
Updatable Encryption from Group Actions

Antonin Leroux1,2 and Maxime Roméas1

1 LIX, CNRS, École polytechnique, INRIA, Institut Polytechnique de Paris, 91120 Palaiseau, France
2 DGA

antonin.leroux@polytechnique.org

romeas@lix.polytechnique.fr

Abstract. Updatable Encryption (UE) allows to rotate the encryption key in the outsourced storage
setting while minimizing the bandwith used. The server can update ciphertexts to the new key using a
token provided by the client. UE schemes should provide strong confidentiality guarantees against an
adversary that can corrupt keys and tokens.
This paper solves three open problems in ciphertext-independent post-quantum UE. First, we propose
the first two post-quantum CCA secure UE schemes, solving an open problem left by Jiang at Asiacrypt
2020. Second, our three UE schemes are the first post-quantum schemes that support an unbounded
number of updates. Third, the security of our three schemes is based on three different problems which
are not lattice problems, whereas the two prior post-quantum UE schemes are both based on LWE.
We do so by studying the problem of building UE in the group action framework. We introduce a new
notion of Mappable Effective Group Action (MEGA) and show that we can build UE from a MEGA
by generalizing the SHINE construction of Boyd et al. at Crypto 2020. We propose two post-quantum
instantiations of our UE scheme using some recent group action constructions. Isogeny-based group
actions are the most studied post-quantum group actions. Unfortunately, the resulting group actions
are not mappable. We show that we can still build UE from isogenies by introducing a new algebraic
structure called Effective Triple Orbital Group Action (ETOGA). We prove that UE can be built from
an ETOGA and show how to instantiate this abstract structure from isogeny-based group actions.

Keywords: Updatable Encryption, Group Actions, Isogenies, Post-Quantum Cryptography

1 Introduction

Updatable Encryption (UE), introduced by Boneh et al. in 2013 [5], is a very useful primitive for storing
encrypted data3 on a cloud server. To fight against risks of seeing the secret key compromised, the client can
always download its data, decrypt it, encrypt it under a new key and upload it back on the server. However,
this solution uses too much bandwith to be considered practical. Dealing with key rotation while minimizing
bandwith usage is the goal of UE. This work focuses on the ciphertext-independent variant of UE, where
the client generates a single value, called a token, when rotating its key. This token can then be used by the
server to update all of the client’s ciphertexts under the latest key. Unlike symmetric encryption, UE schemes
aim at preserving the confidentiality of the data in a setting where secret keys and update tokens can leak.
The huge real-life applications of UE explains the recent renew of interest on the subject [24,21,8,20,28].

Related Work. Security notions for UE have evolved a lot since the original proposal of [5]. Lehmann and
Tackmann [24] proposed two CPA security notions where the adversary can adaptively corrupt keys and
tokens. Their IND-ENC notion requires fresh encryptions to be indistinguishable and their IND-UPD notion
asks the same for updated ciphertexts. Klooß et al. [21] augmented the previous notions with CCA security
and integrity protection. Boyd et al. [8] introduced the IND-UE notion which is stronger than previous ones
and requires fresh encryptions to be indistinguishable from updated ciphertexts. They also show that a CPA
UE scheme with ciphertext integrity (CTXT) is CCA.

As for UE constructions in the classical setting, RISE of [24], is an updatable variant of ElGamal where
the public key is used in the token. [21] introduced two generic constructions based on encrypt-and-MAC

3 UE is a variant of symmetric encryption

mailto:antonin.leroux@polytechnique.org
mailto:romeas@lix.polytechnique.fr

(secure under DDH) and on the Naor-Yung transform (secure under SXDH). Boyd et al. [8] proposed the
permutation-based SHINE schemes, that achieve their stronger detIND-UE-CCA security notion in the ideal
cipher model (under DDH).

In the post-quantum setting, Jiang [20] presented the first post-quantum UE scheme LWEUE (secure
under LWE). In [28], Nishimaki introduced RtR, another LWE-based UE scheme, which is the first ciphertext-
independent UE scheme that prevents the adversary from obtaining the new key from the knowledge of the
update token and the old key. Nishimaki showed that UE schemes with this property have stronger security
that those without. These two LWE-based schemes use homomorphic operations to re-randomize updated
ciphertexts which has two main drawbacks. On one hand, ciphertext noise grows with each key update,
which means that these schemes only support a bounded number of updates. On the other hand, using the
homomorphic property and the knowledge of the update token, an adversary can craft ciphertexts of related
messages which means that these schemes are not CCA secure (only randIND-UE-CPA).

We overcome these issues by using group actions to build UE. The first efficient post-quantum group
action was introduced by Castryck et al. using isogenies [10]. Their construction is called CSIDH and it uses
the group action of the class group of the quadratic order Z[

√
−p] on the supersingular curves defined over

Fp. The resulting group action is believed to be post-quantum one-way, i.e., hard to invert, and this has
motivated to study the protocols that can be built generically upon a cryptographic group action. This is
what is done for instance in the work of Alamati et al. [1]. Since, then, other proposals of post-quantum group
action have been introduced such as the work of Tang et al. [36] or of Ji et al. [19], both based on multivariate
problems. To our knowledge, there does not exists any UE scheme in the group action framework, even if we
will show that the SHINE construction fits into that framework.

Eaton et al. [17] have introduced an isogeny-based “updatable encryption” scheme on the CSIDH group
action. However, their construction does not achieve at all the same primitive. Their construction target
public key encryption schemes and the updates are only applied to keys and not ciphertexts.Their construc-
tion shares some similarities with ours as they use elements of the class group as secret keys and the update
mechanism is made of a group action computation.

Overview of the contributions. We present two new generic constructions of UE from abstract algebraic
frameworks. The first construction is called GAINE for Group-Action Ideal-cipher Nonce-based Encryption.
GAINE generalizes the SHINE [8] construction and builds UE from a weak pseudorandom group action. In
fact, SHINE is a concrete instantiation of GAINE for the group action of Z∗q on any cyclic group H of order
q by exponentiation. The hardness of the DDH problem over this group implies that the resulting group
action is weak pseudorandom. For SHINE, and GAINE, to work, we need one other thing: that the set H is
mappable, i.e., that there exists an invertible and efficient map π going from the space of messages to the
set of the group action. The authors of SHINE showed how to build this map when H is the group of points
of an elliptic curve. The idea is to use this map to translate messages as elements of the group H before
encrypting them with exponentiation, using secret keys as exponents. In that setting, the token is simply
an exponent and the update is just another exponentiation. Overall, SHINE is quite simple and we show
that it adapts very naturally to the setting of cryptographic group actions. Interestingly, apart from being
mappable, we require almost nothing from the group action. In particular, we do not need it to be free or
transitive, and the group need not even be abelian. Moreover, we show that we can apply the transform
used in SHINE to make our GAINE UE scheme CCA. This is what allows us to instantiate GAINE with two
recent cryptographic group actions based on multivariate assumptions. The first one was introduced by Tang
et al. [36] and uses alternating trilinear forms, while the second one from Ji et al. [19] is based on tensors.
These two constructions are believed to be post-quantum. Thus, we introduce the first post-quantum UE
schemes that are not based on lattices (see [20,28]). Moreover, we solve the problem left open by Jiang [20] at
Asiacrypt2020 to build a CCA post-quantum UE scheme. Finally, our schemes do not suffer any limitations
regarding the number of updates, contrary to the solutions based on lattices. While our GAINE construction
is nice, it cannot be instantiated by any group action. Indeed, for the group action to be mappable and one-
way is not trivial at all. In particular, these requirements remove the most obvious way to sample elements
in the set by using the group action. Thus, building the invertible map must really depend on the concrete
description of the set and how its elements can be represented.

2

In the case of the CSIDH cryptographic group action, it is notoriously hard to sample elements in the
set [7]. Thus, we cannot really hope to instantiate GAINE with CSIDH or another similar group action from
isogenies. Isogeny-based group actions have been more studied than their multivariate counterpart and while
there are on-going discussions regarding the exact level of security reached by these group actions, we can
have some confidence in the fact that the underlying problems are hard. This is why we show how to build
UE from the CSIDH group action. We circumvent the mappable requirement by using an idea of Moriya et
al. for their SIGAMAL encryption scheme [26]. Intuitively, their idea is to see messages as scalars that are
mapped to points of an elliptic curve using the scalar multiplication but this time in a group where discrete
logarithm is easy so that we can decrypt efficiently. The points obtained in this manner are encrypted using
isogenies. We obtain an analog of CSIDH by considering a set made of elements constituted by a curve and a
point (and not just a curve). We refine the idea of Moriya et al. to get a scheme that is updatable. The way
we circumvent the issue that CSIDH is not mappable could be of independent interest as there are numerous
examples of protocols where this proves to be a big obstacle. We extracted an abstract framework of this idea
to identify the algebraic structure required by our new UE scheme. This gave us what we call a TOGA for
Triple Orbital Group Action. As the name suggests, there are three group actions involved in this scheme,
each with a specific role, and we require the three different operations to interact in a very specific way
that we summarized in Fig. 11. We introduce TOGA-UE, a generic UE protocol based on a TOGA family.
Unfortunately, deriving a CCA encryption scheme from TOGA-UE seems hard and we leave that to future
work. Finally, we show how to build a TOGA from the CSIDH group action. This gives a third instantiation
of post-quantum UE based on another family of assumptions. This instantiation has the same security as
CSIDH. Unfortunately, reaching higher security levels is currently out of reach because precomputations
become impractical. We leave the problem of overcoming this obstacle to future work.

Outline of the paper. In Section 2 we introduce the necessary notions and backgrounds. Section 3 is dedicated
to our first construction GAINE of UE from a MEGA. We instantiate GAINE in Section 3.3. Our second UE
scheme TOGA-UE is introduced in Section 4, where we present our new algebraic structure of TOGA before
showing how to build UE from it. Finally, in Section 5, we show how to instantiate TOGA-UE.

2 Preliminaries

Notations. We use λ to denote the security parameter. For a finite set S, we use s
$←− S to sample uniformly

from S. For a probability distribution D on a finite set S, we use s← D to sample from D. We use S(S) to
denote the set of permutations of a finite set S. For an algorithm A and an oracle O, A having access to O
is denoted by AO.

2.1 Cryptographic group actions

In this section, we give a few reminders about group actions and how they can be endowed with hardness
properties for cryptographic use. We use the framework of cryptographic group actions of Alamati et al. [1].

Definition 1 (Group Action). Let G be a group for a law written multiplicatively and let S be a set. A
group action of G on S is an operation ? : G× S → S such that

1. If 1G is the identity element of G, then for any s ∈ S, we have 1G ? s = s.

2. For any g, h ∈ G and any s ∈ S, we have (gh) ? s = g ? (h ? s).

We may use the notation (G,S, ?) to denote a group action. We stress that the group actions used in this
work do not need to be abelian. A group action (G,S, ?) partitions the set S into a disjoint union of orbits
where the orbit of s ∈ S is the set Orb(s) := {g ? s | g ∈ G} ⊆ S.

3

Properties of group actions. Our group actions (G,S, ?) can be:

1. Transitive: A group action is transitive if it has a single orbit, i.e., if for any (s1, s2) ∈ S, there exists
g ∈ G such that g ? s1 = s2. We can always obtain a transitive group action from any group action.
Indeed, take s ∈ S, one can easily verify that (G,Orb(s), ?) is a transitive group action.

2. Free: A group action is free if for all g ∈ G, g = 1G if and only if there exists s ∈ S such that g ? s = s.

Since we need to define computational assumptions related to group actions, we need a notion of efficiency.

Definition 2 (Effective Group Action [1]). (G,S, ?) is an effective group action (EGA), with respect
to a parameter λ, if the following properties are satisfied :

1. The group G is finite and there exist PPT algorithms for:
(a) Membership testing, i.e., to decide if a given bit string represents a valid element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group element in G.
(c) Sampling, i.e., to sample an element g from a distribution DG on G.
(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set S is finite and there exist efficient PPT algorithms for:
(a) Membership testing.
(b) Unique representation, i.e., given any arbitrary set element s ∈ S, compute a string ŝ that canonically

represents s.
3. There exists a distinguished element s0 ∈ S, called the origin, such that its bit-string representation is

known.
4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G and any

s ∈ S, outputs g ? s.

Definition 3 (Group Action Family). We say that GA is a group action family if, for a security
parameter λ, GA(λ) consists of a group action (G,S, ?) where |G|, |S| = poly(λ).

In the following, let GA be a group action family. We define weak pseudorandom group actions:

Definition 4 (Weak Pseudorandom Group Action [1]). Let (G,S, ?) be GA(λ) for some security
parameter λ. Let DG and DS be distributions on G and S respectively. For g ∈ G, let πg : S → S be the
permutation defined by πg : s 7→ g ? s. For a permutation f ∈ S(S), we use f$ to denote the randomized
oracle that, when queried, samples s ← DS and outputs (s, f(s)). We say that (G,S, ?) is (DG,DS)-weakly
pseudorandom if, for all PPT adversaries A, we have:

Advwk-PR
GA,A (λ) :=

∣∣∣Pr[Expwk-PR-0
GA,A (λ) = 1]− Pr[Expwk-PR-1

GA,A (λ) = 1]
∣∣∣ ≤ negl(λ)

where Expwk-PR-b
GA,A (λ) is the experiment described in figure 1.

Informally, a group action (G,S, ?) is (DG,DS)-weakly pseudorandom if there is no PPT adversary that
can distinguish tuples of the form (si, g ? si) from (si, ui) where g ← DG and each si, ui ← DS . If both
distributions are uniform, we omit them and we say that the group action is weakly pseudorandom.

Finally, we define weak unpredictable group actions:

Definition 5 (Weak Unpredictable Group Action [1]). Let (G,S, ?) be GA(λ) for some security
parameter λ. Let DG and DS be distributions on G and S respectively. For g ∈ G, let πg : S → S be the
permutation defined by πg : s 7→ g ? s. For a permutation f ∈ S(S), we use f$ to denote the randomized
oracle that, when queried, samples s ← DS and outputs (s, f(s)). We say that (G,S, ?) is (DG,DS)-weakly
unpredictable if, for all PPT adversaries A, we have :

Advwk-UP
GA,A (λ) := Pr[Aπ

$
g (s∗) = πg(s

∗)] ≤ negl(λ)

where g ← DG and s∗ ← DS. We denote this experiment by Expwk-UP
GA,A .

Informally, (G,S, ?) is (DG,DS)-weakly unpredictable if, given polynomially many tuples of the form

(si, g ? si) where g ← DG and each si
$←− DS , there is no PPT adversary that can compute g ? s∗ for a

given challenge s∗ ← DS . If both distributions are uniform, we simply speak of a weakly unpredictable group
action.

4

Expwk-PR-b
GA,A (λ):

1. (G,S, ?)← GA(λ)
2. if b = 0
3. g ← DG
4. O.Sample← π$

g

5. else (b = 1)

6. π
$←− S(S)

7. O.Sample← π$

8. b′ ← AO.Sample(1λ, (G,S, ?))
9. if b′ = b

10. return 1
11. else
12. return 0

Fig. 1. Weak pseudorandom group action experiment. Recall that DG and DS are distributions on G and S respec-
tively. For a permutation f ∈ S(S), we use f$ to denote the randomized oracle that samples s ← DS and outputs
(s, f(s)).

2.2 Updatable Encryption

In this section, we describe the syntax and security definitions of UE, we follow the presentations of
[28,8,24,20]. An UE scheme operates in epochs, where an epoch is an index incremented with each key
update. Let n+ 1 be the maximum number of epochs (this is only for proof purposes).

Definition 6. An updatable encryption scheme UE for message space M consists of a tuple of PPT algo-
rithms (UE.Setup, UE.KeyGen, UE.TokenGen, UE.Enc, UE.Dec, UE.Upd) where:

• UE.Setup(1λ) → pp: The setup algorithm takes as input the security parameter and outputs a public
parameter pp.

• UE.KeyGen(pp)→ ke: The key generation algorithm takes as input the public parameter pp and outputs
an epoch key ke.

• UE.Enc(k,m)→ c: The encryption algorithm takes as input an epoch key k and a message m and outputs
a ciphertext c.

• UE.Dec(k, c)→ m: The encryption algorithm takes as input an epoch key k and a ciphertext c and outputs
a message m or ⊥.

• UE.TokenGen(ke, ke+1) → ∆e+1: The token generation algorithm takes as input two keys of consecutive
epochs e and e + 1 and outputs a token ∆e+1.

• UE.Upd(∆e+1, ce) → ce+1: The update algorithm takes as input a token ∆e+1 and a ciphertext ce and
outputs a ciphertext ce+1.

Definition 7 (Correctness). For any m ∈M, for 0 ≤ e1 ≤ e2 ≤ n+1, it holds that Pr[UE.Dec(ke2 , ce2) 6=
m] ≤ negl(λ), where pp← UE.Setup(1λ), ke1 , . . . , ke2 ← UE.KeyGen(pp), ce1 ← UE.Enc(ke1 ,m), and
∆i+1 ← UE.TokenGen(ki, ki+1), ci+1 ← UE.Upd(∆i+1, ci) for i ∈ [e1, e2 − 1].

Security definitions. In all of our UE schemes, the Upd algorithm is deterministic. Thus, we only consider
security definitions in the deterministic update setting.

Definition 8 (detIND-UE-atk [8]). Let UE = (UE.Setup, UE.KeyGen, UE.TokenGen, UE.Enc, UE.Dec, UE.Upd)
be an updatable encryption scheme. The detIND-UE-atk advantage, for atk ∈ {CPA,CCA} of an adversary A
against UE is given by

AdvdetIND-UE-atk
UE,A (λ) :=

∣∣∣Pr[ExpdetIND-UE-atk-0
UE,A = 1]− Pr[ExpdetIND-UE-atk-1

UE,A = 1]
∣∣∣

where the confidentiality experiment ExpdetIND-UE-atk-b
UE,A is given in fig. 2.

5

ExpdetIND-UE-atk-b
UE,A (λ)

1. do UE.Setup(1λ)
2. ors← O.{Enc,Upd,Next,Corr}
3. if atk = CCA
4. ors← ors ∪ {O.Dec}
5. (M̄, C̄)← Aors(1λ)
6. C̃e ← O.Chall(M̄, C̄)

7. b′ ← Aors,O.UpdC̃(C̃e)
8. if K∗ ∩ C∗ 6= ∅ or I∗ ∩ C∗ 6= ∅
9. twf ← 1

10. if twf = 1
11. b′

$←− {0, 1}
12. return b′

Fig. 2. Description of the confidentiality experiment ExpdetIND-UE-atk-b
UE,A for scheme UE (with deterministic updates)

and adversary A, for atk ∈ {CPA,CCA}. The oracles are given in fig. 3. Trivial win conditions, i.e., deciding the value
of twf and computing K∗, C∗, I∗ are discussed in sec. 2.2 and 2.2

Setup(1λ)

1. pp← UE.Setup(1λ)
2. k0 ← UE.KeyGen(pp)
3. ∆0 ←⊥
4. e, c← 0
5. phase, twf ← 0
6. L, L̃, C,K, T ← ∅

O.Enc(M)

1. C ← UE.Enc(ke,M)
2. c← c + 1
3. L ← L ∪ {(c, C, e)}
4. return C

O.Dec(C)

1. if phase = 1 and C ∈ L̃
2. twf ← 1
3. M or ⊥← UE.Dec(ke, C)
4. return M or ⊥

O.Next

1. e← e + 1

2. ke ← UE.KeyGen(pp)
3. ∆e ← UE.TokenGen(ke−1, ke)
4. if phase = 1
5. C̃e ← UE.Upd(∆e, C̃e−1)

O.Upd(Ce−1)

1. if (j, Ce−1, e− 1) /∈ L
2. return ⊥
3. Ce ← UE.Upd(∆e, Ce−1)
4. L ← L ∪ {(j, Ce, e)}
5. return Ce

O.Corr(inp, ê)

1. if ê > e
2. return ⊥
3. if inp = key
4. K ← K ∪ {ê}
5. return kê
6. if inp = token
7. T ← T ∪ {ê}
8. return ∆ê

O.Chall(M̄, C̄)

1. if phase 6= 1

2. return ⊥
3. phase← 1

4. ẽ← e

5. if (·, C̄, e− 1) /∈ L
6. return ⊥
7. if b = 0

8. C̃e ← UE.Enc(ke, M̄)

9. else (b = 1)

10. C̃e ← UE.Upd(∆e, C̄)

11. C ← C ∪ {e}
12. L̃ ← L̃ ∪ {(C̃e, e)}
13. return C̃e

O.UpdC̃

1. if phase 6= 1

2. return ⊥
3. C ← C ∪ {e}
4. L̃ ← L̃ ∪ {(C̃e, e)}
5. return C̃e

Fig. 3. Oracles in security games for UE with deterministic updates. Computing the leakage sets is discussed in
sec. 2.2

6

Ciphertext integrity game: definitions and composition result. We follow the presentation of [8]. In the
ciphertext integrity (CTXT) game, the adversary is given access to oracles O.Enc, O.Next, O.Upd and
O.Corr. At some point A attempts to provide a ciphertext forgery via the oracle O.Try defined in Fig. 4.
A wins the game if its forgery is valid, i.e.,, if it decrypts to a message and not ⊥. If A is allowed to ask
a single O.Try query, we speak of the INT-CTXTs notion. If A can send multiple O.Try queries, we speak
of the INT-CTXT notion instead. INT-CTXTs and INT-CTXT are proved to be equivalent in [8, Lemma 1].
Thus, we only define the INT-CTXTs advantage (in Definition 9).

O.Try(C̃)

1. if phase = 1
2. return ⊥
3. phase← 1
4. if e ∈ K∗ or C̃ ∈ L∗
5. twf ← 1
6. M or ⊥← UE.Dec(ke, C̃)
7. if M 6=⊥
8. win← 1

Fig. 4. The oracle O.Try for the INT-CTXTs security notion.

Definition 9 ([8]). Let UE = {UE.KeyGen, UE.TokenGen, UE.Enc, UE.Dec, UE.Upd} be an UE scheme.
The INT-CTXTs advantage of an adversary A against UE is defined as

AdvINT-CTXTs

UE,A (λ) := Pr[ExpINT-CTXTs

UE,A = 1]

where the experiment ExpINT-CTXTs

UE,A is given in Fig. 5.

ExpINT-CTXTs

UE,A (λ)

1. do UE.Setup(1λ)
2. win← 0
3. AO.Enc,O.Next,O.Upd,O.Corr,O.Try(λ)
4. if twf = 1
5. win← 0
6. return win

Fig. 5. The INT-CTXTs experiment for UE scheme UE and adversary A. Trivial win conditions are discussed in
Section 2.2.

Composition result for CPA, CTXT and CCA security. In [8, Theorem 3], Boyd et al. show the following
generic composition result for UE: CPA + CTXT ⇒ CCA. We will use this result to prove that our GAINE
scheme can be made detIND-UE-CCA secure. This is the first post-quantum UE scheme to attain this security
notion.

Leakage sets. We follow the bookkeeping technique [24,8] to maintain the epoch leakage sets.

• C: List of epochs in which the adversary learned an updated version of the challenge ciphertext (from
O.Chall or O.UpdC̃).

7

• K: List of epochs in which the adversary corrupted the encryption key.
• T : List of epochs in which the adversary corrupted the update token.

The adversary can also learn the values of ciphertexts and their updates.

• L: List of non-challenge ciphertexts (from O.Enc or O.Upd) with entries of the form (c, C, e), where c is
a counter incremented with each O.Enc query.

• L̃: List of updated versions of challenge ciphertext (created by O.Next and returned by O.UpdC̃), with
entries of the form (C̃, e).

Trivial wins via keys and ciphertexts. We consider the extended epoch leakage sets C∗, K∗ and T ∗ inferred
from C, K and T . These extended sets are used to identify trivial wins, i.e., if C∗ ∩K∗ 6= ∅, then there exists
an epoch in which the adversary knows the epoch key and a valid update of the challenge ciphertext. The
challenger computes these sets once the adversary has finished running. Using [24], we show how to compute
the extended epoch leakage sets C∗, K∗ and T ∗:

K∗ ← {e ∈ {0, . . . , n} | CorrK(e) = true}
true← CorrK(e)⇔ (e ∈ K) ∨ (CorrK(e− 1) ∧ e ∈ T) ∨ (CorrK(e + 1) ∧ e + 1 ∈ T)

T ∗ ← {e ∈ {0, . . . , n} | (e ∈ T) ∨ (e ∈ K∗ ∧ e− 1 ∈ K∗)}
C∗ ← {e ∈ {0, . . . , n} | ChallEq(e) = true}

true← ChallEq(e)⇔ (e = ẽ) ∨ (e ∈ C) ∨ (ChallEq(e− 1) ∧ e ∈ T ∗) ∨
(ChallEq(e + 1) ∧ e + 1 ∈ T ∗)

Trivial wins via direct updates Define I as the set of epochs in which the adversary learned an updated
version of the ciphertext given as challenge input (C̄). Furthermore, define I∗ to be the extended set in
which the adversary has inferred information via token corruption. Since, in our case, the algorithm Upd
is deterministic, an updated ciphertext is uniquely determined by a token and a ciphertext. Thus, the
adversary trivially wins if I∗ ∩ C∗ 6= ∅. Indeed, there exists an epoch in which the adversary knows the
updated ciphertext of the challenge input C̄ and a valid challenge-equal ciphertext. Comparing them allows
the adversary to win the game.

In [8], I is computed by finding an entry in L that contains the challenge input C̄. Then, note the query
identifier c for that entry and scan L for other entries with this identifier I := {e ∈ {0, . . . , n} | (c, ·, e) ∈ L}.
We extend I into I∗:

I∗ ← {e ∈ {0, . . . , n} | ChallInpEq(e) = true}
true← ChallInpEq(e)⇔ (e ∈ I) ∨ (ChallInpEq(e− 1) ∧ e ∈ T ∗)∨

(ChallInpEq(e + 1) ∧ e + 1 ∈ T ∗)

Trivial wins in ciphertext integrity games. Recall that our UE schemes all have deterministic updates, we
follow the analysis of [8,21]. The adversary can corrupt an epoch key and use it to forge ciphertexts in this
epoch. Thus, we exclude this trivial win by setting twf to 1 when the adversary provides a forgery in an
epoch in K∗.

Next, suppose that the adversary knows a ciphertext (C, e1) ∈ L and tokens from epoch e1 + 1 to epoch
e2. Then, updating C to epoch e2 provides a forgery in epoch e2. We exclude this trivial wins by defining L∗
to be the extended set of L in which the adversary has learned or inferred information via token corruption.
If O.Try receives a ciphertext of L∗, it sets twf to 1. We give an algorithm of [8] to compute L∗ during the
game in Fig. 6.

8

Update L∗

1. if O.Enc or O.Upd happens
2. L∗ ← L∗ ∪ {(·, C, ·)}
3. if O.Corr(token, ·) happens
4. for i ∈ T ∗
5. for (j, Ci−1, i− 1) ∈ L∗
6. Ci ← UE.Upd(∆i, Ci−1)
7. L∗ ← L∗ ∪ {(j, Ci, i)}

Fig. 6. Update procedure of [8] for list L∗.

2.3 Elliptic curves and isogenies

Let K be a field. An elliptic curve over K is a smooth projective curve of genus 1 with a distinguished
base point defined over K. For our purpose, it is enough to consider elliptic curves as curves defined by an
equation of the form E : y2 = x3 + ax + b. The set of points E(K) is made of the solutions (x, y) to the
equation of the curve. A good generic reference on elliptic curves is the book from Silverman [35]. The set of
points is a group for a law that we write ⊕. The scalar multiplication [n] : E(K) → E(K) is the operation
⊕ iterated n times. We write E[n] for the kernel of the morphism [n].

An isogeny ϕ : E1 → E2 is a non-constant morphism sending the identity of E1 to that of E2. The degree
of an isogeny is its degree as a rational map. When the degree deg(ϕ) = d is coprime to p, the isogeny is
necessarily separable. An isogeny induces a homomorphism of groups E1(K)→ E2(K) and, if separable, the
kernel of ϕ is a group of order d. Such an isogeny is entirely described by its kernel, meaning that there is a
one-to-one correspondence between separable isogenies (up to an isomorphism of the target curve) and finite
subgroups of E(K). An isogeny can be computed from its kernel G using Vélu’s formula [37], in this case we
write ϕ : E → E/G. The degree of ϕ◦ψ is equal to deg(ϕ) deg(ψ). For any isogeny ϕ : E1 → E2, there exists
a unique dual isogeny ϕ̂ : E2 → E1, satisfying ϕ ◦ ϕ̂ = [deg(ϕ)], the multiplication-by-deg(ϕ) map on E2.
Similarly ϕ̂ ◦ϕ is the multiplication-by-deg(ϕ) map on E1. An endomorphism of E is an isogeny θ : E → E.
The set of endomorphisms is a ring with addition and composition that we write End(E).

Let us take K, a finite field of characteristic p. Over K, a curve is said to be supersingular when End(E)
is a maximal order inside the quaternion algebra ramified at p and ∞. The Frobenius morphism is defined
as π : (x, y) → (xp, yp), it sends any curve E : y2 = x3 + ax + b to E(p) : y2 = x3 + apx + bp. π is the only
isogeny of degree p between any two supersingular curves.

3 UE from group action

We generalize the SHINE scheme of Boyd et al. [8] using the framework of cryptographic group actions of
Alamati et al. [1].

3.1 Generalizing SHINE to group actions

First, we introduce the novel mappable EGA (MEGA) definition. This new notion can be seen as a strength-
ened hashable group action (see [1]) as we will prove in Appendix B.

Definition 10 (Mappable EGA). Let (G,S, ?) be an EGA. We say that (G,S, ?) is a mappable EGA if
there exists an efficient bijection π : {0, 1}N → S.

Let GA be a MEGA family and let (G,S, ?) be GA(λ): a MEGA with bijection π : {0, 1}m+v → S, for
integers m and v. Let M := {0, 1}m be the message space and N := {0, 1}v be the nonce space.

We present our generalization of the SHINE scheme [8] to group actions, which we call GAINE for Group
Action Ideal-cipher Nonce-based Encryption, in figure 7. We use group elements as keys and set elements

9

as messages. Encryption, decryption and updates boil down to a group action computation. Ciphertexts are
randomized by adding a random nonce as input to π. The group action used in the original proposal of Boyd
et al. [8] is the action of the group Z∗q on S by exponentiation, where S is a cyclic group of prime order q
in which the discrete logarithm problem is hard. The correctness of GAINE is clear, even for a non-abelian
group action.

Setup(1λ):

1. (G,S, ?)← GA(λ)
2. Choose π,m, v as above
3. pp← (G,S, ?), π,m, v
4. return pp

KeyGen(pp):

1. k
$←− G.

2. return k.

TokenGen(ke, ke+1):

1. ∆e+1 ← ke+1k
−1
e

2. return ∆e+1

Upd(∆e+1, Ce):

1. Ce+1 ← ∆e+1 ? Ce

2. return Ce+1

Enc(ke,M):

1. N
$←− N .

2. Ce ← ke ? π(N‖M)
3. return Ce

Dec(ke, Ce):

1. s← π−1(k−1
e ? Ce)

2. Parse s as N ′‖M ′
3. return M ′

Fig. 7. GAINE : our generalization of the SHINE scheme using group actions.

3.2 Security - GAINE is detIND-UE-CPA secure

In theorem 1, we show that GAINE is detIND-UE-CPA in the ideal cipher model, if the group action is a weakly
pseudorandom MEGA. The ideal cipher model, introduced by Shannon [34] and shown to be equivalent to the
random oracle model by Coron et al. [13], gives all parties access to a permutation chosen randomly from all
possible key permutations of appropriate length. The GAINE scheme acts on the outputs of the permutation
with the epoch key to encrypt, so our reduction can “program” the transformation from permutation outputs
to set elements.

Theorem 1 (GAINE is detIND-UE-CPA). Let GAINE be the UE scheme described in figure 7 for a MEGA
family GA. For any ideal cipher model adversary A, there exists a reduction B such that

AdvdetIND-UE-CPA
GAINE,A (λ) ≤ O(1)(n+ 1)3 ·Advwk-PR

GA,B (λ)

We follow the proof strategy of [8] and use their hybrid argument across insulated regions. In each hybrid,
we can embed at one firewall of the insulated region and simulate all tokens within that insulated region
to answer queries to both O.Upd and O.UpdC̃. In GAINE, we update a ciphertext from epoch e to epoch
epoch e + 1 by computing the action of the group element ke+1k

−1
e . Fresh ciphertexts are randomized using

a nonce N but updates are deterministic, thus our reduction will need to provide consistent ciphertexts to
the adversary, i.e., the N value must be consistent.

We give a reduction B which receives a group action (G,S, ?) and an oracle O.Sample that returns either

tuples of the form (si, g ? si) or (si, ui) where g
$←− G and si, ui

$←− S. B will use the tuples of O.Sample to
perfectly simulate the detIND-UE-CPA experiment for GAINE when those tuples are of the form (si, g?si) (and
a random experiment otherwise). The idea is to embed g to a well chosen epoch key by using si as randomness
and g ? si as ciphertext value. Thus, if we know an efficient adversary A against the detIND-UE-CPA security
of GAINE, using the hybrid argument of [8], B can use A to break the weak pseudorandomness of (G,S, ?).

10

Proof. Play hybrid games. We partition the non corrupted key space as follows:
{0, . . ., n}\K∗ = ∪(j,fwlj ,fwrj)∈FW{fwlj . . . fwrj}, where fwli and fwri are firewalls of the i-th insulated region.

For b ∈ {0, 1}, define game Gbi as ExpdetIND-UE-CPA-b
GAINE,A except for:

1. The game randomly picks fwli, fwri
$←− {0, . . . , n} and if they are not the i-th firewalls, it aborts and

returns a random bit b′. This loss is upper-bounded by (n+ 1)2.

2. For the challenge (made in epoch ẽ on input (M̄, C̄)), the game returns an updated version of C̄ if
ẽ < fwli and it returns an encryption of M̄ if ẽ > fwri. Finally, if fwli ≤ ẽ ≤ fwri, the game returns an
encryption of M̄ if b = 0 and an updated version of C̄ if b = 1.

3. After A outputs b′, the game returns b′ if twf 6= 1 or some additional trivial win condition triggers.

If fwli, fwri are the desired values, then G01 is ExpdetIND-UE-CPA-0
GAINE,A , i.e., all challenges are encryptions of M̄ .

Let ` be the total number of insulated regions (bounded by n + 1), such that G1` is ExpdetIND-UE-CPA-1
GAINE,A , i.e.,

all challenges are updates of C̄. Let E be the event that fwli and fwri are the desired values. By definition,
for any 1 ≤ i ≤ n+ 1 and b ∈ {0, 1}, we have Pr[Gbi = 1 | ¬E] = 1/2. Then

Pr[G1` = 1] = Pr[G1` = 1 | E] · Pr[E] + Pr[G1` = 1 | ¬E] · Pr[¬E]

= Pr[ExpdetIND-UE-CPA-1
GAINE,A = 1] · 1

(n+ 1)2
+

1

2
· (1− 1

(n+ 1)2
), and

Pr[G01 = 1] = Pr[ExpdetIND-UE-CPA-0
GAINE,A = 1] · 1

(n+ 1)2
+

1

2
· (1− 1

(n+ 1)2
)

Thus, we have |Pr[G1` = 1]− Pr[G01 = 1]| = 1
(n+1)2 ·AdvdetIND-UE-CPA

GAINE,A (λ).

Notice that the games G1i−1 and G0i behave in the same way: for the challenge query and O.UpdC̃, in
an epoch in the first i − 1 insulated regions, the reduction returns an update of C̄, otherwise it returns an
encryption of M̄ . Thus, for any ` ≤ n + 1, |Pr[G1` = 1] − Pr[G01 = 1]| ≤

∑`
i=1 |Pr[G1i = 1]− Pr[G0i = 1]|. In

the following, we prove that for any 1 ≤ i ≤ `, |Pr[G1i = 1]−Pr[G0i = 1]| ≤ 2Advwk-PR
GA,B (λ) for a reduction B.

In hybrid i. Let Ai be an adversary trying to distinguish G0i from G1i . For all queries concerning epochs
outside of the i-th insulated region, the responses of both games are the same. Thus, we assume that Ai
asks for at least one challenge ciphertext in an epoch within the i-th insulated region. This is where we will
embed the weak pseudorandom group action samples in our reduction.

We construct a reduction B, presented in Fig. 8, that is playing the weak pseudorandom group action
game (Definition 4) and will simulate the responses of queries made by adversary Ai. Since we do not assume
the group action (G,S, ?) to be abelian, we define (

∏n
i=0 gi)?s := (g0g1 . . . gn)?s for s ∈ S and g0, . . . , gn ∈ G.

Recall that Ai is an adversary attempting to distinguish G0i from G1i . B will try to use A to break the weak
pseudorandomness of the group action (G,S, ?). In Expwk-PR

GA,B (λ), when O.Sample returns pairs of the form

(sj , g ? sj) for g
$←− G and sj

$←− S, B will perfectly simulate the environment of Ai in Gbi . When O.Sample

returns pairs of the form (sj , tj) for sj , tj
$←− S, B will give random inputs to Ai such that Ai distinguishes

G0i from G1i with advantage 0. We explain how our reduction B does this without knowing which O.Sample
oracle was provided to it.

The reduction B receives the oracle O.Sample, takes b
$←− {0, 1} and simulates Gbi . Whenever the reduction

needs to provide an output of π(·) to Ai, it chooses some set value s ∈ S such that π(·) = s. In this setting,
computing π−1 is simply a lookup to this mapping of the ideal cipher π. We explain our simulation:

Initially,

1. B guesses the values of fwli and fwri.

2. B generates all keys and tokens except for kfwli , . . . , kfwri , ∆fwli , ∆fwri+1. If Ai corrupts these keys and
tokens, this means that the firewall guess is wrong and the reduction aborts the game using the Check
algorithm of Appendix A.

11

Reduction B playing Expwk-PR-b∗

GA,B (λ)

1. receive (G,S, ?) and O.Sample
2. do Setup(1λ)
3. M̄, C̄ ← Aors(λ)
4. phase← 1
5. C̃ẽ ← O.Chall(M̄, C̄)

6. b′ ← Aors,O.UpdC̃(C̃ẽ)
7. twf ← 1 if
8. C∗ ∩ K∗ 6= ∅ or
9. I∗ ∩ C∗ 6= ∅

10. if ABORT occurred or twf = 1
11. b′

$←− {0, 1}
12. return b′

13. if (i, fwli, fwri) /∈ FW
14. b′

$←− {0, 1}
15. return b′

16. if b′ = b
17. return 0
18. else
19. return 1

Setup(1λ)

1. b
$←− {0, 1}

2. pp← GAINE.Setup(1λ)
3. k0 ← GAINE.KeyGen(pp)
4. ∆0 ←⊥
5. e, c, phase, twf ← 0
6. L, L̃, C,K, T ← ∅
7. fwli, fwri

$←− {0, . . . , n}
8. for j ∈ {0, . . . , fwli − 1} do

9. kj
$←− G;∆j ← kjk

−1
j−1

./

10. for j ∈ {fwri + 1, . . . , n} do

11. kj
$←− G;∆j ← kjk

−1
j−1

./

12. for j ∈ {fwli + 1, . . . , fwri} do

13. ∆j
$←− G

O.Enc(M)

1. c← c + 1
2. (inf1, inf2)← O.Sample()
3. π(N‖M)← inf1
4. if e ∈ {0, fwli − 1} ∪ {fwri +

1, . . . , n}
5. Ce ← ke ? inf1
6. else
7. Cfwli ← inf2
8. for j ∈ {fwli + 1, . . . , e} do
9. Cj ← ∆j ? Cj−1

10. inf ← (inf1, inf2)
11. L ← L ∪ {(c, Ce, e; inf)}
12. return Ce

O.Next

1. e← e + 1

O.Upd(Ce−1)

1. if (c, Ce−1, e− 1; inf) /∈ L
2. return ⊥
3. if e ∈ {1, . . . , fwli − 1} ∪ {fwri +

1, . . . , n}
4. (inf1, inf2)← inf
5. Ce ← ke ? inf1
6. else
7. (inf1, inf2)← inf
8. Cfwli ← inf2
9. for j ∈ {fwli + 1, . . . , e} do

10. Cj ← ∆j ? Cj−1

11. L ← L ∪ {(c, Ce, e; inf)}
12. return Ce

O.Corr(inp, ê)

1. do Check(inp, ê; e; fwli, fwri)
2. if inp = key
3. K ← K ∪ {ê}
4. return kê
5. if inp = token
6. T ← T ∪ {ê}
7. return ∆ê

O.Chall(M̄, C̄)

1. if (c, C̄, ẽ− 1; inf) /∈ L
2. return ABORT

3. if b = 0
4. (s, t)← O.Sample()
5. π(N‖M̄)← s
6. C̃fwli ← t
7. else
8. (inf1, inf2)← inf

9. π(N‖M̄)
$←− S

10. C̃fwli ← inf2
11. for j ∈ {0, . . . , fwli − 1} do
12. C̃j ← (

∏1
k=j ∆k)(

∏ẽ−1
k=1∆

−1
k)?C̄

//left

13. for j ∈ {fwli + 1, . . . , fwri} do
14. C̃j ← ∆j ? C̃j−1 //embed

15. for j ∈ {fwri + 1, . . . , n} do
16. C̃j ← kj ? π(N‖M̄) //right

17. L̃ ← ∪nj=0{(C̃j , j)
18. return C̃e

O.UpdC̃

1. C ← C ∪ {e}
2. find (C̃e, e) ∈ L̃
3. return C̃e

Fig. 8. Our reduction B for proof of th. 1 in hybrid i. inf encodes fixed programming information: it marks two set
elements (inf1, inf2) sampled with O.Sample. inf1 is the randomness used during encryption and inf2 is the ciphertext
value in epoch fwli. ors refers to the set {O.Enc,O.Next,O.Upd,O.Corr}. ./ indicates that ∆0 and ∆fwri+1 are skipped
in the computation.

12

B will operate so as to embed the value g used by O.Sample to the key kfwli and the value gk−1fwli−1 to the
token ∆fwli . If O.Sample returns uniformly distributed pairs of set elements instead, all the ciphertexts inside
insulated region i will be random set elements (no key or token could possibly explain these ciphertexts).

To simulate a non-challenge ciphertext that is:

• An O.Enc query in epoch e ∈ {0, . . . fwli − 1} ∪ {fwri + 1, . . . , n}: B queries O.Sample to get a pair
(s, t) ∈ S2. B uses s as a random value by programming π(·)← s (so the randomness will be consistent
with calls that Ai makes to O.Upd), computes the ciphertext Ce = ke ? s (the value of ke is known to
B in these epochs) and stores (s, t) in its memory for later use. To respond to O.Upd queries in these
epochs, B computes Ce = ke ?s using the randomness s generated during the first encryption of the input
ciphertext.

• An O.Enc query in epoch e ∈ {fwli, . . . , fwri}: B queries O.Sample to get a pair (s, t) ∈ S2 and programs
π(·) ← s. It sets Cfwli = t (so that all ciphertexts will be encrypted under the key g in epoch fwli if
O.Sample returns pairs of the form (sj , g ? sj)) and updates Cfwli to the right epoch e using its simulated
tokens (remember that B does not know the keys inside the i-th insulated region). To respond to O.Upd
queries in these epochs, B uses the value t (if t = g ? s then the randomness will still be consistent)
generated during the first encryption of the input ciphertext as ciphertext value in epoch fwli and
updates t to the right epoch e using its simulated tokens.

During the challenge call, the adversary will provide a ciphertext C̄ which was created during the c-th
call to O.Enc. The adversary cannot ask for an update of the c-th encryption in an epoch e ≥ fwli, as this
would trigger the trivial win condition [fwli, fwri] ⊆ I∗ ∩ C∗ 6= ∅.

To simulate challenge-equal ciphertext in an epoch that is:

• To the left of the i-th insulated region: B simulates GAINE.Upd(C̄) using tokens that it created itself.
• Within the i-th insulated region: B simulates GAINE.Upd(C̄) if b = 1, and simulates GAINE.Enc(M̄) if
b = 0. More precisely, if O.Sample returns pairs of the form (sj , g ? sj), B embeds g to kfwli and gk−1fwli−1
to ∆fwli . If b = 0, the reduction samples (s, t)← O.Sample(), gives value s to π(N‖M̄) and t to C̃fwli (we
want kfwli = g) since

C̃fwli = GAINE.Enc(M̄) = kfwli ? π(N‖M̄)

If b = 1, assume that C̄ is an update of C̄ec , the output of the c-th O.Enc query. B sampled (s, t) ←
O.Sample() and used s as randomness to create C̄ec and to update it in epochs e < fwli. The reduction
gives value t to C̃fwli (we want ∆fwli = gk−1fwli−1) since

C̃fwli = GAINE.Upd(C̄) = ∆fwli ? (kfwli−1 ? s)

Furthermore, the reduction uses tokens ∆fwli+1, . . . ,∆fwri to update C̃fwli to simulate all challenge ci-
phertexts in epochs within the insulated region.

• To the right of the i-th insulated region: B simulates GAINE.Enc(M̄) using the keys that it created itself.

Eventually, B receives the output bit b′ from Ai. If b′ = b, then B guesses that O.Sample returned pairs
of the form (sj , g ? sj) (returns 0 to the wk-PR challenger), otherwise, B guesses that it has seen uniformly
chosen pairs of set elements (returns 1). If B receives an oracle O.Sample that samples pairs of the form
(sj , g ? sj), then B perfectly simulates the environment of Ai in Gbi . If B receives an oracle O.Sample that
samples pairs uniformly at random, then B wins with probability 1/2. Thus,

Advwk-PR
GA,B (λ) =

∣∣∣1/2− Pr[Expwk-PR-0
GA,B = 1]

∣∣∣
=
∣∣1/2− (1/2 Pr[G0i = 0] + 1/2 Pr[G1i = 1])

∣∣
=
∣∣1/2− 1/2(1− Pr[G0i = 1])− 1/2 Pr[G1i = 1]

∣∣
= 1/2

∣∣Pr[G0i = 1]− Pr[G1i = 1]
∣∣

13

Finally, we get

1

(n+ 1)2
AdvdetIND-UE-CPA

GAINE,A (λ) ≤
∑̀
i=1

|Pr[G1i = 1]− Pr[G0i = 1]|

= 2`Advwk-PR
GA,B (λ)

≤ 2(n+ 1)Advwk-PR
GA,B (λ)

and thus AdvdetIND-UE-CPA
GAINE,A (λ) ≤ 2(n+ 1)3Advwk-PR

GA,B (λ).

3.3 Post-quantum instantiations of GAINE

A good candidate for instantiating GAINE is the non-abelian group action of the general linear group on the
set of alternating trilinear forms introduced by Tang et al. [36]. Some definitions are in order.

Let Fq be the finite field of order q. A trilinear form φ : Fnq ×Fnq ×Fnq → Fq is alternating if φ evaluates to 0
whenever two arguments are equal. Let ATF(n, q) be the set of all alternating trilinear forms defined over Fnq .
The general linear group GL(n, q) acts on ATF(n, q) as follows: A ∈ GL(n, q) sends φ to A?φ := φ◦A, defined
as (φ ◦ A)(u, v, w) := φ(At(u), At(v), At(w)). This action defines an equivalence relation ∼ on ATF(n, q),
namely φ ∼ ψ if only there exists A ∈ GL(n, q), such that φ = ψ ◦A.

φ ∈ ATF(n, q) can be represented as
∑

1≤i<j<k≤n ci,j,ke
∗
i ∧ e∗j ∧ e∗k, where ci,j,k ∈ Fq, ei is the i-th

standard basis vector, e∗i is the linear form sending u = (u1, . . . , un)t ∈ Fnq to ui, and ∧ denotes the wedge

product (see [36] for more details). This representation requires
(
n
3

)
dlog qe bits.

Concretely, ? can be computed as follows. Let A = (ai,j) ∈ GL(n, q), it sends e∗i ∧ e∗j ∧ e∗k to∑
1≤r<s<t≤n dr,s,te

∗
r ∧ e∗s ∧ e∗t , where dr,s,t = det

∣∣∣∣∣∣
ai,r ai,s ai,t
aj,r aj,s aj,t
ak,r ak,s ak,t

∣∣∣∣∣∣. For any φ ∈ ATF(n, q), A?φ can be obtained

by linearly extending the action of A to each term e∗i ∧ e∗j ∧ e∗k.
It is clear that (GL(n, q),ATF(n, q), ?) is an EGA. Indeed, membership testing, equality testing, sampling,

operation and inversion can all be done efficiently in GL(n, q). The group action is efficiently computable.
Membership testing and unique representation in ATF(n, q) stem from the algorithmic representation given
above. Moreover, we can define an invertible map between binary strings of length

(
n
3

)
dlog qe and elements of

ATF(n, q) using this representation. Thus, (GL(n, q),ATF(n, q), ?) is a MEGA and can be used to instantiate
GAINE.

[36, Conjecture 1] states that the alternating trilinear form equivalence problem (ATFE) is hard and that
(GL(n, q),ATF(n, q), ?) is weakly pseudorandom (in the post-quantum setting). The ATFE problem is the
following: given φ, ψ ∈ ATF(n, q), decide if there exists A ∈ GL(n, q) such that φ = ψ ◦ A. See [36, Section
4 & 5] for an argumentation on why it is reasonable to believe in [36, Conjecture 1]. The authors conclude
that the best attack against ATFE is in O(q2n/3n2ω log q) where ω is the matrix multiplication exponent.
Under [36, Conjecture 1], GAINE is detIND-UE-CPA post-quantum secure.

Another post-quantum weakly pseudorandom MEGA is the general linear group (non-abelian) action on
k-tensors (GLAT) of [19] for k ≥ 3. For simplicity, we only present the case when k = 3 since it is the most
studied and believed to be hard. A 3-tensor T is a 3-dimensional array with 3 indices (i1, i2, i3) over a finite
field Fq where ij ∈ {1, . . . , dj}. The tensor is said to have order 3 and dimensions (d1, d2, d3) over Fq. The

direct product of general linear groups G :=
∏3
i=1 GL(di, q) acts on the set of 3-tensors via the following

action ? that represents a local change of basis. For A = (A(j))kj=1 ∈ G and a 3-tensor T ,

A ? T := T̂ where T̂i1,i2,i3 :=
∑
l1,l2,l3

 3∏
j=1

A
(j)
ij ,lj

Tl1,l2,l3
[19] also argues that GLAT is weakly-pseudorandom in the post-quantum setting, we defer the argumen-

tation to [19, Section 5]. This gives us a second post-quantum instantiation of GAINE.

14

3.4 On the detIND-UE-CCA security of GAINE

In [8, sec. 5.1.1], a variant of SHINE with added ciphertext integrity, called SHINE0, is given by using N‖M‖0t,
for some t, as input of the permutation π during encryption and by checking that the 0 string is still present
during decryption (if not ⊥ is returned). This version of SHINE is shown to be detIND-UE-CCA secure under
CDH [8, th. 5].

We define GAINE0 (see Fig. 9) similarly to SHINE0 and prove that it is detIND-UE-CCA secure if the group
action is weakly unpredictable. Informally, recall that (G,S, ?) is weakly unpredictable if, given polynomially

many tuples of the form (si, g ? si) where g
$←− G and each si

$←− S, there is no PPT adversary that can

compute g ? s∗ for a given challenge s∗
$←− S. A full proof and precise definitions are given in the following

Section 3.5 and Section 3.6.

The problematic ciphertext expansion of SHINE0 is reduced to almost nothing in the construction of
OCBSHINE of [8, sec. 5.1.3] which is inspired by the authenticated encryption scheme OCB [32]. Once again,
we can adapt this construction to GAINE.

That being said, with the post-quantum instantiations of Section 3.3, GAINE is the first post-quantum
detIND-UE-CCA UE scheme. Indeed, the two LWE-based schemes of Jiang [20] and Nishimaki [28] are only
randIND-UE-CPA secure. This result solves the open problem left by Jiang at Asiacrypt 2020 [20, sec. 1.3].

3.5 GAINE with zeros: GAINE0

We add ciphertext integrity to GAINE using the technique of [8, sec. 5.1.1] for their SHINE0 scheme. Take
message space M = {0, 1}m and nonce space N = {0, 1}v. Let (G,S, ?) be a MEGA with permutation
π : {0, 1}m+v+t → S. The encryption algorithm of GAINE0 feeds as input to π the concatenation of the
message, the random nonce, and a zero string of length t. The decryption returns ⊥ if the decrypted value
does not end with 0t. GAINE0 is defined in Fig. 9.

Setup(1λ):

1. (G,S, ?)← GA(λ)

2. Choose π,m, v, t as above

3. pp← (G,S, ?), π,m, v, t

4. return pp

KeyGen(pp):

1. k
$←− G.

2. return k.

TokenGen(ke, ke+1):

1. ∆e+1 ← ke+1k
−1
e

2. return ∆e+1

Upd(∆e+1, Ce):

1. Ce+1 ← ∆e+1 ? Ce

2. return Ce+1

Enc(ke,M):

1. N
$←− N .

2. Ce ← ke ? π(N‖M‖0t)
3. return Ce

Dec(ke, Ce):

1. s← π−1(k−1
e ? Ce)

2. Parse s as N ′‖M ′‖Z
3. if Z = 0t

4. return M ′

5. else
6. return ⊥

Fig. 9. GAINE0 : our generalization of the SHINE0 scheme using group actions.

15

3.6 GAINE0 is INT-CTXTs

We prove the following theorem.

Theorem 2 (GAINE0 is INT-CTXTs). Let GAINE0 be the UE scheme described in Fig. 9 for a MEGA
family GA. For any ideal cipher model adversary A that makes at most QE encryption queries before calling
O.Try, there exists a reduction B such that

AdvINT-CTXTs

GAINE0,A (λ) ≤ O(1)QE(n+ 1)2Advwk-UP
GA,B (λ) + negl(λ)

where Advwk-UP
GA,B (λ) is defined in Definition 5

Remark 1. Combining the results of [8, Theorem 3], Theorem 1 and Theorem 2, we have that GAINE0 is
detIND-UE-CCA.

We follow the proof technique of [8] and its presentation.

Proof method. The challenger of the INT-CTXTs game keeps a list of consistent values for ciphertexts, i.e.,,
the underlying permutation output. Let C̃ be a forgery attempt sent to O.Try in epoch ẽ and let c̃ := k−1ẽ ?C̃
be the underlying permutation output.

1. If c̃ is a new value, since π is a random permutation, then the INT-CTXTs challenger simulates π−1(c̃)
to be a random string. The probability that this string ends by 0t is negligible, and this carries over to
the probability that the adversary wins the INT-CTXTs game.

2. If c̃ already exists, suppose that this happens with probability p. We construct a reduction B playing the
wk-UP game such that it wins with probability p/(QE(n + 1)2). B guesses the location of the firewalls
around the challenge epoch, embeds the wk-UP values and simulates the INT-CTXTs game, using any
successfully-forged ciphertext to compute the group action forgery for its wk-UP challenger.

Proof. The following proof is practically the same as in [8], we just replaced exponentiations by group actions
and CDH by wk-UP. We give the proof of [8] for completeness.

Note that the probability of a random string ends by 0t is 1/2t. In the INT-CTXTs game, the adversary
ultimately sends a forgery C∗ to the O.Try oracle. If the trivial win condition does not trigger, then C∗ is a
new ciphertext to the challenger and there exists an insulated region around the challenge epoch. We split
the proof into two parts on if k−1e ? C∗ is a new value to the challenger:

1. If k−1e ? C∗ is a new value, the random permutation π−1 will pick a random string a as the output of
π−1(k−1e ? C∗). The probability of a ending with 0t is upper bounded by 1/2t.

2. If k−1e ? C∗ is an existing value, denote this event as E3, we claim that the probability of E3 happens is
very low. Which means it is hard to provide a valid forgery with a known permutation value. In other
words, without the knowledge of the encryption key, it is difficult to provide a correct group action.
Formally, we prove the following inequality in Lemma 1 :

Pr[E3] := Pr[k−1e ? C∗ exists, C∗ is new] ≤ QE(n+ 1)2Advwk-UP
GA

In order to analyze the security, we define some events:

• E1 := {C∗ is new },
• E2 := {k−1e ? C∗ is new, C∗ is new },
• Recall E3 := {k−1e ? C∗ exists, C∗ is new }.

Denote the experiment ExpINT-CTXTs

GAINE0,A to be Exp. We have :

• Pr[Exp = 1 | ¬E1] = 0.
• We proved Pr[Exp = 1 | E2] ≤ 1/2t in part 1.
• Events ¬E1, E2, E3 are disjoint from each other, so Pr[¬E1] + Pr[E2] + Pr[E3] = 1.

16

• We prove Pr[E3] ≤ QE(n+ 1)2Advwk-UP
GA in Lemma 1.

Applying the above properties, we can compute the INT-CTXTs advantage

AdvINT-CTXTs

GAINE0,A (λ) = Pr[Exp = 1]

= Pr[Exp = 1 | ¬E1] · Pr[¬E1] + Pr[Exp = 1 | E2] · Pr[E2]

+ Pr[Exp = 1 | E3] · Pr[E3]

= Pr[Exp = 1 | E2] · Pr[E2] + Pr[Exp = 1 | E3] · Pr[E3]

≤ Pr[Exp = 1 | E2] + Pr[E3]

≤ 1/2t +QE(n+ 1)2Advwk-UP
GA

Lemma 1. Let GA be the MEGA family used in GAINE0. Let A be an INT-CTXTs adversary against GAINE0
that asks at most QE queries to O.Enc before it sends its O.Try query. Suppose that C̃ is a forgery attempt
provided by A and that its corresponding permutation value is c̃. Define E to be the event that c̃ is an existed
value but C̃ is a new one. Then, there exists a reduction B such that

Pr[E] ≤ QE(n+ 1)2Advwk-UP
GA,B

Proof. Suppose that A is an adversary against INT-CTXTs, and that it can provide a forgery such that C̃ is
a new ciphertext but the underlying permutation value is an existing one with probability Pr[E]. We give a
reduction B, in Fig. 10, that wins the wk-UP game with probability Pr[E]/(QE(n+ 1)2).

B guesses the location of firewalls (ˆfwl and ˆfwr) around the epoch when O.Try is queried. Furthermore, it
guesses which message (the h-th encryption) will be the underlying message of the forgery. Then, B receives
the wk-UP values (G,S, ?), O.Sample and s∗, where O.Sample returns tuples of the form (si, g ?si) for a fixed

g
$←− G and si

$←− S. B embeds g (the group element used in O.Sample) to k ˆfwl by using the elements sampled

by O.Sample as ciphertexts in epoch ˆfwl. On the h-th encryption, B embeds s∗ to π(N‖M‖0t). When B
receives a forgery C̃ for the h-th encryption in epoch ẽ ∈ { ˆfwl, . . . , ˆfwr}, it can downgrade C̃ to epoch ˆfwl

(where it embedded g to the epoch key). Then, (
∏ ˆfwl+1

e=ẽ ∆−1e)?C̃ = g?s∗ with probability Pr[E]/(QE(n+1)2),

which is the advantage of winning the Expwk-UP
GA,B game.

3.7 Dealing with bad ciphertext expansion

The problematic ciphertext expansion of SHINE0 is reduced to almost nothing in the construction of
OCBSHINE of [8, sec. 5.1.3] which is inspired by the authenticated encryption scheme OCB [32]. Once
again, we can adapt this construction and proof to GAINE0 to get the OCBGAINE variant. See [8, Figure 27
& 28] for more details.

4 UE from Triple Orbital Group Action

Below, we present a new abstract algebraic structure that we call Triple Orbital Group Action (TOGA).
The formulation of this framework is in fact motivated by the fact that we cannot instantiate GAINE with
isogenies because it is notoriously hard [7] to hash into the set of supersingular elliptic curves. Indeed, GAINE
requires a MEGA and we prove, in Appendix B, that the existence of a one-way MEGA implies the existence
of a hashable one-way EGA.

Let us start with a quick overview. A TOGA is made of three group actions, each with a distinct role.
The main group action, that we write (A,S, ?A), is our starting point. The main ingredient to get a TOGA
from the simple group action ?A is a congruence relation ∼A. This relation allows us to derive a second
group action (A/ ∼A, S/ ∼S , ?G), called the induced group action, of the quotient group on the quotient set
(see Definition 11 for ∼S). Of course, this induced group action is not mappable as we would not need a
TOGA to build UE in this case. This time, we consider plaintexts as group elements of a third group action

17

Reduction B playing Expwk-UP
GA,B(λ)

1. receive (G,S, ?), O.Sample and
s∗

2. do Setup(1λ)
3. Aors(λ)
4. if ABORT occurred or twf = 1
5. win← 0
6. else
7. return win

Setup(1λ)

1. pp← GAINE0.Setup(1λ)
2. k0 ← GAINE0.KeyGen(pp)
3. ∆0 ←⊥
4. e, c, phase,win, twf ← 0
5. L∗, C,K, T ← ∅
6. ˆfwl, ˆfwr

$←− {0, . . . , n}
7. h

$←− {1, . . . , QE}
8. for j ∈ {0, . . . , ˆfwl − 1} ∪ { ˆfwr +

1, . . . , n} do

9. kj
$←− G;∆j ← kjk

−1
j−1

./

10. for j ∈ { ˆfwl + 1, . . . , ˆfwr} do

11. ∆j
$←− G

O.Enc(M)

1. c← c + 1
2. if c = h
3. if e < ˆfwl
4. π(N‖M‖0t)← s∗

5. Ce ← ke ? s
∗

6. else

7. return ABORT

8. else
9. (inf1, inf2)← O.Sample()

10. if e ∈ {0, ˆfwl − 1} ∪ { ˆfwr +
1, . . . , n}

11. π(N‖M‖0t)← inf1
12. Ce ← ke ? inf1
13. else
14. C ˆfwl ← inf2
15. for j ∈ { ˆfwl + 1, . . . , e} do
16. Cj ← ∆j ? Cj−1

17. inf ← (inf1, inf2)
18. L∗ ← L∗ ∪ {(c, Ce, e; inf)}m
19. return Ce

O.Next

1. e← e + 1

O.Upd(Ce−1)

1. if (c, Ce−1, e− 1; inf) /∈ L∗
2. return ⊥
3. if c = h
4. if e < ˆfwl
5. Ce ← ∆e ? Ce−1

6. else
7. return ABORT

8. else
9. if e ∈ {1, . . . , ˆfwl − 1} ∪ { ˆfwr +

1, . . . , n}
10. (inf1, inf2)← inf
11. Ce ← ke ? inf1
12. else

13. (inf1, inf2)← inf
14. C ˆfwl ← inf2
15. for j ∈ { ˆfwl + 1, . . . , e} do
16. Cj ← ∆j ? Cj−1

17. L∗ ← L∗ ∪ {(c, Ce, e; inf)}m
18. return Ce

O.Corr(inp, ê)

1. do Check(inp, ê; e; ˆfwl, ˆfwr)
2. if inp = key
3. K ← K ∪ {ê}
4. return kê
5. if inp = token
6. T ← T ∪ {ê}
7. for i ∈ T ∗ do
8. for (j, Ci−1, i − 1; inf) ∈ L∗

do
9. Ci ← O.Upd(Ci−1)

10. L∗ ← L∗ ∪ {(j, Ci, i; inf)}
11. return ∆ê

O.Try(C̃)

1. if phase = 1
2. return ⊥
3. phase← 1
4. if ẽ ∈ K∗ or C̃ ∈ L∗
5. twf ← 1
6. if ẽ /∈ { ˆfwl, . . . , ˆfwr}
7. twf ← 1
8. y ← (

∏ ˆfwl+1
e=ẽ ∆−1

e) ? C̃ //ẽ ≥ ˆfwl
9. output y to Expwk-UP

GA,B ; get b
10. win← b

Fig. 10. Our reduction B for proof of Lemma 1. ors refers to the set {O.Enc,O.Next,O.Upd,O.Corr,O.Try}. ./
indicates that ∆0 and ∆ ˆfwr+1 are skipped in the computation. m indicates that inf is empty when c = h.

18

(H,S, ?H). For decryption to be possible, we assume that this action is efficiently invertible. We want ?H to
commute with ?A but also that the orbits of ?H are exactly the classes of equivalences of S/ ∼S , which is
what we call to be orbital. For a visualization of the interaction between the three group actions of a TOGA,
see Fig. 11. The algebraic structure TOGA is explained in Section 4.1, while the computational model is
given in Section 4.2. In Section 4.3, we show how to build UE from a TOGA.

: ?G

: ?H

: ?A

: s ∈ S

: t ∈ T

Fig. 11. Diagram for a TOGA A,H, S, ?A,∼A, ?H .

4.1 The algebraic structure

Let us assume that we have a group action (A,S, ?A) for an abelian multiplicative group A and a set S.
We write 1A for the neutral element of A. If there exists a congruence relation ∼A on A (we recall that a
congruence on a set with an intern law is an equivalence relation compatible with the law, i.e., such that if
a1 ∼A a2 and b1 ∼A b2 we have a1b1 ∼A a2b2), then we get that G = A/ ∼A is an abelian group for the law
naturally derived from the multiplication in A.

Definition 11. Let A be an abelian group and let ∼A be a congruence relation on A. Let S be a set and let
?A be a group action of A on S. The relation ∼S induced by ∼A and ?A is

s1 ∼S s2 ⇐⇒ ∃a1, a2 ∈ A with a1 ∼A a2 such that a1 ?A s1 = a2 ?A s2

Proposition 1. Keeping the notations of Definition 11, we have that ∼S is an equivalence relation and ?A
induces a group action ?G of G := A/ ∼A on T := S/ ∼S.

19

Proof. The relation ∼S is clearly reflexive and symmetric. For transitivity let us take s1, s2, s3 ∈ S with
s1 ∼S s2 and s2 ∼S s3, we have a1 ?A s1 = a2 ?A s2 and b2 ?A s2 = b3 ?A s3, thus a1b2 ?A s1 = a2b3 ?A s3 and
a1b2 ∼A a2b3 since ∼A is a congruence. Let us write G = A/ ∼A and T = S/ ∼S . First, we need to verify
that the operation ?A is well-defined on the quotients. To see that, we need to verify that a1 ?A s1 ∼S a2 ?A s2
when a1 ∼A a2 and s1 ∼S s2. This is true because we have b1 ∼A b2 such that b1 ?A s1 = b2 ?A s2, and so
(a2b1) ?A (a1 ?A s1) = (a1b2) ?A (a2 ?A s2) with a2b1 ∼A a1b2 because ∼A is a congruence. Then, we need
to show that ?A : G× T → T verifies the usual group action properties from Definition 1. First, let us take
a ∼A 1A. We must have a ?A s ∼S s for any s ∈ S, which is clearly the case. Then, for any a1, a2 ∈ A,
s ∈ S, we have the equality (a1a2) ?A s = a1 ?A (a2 ?A s) and this equality remains true when considering
the quotients G,T .

Definition 12. Given A,S, ?A,∼A as in Proposition 1, the group action ?G of A/ ∼A on S/ ∼S is called
the group action induced by A, ?A,∼A (or induced by A when it is clear from the context) and (A,S, ?A) is
called the main group action.

We obtain a third group action (hence the name of triple group action) by looking at the classes of
equivalence of S. We want to consider these classes as the orbits of a third group action ?H : H ×S → S for
another abelian group H. By that we mean that, for any s ∈ S and h ∈ H, we have s ∼S h ?H s and that,
for all s′ ∼S s, there exists h ∈ H with s′ = h ?H s. Additionally, we need the group action (H,S, ?H) to
be free because we will need to invert ?H . When these constraints are respected we qualify the group action
(H,S, ?H) to be orbital.

Finally, we want that ?A and ?H commute and that for any a1, a2 ∈ A such that a1a2 ∼A 1A, there exists
a unique element h(a1, a2) ∈ H such that (a1a2) ?A s = h(a1, a2) ?H s for any s ∈ S. With Proposition 2, we
give a useful reformulation that will prove useful for the correctness of our scheme.

Proposition 2. For any a, b ∈ A with a ∼A b, we have a ?A s = (h(a, c)h(b, c)−1) ?H (b ?A s) for any c ∈ A
with ac ∼A 1A and s ∈ S.

Proof. We have h(a, c) ?H (b ?A s) = (ac) ?A (b ?A s) = (abc) ?A s = (bc) ?A (a ?A s) = h(b, c) ?H (a ?A s).

Definition 13 (TOGA). When A,H, S, ?A,∼A, ?H satisfy all the above properties we say that we have a
Triple Orbital Group Action (TOGA).

A visualization of a TOGA is given in Fig. 11. We give a simple example of a (pre-quantum) TOGA in
Appendix C.

Remark 2. Note that A being a group is not really necessary for the UE scheme that we will introduce below.
In fact, we only need that A is a monoid and that the quotient A/ ∼A is a group. We only assumed that A
is a group for simplicity.

4.2 Computational model

As for group actions, we define an ETOGA as an Effective TOGA:

Definition 14 (ETOGA). A TOGA A,H, S, ?A,∼A, ?H is effective if:

1. The group action (H,S, ?H) is an Effective and Easy Group Action (EEGA):
(a) The group action (H,S, ?H) is a free EGA.
(b) There is a PPT inversion algorithm InvertH : S2 → {⊥} ∪ H taking two elements s1, s2 and that

outputs either ⊥ when s1 6∼S s2 or the element h ∈ H such that s1 = h ?H s2.
2. There exists a finite subset A′ ⊂ A such that:

(a) The class of equivalence of A′ form a generating set of G, i.e., G = A′/ ∼A.
(b) There is a PPT algorithm to compute a′ ?A s for any s ∈ S and a′ ∈ A′.
(c) There exists a PPT algorithm ReduceA : A→ A′ that takes an element a ∈ A and outputs a′ ∼A a.

20

(d) There exists a PPT algorithm to sample from A′ in a distribution statistically close to the uniform

distribution, we write a′
$←− A′ for elements sampled in that manner.

(e) The distribution DG that samples a′
$←− A′ and returns the class of ReduceA(a′) in G is statistically

close to the uniform distribution.
3. There exists a deterministic PPT algorithm ReduceS to compute a canonical representative for equivalence

classes in S/ ∼S.

Remark 3. Note that the ReduceA algorithm may or may not be deterministic. For efficiency, it is interesting
to try to select the element a′ in the class of a that minimizes the computation cost of a′ ?A s for any s ∈ S.

Note that when a1a2 ∼ 1A, we have h(a1, a2) = InvertH((a1a2)?A s, s) for any s ∈ S. Thus, we can define
a PPT algorithm to compute h(a1, a2) from InvertH . We abuse notations and write h for this algorithm.

Since the function ReduceS is deterministic, we can abuse notations and assimilate T = S/ ∼S and
ReduceS(S) by identifying the elements of T to their canonical representative in S through ReduceS . Using
this, we sometimes apply the action ?A on the elements of T (it suffices to compose ?A with ReduceS to
obtain the canonical representative afterward).

4.3 The updatable encryption scheme

Let T OGA be an ETOGA family and let (A,H, S, ?A,∼A, ?H) be T OGA(1λ) for some λ. We fix a starting
element s0 ∈ S, and we also assume the existence of an invertible map ψ : M→ H where M is the space
of the messages. We will use the function ψ to send the messages in the group H before encrypting them
with ?H . Then, decryption will rely on InvertH . This operation is efficient by definition of an ETOGA. This
principle basically solves the problem of needing our group action ?A to be mappable. The rest of our scheme
follows the framework of GAINE with keys being elements of A×H and updates being obtained by applying
?A and ?H . The security relies on the fact that the induced group action (G,T, ?G) is weakly pseudorandom.
Our UE scheme TOGA-UE is given in Fig. 12.

Proposition 3 (Correctness of updates). Let ke, ke+1 = (ae, he), (ae+1, he+1) be two keys and Ce =
he ?H (ae ?A s) for some s ∈ S. If ∆e+1 = TokenGen(ke, ke+1), then Upd(∆e+1, Ce) = he+1 ?H (ae+1 ?A s).

Proof. We reuse the notation of TokenGen, we have for ce = ReduceA(a−1e ae+1). Since ce ∼A ae+1a
−1
e , we

have that ce ?A (ae ?A s
′) = (h(ce, c

−1
e)h(ae+1a

−1
e , c−1e)−1) ?H ((ae+1a

−1
e ae) ?A s

′) by Proposition 2. The proof
is completed by the fact that (ae+1a

−1
e ae) ?A s

′ = ae+1 ?A s
′ and h(ce, c

−1
e) = 1H .

Proposition 4 (Correctness). The TOGA-UE scheme is correct.

Proof. Let e1 ≤ e2 ≤ n+1 be two epochs and let us consider a ciphertext ce2 updated through the successive
tokens ∆i+1 for i ∈ [e1, e2 − 1] from an initial ciphertext ce1 that is the encryption of a message m under
the key ke−1 as in Definition 7. Each key ki can be decomposed as ai, hi ∈ A × H. By definition of ce1 =
Enc(ke1 ,m), we have ce1 = (he1ψ(m)) ?H ae1 ?A ReduceS(s1) for some s1 ∈ S. By applying Proposition 3 on
s = ψ(m)?HReduceS(s1), we have that ce2 = he2ψ(m)?Aae2 ?AReduceS(s1) since ?A and ?H commute. Then,
let us take any be2 ∈ A′ such that ae2be2 ∼A 1A. By definition of h we know that (be2ae2)?Ax = h(be2 , ae2)?Hx
for any x ∈ S. Thus, s′ = (he2h(be2 , ae2))−1 ?H be2 ?A ce2 = ψ(M) ?H ReduceS(s1). Then, since the orbits
of ?H are exactly the equivalence classes of S, we have s′ ∼S s1 and so ReduceS(s′) = ReduceS(s1). Thus,
when we compute InvertH(s′,ReduceS(s′)) we obtain ψ(m) and the message is recovered by applying ψ−1.

4.4 Security - TOGA-UE is detIND-UE-CPA secure

Let A,H, S, ?A,∼A, ?H be an ETOGA, fix s0 ∈ S and let (G,T, ?G) be the group action induced by A (as in
Definition 12) where G := A/ ∼A and T := S/ ∼S . In Theorem 3, we show that our UE scheme TOGA-UE
(described in Fig. 12) is detIND-UE-CPA secure if the group action (G,T, ?G) is weakly pseudorandom. We

sample uniformly in T by sampling g
$←− G and returning the equivalence class of g ? s0 in T .

21

Setup(1λ):

1. (A,H, S, ?A,∼A, ?H)← T OGA(λ)

2. Choose ψ, s0 as above

3. pp← (A,H, S, ?A,∼A, ?H , ψ, s0)

4. return pp

KeyGen(pp):

1. a′
$←− A′

2. h
$←− H

3. return ReduceA(a′), h

TokenGen(ke, ke+1):

1. (ae, he)← ke
2. (ae+1, he+1)← ke+1

3. ce ← ReduceA(a−1
e ae+1)

4. Compute h = h(a−1
e ae+1, c

−1
e)

5. return ce, hhe+1h
−1
e

Upd(∆e+1, Ce):

1. a, h← ∆e+1

2. return h ?H (a ?A Ce)

Enc(ke,M):

1. r′
$←− A′

2. r ← ReduceA(r′)
3. s = ReduceS(r ?A s0)
4. (ae, he)← ke
5. return (ψ(M)he) ?H (ae ?A s)

Dec(ke, Ce) :

1. (ae, he)← ke
2. be ← ReduceA(a−1

e)
3. h′ ← h(ae, be)
4. s′ ← (heh

′)−1 ?H (be ?A Ce)
5. s← ReduceS(s′)
6. M ′ ← ψ−1(InvertH(s′, s))
7. return M ′

Fig. 12. TOGA-UE : UE from ETOGA.

Theorem 3 (TOGA-UE is detIND-UE-CPA). Let TOGA-UE be the UE scheme described in figure 12 for an
ETOGA family T OGA. We define a group action family GA, where GA(1λ) is (G,T, ?G), the group action
induced by A ∈ T OGA(1λ) (as in Definition 12). For any adversary A, there exists a reduction B such that

AdvdetIND-UE-CPA
TOGA-UE,A (λ) ≤ O(1)(n+ 1)3 ·Advwk-PR

GA,B (λ)

Proof. The proof uses the same hybrid argument as the one of Theorem 1, thus we only point out the
differences between both proofs. Contrary to the proof of Theorem 1, we do not need to use the ideal cipher
model. Indeed, in TOGA-UE, randomization of ciphertexts is not done through the permutation ψ. Thus, we
do not need to “program” ψ to get consistent randomness throughout our reduction.

Our reduction B, given in Fig. 13, starts by receiving a group action (G,T, ?G) and an oracle O.Sample

that returns either tuples of the form (ti, g ?G ti) or (ti, ui) where g
$←− G and ti, ui

$←− T . We use the same
hybrid argument over insulated regions as in Theorem 1. B will use the tuples of O.Sample to perfectly
simulate the detIND-UE-CPA experiment for TOGA-UE when those tuples are of the form (ti, g ?G ti). Thus,
if we know an efficient adversary A against the detIND-UE-CPA security of TOGA-UE, using the hybrid
argument of Theorem 1, B can use A to break the weak pseudorandomness of (G,T, ?G).

Our reduction B uses the following notations. Given a ciphertext Ce and a token ∆e, we can downgrade
Ce to epoch e− 1 like so :

1. (c, h)← ∆e

2. b← ReduceA(c−1)
3. h′ ← h(b, c)
4. Ce−1 ← (hh′)−1 ?H (b ?A Ce)
5. return Ce−1

For readability, we will use the (abuse of) notation ∆−1e ?Ce to denote this downgrade. Similarly, if ∆e = (c, h),
we will use the notation ∆e ? Ce−1 to denote the update h ?H (c ?A Ce−1).

22

Reduction B playing Expwk-PR-b∗

GA,B (λ)

1. receive (G,T, ?G) and O.Sample
2. do Setup(1λ)
3. M̄, C̄ ← Aors(λ)
4. phase← 1
5. C̃ẽ ← O.Chall(M̄, C̄)

6. b′ ← Aors,O.UpdC̃(C̃ẽ)
7. twf ← 1 if
8. C∗ ∩ K∗ 6= ∅ or
9. I∗ ∩ C∗ 6= ∅

10. if ABORT occurred or twf = 1
11. b′

$←− {0, 1}
12. return b′

13. if (i, fwli, fwri) /∈ FW
14. b′

$←− {0, 1}
15. return b′

16. if b′ = b
17. return 0
18. else
19. return 1

Setup(1λ)

1. b
$←− {0, 1}

2. pp← TOGA-UE.Setup(1λ)
3. k0 ← TOGA-UE.KeyGen(pp)
4. ∆0 ←⊥
5. e, c, phase, twf ← 0
6. L, L̃, C,K, T ← ∅
7. fwli, fwri

$←− {0, . . . , n}
8. for j ∈ {0, . . . , fwli − 1} ∪ {fwri +

1, . . . , n} do

9. aj
$←− G, hj

$←− H; kj ← (aj , hj)
10. ∆j ← TOGA-UE.

TokenGen(kj , kj+1)./

11. for j ∈ {fwli + 1, . . . , fwri} do

12. cj
$←− G, hj

$←− H;∆j ←
(cj , hj)

13. hfwli
$←− H

O.Enc(M)

1. c← c + 1
2. (inf1, inf2)← O.Sample()
3. if e ∈ {0, fwli − 1} ∪ {fwri +

1, . . . , n}
4. (ae, he)← ke
5. Ce ← (ψ(M)he) ?H (ae ?G inf1)
6. else
7. Cfwli ← (ψ(M)hfwli) ?H inf2
8. for j ∈ {fwli + 1, . . . , e} do
9. Cj ← ∆j ? Cj−1

10. inf ← (inf1, inf2,M)
11. L ← L ∪ {(c, Ce, e; inf)}
12. return Ce

O.Next

1. e← e + 1

O.Upd(Ce−1)

1. if (c, Ce−1, e− 1; inf) /∈ L
2. return ⊥
3. if e ∈ {1, . . . , fwli − 1} ∪ {fwri +

1, . . . , n}
4. (inf1, inf2,M)← inf
5. (ae, he)← ke
6. Ce ← (ψ(M)he) ?H (ae ?G inf1)
7. else
8. (inf1, inf2,M)← inf
9. Cfwli ← (ψ(M)hfwli) ?H inf2

10. for j ∈ {fwli + 1, . . . , e} do
11. Cj ← ∆j ? Cj−1

12. L ← L ∪ {(c, Ce, e; inf)}
13. return Ce

O.Corr(inp, ê)

1. do Check(inp, ê; e; fwli, fwri)

2. if inp = key

3. K ← K ∪ {ê}
4. return kê
5. if inp = token

6. T ← T ∪ {ê}
7. return ∆ê

O.Chall(M̄, C̄)

1. if (c, C̄, ẽ− 1; inf) /∈ L
2. return ABORT

3. if b = 0

4. (s, t)← O.Sample()

5. r ← s

6. C̃fwli ← (ψ(M̄)hfwli) ?H t

7. else

8. (inf1, inf2,M)← inf

9. r
$←− T

10. C̃fwli ← (ψ(M)hfwli) ?H inf2
11. for j ∈ {0, . . . , fwli − 1} do

12. C̃j ← (
∏1
k=j ∆k)(

∏ẽ−1
k=1∆

−1
k)?C̄

//left

13. for j ∈ {fwli + 1, . . . , fwri} do

14. C̃j ← ∆j ? C̃j−1 //embed

15. for j ∈ {fwri + 1, . . . , n} do

16. (aj , hj)← kj
17. C̃j ← (ψ(M̄)hj) ?H (aj ?G r)

//right

18. L̃ ← ∪nj=0{(C̃j , j)
19. return C̃e

O.UpdC̃

1. C ← C ∪ {e}
2. find (C̃e, e) ∈ L̃
3. return C̃e

Fig. 13. Our reduction B for proof of th. 3 in hybrid i. inf encodes fixed programming information: it marks two
set elements (inf1, inf2) sampled with O.Sample and a plaintext M . inf1 is the randomness used during encryp-
tion, inf2 is used to compute the ciphertext value in epoch fwli and M is the plaintext. ors refers to the set
{O.Enc,O.Next,O.Upd,O.Corr}. ./ indicates that ∆0 and ∆fwri+1 are skipped in the computation.

23

In TOGA-UE, a ciphertext is of the form Ce := he ?H (ae ?G r) with ke := (ae, he), where ae
$←− G,

he
$←− H and r

$←− T is the randomness used during the first encryption. Reduction B will try to embed
the O.Sample tuples in the i-th insulated region [fwli, fwri]. If (r, s) ← O.Sample(), B uses r as randomness
for new ciphertexts. When updating ciphertext Cfwli−1 := hfwli−1 ?H (afwli−1 ?G r) to epoch fwli, B sets
Cfwli := hfwli ?H s where hfwli is simulated by B. If (r, s) is of the form (r, g ?G r), B has embedded g into
kfwli := (g, hfwli) and the randomness of the ciphertext stays consistent because of Proposition 3. Else, if (r, s)
is a tuple of random elements of T , the ciphertexts inside the i-th insulated region are all random (there is
no consistent key or randomness linking them).

Recall that a token ∆e+1 := (ce, hhe+1h
−1
e) where he, he+1 are part of the epoch keys ke and ke+1 and

ce, h are computed by Upd using those keys. When both keys are unknown (like in the i-th insulated region),
ce is uniformly distributed in G by Definition 14 item 2e. Recall that h ∈ H is useful for the correction of
updates (see Proposition 3) and that it is not independent of ce. However, he and he+1 are sampled uniformly
in H and are not used in the computations of ce and h. Since he and he+1 are unknown to the adversary
in the i-th insulated region, hhe+1h

−1
e is uniformly distributed in H and reduction B can perfectly simulate

tokens inside the i-th insulated region.
Because of the correctness of updates in TOGA-UE (see Proposition 3) and of the observations above,

when O.Sample returns tuples of the form (ti, g ?G ti), the reduction B perfectly simulates the environment
of the adversary A and we get a similar result as the one of Theorem 1.

On the CCA security of TOGA-UE. Unlike GAINE, making TOGA-UE CCA secure appears to be hard.
Indeed, our construction has a pretty clear malleability property: let M,M ′ be two distinct messages, under
the ψ map we get two elements h := ψ(M), h′ := ψ(M ′). Then, for any encryption c of the message M , we
compute h′h−1 ?H c to obtain a valid encryption of M ′. We leave the problem of making TOGA-UE CCA
secure open for future work.

5 Instantiation from isogenies

The GAINE construction introduced in Section 3 requires a MEGA, i.e., that the underlying group action is
mappable (which we showed was implying the group action to be hashable). Isogeny-based cryptography is
one of the main provider of cryptographic group action so it is natural to ask if we can instantiate GAINE from
them. Unfortunately, it is notoriously hard to hash into the set of supersingular curves [7] and this implies
that building a MEGA from isogenies is probably very hard. This fact is what motivated the introduction
of our new TOGA framework to build UE. In fact, our UE scheme is inspired by the SIGAMAL encryption
scheme from Moriya, Onuki and Takagi [26]. Instead of encrypting messages as curves (wich would require
to hash into the set of supersingular curves), we propose to encrypt messages as scalars similarly to what
is done in SIGAMAL. In that sense, the instantiation of our UE scheme with isogenies can be considered
as an updatable version of SIGAMAL. More precisely, our main group action will be the one of fractional
ideals of quadratic orders on orientations of supersingular curves. Under the usual equivalence relation on
ideals, the group action induced by this group action is the standard group action of the class group on
oriented supersingular curves used in isogeny-based cryptography [10,12,16]. To obtain the richer structure
of TOGA as in Definition 13, we consider orientations on curves with a level N -structure, i.e., curves that
are enriched with a point of order N . In that setting, the group H is simply Z/NZ∗ and the action ?H is the
scalar multiplication on the points of order N . For everything to be well-defined and behave as expected by
our computational model, we must take N as a smooth number split in the quadratic order.

5.1 A TOGA from isogenies.

We fix a prime p and consider the supersingular elliptic curves in characteristic p. In practice, they can
always be defined over Fp2 . We take a quadratic order O of discriminant ∆ and write K for the quadratic
imaginary field Q⊗O.

24

Definition 15. For any elliptic curve E, a K-orientation is a ring homomorphism ι : K ↪→ EndE ⊗ Q. A
K-orientation induces an O-orientation if ι(O) = EndE ∩ ι(K). In that case, the couple (E, ι) is called an
O-oriented curve and E is an O-orientable curve.

In what follows, we consider the elements of S(p)/π rather than S(p) because the Frobenius π creates
two orientations (one in E and one in E(p)) from each optimal embedding of O in a quaternion maximal
order of Bp,∞. Note that this is not the convention taken in [29,38] where orientations are not considered up
to Galois conjugacy.

Definition 16. SO(p) is the set of O-oriented curves E, ι up to isomorphisms and Galois conjugacy.

More concretely, we obtain an orientation E, ι by an endomorphism θ ∈ End(E) such that ι(O) = Z[θ].
Note that SO(p) may be empty for some quadratic orders O but it is also non-empty for an infinite number
of order O given any prime p.

The group action of fractional ideals. When we consider fractional O-ideal, we get an abelian group (for
the multiplication operation). This group acts on the elements of SO(p) by an operation that we write ?A.
This action is computed concretely using isogenies. Given an integral ideal a and E, ι ∈ SO(p), we define the
kernel of a as E[a] := {P ∈ E[n(a)] | ι(α)(P) = 0, ∀α ∈ a}. The isogeny ϕEa : E → Ea is simply the isogeny
of kernel E[a]. Thus, we have Ea = E/E[a] and ιa(x) = 1

n(a)ϕ
E
a ◦ ι(x) ◦ ϕ̂Ea .

Fractional ideals can always be expressed as the multiplication of an integral ideal and a scalar in Q.
Thus, we will decompose the action of fractional ideals by applying first the action of the integral part as
defined above, then by doing a scalar multiplication. We will explain how we propose to do this exactly a
bit later when we introduce the set S.

Since our goal, in the end, is to get an ETOGA as defined in Section 4.2, we define the concrete group
A that we will use as a subgroup of the group of O-ideals. This restriction is motivated by efficiency of the
computation of ?A. Indeed, the cost of computing an isogeny of degree D is in O(

√
D′) where D′ is the

biggest factor of D (see [3]). Thus, it is pointless to consider ideals that are multiples of prime ideals of big
prime norm. This is why we fix an effective factor base of the O-ideals as a collection of ideals l1, . . . , ln where
each li is an ideal of norm `i for a small prime `i that is split in O (here, small is to be considered with respect
to some complexity parameter λ). Note that any such ideal li has a dual ideal, usually denoted by li, such
that O`i = lili. Then, we can define the inverse of li as l−1i := li/`i. Thus, lei is defined for any e ∈ Z. With

these definitions, we set our group A as 〈l1, . . . , ln〉Z := {
∏n
i=1 l

ei
i `

fi
i | (e1, . . . , en) ∈ Zn, (f1 . . . , fn) ∈ Zn},

the subgroup generated by our collection of prime ideals and their inverse. The implicit bijection between A
and Z2n given in our definition provides a way of representing the elements of A.

The standard cryptographic group action used in isogeny-based cryptography is obtained from our main
group action of ideals by considering the equivalence relation ∼A defined as a ∼A b iff there exist non
zero-elements a, b ∈ O with (a)a = (b)b. It can be verified that ∼A is a congruence relation and so A/ ∼A is
an abelian group. If n is big enough A contains all equivalence classes of O-ideals. In that case, the group
A/ ∼A is called the class group of O and written Cl(O). By definition of SO(p) (up to isomorphisms and
Galois conjugacy), equivalent ideals act identically on the elements of SO(p). Thus, the group action induced
by ?A on SO(p) as in Definition 12 is the usual isogeny-based group action. Since we clearly have `a ∼A a
for any ` ∈ Q∗ and a ∈ A, we see that any ideal class of A/ ∼A admits a representative of the form

∏n
i=1 l

ei
i

where (e1, . . . , en) ∈ Zn. Thus, we can use elements of Zn to represent the elements of G. More concretely,
Φ : (e1, . . . , en) 7→

∏n
i=1 l

ei
i yields an isomorphism between A/ ∼A and Zn/L where L is the lattice generated

by the e ∈ Zn such that Φ(e) ∼A 1A. The lattice L is usually called the lattice of relations of Cl(O) for the
factor basis l1, . . . , ln.

The orbital group action. We now introduce our third group action (written ?H in Definition 13). To get
this orbital group action, our idea is to use the group of points of the orientable elliptic curves. Let us take
N a split integer in O coprime with all the `i for 1 ≤ i ≤ n. We can consider elements of the form E, ι, P
where P ∈ E[N] has order N . The group of fractional ideals of norm coprime with N acts on this set in the

25

following manner: let us consider the fractional ideal (a/b)a where a is an integral ideal, we have the action
(a/b)a ? (E, ι, P) = Ea, ιa, [ac]ϕ

E
a (P) where c = b−1 mod N . However, in this setting, it seems hard to get a

group action ?H as we desire. Indeed, equivalent ideals will send E, ι, P on E1, ι1, P1 and E2, ι2, P2 where we
have E1, ι1 = E2, ι2 but we cannot tell anything on the points P1, P2 apart from the fact that they are two
points of order N . Fortunately, if we restrict the set of points of order N we consider, the situation becomes
a lot simpler. For that, if we have O = Z[θ], it suffices to consider one eigenvalue of θ, i.e., one value ν such
that ker(ι(θ) − ν) ∩ E[N] is a cyclic subgroup of order N . Since N is split, we know there exists one such
eigenvalue ν and if P ∈ ker(ι(θ)− ν) ∩ E[N], we get that ϕEa(P) ∈ ker(ιa(θ)− ν) ∩ Ea[N]. Let us take

S = {(E, ι, P) | (E, ι) ∈ SO(p) and 〈P 〉 = E[N] ∩ ker(ι(θ)− λ}. (1)

With that choice of S, the image under the group action of two equivalent fractional ideals a1, a2 on E, ι, P ∈ S
will give E1, ι1, P1 and E2, ι2, P2 with P1 and P2 in the same subgroup, i.e., there exists µ ∈ H = Z/NZ∗
such that P1 = µP2. Moreover, it is easily verified that the scalar µ depends only of two ideals a1, a2 (and
not of E, ι and P). This scalar µ is what we call h(a1, a2) in our definition of a TOGA.

In that setting, for any scalar h ∈ H, we define h ?H (E, ι, P) as (E, ι, [h]P) and it can be verified that
(A,H, S, ?A,∼A, ?H) is a TOGA.

5.2 Making the isogeny TOGA effective

To instantiate our protocol, we not only need a TOGA but an ETOGA as in Section 4.2. Below, we address
the efficiency requirements. We try to stay generic in our approach and a more detailed example can be
found in Section 5.3.

In fact, we are going to see that our proposed solution from isogeny is not exactly an ETOGA, but we can
assume every operations to be practical assuming some (possibly-heavy) precomputation. In what follows,
we discuss these limitations to understand what are the main obstacles.

The elements of S and the canonical representation of equivalence classes. We need to verify that the set S
satisfies several properties. First, it needs to be finite which is our case (the cardinal is equal to ϕ(N)h(O)
where ϕ is Euler’s totient function). Regarding the existence of an origin s0, it suffices to fix an element
s0 ∈ S as the origin. There may be different ways of finding one, depending on the concrete O and p, but
a generic algorithm to compute one was described in [16] (in the context of generating backdoor curves for
the Séta encryption scheme). Regarding the unique representation of the elements of S, it suffices to use a
canonical representation of a class of isomorphic curves (using the j-invariant for instance). Once the curve
E is fixed, we can deterministically derive a representation of the orientation ι and of any point P . The naive
way of representing the point P would be by giving its coordinates x, y but we propose to use another way
that is more compact in most cases. The idea is that given a basis P1, P2 of E[N], any points P ∈ E[N] is
equal to [a]P1 + [b]P2 for some a, b ∈ Z/NZ. If the basis P1, P2 can been computed deterministically from
E, the coefficients a, b are enough to recover the point P from the knowledge of E. This representation has
size 2 log(N) which is usually a lot better that what we can expect with the naive method (that can be in
O(N log(p)) in the worst case). A deterministic algorithm to compute a basis of E[N] from N can be easily
derived from a deterministic algorithm Point(E,N, i) that takes an elliptic curve E and two integers i,N
and outputs a point P (i) of order N in E (the role of i is simply to index the points). There are numerous
examples of such algorithms in the literature (see [39,27,2,14,31] for instance) so we do not describe one in
detail. This algorithm will be useful for ReduceS as well.

Membership testing for a given element E, ι, P in S consists in: veriyfing that E is supersingular, that
ι is a correct orientation and that P is in ker(ι(θ) − ν) and has order N . The first check can always be
performed in polynomial time if p is in poly(λ) by counting the point of the curve E which is a well-sudied
task that can be solved in polynomial-time with the SEA algorithm. The second check will really depend on
the choice of O so it cannot be described generically but the idea is that we need to be able to verify the
norm and trace of ι(θ). For the third check, we simply need to be able to perform efficient operations on the
N -torsion, so we need E[N] to be defined over a field extension of degree polynomial in p. For the example
of CSIDH given in Section 5.3 all these operations are efficient.

26

The last ingredient we need for S is the ReduceS algorithm. Its goal is to determine a unique representative
of the classes of S for the equivalence relation ∼S . We recall that these classes correspond to the orbits of
the group action of H. Thus, what we need concretely is an efficient way to compute a canonical point PE
of order N in E[N] ∩ ker(ι(θ) − ν) from E, ι. We will use the Point algorithm for that. Let us write ν′, the
second eigenvalues of ι(θ).
ReduceS(E, ι, ·) :

1. Compute U = E[N] ∩ ker(ι(θ)− ν) and V = E[N] ∩ ker(ι(θ)− ν′).
2. Let i = 0, Repeat the following:

(a) P = Point(E,N, i).
(b) Compute the unique decomposition P = PU + PV where PU ∈ U and PV ∈ V .
(c) i = i+ 1.

3. Until PV has order N .
4. Return E, ι, PV .

The unique decomposition P = PU +PV can be computed efficiently because the discrete logarithm problem
is easy in E[N].

Making (H,S, ?H) into an EEGA. First, note that it is easily verified that the group H = Z/NZ∗ is meeting
all the requirements in terms of membership and equality testing, sampling and operations. Finally, the
group action ?H being the scalar multiplication, it is clear that it can be performed in polynomial time
when all the other operations can be done in PPT. For (H,S, ?H) to be an EEGA, we need to be able to
invert efficiently ?H . It is easily seen that InvertH is simply a DLP in a cyclic subgroup of E[N]. For this
operation to be efficient with the Pohlig-Hellman algorithm, we need N to be smooth (with smoothness
bound polynomial in λ). Fortunately, this condition is rather agreeable with the other constraint regarding
the field of definition of E[N]. Indeed, for any prime p, we know that E[N] has a field of definition whose
degree is polynomial (in the powersmoothness bound of N) for any p. In practice, we can even choose the
prime p to ensure that E[N] is defined over Fp or Fp2 . This allows us to consider smooth values of N as well
(for instance a power of 2).

The subset A′. The main requirement for A′ is efficiency of ?A. The complexity of this computation mainly
depends on n(a) (because ?A consists in the computation of an isogeny of degree n(a)). More concretely,
the computation of an isogeny of degree

∏n
i=1 `

ei
i is in O(nmax1≤i≤n ei max1≤i≤n

√
`i). Thus, we need that

n,max1≤i≤n `i and max1≤i≤n ei are all polynomial in λ. We have already assumed that it was the case for n
and the `i, so we only need to put a bound m on the exponent. This motivates to set A′ as {

∏n
i=1 l

ei
i | e =

(e1, . . . , en) ∈ Zn and ‖e‖∞ ≤ m}, where m = poly(λ). Under the map Φ that we introduced in Section 5.1,
we can sample elements of A′ as image under Φ of random vectors in the ball B∞(m) = {e ∈ Zn | ‖e‖∞ ≤ m}
inside Zn and it is clear that we can sample uniform vectors in that set. In the definition of an ETOGA,
we also need that A′ covers all equivalence classes of A/ ∼A and that sampling in A′ gives classes that
are statistically distributed uniformly in G. We see that the cardinal of A′ is (2m + 1)n. Thus, even when
#A/ ∼A is exponential in λ, we can take values of m,n = poly(λ) such that A′ is big enough to hope that
all equivalence classes are covered and that sampling in A′ provide a good distribution in Cl(O). In practice,
this is what we observer for the example given in Section 5.3.

Regarding the ReduceA function, we use Φ again. Let us take an element a ∈ A. We know that this
corresponds to an element of Z2n. Once again, since scalars are in the class of 1A, we can simply ignore
them and consider the equivalent ideal of the form

∏n
i=1 l

ei
i that corresponds to the vector (e1, . . . , en) ∈ Zn

under the map Φ. The ideal that we look for is Φ(e′) where e′ ∈ B∞(m) and e′ ∈ L. If m is big enough,
a correct solution e′ is given by solving a Closest Vector Problem (CVP). Hence, we define a parameter
γ ≥ 1 and look for a solution of the γ-CVP. Of course, the parameter γ and m need to be compatible in the
sense that we want the solutions of our γ-CVP to be contained in B∞(m). Hence the ReduceA algorithms
consists in the following steps given an ideal a as input: divide a by its scalar factor to get another ideal a′,
compute e = Φ−1(a′), compute e′ a solution for the γ-CVP for e and L, output Φ(e′). The complexity of
ReduceA mainly depends on the complexity of solving the γ-CVP problem. The best known algorithm are

27

sub-exponential in the dimension of the lattice L (here it is n) but the cost can be greatly reduced if the
lattice L comes with a small basis of L (see [18]). This shifts the computational cost to the precomputation
of a nice basis of L. In any case, the computation of L has sub-exponential in the worst case so we might as
well assume that we also compute a good basis. The choice of γ might also offer interesting tradeoffs between
the cost of ?A and the cost of ReduceA.

5.3 Concrete instantiation for isogeny TOGA and TOGA-UE

In this section, we describe concretely how to obtain our ETOGA from isogenies. For that, the most important
choice is the one of the quadratic order O. While we have described the set SO(p) and the action of O-ideals
in full generality, in practice, there are only a few examples for which we know how to efficiently compute
and represent the embedding ι and use it to compute the action of some O-ideals. We propose to use the
CSIDH group action from Castryck et al. [10].

In CSIDH, we have O = Z[
√
−p] = Z[θ]. In that case, we can show that SO(p) is not empty and that

the embedding ι is obtained with ι(θ) as the Frobenius morphism π : (x, y) 7→ (xp, yp). This morphism is
a well-defined endomorphism of the supersingular curve E if and only if j(E) ∈ Fp so membership testing
can be done very easily. For a choice of p of the form p = c

∏n
i=1 `i ± 1, we end up with all the primes

`i being split in O and with efficient `i-isogeny computations which is why we consider ideals of norm
divisible by the `i for the generators of A. The smooth integer N (which must be coprime with all the `i)
can be chosen as a divisor of f if we want our points of N -torsion to be defined over Fp. If we allow for
extensions of bigger degree, we can take N as a smooth divisor of #E(Fpk) for a small value of k. From
there, the only remaining obstacle to get an ETOGA is the computation of the lattice of relation L. Indeed,
the computation of the class group’s structure has sub-exponential classical complexity. For the prime of
CSIDH-512, this structure and the corresponding lattice of relations was computed (breaking the record
for the biggest class group computation) for the CSI-FiSh protocol [4]. However, given the sub-exponential
complexity of this precomputation, it appears unrealistic to hope doing the same thing for bigger values of
p. This is problematic because the level of security reached by CSIDH-512 is still unclear and could be quite
far from the initially claimed NIST level-1 [30,6]. Moreover, our requirement of having the N -torsion defined
over a small extension imposes even more constraints on the choice of p, which could imply to increase the
size of p for the same level of security, thus making the precomputation even harder. Below, we give more
details on the instantiation of our UE sheme based on CSIDH-512. We want to stress that establishing the
exact level of security is out of the scope of this paper so we do not claim any particular security for this
instantiation.

The number of small primes used in CSIDH is n = 74. It is constituted of the 73 smallest primes completed
by `74 = 587. The cofactor c to construct the prime p is taken as c = 4. In that setting where the cofactor
is very small, we cannot take N as a divisor of c, and so we need to look at the torsion defined over field
extensions of Fp. For instance, looking at supersingular curves over Fp with points over Fp6 and considering
the quadratic twists as well, we can get a value N ≈ 2100 with a smoothness bound equal to 226. More
precisely we get N = 2 · 3 · 81331 · 316423 · 903311 · 148811 · 34785769. In that setting, we can represent
elements of S with roughly 712 = 2 log(N) + log(p) bits.

As we explained, the lattice of relation L of dimension 74 and volume Cl(O) ≈ √p was computed by
the authors of the CSI-FiSh construction [4]. After obtaining a first basis for this lattice, they tried several
solutions such as BKZ, and HKZ [22,33] to precompute a reduced basis in order to solve the CVP more
efficiently (we remind the reader that solving a CVP is the main step in the ReduceA algorithm). In CSI-
FiSh, they propose to reduce further the norm of the solutions by applying the DLW algorithm [23]. This
algorithm uses a list of short vectors of the lattice and searches for a solution by moving the initial vector
with these short vectors. In their experiment, the authors of CSI-FiSh witnessed that the best performances,
considering the time of ReduceA and the cost of the action computation as their metric, were obtained with
solutions found by using a HKZ basis, applying Babai’s nearest plane method and applying three times the
DKW algorithm with a list of size 10000. In that case, the average `1 -norm is 213.97 ± 10.92 and they
reported a computation cost of 135.41± 8.82 millions of cycles (for the execution of ReduceA and the group
action computation).

28

To estimate the cost of the group action computation in our case, we need to look at the additional cost
of evaluating the isogenies on the points of order N . The other operations (such as scalar multiplication on
the point of order N) are completely negligible in comparison. To estimate the cost of the evaluation, we can
see that we need to perform the same operations for the usual group action computation but in Fp6 . Thus,
we can roughly estimate that the group action cost in our case will be the one of CSI-FiSh group action
multiplied by the overhead caused by the Fp6 -arithmetic in comparison to the Fp arithmetic. Depending
on the way the arithmetic over Fp6 is implemented this should vary between 6 and 36 (mainly due to the
multiplications over Fp6). We leave a more detailed study of performances for future work.

In terms of security, the CSIDH group action is believed to be weak pseudorandom. Generically, the weak
pseudorandom problem for our generic isogeny-based TOGA is related to the O-DDH assumption studied
in [11,9].

In conclusion, due to the hardness of computing the lattice of relations, CSIDH maybe not be the perfect
candidate to instantiate our new construction, even though we do not have any better solutions for now.
For another instantiation, we can mention the OSIDH key exchange [12] based on the same group action
but with a different quadratic order. However, [15] exhibited an attack on OSIDH that explicitly uses the
lattice of relations needed for our protocol so OSIDH is probably not a good match for us. The link between
quadratic orders and supersingular curves is only beginning to reveal its full potential as most of the work we
mentioned are less than five years old. In the future, we can hope that new constructions will be introduced
and be more friendly to our scheme. We can also mention the group action introduced in [25]. This group
action is in essence different from the one based on quadratic orders that we presented, so it is not clear if
we could derive a TOGA from it, but it is a matter that could be worth investigating.

References

1. Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis, Cryptographic group actions and ap-
plications, Advances in Cryptology – ASIACRYPT 2020: 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020, Proceedings,
Part II (Berlin, Heidelberg), Springer-Verlag, 2020, p. 411–439.

2. Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher Leonardi, Key compression for
isogeny-based cryptosystems, Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryp-
tography, ACM, 2016.

3. Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith, Faster computation of isogenies of large
prime degree, ANTS (2020).

4. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren, Csi-fish: Efficient isogeny based signatures through
class group computations, International Conference on the Theory and Application of Cryptology and Information
Security, Springer, 2019, pp. 227–247.

5. Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan, Key homomorphic prfs and their appli-
cations, Advances in Cryptology – CRYPTO 2013 (Berlin, Heidelberg) (Ran Canetti and Juan A. Garay, eds.),
Springer Berlin Heidelberg, 2013, pp. 410–428.

6. Xavier Bonnetain and André Schrottenloher, Quantum security analysis of CSIDH, Advances in Cryptology -
EUROCRYPT 2020, 2020, pp. 493–522.

7. Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D Galbraith, Sabrina Kunzweiler,
Simon-Philipp Merz, Christophe Petit, Benjamin Smith, Katherine E Stange, et al., Failing to hash into super-
singular isogeny graphs, arXiv preprint arXiv:2205.00135 (2022).

8. Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang, Fast and secure updatable encryption, Advances
in Cryptology – CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Bar-
bara, CA, USA, August 17–21, 2020, Proceedings, Part I, Springer-Verlag, 2020, p. 464–493.

9. Wouter Castryck, Marc Houben, Frederik Vercauteren, and Benjamin Wesolowski, On the decisional diffie-
hellman problem for class group actions on oriented elliptic curves, Cryptology ePrint Archive (2022).

10. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes, Csidh: an efficient post-
quantum commutative group action, International Conference on the Theory and Application of Cryptology and
Information Security, Springer, 2018, pp. 395–427.

11. Wouter Castryck, Jana Sotáková, and Frederik Vercauteren, Breaking the decisional diffie-hellman problem for
class group actions using genus theory, Annual International Cryptology Conference, Springer, 2020, pp. 92–120.

29

12. Leonardo Colò and David Kohel, Orienting supersingular isogeny graphs, Number-Theoretic Methods in Cryp-
tology 2019 (2019).

13. Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin, The random oracle model and the ideal cipher model
are equivalent, Advances in Cryptology – CRYPTO 2008 (Berlin, Heidelberg) (David Wagner, ed.), Springer Berlin
Heidelberg, 2008, pp. 1–20.

14. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik, Efficient compression of SIDH public keys,
pp. 679–706, Springer International Publishing, 2017.

15. Pierrick Dartois and Luca De Feo, On the security of osidh, IACR International Conference on Public-Key
Cryptography, Springer, 2022, pp. 52–81.

16. Luca De Feo, Cyprien Delpech de Saint Guilhem, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Christophe
Petit, Javier Silva, and Benjamin Wesolowski, Séta: Supersingular encryption from torsion attacks, International
Conference on the Theory and Application of Cryptology and Information Security, Springer, 2021, pp. 249–278.

17. Edward Eaton, David Jao, Chelsea Komlo, and Youcef Mokrani, Towards post-quantum updatable public-key
encryption via supersingular isogenies, Cryptology ePrint Archive (2020).

18. Thomas Espitau and Paul Kirchner, The nearest-colattice algorithm: Time-approximation tradeoff for approx-cvp,
Open Book Series 4 (2020), no. 1, 251–266.

19. Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun, General linear group action on tensors: A candidate for
post-quantum cryptography, Theory of Cryptography (Cham) (Dennis Hofheinz and Alon Rosen, eds.), Springer
International Publishing, 2019, pp. 251–281.

20. Yao Jiang, The direction of updatable encryption does not matter much, Advances in Cryptology – ASIACRYPT
2020 (Cham) (Shiho Moriai and Huaxiong Wang, eds.), Springer International Publishing, 2020, pp. 529–558.

21. Michael Klooß, Anja Lehmann, and Andy Rupp, (r)cca secure updatable encryption with integrity protection,
Advances in Cryptology – EUROCRYPT 2019 (Cham) (Y. Ishai and V. Rijmen, eds.), Springer International
Publishing, 2019, pp. 68–99.

22. Aleksandr Korkine and G Zolotareff, Sur les formes quadratiques, Mathematische Annalen 6 (1873), no. 3, 366–
389.

23. Thijs Laarhoven, Sieving for closest lattice vectors (with preprocessing), International Conference on Selected
Areas in Cryptography, Springer, 2016, pp. 523–542.

24. Anja Lehmann and Björn Tackmann, Updatable encryption with post-compromise security, Advances in Cryptol-
ogy – EUROCRYPT 2018 (Cham) (J. B. Nielsen and V. Rijmen, eds.), Springer International Publishing, 2018,
pp. 685–716.

25. Antonin Leroux, A new isogeny representation and applications to cryptography, Cryptology ePrint Archive
(2021).

26. T. Moriya, H. Onuki, and T. Takagi, Sigamal: a supersingular isogeny-based pke and its application to a prf,
International Conference on the Theory and Application of Cryptology and Information Security, Springer, 2020,
pp. 551–580.

27. Michael Naehrig and Joost Renes, Dual isogenies and their application to public-key compression for isogeny-based
cryptography, Advances in Cryptology – ASIACRYPT 2019 (Cham) (Steven D. Galbraith and Shiho Moriai, eds.),
Springer International Publishing, 2019, pp. 243–272.

28. Ryo Nishimaki, The direction of updatable encryption does matter, Public-Key Cryptography – PKC 2022: 25th
IACR International Conference on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8–11,
2022, Proceedings, Part II (Berlin, Heidelberg), Springer-Verlag, 2022, p. 194–224.

29. Hiroshi Onuki, On oriented supersingular elliptic curves, Finite Fields and Their Applications 69 (2021), 101777.
30. Chris Peikert, He gives C-sieves on the CSIDH, Advances in Cryptology - EUROCRYPT 2020, 2020, pp. 463–492.
31. Geovandro C. C. F. Pereira, Javad Doliskani, and David Jao, x-only point addition formula and faster torsion

basis generation in compressed sike, Cryptology ePrint Archive, Report 2020/431, 2020.
32. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz, Ocb: A block-cipher mode of operation for efficient

authenticated encryption, Proceedings of the 8th ACM Conference on Computer and Communications Security
(New York, NY, USA), CCS ’01, Association for Computing Machinery, 2001, p. 196–205.

33. Claus-Peter Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoretical computer
science 53 (1987), no. 2-3, 201–224.

34. C. E. Shannon, Communication theory of secrecy systems, The Bell System Technical Journal 28 (1949), no. 4,
656–715.

35. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proceedings 35th Annual
Symposium on Foundations of Computer Science, Nov 1994, pp. 124–134.

36. Gang Tang, Dung Hoang Duong, Antoine Joux, Thomas Plantard, Youming Qiao, and Willy Susilo, Practical
post-quantum signature schemes from isomorphism problems of trilinear forms, Cryptology ePrint Archive, Report
2022/267, 2022.

30

37. J. Vélu, Isogénies entre courbes elliptiques, Comptes-Rendus de l’Académie des Sciences, Série I 273 (1971),
238–241.

38. B. Wesolowski, Orientations and the supersingular endomorphism ring problem, Cryptology ePrint Archive, Re-
port 2021/1583, 2021.

39. Gustavo H. M. Zanon, Marcos A. Simplicio, Geovandro C. C. F. Pereira, Javad Doliskani, and Paulo S. L. M.
Barreto, Faster isogeny-based compressed key agreement, Post-Quantum Cryptography (Tanja Lange and Rainer
Steinwandt, eds.), Springer International Publishing, 2018, pp. 248–268.

A The Check algorithm

In our proofs, reductions play hybrid games and guess the location of the i-th insulated region. If the
adversary sends a corrupt query inside this insulated region, the guess is wrong and reductions have to
abort. We use the algorithm Check of [8], described in Fig. 14, to check if this event happens.

Check(inp, ê; e; fwl, fwr)

1. if ê > e
2. return ⊥
3. if inp = key and ê ∈ {fwl, . . . , fwr}
4. return ABORT

5. if inp = token and ê ∈ {fwl, . . . , fwr + 1}
6. return ABORT

Fig. 14. Algorithm Check of [8] used in our proofs. ê is the epoch in the adversary’s request and e is the current
epoch.

B The link between MEGA and hashable EGA

In the following, let GA be a group action family. We define one-way group actions.

Definition 17 (One-Way Group Action [1]). Let (G,S, ?) be GA(λ) for some security parameter λ.
Let DG and DS be distributions on G and S respectively. For s ∈ S, let fs : G → S be the function defined
by fs : g 7→ g ? s. We say that (G,S, ?) is (DG,DS)-one-way if, for all PPT adversaries A, we have :

Pr[fs(A(s, fs(g))) = fs(g)] ≤ negl(λ)

where s← DS and g ← DG.

Informally, a group action (G,S, ?) is (DG,DS)-one-way if, given a pair of set elements (s, g ? s) where
s← DS and g ← DG, there is no PPT adversary that can recover g. If DS and DG are uniform distributions,
then we simply speak of an OW group action.

We can strengthen the Definition 2 of an EGA by replacing the existence of the origin s0 by the following
Hashing to the set axiom.

Definition 18 (Hashable EGA [1]). Let (G,S, ?) be an OW-EGA. We say that (G,S, ?) is a hashable
OW-EGA if there exists an efficient sampler H : {0, 1}N → S (where N depends on the security parameter),

such that for all PPT adversaries A, we have Pr[A(i, j) ? H(i) = H(j)] ≤ negl(λ) for i, j
$←− {0, 1}N .

We show that our OW-MEGA is also a hashable OW-EGA.

31

Proposition 5. Let (G,S, ?) be an OW-MEGA with bijection π. Then, (G,S, ?) is also a hashable OW-EGA
with sampler H := π.

Proof. Keeping the notations of the proposition, let A be an adversary that breaks the Hashing to the set
axiom of the sampler π of (G,S, ?) with probability ε. We build the following adversary B against the one-way
property of (G,S, ?).

1. B receives (s, fs(g)) = (s, g ? s) such that s
$←− S and g

$←− G.
2. B calls A on input (π−1(s), π−1(g ? s)) and let h ∈ G be the value returned by A.
3. B outputs h.

By definition of A, A returns h such that h ? π(π−1(s)) = π(π−1(g ? s)) with probability ε. This means that,
with probability ε, B outputs h such that h ? s = fs(g) which is exactly breaking the one-way property of
(G,S, ?).

C A simple TOGA

In this section, we show how a simple TOGA (Definition 13) might look like. Let S := U×V , where U := 〈u〉
is a cyclic (multiplicative) group of prime order q and V := 〈v〉 is a cyclic (multiplicative) group of order 2n

for some integer n.
Take A := (Z/qZ× Z/2nZ,+). A acts on S through

∀(a, b) ∈ A, ∀(x, y) ∈ S, (a, b) ?A (x, y) := (xua, yvb)

one can easily verify that (A,S, ?A) is a group action. We define the following relation ∼A on A:

∀(a1, b1), (a2, b2) ∈ A, (a1, b1) ∼A (a2, b2)⇔ a1 = a2

one can easily verify that ∼A is a congruence relation on A. We have G := A/ ∼A' (Z/qZ,+). We recall
the equivalence relation ∼S used in TOGA:

∀s1, s2 ∈ S, s1 ∼S s2 ⇔ ∃c1, c2 ∈ A s.t. c1 ∼A c2 and c1 ?A s1 = c2 ?A s2

Thus, for all s1, s2 ∈ S such that s1 := (x1, y1) and s2 := (x2, y2), we have

s1 ∼S s2 ⇔ ∃a ∈ Z/qZ, b1, b2 ∈ Z/2nZ s.t. (a, b1) ?A s1 = (a, b2) ?A s2

⇒ (x1u
a, y1v

b1) = (x2u
a, y2v

b2)

⇒ x1 = x2

Thus T := S/ ∼S' U . Now take H := (Z/2nZ,+) and define h ?H (x, y) := (x, yvh) for all h ∈ H and
(x, y) ∈ S. Clearly ?A and ?H commute, ?H is free and it is efficiently invertible using the Pohlig-Hellman
algorithm for computing discrete logarithms. Moreover, it is also clear that each equivalence class of S is an
orbit of ?H . There remains one condition to check. Take a1, a2 ∈ A such that a1 +a2 ∼A 1A, i.e., there exists
a ∈ Z/qZ and b1, b2 ∈ Z/2nZ such that a1 = (a, b1), a2 = (−a, b2) and −a2 = (a,−b2). Then,

∀(x, y) ∈ S, (a1 + a2) ?A (x, y) = (x, yvb1+b2) = (b1 + b2) ?H (x, y)

Moreover, b1 + b2 is the unique element of H satisfying the above equality. To conclude, we showed that
A,H, S, ?A,∼A, ?H satisfy Definition 13 and is thus a TOGA.

32

	 Updatable Encryption from Group Actions

