Secure Search on Multi-key Homomorphically Encrypted Data
with Finite Fields

Buvana Ganesh* and Paolo Palmieri

School of Computer Science & IT,
University College Cork, Ireland
b.ganesh@cs.ucc.ie, p.palmieri@cs.ucc.ie

Abstract. Homomorphic Encryption (HE) is a very attractive solution to ensure privacy when
outsourcing confidential data to the cloud, as it enables computation on the data without de-
cryption. As the next step, searching this homomorphic data becomes necessary to navigate it
in the server. In this paper, we propose a novel algorithm to search homomorphically encrypted
data outsourced to an untrusted server and shared with multiple users. We optimize the steps
involved in the process to reduce the number of rounds of communication. We use an order-
preserving encoding [21] to batch the data with multi-key HE cryptosystems [9] to reduce the
multiplicative depth of the equality circuits and enable direct comparison. Further, we use LEAF
[22] to retrieve indices securely, and SealPIR [4] to retrieve the values obliviously to the user.
Overall, we provide an efficient end-to-end framework for searching shared data in a semi-honest
server.

Keywords: Homomorphic encryption - Secure search - Encrypted databases - Data Sharing

1 Introduction

Outsourcing data and computation to the cloud has become extremely common today. However,
many cloud users would like to be ensured that their data remains secure when utilized from the cloud.
A way to achieve this, albeit at the cost of increased computation, is by using homomorphic encryption.
Let’s consider an example with an hospital that is outsourcing all its data to an untrusted Cloud Service
Provider, and its staff are trying to retrieve patient records from the hospital data on a daily basis.
One can also consider banks performing analytics on a subset of its customers. Recent advances in the
state of the art make it possible to securely search and compute, even run Al algorithms, on this data
when it is homomorphically encrypted.

However, encrypted search remains a computationally tedious task as it is based on comparisons
on non-deterministic data. Currently, many methods are available to search for encrypted data. For a
statistical operations on data, differential privacy is a viable solution. Secure multiparty computation,
Private Set Intersection, searchable encryption, and encrypted database schemes are available based
on the requirement. The standard database encryption and searchable schemes tend to be either
computationally intensive or extremely leaky.

To solve this, Akavia et al. [1] were one of the first to provide viable schemes for homomorphic
search with Fully Homomorphic Encryption (FHE) schemes. Secure outsourcing of computation using
FHE involves the client sending the ciphertext x to the Cloud or the untrusted server and executing
some function f on the data. The client receives the ciphertext r encrypting the output r = f(x).
This gives a single round protocol with communication complexity proportional only to the sizes of
the input and output ciphertexts. Typically, FHE is secure under the Chosen Plaintext attack and this
semantic security ensures that the server learns nothing about the plaintext input and output from
the ciphertexts. Some of these principles can be extended to search in general.

But if we are to extend this scenario to one where the data is shared with multiple parties, we
find that we need more than one round of communication to search securely. In this paper, we explore
searching data outsourced to the cloud with multiple keys. Further, once we can perform operations
on the data collectively, we perform optimized search algorithms on the data and reduce them from
linear to a logarithmic number of multiplications. We use the LEAF algorithm [22] and the SealPIR
protocol [4] to illustrate the architecture.

* Buvana Ganesh is supported by a PhD scholarship funded by the Science Foundation Ireland Centre for
Research Training in Artificial Intelligence under Grant No. 18/CRT/6223.

2 B. Ganesh et al...

1.1 Contributions

In our work, we introduce an architecture to exploit multi-key homomorphic encryption schemes
for Secure Search against semi-honest servers and malicious users. We leverage inherent aspects of the
HE construction like batching in order to search better with comparison circuits using the vector of
field elements encoding as it preserves order. Methods to enable efficient comparison on encrypted data
are still explored in the literature. But we exploit the underlying finite fields in the HE cryptosystems
to enable comparisons. Our scheme is modular and so all three major components can be substituted
according to the application required. The architecture is agnostic to the HE cryptosystem as long
as it supports batching. It also achieves better security in terms of access patterns, search patterns
leakage, etc, compared to the other searchable encryption schemes because of the use of SealPIR for
oblivious retrieval. Also, unlike searchable encryption schemes, further computations can be performed
on the encrypted data because of HE. Overall, our paper is one of the first to explore secure search in
a multi-key setting. We address different problems faced in creating the protocols and provide possible
solutions to those problems.

1.2 Outline

In the following sections, we introduce Homomorphic Encryption (Sec. 2), and multi-key homo-
morphic encryption (Sec. 2.1) along with different methods to pack data in HE. Then we explore
some feasible solutions for performing secure search (Sec. 3.1) and search protocols on HE algorithms
(Sec. 3.2), in particular, that perform reasonably well. We then introduce our architecture and how to
choose different components based on the security requirements. Then the security (Sec. 5) and the
performance (Sec. 6) of the architecture are analyzed for our architecture. We provide some possible
extensions of the work for the future and research questions (Sec. 7) at the end.

2 Homomorphic encryption

An encryption scheme is homomorphic (HE) if we can perform computations on encrypted data
without decryption. Fully HE schemes can perform any number of operations on ciphertexts whereas
Leveled HE schemes can perform limited operations to a level L to avoid decryption failure. The
schemes that are fully homomorphic can perform any operation of any circuit size including arithmetic
operations like addition, subtraction, and multiplication on encrypted data. Some of the HE libraries
also allow exponentiation, square, signing, and therefore subtraction. In Levelled HE schemes, modulus
switching is used to convert a noisy ciphertext under one modulus say @, into an equivalent ciphertext
modulo ¢ < @ and co-prime, such that both decrypts to the same plaintext because the noise is reduced
by a factor of nearly Q/q. In FHE schemes, bootstrapping is used to reduce the noise in the ciphertext
but this is too expensive.

Tmproved versions of the most popular schemes like BFV [13], BGV [8], CKKS [11] use SIMD to
pack more data into a single ciphertext. Below, we illustrate an FHE scheme and its components using
the BFV cryptosystem. The polynomial ring R is similar for other FHE schemes like BGV, CKKS, etc
following the Ring Learning with Errors (RLWE) assumption. This class of schemes is called BGV-like
cryptosystems because they work around similar assumptions and structures.

Let A be the security parameter. For a levelled version without bootstrapping, at most L levels
of evaluations are possible in the FHE scheme. The levelled scheme FV consists of the algorithms
SecretKeyGen, PublicKeyGen, EvalKeyGen, Encrypt, Decrypt. Let ¢ and g be the plaintext and
ciphertext moduli, n a power of 2 be the degree of the cyclotomic polynomial. The base of the cryp-
tosystem is the ring R; = Z;[x]/(z™) + 1 for i = ¢,q. Let Q be the base for relinearization once the
noise increases during multiplication. For I = |log,,q|, there are [+ 1 polynomials when the elements of
R, are split coefficient-wise. Let x be the truncated discrete Gaussian error distribution with standard
deviation o.

— Sample s « Ro, the secret key sk.
SecretKeyGen(1*, L) « sk
— Sample a random vector a < R, and the noise e < ¥,

PublicKeyGen(sk) < pk = (pko.pk1) = ([(as + €)]q, a)

Secure Search on Multi-key Homomorphically Encrypted Data with Finite Fields 3

— For i € {0,...,1}, sample random values a; < Ry, €; < x
Eval KeyGen(sk, Q) < evk = ([(a;is + ;) + Qis?]4, a;)
— Sample u <~ Ro, and ey, es < x. For the message m € R; and pk.
Encrypt(pk,m) < ct = ([Am + pkou + e1]q, [pkiu + €2]q)

— For s = sk, ¢g = ct[0], and ¢; = ct[1],

Decrypt(sk, ct) + [[2[00 + c15]gl¢]

2.1 Multikey Fully Homomorphic Encryption

Asharov et al. [5] introduced Threshold FHE schemes for multiple parties under a semi-malicious
setting. Their scheme follows the Regev HE cryptosystem and uses distributed decryption. Following
this work, there are many schemes that are the multi-key versions (MKHE) [[9], [10]] of the popular
schemes like BFV, BGV, TFHE, etc. These rely on the security of the single-key versions of the
cryptosystems using the LWE assumption. Aloufi et al. provide an effective insight into comparing the
different multikey and threshold schemes in [3].

Primarily keys can be handled in two ways.

— In MKFHE schemes, a new user gets a key as they enter the computation. The evaluation key of
the owner and the participants are used to convert and form shared ciphertexts that are extended.

— In threshold schemes, the public key is aggregated after the key generation. If a new user enters
the system, the whole set-up phase has to be run again. But this enables computation between
any party as they share a common public key.

The application plays a vital role in choosing which kind of MKHE is to be used. For certain
applications with a trusted party in the communication, public and private keys are generated for
everyone individually or by a trusted third party. In threshold-based schemes and the public key is
aggregated. This stops more parties from entering the computation without running the setup again.
On the other hand, a Common Reference String (CRS) with encryption of all the keys is distributed
to enable separate decryption for any of the parties involved. In this case, any number of users are
supported to enter the computation because it just involves generating a new pair of keys.

When all the secrets of the parties involved are required to decrypt a multi-key ciphertext, the
decryption is distributed and not reliant on a trusted third party. This is common in threshold HE. Both
Threshold HE and MKHE schemes are similar in requiring users to cooperate and run a distributed
decryption protocol when retrieving the evaluated result.

Chen et al. [9] provide multi-key versions of BFV and CKKS with linear expansion of the ciphertext
with the multiple keys. Also, we would like to keep the system dynamic by allowing parties to enter
the computation with just KeyGen and not aggregation. We refer to this scheme as MKBFV and
use it to illustrate the architecture. MKBFV uses CRS and a gadget vector in their scheme where all
parties share a random polynomial vector The gadget vector and the corresponding function help with
bit/base decomposition in relation to FHE, in this case, the linear expansion of the ciphertext. This
helps in generating the trapdoors to enable identity-based operations.

MKBFYV provides two ways to convert and expand the ciphertext, one where the key is converted
followed by ciphertext relinearization, and one where the ciphertext is directly converted to the other
keys using Relin(ct, (evo, b;)) where ct € R’;H is the ciphertext with k components for k users. They
also provide bootstrapping methods and extend the scheme to an MKFHE scheme. We exploit these
techniques to relinearize, enable partial decryptions and perform limitless computation on the data in
our scheme.

2.2 Different Encoding methods

Traditional FHE schemes encoded and encrypted data bit by bit leading to a lot of expansion in
the ciphertexts. Later, Smart and Vercauteren [20] introduced the Chinese Remainder Theorem-based
batching to enable Single Instruction Multiple Data (SIMD) in FHE. This also speeds up arithmetic

4 B. Ganesh et al...

operations in FHE. CRT-based packing is one of the best ways to pack a lot of data with less storage
size. But the more data packed in a ciphertext, the harder it becomes to perform comparison operations
on the encrypted data. Therefore, we have to find an efficient way of packing that does not reduce
performance for arithmetic operations or comparison.

CRT-RNS packing Encoding the elements bit-wise is not very efficient and therefore schemes use
Single instruction multiple data (SIMD) in order to speed up computation using the Chinese Remainder
Theorem (CRT) which allows splitting a single big ring into smaller rings with certain constraints to
allow Frobenius automorphism and Hensel lifting. The isomorphism splits the factors of the nth degree
cyclotomic polynomial into irreducible polynomials of degree d using the CRT. We consider ¢ to be
prime and congruent to 1 mod 2n to pack n integers. As the CRT is performed in a finite field, the
Residue Number System (RNS) is used and improved in various aspects. Frobenius maps take almost
no multiplicative depth in FHE and are often used as substitutes for certain exponentiations. SIMD
packing allows ordinary operations like addition, multiplication, scalar or otherwise, rotation within
the slots. The special function IsNonZero uses the Frobenius automorphism. Rotation costs the same as
relinearization if its particular evaluation keys are generated because of the precomputations. All these
properties allow faster computation, especially arithmetic operations on encrypted data. But the CRT
packing does not allow fast comparisons. One has to resort to Fy for performing speedy comparison
circuits.

Vector of Field Elements (VFE) One way to solve the comparison problem is by using an
encoding that preserves order when packing ciphertexts. Any homomorphic encryption algorithm that
uses ciphertext packing can be adapted to the VFE encoding [21] which packs the plaintext to preserve
order. This is done by decomposing an integer in ZN[0, ¢™%) to a length-n vector of digits in ZN[0, ¢%),
and further encoded to Ff. Here Z N [0,¢™?) is isomorphic to R = (Z,[z]/f(x))" where f(z) is a
polynomial of degree d. This implies a direct connection between schemes on polynomial rings with
the finite fields.

It simply takes the base-¢q representation of the digits x = Z?;Ol 2;q° and maps it to the field
element Z;j:_ol x;t', where t is the root of some degree d polynomial irreducible modulo ¢. For the
parameters, n.d = [I'/logp]. | = ¢(m)/d' so we can pack |I/n| elements in a single ciphertext.

The plaintexts in FHE schemes are usually represented using polynomials in finite rings which
in turn correspond to vectors in (F,4)! for ¢ > 2. This is done by constructing isomorphisms with
n-variate polynomials and further with higher dimensional fields to ease and enhance computation.
With the split polynomial fields, the plaintext is in the form of length I vectors v = (vy,...,v;) such
that each v; € Fya. Let [n] denote {0,1,...,n—1} and v = (vo, v1, ...vq—1). The Field Elements methods
connects fields of higher orders of p to a lower order higher dimensional field.

This space for VFE-encoded data is totally ordered and this enables comparison. Arithmetic op-
erations like addition and multiplication are done component-wise. This type of packing also allows

less expensive operations like Shift, Rotate, etc using the evaluation key. It also allows the Frobenius

automorphism (Frob : F'; — F,a such that Frob(evk, v,i) = (vft, vl l). Frobenius maps take every

element to its dth power of the prime using the map which arises from a chain of automorphisms.
The isomorphisms between the plaintext spaces for Field Element encodings are given by

d—1
FE - ¢y : (Fy)* — Fya, where ¢1(v) = Y v;t'
=0
VFE - ¢3: ZN[0,¢™%) = (Fya)", where ¢2(a) = a = (¢1(a1))iefm

2.3 Comparison circuits

Secure search methods using FHE often do not consider using the full capacity finite extension
fields and their properties to reduce computation as F¢ is the native space for the most widely used
SIMD-capable schemes by BGV [8], and BFV [13], CKKS [11]. With the normal CRT based encoding,
there are several works that perform comparisons done with the help of minimax polynomials or La-
grange interpolation of the circuit. These are approximate methods and are still expensive operations.
Therefore we use the VFE methods to perform comparison circuits on finite fields [21].

The encrypted database and the query are matched together using several methods. A naive way
is just by subtraction when the elements in the dataset are stored as an encrypted array. Else, if the

Secure Search on Multi-key Homomorphically Encrypted Data with Finite Fields 5

ciphertexts are polynomials, then each element is checked to be the root of a polynomial comprised of
all queries as roots. This search polynomial method is easily expandable to conjunctive or disjunctive
queries. We only consider the equality and less than circuits because other comparison circuits can be
constructed from that.

Binary Equality Circuit for z,y € F} are straightforward with multiplicative depth [. BUt this can
be reduced using the properties of finite field extensions like order.

-1
EQs () = [T (1 = (s —)
=0
We can optimize packed Equality Circuits for x,y € Fia with multiplicative depth because of the
repeated squaring using Fermat’s little theorem.

EQrp(z,y) = (1—(x—y)* ")

With the VFE encoding, comparison can be executed with only logn + logd + 1 multiplications in
total. For the Less Than(LT) circuit evaluation on two inputs x,y € Fpa, process x and y with Decomp
to get the decomposed d-tuple. Then evaluate LT, (z;y) and EQFp,(z;y) where x and y € F;f. Finally,
combine the separate results according to Equation LTrp, which is then used recursively over n
components to calculate LTy pg.

d—2 d—1
LTrp(x;y) = LTr, (ta-15ya-1) + Y LT, (wsy:) || BQr,(2):9))
i=0 j=it1

3 Related Work

3.1 Search using Homomorphic encryption

Preserving the privacy of the data and enabling search is a delicate trade-off. Schemes like Search-
able encryption, with or without ORAM, Private Information Retrieval by keywords, etc try to hide
the query content, search pattern, and access pattern for the best security guarantees. Managing these
in one or two rounds of communication with low bandwidth becomes a tedious task. Though there are
schemes that provide these features as discussed in [14] , they come with high setup costs or refresh
rates. Therefore, we consider schemes that only require homomorphic encryption. The schemes listed
below suffer performance, security and functionality trade-offs but we observe that most functionalities
are lost in order to accommodate security. There are many tools to perform secure search on data but
we consider methods without false positives and those that retrieves all the data methodically using
just Homomorphic encryption as the primitive.

Boneh et al. [6] presented Private Database Querying using homomorphic encryption in the two-
party setting, there is only a client and a single database server. The client holds a secret key for an
SWHE scheme, and the server has the corresponding public key and the database. Search-and-compute
was one of the first to explore search in encrypted data using basic addition and multiplication to locate
data.

Secure Pattern matching (SPM) is another method widely used to retrieve patterns, but the lookup
time is almost that for the database. It only indicates if an element is the ith data element or if the
element exists or not. Yasuda et al. [23] check for SPM using Hamming distance to measure equality.

Kim et al. [19] provide methods with unique minimal polynomials and correlated functions to
polynomials to evaluate a function (specifically equality) with the minimum multiplicative depth by
evaluating it in the form of the minimal polynomial expression. Their scheme also processes conjunctive
and disjunctive queries. Kim et al. further extend their work in [18] to discuss wildcard matchings in
semi-honest models.

Another method to retrieve not exact but relevant data from datasets is using kKNN. Kim et al.
[16] use kNN on HE to return only k queries and prevent volume-based attacks. They guarantee data
privacy and query privacy but also conceal the data access pattern at the same time. A data group
generated based on the Hilbert-curve order is considered to be a query processing unit. The search
protocol uses k dimensional trees and encrypted indices for search and consists of 5 protocols with
SMC and one Secure Bit Not protocol using secure squared Euclidean distance.

6 B. Ganesh et al...

Bonte et al. [7] explore packed ciphertexts and string search by looking for patterns in the entire
text using randomized equality circuits using the Razborov Smolensky method for calculating OR.
The pattern is chosen smaller than the slot size and repeated until the slot is filled as this count is
maintained. Equality with a wildcard along with randomization also works because of the way the
slots are created.

Tliashenko et al. [15] study arithmetic circuits over finite fields representing non-arithmetic functions
over integers, thus leading to practically efficient homomorphic implementations of useful algorithms.
Along the same lines, Tan et al. [21] compare two field elements based on the lexicographic order of
their basis elements for field element encoded items. This encoding is proposed for any cryptosystem
that supports RLWE and we use this method in order to improve the comparison circuits in our
architecture.

3.2 Protocols for match based search

n Encrypted dataser 7

\‘ .l" --------------- »

Select * where value <= k —y
- i

- Marched encrypted indexes and values
4

Client)

—

Homomorphic
Setup, KeyGen Encrypted database

Encry l'thl.’ (i;l[aﬂﬂ[. 3
st IsMatch to recursively find first match

Fig.1. Search in HE - Standard Model

The standard framework for secure search with data involving only homomorphic encryption as
the primitive comes from Akavia et al. [1] where they break Homomorphic search into three steps. The
data is stored in an encrypted array which is unsorted. All the schemes that follow their architecture
have a single server, one or two rounds of communication, and no setup. The steps may involve some
encoding/decoding, compression to reduce workload, etc.

1. Perform comparison operations to figure out the matches and store them in the indicator array.
2. Retrieve the matched non-zero indices to get the matched items after getting the indicator array.
3. Use the matched indices to retrieve the elements.

Akavia et al. proposed a way to achieve secure homomorphic search with no pre-processing with
a scheme called Spirit in [1] against computationally bounded semi-honest adversaries. Their scheme
is agnostic to the FHE as it works on F'(2) instead of F(p). Most schemes are mentioned below can
be operated on any HE cryptosystem. Search is based on evaluating a polynomial whose roots are
the query points. If a ciphertext solves the polynomial, it is included in the result set. They use data
summarizing techniques called sketches, where exact first match and retrieval are done using rank
and tree matrices, then a step function to find the first match and then retrieves this index, which
gets decrypted and sent back. They use Razborov Smolenski-OR instead of logical OR to speed up
computation. The security game is to prove IND-Q with equally sized queries.

Overall, they propose a poly-logarithmic search algorithm with extra functionalities like wildcard,
range, search in sub-array, sequential retrieval, and boolean logic queries. Their deterministic variant
provides good results but is not secure. However, they have a noticeable error in the randomized variant
so not feasible. Akavia et al. followed their previous work by increasing the security components in [2]

Secure Search on Multi-key Homomorphically Encrypted Data with Finite Fields 7

with same spirit algorithm but instead of the deterministic method, they randomize with binary raffle
which is a randomized Monte Carlo algorithm that allows for sequential retrieval. They use a Toeplitz
matrix to randomize evenly and they construct hashes for faster matching.

Building on the previous works, Wen et al. build LEAF [22] with a three-step process: Localize,
Extract and Reconstruct. Localize gets the first matches iteratively and forms an indicator index. They
divide the matched index into smaller equal intervals for local search. Then Extract is used to get
the interval containing the first non-zero match. Reconstruct the indices back obliviously. LEAF only
uses O(n.) multiplications for search where n. is the size of the input array. We use LEAF in our
architecture in order to perform secure search. Choi et al. [12] proposed some cost-effective additions
to this standard protocol by utilizing Bloom filters or power sums to store the data and retrieve
obliviously using SealPIR. They introduce new ways to encode data for faster retrieval. Overall, their
scheme is faster than LEAF because they do not require multiplications.

4 Our scheme

Our aim is to achieve shared secure search with multiple parties with similar requirements to the
previous state-of-the-art ([22], [1]) with no pre-processing and a single one server architecture. We
would like to use the properties of optimized multiplications with VFE in the multi-key setting. The
first step is to combine MKHE schemes with the VFE encoding. We use MKBFV to illustrate the
encoding because it inherently supports packing. Then we run set-up on this scheme and generate a
VFE encoded database that is then encrypted.

We consider the MKBFV algorithm along with the BFV encoding in the setup and match computa-
tion. Then we can exploit the two methods mentioned below to perform search and retrieval obliviously
on the database.

— The state-of-the-art LEAF algorithm to recursively find the matches.
— SealPIR with the decrypted matched indices supplied as input to retrieve the matches obliviously.

n Setup, KeyGen
el User 1
N A Encrypt the dataset
Owner 0
User 2
1
E Encr_vptec] daraset
M [
&
. U
E _ Select * where value <= k
Query-Match n
—— mLEAF/SealPIR User i
VFE + Homomorphic Encr_vpted indices and V:]lli&'s
Encrypred database .

Fig. 2. Secure Search Protocol for Data sharing

4.1 MKHE

We choose the MK-BFV scheme over the other threshold and multikey schemes because it allows
packing which enables SIMD and multiple queries and it does not restrict the number of users in
set-up, unlike threshold schemes. We need only two parties during computation and we do not need
the input of all the other parties. But this can be easily substituted with MKCKKS or MKBGYV based

S AW N

8 B. Ganesh et al...

on the application. Because of the cyclotomic polynomial ring used for encoding in these schemes, it
is possible to use the VFE encoding to allow for totally ordered and packed ciphertexts.

We do not choose the threshold HE schemes because if we follow the N out of N viable threshold
schemes, then we would have to instantiate the database, every time a user joins, to aggregate the
public keys. Also, the expansion rate is quadratic in the number of users as they use RGSW ciphertexts,
whereas MKFHE has linear expansion.

Chen et al. [9] provide algorithms to convert the extended ciphertexts, which are quadratic to
linear ciphertexts using Relinearization algorithms. But scenarios like ours require uneven participation
in the computation as one party, the owner, holds more data than the others. MKFHE implies a
correspondence between the owner and the N users which can be dynamically adapted as the users
enter or leave the computation. In this case, we would like to reduce the size of the extended ciphertexts
as it gets quadratic in the number of users after a multiplication. In this case, either the converted key
or directly, the ciphertext can be relinearized the ciphertext.

4.2 Set-up

The data owner (), the trusted party, sends data for search and computation to a semi-honest
server (S) that can only listen to the queries and results. During Setup, O encrypts and sends the
VFE encoded and encrypted database and evaluation keys evp to S. This dataset has to be accessed
by non-colluding malicious users U. There is one only round of communication to execute the LEAF
protocol between O and U. We use MKFHE for O to send public keys and secret keys to the U;.

The database D has n. rows and n attributes of the form D = Sy, 2, ...0,,, where each 3; =
(Biys Biys -vs Bi,). D denoted the encrypted database.

— Generate key pairs individually for the data owner and each user. Then generate the evaluation
keys using the secret keys for the relinearization.

KeyGen(1Y) < (pk;, sk;), Eval KeyGen(sk;, q) + ev;
— For the message m and pk;.
Encrypt(pk;, m) < ct;

— Distributed decryption can be illustrated using MKBFV. Given a ciphertext ¢; corresponding to
user U; and their secret s;, sample an error e; + ¢ and return u; = ¢;.s; + e;(mod q). Then we

merge ¢y with u;, (1 < i < k) by computing p = ¢g + Ei”zl pi(mod ¢) and return m = | (t/q)u]

Algorithm 1 Data Owner Set-up

Input: U;, D

In O:

Initialize the KeyGen(1*) of MKHE to get sko, pko, evo

For dataset D, encode each f; using VFE and compute D < Encrypt(D, pko)
Send evp and D to the server S

For U:

Individually every user U; runs KeyGen of the MKHE scheme to get ski, pk;, ev;.

The steps up to the generation of the indicator array a can be adjusted based on any MKFHE
scheme we choose, as per Algorithm 1. After Setup, we provide the search protocol for the users. The
query q; from U; consists of many subqueries to be processed simultaneously. We perform the VFE
based comparison circuits based on the queries. This implies multiplications and therefore relineariza-
tions. We illustrate this in Alg. 2.

Secure Search on Multi-key Homomorphically Encrypted Data with Finite Fields 9

Algorithm 2 Query-match

Input: q; from U;
Output: Indicator array a

1 U; sends the query q; to S

2
3

For all j € [n.], do EQvrr(qi,k;) or LTvrr(q, k;) as per the components of q and store in a € {0,1}"
Perform q; + Relin(q;, evo, b;) to transform q to same keys of O

4.3 mLEAF

The LEAF algorithm [22] only involves homomorphic encryption and finds a way to do the first
match retrieval step in O(n) multiplications unlike Binary Raffle [2] that takes O(nlogn). They also
imply that the output of LEAF can be adapted to any retrieval algorithm. They use RS-OR to reduce
the number of ORs performed. The final output is the encryption of the bit-representation of the first
match index. This is recursively to retrieve all the non-zero indices. We formulate a hybrid between a
modified version of LEAF to accommodate [22] the VFE encoding [21] to achieve better performance
and security. mLEAF is the modified version of LEAF that works on the VFE encoded data. The
input is of the same form, but the multiplications in the middle happen at a different dimension.

Mults
D [A6].. [Bi]..[8]..]8.]
logd +1,
EQues » Llvre logn+logd+1
q lala]-]a].]a].]a]
a [oJo]. . J1]. [1].]0]
LEAF () ¢
res lofo|.[8i]..]8]..[0]

Fig. 3. Search with Query-Match and LEAF

4.4 SealPIR

SealPIR [4] is based on the XPIR algorithm which is the only computationally feasible computa-
tional PIR (CPIR). Information-theoretic PIR is computationally expensive and creates multiple copies
of the database for security. But CPIR creates queries that are proportional to the size of the database
and this provides the security along with the shuffling. In XPIR, the query sent by the client contains
one ciphertext (encrypting 0 or 1) for each entry in an n-element database. It works on probabilistic
batch codes by separating the database into d-dimensional hypercubes that are made of m codewords
and b buckets. The requirement for preprocessing leads to more overhead for the client, along with
network costs being a major drawback.

To avoid the search and access pattern attacks possible with a semi-honest server, we use SealPIR
to secure the value retrieval process. They use the FV [13] cryptosystem to implement their scheme
and this use of HE ensures that the server learns nothing more from the search than the volume. It also
allows the retrieval of multiple queries simultaneously. We use SealPIR, for the retrieval part because it
is highly efficient and secure and is even better than ORAM-based schemes which increase the depth
by logn. SealPIR does not reveal access or search patterns to the server.

[O N

7
8
9

10 B. Ganesh et al...

4.5 Secure Search with Finite field extensions

We put the components together in order to create the search protocol. Following Setup, firstly
the Query-Match algorithm is executed to provide the indicator array. Then LEAF finds the non-zero
indices. It takes care of the entire search algorithm within the server and sends the retrieved indices to
SealPIR, which requires an extra round of communication in order to receive the decrypted ciphertexts
to be sent back to the server in a particular encoding. Finally, the encrypted results are sent to the
user who decrypts them using their keys and the partial shares. We consolidate the process in Alg. 3

4.6 Correctness

All the parties use the same public parameters for KeyGen and therefore can be used to compute
between each other and then decrypted separately using partial decryption. The encoding does not
change the properties of the original MKHE scheme no matter which (RLWE-based) cryptosystem
is used. There is no necessity to have the converted key as it will increase the storage quadratically.
Therefore, after a multiplication, one can simply relinearize and have the converted key.

The EQvypg circuit comprises many FQrg which works in the following manner with respect
to BFV. The ciphertexts are encrypted under different keys but under subtraction, the keys are not
compounded. This circuit shall give an encrypted 0 or 1 at the end of the calculation, which is then
multiplied logn + 1 times. After every multiplication, there is a relinearization to reduce the ciphertext
size.

The input from the VFE-MKHE algorithm works with mLEAF. We do not encode the input
indicator array for the mLEAF algorithm. This boolean array must therefore be accepted as input
without any problems. Therefore, mLEAF still takes O(n.) multiplications.

The input from the set-up algorithm is acceptable for the SealPIR and does not leak anything
because the decrypted indices from the user are sent back from the client to the server. The algorithm
masks the indices by encrypting them in a special format to indicate that a non-zero index 7 is encrypted
as the polynomial z. This polynomial further gets expanded to perform PIR.

Algorithm 3 Secure Search

Input: D, Query vector q;, |q;| = d, from U;

Output: Result set rs

In S:

a <+ Query-Match(q;)

Perform index < mLEAF(a) to get the matched indices and retrieve results as res

O performs relinearization and partial decryption on index in S

Send index and the partial share to U;

U; performs partial decryption and merge to get the decrypted indices, then encodes the indices for SealPIR
and send it to S.

Perform res + SealPIR(index, D) for the encrypted result set.

Send rs to U; along with the secret share of O

U; decrypts rs to get the search result.

5 Security

Leakage in searchable encryption also applies to HE-based search [14] in relation to the search,
access, and volume pattern of the data being revealed during the process. The semi-honest server
can know if the same query was sent again if it retrieves the data from the same addresses. This is
not a desired property. Though HE protects data privacy, typical schemes do not have the properties
of obliviousness to hide the metadata like logs and cache. Binary raffle [1] uses the raffle system to
maintain obliviousness when retrieving data. COIE [12] uses SealPIR to make the retrieval oblivious
but a man in the middle attack can supply the plaintext indices to the second round of the protocol
with SealPIR and manage to retrieve some information.

Our scheme addresses these limitations by using the three components which provide security and
more functionality with the data at hand. We now provide informal proofs for the components as the

Secure Search on Multi-key Homomorphically Encrypted Data with Finite Fields 11

primitives in our architecture do not deviate from their original form. Hence, the security proof for the
multi-key scheme, mLEAF, and SealPIR follow the original work. The steps happen sequentially and
even though there is a communication overhead because of this, the security is not compromised for
the data or the query.

Kim et. al. [17] first proposed a security definition for private database querying using indistin-
guishability of results and queries using the simulation paradigm. Our scheme is secure under the
following indistinguishability game. Given a query and two databases, the probability of distinguish-
ing which database the result set game is from is negligible. The same argument can also be given
as a database with two queries and finding which query’s the result set is, as described below. The
challenger can be either the Owner or one of the users. The adversary controls the semi-honest server.

1. The challenger C runs a KeyGen and sends evk to A so that A can perform homomorphic opera-
tions.
2. A chooses either one of the two equivalent scenarios where the sizes of the two result sets are equal.
— Two databases DY and D' of the same size, and a query ¢ or
— A single database D and two queries qq, q1 of the same circuit size
3. C samples b + {0,1} and either
— Runs Setup on D? and the secure search on ¢ or
— Runs Setup on D and the secure search on ¢®
4. A outputs a bit ' as the guess
5. We say the scheme is secure against the semi-honest adversary if A has negligible advantage in the
security parameter.
Adv(A) = |Prib=1V"]—1/2| < negl(\)

FHE cryptosystems that support packing like BFV, BGV, and CKKS are IND-CPA secure un-
der the RLWE assumption in the public parameter. MKFHE having the same single-key encryption
algorithms implies that the security relies on the hardness of the same RLWE problem. It is proved
by showing that the distribution that KeyGen, Setup, and EvalkeyGen are computationally indistin-
guishable from the uniform distribution over Rfll X Rg X Rgx?; and the circular security assumption.

The LEAF algorithm takes place only in the server and finds the non-zero indices iteratively.
Though it is not ideal in terms of computation, the aim is to reduce the cost and time from the client’s
side. Therefore, LEAF becomes an ideal candidate to retrieve the non-zero indices. The parameters
have to be chosen for better performance with LEAF if the packing has to be included because we use
the VFE encoding.

We use SealPIR to obfuscate the addresses of the retrieved elements to prevent leakage and promote
oblivious retrieval. SealPIR is effective against semi-honest servers by the computational PIR assump-
tion operating on the probabilistic batch codes and BFV cryptosystem [13]. The input for SealPIR
comes from the decrypted indices of the client. Therefore, the security of SealPIR, does not have to be
composed of the other components.

If we consider other solutions in terms of computation, T out of N threshold FHE schemes can be
considered, where all parties compute on ciphertexts encrypted under an aggregated public key that
can be decrypted by minimum T parties. In our case, T=2. But this means that the output of the
search query can be decrypted by any of the other parties unless the data owner verifies that it was the
same ID from which the query came. Also, if the Data owner has a trusted third party that retains all
the secret keys, that would cut down the computational cost the most but it would also compromise
user privacy. The owner would have N extended keys and N copies of the database. This is not very
desirable but performs the tasks in one round of communication.

Overall, our scheme does not reveal the search and access patterns of the queries. The server cannot
differentiate between two ciphertexts. The users can be malicious and non-colluding with the server
because only the data owner can alter the database. This allows for confidential data to be outsourced
and searched in an untrusted cloud by multiple users. This searched data can also be extended to
computation because of homomorphic encryption and the relinearization properties.

6 Performance analysis

In terms of performance, multiplication is the most expensive arithmetic homomorphic operation
and so, the aim is to reduce the multiplicative depth of the circuits involved in the algorithms. The use

12 B. Ganesh et al...

of encrypted arrays as the base data structure implies that we cannot avoid linear search. Sub-linear
search requires pre-processing of the data to form some form of an index like inverted index, hash
tables, etc. In order to improve security, we require more components like SealPIR that increase the
computational cost and time.

Tan et al.. [21] use key-value pairs (a;, b;) to illustrate their work. The multi-query with ¢, queries
is of the form “SELECT s FROM D WHERE «;; = f;; and ...” for j € [g,]. They provide only
a naive retrieval algorithm for their queries without any security guarantees. Our work improves the
security of schemes using this special encoding technique by providing obliviousness and access pattern
security.

We do not consider the computational cost of Setup (Alg. 1) as it may vary when the schemes
change. Previous works consider Fs because the scheme becomes agnostic to the HE cryptosystem used
and homomorphic comparisons are considerably faster. But we consider over higher primes in order to
enable the encoding and the packing. Relinearization is expensive and requires O(d) multiplications.

After the query is sent, the comparison circuits are executed (Alg. 2). Without the VFE encoding,
n multiplications are required per equality. Query-Match requires only logn multiplications per one
equality calculation. Other comparisons like Less Than are possible because of the decomposition in
the field encoding method. LT takes O(logn) considering that d < n. The multiplications here have to
be relinearized to enable partial decryption later.

The LEAF algorithm takes n. multiplication in the flagging step for non-zero elements. This is
executed iteratively based on the number of non-zero entries. Therefore, it takes O(n.) to execute
the LEAF step and retrieve the elements. A relinearization may again be required to reduce the size
of the ciphertext here. To accommodate a large volume of data, all data items can be 16 or 64-bit
integers. SealPIR, even though it has high communication overhead, does not require multiplications.
Therefore, the retrieval only involves the communication cost (Alg. 3).

The number of rounds of communication increases with the security of the scheme. There is one
round for the query to be sent and to receive back the partial decryption and the index array from
LEAF. After sending these partial decryptions and merging in the user machine, it takes O(g, “\/nc)
to send back for the EXPAND operation in the server for SealPIR. As we only consider two parties
out of the total users for any computation, we reduce the overhead there.

Inserts can be performed by adding the element at the end of the array. Deletes are performed by
substitution with 0 and making it a dummy block and then push to the end of the array. Updates can
be done by performing a delete and then a fresh insert at the end. Conjunctive and disjunctive queries
can be easily introduced into the architecture.

As no open-source implementation for MKBFV or MKCKKS is available, we do not provide here
an empirical computational cost analysis. But in Table 1, we provide the theoretical improvements
with the use of the state-of-the-art components. We compare the same search algorithms mentioned
above, with VFE encoding and without. Operations like Less Than cannot be directly performed on
polynomial encodings and therefore, our scheme performs better than normal batching.

Table 1. End-to-end Secure search

Search |Batched search|Search + VFE
Setup |Cost O(ne xn *x d) O(ne xn) O(ne xn)
Search|Mult EQ| O(n¢ *n) O(ne *n) O(ne * logn)
Mult LT | O(ne *n) - O(ne * logn)

7 Conclusion and Future works

In this paper, we provide a new Multikey homomorphic secure search scheme by combining the most
cost-effective multi-key FHE scheme along with the search scheme with the least multiplications. So
far, the search in the data sharing scenario has not been explored because of the cost and the possible
leakage. We optimize every step of the computation to what the state of the art allows. Our scheme
can be applied practically without much difficulty using one of the popular homomorphic encryption
libraries with the right parameters. Also, this can be used as a step when AI algorithms are to be

Secure Search on Multi-key Homomorphically Encrypted Data with Finite Fields 13

executed on a subset of the encrypted data in the cloud. In this case, instead of SealPIR sending the
data back to the client, one can execute neural networks or machine learning algorithms on it. It is
also an essential component in clustering related problems to group related data together.

We plan to extend this work by using methods to transform the ciphertext from one key to another.

This way one can just change the query to the Owner’s keys and switch the query results back to the
user’s keys in the end. But we have to make sure that the computability of the ciphertexts is not
affected during the process. This would also reduce the rounds of communication. The computation
and communication cost for this scheme which uses the state of the art already implies that this area
requires more focus in order to enable secure outsourcing and sharing of data in the near future.

References

10.

11.

12.

. Akavia, A., Feldman, D., Shaul, H.: Secure search via multi-ring fully homomorphic encryption. TACR

Cryptol. ePrint Arch. p. 245 (2018), http://eprint.iacr.org/2018/245

Akavia, A., Gentry, C., Halevi, S., Leibovich, M.: Setup-free secure search on encrypted
data: Faster and post-processing free. Proc. Priv. Enhancing Technol. 2019(3), 87-107 (2019).
https://doi.org/10.2478 /popets-2019-0038, https://doi.org/10.2478/popets-2019-0038

Aloufi, A., Hu, P., Song, Y., Lauter, K.E.: Computing blindfolded on data homomorphically encrypted
under multiple keys: An extended survey. CoRR abs/2007.09270 (2020), https://arxiv.org/abs/2007.
09270

Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and amortized query processing.
In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. pp. 962-979. IEEE Computer Society (2018). https://doi.org/10.1109/SP.2018.00062,
https://doi.org/10.1109/SP.2018.00062

Asharov, G., Jain, A., Lépez-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation
with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7237, pp. 483-501. Springer (2012). https://doi.org/10.1007/978-
3-642-29011-4_29, https://doi.org/10.1007/978-3-642-29011-4_29

Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homo-
morphic encryption. In: Jr., M.J.J., Locasto, M.E., Mohassel, P., Safavi-Naini, R. (eds.) Applied Cryp-
tography and Network Security - 11th International Conference, ACNS 2013, Banff, AB, Canada, June
25-28, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7954, pp. 102-118. Springer (2013).
https://doi.org/10.1007/978-3-642-38980-1_7, https://doi.org/10.1007/978-3-642-38980-1_7

Bonte, C., Iliashenko, I.. Homomorphic string search with constant multiplicative depth. In: Zhang,
Y., Sion, R. (eds.) CCSW’20, Proceedings of the 2020 ACM SIGSAC Conference on Cloud Com-
puting Security Workshop, Virtual Event, USA, November 9, 2020. pp. 105-117. ACM (2020).
https://doi.org/10.1145/3411495.3421361, https://doi.org/10.1145/3411495.3421361

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping.
Electron. Colloquium Comput. Complex. p. 111 (2011), https://eccc.weizmann.ac.il/report/2011/111
Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ci-
phertexts with application to oblivious neural network inference. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2019, London, UK, November 11-15, 2019. pp. 395-412. ACM (2019).
https://doi.org/10.1145/3319535.3363207, https://doi.org/10.1145/3319535. 3363207

Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from ring-lwe with compact ciphertext
extension. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography - 15th International Conference, TCC
2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10678, pp. 597-627. Springer (2017). https://doi.org/10.1007/978-3-319-70503-3_20, https:
//doi.org/10.1007/978-3-319-70503-3_20

Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arithmetic of approximate
numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017 - 23rd In-
ternational Conference on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10624,
pp. 409-437. Springer (2017). https://doi.org/10.1007/978-3-319-70694-8_15, https://doi.org/10.1007/
978-3-319-70694-8_15

Choi, S.G., Dachman-Soled, D., Gordon, S.D., Liu, L., Yerukhimovich, A.: Compressed oblivious encoding
for homomorphically encrypted search. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea,

14

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B. Ganesh et al...

November 15 - 19, 2021. pp. 2277-2291. ACM (2021). https://doi.org/10.1145/3460120.3484792, https:
//doi.org/10.1145/3460120.3484792

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch.
p. 144 (2012), http://eprint.iacr.org/2012/144

Ganesh, B., Palmieri, P.: A survey of advanced encryption for database security: Primitives, schemes,
and attacks. In: Nicolescu, G., Tria, A., Fernandez, J.M., Marion, J., Garcfa-Alfaro, J. (eds.) Foundations
and Practice of Security - 13th International Symposium, FPS 2020, Montreal, QC, Canada, December
1-3, 2020, Revised Selected Papers. Lecture Notes in Computer Science, vol. 12637, pp. 100-120. Springer
(2020). https://doi.org/10.1007/978-3-030-70881-8_7, https://doi.org/10.1007/978-3-030-70881-8_7
Iliashenko, 1., Zucca, V.: Faster homomorphic comparison operations for BGV and BFV. Proc. Priv.
Enhancing Technol. 2021(3), 246-264 (2021). https://doi.org/10.2478 /popets-2021-0046, https://doi.
org/10.2478/popets-2021-0046

Kim, H., Kim, H., Chang, J.: A secure knn query processing algorithm using homomorphic encryption on
outsourced database. Data Knowl. Eng. 123 (2019). https://doi.org/10.1016/j.datak.2017.07.005, https:
//doi.org/10.1016/j.datak.2017.07.005

Kim, M., Lee, H.T., Ling, S., Ren, S.Q., Tan, B.H.M., Wang, H.: Better security for queries on encrypted
databases. IACR Cryptol. ePrint Arch. p. 470 (2016), http://eprint.iacr.org/2016/470

Kim, M., Lee, H.T., Ling, S., Tan, B.H.M., Wang, H.:. Private compound wildcard queries us-
ing fully homomorphic encryption. IEEE Trans. Dependable Secur. Comput. 16(5), 743-756 (2019).
https://doi.org/10.1109/TDSC.2017.2763593, https://doi.org/10.1109/TDSC.2017.2763593

Kim, M., Lee, H.T., Ling, S., Wang, H.: On the efficiency of fhe-based private queries. IEEE Trans.
Dependable Secur. Comput. 15(2), 357-363 (2018). https://doi.org/10.1109/TDSC.2016.2568182, https:
//doi.org/10.1109/TDSC.2016.2568182

Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57-81
(2014). https://doi.org/10.1007/s10623-012-9720-4, https://doi.org/10.1007/s10623-012-9720-4

Tan, B.H.M., Lee, H.T., Wang, H., Ren, S.Q., Aung, K.M.M.: Efficient private comparison queries over
encrypted databases using fully homomorphic encryption with finite fields. IEEE Trans. Dependable Secur.
Comput. 18(6), 2861-2874 (2021). https://doi.org/10.1109/TDSC.2020.2967740, https://doi.org/10.
1109/TDSC.2020.2967740

Wen, R., Yu, Y., Xie, X., Zhang, Y.: LEAF: A faster secure search algorithm via localization, extraction, and
reconstruction. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, USA, November 9-13, 2020. pp. 1219-1232.
ACM (2020). https://doi.org/10.1145/3372297.3417237, https://doi.org/10.1145/3372297.3417237
Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pattern matching using some-
what homomorphic encryption. In: Juels, A., Parno, B. (eds.) CCSW’13, Proceedings of the 2013 ACM
Cloud Computing Security Workshop, Co-located with CCS 2013, Berlin, Germany, November 4, 2013.
pp. 65-76. ACM (2013). https://doi.org/10.1145/2517488.2517497, https://doi.org/10.1145/2517488.
2517497

