚′ (i.e.)𝑚′
𝑖
for 𝑖 ∈ [0, 𝑛 − 1] is given

as:

𝑚′𝑖 =


Decode(𝑉 −𝑈 · s0 [𝑖]), for 𝑖 ∈ [0, 𝑃 − 1]

Decode(−𝑈 · s0 [𝑖]), for 𝑃 ≤ 𝑖 ≤ 𝑛 − 1

(10)

Thus, every bit𝑚′
𝑖
for 𝑖 ∈ [0, 𝑃 − 1] is only dependent on a single corresponding secret coefficient of s0 (i.e.) s0 [𝑖]. The

attacker can chooses tuples (𝑈 ,𝑉) such that:

𝑚′𝑖 =


F (s0 [𝑖]), for 𝑖 ∈ [0, 𝑃 − 1]

0, for 𝑃 ≤ 𝑖 ≤ 𝑛 − 1

(11)

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 23

Thus, the first 𝑃 bits of𝑚′ (i.e.)𝑚′
𝑖
for 𝑖 ∈ [0, 𝑃 − 1] are now dependent on the corresponding coefficients of s0 (i.e.) s0 [𝑖]

for 𝑖 ∈ [0, 𝑃 − 1], while all the other bits are fixed to 0. Thus, each of the 𝑃 message bits serves as a binary distinguisher

for the corresponding coefficient of s0. An attacker who can recover these 𝑃 message bits per query can realize a 𝑃-way

parallel PC oracle for key recovery. We refer to it as the Parallel_PC_Oracle_CCA attack.

The realization of such a 𝑃-way parallel PC oracle, reduces the number of attack traces/queries for key recovery, by

a factor of 𝑃 , compared to the Binary_PC_Oracle_CCA attack [22, 65]. In this respect, Rajendran et al. [57] and Tanaka

et al. [71] experimentally demonstrate that there is enough information present in power/EM side-channel leakage

from the re-encryption procedure to distinguish between 2
𝑃
possible values of the message𝑚′ in a single trace for

𝑃 < 10. For 𝑃 = 10, full key recovery can be done in ≈ 200 traces. However, higher values for 𝑃 , if achievable, can

further reduce the number of attack traces for key recovery.

However, it is important to note that increasing 𝑃 , also exponentially increases the number of templates to be built

in the pre-processing phase (2
𝑃
), while the number of traces in the attack phase only reduces linearly by a factor

of 𝑃 . If an attacker has access to a clone device (Profiled_With_Clone), then the template phase can be completely

taken offline, allowing to arbitrarily increase 𝑃 to reduce the number of queries to the DUT. However, if there is

no clone device access, then the attacker has to identify a trade-off between traces for the pre-processing phase,

and the key recovery phase. We therefore define the characteristic of Parallel_PC_Oracle_CCA attack using the fol-

lowing tuples: (Communicate_DUT_IO, Profiled_Without_Clone, ≈ 300 − 500, Low_SNR), (Communicate_DUT_IO,

Profiled_With_Clone, ≈ 100 − 200, Low_SNR).

Countermeasure: Similar to the Binary_PC_Oracle_CCA attack, masking the entire decapsulation procedure serves as a

concrete countermeasure against the Parallel_PC_Oracle_CCA attack (Masking [13, 33]).

3.6.3 Decryption-Failure (DF) Oracle-Based SCA. This category of attacks works by querying the decapsulation device

with carefully perturbed ciphertexts, such that the decryption failures in the decrypted message𝑚′, depend upon the

secret key. A side-channel oracle that is able to detect decryption failures can therefore recover the secret key.

The core idea of the attack is as follows: the attacker generates a valid ciphertext 𝑐𝑡 = (u, v) for a message𝑚 and

adds single coefficient errors to the second component v (e.g.) v̄ = v + 𝑒 · 𝑥0
(adding error to the first coefficient) where

𝑒 ∈ Z+. This has the effect of perturbing the first coefficient of the erroneous message polynomial (i.e.) m′ [0] by 𝑒 (Line
27 of Decrypt in Alg.1), thereby increasing the first coefficient of the noise component d (i.e.) d[0] by 𝑒 (Refer Eqn.3). If
the error 𝑒 is large enough to push m′ [0] beyond 𝑞/4 (resp. 3𝑞/4) for𝑚′

0
= 0 (resp.𝑚′

0
= 1), then this flips𝑚′

0
resulting

in a decryption failure.

The size of 𝑒 that triggers a decryption failure provides information about the original noise d[0], which is linearly

dependent on the secret s (Eqn.3). Thus, an attacker who can obtain such information over several chosen ciphertexts

can recover the full secret key [11, 30].

The first such attack exploiting a side-channel based DF oracle was proposed by Guo et al. [30] on Frodo KEM. They

demonstrated that decryption failure can be detected through side-channel leakage from the ciphertext comparison

operation (Line 21 in Alg.2). The key observation is that the re-computed ciphertext 𝑐𝑡𝑅 solely depends upon the

decrypted message𝑚′ (Line 20 in Alg.2). Even a single bit change in𝑚′, results in a completely different recomputed

ciphertext 𝑐𝑡𝑅 (due to the use of hash function). Thus, for a perturbed ciphertext 𝑐𝑡 which does not lead to a decryption

failure, the ciphertext comparison only fails for a single coefficient of v, while all other coefficients of both u and vmatch

correctly, with that of the recomputed ciphertext. However, in case of a decryption failure, the coefficients of 𝑐𝑡𝑅 are

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

completely random, which ensures that the ciphertext comparison fails in multiple coefficients with an overwhelming

probability.

In this respect, Guo et al. [30] targeted the implementation of Frodo KEM, which utilizes a non-constant time

comparison of the ciphertext comparison operation and exploited the difference in comparison time to instantiate a

practical DF oracle, for full key recovery. Subsequently, Bhasin et al. [11] adapted the attack, which exploits power/EM

side-channel leakage from constant-time implementations of the ciphertext comparison operation. They identified flaws

in common approaches used for masking the ciphertext comparison operation proposed in [8, 51]. Subsequent works

have proposed secure masking schemes for the ciphertext comparison operation used in lattice-based KEMs [11, 19].

We refer to these attacks using the label DF_Oracle_CCA attack. They have similar attack characteristic as that of the

Binary_PC_Oracle_CCA attack (i.e.) (Communicate_DUT_IO, Profiled_Without_Clone, ≈ 5𝑘 − 6𝑘 , Low_SNR), while

consuming slightly more traces for key recovery, compared to the Binary_PC_Oracle_CCA attack.

Countermeasure: Masking the entire decapsulation procedure serves as a concrete countermeasure against the

DF_Oracle_CCA attack (Masking [13, 33]).

3.6.4 Full-Decryption (FD) Oracle-Based SCA. The aforementioned PC_Oracle_CCA and DF_Oracle_CCA attacks

work by recovering anywhere between 1 to 𝑃 bits of information about the secret key (𝑃 ∈ Z+), from a single chosen-

ciphertext query. This gives rise to a natural question, whether it is possible to recover the entire message𝑚′ in a single

query for chosen-ciphertexts. In this respect, Xu et al. [77] showed that operations that leak the complete message,

exploited by message recovery attacks for valid ciphertexts, can also be exploited in a chosen-ciphertext setting to

realize a full decryption (FD) oracle. In this manner, an attacker can recover 256 bits of information about the secret key

s in a single trace.

In order to realize an FD oracle, they propose to construct ciphertexts 𝑐𝑡 = (u, v) ∈ (𝑅𝑘𝑞 × 𝑅𝑞) such that

u𝑖 =

𝑈 · 𝑥0

if 𝑖 = 0,

0 if 1 ≤ 𝑖 ≤ 𝑘 − 1

(12)

v = 𝑉 · (
𝑖=𝑛−1∑︁
𝑖=0

𝑥𝑖) (13)

where (𝑈 ,𝑉) ∈ Z+. The attacker can choose tuples (𝑈 ,𝑉) such that the decrypted message is nothing but

𝑚′𝑖 =
{
F (s0 [𝑖]), if 0 ≤ 𝑖 ≤ 𝑛 − 1 (14)

where every message bit𝑚′
𝑖
is dependent upon the corresponding secret coefficient of s0 (i.e.) s0 [𝑖]. Moreover, attacker

can choose (𝑈 ,𝑉) such that every message bit𝑚′
𝑖
uniquely identifies the corresponding secret coefficient s0 [𝑖] for

𝑖 ∈ [0, 255]. In order to realize a practical FD oracle, Xu et al. [77] proposed to exploit leakage from the message

encoding operation during re-encryption (Line 20 in Alg.1) which enables to recover the entire message in a single

trace. Thus, full key recovery is possible in only 6 queries for Kyber512.

Similarly, Ravi et al. [58] and Ngo et al. [47, 48] showed that leakage from the message decoding operation (Line

28 in Alg.1) (i.e.) Message_Decode attack, can also be exploited in a chosen-ciphertext setting for key recovery,

in approximately 6 − 20 traces from schemes such as Kyber and Saber. We refer to these attacks using the la-

bel FD_Encode_Decode_Oracle_CCA. We define the attack characteristic using the tuple: (Communicate_DUT_IO,

Profiled_Without_Clone, ≈ 6 − 20, High_SNR).
Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 25

Apart from attacks exploiting the power/EM side-channel, a few recent works have demonstrated FD oracle based key

recovery attacks that exploit far-field amplitude modulated EM emanations from on-board antennas on mixed-signal

chips [74, 75]. This side-channel can work over longer distances compared to the EM side-channel, but inherently

contain more background noise, thereby increasing the number of traces for key recovery.

Targeting Protected Implementations of Message Encoding/Decoding Operation: We recall that in the presence of an

Observe_DUT_IO attacker, Message_Encode and Message_Decode attacks targeting the message encoding and de-

coding procedures for message recovery, can be thwarted using the shuffling countermeasure (Shuffled_Encode,

Shuffled_Decode). However, in the presence of a Communicate_DUT_IO attacker, when targeting the decapsulation

procedure in a static key setting, Ravi et al. [58] showed that the shuffling countermeasures can be broken, exploiting

the ciphertext malleability property of LWE/LWR-based schemes.

We briefly describe their attack exploiting leakage from the shuffled encoding operation, which recovers the message

one bit at a time. The shuffling countermeasure does not remove leakage, but only ensures that the shuffling order

of the message bits cannot be recovered by the attacker. Given a target ciphertext 𝑐𝑡 = (u, v) whose message is to be

recovered, the attacker first submits the target ciphertext 𝑐𝑡 to the decapsulation procedure and recovers the individual

message bits of𝑚′ through side-channels, and subsequently computes its Hamming Weight (HW). Subsequently, the

attacker submits a perturbed ciphertext 𝑐𝑡 ′ = (u, v + 𝑞/2 · 𝑥0) (i.e.) 𝑞/2 added to the first coefficient of v. This has the
effect of flipping the first message bit𝑚′

0
, resulting in a perturbed message𝑚′′. If HW(𝑚′′) = HW(𝑚′) − 1, then the

perturbation flipped𝑚′
0
from 1 to 0, thus deducing that𝑚′

0
= 1. Otherwise if HW(𝑚′′) = HW(𝑚′) + 1, then𝑚′

0
= 0. In

this manner, an attacker can induce bit-flips in all the 256 bits of the message, to completely recover the message in

257 queries for Kyber KEM. Thus, shuffling increases the attacker’s effort from recovering 256 bits in a single trace to

recovering 1 bits per trace. Nevertheless, shuffling does not concretely prevent message recovery and key recovery in a

chosen-ciphertext setting. Extending upon this idea, recently Ngo et al. [48] demonstrated improved attacks to break

the combined shuffling and masking countermeasure for the message decoding operation in Saber.

We can clearly observe that an attacker with the Communicate_DUT_IO capability can perform improved at-

tacks to break countermeasures such as shuffling, which are otherwise considered secure in the presence of an

Observe_DUT_IO attacker. We refer to these attacks targeting the shuffled encoding/decoding procedure using the label

Shuffled_Encode_Decode_FD_Oracle_CCA, and their characteristic tuple is (Communicate_DUT_IO,Profiled_Without_Clone,

≈ 2𝑘 − 3𝑘 , High_SNR). The attack on the masked encoding/decoding procedure is denoted using the label

Masked_Encode_Decode_FD_Oracle_CCA and its characteristic tuple is (Communicate_DUT_IO,Profiled_Without_Clone,

≈ 10 − 20, High_SNR). The attack on the shuffled and masked encoding/decoding procedure using the label

Shuffled_Masked_Encode_Decode_FD_Oracle_CCA. We define the attack characteristic using the tuple:

(Communicate_DUT_IO, Profiled_Without_Clone, ≈ 2𝑘 − 3𝑘 , High_SNR).

Countermeasure: As shown above, shuffled and masked implementations of the message encoding and decoding

procedures do not prevent the realization of an FD oracle, for key recovery [47, 48, 58]. Since leakage from the message

encoding/decoding procedure spans for only 1 to a few clock cycles for each message bit, the addition of jitter serves as

a reasonable mitigation technique, but it does not concretely prevent the attack. Thus, increasing the key refreshment

rate to repeatedly change the public key serves as the only strong countermeasure against the attack. This ensures that

the attacker cannot obtain enough traces from the decapsulation procedure to recover a single secret key. However, the

exact key refresh rate required to prevent these attacks depends upon the DUT and the attack setup.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

3.6.5 Targeting NTT in a CCA setting. While leakage from the INTT instance over 𝑔′ = (û′ ◦ ŝ) in the decryption

procedure has been exploited for key recovery in the Observe_DUT_IO setting (Line 27 of Decrypt in Alg.1), the attack

relies on extremely low-noise measurements for successful key recovery (SASCA_NTT attack [53, 55]). The authors

show that the attack can tolerate a noise with standard deviation 𝜎 in the range 0.5 − 0.7. Recently, Hamburg et al. [31]

demonstrated that the sensitivity of these attacks to SNR can be significantly improved in a chosen-ciphertext setting

(Observe_DUT_IO). Their idea was to craft chosen-ciphertexts such that coefficients of 𝑔′ is sparse, and that leakage

from the INTT operation over𝑔′ reportedly improves the effectiveness of the BP algorithm, by allowing more noise in the

measurements, even when targeting masked implementations. They demonstrate a range of key recovery attacks with

trace complexity ranging from 𝑘 to 2𝑘 where 𝑘 is the dimension of the module in Kyber KEM (𝑘 = {2, 3, 4}). The improved

attack can tolerate much more noise with standard deviation 𝜎 ≤ 2.2, thereby demonstrating significant improvement

in SASCA_NTT attacks when performed in a chosen-ciphertext setting. We refer to the attacks targeting the NTT

using the label CCA_SASCA_NTT attack. We define the attack characteristic using the tuple: (Communicate_DUT_IO,

Profiled_With_Clone, 2 − 4, High_SNR).

Countermeasure: Shuffling or masking the NTT operation as proposed by Ravi et al. [63] provides concrete protection

against SASCA style attacks.

Refer to Tab.1 for a tabulation of all side-channel attacks on the decapsulation procedure in the static key setting of

Kyber KEM.

3.7 Protection Against SCA Assisted CCA

We observe that SCA-assisted CCA forms the largest category of attacks on Kyber KEM. Moreover, an attacker capable

of querying the decapsulation device with chosen-ciphertexts can perform a variety of key recovery attacks, also capable

of defeating certain masking and shuffling countermeasures [47–49, 58], with an incremental increase in attacker’s

effort compared to breaking unprotected implementations. Moreover, it is not clear which order of masking protection

is required to achieve security in a given setting, especially given that the cost of masking significantly increases with

the order of protection.

In this respect, we particularly focus on SCA-assisted CCA attacks which work with malicious ciphertexts, and present

detection-based countermeasures, which test whether a received ciphertext is malicious. If detected as malicious, the

DUT can simply reject the ciphertext and change/refresh the public-private key pair by re-running the key-generation

procedure. This ensures that upon detection, further exposure of the secret key is prevented. In the following, we

propose two detection countermeasures against the proposed CCAs for Kyber KEM.

3.7.1 Ciphertext Sanity Check. The main idea of this countermeasure stems from the observation that ciphertexts

used for the Binary_PC_Oracle, Parallel_PC_Oracle, FD_Oracle and CCA_SASCA_NTT attacks are very sparse with

several zero coefficients (Refer Eqn.5, 9 and 13 for the chosen-ciphertexts). However, the coefficients of a valid ciphertext

are uniformly distributed in the range [0, 𝑞], given that both ciphertext components are essentially LWE instances.

This skew in the chosen ciphertexts can be easily detected and flagged as malicious ciphertexts before they can be

decapsulated. While this countermeasure was also proposed by Xu et al. [77] to protect against attacks utilizing skewed

ciphertexts, a concrete mathematical analysis and implementation of the same is not presented.

Detection Technique: In order to detect the skew in the ciphertexts, we chose to utilize the mean and standard deviation

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 27

of the ciphertext coefficients. For a given polynomial x ∈ 𝑅𝑞 , we denote the mean (𝜇) and standard deviation (𝜎) of the

coefficients of x as 𝜇 (x) and 𝜎 (x) respectively. We performed empirical simulations to calculate the mean and standard

deviation of 𝜇 (u) and 𝜎 (u) for single polynomials of the ciphertext component u, as well as 𝜇 (v) and 𝜎 (v) for the
ciphertext component v, corresponding to valid ciphertexts of Kyber KEM. Refer below for the obtained values for the

mean and standard deviation for all 4 of the statistical metrics for Kyber KEM.

(𝜇 (𝜇 (u)), 𝜎 (𝜇 (u))) = (1663, 60)

(𝜇 (𝜎 (u)), 𝜎 (𝜎 (u))) = (959, 27)
(15)

(𝜇 (𝜇 (v)), 𝜎 (𝜇 (v))) = (1560, 60)

(𝜇 (𝜎 (v)), 𝜎 (𝜎 (v)) = (957, 27)
(16)

Based on the standard deviation 𝜎 for each of these metrics, the designer can choose an acceptable range for

each of these 4 metrics. For example, if a tail length of (6 · 𝜎) is chosen, then the acceptable range for 𝜇 (u) is
[𝜇 (𝜇 (u)) + 6 · 𝜎, 𝜇 (𝜇 (u)) − 6 · 𝜎]. The smaller the acceptable range, the higher the possibility of false positives (i.e.)

detecting a valid ciphertext as malicious. However, a large acceptable range increases the chances of false negatives,

thereby resulting in the acceptance of skewed malicious ciphertext as valid.

Evaluation: We deduced through empirical simulations that a tail of length (6𝜎) for both mean and standard de-

viation leads to a probability of ≈ 2
−22

for rejection of a valid ciphertext. The rejection is done solely based on analyzing

the size of the ciphertext coefficients, and this does not have any relation to the secret key. It is therefore trivial to observe

that a false positive only hampers the performance of the scheme, but does not provide any additional information

about the secret key. The implementor/designer can choose an appropriate range, based on the tolerance to allow false

positives and rejection of valid ciphertexts. We henceforth refer to this as the CT_Sanity_Check countermeasure in

this paper. One can also include other kinds of checks such as checking the number of zero coefficients in the received

ciphertext as well as the decrypted message𝑚′, which can enhance confidence in the detection mechanism.

While this countermeasure is capable of detecting skewed ciphertexts, chosen-ciphertexts used in theDF_Oracle_CCA

attack [11, 30] contain uniformly random coefficients. Thus, theDF_Oracle_CCA attack can bypass ourCT_Sanity_Check

countermeasure. In the following, we propose a novel countermeasure that is also capable of defeating CCA utilizing

chosen ciphertexts with uniformly random coefficients.

3.7.2 Message Polynomial Sanity Check. This countermeasure relies on analyzing the coefficients of the noisy message

polynomial m′ = (v′ − u′ · s) obtained during decryption of the received ciphertext 𝑐𝑡 (Line 27 in Alg.1). For valid

ciphertexts, we observe that the coefficients of the m′ are distributed according to a very narrow Gaussian distribution

near 𝑞/2 or 0 (i.e.) m[𝑖] = 𝑞/2 ± 𝛿 for𝑚𝑖 = 1 and m[𝑖] = 0 ± 𝛿 for𝑚𝑖 = 0

m[𝑖] =

𝑞/2 ± 𝛿 if𝑚𝑖 = 1,

0 ± 𝛿 if𝑚𝑖 = 0

(17)

where 𝛿 ≪ 𝑞 ∈ Z+. The span 𝛿 depends upon the distribution of the noise component d (Eqn.3). We performed empirical

simulations to deduce the distribution of the coefficients of the noise component d. They follow a Gaussian distribution

with a standard deviation 𝜎 = 79, around 0 and 𝑞/2.
However, we observe that the distribution of the coefficients of m′ is not maintained in the case of the DF_Oracle-

based CCA attack. We observe that the DF_Oracle_CCA attack works by pushing one of the coefficients ofm′ (m′ [𝑖]) to
cross the 𝑞/4 threshold. This ensures that at least one message polynomial (i.e.) m′ [𝑖] is not within the expected range,

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

corresponding to that of a valid ciphertext. This also applies to the following attacks which utilize malicious/hand-

crafted ciphertexts: CCA_SASCA_NTT [31], Binary_PC_Oracle_CCA [22, 65, 68], Parallel_PC_Oracle_CCA [57, 71],

DF_Oracle_CCA [11, 19, 30], FD_Oracle_CCA [58, 74, 75, 77] Masked_FD_Oracle_CCA [47, 49],

Shuffled_FD_Oracle_CCA [58], Shuffled_Masked_FD_Oracle_CCA [48].

Detection Technique: Based on the aforementioned observation, we propose to test the distribution of the message

polynomial coefficients for the received ciphertext. Let the acceptable range be (𝑞/2±𝐿 ·𝜎) and (0±𝐿 ·𝜎) where 𝐿 ∈ Z+

is left to the designer’s choice. The larger the acceptable range 𝐿 · 𝜎 , the smaller the probability of flagging a valid

ciphertext (false positive). However, choosing a smaller range raises the chances of missing detection of a malicious

chosen ciphertext. Thus, it is important to choose a conservative value for 𝐿 for improved security. Once an invalid

ciphertext is detected, the corresponding secret key is discarded and a new one needs to be generated, for reasons that

will be explained below.

Based on 𝜎 = 79 for the coefficients of the noise component d (Gaussian distribution), we also calculated that the prob-

ability of a false positive for detecting a valid ciphertext as malicious for Kyber KEM for 𝐿 = 6 is ≈≈ 7.129 · 10
−11 ≈ 2

−33
.

This false positive rate is very low for practical applications. We performed experimental simulations for 𝐿 = 6, and we

were not able to observe a false positive for more than 2
25

valid decapsulations.

Evaluation: We subsequently tested several existing side-channel attacks [57, 58, 65] and found that for all attack

ciphertexts used in these attacks there was a significant probability of triggering the countermeasure and thus discard-

ing the secret key. More specifically, these attacks focus on one coefficient of the secret, and for all attack ciphertexts at

least one possible value of this coefficient of the secret leads to the detection of the attack. The attack of Rajendran et

al. [57] also includes an attack that targets multiple coefficients at once, but this improvement only increases the proba-

bility of triggering the countermeasure. We did not find parameter sets that reliably avoided our countermeasure. Thus

we can conclude that for these attacks our countermeasure effectively restricts the number of useful invalid ciphertexts

an attacker can input before the countermeasure is triggered and the secret key is discarded. The countermeasure

would also effectively stop the attack described by Bhasin et.al. [11]. This attack relies on finding the boundary where

the message bit is flipped, but due to the countermeasure, the region around the boundary results in the detection of

the invalid ciphertext and the discard of the secret. Note that for 𝐿 = 6 the discard region has approximately the same

size as the accept region, making it infeasible to add an error to push the ciphertext towards the boundary without

triggering the discard.

In-depth Analysis: The increased decryption failure probability makes the scheme more vulnerable to decryption

failure attacks [20]. To mitigate this we only allow the adversary to obtain at most one failing ciphertext due to our

countermeasure: if there is at least one coefficient outside this acceptable range, then we flag the ciphertext as invalid,

discard the old public-private key pair and generate a new public-private key pair.

Allowing the adversary to obtain one failing ciphertext does not significantly impact security in this scenario. As

can be seen from [18, 20, 21] one failing ciphertext is not enough to significantly reduce the security of the key pair,

and the ciphertext is discarded after one failure caused by our countermeasure. Moreover, as the decryption failure

probability is enlarged, the information in the decryption failure is reduced as discussed in [20]. This means that the

leaked information from one failing ciphertext will be even smaller than in regular failure-boosting attacks.

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 29

More in-depth there are two scenarios to consider: first, the ciphertext is not accepted by the countermeasure, in

which case the adversary has one failing ciphertext which as discussed previously does not significantly reduce the

security of the public-private key pair. The key pair is subsequently discarded and as such the adversary can not gain

additional information. Secondly, the ciphertext is accepted by the countermeasure, in which case there is no difference

from the regular security framework of Kyber.

For a side-channel attacker, we observe that this countermeasure requires decrypting at least one chosen ciphertext

for successful detection, however, the CCAs in interest require at least a few tens to thousand queries for key recovery.

Thus, we argue that allowing a single decapsulation of the chosen ciphertext is not useful for the attacker. We henceforth

refer to this countermeasure as Message_Poly_Sanity_Check throughout this paper. As we show later in Sec.4, this

countermeasure can serve as a countermeasure for fault-assisted chosen-ciphertext attacks on Kyber KEM as well.

ComparisonwithMasking Countermeasures: The aforementioned detection countermeasuresMessage_Poly_Sanity_Check

and CT_Sanity_Check) can be specifically used to protect against attacks against the decapsulation procedure in the

chosen-ciphertext setting. As we show later in Sec.7.2, these countermeasures incur very less additional runtime com-

pared to masking countermeasures for the decapsulation procedure. Thus, these countermeasures can be implemented

as an add-on, on top of masked implementations of the decapsulation procedure. On the flip side, these countermeasures

can only detect invalid/malicious ciphertexts, while they cannot deter attacks that work against CPA style attacks

(NTT_Leakage_CPA) which work with valid ciphertexts.

4 FAULT-INJECTION ATTACKS ON KYBER KEM

In this section, we discuss reported fault attacks on Kyber KEM. For every FIA discussed in this paper, we also describe

its characteristics based on the following parameters.

(1) Fault Injection Technique (Attack_Vector): This characteristic denotes the type of fault injection technique used to

carry out the attack - 1) Voltage/Clock Glitching (Glitching) 2) Laser Fault Injection (LFI) and 3) Electromagnetic

Fault Injection (EMFI).

(2) Attacker’s ability to communicate with DUT (DUT_IO_Access): In this respect, we identify two categories:

Observe_DUT_IO, Communicate_DUT_IO. Please refer to Sec.3.1.4 for the description of these categories.

(3) Targeted or Non-Targeted Fault (Targeted_Or_Not): In this respect, we identify two categories:

(a) Targeted_Fault: The attack works by injection faults to target specific variables or instructions, requiring

to inject faults at a precise instance in time.

(b) Non_Targeted_Fault: The attack does not require the injection of precise faults, and can work with random

perturbations to the target computation. Thus, precise time synchronization is not required.

(4) Number of Faults within Single Computation (Num_Faults): This characteristic denotes the number of faults to

be injected within a single execution of the target procedure.

(5) Total number of Faulty Computations: (Num_Executions): This indicates the total number of faulty computa-

tions/executions to recover the target secret variable. The number of executions is specified assuming that the

expected fault is observed in every targeted execution of the computation. However, the exact number of faults

required depends upon the design and the target platform.

Similar to SCA attacks on Kyber, we define the characteristic of each FIA on Kyber presented in the paper using the

following tuple: (Injection_Technique, DUT_IO_Access, Targeted_Or_Not, Num_Faults, Num_Executions). In order

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

Table 1. Tablulation of reported SCA and their characteristics for the different procedures of Kyber KEM

Attack
Attack Characteristic

Attack_Vector DUT_IO_Access Profile_𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 No_Traces SNR Countermeasure

Key Generation
SASCA_NTT [53, 55] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Masked_NTT
SASCA_KECCAK [37] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_KECCAK

Encapsulation
SASCA_NTT [53, 55] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Masked_NTT
SASCA_KECCAK [37] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_KECCAK

Message_Encode [4, 69, 77] Power/EM

Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Encode
Communicate_DUT_IO Profiled_Without_Clone 1 High_SNR Shuffled_Encode

Masked_Message_Encode [47, 49] Power/EM

Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Encode
Communicate_DUT_IO Profiled_Without_Clone 1 High_SNR Shuffled_Encode

Decapsulation (Ephemeral Key)

SASCA_NTT [53, 55] Power/EM

Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Masked_NTT
Communicate_DUT_IO Profiled_Without_Clone 1 High_SNR Shuffled_Masked_NTT

SASCA_KECCAK [37] Power/EM

Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_KECCAK
Communicate_DUT_IO Profiled_Without_Clone 1 High_SNR Shuffled_KECCAK

Message_Decode [58] Power/EM

Communicate_DUT_IO Profiled_Without_Clone 1 High_SNR Shuffled_Decode
Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Decode

Masked_Message_Decode [47, 49] Power/EM

Communicate_DUT_IO Profiled_Without_Clone 1 High_SNR Shuffled_Decode
Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Decode

Decapsulation (Static Key)
CT_Sanity_Check

Message_Poly_Sanity_Check
NTT_Leakage_CPA [16, 45]

Power/EM Observe_DUT_IO Non_Profiled ≈ 200 Low_SNR Masking

CCA_SASCA_NTT [31] Power/EM Communicate_DUT_IO Profiled_With_Clone 2 − 4 Low_SNR Shuffled_Masked_NTT,
CT_Sanity_Check,

Message_Poly_Sanity_Check
Binary_PC_Oracle_CCA [22, 65, 68] Power/EM [65, 68],

Timing [22]

Communicate_DUT_IO Profiled_Without_Clone ≈ 2𝑘 − 3𝑘 Low_SNR Masking,
CT_Sanity_Check,

Message_Poly_Sanity_Check

Parallel_PC_Oracle_CCA [57, 71] Power/EM

Communicate_DUT_IO Profiled_Without_Clone ≈ 100 − 200 Low_SNR Masking,
CT_Sanity_Check,

Message_Poly_Sanity_Check
Communicate_DUT_IO Profiled_With_Clone ≈ 300 − 500 Low_SNR Masking,

CT_Sanity_Check,
Message_Poly_Sanity_Check

DF_Oracle_CCA [11, 19, 30] Power/EM [11, 19],

Timing [30]

Communicate_DUT_IO Profiled_Without_Clone 5𝑘 − 7𝑘 Low_SNR Masking,
CT_Sanity_Check,

Message_Poly_Sanity_Check
FD_Oracle_CCA [58, 74, 75, 77] Power/EM [58, 77],

Ampliute Modulated

EM [74, 75]

Communicate_DUT_IO Profiled_Without_Clone 6 − 20 High_SNR CT_Sanity_Check,
Message_Poly_Sanity_Check

Masked_FD_Oracle_CCA [47, 49] Power/EM Communicate_DUT_IO Profiled_Without_Clone 6 − 20 High_SNR CT_Sanity_Check,
Message_Poly_Sanity_Check

Shuffled_FD_Oracle_CCA [58] Power/EM Communicate_DUT_IO Profiled_Without_Clone ≈ 1𝑘 − 3𝑘 High_SNR CT_Sanity_Check,
Message_Poly_Sanity_Check

Shuffled_Masked_FD_Oracle_CCA [48] Power/EM Communicate_DUT_IO Profiled_Without_Clone ≈ 1𝑘 − 3𝑘 High_SNR CT_Sanity_Check,
Message_Poly_Sanity_Check

to explain the different attacks, we utilize the algorithm of IND-CPA secure PKE of Kyber in Alg.1 and algorithm of

IND-CCA secure Kyber KEM in Alg.2. We also refer the reader to Fig.2 for an example key-exchange protocol that can

be built using IND-CCA secure Kyber KEM.

4.1 FIA on Key Generation

The key generation procedure serves as an attractive target for an attacker, particularly in an ephemeral key setting,

since it is performed for every new key exchange. Injection of faults in the key-generation procedure could lead to

faulty public keys that could easily compromise the secret key.

4.1.1 Targeting Sampling of Secrets. In this respect, Ravi et al. [64] proposed the first practical fault attack targeting the

sampling of secrets and errors to generate LWE instances. Their attack stems from the observation that the seed used

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 31

to sample the secret s and errors e only differ by a single byte (i.e.) 𝑠𝑒𝑒𝑑𝐵 appended by single-byte nonces 𝑐𝑜𝑖𝑛𝑠𝑠 and

𝑐𝑜𝑖𝑛𝑠𝑒 (Lines 5-6 of KeyGen in Alg.1). Thus, the attacker can use faults to force nonce reuse (i.e.) 𝑐𝑜𝑖𝑛𝑠𝑠 = 𝑐𝑜𝑖𝑛𝑠𝑒 . This

creates LWE instances of the form, t = A · s+ s = (A+ I) · s, that can be trivially solved using Gaussian elimination. Thus,

the faulty public keys can be directly solved to recover the secret key. The faulty public keys are still valid to be used for

valid key exchange, and the injected faults have only reduced the entropy of the secret key. The authors demonstrated

the practicality of nonce-reuse using Electromagnetic Fault Injection (EMFI) on the ARM Cortex-M4 microcontroller.

The attack requires to inject multiple targeted faults on the nonces used during the sampling procedure (1 − 10)

depending upon the target scheme to attack, for full key recovery. We refer to this attack using the label Nonce_Fault

attack.We describe the attack characteristic using the following tuple: (EMFI,Observe_DUT_IO, Targeted_Fault, 4−8, 1).

Countermeasure (Our Proposal): We propose to implement a dedicated verification procedure, which checks for equality

of polynomials in the secret s ∈ 𝑅𝑘𝑞 and error e ∈ 𝑅𝑘𝑞 . Firstly, polynomials within the same module s ∈ 𝑅𝑘𝑞 and e ∈ 𝑅𝑘𝑞 are

checked for equality. Instead of comparing all the coefficients, a set of 𝑋 coefficients is picked at random for checking

equality and 𝑋 is large enough such that the probability of all 𝑋 corresponding coefficients having the same value is

very low. For Kyber768 with coefficients in [−2, 2] (distributed based on CBD), the probability of 𝑋 pairs of coefficients

having the same value is ≈ 2 · 10
−6
. This is the false positive rate for 𝑋 = 10. The designer can choose an appropriate

value for 𝑋 based on an acceptable false positive rate. The same comparison is also done between polynomials of s and
e.

The aforementioned scheme is implemented as follows: Firstly, a random value 𝑟𝑎𝑛𝑑 ∈ Z+ is sampled. Let the result

of the verification procedure be denoted as 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 , which is initialized as 𝑟𝑎𝑛𝑑 . For every pair of polynomials

which is found to be equal, 𝑟𝑒𝑠𝑢𝑙𝑡 ∈ Z+ is incremented by𝑤 ∈ Z+. To incorporate redundancy, this check and increment

can be done 𝑦 ∈ Z+ times. Thus, if any two polynomials of s or e are found to be equal, the value of 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡

is incremented by 𝑦 · 𝑤 . If no pair of polynomials are equal, then (𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑑), indicating the success

of verification. If this is not the case, the verification has failed. We denote this dedicated verification procedure as

Verify_Equality.

However, one can argue that the countermeasure can be defeated by simply skipping Verify_Equality. Such double

fault attacks can be prevented by carefully designing a loop counter, that can detect such trivial skipping fault attacks.

We propose to incorporate a Dynamic_Loop_𝐶𝑜𝑢𝑛𝑡𝑒𝑟 protection for the Verify_Equality procedure in the following

manner, so as to prevent against trivial double fault attacks.

Let the total number of coefficients of all polynomials of s and e to be compared be denoted as 𝐶 . First, a random

non-zero integer 𝑔 ∈ Z+ is sampled. Then, a loop counter 𝑙𝑐 is initialized to 0 and its value is increased by 𝑔 for every

coefficient that is compared (i.e.) for every coefficient comparison. The public key 𝑝𝑘 is generated and stored in a

temporary variable 𝑡𝑒𝑚𝑝 . It is copied one byte at a time to the actual output variable that is considered the public

key 𝑝𝑘𝑜𝑢𝑡 (randomly initialized), only if the loop counter value is equal to the expected value (𝑙𝑐 = 𝐶 · 𝑔), indicating
completion of the verification procedure and (𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑑), indicating the success of the verification procedure.
This ensures that the correct public key is generated at the output, only when the verification procedure has passed,

and has been fully executed. This comparison is done for every byte moved from 𝑡𝑒𝑚𝑝 to 𝑝𝑘𝑜𝑢𝑡 . One can also augment

with checks for a non-zero value for 𝑙𝑐 and 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 to prevent zeroization attacks.

The aforemetioned two level protection strategy of combining Verify_Equality and Dynamic_Loop_𝐶𝑜𝑢𝑛𝑡𝑒𝑟 protec-

tion is together referred to as Verify_Nonce_Fault countermeasure. Please refer to Alg.5 for the pseudo-code of the

Verify_Nonce_Fault protection.
Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

We argue that Verify_Nonce_Fault provides improved resistance against fault attacks in the following manner:

(1) Zeroization of variables such as 𝑔 (Line 3 in Alg.5) or 𝑟𝑎𝑛𝑑 (Line 3) cannot pass verification in Line 11, thereby

generating a random public key, which is unuseful for an attacker.

(2) Skipping the Verify_Equality procedure (Line 8) also ensures that the loop counter verification fails (Line 11),

thereby offering protection.

(3) The value of 𝑙𝑐 and 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 change for every execution, and thus injection of precise faults on these

variables to force successful comparison is challenging to achieve in practice (Line 11). Even if the attacker can

force a successful comparison, this has to be repeated for a few thousand bytes of the public key 𝑝𝑘 for Kyber

KEM, which is also challenging to achieve in practice (Line 11).

Thus, we argue that it is possible to design the protection such that the implementation is not susceptible to trivial

fault attacks, and that the attacker requires to inject several highly synchronized faults to bypass the Verify_Nonce_Fault

protection.

Algorithm 5: Verify_Nonce_Fault countermeasure for KeyGen of Kyber KEM

1: procedure Verify_Nonce_Fault Protected KeyGen
2: 𝑙𝑐 := 0

3: 𝑔 ∈ Z+ ← Sample_Random()
4: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑙𝑐 := 𝑔 ·𝐶 ⊲ 𝐶 number of operations to be accounted for in Verify_Equality procedure

5: 𝑟𝑎𝑛𝑑 ∈ Z+ ← Sample_Random()
6: 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑑 ⊲ Initializing result of Verify_Equality
7: Sample secret s ∈ 𝑅𝑘𝑞 and error e ∈ 𝑅𝑘𝑞
8: 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 = Verify_Equality(s, e, 𝑙𝑐, 𝑔) ⊲ If Verify_Equality fails, 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 ! = 𝑟𝑎𝑛𝑑

9: 𝑡𝑚𝑝 = Compute_Public_Key() ⊲ Compute 𝑝𝑘 and store in 𝑡𝑚𝑝 array

10: for 𝑗 from 0 to (𝑛𝑏 − 1) do ⊲ Copy 𝑛𝑏 bytes of public key from 𝑡𝑚𝑝 to 𝑝𝑘𝑜𝑢𝑡
11: if (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑙𝑐 == 𝑙𝑐) and (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑙𝑐 ! = 0) and (𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 == 𝑟𝑎𝑛𝑑) and (𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑟𝑒𝑠𝑢𝑙𝑡 ! = 0)

then
12: 𝑝𝑘𝑜𝑢𝑡 [𝑗] = 𝑡𝑚𝑝 ⊲ Copy the public key byte if verification passes...

13: else
14: 𝑝𝑘𝑜𝑢𝑡 [𝑗] = 𝑟𝑎𝑛𝑑 () ⊲ Copy a random byte if verification passes...

15: end if
16: end for
17: end procedure

4.1.2 Targeting NTT. Ravi et al. [66] proposed a novel fault attack targeting the NTT operation. They identified a

single point of failure, that can be targeted through faults, to zeroize all twiddle factors used within the NTT. When

this is targeted on the NTT over secrets or errors, it can severely reduce the entropy of the secret/error. This results

in faulty yet valid LWE instances, which easily compromise the secret key. For instance, let the DUT compute NTT

over the polynomial x = (x0, x1, . . . , x𝑛−1). If the twiddle factors used in the NTT computation are zeroized, then the

resulting faulty NTT output is x̂∗ = (x0, 0, . . . , 0). If x̂∗ is used in subsequent computations, then the faulty polynomial

x∗ is nothing but x∗ = (x0, x0, . . . , x0). Thus, the injected fault has effectively reduced the entropy of x to just a single

coefficient x0, which can be easily guessed by an attacker, given the short span of secrets and errors used in Kyber KEM.

The authors studied the assembly-optimized implementation of NTT for Kyber and Dilithium, on the ARM Cortex-M4

device, available in the pqm4 library [38]. They showed that a single targeted fault using EMFI on the address pointer to

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 33

the twiddle factor array can be used to effectively zeroize all the twiddle factors. In this respect, an attacker can target

the NTT over the secret s or error e in the key-generation procedure (Line 5, 6 in Alg.1). This results in the utilization

of low-entropy secrets and errors to generate a faulty public key, which can be easily solved to recover the secret key.

The same faulty secret key is also used within the decapsulation procedure, as Kyber saves the secret key in the NTT

domain. This therefore ensures the correctness of Kyber KEM, even upon injection of fault in the NTT, only during key

generation. We refer to this attack using the label NTT_Twiddle_Fault attack. The attack characteristic can be defined

using the tuple: (EMFI, Observe_DUT_IO, Targeted_Fault, 1, 1).

Countermeasure: Ravi et al. [66] proposed a few detection-based countermeasures to test zeroization of the twid-

dle constants, before utilization for the NTT operation. One can also adopt a small testing procedure to check if the

twiddle factors to be used for the NTT, all have a non-zero value. If one or more twiddle constants have a zero value,

then the entire procedure can be aborted. As an additional protection, one can also test the entropy of the NTT output,

given that the faulty NTT output has a very low entropy with a single non-zero coefficient. We refer to these detection

countermeasures using the label NTT_Twiddle_Check.

Refer to Tab.2 for a tabulation of all fault-injection attacks on the key-generation procedure of Kyber KEM.

4.2 FIA on Encapsulation

The fault attacks applicable to the key generation procedure (i.e.) Nonce_Fault and NTT_Twiddle_Fault attack are also

applicable to the encapsulation procedure. The Nonce_Fault attack on the encapsulation procedure can be done by

targeting the nonces used to sample the ephemeral secret r (Line 14 in Alg.1), whose knowledge can be used to perform

message recovery. Similarly, the NTT_Twiddle_Fault attack can be mounted by targeting the NTT operation over r
(Line 17), which reduces the entropy of r resulting in message recovery. Thus, the attacks over the key-generation

procedure apply in the same manner to the encapsulation procedure of Kyber KEM.

Countermeasure: The Verify_Nonce_Fault and NTT_Twiddle_Check serve as concrete countermeasures against the

aforementioned attacks on the encapsulation procedure of Kyber KEM.

Refer to Tab.2 for a tabulation of all fault-injection attacks on the encapsulation procedure of Kyber KEM.

4.3 FIA on Decapsulation

With respect to FIA on the decapsulation procedure, we consider two scenarios. In the case of ephemeral key setting,

faulting the decapsulation procedure does not provide any information about the secret key or the message. The

attacker can only inject faults to corrupt the decapsulation of valid ciphertexts, which amounts to a Denial of Service

(DoS) attack. However, in the case of the static key setting, a Communicate_DUT_IO attacker can query the DUT with

chosen-ciphertexts and the result of corresponding faulty decapsulations can potentially recover the long-term secret

key. The following are different fault attacks reported on the decapsulation procedure.

4.3.1 Targeting Ciphertext Equality Check. One obvious target within the decapsulation procedure is to simply skip

the final ciphertext comparison operation, whose result indicates the validity of the ciphertext (Line 21 in Alg.2). An

attacker who can skip the equality check for his/her chosen ciphertexts effectively reduces the security from IND-CCA

security to IND-CPA security. Skipping the equality check ensures that the session key 𝐾 contains critical information

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

about the decrypted message𝑚′, even for the attacker’s chosen ciphertexts. This knowledge of the session keys, for

several such chosen ciphertexts leads to recovery of the long-term secret key s.
Recently, Xagawa et al. [76] surveyed optimized software implementations of several PQC schemes on the ARM

Cortex-M4 microcontroller and identified that implementations of several schemes including Kyber KEM are vulnerable

to trivial skipping fault attacks. The ciphertext equality check within the optimized software implementation of Kyber

KEM from the pqm4 library [38], is done in the following manner. The pre-key
¯𝐾 ′ is computed using𝑚′ and 𝑝𝑘 after

decryption (Line 18 in Alg.2), and is stored in an array 𝑇 (Line 19). If ciphertext comparison fails (invalid/malicious

ciphertext), a pseudo-random value 𝑧 is written into 𝑇 using a conditional move operation (Line 22). Else, the pre-key

in the array 𝑇 is not overwritten. Then, 𝑇 is used to derive the final shared session key 𝐾 (Line 24).

The vulnerability is that the decapsulation procedure writes the sensitive pre-key
¯𝐾 ′ onto 𝑇 (assuming successful

decapsulation), before checking the validity of the ciphertext. Thus, simply skipping the subsequent conditional move

operation (Line 22) for malicious ciphertexts, ensures that
¯𝐾 ′ is used to generate the shared session key 𝐾 instead

of the pseudo-random 𝑧, even for invalid ciphertexts. Xagawa et al. [76] exploited this vulnerability through simple

clock glitches and could subsequently recover the secret key in a few thousand chosen-ciphertext queries, similar

to the Binary_PC_Oracle_CCA attack [22, 65]. We refer to this attack using the label Skip_CT_Compare. The attack

characteristic can be defined by the tuple: (Glitching, Communicate_DUT_IO, Targeted_Fault, 1, 1𝑘 − 3𝑘).

Countermeasure (Our Proposal): We propose two levels of protection for the ciphertext comparison operation, tar-

geted by the Skip_CT_Compare attack. Trivial skipping of the entire ciphertext comparison operation (Line 21 in Alg.2)

can be detected through the Dynamic_Loop_𝐶𝑜𝑢𝑛𝑡𝑒𝑟 protection (Refer Sec.4.1.1). As a second level of protection, we

propose to remove the vulnerability that allows for trivial skipping attacks. We alter the conditional move operation

(Line 22 in Alg.2) in the following manner. We ensure that the pre-key
¯𝐾 ′ is written into a temporary variable 𝑡𝑚𝑝

(initialized with a random value). Subsequently, the 𝑡𝑚𝑝 variable containing the pre-key is copied into the array

𝑇 , one byte at a time, only if both the following conditions are satisfied - 1) ciphertext comparison succeeds and

Dynamic_Loop_𝐶𝑜𝑢𝑛𝑡𝑒𝑟 verification passes. Both these checks are done for every byte that is copied from 𝑡𝑚𝑝 to 𝑇

(32 bytes). If either of the conditions fails, then the pseudo-random value 𝑧 is copied into 𝑇 . We refer to this two-stage

protection using the label Protect_CT_Compare. The implementation of this countermeasure can be done in a similar

manner, as that of the Verify_Nonce_Fault countermeasure, and we thus refer the reader to Sec.4.1.1 for more details

on the implementation and effectiveness of the countermeasure.

4.3.2 Ineffective Fault Analysis. Pessl and Prokop [54] recently proposed a novel ineffective fault attack against the

decapsulation procedure. It works by injecting targeted faults within the message decoding operation during decryption

(Line 28 in Alg.1), such that the resulting success/failure of decapsulation can be used to infer critical information about

the secret key.

We briefly describe the main idea of their attack. The attacker constructs a valid ciphertext 𝑐𝑡 and submits 𝑐𝑡 for

decapsulation by the DUT. Subsequently, a targeted fault is injected to skip the addition operation during decoding of

a message polynomial coefficient m′ [𝑖] into the message bit𝑚′
𝑖
(Refer to the code snippet of the message decoding

procedure in Fig.1). The injected fault results in a flip of𝑚′
𝑖
(decapsulation failure), only if the corresponding coefficient

of the noise component d[𝑖] < 0 (Refer Eqn.3). However, there is no change in 𝑚′
𝑖
when d[𝑖] ≥ 0 (decapsulation

success).

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 35

Thus, the knowledge of whether the injected fault resulted in a decapsulation success/failure helps infer information

about d[𝑖], which is linearly dependent upon the secret key s. This can be done for several valid ciphertexts to fully

recover the secret key in 6.5𝑘 − 13𝑘 queries for Kyber KEM. However, the number of queries for key recovery can be

reduced to 5𝑘 − 7𝑘 using improved post-processing techniques as shown in [34]. In essence, the attack utilizes fault

injection to realize a practical decryption failure (DF) oracle for valid ciphertexts, for key recovery. The attack was

demonstrated using clock glitching on the ARM Cortex-M4 microcontroller and requires injecting a targeted skipping

fault in the message decoding procedure. We refer to this attack using the label Ineffective_FIA. The attack characteristic

can be described using the tuple: (Glitching, Communicate_DUT_IO, Targeted_Fault, 1, 5𝑘 − 7𝑘).

Countermeasure: Since the attack specifically targets the message decoding procedure, simply shuffling the message

decoding procedure (i.e.) Shuffled_Decode serves as a concrete countermeasure against the attack.

4.3.3 Fault Correction Attack. Hermelink et al. [34] proposed a novel fault attack on the decapsulation procedure,

which adopts a slightly different approach. The attacker constructs a valid ciphertext 𝑐𝑡 = (u, v), and adds a single-bit

perturbation of ≈ 𝑞/4 to one of the coefficients of v (i.e.) v[𝑖]. This perturbed ciphertext 𝑐𝑡 ′ = (u′, v′) is submitted to

the DUT for decapsulation. Upon submitting the perturbed ciphertext, a fault is injected anytime after decryption (Line

17 in Alg.2) and before ciphertext comparison (Line 21), to correct the single-bit perturbation in the ciphertext stored in

memory. If the introduced perturbation resulted in correct decryption, then the injected fault corrects the single-bit

perturbation in the ciphertext, ensuring successful decapsulation. However, if the initial perturbation resulted in a

decryption failure (d[𝑖] < 0), then it results in decapsulation failure, even after correcting the perturbation in the stored

ciphertext through faults, since all the ciphertext coefficients of 𝑐𝑡𝑅 are uniformly randomized during re-encryption.

This information obtained about d over 5𝑘 − 7𝑘 such queries can recover the full secret key.

Unlike the attack of Pessl and Prokop, the attack of Hermelink et al. [34] does not have any timing constraints for

fault injection, as it only needs to inject a bit-flip fault in memory, anytime between the decryption and ciphertext

comparison operation. However, injecting precise single bit-flip faults in memory requires detailed information about

the target device as well as the implementation, and an extensive profiling of the target device. The attack characteristic

can be defined by the following tuple: (LFI, Communicate_DUT_IO, Targeted_Fault, 1, 5𝑘 − 7𝑘).

More recently, Delvaux [23] improved the attack of Hermelink et al. [34] by expanding the attack surface to several

operations within the decapsulation procedure, while also working with a variety of more relaxed fault models such as

arbitrary bit flips, set-to-0 faults, random faults, and instruction skip faults. However, attacks relying on a relaxed fault

model could require about 100𝑘 chosen-ciphertext queries for full key recovery, depending upon the practicality of

the fault model. The attack characteristic can be defined by the following tuple: (Glitching, Communicate_DUT_IO,

Targeted_Fault, 1, 10𝑘 − 100𝑘). We refer to the aforementioned attacks using the label Fault_Correction attack.

Countermeasure (Our proposal): We observe that the attack works with perturbed ciphertexts, and observe that the

corresponding coefficients of the erroneous message polynomial m′ upon decryption do not satisfy the distribution of

the message polynomial of a valid ciphertext. Thus, our proposedMessage_Poly_Sanity_Check serves as a concrete

detection countermeasure against the attack.

Refer to Tab.2 for a tabulation of all fault-injection attacks on the decapsulation procedure of Kyber KEM in the static

key setting.

Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

Table 2. Tablulation of reported FIA and their characteristics for the different procedures of Kyber KEM

Attack
Attack Characteristic

Attack_Vector DUT_IO_Access Targeted_Or_Not Num_Faults Num_Executions Countermeasure

Key Generation

Nonce_Fault [64] EMFI Observe_DUT_IO Targeted_Fault 4 − 8 1 Verify_Nonce_Fault

NTT_Twiddle_Fault [66] EMFI Observe_DUT_IO Targeted_Fault 1 1 NTT_Twiddle_Check

Encapsulation

Nonce_Fault [64] EMFI Observe_DUT_IO Targeted_Fault 4 − 8 1 Verify_Nonce_Fault

NTT_Twiddle_Fault [66] EMFI Observe_DUT_IO Targeted_Fault 1 1 NTT_Twiddle_Check

Decapsulation (Static Key)

Skip_CT_Compare [76] Glitching Communicate_DUT_IO Targeted_Fault 1 1𝑘 − 3𝑘 Protect_CT_Compare

Ineffective_FIA [54] Glitching Communicate_DUT_IO Targeted_Fault 1 5𝑘 − 7𝑘 Shuffled_Decode

Fault_Correction [23, 34]

LFI [34] Communicate_DUT_IO Targeted_Fault 1 5𝑘 − 7𝑘
Message_Poly_Sanity_Check

Glitching [23] Communicate_DUT_IO Targeted_Fault 1 10𝑘 − 100𝑘

5 FAULT-INJECTION ATTACKS ON DILITHIUM

In this section, we discuss fault attacks that are applicable to the Dilithium signature scheme. We utilize the same

characteristics to describe FIA on Dilithium, that were used to describe FIA on Kyber (Refer Sec.4). We utilize the

algorithm of the Dilithium signature scheme in Alg.3-4 to explain the different attacks. We note that the secret key 𝑠𝑘

of Dilithium has multiple components: 𝑠𝑘 = (𝑠𝑒𝑒𝑑𝐴, 𝐾, 𝑡𝑟, s1, s2, t0) (Line 9 in Alg.3). Among them, we refer to s1 as

the primary secret, since the knowledge of s1 is sufficient to forge signatures of Dilithium for any chosen message, as

shown in [15, 62].

5.1 FIA on Key Generation

The key generation procedure of Dilithium can serve as an attractive target for fault attacks when the application

utilizes self-signed certificates, where key generation is performed on the DUT. In this scenario, the following attacks

are applicable to the key generation procedure.

5.1.1 Targeting Sampling of Secrets (Nonce_Fault). The polynomials of the secret s1 and s2 of Dilithium are sampled

using the same seed 𝑠𝑒𝑒𝑑𝑆 , but with different delimiters/nonces (Line 3 of Sign in Alg.3). Ravi et al. [64] showed that

an attacker can force nonce reuse through faults to generate weak LWE instances, which can be potentially solved to

recover the secret key. Dilithium utilizes rounding of the public key (Line 7), which poses an additional challenge for

the attacker to recover the secret key. Nevertheless, the induced nonce reuse through faults significantly reduces the

security of the public keys, as the full public key can be reconstructed by observing several valid signatures. The attack

characteristic is defined using the tuple: (EMFI, Observe_DUT_IO, Targeted_Fault, 8 − 15, 1).

Countermeasure (Our Proposal): The Verify_Nonce_Fault countermeasure (Sec.4.1.1) can serve as a concrete protection

against the Nonce_Fault attack.

5.1.2 Targeting NTT (NTT_Twiddle_Fault). Ravi et al. [66] proposed to target the NTT instances through the

NTT_Twiddle_Fault attack, in the key generation procedure of Kyber KEM, to create faulty yet valid secret keys

with very low entropy. While NTT is also computed over the secret key component s1 in Dilithium, the fault attack is

not applicable to the key generation procedure of Dilithium. This is because the faulty NTT transformed version of the

secret s1 is only used to generate the LWE instance (i.e.) public key (Line 6 in Alg.3). The key-generation procedure

however saves the original secret s1 in the normal domain, as the secret key. Thus, the signing procedure performs a

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 37

fresh NTT computation over the secret s1 while generating signatures. This violates the correctness of the generated

signatures, thereby rendering the attack on the key generation procedure of Dilithium useless.

Refer to Tab.3 for a tabulation of all fault-injection attacks on the key-generation procedure of the Dilithium signature

scheme.

5.2 FIA on Signing Procedure

The signing procedure of Dilithium remains the main target of fault injection attacks, as the signing procedure utilizes

the long-term secret key 𝑠𝑘 to generate multiple signatures, given the long lifetime of the key pairs used in signature

schemes. The following attacks are applicable to the signing procedure of Dilithium.

5.2.1 Injecting Random Faults on the Secret Key. Bindel et al. [12] reported the first fault vulnerability analysis of

lattice-based signature schemes such as GLP [29] and BLISS [24], based on the "Fiat-Shamir with Aborts" framework.

They proposed to inject random faults to change a single or few coefficients of the secret module s1 ∈ 𝑅ℓ𝑞 . The attacker
can subsequently utilize the knowledge of ≈ 1𝑘 − 2𝑘 faulty signatures, to obtain knowledge about the originally

perturbed coefficients of s1, one at a time to fully recover s1.

Along the same lines, Islam et al. [36] recently presented a novel signature correction attack, which also works by

injecting random bit flips in single coefficients of the secret module s1, stored in memory. They utilize Rowhammer as

an attack vector to inject random bit flips, and subsequently utilized a signature correction algorithm on the faulty sig-

natures to recover the secret key. We henceforth refer to these attacks faulting the secret key as Randomize_Secret_Key

fault attacks. The attack does not require communication with the signing DUT, and can work on both the deterministic

and probabilistic variants of Dilithium. The attack characteristic is defined using the tuple: (EMFI, Observe_DUT_IO,

Targeted_Fault, 1, ≈ 1𝑘 − 2𝑘).

Countermeasure: The faulty signatures generated due to injection of randomization faults are invalid with an over-

whelming probability. Thus, verifying the validity of the generated signatures serves as a concrete countermeasure. The

countermeasure is also effective against any future fault attacks which produce invalid signatures. We henceforth refer

to this countermeasure using the label Verify_After_Sign. While this countermeasure has been proposed by several

works [12, 15], its concrete implementation and performance evaluation has not been studied by prior works.

5.2.2 Generic Differential Fault Analysis (DFA). Bruinderink and Pessl [15] presented a powerful Differential Fault

Attack (DFA), particularly applicable to the deterministic variant of Dilithium, whose modus operandi is as follows: the

attacker has access to a signing oracle (Communicate_DUT_IO), and submits a signature query for a randomly chosen

message𝑚. Let the primary signature component be z = s1 ·𝑐 +y (Line 27 in Alg.3). The attacker again submits a signing

query for the same message𝑚, but injects a random fault such that the corresponding faulty signature is z′ = s1 · 𝑐′ + y,
which is computed with the same nonce y, but with a different challenge polynomial 𝑐′. The difference Δz = z − z′

can be used to trivially recover the entire secret module s1, with only a single faulty signature. The authors showed

that only a single random fault (using glitches) anywhere within 68% of the execution time of a single iteration of the

signing procedure can result in full key recovery, thereby demonstrating the effectiveness of their attack. Referring to

the signing procedure in Alg.3, the random fault can be injected anywhere in lines 12 and 23-27. We henceforth refer

to this attack as the Generic_DFA attack on Dilithium. Since the attack is a DFA style attack, it can only work on the

deterministic variant of Dilithium, but not on the probabilistic variant. The attack characteristic can be defined by the

following tuple: (Glitching, Communicate_DUT_IO, Non_Targeted_Fault, 1, 1).

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

Countermeasure: Similar to the Randomize_Secret_Key attack, Generic_DFA attack also results in invalid signatures

which do not pass verification. Thus, the Verify_After_Sign countermeasure serves as a strong deterrent against the

attack. However, the authors of [15] also showed an interesting variant of their attack which works by injecting faults

during sampling of y, that results in valid signatures. Thus this variant of their attack can bypass the Verify_After_Sign

countermeasure. However, converting the signing procedure to being probabilistic, also serves as a concrete counter-

measure against the attack.

5.2.3 Loop Abort Fault Attack. Espitau et al. [26] proposed a novel fault attack to directly target the nonce y in

Fiat-Shamir abort-based signature schemes such as GLP signature scheme [29] and BLISS [24]. They proposed to use

faults to prematurely abort the loop, that samples the single coefficients of y (Line 22 in Alg.3), thereby resulting in the

generation of nonces with low degrees. In other words, by skipping the loop that samples individual coefficients of y,
one can ensure that the remaining coefficients of y are unsampled, and there is a high chance that these unsampled

coefficients have a value of 0. If so, the faulted signature z contains several coefficients which are nothing but the

unmasked coefficients of the product s1 · c (Line 27 in Alg.3). The authors show that a single targeted fault in the

sampling procedure of y can result in full key recovery. Though this attack was only demonstrated on the GLP signature

scheme [29], this attack can potentially be applied to Dilithium for full key recovery. Since this attack does not involve

differential analysis, it is therefore applicable to both the probabilistic and deterministic variants of Dilithium. We

refer to this attack using the label Loop_Abort_Fault. Its characteristic can be defined using the tuple: (Glitching,

Observe_DUT_IO, Targeted_Fault, 1, 1).

Countermeasure (Our Proposal):We propose a two-level protection mechanism, similar to that of the Verify_Nonce_Fault

(Sec.4.1.1), which works in the following manner. Firstly, we utilize the Dynamic_Loop_𝐶𝑜𝑢𝑛𝑡𝑒𝑟 protection to keep

track of the number of sampled coefficients of y. The generated signature 𝜎 is stored in a temporary variable 𝑡𝑒𝑚𝑝 and

is copied one byte at a time to the output variable 𝑠𝑖𝑔 (initialized with 0), only if the loop counter comparison succeeds,

and this comparison is done for every byte copied from 𝑡𝑒𝑚𝑝 to 𝑠𝑖𝑔. We refer to this two-level countermeasure using

the label Verify_Loop_Abort. We refer to Sec.4.1.1 for more details on the implementation and effectiveness of the

countermeasure.

5.2.4 Skip Addition Attack. Bindel et al. [12] proposed theoretical skipping fault attacks targeting the final addition

operation used to generate z (Line 27 in Alg.3). Skipping the addition of y with the product (s1 · 𝑐), unmasks the

coefficients of the product (s1 · 𝑐), whose knowledge can be used to recover s1. While this is possible by skipping the

entire addition operation, Ravi et al. [62] proposed a more subtle fault attack on the deterministic variant of Dilithium,

which involves skipping of the addition operation for single coefficients of z (Line 27 in Alg.3). An attacker can then use

a DFA technique similar to [15], to recover the secret module s1 in ≈ 1𝑘 − 2𝑘 such faulty signatures. While the attack

has only been demonstrated on the deterministic variant of Dilithium, its applicability to the probabilistic variant is not

clear and is yet to be studied. We refer to these attacks as the Skip_Addition fault attacks, whose characteristic can be

defined using the tuple: (EMFI, Communicate_DUT_IO, Targeted_Fault, 1, ≈ 1𝑘 − 2𝑘).

Countermeasure: The use of a Verify_Loop_Abort like countermeasure can be used to detect skipping of any of the

addition operations to generate the primary signature component z. However, the protection does not defeat attacks

that skip the addition of single coefficients through corruption of underlying assembly instructions [62], since they

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 39

don’t affect the loop counter. In this respect, Ravi et al. [62] proposed to compute the addition operation in the NTT

domain (i.e.) compute z as INTT(ˆ(s1 ◦ 𝑐) + ŷ) (i.e.) alternative to the computation of z in Line 27 in Alg.3. Thus, skipping

fault in at least one coefficient of z uniformly propagates the fault to all coefficients through the subsequent INTT

operation. This results in an invalid signature which is rejected by the conditional check on ∥z∥∞ with a very high

probability (Line 29 in Alg.3). We propose to utilize the Dynamic_Loop_𝐶𝑜𝑢𝑛𝑡𝑒𝑟 protection along with the addition in

the NTT domain, which is referred to as the Verify_Add countermeasure.

5.2.5 Targeting NTT (NTT_Twiddle_Fault). Ravi et al. [66] proposed to inject faults to zeroize the twiddle constants

of specific NTT instances in the signing procedure, to generate faulty signatures, which compromise the secret key.

They proposed two variants of attacks. The first attack variant works on the deterministic variant of Dilithium, in the

following manner. The attacker obtains a valid signature 𝜎 = (z, h, c) of a message 𝜇, with the constraint that c[0] = 0

(first coefficient of c). Let z = s1 · c + y. Subsequently, the attacker submits a signing query for the same message, but

now injects a fault in the NTT instance of c (Line 26 in Alg.3). This effectively zeroizes the entire NTT output of c (i.e.)
ĉ (line 26). Thus, the generated faulty signature is nothing but z∗ = y. The difference of z and z∗ can be used to trivially

recover s1, similar to the Generic_DFA attack. This attack only works on the deterministic variant, and cannot work

on the probabilistic variant since it is a DFA-style attack. The attack characteristic is denoted using the tuple: (EMFI,

Communicate_DUT_IO, Targeted_Fault, 1, 1).

The authors also proposed a non-DFA style variant of the attack that can work on the probabilistic variant, but

when z is computed as INTT(ˆ(s1 ◦ 𝑐) + ŷ), similar to the Verify_Add countermeasure. They propose to fault the NTT

over y (Line 22), which zeroizes all except the first coefficient of all the polynomials of y. Thus, the resulting faulty

signature component z∗ is nothing but s1 · c, except for the first coefficient of every polynomial of z∗. The complete

secret key s1 can be recovered in a single such targeted fault. Moreover, the attacker does not require to communicate

with the signing DUT for the attack. Thus, the attack characteristic is denoted using the tuple: (EMFI,Observe_DUT_IO,

Targeted_Fault, 1, 1).

Countermeasure: The NTT_Twiddle_Check countermeasure that verifies the sanity of the twiddle factors can be

used as a concrete countermeasure against the attack (Refer Sec.4.1.2).

Refer to Tab.3 for a tabulation of all fault-injection attacks on the signing procedure of the Dilithium signature

scheme.

5.3 FIA on Verification Procedure

While the aforementioned attacks target the signing procedure, the verification procedure could also serve as a good

target for fault injection attacks. One of the main motivations being the forceful acceptance of invalid signatures

through faults for any message of the attacker’s choice.

5.3.1 Targeting NTT (NTT_Twiddle_Fault). Ravi et al. [66] proposed a fault attack that zeroizes the twiddle constants

of the NTT over the challenge polynomial c in the verification procedure (Line 3 in Alg.4). They also proposed a

forgery algorithm, which can be used to enforce successful verification for any message of the attacker’s choice, if

an attacker can achieve the aforementioned fault. We utilize the following tuple to define the attack characteristic:

(EMFI,Communicate_DUT_IO, Targeted_Fault, 1, 1).

Manuscript submitted to ACM

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

Countermeasure: The NTT_Twiddle_Check countermeasure that verifies the sanity of the twiddle factors can be

used as a concrete countermeasure against the attack (Refer Sec.4.1.2).

5.3.2 Skipping Equality Check. One of the obvious targets for fault injection is to simply skip the final comparison

operation that decides the validity of the received signatures. In particular, bypassing the comparison of the received

challenge polynomial c with the recomputed challenge polynomial c̄ (Line 6 in Alg.4) ensures successful signature

verification. This attack is very similar to the Skip_CT_Compare attack on KEMs, targeting the ciphertext comparison

operation in the decapsulation procedure. While the attack has not been practically demonstrated, it is important to

fortify the equality check in the verification procedure, to prevent trivial skipping attacks. We refer to this attack using

the label Skip_C_𝐶𝑜𝑚𝑝𝑎𝑟𝑒 .

Countermeasure (Our Proposal): We propose to simply utilize a Dynamic_Loop_Counter countermeasure to keep

track of the number of compared coefficients of the challenge polynomial. This loop counter information along with the

result of the comparison operation can be used to protect against trivial skipping attacks. One can also adopt redundancy

of varying degrees to further fortify the verification procedure. We agree that this is only an implementation-level

countermeasure and can therefore be circumvented by a more powerful attacker. However, these countermeasures do

significantly increase the ability of an attacker to mount a successful attack.

Refer to Tab.3 for a tabulation of all fault-injection attacks on the verification procedure of the Dilithium signature

scheme.

Table 3. Tablulation of reported FIA and their characteristics for the different procedures of Dilithium signature scheme

Attack
Attack Characteristic

Attack_Vector DUT_IO_Access Targeted_Or_Not Num_Faults Num_Executions Countermeasure

Key Generation

Nonce_Fault [64] EMFI Observe_DUT_IO Targeted_Fault 1 − 10 1 Verify_Nonce_Fault

NTT_Twiddle_Fault [66] EMFI Observe_DUT_IO Targeted_Fault 1 1 NTT_Twiddle_Check

Signing

Randomize_Secret_Key [12,

36]

EMFI Observe_DUT_IO Targeted_Fault 1 1𝑘 − 2𝑘 Verify_After_Sign

Generic_DFA [15] Glitching Communicate_DUT_IO Non_Targeted_Fault 1 1 Verify_After_Sign

Loop_Abort_Fault [26] Glitching Observe_DUT_IO Targeted_Fault 1 1 Verify_Loop_Abort

Skip_Addition [12, 62] EMFI Communicate_DUT_IO Targeted_Fault 1 1𝑘 − 2𝑘 Verify_Add

NTT_Twiddle_Fault [66]
EMFI Communicate_DUT_IO Targeted_Fault 1 1 NTT_Twiddle_Check

EMFI Observe_DUT_IO Targeted_Fault 1 1 NTT_Twiddle_Check

Verification

NTT_Twiddle_Fault [66] EMFI Communicate_DUT_IO Targeted_Fault 1 1 NTT_Twiddle_Check

Skip_C_𝐶𝑜𝑚𝑝𝑎𝑟𝑒 [76] Glitching Communicate_DUT_IO Targeted_Fault 1 1 Dynamic_Loop_Counter

6 SIDE-CHANNEL ATTACKS ON DILITHIUM

In this section, we discuss side-channel attacks that are applicable to the Dilithium signature scheme. We only consider

side-channel attacks on the key-generation and signing procedure as they manipulate the secret key, while the

verification procedure which manipulates public information is not relevant for side-channel attacks. We utilize the

same characteristics to describe SCA on Dilithium, that were used to describe SCA on Kyber (Refer Sec.3.1.4). We utilize

the algorithm of the Dilithium signature scheme in Alg.3-4 to explain the different attacks.

Manuscript submitted to ACM

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 41

6.1 SCA on Key Generation

6.1.1 SASCA. The key generation procedure of Dilithium is susceptible to SASCA-based attacks.

Targeting NTT (SASCA_NTT): Leakage from the NTT instance over the primary secret key component s1 (Line

5 of KeyGen in Alg.3) can be used to recover s1, in a single trace.

Targeting KECCAK (SASCA_KECCAK): KECCAK is used as a PRNG within the key-generation procedure to sample

the secret s1 (Line 3 in Alg.3) using 𝑠𝑒𝑒𝑑𝑆 , thus SASCA on this KECCAK instance can be potentially used to recover

𝑠𝑒𝑒𝑑𝑆 , which can be used to reconstruct the secret key s1.

The SASCA_NTT and SASCA_KECCAK attacks can be defined using the tuple: (Observe_DUT_IO,Profiled_With_Clone,

1, High_SNR).

Countermeasure: Shuffling the sensitive NTT, as well as the KECCAK operations, provides concrete protection against

attacks relying on SASCA.

6.1.2 Simple Template Attacks. Han et al. [32] targeted the NTT instance over s1 using a simple template attack, which

could recover the complete secret polynomial s1 in a single trace. They showed that an attacker can target leakage from

the product of the secret coefficients with the twiddle factors in the first round of the NTT (i.e.) 𝑝𝑟𝑜𝑑 ∈ Z𝑞 = s[𝑖] · 𝜔 𝑗

where s[𝑖] is a secret coefficient and 𝜔 𝑗
is a twiddle factor. They show that leakage of the result 𝑝𝑟𝑜𝑑 can be used to

uniquely distinguish every candidate of s[𝑖] through simple template attacks. Moreover, the attack is aided by the

fact that there are only 5 possible candidates for coefficients of the secret s1. Han et al. [32] targeted the reference

implementation of Dilithium through the power side-channel on the ARM Cortex-M4 microcontroller to recover the

entire secret s1 in a single trace. We refer to this attack as the Simple_NTT_Template attack. Similar to SASCA on the

NTT, the attack can be defined using the tuple: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR).

Countermeasure: Unlike SASCA on NTT which relies on leakage from intermediate variables throughout the NTT

operation, this attack only relies on leakage from a single intermediate variable for key recovery. Thus, the leakage

exploited is more fine-grained and is more prone to noise (horizontal/vertical) compared to SASCA-type attacks.

Nevertheless, the shuffling and masking countermeasures proposed for the NTT serve as a concrete countermeasure

against this attack (Shuffled_Masked_NTT [63]).

Refer to Tab.4 for a tabulation of all side-channel attacks on the key-generation procedure of the Dilithium signature

scheme.

6.2 SCA on Signing Procedure

6.2.1 SASCA. The signing procedure of Dilithium is susceptible to SASCA-based attacks.

Targeting NTT (SASCA_NTT): Similar to the key-generation procedure, the signing procedure also computes NTT

of the primary secret s1 (Line 15 of Sign Alg.3), which can be targeted using SASCA for single trace key recovery.

Similarly, NTT instance over the ephemeral nonce y (Line 23) can also be targeted, whose knowledge can be used to

recover the primary secret s1.

Manuscript submitted to ACM

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

42 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

Targeting KECCAK (SASCA_KECCAK): KECCAK is used as a PRNG within the signing procedure to sample the

ephemeral nonce y from a small seed 𝜌 (Line 22), which is vulnerable to single-trace SASCA_KECCAK attacks.

The SASCA_NTT and SASCA_KECCAK attacks can work on both the deterministic and probabilistic variants of

Dilithium and can be defined using the tuple: (Observe_DUT_IO, Profiled_With_Clone, 1, High_SNR).

Countermeasure: Shuffling the NTT as well as the KECCAK operation provides concrete protection against attacks

relying on SASCA.

6.2.2 Targeting the Nonce y. Recently, Marzougui et al. [43] demonstrated a profiled attack targeting the sampling of

the ephemeral nonce y (Line 22 in Alg.22). They proposed to profile the leakage of coefficients of y using a machine

learning classifier, to differentiate between a given coefficient y[𝑖] = 0 and y ≠ 0. Templates for the coefficients of y can

be built using leakage from a clone device. During the attack phase, a single trace is obtained and the attacker attempts

to exploit leakage from single coefficients of y to identify zero coefficients of y. If a given coefficient y[𝑖] = 0, then

z[𝑖] = s1 · c[𝑖], and if an attacker can identify ℓ · 𝑛 such coefficients, he can fully recover the secret key using simple

Gaussian elimination. Marzougui et al. [43] performed their attack on ARM Cortex-M4 microcontroller through the

power side-channel, and were able to recover the full key in ≈ 750𝑘 signatures. A very high number of signatures are

required to identify coefficients of y that have a very small value close to 0, while they are uniformly distributed in the

range [0, 21
9] for recommended parameters of Dilithium. The attack also exploits fine leakages from the manipulation

of single coefficients and therefore requires a relatively high SNR. We refer to this attack as the Zero_Nonce_Detect

attack, which can be described using the tuple: (Observe_DUT_IO, Profiled_With_Clone, ≈ 750𝑘 , High_SNR).

Countermeasure: Masking the nonce y in the signing procedure serves as an effective countermeasure against the

Zero_Nonce_Detect attack, as detecting the exact value of a coefficient using leakage from multiple shares in a single

trace is not very trivial, or at the least exponentially increases the number of traces with increasing masking order. There

have been several proposals for masking Dilithium against side-channel attacks [7, 44]. We refer to this countermeasure

using the labelMasking.

6.2.3 Correlation Power Analysis (CPA). The first CPA style attack was proposed by Ravi et al. [61], who demonstrated

a single-trace horizontal style DPA attack targeting the operation s1 · c (Line 27 in Alg.3), implemented using the

school-book polynomial multiplier. However, they only demonstrated a simulated attack assuming idealized leakage

models, and to some extent, evaluated the effect of leakage noise. Moreover, NTT is the actual polynomial multiplication

algorithm used in Dilithium, and thus this attack is no more applicable to the latest implementations of Dilithium.

More recently, Chen et al. [16] demonstrated a non-profiled CPA attack targeting the pointwise multiplication of

ĉ and ŝ1 in the NTT domain. They were able to recover the secret key in only 200 power traces using leakage from

the ARM Cortex-M4 microcontroller. We refer to these attacks using the label NTT_Leakage_CPA. Since these attack

work over multiple traces, they can still work with low SNR. The attack characteristic can be described using the

following tuple: (Observe_DUT_IO, Non_Profiled, ≈ 200, Low_SNR). More recently, Steffen et al. [70] extended the

CPA attack to also target the same pointwise multiplication operation in a hardware implementation on the Artix-7

FPGA, where they required about 66𝑘 traces for full key recovery, which is ≈ 300 times higher compared to targeting a

software implementation on the ARM Cortex-M4 microcontroller. The NTT_Leakage_CPA attack can work on both

the deterministic and probabilistic variants of Dilithium.

Manuscript submitted to ACM

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 43

Countermeasure:Masking the signing procedure serves as a strong countermeasure against the aforementioned CPA-style

attacks.

Refer to Tab.4 for a tabulation of all side-channel attacks on the signing procedure of the Dilithium signature scheme.

Table 4. Tablulation of reported SCA and their characteristics for the different procedures of Dilithium signature scheme

Attack
Attack Characteristic

Attack_Vector DUT_IO_Access Profile_𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 No_Traces SNR Countermeasure

Key Generation
SASCA_NTT [53, 55] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Masked_NTT
SASCA_KECCAK [37] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_KECCAK

Simple_NTT_Template [32] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Masked_NTT

Sign
SASCA_NTT [53, 55] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_Masked_NTT
SASCA_KECCAK [37] Power/EM Observe_DUT_IO Profiled_With_Clone 1 High_SNR Shuffled_KECCAK

Zero_Nonce_Detect [43] Power/EM Observe_DUT_IO Profiled_With_Clone ≈ 750𝑘 High_SNR Masking
NTT_Leakage_CPA [16, 70] Power/EM Observe_DUT_IO Non_Profiled ≈ 200 Low_SNR Masking

7 EXPERIMENTAL EVALUATION

We can clearly see that a majority of attacks on both Kyber and Dilithium have been performed on the ARM Cortex-M4

microcontroller. Thus, we perform a practical performance evaluation of the dedicated countermeasures for both Kyber

and Dilithium on the same platform. In particular, we implement the countermeasures on the optimized implementation

of Kyber and Dilithium from the pqm4 library [38].

7.1 Target Platform and Implementation Details

Our target platform for the ARM Cortex-M4 processor is the STM32F4DISCOVERY board (DUT) housing the STM32F407

microcontroller and the clock frequency is 24 MHz. Our countermeasures were implemented on the M4-optimized

implementations of Kyber and Dilithium available in the public pqm4 library [38], a benchmarking framework for

PQC schemes on the ARM Cortex-M4 microcontroller. The M4-optimized implementation of Kyber is based on the

memory-efficient high-speed implementation proposed by Botros, Kannwischer, and Schwabe in [14]. The M4-optimized

implementation is based on compact Dilithium optimizations reported by Greconici, Kannwischer, and Sprenkels

in [28].
1
Their work builds upon the early evaluation optimization by Ravi et al. [59] and additionally proposes faster

assembly implementations of NTT for the Cortex-M4. All implementations were compiled with the arm-none-eabi-

gcc-7.3.1 compiler using compiler flags -O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16. We

have implemented the countermeasures on both Kyber and Dilithium such that, the required countermeasures can be

independently turned on/off based on the designer’s security requirements.

7.2 Experimental Results for Kyber KEM

Considering the different SCA and FIA mounted on Kyber, we implement the following countermeasures within the

implementation of Kyber KEM.

(1) Shuffled_Masked_NTT (KeyGen, Encaps, Decaps)

(2) Verify_Nonce_Fault (KeyGen, Encaps)

(3) CT_Sanity_Check (Decaps)

1
Our analysis and experiments were carried out on the implementations of Kyber and Dilithium corresponding to the commit hash

2691b4915b76db8b765ba89e4e09adc6b999763f, and were available in the pqm4 library until Jan 31, 2022.

Manuscript submitted to ACM

https://github.com/mupq/pqm4/tree/2691b4915b76db8b765ba89e4e09adc6b999763f

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

44 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

(4) Message_Poly_Sanity_Check (Decaps)

(5) Protect_CT_Compare (Decaps)

(6) Shuffled_Encode and Shuffled_Encode (Encaps, Decaps)

While we have also discussed dedicated countermeasures such as Shuffled_KECCAK and NTT_Twiddle_Check in

the paper, we have not implemented them for Kyber KEM in this work. Nevertheless, the aforementioned dedicated

countermeasures either separate or combined, are not meant to serve as standalone countermeasures for Kyber but can

be implemented on top of masking countermeasures for concrete protection against both SCA and FIA [13, 33].

Refer to Tab.5 for the performance overheads due to the Shuffled_Masked_NTT countermeasures against the

NTT_Leakage attacks on Kyber KEM, running on the ARM Cortex-M4 microcontroller. While we have implemented

all the shuffling (3) and masking (4) countermeasures proposed in [63], for brevity, we only report numbers for the

countermeasures referred to as Coarse_Shuffled_NTT and Generic_2_Masked_NTT (Refer to [63] for the terminology

used for the different Shuffled_Masked_NTT countermeasures).

On the ARM Cortex-M4 device, we observe a performance impact in the range of 52− 69% for key generation, 44-74%

for the encapsulation, and 52−96% for the decapsulation procedure, across all parameters of Kyber KEM. Please note that

the unprotected implementation utilizes assembly-optimized NTT, while the protected implementation utilizes protected

NTTs which are implemented in C. Thus, we argue that it is possible to obtain significantly improved overheads,

provided that the protected NTT/INTTs are implemented in assembly. We leave the optimized implementation of these

countermeasures in assembly as future work.

Table 5. Performance Comparison of the Shuffled_Masked_NTT countermeasures for Kyber KEM, compared to the optimized
unprotected implementations on the ARM Cortex-M4 device. Numbers were obtained on the STM32F407VG microcontroller
mounted on the STM32F407DISCOVERY board, running at 24 MHz. Numbers are provided in terms of ×10

3 clock cycles. Ovh
denotes overhead in percentage.

Scheme
Clock Cycles (×10

3)
KeyGen Encaps Decaps

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Coarse_Shuffled_NTT

Kyber512 463 786 69 556 971 74 518 1021 96

Kyber768 762 1245 63 909 1486 63 853 1512 77

Kyber1024 1207 1854 53 1386 2125 53 1312 2133 62

Generic_2_Masked_NTT

Kyber512 463 732 57 556 899 61 518 937 80

Kyber768 761 1163 52 909 1387 52 853 1406 64

Kyber1024 1207 1744 44 1386 1998 44 1312 1999 52

Refer to Tab.6 for the performance overheads due to the Verify_Nonce_Fault countermeasure on the key-generation

procedure, and CT_Sanity_Check,Message_Poly_Sanity_Check, Shuffle_Encode and Shuffled_Decode countermea-

sures for the decapsulation procedure for Kyber KEM, implemented on the ARM Cortex-M4 device. These countermea-

sures impose very reasonable overheads in the range of 10-11%, 15-34%, 12-30%, and 4-5% for the different parameter

Manuscript submitted to ACM

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 45

Table 6. Performance Comparison of the custom SCA-FIA countermeasures for Kyber KEM, compared to the optimized
unprotected implementation on the ARM Cortex-M4 device. Numbers were obtained on the STM32F407VG microcontroller
mounted on the STM32F407DISCOVERY board, running at 24 MHz. Numbers are provided in terms of ×10

3 clock cycles. Ovh
denotes overhead in percentage.

Scheme
Clock Cycles (×10

3)
Unprot. Prot. Ovh.

(%)
Verify_Nonce_Fault (KeyGen)

Kyber512 463 516 11

Kyber768 762 848 11

Kyber1024 1207 1337 10

CT_Sanity_Check (Decaps)

Kyber512 518 698 34

Kyber768 853 1040 21

Kyber1024 1312 1520 15

Message_Poly_Sanity_Check (Decaps)

Kyber512 518 679 30

Kyber768 853 1014 18

Kyber1024 1312 1473 12

Protect_CT_Compare (Decaps)

Kyber512 518 549 5

Kyber768 853 894 4

Kyber1024 1312 1372 4

Shuffle_Encode_Decode (Decaps)

Kyber512 518 586 13

Kyber768 853 878 2

Kyber1024 1312 1337 2

sets of Kyber KEM. Thus, we can see that these dedicated countermeasures can be implemented in a cost-effective

manner for Kyber KEM.

7.3 Experimental Results for Dilithium

Considering the different SCA and FIA mounted on Dilithium, we implement the following countermeasures within

the implementation of the Dilithium signature scheme.

(1) Shuffled_Masked_NTT (KeyGen, Sign)

(2) Verify_After_Sign (Sign)

(3) Verify_Loop_Abort (Sign)

(4) Verify_Add (Sign)

(5) Protect_Verify_Compare (Verify)

While we have also discussed dedicated countermeasures such as Shuffled_KECCAK and NTT_Twiddle_Check

and Verify_Nonce_Fault countermeasures in the paper, we have not implemented them for Dilithium in this work.

Nevertheless, the aforementioned dedicated countermeasures either separate or combined, are not meant to serve as

Manuscript submitted to ACM

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

46 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

standalone countermeasures for Dilithium, but can be implemented on top of masking countermeasures for concrete

protection against both SCA and FIA [7, 44].

Refer to Tab.7 for the performance overheads due to the Shuffled_Masked_NTT countermeasures against the

NTT_Leakage attacks on Dilithium implemented on the ARM Cortex-M4 microcontroller. While we have implemented

all the shuffling (3) and masking (4) countermeasures proposed in [63], for brevity, we only report numbers for the

countermeasures referred to as Coarse_Shuffled_NTT and Generic_2_Masked_NTT.

On the ARM Cortex-M4 device, we observe a performance impact in the range of 22 − 32% for key generation and

116 − 132% for the signing procedure. Please note that the unprotected implementation utilizes assembly-optimized

NTT, while the protected implementation utilizes protected NTTs which are implemented in C. The overhead on

the signing procedure is much more pronounced since the majority of its computation time is consumed by the

polynomial multiplication operation. Moreover, the iterative nature of the signing procedure further increases the

impact of our unoptimized protected NTT implementations. Thus, we argue that it is possible to obtain significantly

improved overheads, provided that the protected NTT/INTTs are implemented in assembly. We leave the optimized

implementation of these countermeasures in assembly as future work.

Table 7. Performance Comparison of the Shuffled_Masked_NTT countermeasures for Dilithium, compared to the optimized
unprotected implementation on the ARM Cortex-M4 device. Numbers were obtained on the STM32F407VG microcontroller
mounted on the STM32F407DISCOVERY board, running at 24 MHz. Numbers are provided in terms of ×10

6 clock cycles. Ovh
denotes overhead in percentage.

Scheme
Clock Cycles (×10

6)
KeyGen Sign

Unprot. Prot. Ovh.
(%)

Unprot. Prot. Ovh.
(%)

Coarse_Shuffled_NTT

Dilithium2 1.6 2.1 32 4.1 9.2 124

Dilithium3 2.8 3.5 24 6.6 15.3 132

Generic_2_Masked_NTT

Dilithium2 1.6 2.0 30 4.1 8.9 116

Dilithium3 2.8 3.5 22 6.6 14.6 121

Refer to Tab.8 for the performance overheads due to the Verify_After_Sign, Verify_Loop_Abort and Verify_Add coun-

termeasures for the signing procedure and Protect_Verify_Compare countermeasure for the verification procedure of

Dilithium, implemented on the ARM Cortex-M4 microcontroller. On the ARM Cortex-M4 device, these countermeasures

impose very reasonable overheads in the range of 8-12%, 11-13%, and 1 − 2% and 0.1 − 0.05% for the different parameter

sets of Dilithium. Thus, we can see that these dedicated countermeasures can be implemented in a cost-effective manner

for the Dilithium signature scheme.

8 CONCLUSION

In this work, we present a systematic study of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA) on structured

lattice-based schemes, with a focus on Kyber and Dilithium, and also discuss appropriate countermeasures for each of

the different attacks. Among the several countermeasures discussed in this work, we present novel countermeasures

Manuscript submitted to ACM

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 47

Table 8. Performance Comparison of the different SCA-FIA countermeasures for Dilithium and the overheads they incur on on
optimized implementations on the ARM Cortex-M4 device. Numbers were obtained on the STM32F407VG microcontroller
mounted on the STM32F407DISCOVERY board, running at 24 MHz. Numbers are provided in terms of ×10

6 clock cycles. Ovh
denotes overhead in percentage.

Scheme
Clock Cycles (×10

6)
Unprot. Prot. Ovh.

(%)
Verify_After_Sign (Sign)

Dilithium2 4.1 4.6 12

Dilithium3 6.6 7.2 8

Verify_Loop_Abort (Sign)

Dilithium2 4.1 4.7 13

Dilithium2 6.6 7.3 11

Verify_Add (Sign)

Dilithium2 4.1 4.3 2

Dilithium2 6.6 6.7 1

Protect_Verify_Compare (Verify)

Dilithium2 1.5 1.5 ≈ 0.10

Dilithium3 2.6 2.7 ≈ 0.05

that offer simultaneous protection against several SCA and FIA-based chosen-ciphertext attacks for Kyber KEM.

We implement the presented countermeasures within the well-known pqm4 library for the ARM Cortex-M4 based

microcontroller, which incurs reasonable performance overheads on the target platform. We therefore believe our work

argues for the usage of custom countermeasures within real-world implementations of lattice-based schemes, either in

a standalone manner or as reinforcements to generic countermeasures such as masking.

ACKNOWLEDGEMENT

We would like to thank Dr. Sujoy Sinha Roy from TU Graz for very useful discussions regarding categorization of

side-channel and fault attacks on lattice-based schemes.

This work was supported in part by CyberSecurity Research Flanders with reference number VR20192203, the

Research Council KU Leuven (C16/15/058) and the Horizon 2020 ERC Advanced Grant (101020005 Belfort). Jan-Pieter

D’Anvers is funded by FWO (Research Foundation – Flanders) as junior post-doctoral fellow (contract number 133185 /

1238822N LV).

REFERENCES
[1] 2016. The transport layer security (TLS) protocol version 1.3 (May 2016). https://tools.ietf.org/html/draft-ietf-tls-tls13-13.

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,

et al. 2020. Status report on the second round of the NIST post-quantum cryptography standardization process. US Department of Commerce, NIST
(2020).

[3] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta,

et al. 2022. Status report on the third round of the NIST post-quantum cryptography standardization process. National Institute of Standards and
Technology, Gaithersburg (2022).

[4] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden. 2020. Defeating NewHope with a single trace. In International Conference on
Post-Quantum Cryptography. Springer, 189–205.

Manuscript submitted to ACM

https://tools.ietf.org/html/draft-ietf-tls-tls13-13

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

48 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

[5] Daniel Apon and James Howe. 2021. Attacks on NIST PQC 3rd Round Candidates. Invited talk at Real World Crypto 2021, https://iacr.org/submit/

files/slides/2021/rwc/rwc2021/22/slides.pdf.

[6] Roberto Avanzi, Joppe W. Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, John Schanck, Peter Schwabe, Gregor Seiler, and

Damien Stehlé. 2021. CRYSTALS-Kyber (version 3.02): Algorithm specifications and supporting documentation (Auguest 4, 2021). https://pq-

crystals.org/kyber/data/kyber-specification-round3.pdf. (2021).

[7] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann, Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schneider,

François-Xavier Standaert, and Christine van Vredendaal. 2022. Leveling Dilithium against Leakage: Revisited Sensitivity Analysis and Improved

Implementations. Cryptology ePrint Archive (2022).
[8] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim Güneysu. 2020. High-Speed Masking for Polynomial Comparison in

Lattice-based KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 3 (2020), 483–507. https://doi.org/10.13154/tches.v2020.i3.483-507

[9] Ciprian Baetu, F. Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan, and Serge Vaudenay. 2019. Misuse Attacks on Post-quantum

Cryptosystems. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11477), Yuval Ishai and Vincent Rijmen

(Eds.). Springer, 747–776. https://doi.org/10.1007/978-3-030-17656-3_26

[10] Michiel Van Beirendonck, Jan-Pieter D’anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede. 2021. A side-channel-resistant

implementation of SABER. ACM Journal on Emerging Technologies in Computing Systems (JETC) 17, 2 (2021), 1–26.
[11] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel van Beirendonck. 2021. Attacking and Defending Masked

Polynomial Comparison for Lattice-Based Cryptography. 2021, 3 (2021), 334–359. https://doi.org/10.46586/tches.v2021.i3.334-359

[12] Nina Bindel, Johannes Buchmann, and Juliane Krämer. 2016. Lattice-Based Signature Schemes and Their Sensitivity to Fault Attacks. In 2016
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA, August 16, 2016. IEEE Computer Society, 63–77.

https://doi.org/10.1109/FDTC.2016.11

[13] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van Vredendaal. 2021. Masking Kyber: First- and Higher-Order

Implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 4 (2021), 173–214. https://doi.org/10.46586/tches.v2021.i4.173-214

[14] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. 2019. Memory-Efficient High-Speed Implementation of Kyber on Cortex-M4. In Progress
in Cryptology - AFRICACRYPT 2019 - 11th International Conference on Cryptology in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings (2019).
209–228. https://doi.org/10.1007/978-3-030-23696-0_11

[15] Leon Groot Bruinderink and Peter Pessl. 2018. Differential Fault Attacks on Deterministic Lattice Signatures. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2018, 3 (2018). https://eprint.iacr.org/2018/355.pdf.

[16] Zhaohui Chen, Emre Karabulut, Aydin Aysu, Yuan Ma, and Jiwu Jing. 2021. An Efficient Non-Profiled Side-Channel Attack on the CRYSTALS-

Dilithium Post-Quantum Signature. In 39th IEEE International Conference on Computer Design, ICCD 2021, Storrs, CT, USA, October 24-27, 2021. IEEE,
583–590. https://doi.org/10.1109/ICCD53106.2021.00094

[17] Eric Crockett, Christian Paquin, and Douglas Stebila. 2019. Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH.

https://github.com/open-quantum-safe/openssl. IACR Cryptol. ePrint Arch. (2019), 858. https://eprint.iacr.org/2019/858

[18] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. 2020. LWE with Side Information: Attacks and Concrete Security Estimation. In

Advances in Cryptology – CRYPTO 2020, Daniele Micciancio and Thomas Ristenpart (Eds.). Springer International Publishing, Cham, 329–358.

[19] Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel Van Beirendonck, and Ingrid Verbauwhede. 2022. Higher-Order Masked Ciphertext

Comparison for Lattice-Based Cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 2 (2022), 115–139. https://doi.org/10.46586/tches.

v2022.i2.115-139

[20] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. Decryption Failure

Attacks on IND-CCA Secure Lattice-Based Schemes. In Public-Key Cryptography – PKC 2019, Dongdai Lin and Kazue Sako (Eds.). Springer

International Publishing, Cham, 565–598.

[21] Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia. 2020. (One) Failure Is Not an Option: Bootstrapping the Search for Failures in Lattice-Based

Encryption Schemes. In Advances in Cryptology – EUROCRYPT 2020, Anne Canteaut and Yuval Ishai (Eds.). Springer International Publishing, Cham,

3–33.

[22] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. Timing attacks on error correcting codes in post-quantum

schemes. In Proceedings of ACM Workshop on Theory of Implementation Security Workshop. 2–9.
[23] Jeroen Delvaux. 2021. Roulette: Breaking Kyber with Diverse Fault Injection Setups. Cryptology ePrint Archive (2021), 1622.
[24] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. 2013. Lattice Signatures and Bimodal Gaussians. In Advances in Cryptology

- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 8042), Ran Canetti and Juan A. Garay (Eds.). Springer, 40–56. https://doi.org/10.1007/978-3-642-40041-4_3

[25] Léo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. Crystals–dilithium: Digital signatures

from module lattices. https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf. Submission to the NIST’s post-quantum cryptography
standardization process (2018).

[26] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. 2016. Loop-abort faults on lattice-based fiat-shamir and hash-and-sign

signatures. In International Conference on Selected Areas in Cryptography. Springer, 140–158.

Manuscript submitted to ACM

https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://doi.org/10.13154/tches.v2020.i3.483-507
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.1109/FDTC.2016.11
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.1007/978-3-030-23696-0_11
https://eprint.iacr.org/2018/355.pdf
https://doi.org/10.1109/ICCD53106.2021.00094
https://github.com/open-quantum-safe/openssl
https://eprint.iacr.org/2019/858
https://doi.org/10.46586/tches.v2022.i2.115-139
https://doi.org/10.46586/tches.v2022.i2.115-139
https://doi.org/10.1007/978-3-642-40041-4_3
https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

Side-channel and Fault-injection attacks over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New

Results 49

[27] Eiichiro Fujisaki and Tatsuaki Okamoto. 1999. Secure integration of asymmetric and symmetric encryption schemes. In Annual international
cryptology conference. Springer, 537–554.

[28] Denisa OC Greconici, Matthias J Kannwischer, and Daan Sprenkels. 2021. Compact dilithium implementations on Cortex-M3 and Cortex-M4. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2021), 1–24.

[29] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. 2012. Practical lattice-based cryptography: A signature scheme for embedded

systems. In International Conference on Cryptographic Hardware and Embedded Systems. Springer, 530–547.
[30] Qian Guo, Thomas Johansson, and Alexander Nilsson. 2020. A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto

transformation and its application on FrodoKEM. In Annual International Cryptology Conference. Springer, 359–386.
[31] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van

Vredendaal. 2021. Chosen ciphertext k-trace attacks on masked CCA2 secure kyber. IACR Transactions on Cryptographic Hardware and Embedded
Systems (2021), 88–113.

[32] JaeseungHan, Taeho Lee, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Jihoon Cho, Dong-GukHan, and Bo-Yeon Sim. 2021. Single-Trace Attack onNIST Round

3 Candidate Dilithium Using Machine Learning-Based Profiling. IEEE Access 9 (2021), 166283–166292. https://doi.org/10.1109/ACCESS.2021.3135600

[33] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann, Peter Schwabe, and Daan Sprenkels. 2022. First-Order Masked Kyber on

ARM Cortex-M4. IACR Cryptol. ePrint Arch. (2022), 58. https://eprint.iacr.org/2022/058

[34] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. 2021. Fault-enabled chosen-ciphertext attacks on kyber. In International Conference on
Cryptology in India. Springer, 311–334.

[35] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme. 2022. Adapting Belief Propagation to Counter Shuffling of NTTs. IACR
Cryptol. ePrint Arch. (2022), 555. https://eprint.iacr.org/2022/555

[36] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar. 2022. Signature Correction Attack on Dilithium Signature Scheme. In 7th
IEEE European Symposium on Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022. IEEE, 647–663. https://doi.org/10.1109/EuroSP53844.

2022.00046

[37] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. 2020. Single-Trace Attacks on Keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 3
(2020), 243–268. https://doi.org/10.13154/tches.v2020.i3.243-268

[38] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. 2019. PQM4: Post-quantum crypto library for the ARM Cortex-M4.

https://github.com/mupq/pqm4.

[39] Yanbin Li, Jiajie Zhu, Yuxin Huang, Zhe Liu, and Ming Tang. 2022. Single-Trace Side-Channel Attacks on the Toom-Cook: The Case Study of Saber.

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 4 (2022), 285–310. https://doi.org/10.46586/tches.v2022.i4.285-310

[40] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan He, and Bao Li. 2018. LAC: Practical Ring-LWE Based Public-Key

Encryption with Byte-Level Modulus. IACR Cryptol. ePrint Arch. (2018), 1009. https://eprint.iacr.org/2018/1009

[41] Vadim Lyubashevsky. 2009. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 598–616.

[42] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. On Ideal Lattices and Learning with Errors over Rings. J. ACM 60, 6 (2013), 43.

[43] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert. 2022. Profiling Side-Channel Attacks on Dilithium: A Small

Bit-Fiddling Leak Breaks It All. IACR Cryptol. ePrint Arch. (2022), 106. https://eprint.iacr.org/2022/106

[44] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. 2019. Masking Dilithium - Efficient Implementation and Side-Channel

Evaluation. In Applied Cryptography and Network Security - 17th International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings
(Lecture Notes in Computer Science, Vol. 11464), Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung (Eds.). Springer, 344–362.

https://doi.org/10.1007/978-3-030-21568-2_17

[45] Catinca Mujdei, Arthur Beckers, Jose Bermundo, Angshuman Karmakar, Lennert Wouters, and Ingrid Verbauwhede. 2022. Side-Channel Analysis of

Lattice-Based Post-Quantum Cryptography: Exploiting Polynomial Multiplication. IACR Cryptol. ePrint Arch. (2022), 474. https://eprint.iacr.org/

2022/474

[46] Hamid Nejatollahi, Nikil Dutt, Sandip Ray, Francesco Regazzoni, Indranil Banerjee, and Rosario Cammarota. 2019. Post-quantum lattice-based

cryptography implementations: A survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1–41.
[47] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. 2021. A side-channel attack on a masked IND-CCA secure Saber KEM implementation.

IACR Transactions on Cryptographic Hardware and Embedded Systems (2021), 676–707.
[48] Kalle Ngo, Elena Dubrova, and Thomas Johansson. 2021. Breaking Masked and Shuffled CCA Secure Saber KEM by Power Analysis. In Proceedings

of the 5th Workshop on Attacks and Solutions in Hardware Security. 51–61.
[49] Kalle Ngo, Ruize Wang, Elena Dubrova, and Nils Paulsrud. 2022. Side-Channel Attacks on Lattice-Based KEMs Are Not Prevented by Higher-Order

Masking. IACR Cryptol. ePrint Arch. (2022), 919. https://eprint.iacr.org/2022/919

[50] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. 2018. Practical CCA2-Secure and Masked Ring-LWE Implementation. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2018), 142–174.

[51] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. 2018. Practical CCA2-Secure and Masked Ring-LWE Implementation. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018, 1 (2018), 142–174. https://doi.org/10.13154/tches.v2018.i1.142-174

[52] Judea Pearl. 1986. Fusion, propagation, and structuring in belief networks. Artificial intelligence 29, 3 (1986), 241–288.

Manuscript submitted to ACM

https://doi.org/10.1109/ACCESS.2021.3135600
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/555
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.13154/tches.v2020.i3.243-268
https://github.com/mupq/pqm4
https://doi.org/10.46586/tches.v2022.i4.285-310
https://eprint.iacr.org/2018/1009
https://eprint.iacr.org/2022/106
https://doi.org/10.1007/978-3-030-21568-2_17
https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2022/919
https://doi.org/10.13154/tches.v2018.i1.142-174

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

50 Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab Baksi

[53] Peter Pessl and Robert Primas. 2019. More practical single-trace attacks on the number theoretic transform. In International Conference on Cryptology
and Information Security in Latin America. Springer, 130–149.

[54] Peter Pessl and Lukas Prokop. 2021. Fault attacks on CCA-secure lattice KEMs. IACR Transactions on Cryptographic Hardware and Embedded
Systems (2021), 37–60.

[55] Robert Primas, Peter Pessl, and Stefan Mangard. 2017. Single-trace side-channel attacks on masked lattice-based encryption. In International
Conference on Cryptographic Hardware and Embedded Systems. Springer, 513–533.

[56] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai Ding. 2021. A Systematic Approach and Analysis of Key Mismatch Attacks on

Lattice-Based NIST Candidate KEMs. In Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part IV (Lecture Notes in Computer Science, Vol. 13093), Mehdi

Tibouchi and Huaxiong Wang (Eds.). Springer, 92–121. https://doi.org/10.1007/978-3-030-92068-5_4

[57] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam Bhasin, and Anupam Chattopadhyay. 2022. Pushing the Limits of Generic

Side-Channel Attacks on LWE-based KEMs - Parallel PC Oracle Attacks on Kyber KEM and Beyond. IACR Cryptol. ePrint Arch. (2022), 931.
https://eprint.iacr.org/2022/931

[58] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay. 2021. On Exploiting Message Leakage in (few) NIST PQC Candidates

for Practical Message Recovery Attacks. IEEE Transactions on Information Forensics and Security (2021).

[59] Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam Bhasin. 2019. Improving speed of Dilithium’s signing procedure. In

International Conference on Smart Card Research and Advanced Applications. Springer, 57–73.
[60] Prasanna Ravi, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. 2021. Lattice-based key-sharing schemes: A survey. ACM Computing

Surveys (CSUR) 54, 1 (2021), 1–39.
[61] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. 2018. Side-channel assisted existential forgery

attack on Dilithium-a NIST PQC candidate. Cryptology ePrint Archive (2018).
[62] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and Shivam Bhasin. 2019. Exploiting determinism in lattice-based

signatures: practical fault attacks on pqm4 implementations of NIST candidates. In Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security. 427–440.

[63] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay. 2020. On Configurable SCA Countermeasures Against Single Trace

Attacks for the NTT. In International Conference on Security, Privacy, and Applied Cryptography Engineering. Springer, 123–146.
[64] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and DebdeepMukhopadhyay. 2019. Number "Not Used" Once-Practical

Fault Attack on pqm4 Implementations of NIST Candidates. In International Workshop on Constructive Side-Channel Analysis and Secure Design.
Springer, 232–250.

[65] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. 2020. Generic Side-channel attacks on CCA-secure lattice-based PKE

and KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 3 (2020), 307–335.
[66] Prasanna Ravi, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. 2022. Fiddling the Twiddle Constants - Fault Injection Analysis

of the Number Theoretic Transform. IACR Cryptol. ePrint Arch. (2022), 824. https://eprint.iacr.org/2022/824

[67] Oded Regev. 2009. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM) 56, 6 (2009), 1–40.
[68] Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang. 2022. Find the Bad Apples: An efficient method for perfect key recovery under

imperfect SCA oracles â€" A case study of Kyber. IACR Cryptol. ePrint Arch. (2022), 563. https://eprint.iacr.org/2022/563

[69] Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Hyojin Yoon, Jihoon Cho, and Dong-Guk Han. 2020. Single-Trace

Attacks on Message Encoding in Lattice-Based KEMs. 8 (2020), 183175–183191.

[70] Hauke Steffen, Georg Land, Lucie Kogelheide, and Tim Güneysu. 2022. Breaking and Protecting the Crystal: Side-Channel Analysis of Dilithium in

Hardware. Cryptology ePrint Archive (2022).
[71] Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi, and Naofumi Homma. 2022. Multiple-Valued Plaintext-Checking Side-Channel

Attacks on Post-Quantum KEMs. IACR Cryptol. ePrint Arch. (2022), 940. https://eprint.iacr.org/2022/940

[72] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Naofumi Homma. 2022. Curse of Re-encryption: A Generic Power/EM

Analysis on Post-Quantum KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022), 296–322. https://doi.org/10.46586/tches.v2022.i1.296-322
[73] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. 2014. Soft Analytical Side-Channel Attacks. In Advances in Cryptology -

ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I (Lecture Notes in Computer Science, Vol. 8873), Palash Sarkar and Tetsu Iwata (Eds.). Springer, 282–296.

https://doi.org/10.1007/978-3-662-45611-8_15

[74] Ruize Wang, Kalle Ngo, and Elena Dubrova. 2022. Making Biased DL Models Work: Message and Key Recovery Attacks on Saber Using Amplitude-

Modulated EM Emanations. IACR Cryptol. ePrint Arch. (2022), 852. https://eprint.iacr.org/2022/852

[75] Ruize Wang, Kalle Ngo, and Elena Dubrova. 2022. Side-Channel Analysis of Saber KEM Using Amplitude-Modulated EM Emanations. IACR Cryptol.
ePrint Arch. (2022), 807. https://eprint.iacr.org/2022/807

[76] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. 2021. Fault-injection attacks against NIST’s post-quantum cryptography

round 3 KEM candidates. In International Conference on the Theory and Application of Cryptology and Information Security. Springer, 33–61.
[77] Zhuang Xu, Owen Michael Pemberton, Sujoy Sinha Roy, David Oswald, Wang Yao, and Zhiming Zheng. 2021. Magnifying side-channel leakage of

lattice-based cryptosystems with chosen ciphertexts: The case study of kyber. IEEE Trans. Comput. (2021).

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-030-92068-5_4
https://eprint.iacr.org/2022/931
https://eprint.iacr.org/2022/824
https://eprint.iacr.org/2022/563
https://eprint.iacr.org/2022/940
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.1007/978-3-662-45611-8_15
https://eprint.iacr.org/2022/852
https://eprint.iacr.org/2022/807

	Abstract
	1 Introduction
	2 Background
	2.1 Notations
	2.2 The Learning With Errors Problem regev2009lattices
	2.3 Number Theoretic Transform (NTT) based Polynomial Multiplication
	2.4 Kyber
	2.5 Dilithium

	3 Side-Channel Attacks on Kyber KEM
	3.1 Nomenclature for Attack Classification
	3.2 SCA on Key Generation
	3.3 SCA on Encapsulation
	3.4 SCA on Decapsulation Procedure in Ephemeral Key Setting
	3.5 SCA on Decapsulation Procedure in Static Key Setting
	3.6 Side-Channel Assisted Chosen-Ciphertext Attacks
	3.7 Protection Against SCA Assisted CCA

	4 Fault-Injection Attacks on Kyber KEM
	4.1 FIA on Key Generation
	4.2 FIA on Encapsulation
	4.3 FIA on Decapsulation

	5 Fault-Injection Attacks on Dilithium
	5.1 FIA on Key Generation
	5.2 FIA on Signing Procedure
	5.3 FIA on Verification Procedure

	6 Side-Channel Attacks on Dilithium
	6.1 SCA on Key Generation
	6.2 SCA on Signing Procedure

	7 Experimental Evaluation
	7.1 Target Platform and Implementation Details
	7.2 Experimental Results for Kyber KEM
	7.3 Experimental Results for Dilithium

	8 Conclusion
	References

