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Abstract
In this paper, we propose a new approach to the study of lattice problems used in cryptography.
We specifically focus on module lattices of a fixed rank over some number field. An essential
question is the hardness of certain computational problems on such module lattices, as the addi-
tional structure may allow exploitation. The fundamental insight is the fact that the collection
of those lattices are quotients of algebraic manifolds by arithmetic subgroups. Functions on these
spaces are studied in mathematics as part of number theory. In particular, those form a module
over the Hecke algebra associated with the general linear group. We use results on these function
spaces to define a class of distributions on the space of lattices. Using the Hecke algebra, we
define Hecke operators associated with collections of prime ideals of the number field and show
a criterion on distributions to converge to the uniform distribution, if the Hecke operators are
applied to the chosen distribution. Our approach is motivated by the work of de Boer, Ducas,
Pellet-Mary, and Wesolowski (CRYPTO’20) on self-reduction of ideal lattices via Arakelov divisors.

Keywords. lattice-based cryptography – module lattices – automorphic representations – alge-
braic groups

1 Introduction
In recent years, lattice-based cryptography is viewed as one of the most promising candidates for
cryptographic schemes that are assumed to be secure against attacks by quantum computers. Lattice-
based cryptography is built on hardness assumptions of lattice problems. The learning with errors
(LWE) problem is the most prominent problem which is used directly to build cryptographic protocols.
The well-studied shortest vector problem (SVP) is often used to relate the hardness of LWE to a lattice
problem that is known to be hard. Indeed, SVP, the problem of finding nonzero vectors which are
shortest up to a constant, is NP hard [MG02; Mic01]. For efficiency reasons, many schemes are based
on structured lattices in the sense that the lattices admit the structure of a module over the ring of
integers of specifically chosen number fields, e.g., [Alk+16; Alk+20; Bos+18; Duc+18; Pre+20], see
[Nae+20] for an unstructured version. The transition towards structured lattices appeared in two steps.
First the lattices have been chosen to be fractional ideals of a number field, viewed as lattice in a
Euclidean space by means of the Minkowski embedding, so-called ideal lattices [LPR10; LPR13]. No
efficient algorithms are known thus far that exploit this additional structure. Hence, it is assumed
that schemes based on this construction are as secure as their unstructured counterparts [Pei14; SS11].
See also [CDW17; DPW19; PHS19] for potential weaknesses due to quantum computing. Despite
the security assumptions for ideal lattices, in a second step, some schemes started to use higher rank
versions of ideal lattices, i.e., module lattices [LS15]. These form a middle ground between ideal lattices
and unstructured lattices, as they are algebraically structured, but the structure is more complex than
the structure of ideal lattices. Hence, cryptographic schemes based on module lattices are almost as
efficient and at least as secure as the ideal lattice variants. As the use of structured lattices has become
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standard in lattice-based cryptography, their in-depth analysis is crucial.

This work is mainly motivated by [Boe+20], which shows a worst-case to average-case reduction for
ideal lattices. Below, we summarize their approach and describe how the steps there are reproduced for
module lattices of higher rank. Two major distinctions in our approach is that for higher rank module
lattices, the notion of Arakelov divisors is replaced by adèles and Fourier analysis is substituted by the
notion of automorphic forms.

Contribution. We show that for a fixed number field, the collection of module lattices of a fixed
rank m admits a geometric structure as a quotient of a product of copies of GLm over real and complex
numbers. We present an approach to analyze the space of square-integrable functions and more precisely
automorphic forms, which we view as distributions on the space of lattices. Specifically, we introduce
a class of such distributions which we call cuspidal distributions. We expect that proper worst-case
distributions on the space of lattices can be found among cuspidal distributions. Using the theory of
automorphic forms, we construct certain Hecke operators attached to prime ideals of the given number
field. Further, we show a convergence of cuspidal distributions towards the uniform distribution under
applying the previously defined Hecke operators. As the mathematical foundations stem from the
theory of automorphic forms, we use the approach previously defined to define a new, general class of
structured lattices which we call G-structured lattices associated with algebraic groups.

Outline. In Section 1.1 we continue with a brief summary of the approach of [Boe+20] to their
worst-case to average-case reduction of ideal-SVP. We introduce the motivation to our approach with
a step-by-step analysis of the path we follow in Section 1.2. Specifically, we explain the ideas behind
the choices we make. In Section 2, we introduce notations and the basic tools from algebraic number
theory which are used later. In particular, we introduce norms on number fields, completions, and
the adèles of a number field. Section 3 establishes the connection between module lattices of a fixed
rank and so-called adèlic points of GLm. In particular, the collection of such module lattices admits
a geometric structure. In Section 4, we introduce a class of functions on the space of module lattices,
namely automorphic forms and more specifically, cusp forms. We mention decomposition results which
allow us to analyze cusp forms in terms of representation theory. We develop the background to the
extent required for our purposes. In particular, the Hecke algebra is introduced, which is the source of
Hecke operators we use in the criterion for a worst-case to average-case convergence. In Section 5, we
define a subclass of automorphic forms which we call cuspidal distributions. We provide a convergence
criterion for cuspidal distributions to converge to the average-case distribution that mimics the results
of [Boe+20]. In Section 6 we introduce the lattices with G-structure and give basic examples and a
first application.

In Appendix A, we review the basic setup of [Boe+20] from the viewpoint of adèles as taken in
this work. After giving an adèlic description of the space of ideal lattices, we review their worst-case
distribution in terms of Hecke characters. In Appendix B, we cover more details of representation
theory that allows to construct certain cuspidal automorphic representations. We show how one can
use these to construct a cuspidal distribution on lattices of rank 2 using the case of ideal lattices.

This paper uses many results from algebraic number theory and representation theory. We recall
many definitions and results that are necessary if they have not been used in the cryptographic literature,
even if they are standard in the related fields of mathematics.

1.1 Summary of Results for Ideal Lattices
We briefly recall the approach in [Boe+20], which we follow in two main aspects with a shift of
perspective. A transfer of their results to our framework is sketched in Appendix A.
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Geometry of Ideal Lattices. Let k denote a number field with ring of integers Ok. A first step is to
note that the set of ideal lattices can be identified with the Arakelov class group, which geometrically
is given as

Pick :“
ž

Clk

ΛkzRr “ pΛkzRrqhk ,

with r being the number of real and complex embeddings of k up to conjugation, Λk is the logarithm
of the units Oˆ

k , and Clk and hk are the class group and class number of k, respectively. Algebraically,
the set of ideal lattices forms a group, called Arakelov class group, which is an extension of ΛkzRr by
the class group Clk. By Dirichlet’s unit theorem, the unit lattice Λk has rank r´ 1 and lies in the trace
0 subgroup H – Rr´1. The ideal lattices that correspond to

Pic0
k :“

ž

Clk

ΛkzH

are lattices with norm 1, see Appendix A or [Boe+20] for a rigorous definition. This is the degree 0
subgroup of the Arakelov class group. By the fundamental fact that this space is a compact group, it
admits a uniform distribution which corresponds to choosing uniformly random ideal lattices.

Worst-case Distribution. With the geometric perspective in hand, in [Boe+20] a worst-case dis-
tribution is defined by means of the usual Gaussian distribution on H, which is pushed down to the
quotient ΛkzH and extended by 0 to the whole Pic0

k (i.e., the connected components different from
1 P Clk). A class of Hecke operators on the space of square-integrable functions on Pic0

k is defined in
terms of a finite set of (finite) primes of k. These are translation operators at each prime, averaged
over the set of chosen primes. They move the support of the worst-case distribution inside Pic0

k so
quickly that the sequence formed by iteratively applying them to the worst-case distribution converges
to the uniform distribution. A technical but crucial feature is that characters of Pic0

k are eigenfunctions
of these operators. This property allows the analysis of the behavior of the worst-case distribution
under the operators in terms of their Fourier series decomposition. The worst-case to average-case
convergence is analyzed in terms of the Fourier series. Subject to the generalized Riemann hypothesis
this convergence is the main result of [Boe+20]. Using this result, they show that, up to a change of
constant, the worst-case SVP is as hard as the average-case SVP.

1.2 Summary of Our Framework
In this work, we attach a geometric structure to the set of module lattices of a fixed rank, which in
rank 1 is equivalent to the approach in [Boe+20]. Instead of Arakelov theory, we use adèles, which
are one of the basic constructions in algebraic number theory; see Remark 3.3.5 for a more detailed
comparison. It turns out that the space of lattices of a fixed rank m is quite similar to Pick in ideal
lattices, i.e., the rank 1 case, namely,

ž

αPClk

ΓαzGLmpRqr1 ˆ GLmpCqr2 ,

where r1 and r2 are the number of real and complex embeddings of k, up to conjugation, respectively,
and Γα is a discrete (arithmetic) subgroup of GLmpRqr1 ˆ GLmpCqr2 . The analogue of Pic0

k is a norm
1 subspace of the above space, which we denote Lat1

mpkq. Of course, for m ą 1, Lat1
mpkq does not

acquire a group structure from GLm, but still is a symmetric space as it admits a transitive group
action by GLmpRqr1 ˆ GLmpCqr2 . Therefore, Lat1

mpkq admits a right-invariant (with respect to the
action of GLmpRqr1 ˆ GLmpCqr2) measure, which is unique up to scaling. A well-known result tells
that the volume of Lat1

mpkq with respect to this invariant measure is finite, see Proposition 3.2.3. In
particular, the unique normalized invariant measure takes the role of a uniform distribution on the
space of module lattices of rank m.

3



The next step is to define a worst-case distribution as in our approach we want to mimic [Boe+20].
However, the goal of finding suitable worst-case distributions becomes nontrivial for two reasons. First,
the space of module lattices for m ą 1 is not a torus as it is for m “ 1. Thus, we cannot define a
Gaussian distribution in a straightforward manner. Second, even if we find a suitable function which
geometrically mimics the properties of the worst-case distribution in rank 1, there is no general tool,
which allows to decompose a function into basic components, as does Fourier analysis in rank 1. We
take the following approach.

Functions as Distributions. We are looking for distributions in the space of functions on the space
of lattices. From an abstract viewpoint, the space of distributions is strictly larger than the usual
function spaces, e.g., Dirac’s δ-distributions are not represented by functions. In fact, δ-distributions
are perfect worst-case distributions. However, applying Hecke operators as in [Boe+20] to the δ-
distribution will result in distributions with discrete spectrum, which cannot converge to the uniform
distribution.

With this assumption, the functions we consider should satisfy certain properties. Namely, it should
be square-integrable, smooth, symmetric, and decay quickly outside of a central point. This motivates
the second assumption to look into the space of automorphic forms and more specifically, cusp forms.

Decomposition of Automorphic Forms and Cusp Forms. The space of L2-functions on Lat1
mpkq

is subject of the study of automorphic forms in algebraic number theory and representation theory.
For m ą 1, the space of square-integrable functions admits a decomposition

L2
pLat1

mpkqq “ L2
0pLat1

mpkqq ˆ L2
finpLat1

mpkqq ˆ L2
EispLat1

mpkqq,

where L2
0pLat1

mpkqq are cusp forms, L2
finpLat1

mpkqq are constant functions, and L2
EispLat1

mpkqq are Eisen-
stein series. The subspace of cusp forms and constant functions can be analyzed in terms of repre-
sentation theory. Moreover, in the case m “ 1, all square-integrable functions lie in this subspace.
Accordingly, we believe that a worst-case distribution for rank m ą 1 ought to be in the space of cusp
forms and constant functions.

The space of cusp forms itself decomposes into a (Hilbert space) direct sum of cusp forms with central
character. Each of these terms again splits into irreducible components, which are the basic building
blocks of the space of cusp forms, in the same manner as how characters are the basic functions in
Fourier analysis. This is also a generalization of the classical theory of modular forms, which is the
case of base field Q and rank m “ 2. The decomposition then corresponds to cusp forms which are
simultaneous eigenfunctions of Hecke operators, cf. [Kud03] for the connection between modular forms
and automorphic forms for GL2 over Q.

Worst-Case to Average-Case Convergence. Keeping the previous ideas in mind, we define a class
of cuspidal distributions in the space of automorphic forms. These contain the uniform distribution
and as described above, it can be seen as a source for worst-case distributions. For general cuspidal
distributions, we give a criterion for the convergence to the uniform distribution. This is done in terms
of the decomposition of cuspidal distributions into irreducible cusp forms plus a constant. As the cusp
forms are eigenfunctions of Hecke operators, the condition is mainly a question of convergence of the
coefficient series.

Lattices with G-Structure. From a theoretical perspective, our approach is not restricted to the
case of module lattices. Motivated by the theory of automorphic forms for a more general class of
groups, we introduce a new concept of lattices with G-structure. These lattices are defined in terms of
an affine algebraic group over Ok with a (faithful) representation. We exemplify the definitions with
commonly used types of structured lattices as well as of lattices with G-structure for the symplectic
group, which correspond to symplectic lattices. Further, we display how lattices defined in terms
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of cyclic algebras as in [GLV19] are encapsulated by the given definition. The Jacquet–Langlands
correspondence of the theory of automorphic forms allows us to transfer cuspidal distributions on rank
2 module lattices to cyclic lattices in [GLV19], for the case of quaternion algebras.

1.3 Related Work
Since [BGV12; LS15], module lattices are studied for their applications in cryptography. In [LS15] a
worst-case to average-case reduction was proven that reduced worst-case instances of module-LWE to
average-case instances. This result opened the door for the application of module lattices to replace
unstructured or ideal lattices. More recently, a different type of self-reduction of SVP on module
lattices was shown in [Lee+19; MS20], where SVP of module lattices is reduced to module lattices of a
smaller rank, where the rank of the latter divides the rank of the former. Both are generalizations of
the LLL algorithm [LLL82].

2 Preliminaries
Let k be an algebraic number field of degree n, of signature pr1, r2q, and set r “ r1 ` r2. That is there
are r1 distinct real embeddings of k into R and up to conjugation r2 complex embeddings into C whose
image does not lie in R. We denote by Ok the ring of integers of k. Further, Clk denotes the class
group of k and hk the class number, i.e., the number of elements of the class group.

We will write Gm for the algebraic group of multiplicative units over k, that is, for any k-algebra A,
GmpAq “ Aˆ is the group of invertible elements in A. Here, A is assumed to be commutative with
unit, but we will be concerned with non-commutative non-unital algebras in Section 4. More generally,
GLm denotes the algebraic group of invertible m-by-m matrices over k. Again, for any A, GLmpAq is
the group of m-by-m matrices with entries in A, whose determinant is in GmpAq. For slightly more on
algebraic groups, see Section 6.

2.1 Norms on a number field
In this subsection we briefly recall the notion of norms on a number field and state their characterization
in terms of Ostrowski’s Theorem. We exclude the trivial norm in the definition by requiring norms to
be nonzero.

Definition 2.1.1. A norm on k is a nonzero map |_| : k Ñ Rě0 such that the following hold

• |x| “ x ðñ x “ 0

• |xy| “ |x||y|

• |x` y| ď |x| ` |y|.

Two norms |_|1 and |_|2 are equivalent, if there exists constants c ą 0 such that for all x

|x|1 ď |x|c2.

We refer to [Neu99, II, Definition 3.2, Proposition 3.3] for a topological definition and their equivalence.
There are two distinct classes of norms which we will exemplify now.
Example 2.1.2 (Archimedean Norms). Let σ : k ãÑ C be an embedding of k, possibly with image in R. Then
a norm on C induces a norm on k by restriction, i.e., |x|σ :“ |σpxq|. For the purpose of standardizing, we choose
the usual absolute value, if the embedding is real, while for a complex embedding σ we set

|x|σ :“ σpxqσpxq “ σpxqσpxq.

This differs from the usual norm on C by a square. The reason for this choice will become more apparent in
the Product Formula 2.1.7.
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Example 2.1.3 (Non-Archimedean Norms). For any nonzero element x P k the fractional ideal which it
generates can be decomposed uniquely into a product of maximal ideals as

pxq “
ź

q

qνqpxq,

where for almost all q the exponents are 0, so that the product is actually finite. For any nonzero prime ideal
p we define a valuation function

νp : kˆ
Ñ Z; x ÞÑ νppxq.

For any number 0 ă u ă 1 we set
|_|p : kˆ

Ñ Rą0; |x|p “ uνppxq.

Extending this function to k by setting |0| :“ 0 defines a norm called p-adic norm. Up to equivalence of norms,
this construction is independent of u. For distinct primes p ‰ q the norms are inequivalent. This follows from
the existence of elements x which are contained in p but not in q. Thus, |x|p ă 1 while |x|q “ 1, which implies
that the sequence xn converges to 0 in the p-adic norm, but not in the q-adic. Again, we fix standard choices
for the constants u. Namely, for a prime p, the intersection pXZ “ ppq is an ideal generated by a prime element
in the classical sense, with p positive. Taking quotients induces an extension

Z{p Ď Ok{ p

of finite fields. Let fp denote the degree of this extension (the inertia index). The standard choice of u for
|_|p is p´fp . As for the choices of Archimedean norms 2.1.2, the reason for the choice will become clear in the
Product Formula 2.1.7.

We want to note that the non-Archimedean norms are inherently different from the Archimedean
norms, as they satisfy a strong triangle inequality.

Lemma 2.1.4. Let |_| be a non-Archimedean norm as in Example 2.1.3. Then

|x` y| ď maxt|x|, |y|u (2.1)

for any x, y.

For a proof, we refer to [Neu99], although, this follows easily from the analogous statement for the
valuation νp (where max turns to min, and the sign changes), which is an immediate consequence of
the definitions. Of course, this strong triangle inequality does not hold in the Archimedean cases, e.g.,
2 “ |2| ą |1| “ 1, and similarly in the complex case (where |2| “ 4). The strong triangle inequality is
usually taken as the definition of a non-Archimedean norm.

Definition 2.1.5. A norm |_| on k is non-Archimedean, if it satisfies the strong triangle inequality
(2.1). Otherwise, |_| is Archimedean.

Note that Archimedean is defined to be not non-Archimedean. A characterization can be given in
terms of the norm restricted to Z. In fact, a norm |_| is Archimedean, if and only if Z is unbounded
with respect to |_|. The next result classifies all absolute values on a number field.

Theorem 2.1.6 (Ostrowski). Up to equivalence, the norms on k are

• Archimedean norms as in Example 2.1.2

• Non-Archimedean norms as in Example 2.1.3

For a proof, see [Neu99, Chapter II].

The equivalence classes of norms on k are called places of k. The set of all places will be denoted Pk. A
place is called finite, if it corresponds to a non-Archimedean absolute value. On the other hand, infinite
places are the Archimedean ones. We stress that finite places are in natural one-to-one correspondence
with (nonzero) primes of Ok; while the infinite places correspond bijectively to embeddings into real
and complex numbers up to conjugation. We will write ν | 8, if ν is an infinite place, and ν ∤ 8, if ν
is a finite place.
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Theorem 2.1.7 (Product Formula). Let 0 ‰ λ P k be a nonzero element. Then
ś

ν |λ|ν “ 1 where the
product is taken over all places of k.

The Product Formula is one motivation for the normalizations we chose. However, they are quite
natural from a measure theoretic perspective as one can find in [Wei95]. Note that the possibly infinite
product is finite. In fact, νppλq ‰ 0, only if p appears in the prime decomposition of λ, which consists
of only finitely many factors.

2.1.1 Completions

It turns out that a norm ν on k is never complete in the sense that Cauchy sequences with respect to
ν, do not necessarily converge in k.
Example 2.1.8 (Archimedean Case). Let us consider Q with respect to the standard (Archimedean) absolute
value. The sequence of pxnq, where the n-th term is

?
2 chopped after n decimal places, is a Cauchy sequence

with respect to the Archimedean norm. However, there is no x P Q such that pxnq
nÑ8

ÝÝÝÑ x. In fact, such an x
would satisfy x2

“ 2 which does not exist in Q.

Example 2.1.9 (Non-Archimedean Case). We confine ourselves with the following fact. The p-adic integers
Qp contain p-th roots of unity, while Q does not contain any roots of unity except ˘1. The existence in Qp

follows from Hensel’s Lemma ([Neu99, pp. II, 4.6]) which cannot hold for Q. It is possible to construct explicitly
sequences that do not converge in k as well.

The process of completion deals with this failure. For any norm ν, there exists a field extension kν
of k, together with a norm ν̂ that extends ν to kν , such that pkν , ν̂q is complete, and for every other
field extension K{k and extension νK of ν to K such that pK, νKq is complete, there exists a unique
homomorphism kν Ñ K such that νK extends ν̂. We do not need details of the construction but
instead give the resulting completions in the two cases.

2.1.2 Completion at Archimedean Places

Let σ be an Archimedean place corresponding to a real or complex embedding. As R and C are
complete, we know that the completion kσ of k with respect to σ needs to be contained in R or C,
respectively. Using that R is by definition the completion of Q with respect to its Archimedean place,
it is easy to see that R or C are in fact the completions of k with respect to σ.

Let us define
k8 :“

ź

σ|8

kσ.

It carries a norm defined by
ř

σ|_|σ. This space is equivalent to k R in Minkowski theory. As in the
theory of adèles, the perspective is taken on places rather than embeddings, we prefer k8. Note that
by an equivalence between k8 and k R we mean an isometry, however compatible choices need to be
made at each place.

2.1.3 Completion at Non-Archimedean Places

As non-Archimedean norms are not used often in cryptography, we briefly recall the construction of the
completions. Let us begin with p-adic integers Zp and generalize from there. Note that unfortunately,
Zp is overloaded and can have totally distinct meanings. We will stick to the usual convention in
algebraic number theory and denote by Zp the p-adic integers, and write Z{p for the quotient modulo
p. We sincerely hope that this will not cause confusion.
Example 2.1.10. Let p be an integer prime. Then Zp is the ring

lim
ÐÝ

n

Z{pn :“ tx “ pxnq P
ź

ną0

Z{pn
| xn`1 ” xn mod pn for all nu
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with componentwise addition and multiplication. It is a closed subset of
ś

ną0 Z{pn where each factor has the
discrete topology. Then, by Tychonoff’s compactness theorem, it follows that Zp is compact. There is a natural
injective ring homomorphism Z Ñ Zp. Moreover, Zp is a local principal ideal domain with the unique nonzero
prime ideal ppq. Such rings are called discrete valuation rings. Any other ideal of Zp can be written as ppn

q for
some n. The field of fractions is denoted Qp, the p-adic numbers. It is the completion of Q with respect to the
p-adic norm. Details can be found in [Neu99, Chapter II]. In particular, a representation of p-adic numbers
as power series with coefficients in 0, . . . , p ´ 1 might be interesting for application purposes, although as in
decimal representation of real numbers, arithmetic on such series is difficult due to carries.

Returning to the case of k, let p be a finite place by which we also denote the corresponding prime
ideal of Ok. Let p be the integer prime lying under p, i.e., ppq “ pXZ. Then set Op :“ Zp bZ Ok.
This is a ring which contains Ok as a subring. The properties for Zp mentioned in Example 2.1.10
hold for Op. Note that this is different when comparing Z and Ok, as e.g., Ok is not a PID in general.
In particular, Op is a discrete valuation ring with unique maximal ideal p. This is a slightly abusive
notation as p now denotes the place of k, an ideal of Ok, and the unique maximal ideal of Op. This will
however not cause any problem and they uniquely correspond to each other. The field of fractions kp of
Op contains k. The norm on kp is defined via a (discrete) valuation as in Example 2.1.3. More precisely,
let t be a generator of the maximal ideal p Ď Op, commonly called uniformizer or uniformizing element.
Then any element λ P kˆ

p can be written uniquely as λ “ utn with u P Oˆ
p and n P Z. The value n is

independent of the choice of t and thus we can define

νp : kˆ
p Ñ Z; λ ÞÑ n, if λ “ utn with u P Oˆ

p .

Then the p-adic norm on kp is defined as

|_|p : kp Ñ Rě0; λ ÞÑ p´fp νppλq

where |0|p is understood to be 0. The ring Op and its maximal ideal p can be recovered as the sets

Op “ tλ P kp | |λ|p ď 1u

and

p “ tλ P kp | |λ|p ă 1u.

The unit group Oˆ
p is open and closed, hence compact.

2.2 Adèles
The completions of k introduced in the previous section constitute the factors of the adèles, which we
are going to introduce here.

Definition 2.2.1. The adèle ring Ak of k is the restricted product of kν with respect to Op at all finite
places.

This means that Ak Ď
ś

ν kν with x “ pxνqν P Ak, if and only if xp P Op for all but finitely many
finite places νp. Recall that we wrote k8 for the product of kσ with σ | 8. The analogue for finite
places is the ring Ak,f which is the restricted product of kp with respect to Op, taken over all finite
places p. Again, this means that x “ pxpqp P Ak,f , if and only xp P Op for all but finitely many p. It
then follows that Ak “ k8 ˆ Ak,f . The ring of adèles gets a topology as follows. First, the infinite
component k8 carries a natural topology as described in Section 2.1.2. The finite part Ak,f is given
the topology determined by enforcing pOk :“

ś

p Op to be open. Note that this is not the topology
induced from the product of the kp. The field k is itself a subring of Ak via the diagonal embedding
k ãÑ Ak, λ ÞÑ pλqν .

Theorem 2.2.2. With the diagonal embedding, k is a discrete, cocompact subring.
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This theorem has important consequences in the Fourier analysis of number fields, which dates back
to the thesis of Tate [Tat67]. Similar to the situation of lattices in Euclidean space, the Pontryagin
dual of k is kzAk. More details can be found in Tate’s thesis [Tat67] itself, as well as [RV99; Wei95].

Another important fact about the ring of adèles is that it satisfies an approximation theorem in the
following sense. A proof can be found, for example, in [RV99, Chapter 5].

Theorem 2.2.3. The subgroup k of Ak is dense.

A variant for SL2 will be used implicitly in Section 3.2 where we describe the geometry of the space
of module lattices.

Idèles. The idèles of k are defined to be Ik “ GmpAkq, i.e., invertible elements in Ak. This group can
be described explicitly as x “ pxνqν P Ak with xν ‰ 0 for all ν and xp P Oˆ

p for all but finitely many
p ∤ 8. It becomes a topological group by means of the embedding

GmpAkq Ñ A2
k; x ÞÑ px, x´1q.

Similar to adèles, we regard kˆ as a subgroup of GmpAkq via the diagonal embedding.

Theorem 2.2.4. The group kˆ of units is discrete in GmpAkq.

So far, the situation for the multiplicative group looks quite similar, however, the approximation
theorem does not hold and the kˆ is not cocompact in GmpAkq. A reason can be seen from the adèlic
norm

|_| : GmpAkq Ñ Rą0, x ÞÑ
ź

ν

|xν |ν .

Note that the condition that xp P Oˆ
p for all but finitely many p ensures that all but finitely many

factors are 1, so that this product is always well-defined. The norm map defines a group homomorphism.
In fact, each factor is multiplicative, and the unit 1 has norm 1 in all places. We define the component
norms

|_|8 : kˆ
8 Ñ Rą0, x ÞÑ

ź

σ|8

|xσ|σ

and
|_|f : GmpAk,f q Ñ Rą0, x ÞÑ

ź

p∤8
|xp|p.

The adèlic norm map is surjective, as it is so when restricting to any infinite place. As a consequence
of the Product Formula 2.1.7 we have the following.

Corollary 2.2.5. For λ P kˆ we have |λ| “ 1.

Here we regard λ as an element of GmpAkq via the diagonal embedding. In particular, the norm
factors through kˆ

zGmpAkq which shows that this quotient cannot be compact. This however, can be
compensated in some sense. Let GmpAkq1 denote the elements x of GmpAkq with |x| “ 1.

Theorem 2.2.6. The group kˆ
zG1

mpAkq is compact. More precisely, it is a disjoint union of hk many
copies of ΛkzRr´1, where Λk denotes the unit lattice in Minkowski theory.

We do not go into the proof here. In the next section, we will consider the more general case where
Gm is replaced by GLm. The present case is recovered by taking m “ 1. The connection with the class
group can be seen in terms of the finite idèles. Let Uf :“ Gmp pOkq “

ś

p GmpOpq, where the product
is taken over finite places of k.

Proposition 2.2.7. The map

GmpkqzGmpAk,f q{Uf
„

ÝÑ Clk; x “ pxpq ÞÑ rIxs

where Ix “
ś

p p
νppxpq is a fractional ideal, defines an isomorphism.
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Proof. It is easy to see that the above map is well-defined. Consider the map

Ik Ñ GmpAk,f q; I ÞÑ pt
νppIq
p q,

where tp are uniformizers. It can be seen easily that this map induces a well-defined map Clk Ñ

GmpkqzGmpAk,f q{Uf , and the maps are mutually inverse.

3 The space of module lattices
In this section, we redefine module lattices over the base field k and attach to the set of module lattices
of fixed rank a geometric structure. We set G to be the algebraic group GLm.

3.1 Module lattices
Our definition mimics the notion of ideal lattices as defined in [Boe+20]. We proceed in two steps,
first, we define rank m analogues of fractional ideals, then we add a twist by k8-automorphisms of km8.

Definition 3.1.1. An Ok-lattice is an Ok-submodule M Ď km of rank m.

This notion corresponds to complete lattices. Given an Ok-lattice M in km, we can view it as a subset
of km8 via the diagonal embedding. As such, M defines a complete lattice in the usual sense, when
we attach to k8 the inner product and norm induced by its natural product structure. Let Latfmpkq

denote the set of Ok-lattices of rank m.

We define G8 to be Gpk8q “ GLmpk8q. This group comes with a natural product structure inherited
from k8. Namely, it decomposes as G8 “

ś

σ|8 Gσ with Gσ “ GLmpkσq.

Definition 3.1.2. A module lattice of rank m over k is a lattice Λ Ď km8 such that there exist an
Ok-lattice M in km and an element g P G8 such that Λ “ gM .

We denote the set of module lattices of rank m over k by Latmpkq. It can be described in terms of
Latfmpkq and G8 as follows.

Proposition 3.1.3. There is a canonical bijection

Gpkqz

´

G8 ˆ Latfmpkq

¯

» Latmpkq; pg,Mq ÞÑ g´1M.

We introduce the inverse for compatibility reasons, as will be seen later. Moreover, Gpkq acts on
G8 ˆ Latfmpkq by λ.pg,Mq “ pλg, λMq.

Proof. It is easy to see that the association pg,Mq ÞÑ g´1M is Gpkq-equivariant, hence, the map on
the quotient is well-defined. The surjectivity of the map is a basic consequence of the definition of
module lattices. Suppose pg,Mq and ph,Nq are two pairs with g´1M “ h´1N . Then hg´1M “ N ,
i.e., hg´1 defines an isomorphism λ : M Ñ N of Ok-modules. Tensoring with k over Ok, λ defines
an isomorphism km Ñ km. In other words, λ P Gpkq and it satisfies λM “ N , and λg “ h, so that
pg,Mq “ ph,Nq modulo Gpkq.

As a consequence of the previous proposition, we will often write pairs pg,Mq for the module lattice
g´1M associated with that pair.

Let Kf be the subgroup GLmp pOkq of GpAk,f q. It is a compact and open subgroup and decomposes
into an infinite product

ś

p∤8 Kp, with Kp “ GLmpOpq. Each factor Kp itself is a compact open
subgroup of GLmpkpq.
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The next theorem can be found in [Bor63] and [Wei95, Theorem V.2.2]. We will use this description
to define the geometric structure on the set of module lattices over k. Later, we will give a more
effective description of the geometric object and the set of module lattices.

Theorem 3.1.4. There exists a bijection

Latmpkq
„

ÝÑ GpkqzGpAkq{Kf ; pg,Mq ÞÑ pg, pgM,pqpq.

Here gM,p P Gpkpq with gM,pOm
p “ M bOk

Op.

Sketch of the proof. Let us first explain the components at each finite place p. By scalar extension,
the inclusion M Ď km becomes M bOk

Op Ď kmp . As Op is a principal ideal domain, M bOk
Op is free.

Hence, there exists an invertible matrix gM,p P Gpkpq such that gM,pOm
p “ M bOk

Op. The choice is
unique, up to an automorphism of Om

p , i.e., up to Kp. Thus, the element pgM,pqp P GpAk,f q is unique
up to Kf . In particular, the map is independent of the choice we made.

We need to ensure that with λ P Gpkq, the images of pg,Mq and pλg, λMq coincide. At the infinite
component G8, the terms are g and λg, respectively. Let p be any finite place, and gM,p the component
of the image of pg,Mq at p. Then λgM,p has to satisfy λgM,pOm

p “ λM bOk
Op, which clearly holds.

So far we have shown that the map is well-defined. For the remaining assertions we refer to the
sources above.

3.2 Geometry on the space of module lattices
In this subsection, we will give a more precise description of the geometric structure of the space of
lattices. It turns out that the space is disconnected with connected components naturally identified
with the class group of k. As in Proposition 2.2.7 we identify Clk “ GmpkqzGmpAk,f q{Uf .

Lemma 3.2.1. The determinant det : GpAk,f q Ñ GmpAk,f q induces a surjective map

GpkqzGpAk,f q{Kf ↠ Clk.

Proof. First note that the map is well-defined as the determinant maps Gpkq and Kf to Gmpkq and
Uf , respectively. The surjectivity is inherited from the surjectivity on GpAk,f q.

Forgetting the infinite component extends the determinant to a surjective map

GpkqzGpAkq{Kf ↠ GpkqzGpAk,f q{Kf ↠ Clk.

The connected components of GpkqzGpAkq{Kf are the fibers of this map, see Proposition 3.2.2 below.

We define G`
8 to be the connected component of the identity of G8. It consists of all elements

g “ pgσqσ|8 with detpgσq ą 0 for all real places σ. Further, set Gpkq` “ Gpkq XG`
8.

Proposition 3.2.2. Let C Ď GpAk,f q be a full set of representatives of Clk. Let Γg “ gKfg
´1 XGpkq`

for g P C. Then there is an isomorphism (homeomorphism)

GpkqzGpAkq{Kf »
ž

gPC
ΓgzG`

8.

Sketch of the proof. Define the map

ΓgzG`
8 Ñ GpkqzGpAkq{Kf ; rxs ÞÑ rg, xs

with image in the subspace of those elements in GpkqzGpAkq{Kf whose ideal class is the same as the
class of g. That this is well-defined and injective is easy. The disjoint union of the ΓgzG`

8 taken over C
surjects onto the right hand side, so that we have the desired bijection. We refer to [Mil05] for further
details, including the topological assertion, specifically, Lemma 5.13 and the references therein.
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For any g P C, the subgroup Γg of G`
8 is discrete. The quotient ΓgzG`

8 admits a structure of a
smooth manifold.

Norm 1 group. The space of lattices comes with a GpAkq-invariant measure induced from the Haar
measure on GpAkq. Unfortunately, the invariant measure is not finite. We will describe an analogue
of the norm 1 subgroup in the 1-dimensional case. In general, this will have a finite volume, but be
non-compact for m ą 1.

Consider ∆: Rą0 Ñ G8 given by
x ÞÑ pdiagpx

1
mn qqσ.

Recall that G “ GLm and n is the degree of extension of k over Q. By diagpzq we mean the scalar
matrix associated with an element z P R. We stress that ∆pxq is constant at all infinite places. By
definition, detp∆pxqq “ px

1
n qσ P kˆ

8. Hence, its norm is |detp∆pxqq|8 “ x. Let Z1 :“ Z1
m :“ imp∆q.

Proposition 3.2.3. There is a finite GpAkq-invariant measure on GpkqZ1zGpAkq, which induces a
finite GpAkq-invariant measure on GpkqZ1zGpAkq{Kf . Further, there is a canonical identification

GpkqZ1zGpAkq{Kf »
ž

gPC
ΓgZ1zG`

8.

Proof. The identification is an immediate consequence of Proposition 3.2.2 by noting that Z1 acts
equivariantly. The existence of such an invariant measure is a classical theorem in measure theory. Its
finiteness is shown in [Bor63]. See also [Gar18] for the case m “ 2.

Invariant measures are only unique up to scaling, but we will always work implicitly with the
normalized measure, i.e., the unique invariant measure such that the measure of GpkqZ1zGpAkq{Kf is
1. In [Boe+20], the measure is chosen to be the induced measure from the Lebesgue measure on the
real space, which explains the additional factor volpPicq´1 there.

The space GpkqZ1zGpAkq{Kf can be identified with a subspace of GpkqzGpAkq{Kf , which we want
to describe now. Define GpAkq1 to be the subgroup of g such that the adèlic norm

|g| :“ |detpgq| “
ź

ν

|detpgνq|ν

is 1. By the Product Formula 2.1.7, Gpkq Ď GpAkq1. Further, it is easy to see that Kf Ď GpAkq1.

Lemma 3.2.4. The composition

GpkqzGpAkq1{Kf ãÑ GpkqzGpAkq{Kf ↠ GpkqZ1zGpAkq{Kf

is a bijection.

Proof. Suppose g, h P GpAkq1, define the same class in GpkqZ1zGpAkq{Kf . Then there exist x P Rą0,
γ P Gpkq and ξ P Kf , such that g “ ∆pxqγhξ. Noting that |g|, |h|, |γ|, |ξ| “ 1, it must necessarily hold
that ∆pxq has norm 1, and hence x “ 1. Thus we have injectivity.

Let g P GpAkq be arbitrary. Then |∆pxqg| “ |∆pxq|8|g|. For x :“ |g|´1 it holds that |∆pxq|8 “ |g|´1,
so that ∆pxqg P GpAkq1 whose class in GpkqZ1zGpAkq{Kf coincides with the class of g.

On the level of module lattices the Propositions 3.2.2 and 3.2.3 yield the following.

Corollary 3.2.5. There is a bijection

Z1zLatmpkq
„

ÝÑ GpkqZ1zGpAkq{Kf » GpkqzGpAkq1{Kf .

The lattices in Z1zLatmpkq will be called norm 1 module lattices.

12



Determinant of modules. As in Lemma 3.2.4, we want to describe a subset of Latmpkq that
represents the norm 1 elements in GpkqzGpAkq1{Kf . First, we need the notion of determinant of
Ok-lattices.

Let M be an Ok-lattice of rank m. If M is free, then M “ gOm
k for some g P Gpkq and we define

detpMq to be the fractional ideal of Ok generated by detpgq. Note that this is independent of the
choice of g as any other basis would differ by γ P GLmpOkq, hence the fractional ideal does not change.
In general, M will not be free, but for each p, the localization Mp is a free Ok,p-module. Thus we
can associate with each p the multiplicity νppMq :“ νppdetpgpqq where gpOm

k,p “ Mp. Then we set
detpMq :“

ś

p p
νppMq. If M is free, the two definitions coincide. The ideal class defined by detpMq will

be called determinant class and if it does not cause confusion, we will denote it again by detpMq. By
construction we have the following compatibility result of the two notions of determinants.

Proposition 3.2.6. Let M be an Ok-lattice of rank m. Let pgpqp be the element in GpAk,f q{Kf associ-
ated with M . Then, νppdetpMqq “ νppdetpgpqq, as elements in the fractional ideals Ik » GmpAk,f q{Uf .
In particular, the determinant class of M and the ideal class defined by pdetpgpqq coincide.

Recall from Theorem 3.1.4 that we associate with a pair pg,Mq P Latmpkq the element pg, pgpqpq P

GpkqzGpAkq{Kf . The proposition is then trivial by construction.

Corollary 3.2.7. Under the identification of Latmpkq with GpkqzGpAkq{Kf , the norm 1 lattices corre-
spond to pairs pg,Mq such that |detpgq|8|detpMq|f “ 1.

The norm of detpgq is the product of the norms of its infinite components. Similarly, the norm of
detpMq is the product of all norms at all finite places.

Proof. Clearly, if the image of pg,Mq can be represented by x P GpAkq1 with x8 “ g and xpOm
p “

M bOk
Op, then 1 “ |x| “ |detpgq|8|detpMq|f . Conversely, the last equation shows that pg,Mq can be

represented by x P GpAkq1.

Let Lat1
mpkq denote the subset of module lattices over k which correspond to the norm 1 space. For

an arbitrary Ok-lattice M , it is easy to see that g P G8 exists such that |detpgq|8|detpMq|f “ 1, e.g.,
g “ ∆p|detpMq|´1

f q. In this way, Ok-lattices are represented in the space of norm 1 module lattices.

Concrete description. Lastly, we want to give a more concrete description of the correspondence
between module lattices and the space described above. Up to determining the class group, this gives
a rather simple identification that does not use adèles. We recall from K-theory the following basic
result, as can be found in [Ros94].

Proposition 3.2.8. Any Ok-lattice is up to isomorphism uniquely determined by its rank and deter-
minant class. The association

M ÞÑ pdetpMq, rkpMqq

from Ok-lattices to Clk ˆ Z defines an isomorphism

K0
pOkq » Clk ˆ Z.

Corollary 3.2.9. Let M,N be Ok-lattices of rank m. Then M – N , if and only if their determinant
classes coincide. In this case, there exists λ P Gpkq with λM “ N .

With this result in hand, we can easily describe the association between the set of module lattices
over k of a fixed rank m with the space defined in Proposition 3.2.2. We implicitly use Theorem
3.1.4 to associate with an element of GpAk,f q an Ok-lattice. In applications, we may assume that the
representatives of any ideal class I is given by the lattice I ‘ km´1. By Proposition 3.2.8, these cover
all possible classes.
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Proposition 3.2.10. Let C Ď GpAk,f q be a set of representatives of Clk. Then any module lattice
pg,Mq can be written as ph, γq, where γ P C represents the ideal class of detpMq and h P ΓγzG`

8.
Conversely, any element h P ΓγzG`

8 with γ P C can be associated with the module lattice ph, γq.
Together, these define a bijection

Latmpkq
»

ÝÑ
ž

γPC
ΓγzG`

8.

Proof. First, suppose γ represents the determinant class of M . Let Nγ denote the Ok-lattice of rank
m associated with γ. Then Nγ and M are isomorphic by the previous corollary, hence let λ P Gpkq

with λM “ Nγ . For the module lattices, we have

g´1M “ g´1λ´1λM “ pλgq´1Nγ .

Hence, the pair pλg,Nγq represents the same module lattice as pg,Mq. Suppose µ P Gpkq defines
another isomorphism µM “ Nγ . Then

pµg,Nγq “ pλg,Nγq

which implies that g´1µ´1Nγ “ g´1λ´1Nγ , or multiplying by g and λ, that λµ´1Nγ “ Nγ . On adèles,
this means that λµ´1γ P γKf , or λµ´1 P γKfγ

´1. Thus λµ´1 P Gpkq X γKfγ
´1 “ Γγ .

Conversely, given h P ΓγzG`
8 the lattice ph,Nγq does not depend on the class of h modulo Γγ as any

element of Γγ preserves Nγ .

Remark 3.2.11. The determinant of an Ok-lattice can be computed effectively. In fact, in [Coh00], it is
shown how to find a basis pv1, . . . , vmq and fractional ideals I1, . . . , Im such that M “

À

i viIi. Then
the determinant class of M is just

ś

i Ii. Assuming the generalized Riemann hypothesis, there is a
polynomial time quantum algorithm for computing the class group of a given number field, see [BS16].

3.3 Module lattices up to isometry
Often, questions about lattices are independent of its isometry class. For example, the minimal length
of nonzero vectors coincide in Λ and gΛ, when g is an isometry. In our present case, the notion of
isometry is most useful, when adopted to the particular structure of the Euclidean space in question.
This is done in terms of maximal compact subgroups.

For σ | 8, let Kσ Ď Gpkσq be a maximal compact subgroup. These are not unique, but any two are
conjugate, hence isomorphic. Up to isomorphism, Kσ is OmpRq if σ is real, and Upmq if σ is complex.
Recall here, that OmpRq are the linear transformations which preserve the standard inner product of
Rm, while Upmq are the C-linear transformations that preserve the standard Hermitian inner product
(sesqui-linear form) on Cm. We define K8 :“

ś

σKσ. Then K8 itself is a maximal compact subgroup
of G8.

Definition 3.3.1. Let Λ,Λ1 P Latmpkq be two module lattices over k of rank m. Then Λ and Λ1 are
isometric, if there exists x P K8 with Λ “ xΛ1. The isometry classes of module lattices over k of rank
m is denoted IsomLatmpkq.

Let K :“ KfK8. The following is an immediate consequence of Theorem 3.1.4.

Corollary 3.3.2. There is a bijection

IsomLatmpkq
„

ÝÑ GpkqzGpAkq{K.

Further, Proposition 3.2.2 yields the following.
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Corollary 3.3.3. There is bijection

IsomLatmpkq
„

ÝÑ
ž

gPC
ΓgzG`

8{K`
8,

where K`
8 is the connected component of the identity of K8.

It is easy to see that as a subgroup of GpAkq, K8 lies in GpAkq1. In fact, the norm of the determinant
of any element in Kσ is 1, and so is their product. Similarly, if pg,Mq is a norm 1 lattice then so is
pgk,Mq for k P K8. Note that the associated lattice g´1M is changed by k´1 P K8. Hence, we can
deduce the following.

Corollary 3.3.4. There is a bijection

IsomLat1
mpkq

„
ÝÑ GpkqzGpAkq1{K.

In this section, the reason to use adèles has not yet become apparent. In fact, the geometric
description of isometry classes of module lattices can be done in terms of Arakelov theory as sketched
in the next remark. The adèlic viewpoint will be used in the next sections, when we define and analyze
certain spaces of functions on the space of lattices.

Remark 3.3.5. Another approach to module lattices can be adopted in terms of basic Arakelov theory
or metrized Ok-modules, as in [Neu99]. Briefly, the action of G8 on Ok-lattices is replaced. Instead,
on M one attaches a Hermitian structure on each Mσ :“ M bOk,σ

C, where C is a Ok-module via the
infinite place σ. Such a Hermitian structure is defined in terms of a Hermitian matrix Hσ P Gpkσq. In
our presentation, the Hermitian structure can be recovered by pulling back the canonical Hermitian
structure along gσ, for a pair pg,Mq. This amounts to the same as defining the new Hermitian structure
to be g˚

σgσ, where ˚ is complex conjugation and transpose. The converse holds only partially for lattices
up to isometry. Up to Kσ, gσ can be recovered from a Hermitian form. This gives another, familiar
interpretation of lattices. Instead of changing the lattice, we change the geometry of the real space it
generates.

4 Automorphic Forms and Representation Theory
In this section, we introduce the notion of automorphic forms and cuspidal automorphic forms for
GLm with focus on GL2. In a narrow sense, automorphic forms define a class of functions on the space
of module lattices, which can be analyzed in terms of the group structure of GLm. They have nice
properties, satisfying many differential equations and being square-integrable, which makes them a good
source of potential worst-case distributions. This fact is the main motivation to consider automorphic
forms in the context of lattice-based cryptography.

This section is a recollection of the theory of automorphic forms, which is included for making this
article accessible to non-experts. Unless it makes definitions much easier, we will not restrict to m “ 2,
and in fact, many results have analogues for GLm replaced by any reductive algebraic group. This is
partly our motivation for introducing further classes of structured lattices in Section 6. In this section,
we begin with introducing the notion of automorphic forms and cuspidal automorphic forms, and state
first decomposition results. Both admit the structure of a module over a large algebra, the so-called
Hecke algebra. We introduce the Hecke algebra by looking separately into the case of Archimedean and
non-Archimedean places. Using the Hecke algebra, the space of cuspidal automorphic forms is treated
as a representation theoretic object. As such, cuspidal automorphic forms decompose into irreducible
components. A specific class of cuspidal automorphic forms of spherical cuspidal representations will
be particularly interesting. Our main sources are [BH06; Bum97; CKM04; Gar18].
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4.1 Automorphic forms
As before, let G denote the group GLm over k, where we do not yet specify m. The groups G8 and
K8 as well as their components Gσ and Kσ are defined as in the previous section. Similarly, Kf

is a maximal compact open subgroup of GpAk,f q and Kp its components for p ∤ 8. We will write
K “ KfK8 as before.

Recall that G8 is a Lie group. The group GpAk,f q is a totally disconnected topological group and
the notion of smooth function on GpAk,f q in the classical sense does not behave well. This is resolved
by requesting functions to be locally constant. More precisely, we define the following as in [BJ79,
Section 4.1].

Definition 4.1.1. A function φ : GpAkq Ñ C is smooth, if it is smooth in the G8-component, when the
GpAk,f q-component is fixed, and locally constant in the GpAk,f q-component, when the G8-component
is fixed.

The set of smooth C-valued functions on GpAkq will be denoted as usual as C8pGpAkq,Cq or just
C8pGpAkqq.

Before we can define automorphic forms, we need further notation. The Lie algebra of G8 will be
denoted g8. It splits into components corresponding to the infinite places as g8 “

ś

σ|8 gσ. The Lie
algebra g8 acts on smooth functions C8pGpAkqq as right-invariant differential operators. This action
extends to an action of the universal enveloping algebra Upg8q of g8, which then restricts to its center
Z8. There is an abundance of good sources for these notions, for example [Kna02].

Definition 4.1.2. A K-finite automorphic form is a smooth function φ : GpAkq Ñ C, such that

1. if γ P Gpkq, g P GpAkq then φpγgq “ φpgq,

2. xφpgkq | k P Ky is finite dimensional,

3. there exists an ideal ϑ Ď Z8 of cofinite dimension, such that X.φ “ 0 for all X P ϑ,

4. for any norm |_| on GpAkq, there exist r, C ą 0 such that for all g P GpAkq,

|φpgq| ď C|g|r.

The space of K-finite automorphic forms will be denoted ApGq. We briefly explain the conditions.

Remark 4.1.3. The first condition is called automorphy. The second is K-finiteness, which is the source
for the name of this type of automorphic forms. It entails that the action of K by right-translation
stays in a finite dimensional subspace, which is desirable from representation theoretic viewpoint. The
representation defined by K-finite automorphic form defines will be admissible, as we will explain below.
See also the next remark for a connection to module lattices. By condition 3 an automorphic form
satisfies many differential equations. This makes automorphic forms highly symmetric functions and
motivates why we look into automorphic forms from application perspective, see Section 5.1. The last
condition is called moderate growth and ensures that automorphic forms with central character will be
square-integrable modulo center, as will be explained below.

Remark 4.1.4. A special form of K-finiteness is K-invariance, i.e., φ satisfies φpgkq “ φpgq for all
g P GpAkq, k P K. A K-invariant automorphic form in particular defines a smooth map

φ : GpkqzGpAkq{K Ñ C,

i.e., a smooth function on the space of isometry classes of module lattices over k. Similarly, Kf -invariant
automorphic forms define functions on the space of module lattices over k.
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Let χ denote a character of GmpAkq, by which we mean a continuous group homomorphism GmpAkq Ñ

S1 Ď Cˆ. Note that GmpAkq “ ZpGq :“ ZpGpAkqq as scalar matrices. A K-finite automorphic form φ
has central character χ, if

φpzgq “ χpzqφpgq (4.1)

whenever z P ZpGq “ ZpGpAkqq. We will write ApG,χq for the space of K-finite automorphic forms
with central character χ. More generally, any measurable function on GpAkq has central character χ,
if Equation (4.1) holds. As |χpzq| “ 1 for any z, the following is well-defined.

Definition 4.1.5. An L2-automorphic form with central character χ is a measurable function φ : GpAkq Ñ

C which is left Gpkq-invariant, has central character χ, and
ż

ZpGqGpkqzGpAkq

|φpgq|2dg ă 8.

The space of L2-automorphic forms with central character χ is denoted L2
pGpkqzGpAkq, χq or just

L2
pχq. We can also restrict to functions that are invariant under Z1 as in Proposition 3.2.3. These are

square-integrable functions L2
pZ1GpkqzGpAkqq. As Z1GpkqzGpAkq has finite volume by Proposition

3.2.3 again, the condition on a function of this space to be square-integrable is rather mild.

Proposition 4.1.6. There is a decomposition

L2
pZ1GpkqzGpAkqq “

x

à

χ

L2
pχq

where the sum runs over characters of GmpAkq that are trivial on the ray px, . . . , xq P kˆ
8, for x P Rą0.

The decomposition is orthogonal with respect to the L2 inner product.

We refer to [Gar18, Section 2.5] for a proof. Later, we will see further decompositions for the space
of cusp forms.

Cusp forms. From now on, we restrict to the case m “ 2, although, many definitions and results
require only small changes. A K-finite automorphic form φ is a cusp form, if for all g P GpAkq

ż

k z Ak

φ

ˆˆ

1 x
0 1

˙

g

˙

dx “ 0. (4.2)

The integral is always defined as by Theorem 2.2.2, k z Ak is compact. The space of K-finite cusp
forms is denoted A0pGq. For a fixed central character χ, A0pG,χq or simply A0pχq denotes the cusp
forms, which have χ as their central character. There is a geometric reasoning for this definition, which
we recall briefly from the classic theory of modular forms.

Remark 4.1.7. Let h denote the upper half space in the complex plane. For an arithmetic subgroup
Γ Ď SL2pZq, the modular space Γzh is a (in general) non-compact hyperbolic manifold. In the non-
compact case, it admits a canonical compactification which is a Riemann surface. The points that
need to be added are finite and discrete, so-called cusps. A modular form in classical sense is assumed
to be holomorphic at the cusps, which is a condition on the Fourier series expansion about each cusp,
namely, that it has only nonnegative terms. A cusp form is moreover assumed to vanish at the cusps,
i.e., that the constant term is 0. There is a by-now classic translation of the theory of modular forms
to the adèlic perspective, in which cusps are described in terms of subgroups of GL2pAkq of the form

"ˆ

1 x
0 1

˙*

.

The above condition entails that the Fourier coefficient vanishes. The analogy to Fourier coefficients
is inherent in Whittaker models, see [CKM04]. For the relationship between the classic and adèlic
approaches is treated in [CKM04; Kud03].
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The definition of L2-cusp forms goes similar in fashion. An L2-automorphic form φ is a cusp form,
if Equation (4.2) holds for almost all g P GpAkq. The space of L2-cusp forms with central character χ
will be denoted L2

0pχq. It holds that
A0pχq Ď L2

0pχq.

In fact, A0pχq is the space of K-finite and smooth vectors in L2
0pχq, see [CKM04]. In Remark 4.2.2 we

will briefly explain K-finite and smooth vectors.

The space of automorphic forms or cusp forms can be analyzed in terms of representation theory. In
the next section, we will introduce the Hecke algebras, which are the basic tool for analyzing the space
of automorphic forms and cusp forms. In particular, they contain the Hecke operators which will be
part of our criterion for a worst-case to average-case convergence.

4.2 Representation Theory
We introduce some backgrounds in representation theory of GpAkq. As the group GpAkq decomposes
into pieces Gν for the places ν of k, up to basic restrictions, the theory of modules over GpAkq of can be
studied in terms of these Gν . We consider separately the case of Archimedean and non-Archimedean
places, with a stronger focus on the non-Archimedean places, as they are the source of the Hecke
operators we are interested in. We begin with a brief overview of the Archimedean case.

Archimedean Case. Let ν be an Archimedean place. For convenience, let G “ Gν for this paragraph
and similarly, K “ Kν the maximal compact subgroup, and g “ gν the Lie algebra. The Lie algebra
of K is denoted k and is a subalgebra of g.

As G is non-compact and non-commutative, the analysis of G-modules is more involved than e.g.
for compact abelian groups. Therefore, we introduce the notion of pg,Kq-modules, which encapture
the interesting representations of G for the purpose of automorphic forms. There is another approach
using left and right K-invariant distributions on G with support in K, which is equivalent to the notion
of pg,Kq-modules. For that approach, see [CKM04; Gel75; JL70].

Definition 4.2.1. A pg,Kq-module is a complex vector space V , together with a Lie algebra repre-
sentation g Ñ EndpV q and an action K Ñ GLpV q, such that

• V decomposes into finite dimensional K-invariant subspaces,

• for any Y P k, v P V
d

dt
expptY q|t“0 .v “ Y.v

• for any k P K, X P g, and v P V ,

k.pX.pk´1.vqq “ padkXq.v.

In the definition, we write X.v for the endomorphism associated with X P g applied to v, and
similarly for k.v for k P K. The first condition makes pg,Kq-modules technically simple. The second
and third conditions are compatibility assumptions on the actions of g and K. The exponential map
for Lie algebras is a mapping from the Lie algebra of a group to the Lie group itself. The second
condition says that the Lie algebra action is an extension of the Lie group action. The adjoint ad is a
representation of G on its Lie algebra. For GLm, the action is given by conjugation which is the reason
for the last condition.

Remark 4.2.2. Let V be a Hilbert space on which G acts continuously. Then there exists a subspace
V 8 of V , on which G acts smoothly and which is dense in V . The elements are called smooth vectors
and are defined by the condition that

d

dt
expptXq|t“0 .v
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is defined for all X P g. By definition, the G-action induces a g-action on V 8. Further, the subspace
of K-finite vectors V K consisting of all v P V such that K.v spans a finite dimensional subspace. It
can be shown that K-finite vectors are smooth and V K is dense in V . Moreover, the action of g
preserves K-finiteness, and in fact, the two actions of g and K are compatible in the sense of Definition
4.2.1. Thus, to any continuous G-representation on a Hilbert space, we can naturally associate a
pg,Kq-module.

Definition 4.2.3. A pg,Kq-module V is admissible, if every K-isotypic component is finite dimensional.

Let us recall the notion of K-isotypic component. Let σ be an irreducible finite dimensional represen-
tation of K. Then the K-isotypic component Vσ of V associated with σ is the union of all irreducible
submodules of V isomorphic to σ. Admissibility is another condition that makes pg,Kq-modules
well-defined.

Non-Archimedean Case. Now, let ν be a non-Archimedean place. Let us again set G “ Gν and
K “ Kν as a maximal compact open subgroup. In contrast to the Archimedean case, here we can work
with G-representations. The notion of smoothness is the abstract counterpart of smooth functions as
in Definition 4.1.1.

Definition 4.2.4. A G-module V is smooth, if for every v P V there exists a compact open subgroup
U of G such that x.v “ v for all x P U .

For a compact open subgroup U of G, let V U denote the U -fixed vectors of V . Then the smoothness
of V amounts to saying that V “

Ť

U V
U , where the union is taken over all compact open subgroups.

Similar to Remark 4.2.2, we can associate a smooth representation to an arbitrary representation V , by
setting V 8 “

Ť

U V
U . Note that the G-action preserves invariance under some compact open subgroup.

In fact, if v is fixed by U , then gv is fixed by gUg´1. Hence, V 8 is indeed a smooth G-module.

For any isomorphism class ρ of irreducible finite dimensional representations of K, let V ρ denote
the ρ-isotypic component of V . We write pK for isomorphism classes of finite dimensional irreducible
K-modules. The next theorem shows that smooth representations can be analyzed in terms of repre-
sentations of K. A proof can be found in [BH06, Proposition 2.3].

Theorem 4.2.5. Let V be a smooth G-module. Then V “
À

ρPxK
V ρ.

Schur’s Lemma holds in the context of smooth representations so that we have the following conse-
quence.

Corollary 4.2.6. Let V be an irreducible smooth representation of G. Let Z denote the center of G.
Then there exists a character χ : Z Ñ Cˆ such that z.v “ χpzq.v for all z P Z.

We refer to [BH06, 2.6 Corollary 1] for a proof. See also [Bum97, Proposition 4.2.4] and the discussion
thereafter. Again, we have a notion of admissibility, as follows.

Definition 4.2.7. A smooth representation V of G is admissible, if for every compact open subgroup
U of G, the space of U -fixed vectors V U is finite dimensional.

As in representation theory of finite groups, there is a C-algebra HpGq such that there is a natural
correspondence between G-representations and HpGq-modules. For finite groups, this algebra is the
group algebra. In the present case, we introduce the Hecke algebra as follows.

The group G admits a left-invariant Haar measure µG, which we normalize by the condition µGpKq “

1. Let HpGq :“ C8
c pG;Cq denote the C-algebra of locally constant functions with compact support,

where multiplication given by convolution

φ ‹ ψpxq “

ż

G

φpyqψpy´1xqdµGpyq,
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for φ,ψ P HpGq. Unless G is compact, HpGq does not have a unit. Intuitively, a unit would require
to have support all over G, which cannot exist in the set of compactly supported functions if G is
non-compact. However, HpGq has many idempotents, i.e., elements ξ with ξ ‹ξ “ ξ. In fact, suppose U
is any compact open subset, and χU is the characteristic function associated with U . That is, χU takes
the value 1 on U and 0 anywhere else. Then ξU :“ 1

µGpUq
χU can be easily computed to be idempotent.

Idempotents of this form are called fundamental idempotents.

Let M be a HpGq module. Then we will write φ ‹ m for the action of φ P HpGq on m P M , as in
[BH06]. A HpGq-module is smooth, if for every m P M there exists φ P HpGq such that φ ‹m “ m.

Theorem 4.2.8. There is a natural correspondence between G-modules and HpGq-modules. A G-
module is smooth, if and only if the corresponding HpGq-module is smooth.

Again, we refer to [BH06] for a proof. We finish with a final definition of modules which have
K-invariant elements. These will form the collection of automorphic forms that define functions on the
space of lattices.

Definition 4.2.9. Let M be an irreducible HpGq-module. A spherical vector is an element m P M
such that ξK ‹m “ λm for λ P Cˆ. An irreducible representation is spherical, if it contains a spherical
vector.

For G “ GL2 spherical vectors, if exist, are unique up to scaling, cf. Appendix B.1.

4.3 Automorphic Representations
In this section we use the tools introduced in the previous subsection to analyze the space of automorphic
forms. The case of L2-automorphic forms is easier, as GpAkq acts on this space via right translation,
for any fixed central character. The same is not true for K-finite automorphic forms, as K-finiteness is
not preserved by right-translation. The problem occurs only at the infinite places, where K8-finiteness
is not necessarily preserved. Therefore, one substitutes the right-translation action by G8 with a
pg8,K8q-module structure, as defined in Section 4.2. The necessity of the Hecke algebras at finite
places comes from the operators we define from elements in the Hecke algebra. The results stated here
can be found in [CKM04, Lecture 3] and the references there.

Archimedean Hecke algebra. The space of K-finite automorphic forms carries the structure of a
g8-module via differential operators. The g8-action preserves Z-finiteness, as the operators commute.
Moreover, K8 acts via right-translation. In contrast to right-translation by G8, this preserves K-
finiteness, by definition. These actions are compatible in the sense of Definition 4.2.1, so that ApGq

becomes a pg8,K8q-module.

Theorem 4.3.1. Let φ P ApGq. The pg8,K8q-module generated by φ is admissible.

Non-Archimedean Hecke algebra. In the previous section we defined Hecke algebras for each
finite place p, separately. The finite part of the global Hecke algebra is defined as a restricted tensor
product of those. The restrictedness is a finiteness condition similar to the condition for adèles. More
precisely, we fix Kp, for each finite place p, to be the maximal compact open subgroup GL2pOpq. To
Kp we associate the fundamental idempotent ξp :“ ξKp

as in Section 4.2. The finite Hecke algebra Hf

is the restricted tensor product
â

p

1Hp,

where a tensor belongs to Hf , if at all but finitely many places, the tensor is given by ξp. An Hf -module
M is admissible if and only if there is a compact open Up for each p ∤ 8, almost all Up being Kp, such
that for ξ :“ bpξUp

, the space ξM is finite dimensional.

20



Example 4.3.2. A basic construction of admissible Hf -modules is as follows. For each p let Vp be an admissible
Hp-module, which is spherical for all but finitely many p. The restricted tensor product V :“

Â1

p Vp is defined to
be the subspace generated by tensors which are spherical in all but finitely many factors. Then V is admissible.
Combining Theorem 4.3.3 and Theorem 4.3.5 below, we will see that this construction covers automorphic
representations.

The finite Hecke algebra acts on ApGq and L2
pχq for a fixed central character χ, via convolution

Rpξqφpxq “

ż

GpAk,f
q

φpxyqξpyqdy.

It is easy to see that Hf preserves K-finite automorphic forms.

Theorem 4.3.3. Let φ P ApGq or φ P L2
pχq. Then the Hf -module generated by φ is admissible.

Global Hecke algebra. We define H as a symbol and say that V is an H-module, if it is a Hf -
module and a pg8,K8q-module such that the two actions commute. Any H-module M decomposes
into a tensor product of an Hf -module Mf and pg8,K8q-module M8. An H-module M is admissible,
if Mf is admissible as an Hf -module, and M8 is admissible as a pg8,K8q-module.

Definition 4.3.4. An automorphic representation is an H-module V that is isomorphic to an irreducible
subquotient of ApGq.

Most importantly for automorphic forms, we have a decomposition result by Flath, [Fla79].

Theorem 4.3.5. Let pπ, V q be an irreducible admissible H-module. Then there exist irreducible
admissible Hp-modules πp for all p ∤ 8 which are spherical for all but finitely many p, and irreducible
admissible pgσ,Kσq-modules πσ for all σ | 8, such that

π “
â

ν

1πν

where ν runs over all places.

Together with Theorem 4.3.3, we conclude that from a theoretic perspective, the analysis of auto-
morphic representations reduces to the analysis of admissible representations of Gpkνq for all places ν
of k. In the case of G “ GL2, we give an outline in Appendix B.

There is a further notion of automorphic representations related to L2-automorphic forms. It has
the advantage of being a GpAkq-module without utilizing the Hecke algebra introduced above.

Definition 4.3.6. An L2-automorphic representation is an irreducible submodule of the GpAkq-module
L2

pχq, for some central character χ.

Theorem 4.3.7. Let π be an L2-automorphic representation. Then there exist irreducible unitary
Gpkνq-modules πν such that π “ x

Â

ν
1πν .

Here, the restricted tensor product is completed in the sense of tensor products of Hilbert spaces.
As we do not need further details, we refer to [GGP90].

Cuspidal automorphic representations. It can be easily checked that the action of the Hecke
algebra H on K-finite automorphic forms preserve cusp forms and central characters. Thus A0pGq is
always a submodule of ApGq, and further A0pG,χq is a submodule of ApG,χq, for a central character
χ.

Definition 4.3.8. A K-finite cuspidal automorphic representation with central character χ is an
irreducible submodule of A0pG,χq.
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We will use the term cuspidal representation for a K-finite cuspidal automorphic representation for
some central character. A main feature is a decomposition result on the space of cusp forms with a
fixed central character, which goes as follows.

Theorem 4.3.9. The space A0pG,χq decomposes into a direct sum of irreducible H-modules π as

A0pG,χq »
à

mππ.

Here mπ are nonnegative integers, the multiplicities of π. For G “ GLm, one can show that mπ “ 1.

Theorem 4.3.10. Let π and π1 be cuspidal representations with central character χ. Suppose πν – π1
ν

for all but finitely many ν including all infinite places. Then π “ π1 in L2
0pχq. In particular, mπ “ 1.

This theorem is called the strong multiplicity one theorem and is proved in [Cas73; JL70]. Finally,
we want to mention that the complement of the cusp forms in L2

pχq can be described explicitly.

Remark 4.3.11. The space L2
pχq decomposes into an orthogonal direct sum

L2
0pχq ‘ L2

Eispχq,

see [Gar18]. The term L2
Eispχq is the space of Eisenstein series with central character χ. As mentioned

earlier, we believe that it is natural to look for worst-case distributions in the space of cusp forms. Still,
Eisenstein functions might be worth to be considered in this regard, or more generally, for potential
applications of automorphic forms to the cryptographic use of lattices.

5 Worst-Case to Average-Case Convergence
In this section, we want to specify our general notion of cuspidal distributions on the space of lattices
and define a collection of Hecke operators associated with ideals of Ok. For a chosen finite set S of
primes of Ok, we consider the product HS of these Hecke operators, which is again an element of the
finite Hecke algebra of GL2.

For a choice of a finite set S of primes of Ok, we give a condition on a cuspidal distribution ρ that
ensure that the sequence Hn

Sρ converges to the uniform distribution, which is the analogue of the main
theorem of [Boe+20], except that we do not specify a worst-case distribution.

5.1 Worst-Case Distributions
Let G “ GL2. In Section 3 we have identified the space IsomLat1

2pkq of isometry classes of norm 1
module lattices of rank 2 over k with the space

GpkqZ1zGpAkq{K

where K “ KfK8 as before.

We expect a worst-case distribution to be a square-integrable map

IsomLat1
2pkq Ñ C

whose support is concentrated about the identity lattice which corresponds to 1 P GpAkq. It should
satisfy further symmetry properties reflecting the geometry of IsomLat1

2pkq. More precisely, the space
IsomLat1

2pkq carries the structure of a hyperbolic manifold, which in particular defines a metric d on
the connected component of the identity. Then, one expects that if dpx, 1q “ dpy, 1q for x, y in the
identity component, then a worst-case distribution should take the same values on x and y.

Here, we define the notion of cuspidal distributions. These are contained in the space of K-finite
automorphic forms. The above conditions are partially satisfied by definition for K-finite automorphic
forms, cf. Remark 5.3.3.
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Definition 5.1.1. A cuspidal distribution on the space of isometry classes of norm 1 module lattices
of rank 2 over k is defined to be an element of

C ‘ A0pGqK .

Here, C is for constant functions on IsomLat1
2pkq, which are determined by the single value λ P C,

and A0pGqK is the space of K-invariant cuspidal automorphic forms. Note that the term cuspidal
distribution does not mean that the form is a cusp form, but only a cusp form up to a constant.

Remark 5.1.2. In [Boe+20], the worst-case distribution has been chosen as a Gaussian on the torus
IsomLat1

1pkq “ Pic1
pkq. This worst-case distribution admits a Fourier decomposition with a constant

term, and a series over nontrivial characters. We view cuspidal automorphic forms as the generalization
of characters in the rank 1 case, so that in the present case, we define a cuspidal distribution to
have a constant term plus a series in cuspidal representations. The restriction to K-invariant forms
ensures that the distribution is well-defined on the space of isometry classes of norm 1 module lattices,
cf. Corollary 3.3.2.

Proposition 5.1.3. Let φ be a cuspidal distribution. Then, φ can be written as

λ`
ÿ

π

φπ

where the sum runs over all spherical cuspidal automorphic representations π and φπ are spherical
vectors of π, and λ P C.

Proof. By definition φ is of the form λ` φ0, with λ P C, φ0 P A0pGqK . The decomposition A0pGq “
À

π π in Theorem 4.3.9 yields a decomposition

A0pGqK “
à

π

φπC,

where the sum runs over spherical cuspidal representations and φπ are spherical vectors.

Remark 5.1.4. The average-case distribution is merely the constant function 1, which corresponds to
the normalized invariant measure we introduced earlier.

5.2 Hecke Operators
In this section, we introduce specific Hecke operators associated with ideals of Ok and analyze their
action on spherical vectors. We begin with prime ideals first, and extend the definition to arbitrary
ideals by using their decomposition.

Let p be a prime of Ok and tp a uniformizer of Op. Let αp :“
ˆ

tp 0
0 1

˙

. Then Up :“ KpαpKp is a

compact open subset of Gpkpq, so that there is a fundamental idempotent Hp associated with Up. By
the definition of the action of the Hecke algebra, it is clear that Hp preserves constant functions. For
spherical cusp forms, we have the following.

Lemma 5.2.1. Let π be a spherical cuspidal automorphic representation and φ a spherical vector in
π. Then φ is an eigenvector of Hp. If πp is the factor at p (according to Theorem 4.3.5), and the
subgroups

"ˆ

x 0
0 1

˙*

and
"ˆ

1 0
0 y

˙*

act via characters χ1 and χ2, then χ1 and χ2 are unramified and

Hpφ “ |tp|´1{2
p pχ1ptpq ` χ2ptpqqφ.
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Unramified for characters χ1, χ2 means that they are Uf -invariant, hence the values χ1ptpq and
χ2ptpq are independent of the choice of tp. That χ1 and χ2 are unramified is a consequence of the
classification of admissible Gpkpq-modules, particularly the spherical representations, see Appendix B.1
for an outline and references. The remaining claims can be found in [Bum97, Section 4.6] using an
explicit description of the spherical representations.

Let I be a nonzero ideal of Ok and I “
ś

p p
νp its prime decomposition. Then we define HI :“ bH

νp
p .

Note that νp “ 0 for almost all p, so that by H0
p we mean the fundamental idempotent associated with

the fixed maximal compact open subgroup Kp. We consider HI as an element of the global Hecke
algebra H, which acts trivially on the infinite component.

5.3 Convergence Criterion
Let φ “ λ`

ř

π φπ be a cuspidal distribution on the space of isometry classes of norm 1 module lattices
of rank 2 over k. Let I Ď Ok be a nonzero ideal, with prime decomposition as before. Then we have
the following convergence criterion.

Proposition 5.3.1. Let

aN :“

¨

˝

ź

p|I

|tp|´νpN{2
p pχπ,1ptpq ` χπ,2ptpqqνpN

˛

‚

N

be viewed as a sequence in ℓ2ptπ spherical cuspidal automorphic representationsuq. Then, for N Ñ 8,
HN
I φ Ñ λ, if aN Ñ 0.

Proof. The proposition is a formal consequence of the results mentioned previously. The space of
cuspidal automorphic forms decomposes into a Hilbert space direct sum. A sequence in that space
converges, if and only if the sequence of coefficients converge, hence the result.

Corollary 5.3.2. Let φ “ 1 `
ř

π φπ be a cuspidal distribution and aN the ℓ2-sequence it induces. If
aN Ñ 0 as N Ñ 8, then HN

I φ Ñ 1. Hence, the cuspidal distribution converges to the average-case
distribution.

We have not made any concrete qualitative analysis of the cuspidal distributions here and we want
make the following remark, which displays the difficulties in potential applications.

Remark 5.3.3. In practice, we can define worst-case distributions on the space of module lattices
which intuitively satisfy properties that one expects of worst-case distributions. However, even if such
worst-case distributions are cuspidal distributions, it is hard to find the decomposition into irreducible
cusp forms as in Proposition 5.1.3. In the rank 1 case, this is easier thanks to Fourier analysis, which
is not available in the present case. The problem falls into the field of non-abelian harmonic analysis.
Conversely, it is possible to construct spherical cuspidal representations which can then be used to
define a worst-case distribution which comes in a decomposed form by its construction. However,
then it is difficult to make assertions on its quality as a worst-case distribution. We have outlined
a construction of cuspidal automorphic representations with spherical vectors in Appendix B.3, and
reviewed their potential application in the context of this section in Appendix B.4.

6 Lattices with G-structure
In this section, we define a new notion of structured lattices. The structure is given by the choice of an
algebraic group over the ring of integers of a number field together with a representation. Intuitively,
the algebraic group is the additional structure, while the representation entails how the group acts on
lattices. We will give a series of examples to show how lattices previously considered for cryptographic
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applications fit into this notion. The motivation to consider this type of structured lattices is that the
space of lattices with a fixed structure can be treated analogous to our approach in this article. This
works particularly well, if the underlying group satisfies certain conditions.

We do not provide all mathematical details, as they would lead us to far astray. Specifically, we do
not go into details on the theory of reductive groups, where the similarity to the case of GL2 is most
apparent.

6.1 Affine algebraic groups
We begin with a brief introduction to the notion of affine algebraic groups. There are many sources on
algebraic groups. We refer to [Wat79], where the general notion of affine group schemes over general
base rings is introduced.

Let k be a number field as before, and Ok its ring of integers. Until we consider central simple
algebras, all algebras are assumed to be commutative with 1. We begin by introducing a few basic
notions. An algebraic group over Ok is a rule G that associates to any Ok-algebra A a group GpAq, and
for every morphism φ : A Ñ B of Ok-algebras a group homomorphism Gpφq : GpAq Ñ GpBq, subject to
the conditions

• the identity A Ñ A is associated with the identity GpAq Ñ GpAq,

• for two morphisms φ : A Ñ B and ψ : B Ñ C the diagram

GpAq GpCq

GpBq

Gpψ˝φq

Gpφq Gpψq

commutes.

The familiar reader will recognize that this is the functorial definition of an algebraic group. An affine
algebraic group is an algebraic group G for which there exists an Ok-algebra S such that for any other
Ok-algebra A, there is a natural isomorphism

GpAq » HomOk
pS,Aq.

Here, natural isomorphism has a rigorous meaning, namely that the isomorphism is compatible with
morphisms A Ñ B between Ok-algebras. If such an S exists, it is unique up to isomorphism. An
affine algebraic group is of finite type, if S is an Ok-algebra of finite type, i.e., there exists a surjective
morphism

Okrt1, . . . , tms ↠ S.

Of course, Ok in this definition can be replaced with any commutative unital ring. We give an example
to illustrate this notion.
Example 6.1.1. The multiplicative group Gm|Ok

is defined by the association A ÞÑ Aˆ, for any Ok-algebra A.
Here, Aˆ is a group with respect to multiplication. The compatibility is easy to check so that Gm|Ok

defines
an algebraic group over Ok. For any Ok-algebra A, HomOk

pOkrt, t´1
s, Aq » Aˆ. In fact, an Ok-morphism from

Okrt, t´1
s to A is determined uniquely by the image of t, which needs to be invertible in A. Conversely, for

any invertible element a P Aˆ, t ÞÑ a defines such an Ok-morphism. Thus, Gm|Ok
is an affine algebraic group

represented by Okrt, t´1
s. It is of finite type, as Okrx, ys Ñ Okrt, t´1

s, defined by x ÞÑ t, y ÞÑ t´1, is surjective.
Similarly, one can see that GLm|Ok

defines an affine algebraic group over Ok of finite type. It is the group that
associates to an Ok-algebra A the group GLmpAq.
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Fibers of G. Let G be an (affine) algebraic group over Ok (of finite type). Given a Ok-algebra F , we
can define the fiber of G over F by G :“ G bOk

F , which is now an algebraic group over F which takes
an F -algebra A to GpAq. It inherits the notions affine and finite type, i.e., if G is affine, so is G, and
similarly for finite type. The fiber over k is called generic fiber of G. Unfortunately, the motivation is
somewhat hidden in the geometric viewpoint of algebraic groups which we do not explain here.

Representations. Let G be an affine algebraic group of finite type over Ok. A representation of G
is a morphism π : G Ñ GLm|Ok

of algebraic groups. That is, for any Ok-algebra A, we get a group
homomorphism

πA : GpAq Ñ GLmpAq,

which again is assumed to be compatible in morphisms of Ok-algebras. A representation is faithful, if
for any Ok-algebra A, the corresponding map πA is injective. Note that any single A recovers the more
familiar notion of representation, particularly, when A is contained in the complex numbers.

There are trivial examples for representations in the above sense. For G “ GLm|Ok
, the identity

representation associates to any A, the group homomorphism πA “ idA. If G is naturally a subgroup
of GLm|Ok

, then the inclusion defines a representation.

Example 6.1.2. Consider the algebraic group SLm|Ok
which associates to A the group SLmpAq “ tg P

GLmpAq | detpgq “ 1u. Clearly, for any A, SLmpAq is a subgroup of GLmpAq. Thus, the inclusion is a
representation.

We want to motivate the necessity of representations, which is also the key insight in the theory of
module lattices.

Remark 6.1.3. Recall that any two lattices of a fixed rank are isomorphic as abstract groups, hence,
in particular, so are their automorphism groups. The notion of module lattices is merely a systematic
choice of lattices together with a subgroup of their automorphisms. This becomes apparent in Example
6.2.3 below and with our description in Proposition 3.2.2 of the space of module lattices of rank m as

GLmpkqzGLmpAkq{GLmp pOkq »
ž

gPC
ΓgzGLmpk8q`.

If we denote by Lx the lattice corresponding to x in this space, we see that any γ P Γg defines an
automorphism γ : Lx Ñ Lx. While the algebraic group itself does not provide information how to act
on lattices, a choice of representation provides exactly this missing piece of information.

6.2 Lattices with G-structure
Motivated by the previous remark we define G-lattices as follows.

Definition 6.2.1. Let G be an affine algebraic group over Ok of finite type. Further, let π be a
(faithful) representation of G in GLm|Ok

. A lattice with pG, πq-structure is an element of the image of
the map

GpkqzGpAkq{Gp pOkq
π

ÝÑ GLmpkqzGLmpAkq{GLmp pOkq.

Of course, an element in the image of the above map is viewed as a lattice by means of Proposition
3.2.2. In particular, as in Remark 6.1.3 above, each lattice with pG, πq-structure comes with a subgroup
of their automorphism group. If π is understood from the context, we will say a lattice with G-structure.
We show how this recovers the notions of lattices considered previously in cryptography.
Example 6.2.2. Let G :“ GLm|Ok

Let π “ id be the identity representation. Then by Proposition 3.2.2,
lattices with pG, πq-structure are the same as module lattices of rank m over k as in Definition 3.1.2.
For k “ Q this also recovers Z-lattices. In the context of Remark 6.1.3, for Z-lattices, the full group of
automorphisms is chosen.
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The next example displays how module lattices over Ok can be viewed in terms of Z-lattices. This
resembles the fact that a module lattice is in particular a Z-lattice.
Example 6.2.3. Let H :“ GLm|Ok

and G its restriction of scalars from Ok to Z. That is, for a Z-algebra A,
GpAq :“ GLmpA bZ Okq. It can be shown that in the present case, this is again a finite type affine algebraic
group over Z. It satisfies the property

HomZpG, Xq » HomOk
pH, X bZ Okq

for any Z-scheme X. By a choice of basis of Ok over Z, one can see that G can be embedded into GLmn|Z ,
where n “ rk : Qs. We view this as a faithful representation π. The space of lattices with pG, πq-structure is

GpQqzGpAQq{GppZq “ GLmpkqzGLmpAkq{GLmp pOkq,

where we use the definition of restriction of scalars. The choice of basis, and with that π, defines an embedding
of this space into

GLmnpQqzGLmnpAQq{GLmnppZq,

the space of Z-lattices of rank mn. Note that two distinct choices of basis for Ok over Z yield conjugate
embeddings into the space of Z-lattices of rank nm.

6.3 Symplectic lattices
In the theory of (reductive) affine algebraic groups, symplectic groups take an important role as one
of the so-called classical groups, see [Hum75]. We introduce them as they form an interesting class
with potential implications to cryptography. Lattice reduction for symplectic lattices has been studied
in [GHN06]. Symplectic structures have been used in [KEF19] for lattice reduction by introducing a
symplectic structure on number fields. To avoid complications, we consider the base field Q only.

Let ω :“
ˆ

0 1
´1 0

˙

P GL2mpZq, where 1 represents the m-dimensional identity matrix. This defines
a nondegenerate alternating form

ω : k2m
ˆ k2m

Ñ k; pu, vq ÞÑ utωv.

We define Sp2m to be the algebraic group over Q that associates to a Q-algebra A the group

Sp2mpAq “ tg P GL2mpAq | gtωg “ ωu.

Thus, points in Sp2m preserve the form ω. It is easy to see that this defines an affine algebraic group
over Q of finite type. In fact, the equation gtωg “ ω defines polynomial equations in the coefficients of
g, which need to be satisfied. It has a model over Z, i.e., there exists an affine algebraic group Sp2m of
finite type over Z with Sp2m bZQ “ Sp2m. Further, Sp2m is naturally a subgroup of GL2m|Z , which
we view as faithful representation.

Definition 6.3.1. A symplectic lattice of rank 2m is a lattice with Sp2m-structure.

Symplectic lattices are related to polarized abelian varieties over C and questions about such lattices
can be rephrased in terms of questions on polarized abelian varieties. For example, see [Ber00].

6.4 Lattices in central simple algebras
Finally, we want to show that the lattices constructed in [GLV19] are structured lattices in sense of
Definition 6.2.1. As we do not need the notion of cyclic lattices, which is introduced for efficiency
reasons in [GLV19], we consider arbitrary central simple algebras. Recall that unless trivial, central
simple algebras are not commutative. More details on central simple algebras can be found in [Mil20,
Chapter IV] on Brauer Groups. We refer to [Voi21] for quaternion algebras.
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Let D be a central simple algebra over k of dimension m. For simplicity we consider an order OD of
D which is free over Ok. We define the affine algebraic group GD over Ok by the association

A ÞÑ pAbOk
ODqˆ

with A commutative. Note the similarity to Gm in Example 6.1.1. The (right) translation action of
OD on itself yields a faithful representation of OD in MmpOkq by means of a choice of some basis of OD
over Ok. This extends to a representation of GD. We define OD-lattices as lattices with GD-structure
for the given representation.

Let us consider the case of quaternion algebras, i.e., a central simple algebra over k of dimension
4. Quaternion algebras are close to GL2. In fact, GL2 is GD for D “ M2pkq. This is fundamentally
reflected in the theory of automorphic representations for the groups GD for arbitrary quaternion
algebras and GL2, as we explain briefly.

First, there is a well-understood notion of automorphic forms over quaternion algebras over number
fields, cf. [JL70, Chapter III]. It is said that D is split or unramified at a place ν of k, if Dν :“ Dbk kν
is isomorphic to M2pkνq, otherwise D is ramified at ν. It is known that D is unramified at all but
finitely many places. The Jacquet–Langlands correspondence, as can be found in [JL70] gives the
aforementioned relationship in the theory of automorphic representations.

Theorem 6.4.1. Let χ be a character of GmpAkq and D a quaternion algebra which is not M2pkq. Let
S be the nonempty set of places of k at which D ramifies. Then there is a one-to-one correspondence
between

• automorphic representations π “ bνπν of dimension ą 1 of GD with central character χ,

and

• cuspidal automorphic representations π1 “ bνπ
1
ν of GL2

such that π1
ν is a discrete series representation at all ν P S, and for all ν R S, πν » π1

ν .

We do not explain discrete series representations here, see [Bum97; Gel75; JL70]. Analogous to
our approach in Section 5, we may look for worst-case distributions on GD-structured lattices among
automorphic forms.

Reductive groups. The theory of automorphic forms and representations works particularly analo-
gous to GL2 as we covered in Section 4, if the group G is reductive. The groups Sp2m in Section 6.3
and GD in Section 6.4 are examples of reductive groups. As reductive is a technical condition which
we do not include more details here and refer to [Hum75; Wat79] for details.

6.5 LWE on G-structured lattices
As a final remark, we want to mention two open questions regarding G-structured lattices.

Firstly, our definition of G-structured groups is quite abstract. It would be important for applications
to spell out the definition for some choices of groups and give concrete descriptions of the corresponding
lattices. E.g., this can be done for the symplectic lattices we defined above. In particular, this is required
if the purpose of introducing additional structure is an increase of efficiency. Secondly, the classical
reduction of the LWE problem to SVP has been treated separately for ideal and module lattices, and
later for lattices over cyclic algebras. It might be possible to recover the proofs for G-structured lattices
for a certain class of groups.
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7 Conclusion
The present work builds up a theoretical roadmap towards a worst-case to average-case reduction of
computational problems on module lattices. This roadmap relies on the geometric structure of module
lattices which is a consequence of the connection between module lattices and the general linear group.
The description of the space of module lattices allows the study of functions on that space in terms of
automorphic forms, which constitute our main technical tool for the analysis of distributions on the
collection of module lattices. The space of automorphic forms admits a Hilbert space decomposition
whose components can be understood in terms of basic building blocks. Our setup for a worst-case to
average-case reduction is based on this insight; if the decomposition of a worst-case distribution into
its basic building blocks has a specific form, then the convergence is only a question of convergence in
terms of a coefficient sequence.

As a next step, it is necessary to find worst-case distributions according to our definition, which
admit explicit descriptions as functions on the space of lattices, compare Appendix B. In fact, the
problems here are two-fold. Given a smooth function on the space of lattices it is not known how
to decompose it into irreducible components of the associated automorphic representation. On the
other hand, a definition as in Appendix B does not yield an explicit function that can be used for
applications. Both are mathematical problems that need effective versions of results in non-abelian
harmonic analysis and representation theory. In the present work, we concentrated on the cuspidal
part of functions on the space of lattices, though, in future work, one might consider Eisenstein series
as well. Even further, we only touched upon the surface of the theory of automorphic forms which
offers much deeper insights that might have an impact on lattice-based cryptography.

The G-structured lattices we introduced here have not been considered in this generality yet. It
might be interesting to analyze LWE on this type of lattices. Specifically, the classical security results
of LWE as analyzed in [GLV19; LPR10; Reg05], may translate to conditions that are intrinsic to the
underlying group structure.

Acknowledgement. This work was partially funded by the German Ministry of Education, Research
and Technology in the context of the project Aquorypt (grant number 16KIS1022).
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A Rank 1 from adèlic perspective
In this appendix section we want to show how [Boe+20] can be understood in the terms of our present
approach. In two sections, we explain first how ideal lattices can be viewed as adèle valued points
of Gm, i.e., as idèles, and translate the worst-case distribution in [Boe+20] to this framework in the
second part.

The first section is closely related to Section 3 with the main distinction that the rank 1 case is less
technical. We present the details for convenience. The reader who has not encountered the concept
of adèles before can find a first impression how this terminology is applied. The second subsection is
the rank 1 analogue of what we have developed through Sections 4 and 5. Again, the discussion is
less technical here, as in dimension 1 the representation theory is easier and the well-known theory
of Fourier analysis can be applied. We outline how the worst-case distribution in [Boe+20] can be
viewed as a smooth function on the space of ideal lattices from the adèlic viewpoint, and show how the
Hecke operators in [Boe+20] are related to Hecke operators in the sense of automorphic forms on Gm.
Finally, we describe briefly the representation theoretic assumption on the finite places.

A.1 Ideal Lattices over k
In this section we define ideal lattices and relate them to idèles. We denote by Ik the set of Ok-
fractional ideals. If I Ď k is such a fractional ideal, then we denote by LpIq its image under the
diagonal embedding of k into k8.

Definition A.1.1 (As in [Boe+20]). An Ok-ideal lattice is an Ok-submodule M of k8 of the form
M “ g´1LpIq for a g P kˆ

8 and a fractional ideal I P Ik. The set of ideal lattices is denoted IdLatpkq or
Lat1pkq.

The inverse of g in the definition is chosen for compatibility reasons only. The set of ideal lattices
can be characterized as follows.

Proposition A.1.2. There is a canonical surjective map kˆ
8 ˆ Ik ↠ IdLatpkq which factors to an

isomorphism
kˆ

zkˆ
8 ˆ Ik

»
ÝÑ IdLatpkq

where kˆ acts on kˆ
8 ˆ Ik via λ.pg, Iq “ pλg, λIq.

Proof. We define the map by pg, Iq ÞÑ g´1I. This is surjective by the definition of ideal lattices.
For λ P kˆ, pλg, λIq maps to g´1I as λ cancels out. Hence the map induces a surjective map from
kˆ

zkˆ
8 ˆ Ik. Conversely, if two pg, Iq and ph, Jq define the same ideal lattice g´1I “ h´1J , let λ :“ hg´1.

Then multiplication by λ defines an isomorphism I Ñ J of Ok-modules, and by extension

k » I bOk
k Ñ J bOk

k » k.

Thus, λ is an element of GL1pkq “ Gmpkq “ kˆ. Moreover, it is trivial to check that λpg, Iq “ ph, Jq.

Our goal is to relate IdLatpkq to GmpAkq. The previous proposition may be viewed as a first step
in that direction. Considering the factorization GmpAkq “ kˆ

8 ˆ GmpAk,f q one expects a relationship
between GmpAk,f q and Ik. As before, let Uf :“ Gmp pOkq “ pO

ˆ

k . Then, we have the following.

Lemma A.1.3. There is a canonical isomorphism

Ψf
1 : GmpAk,fq {Uf ÝÑ Ik; x ÞÑ Ix :“

ź

p

pνppxpq .

Let tp be uniformizers of p Ď Op. Then the map

Φf1 : Ik ÝÑ GmpAk,fq {Uf ; I ÞÝÑ pt
νppIq
p qp
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is an inverse.

Proof. Note that Ψf
1 is well-defined, as if pξpqp P Uf , then νppxpξpq “ νppxpq ` νppξpq “ νppxpq. That

the two maps are mutually inverse is then obvious from the fact that νppxpq “ νppIxq.

Note moreover that Φf1 does not depend on the choice of tp. In fact, any other choice would differ
by ξp P Oˆ

p for each p, hence ξ “ pξpq P Uf .

Corollary A.1.4. The class group of k is isomorphic to kˆ
zGmpAk,fq {Uf .

Proof. One just needs to show that the maps ∆: kˆ
Ñ GmpAk,fq and div : kˆ

Ñ Ik are compatible
with Ψf

1 in Lemma A.1.3. But this is clear.

Lemma A.1.5. The map Ψf
1 from Lemma A.1.3 induces a bijective map

rΨ1 : GmpAkq{Uf ÝÑ kˆ
8 ˆ Ik

which is kˆ-equivariant.

Proof. The function rΨ1 is defined by mapping pg, xq P kˆ
8 ˆ GmpAk,f q “ GmpAkq to pg, Ixq, where

Ix “ Ψf
1 pxq as in Lemma A.1.3. It is clear that Φf1 induces an inverse to rΨ1. For kˆ-equivariance, let

λ P kˆ, and pg, xq P GmpAkq. As Uf only acts on GmpAk,f q we need to show Iλx “ λIx as fractional
ideals. But this is trivial from comparing their multiplicities at each prime.

Corollary A.1.6. There is a canonical isomorphism

Ψ1 : kˆ
zGmpAkq{Uf

»
ÝÑ IdLatpkq

induced from rΨ1 by taking quotients modulo kˆ.

In Section 3 we have seen the analogue for Gm replaced by GLm.

Norm 1 ideal lattices. So far, we considered a quite general class of ideal lattices. However, this
space is to large, in fact, kˆ

zGmpAkq{Uf is not compact, nor has it finite volume, compare Section 2.2
and the discussion about the diagonal embedding of kˆ into the idèles there. One can remedy this
problem as done in Section 2.2 for GmpAkq by restricting to the norm 1 subgroup. There is a direct
definition for ideal lattices.

Definition A.1.7. The norm of pg, Iq P kˆ
8 ˆ Ik is defined as Npg, Iq :“ Nk{QpIq|g|´1

8 , where |g|8 “
ś

σ|gσ|σ.

We remark that in [Boe+20] there is a further condition that the infinite component consists of
positive real entries.

Lemma A.1.8. The norm on kˆ
8 ˆ Ik induces a norm on IdLatpkq, which is compatible with the norm

on GmpAkq up to inverse. More precisely, for any pg, xq P GmpAkq and I “ Ix,

|pg, xq| “ Npg, Iq´1.

Proof. Suppose λ P kˆ and pg, Iq P kˆ
8 ˆ Ik. Then we consider Npλg, λIq “ Nk{QpλIq|λg|´1

8 . It holds
true that Nk{QpλIq “ |λ|´1

f Nk{QpIq. Moreover, the product formula 2.1.7 can be written as |λ|8|λ|f “ 1,
so that in conclusion, we have Npλg, λIq “ Npg, Iq, as we wanted. For the second claim we again note
that for pg, xq P GmpAkq, |pg, xq| “ |g|8|x|f , so that it suffices to compare the factors separately. For
x note that the factor that a prime p contributes to |x|f is p´fp νppxpq, while p contributes to Nk{QpIxq
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as factor pfp νppxpq. Hence, the claim follows for the finite part. For the infinite part, the inverse is by
definition.

We define the subgroup IdLat1
pkq of norm 1 ideal lattices over k is defined as the set of pg, Iq with

Npg, Iq “ 1.

Isometry classes of lattices.

Definition A.1.9. Two L,L1 P IdLat1
pkq are k-isometric if there exists x P k8 with |xσ|σ “ 1 for all

σ | 8, such that xL “ L1. The set of classes of k-isometric lattices is denoted IsomIdLat1
k.

Note that x P kσ for σ | 8 satisfies |xσ|σ “ 1, if and only if x P ˘1, in the case σ is a real place, or
x P S1 Ď Cˆ, if σ is complex. These are the two maximal compact subgroups of kσ. Let U8 denote the
product

ś

σ|8 Uσ with Uσ “ ˘1, if σ real, and Uσ “ S1, if σ is complex. Then we have the following.

Theorem A.1.10. There is a canonical identification

kˆ
zGmpAkq1{UfU8

»
ÝÑ IsomIdLat1

k .

Together with the identification in [Boe+20] of IsomIdLat1
k with the degree 0 part of the Arakelov

Class Group, we see that this idèles recover the approach from Arakelov divisors. As in Section 3, we
can describe the space of ideal lattices as follows.

Theorem A.1.11. There is a natural identification

kˆ
zGmpAkq1{UfU8

»
ÝÑ

ž

Clk

Oˆ
k zk1

8{U8 “
`

Oˆ
k zk1

8{U8

˘hk
.

Remark A.1.12. As Gm is abelian, we have a group structure on this space. A more natural form of
Theorem A.1.11 is the following. The group kˆ

zGmpAkq1{UfU8 is the extension of Oˆ
k zk1

8{U8 by Clk,
that is, there exists a short exact sequence

0 Oˆ
k zk1

8{U8 kˆ
zGmpAkq1{UfU8 Clk 0.det

The det is the norm function on the finite component GmpAk,f q. This is the adèlic version of the
corresponding sequence in terms of the Arakelov class group in [Boe+20].

A.2 Worst-Case to Average-Case Reduction in Rank 1
In this section, we recall the worst-case distribution in [Boe+20], and translate their definition to the
adèlic approach for Gm.

As before let r denote the number of infinite places of k. Then there is a natural map ℓ : kˆ
8 Ñ

Â

σ R – Rr given by pxσq ÞÑ plog|xσ|q, in which Λk :“ ℓpOˆ
k q defines a lattice.

Lemma A.2.1. The map
ℓ : Oˆ

k zkˆ
8{U8 Ñ ΛkzRr

is an isomorphism.

Under ℓ, the norm 1 elements of kˆ
8 correspond to trace-zero elements Hk of Rr.

Lemma A.2.2. The map
ℓ : Oˆ

k zk1
8{U8 Ñ ΛkzHk

is an isomorphism. In particular, Λk is a complete lattice in Hk.
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This gives a new description of ideal lattices as follows.

Corollary A.2.3. There is a natural one-to-one correspondence

IsomIdLat1
k

„
ÝÑ pΛkzHkq

hk .

In [Boe+20], they defined worst-case distributions on the space of ideal lattices as follows. On the
connected component of the identity, one sets

ρs : ΛkzHk Ñ Rą0; x ÞÑ
ÿ

y:y“x

expp´π∥y∥2{s2q,

which is extended to pΛkzHkq
hk by 0. Let Λ̌k be the dual lattice of Λk in Hk. That is, λ P Λ̌k, if and

only if xλ, xy P Z for all x P Λk. As shown in [Boe+20], one can use Fourier analysis to write

ρs “
ÿ

λPΛ̌k

aλχλ (A.1)

for certain aλ P C, cf. [Boe+20, Lemma 3.15]. Note that we have a slightly different notation, the
aλ differ by a scalar. By the identifications of Corollary A.2.3 and Proposition A.1.10, we can view
characters on pΛkzHkq

hk as characters on

kˆ
zGmpAkq1{UfU8.

These are unramified Hecke characters trivial on the ray Z1 :“ tpx, . . . , xq | x P Rą0u Ď kˆ
8. Similarly,

we can express ρs as a function on kˆ
zGmpAkq1{UfU8, which admits a Fourier decomposition into the

unramified Z1-invariant Hecke characters of k. With slight abuse of notation,

ρs “
ÿ

χ

aχχ

where the sum runs over the unramified Z1-invariant Hecke characters and if the restriction of χ to
the connected component of the identity is given by χλ for some λ P Λ̌k, then aχ “ aλ.

Hecke Algebra. For any finite place p of k, we define the Hecke algebra Hp at p to be the space of
locally constant functions with compact support on kˆ

p . It is an algebra with convolution of functions,
however, it has no unit. For any compact open subset U Ď kˆ

p , there are idempotents ξU “ 1
volpUq

χU ,
where χU is the characteristic function of U . We set Hp to be the idempotent associated with the
compact open subset tpOˆ

p . The Hecke algebra acts on the space of L2 functions on kˆ
zGmpAkq1{UfU8

via convolution.

Lemma A.2.4. Let χ be an unramified Z1-invariant Hecke character. Then χ is an eigenvalue of the
action of Hp.

Proof. By definition,

Hp ‹ χpxq “

ż

kˆ
p

Hppyqχpy´1xqdy

“

ż

kˆ
p

Hppyqχpy´1qχpxqdy

“

˜

ż

kˆ
p

Hppyqχpy´1qdy

¸

χpxq

“ αχ,pχpxq

where αχ,p “
ş

kˆ
p
Hppyqχpy´1qdy.
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Given a collection S of primes of Ok, we can define HS :“ bpPSHp. Then Lemma A.2.4 holds true
for HS .

We have described all the ingredients for the main result of [Boe+20], written in the language of
adèles. The proof of the main result in the current approach is a direct consequence of the result in
[Boe+20], as all parts transfer smoothly.

B Construction of Cuspidal Automorphic Representations
In this section, we give a further outline of the notion of cuspidal representations. By Theorem 4.3.5, we
know that a cuspidal representation is a tensor product of local representations. We describe the classes
of representations that are interesting for the use in application as in Section 5. In particular, we will
focus on the spherical representations at the non-Archimedean places. Afterwards, we will briefly recall
how one can use a general construction due to Weil, to get cuspidal automorphic representations which
are spherical at all finite places. This is only possible under certain assumptions on the number field,
namely, that it admits an unramified degree 2 field extension. These cuspidal representations depend
on such a choice of field extension L{k and characters of the idèle class group of L. In particular,
worst-case distributions of module lattices of rank 2 over k can be defined in terms of worst-case
distributions of ideal lattices over L. One of the main drawbacks of the construction from application
perspective is that we have only know by abstract reasoning that the representation constructed is
among cuspidal representations. However, we cannot give explicit description of e.g. the spherical
vectors as functions on the space of lattices.

B.1 Representations of GL2 over Non-Archimedean Fields
In this section, we give an overview of the characterization of irreducible admissible representations of
GL2 over a non-Archimedean field. The most interesting for our purpose are spherical representations,
which are infinite dimensional representations that contain a unique 1-dimensional K-subrepresentation.
We will write G for GL2pF q for a non-Archimedean field F .

To begin with, all irreducible finite dimensional representations pπ, V q of G have the property that
there exists a quasi-character χ : Fˆ Ñ Cˆ such that π “ χ ˝ det, see [Bum97]. Hence, irreducible
finite dimensional representations are 1-dimensional.

We continue with infinite dimensional irreducible representations, which can be constructed as follows.
First, we define certain subgroups of G, namely

T “

"ˆ

˚ 0
0 ˚

˙*

and A “

"ˆ

1 ˚

0 1

˙*

,

and we set B “ TA, the invertible upper triangular matrices. Here ˚ symbolizes any values in F such
that the resulting matrices are invertible. It is easy to see that A » F as additive group and T » pFˆq2.
For elements in T we write pa1, a2q as shorthand for the diagonal matrix with entries a1 and a2 on the
diagonal.

The important fact in the representation theory of G is that any irreducible admissible represen-
tation is found in induced representations from B to G, which are trivial on A. More precisely, let
χ1, χ2 : Fˆ Ñ Cˆ be two quasi-characters. This defines a (normalized) representation π of T by

πpa1, a2q “ |a1|1{2
F χ1pa1q |a2|´1{2

F χ2pa2q.

which extends to B by

π

ˆˆ

a1 x
0 a2

˙˙

“ |a1|1{2
F χ1pa1q |a2|´1{2

F χ2pa2q
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by ignoring x. We set
Ipχ1, χ2q “ IndGB π,

i.e., Ipχ1, χ2q consists of functions f : G Ñ C such that

f

ˆˆ

a1 x
0 a2

˙

g

˙

“ |a1|1{2
F χ1pa1q |a2|´1{2

F χ2pa2q fpgq

for any g P G, and G acts on these functions by right translation.

Proposition B.1.1. If χ1χ
´1
2 ‰ |_|˘1

F , then Ipχ1, χ2q is irreducible. If χ1 and χ2 are unramified, then
Ipχ1, χ2q contains a spherical vector, which is unique up to scaling.

We only discuss the last part as this is important for our applications later. Recall that a quasi-
character χ on Fˆ is unramified if its restriction χ|O

F
is trivial. Further recall that over a non-

Archimedean field F , GL2 has a Iwasawa decomposition

G “ TK

where K “ GL2pOF q. However, K and T intersect nontrivially. It thus follows that any f P Ipχ1, χ2q is
determined by its values on K. Conversely, if χ1 and χ2 are unramified, forcing fpkq “ 1 for all k P K
is a well-defined element of Ipχ1, χ2q. Such a K-invariant element is called a spherical vector and a
representation which admits a spherical vector is called spherical representation. This particular choice
will be called the normalized spherical vector. We will construct cuspidal automorphic representations
with spherical factors only. This is desirable from application side, as we want to have functions on
the space of lattices, i.e., functions that are Kp-invariant, for each prime.

In the case when χ1χ
´1
2 “ |_|˘1

F , the induced representation is not irreducible. Indeed, there is a
character χ such that χi “ χ b |_|˘1{2 for both, i “ 1, 2. Then χ ˝ det P Ipχ1, χ2q is a G-invariant
subrepresentation. The subquotient is again irreducible and called Steinberg representation. Note
that for our construction later, we assume χi to be characters rather than merely quasi-characters.
Under this assumption χ1 and χ2 cannot satisfy the property χ1χ

´1
2 “ |_|˘1

F , so that the induced
representation is always of the form given above. These results are well-known in the representation
theory of GL2 over non-Archimedean fields. For example [Bum97, Chapter 4] builds up the theory
from scratch.

The irreducible admissible representations of G that do not fall into the classes we defined above, are
called supercuspidal. As we mentioned, we are looking for spherical representations which cannot be
supercuspidal. Therefore, we do not go into details of supercuspidal representations any further. Using
the Weil representations it is possible to construct supercuspidal representations, see Subsection B.3.

B.2 Representations of GL2 over Archimedean Fields
We continue with the classification of irreducible admissible representations of GL2 over Archimedean
fields. As described earlier in Section 4.2, we use the notion of pg,Kq-modules.

We will denote by F an Archimedean field and G “ GL2pF q. These can be constructed similar to
the non-Archimedean case as induced representation of characters on the Borel subgroup of upper
triangular matrices, up to normalization. However, it is possible to characterize irreducible admissible
representations in terms of the following data.

• K-weights, i.e., the isotypic components that can appear in an irreducible admissible representa-
tion,

• the action of the center of Upgq.

This makes the classification of irreducible admissible representations of G particularly coherent. Let
us consider the two cases separately.
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Real case. The real case seems less important for current cryptographic applications. Still, we
recall the theory for completeness sake. Unfortunately, the real case comes with a slight complication
in comparison to the complex case due to the fact that G “ GL2pRq is disconnected. In fact, the
determinant maps G onto Rˆ, and G decomposes into the two connected components with positive
and negative determinants. The subgroup of matrices with positive determinant is denoted G`. The
disconnectedness causes a problem as the Lie algebra only sees the connected component G` of the
identity. One can deal with this by considering the maximal compact subgroup O2pRq instead of
SO2pRq, which keeps track of the second connected component. Then the K-isotypic classes may be
replaced by O2pRq-isotypic components. Another way is to keep track of the action of a single, fixed
element

ˆ

0 1
1 0

˙

.

Let T,A and B be subgroups of G as in Subsection B.1. Any two quasi-characters χ1, χ2 on Rˆ

define a representation π on B by

π

ˆˆ

a1 x
0 a2

˙˙

:“
∣∣∣∣a1

a2

∣∣∣∣1{2
χ1pa1qχ2pa2q.

Define
πpχ1, χ2q :“ IndG

`

B π.

Thus, πpχ1, χ2q consists of functions φ on G` such that for b “

ˆ

a1 x
0 a2

˙

and g P G`,

φpbgq “

∣∣∣∣a1

a2

∣∣∣∣1{2
χ1pa1qχ2pa2qφpgq.

The pg,Kq-module defined by taking K-finite vectors is again denoted πpχ1, χ2q.

We consider the different cases for the choices of χi, for which we need the classification of quasi-
characters on Rˆ. A quasi-character χ is necessarily of the form

χptq “ |t|s sgnptqε

with s P C and ε P t0, 1u. For χi let si P C and εi P t0, 1u denote these parameters. Let s “ s1 ´ s2,
ε “ ε1 ´ ε2 mod 2. These are the corresponding parameters for χ1{χ2.

Theorem B.2.1. Let χi and the parameters be as above.

• If χ1{χ2 is not of the form |t|k sgnptq for a nonzero integer k, then πpχ1, χ2q is an irreducible
admissible pg,Kq-module,

• if χ1{χ2 is of the form |t|k sgnptq with k a positive integer, then πpχ1, χ2q has a unique invariant
submodule πkpχ1, χ2q with finite-dimensional quotient πf pχ1, χ2q,

• if χ1{χ2 is of the form |t|k sgnptq with k a negative integer, then πpχ1, χ2q contains a unique
finite-dimensional submodule πf pχ1, χ2q.

Complex case. The complex case is quite similar, except that we do not have the complication with
connected components as GL2pCq is connected. Recall that any quasi-character on Cˆ is of the form

χptq “ |t|utv

for u, v P C. For χ1, χ2 such quasi-characters, we define πpχ1, χ2q as the pg,Kq-module of K-finite
vectors in the induced representation IndGB π.
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Proposition B.2.2. Let χ1, χ2 as above with parameters u1, u2, v1, v2 P C. If χ1{χ2 ‰ zpzq for
integers p, q with pq ą 0, then πpχ1, χ2q is irreducible. Any irreducible admissible pg,Kq-module is
isomorphic to one of this type.

The last assertion is different in the complex case than in the real case, where the nontrivial
subrepresentations of πpχ1, χ2q are not isomorphic to πpµ1, µ2q, for other quasi-characters µ1 and µ2.

B.3 Weil Representations
Finally, we want to give a construction of cuspidal automorphic representations. The construction
due to Weil is particularly interesting for potential applications in lattice-based cryptography. In fact,
Weil representations are constructed using characters of a degree 2 field extension of the base field. In
this way, we can relate pieces of a worst-case distribution for rank 2 lattices over k to the pieces of a
worst-case distribution of rank 1 lattices over an extension L{k of degree 2.

As we do not need the precise details of the construction, we will only give the results.

Non-Archimedean Case. Let F be a non-Archimedean local field of characteristic zero, L{F a
degree 2 field extension. Let q denote the norm map L Ñ F viewed as quadratic form. Recall that
qLˆ Ď Fˆ is an index 2 subgroup, cf. [Ser79, XIII, Proposition 9]. In particular, there is a unique
character ω : Fˆ{qLˆ Ñ Cˆ.

Proposition B.3.1. Let χ be a (quasi-)character of Lˆ. Then, there exists an admissible representation
πχ of GL2pF q associated with χ, such that

• πχ is supercuspidal, if χ does not factor through q,

• πχ “ πpδ, ω b δq if χ factors through q via δ : Fˆ Ñ Cˆ.

In the second case, the representation πpδ, ω b δq is the induced representation defined in Section
B.1.

Archimedean Case. In the Archimedean case, we only need to consider F “ R as C has no degree
2 field extensions. Again this splits into the two cases, whether a quasi-character χ : Cˆ Ñ Cˆ factors
through the norm or not. Any quasi-characters χ of Cˆ can be written as

z ÞÑ pzzqu
ˆ

z

|z|

˙n

for u P C and n P Z. This factors through the norm as a character δ, if and only if n “ 0. In that case
πχ is the principal series representation πpδ, sgn bδq. In the case that χ does not factor through the
norm, πχ is the discrete series representation for the characters χ1, χ2 with the properties

χ1χ2pxq “ |x|2uxn sgnpxq

χ1{χ2pxq “ xn sgnpxq.

Global Weil representation. In the global case let k be the base field, L a degree 2 extension of k,
and χ an idèlic quasi-character. For any place τ of L, there is the map

ιτ : Lˆ
τ Ñ GmpALq; λ ÞÑ p. . . , 1, λ, 1, . . .q

where λ is mapped to the τ -th entry. Then χτ :“ χ ˝ ιτ defines a local quasi-character on Lˆ
τ and

χ “ bτχτ . This is well-defined as for any idèle x “ pxτ qτ , xτ P Oˆ
τ and χτ is unramified for all but

finitely many τ . The Weil representation πχ associated with L and χ is defined componentwise for
each place ν of k.
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• If ν is split, i.e., there exist places τ1, τ2 of L lying over ν, then Lτ1 “ kν “ Lτ2 and the characters
χτi

can be viewed as characters on kν . Then πχ,ν :“ πpχτ1 , χτ2 q.

• If ν is non-split, i.e., there is a unique place τ of L then Lτ is a degree 2 extension of kν , which is
separable as our base field has characteristic 0. Then πχ,ν is defined as the Weil representation
in the local case for the field extension Lτ over kν and quasi-character χτ .

The representation πχ is irreducible and admissible. The main result asserts that this defines a
cuspidal automorphic representation under the following assumption. Let N: GmpALq Ñ GmpAkq

denote the idèlic norm given by x “ pxτ qτPPL
ÞÑ y with

yν “

#

xτ1xτ2 if ν is split, τ1, τ2 | ν,

Nτ{νpxτ q if ν is non-split, τ | ν
for ν P Pk.

The condition for πχ to be a cuspidal representation is, whether χ factors through N or not.

Theorem B.3.2. Let L be a degree 2 extension of k and χ an idèlic quasi-character. Then πχ is
a cuspidal automorphic form, if χ does not factor through the norm N, i.e., there exists no idèlic
quasi-character χ of k, such that χ “ χ ˝ N.

This is stated as Theorem 7.11 in [Gel75]. The proof is done by comparing the respective L-functions.
Indeed, an irreducible admissible representation π for GL2pAkq is a cuspidal automorphic form if and
only if its L-function is bounded on vertical stripes. This property is known for L-functions of Hecke
characters of L and it is shown in [Gel75] that the L-functions coincide locally for each place, where χ
is viewed as an character of k via the norm map N defined above.

B.4 Constructing Worst-Case Distributions in Rank 2
In this section, we want to show, how Weil representations can be used to construct cuspidal distribu-
tions for module lattices of rank 2. By Definition 5.1.1, to define a cuspidal distribution, we need to
construct a collection of spherical cuspidal representations. Our basic idea is to use characters that
appear in the Fourier decomposition of the worst-case distribution on ideal lattices over an extension
field L of k of degree 2. Not all those characters yield spherical cuspidal representations so that some
restrictions are needed.

Let us fix an extension L{k of degree 2 and an unramified Hecke character χ : LˆzGmpALq Ñ S1.
We assume that χ is trivial on UL,8, i.e., that χ factors as χ : LˆzGmpALq{UL Ñ S1.

Lemma B.4.1. Let π be the Weil representation associated with χ. Then, for any finite place p of k,
πτ is a spherical representation.

Proof. The assertion is clear when p splits in L. Suppose p does not split and let q | p. We show that
in this case, χq factors through the norm Nq { p. Let θ be a uniformizer of Oq. We have

1 “ νqpθq “
1
2νppNq { pθq,

hence νppNq { pθq “ 2. Let u :“ χqpθq P S1 and v1, v2 P S1 the square roots of u. Then χq factors
through the norm, via the unramified characters χp,i defined by sending a uniformizer t of Op to ui,
for i “ 1, 2, respectively. As χq factors through the norm, we conclude that πp “ πpχp,1, χp,2q, which
is spherical as χp,i are unramified.

One sees from the proof that at the finite non-split places, all characters necessarily factor through
the norm. The same holds for infinite places, as we assume that χ is trivial on the maximal compact
subgroups.
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Lemma B.4.2. Let ν be a place of k which does not split in L and let τ be the unique place of L over
ν. Then χτ factors through the norm Nτ{ν .

Proof. The case of finite places is done in the proof of the previous lemma. We assume ν is an
Archimedean place, and by the assumptions, we have that kν “ R and kτ “ C. In this case, χτ pzq “ |z|iu
for some u P R. By setting χνpxq “ |x|iu, it is clear that χν defines a character on Rˆ via which χτ
factors. Note that χν is invariant under ˘1, hence factors via the absolute value R Ñ Rą0.

The characters that do not factor through the norm are easily classified as follows.

Lemma B.4.3. Let χ be an unramified Hecke character of L. Then χ does not factor through the
norm of L{k, if there exists a place ν of k which splits into τ1, τ2 in L, such that χτ1 ‰ χτ2 .

Proof. We have seen that at all non-split places, the characters necessarily factor through the norm.
Hence, the existence of a split place is necessary. Let ν be such a split place and τ1, τ2 the places above
ν. Then, kν » Lχi

, for i “ 1, 2. The norm map at ν is given by the multiplication m : kˆ
ν ˆ kˆ

ν Ñ kˆ
ν .

Suppose ω is a character on kˆ
ν such that χτ1 b χτ2 “ ω ˝m. For any x P kˆ

ν , we have that

χτ1 pxq “ χτ1 b χτ2 pxb 1q

“ ω ˝mpxb 1q

“ ω ˝mp1 b xq

“ χτ1 b χτ2 p1 b xq

“ χτ2 pxq,

using that multiplication is symmetric, which proves the claim.

We finish with the following final remark.

Remark B.4.4. To construct a good class of characters, we consider the complex places only, as they
are surely split in any extension. Among the unramified Hecke characters of L, one only needs to
characterize those, such that at some complex place, the two characters in the splitting part are distinct.
The characters at infinity correspond to elements in the dual Λ̌L of the unit lattice ΛL associated with
L. Let ν be a complex place with places τ1, τ2 above ν. For a character associated with ℓ P Λ̌L, it the τ1
and τ2 components are distinct, if ℓτ1 ‰ ℓτ2 . Using this fact, we can use the collection of characters, for
which there exists a complex place satisfying the above property. The resulting cuspidal representations
have spherical vectors φχ by Lemmas B.4.1 and B.4.2. As mentioned before, this construction does
not provide any intuitive reasoning why the resulting worst-case distribution is useful for applications.
Further, the abstract construction does not yield a description of the worst-case distribution as a
function on the space of lattices.
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