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Abstract. Automatic tools to search for boomerang distinguishers have seen significant
advances over the past few years. However, most previous work has focused on ciphers
based on a Substitution Permutation Network (SPN), while analyzing the Feistel
structure is of great significance. Boukerrou et al. recently provided a theoretical
framework to formulate the boomerang switch over multiple Feistel rounds, but they
did not provide an automatic tool to find distinguishers. In this paper, by enhancing
the recently proposed method by Hadipour et al., we provide an automatic tool
to search for boomerang distinguishers and apply it to block ciphers following the
Generalized Feistel Structure (GFS). Applying our tool to a wide range of GFS
ciphers, we show that it significantly improves the best previous results on boomerang
analysis. In particular, we improve the best previous boomerang distinguishers for
20 and 21 rounds of WARP by a factor of 238.28 and 236.56, respectively. Thanks to
the effectiveness of our method, we can extend the boomerang distinguishers of WARP
by two rounds and distinguish 23 rounds of this cipher from a random permutation.
Applying our method to the internationally-standardized cipher CLEFIA, we achieve
a 9-round boomerang distinguisher which improves the best previous boomerang
distinguisher by one round. Based on this distinguisher, we build a key-recovery
attack on 11 rounds of CLEFIA, which improves the best previous sandwich attack
on this cipher by one round. We also apply our method to LBlock, LBlock-s, and
TWINE and improve the best previous boomerang distinguisher of these ciphers.
Keywords: Lightweight cryptography · Boomerang cryptanalysis · MILP · Gener-
alized Feistel structure · CLEFIA · WARP · TWINE · LBlock · LBlock-s

1 Introduction
Boomerang analysis, initially invented by Wagner [Wag99], has been under significant
development over the last years. Recent progress includes a theoretical framework to
evaluate boomerang switches in SPN ciphers as well as automatic tools to search for
sandwich distinguishers. For instance, Hadipour et al. [HBS21] introduced a tool to search
for sandwich distinguishers taking the switching effect into account for multiple rounds.
They applied their tool to significantly improve the rectangle distinguishers for SKINNY
and CRAFT. Almost at the same time, Delaune et al. [DDV20] introduced another tool to
discover sandwich distinguishers that handles the probability computation of the middle
part automatically and applied their tool to SKINNY. Other works [QDW+21, DQSW21]
improved these methods further to identify sandwich distinguishers which take the key-
recovery phase into account for linear key schedules. However, to the best of our knowledge,
all previous works focus on SPN ciphers, particularly those with linear key schedules. In
contrast, Feistel structures, an important category of block ciphers, have not been analyzed
well by these new methods. Although Boukerrou et al. [BHL+20] proposed a theoretical
framework to compute the probability of boomerang switches in Feistel structures very
recently, they do not provide a tool to search for distinguishers.
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Our Contributions. We improve the method by Hadipour et al. [HBS21] and provide
an easy-to-use automatic tool to search for sandwich distinguishers while considering the
switching effect over multiple rounds. With this tool, we significantly improve the sandwich
distinguishers for several Feistel ciphers. Our tool is also applicable to SPN ciphers. The
main improvement we propose is to differentiate between the encoding of truncated trails
over the outer and the inner parts of sandwich distinguishers. More precisely, instead of
using a standard truncated model for the entire upper and lower truncated trails, we encode
transitions of probability one in the middle part of sandwich distinguishers. Therefore, we
get an improved estimate for the number of common active S-boxes in the middle part.

Table 1: Summary of boomerang distinguishers for WARP, CLEFIA, TWINE, and LBlock.

Block cipher #Rounds Probability Verified Reference

WARP

9 / 40 1 X Section 4
14 / 40 2−20.58 X Section 4
15 / 40 2−28.58 X Section 4
16 / 40 2−34.50 X Section 4
20 / 40 2−114.24 [TB21]
20 / 40 2−75.96 Section 4
21 / 40 2−121.11 [TB21]
21 / 40 2−84.55 Section 4
22 / 40 2−96.55 Section 4
23 / 40 2−115.59 Section 4

CLEFIA

3 / 18 1 X Section 5
5 / 18 2−12.26 X Section 5
6 / 18 2−22.45 X Section 5
7 / 18 2−32.67 X Section 5
8 / 18 2−92 [MQ14]
8 / 18 2−76.03 Section 5
9 / 18 2−99.12 Section 5

TWINE

5 / 36 1 X Section 6
13 / 36 2−34.32 X Section 6
14 / 36 2−42.25 Section 6
15 / 36 2−58.92 [TB21]
15 / 36 2−51.03 Section 6
16 / 36 2−61.62 [TB21]
16 / 36 2−58.04 Section 6

LBlock

5 / 36 1 X Section 7
13 / 36 2−30.28 X Section 7
14 / 36 2−38.86 Section 7
15 / 36 2−46.90 Section 7
16 / 36 2−60.53 [CM13]
16 / 36 2−57.16 Section 7

LBlock-s

5 / 32 1 X Section 7
13 / 32 2−30.23 X Section 7
14 / 32 2−38.47 Section 7
15 / 32 2−58.64 [TB21]
15 / 32 2−46.49 Section 7
16 / 32 2−56.14 [BHL+20]
16 / 32 2−53.59 Section 7
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To demonstrate the practicality of our method, we apply it to several generalized
Feistel structures, which yields a significant improvement compared to the best previous
results. Our applications cover a wide range of generalized Feistel structures from the
internationally-standardized block cipher CLEFIA, which has a complex round function
but few rounds, to the recently proposed GFS block cipher WARP which has a light round
function but much more rounds. For instance, by applying our search method to WARP,
we dramatically improve the probability of the best previous sandwich distinguishers for
20 and 21 rounds of this cipher by a factor of 238.28 and 236.56, respectively. We improve
the sandwich distinguishers for WARP by two rounds to distinguish 23 rounds of this cipher
from a random permutation.

For CLEFIA, we not only improve the probability of the best previous sandwich dis-
tinguisher of this cipher remarkably but also extend it by one round by introducing a
9-round sandwich distinguisher with a probability much higher than 2−n. Moreover, we
provide the first practical distinguisher for 7 rounds of CLEFIA which can be experimentally
verified. Due to the high importance of CLEFIA, building upon our 9-round sandwich
distinguisher, we also provide a key-recovery attack on 11 rounds of CLEFIA, which im-
proves the previous best sandwich attack by one round. We also apply our tool to TWINE,
LBlock, and LBlock-s. In all cases, we improve the best previous sandwich distinguishers.
Table 1 summarizes our results. For all applications, we have identified several practical
reduced-round distinguishers that we have verified experimentally. The source code of our
tool for finding distinguishers and the experimental verification are publicly available in
the following Github repository: https://github.com/hadipourh/comeback

Outline We review the background on boomerang analysis as well as the previous
works and recall the theoretical framework to formulate the probability of boomerang
distinguishers in Section 2. Next, in Section 3, we introduce our search method for
boomerang distinguishers, where we give an overall view of our method and clarify its
main difference from the previous methods. Then, in Section 4, Section 5, Section 6, and
Section 7 we demonstrate the utility of our method to improve boomerang analysis of the
block ciphers WARP, CLEFIA, TWINE, LBlock, and LBlock-s. We conclude in Section 8.

2 Background
2.1 Boomerang and Rectangle Distinguishers
Wagner introduced the boomerang attack at FSE 1999 to exploit two short differentials with
high probability [Wag99]. In this attack, we split the targeted cipher E into two parts E =
E1◦E0 such that there exist differentials ∆1

E0−−→ ∆2 and ∇2
E1−−→ ∇3 with a high probability

p and q, respectively. Then, the two differentials, referred to as upper and lower differentials,
are combined as shown in Figure 1 in an adaptively-chosen-plaintext-and-ciphertext setting
(ACPC) to distinguish E from a random permutation using algorithm 1. Assuming that
the two differentials are independent, the entire probability of the boomerang distinguisher
is estimated by p2q2. The plaintexts ((P1, P2), (P3, P4)) satisfying the boomerang condition
are called right quartets. As an n-bit random permutation satisfies the condition with
probability 2−n, we require p2q2 � 2−n. In that case, the number of required adaptively
chosen plain- and ciphertexts to obtain at least one right quartet is approximately 4 ·(pq)−2

and the data/time complexity of constructing a boomerang distinguisher is in O
(
(pq)−2).

To remove the requirement a decryption oracle, Kelsey et al. [KKS00] proposed the
amplified boomerang attack. This attack was further refined by Biham et al. [BDK01]
and called rectangle attack. In this attack, the targeted cipher can be distinguished from
a random permutation by querying enough quartets ((P1, P2), (P3, P4)) with P1 ⊕ P2 =
P3 ⊕ P4 = ∆1 and verifying whether the corresponding ciphertexts ((C1, C2), (C3, C4))

https://github.com/hadipourh/comeback
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Algorithm 1: Boomerang Distinguisher
Input: Encryption and decryption algorithms denoted by Ek, Dk respectively
Output: Distinguishing the targeted cipher from a random permutation

1 Generate (pq)−2 different pairs of plaintexts (P1, P2) such that P2 = P1 ⊕∆1;
2 forall pairs (P1, P2) do
3 C1 ← Ek(P1), C2 ← Ek(P2);
4 C3 ← C1 ⊕∇3, C4 ← C2 ⊕∇3;
5 P3 ← Dk(C3), P4 ← Dk(C4);
6 if P3 ⊕ P4 = ∆1 then
7 return The underlying oracle is the cipher E.
8 return The underlying oracle is a random permutation.

Figure 1: Boomerang distinguisher (left) and sandwich distinguisher (right).

satisfy C1 ⊕ C3 = C2 ⊕ C4 = ∇3 (see Figure 1). If ∆1
E0−−→ ∆2 holds with probability

p, then x1 ⊕ x2 = x3 ⊕ x4 and thus x1 ⊕ x3 = x2 ⊕ x4 is satisfied with probability p2.
Assuming that these differences are equal to ∇2, which happens with probability 2−n,
then C1 ⊕ C3 = C2 ⊕ C4 = ∇3 holds with probability q2. As a result, the probability of
getting a right quartet ((C1, C3), (C2, C4)) is 2−np2q2. In contrast, a random permutation
generates a right quartet with probability 2−2n. Hence, we can distinguish E from a
random permutation if p2q2 � 2−n. To produce 2n(pq)−2 quartets of ciphertexts, we need
2n2 (pq)−1 plaintext pairs, so we have to encrypt 4 · 2n2 (pq)−1 different chosen plaintexts.
Although we have to check O(2n(pq)−2) ciphertext quartets, by using a hash table the
time complexity of a rectangle distinguisher can be reduced to O(2n2 (pq)−1). Thus, the
data and time complexity of a rectangle distinguisher is in O(2n2 (pq)−1).

In practice, the dependency between the upper differential trail of E0 and the lower
differential trail of E1 has a significant (positive or negative) impact on the actual probability
of the resulting boomerang distinguisher. The importance of this effect was shown in follow-
up studies [BK09, Mur11]. To formalize this dependency between the upper and lower
differentials, Dunkelman et al. [DKS10, DKS14] introduced the sandwich attack. In this
attack, the cipher E is divided into three parts as depicted in Figure 1: E = E1 ◦Em ◦E0,
where Em is the middle (inner) part that includes the dependency between the upper and
lower differential trails. E0 and E1 are also referred to as the outer parts of sandwich
distinguishers. The entire probability of a sandwich distinguisher is estimated by p2q2r,
where the probability r = r(∆2,∇3) of the middle part can be calculated as

r(∆2,∇3) = Pr
(
E−1
m (Em(x1)⊕∇3)⊕ E−1

m (Em(x2)⊕∇3) = ∆2 | x1 ⊕ x2 = ∆2
)

(1)
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Because the intermediate differences ∆2 and ∇3 can take arbitrary values in the
sandwich distinguisher, we can consider the clustering effect. Therefore, a more accurate
formula to compute the probability of sandwich distinguisher is:∑

∆2,∆′2,∇3,∇′3∈Fn2

p∆2 · p∆′2 · r(∆2,∆′2,∇3,∇′3) · q∇3 · q∇′3 ,

where p∆ = Pr(∆1
E0−−→ ∆), q∇ = Pr(∇ E1−−→ ∇4),

r(∆2,∆′2,∇3,∇′3) = Pr
(
E−1
m (Em(x1)⊕∇′3)⊕ E−1

m (Em(x2)⊕∇3) = ∆′2 | x1 ⊕ x2 = ∆2
)
.

2.2 Boomerang Switch
Since the introduction of the sandwich attack, there have been attempts to formulate the
probability of the middle part Em, which is also called the boomerang switch. Starting
from the simplest case where the boomerang switch Em includes only one S-box layer, Cid
et al. [CHP+18] proposed the boomerang connectivity table (BCT). This idea was further
developed in follow-up works [SQH19, WP19, HBS21] to provide a theoretical framework
for evaluating the probability of the middle part when it is composed of multiple rounds.
However, the BCT framework only works for block ciphers following the SPN design strategy.
To formulate the probability of the boomerang switch over multiple rounds of Feistel
ciphers, Boukerrou et al. [BHL+20] proposed the Feistel boomerang connectivity table
(FBCT) as the Feistel counterpart of the BCT framework. The setup is depicted in Figure 2.
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Figure 2: Differences of S-box at four sides of boomerang switch in Feistel structure.

Definition 1 (DDT). Let S be a function from Fn2 to Fm2 and ∆1 ∈ Fn2 , ∆2 ∈ Fm2 . The
differential distribution table (DDT) of S is a 2n × 2m table which is defined as follows:

DDT(∆1,∆2) := #{x ∈ Fn2 : S(x)⊕ S(x⊕∆1) = ∆2}.

Definition 2 (FBCT [BHL+20]). Let S be a function from Fn2 to Fm2 , and ∆,∇ ∈ Fn2 . The
Feistel boomerang connectivity table (FBCT) of S is a 2n × 2n table defined as follows:

FBCT(∆,∇) := #{x ∈ Fn2 : S(x)⊕ S(x⊕∆)⊕ S(x⊕∇)⊕ S(x⊕∆⊕∇) = 0}.

The FBCT can be used to compute the probability over one round of boomerang switch
in a Feistel structure. For fixed ∆ and ∇ as depicted in Figure 2, the probability of a
returning boomerang over 1 round of a Feistel structure is equal to 2−n · FBCT(∆,∇).

The entry located in row ∆ and column ∇ of the FBCT is the number of times the
second-order derivative of S becomes zero at point (∆,∇). Moreover, FBCT(∆, 0) =
FBCT(0,∇) = 2n for all ∆ ∈ Fn2 and ∇ ∈ Fm2 , corresponding to the ladder switch [BK09]
and FBCT(∆,∆) = 2n for all ∆ ∈ Fn2 , corresponding to the Feistel switch [Wag99]. Let
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XDDT(∆1,∆2) := {x ∈ Fn2 : S(x)⊕S(x⊕∆1) = ∆2} denote the set of valid inputs satisfying
the differential transition ∆1

S−→ ∆2. Then, the FBCT can be reformulated [BHL+20]:

FBCT(∆1,∇2) =
∑

∆2∈Fm2

# (XDDT(∆1,∆2) ∩ (XDDT(∆1,∆2)⊕∇2)) .

Assuming that ∆ in Figure 2 is fixed and ∇ is distributed uniformly and has not been
affected by the upper differential trails, the probability of a returning boomerang is:

r =
∑
∇

FBCT(∆,∇)
2n · Pr(x1 ⊕ x3 = ∇) =

∑
∇,δ

DDT(∆, δ)
22n · # (XDDT(∆, δ) ∩ (XDDT(∆, δ)⊕∇))

#XDDT(∆, δ)

=
∑
δ

(
DDT(∆, δ)

2n

)2
,

which is the same as the probability calculation according to the traditional boomerang
framework, p2q2. It can be shown in a similar way that when ∇ is fixed and ∆ is
independent and uniformly distributed, the probability of a returning boomerang can be
calculated based on the p2q2 formula. The differences propagated from the upper and lower
trails through the middle part are referred to as the upper and lower crossing differences.
Accordingly, the boundaries of Em are where the lower and upper crossing differences
become uniformly distributed, which mainly depends on the diffusion layer of the targeted
cipher as well as the number of active positions in the input/output differences of the
middle part. Analogous to the differential uniformity, the boomerang uniformity of an
S-box in Feistel structures is defined as follows [BHL+20]:

β := max
∆ 6=0,∇6=0,∆ 6=∇

FBCT(∆,∇),

which should be small to harden a design against boomerang-like attacks.
To calculate the boomerang switch over multiple rounds, the Feistel boomerang differ-

ence table (FBDT) is needed. This table is analogous to the UBCT (Upper BCT or boomerang
difference table (BDT)) [WP19] and the LBCT (Lower BCT) [SQH19] in the BCT framework.

Definition 3 (FBDT [BHL+20]). Let S be a function from Fn2 to itself and (∆, δ,∇) ∈ (F2)3.
The three-dimensional Feistel boomerang difference table (FBDT) is defined as follows:

FBDT(∆, δ,∇) :=#{x∈Fn2 : S(x)⊕S(x⊕∆)⊕S(x⊕∇)⊕S(x⊕∆⊕∇)=0, S(x)⊕S(x⊕∆)=δ}.

Now, we recall the ladder switch, one of the most important switching effects that plays
a vital role in our automatic search for sandwich distinguishers. According to Equation 1,
if ∆2, which is propagated from the upper differential transition through the middle part,
is zero, then r, the probability of boomerang switch, is one. This also happens if ∇3, which
is propagated from the lower differential transition through the middle part, is zero. Now,
assume that the upper and lower crossing differences are propagated with probability one
over the middle part. By generalizing the previous argument, it can be seen that if a certain
S-box in the middle is activated by at most one of the upper and lower crossing differences,
it is “free”, i.e., it does not affect the probability of the middle part. In other words, the
probability of the boomerang switch only depends on the common active S-boxes between
the upper and lower crossing differences over the middle part. Thus, the probability p2q2r
of the sandwich distinguisher is determined as follows: p and q depend on the number of
active S-boxes in E0 and E1, while r is depends on the number of common active S-boxes
between the upper and lower crossing differences in Em. As the cost of active S-boxes
in the outer parts, E0 and E1, is higher than the cost of common active S-boxes in the
middle, we can minimize an adequately weighted sum over these active S-boxes to find a
sandwich distinguisher with a high probability.
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3 Our Method to Find Distinguishers
Our strategy to find sandwich distinguishers is based on Mixed-Integer Linear Programming
(MILP) modeling and divided into three phases. First, we identify appropriate upper
and lower truncated differential trails. To do this, we optimize the number of active
S-boxes in E0 and E1 as well as the number of common active S-boxes in Em. Next, these
truncated characteristics are instantiated by concrete differential trails. Finally, by fixing
the differences in 4 positions, the input of E0, the input and output of Em, and the output
of E1, we compute p, q, r separately to derive the probability p2q2r of our distinguisher.

The main difference between our search method and the previous models [HBS21,
DDV20] lies in the first step: while these methods utilize a standard truncated model
to encode the propagation of truncated differential characteristics in the outer and inner
parts of the sandwich distinguisher, following the nature of BCT or FBCT frameworks, we
differentiate between the encoding of truncated trails over the inner and the outer parts of
the sandwich distinguisher. Concretely, for the inner part, we model the propagation of
truncated differential trails with probability one.

In a standard model of truncated trails, differential cancellation is very likely to happen
in the diffusion layer, especially when minimizing the number of active S-boxes. For
example, assuming that z = x ⊕ y and x, y, z ∈ Fn2 for some n ∈ N, the propagation of
truncated differential trails over the XOR operation is normally encoded as follows:

X + Y − Z ≥ 0, X − Y + Z ≥ 0, −X + Y + Z ≥ 0,

where X, Y , Z are binary variables indicating the activity of x, y, and z respectively. In
this model, (X,Y, Z) = (1, 1, 0) is a valid transition. However, according to the BCT or FBCT
frameworks, any common active S-boxes in the middle part of the sandwich distinguisher
affect the entire probability of the boomerang switch and should not be neglected. As a
result, the standard encoding, where differential cancellation through the diffusion layer is
allowed, might indicate too few common active S-boxes.

To build such a model for differential trails of probability one, we need to consider the
direction of propagation. This is in contrast to the standard model, where no directionality
is encoded. For example, the inequalities describing the truncated model of the XOR
operation only describe its differential branch number and are thus symmetric with respect
to the input/output variables. However, in the BCT or FBCT framework, the upper and lower
crossing differences must be propagated in forward and backward directions to explore the
interaction between active S-boxes of upper and lower trails in the middle part. Therefore,
to improve the encoding of truncated boomerang trails and to avoid spurious solutions, we
differentiate between the encoding of truncated trails over the outer and the inner parts of
the sandwich distinguisher. More precisely, instead of using the same truncated model for
the entire upper truncated trail, we encode the propagation of the upper truncated trail
through the outer part based on a standard approach while it is propagated forward with
probability one through the middle part in our encoding. Similarly, the lower truncated
trail is encoded using a standard model for the outer part, while it is propagated backward
with probability one over the inner part in our tool. For example, to encode the XOR
operation in the middle part of our word-based models, we use the following inequalities:

Z −X ≥ 0, Z − Y ≥ 0, X + Y − Z ≥ 0.

This excludes the (X,Y, Z) = (1, 1, 0) point from the solution space with the aim of
preventing the difference cancellation over the diffusion layer.

Modifying the previous approach [HBS21] accordingly, our method works as follows:

1. We partition the targeted cipher E into r0 + rm + r1 rounds for a sandwich dis-
tinguisher, as Figure 3 illustrates. Our tool first generates two MILP models with
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independent variables to encode the propagation of truncated upper and lower dif-
ferential trails through r0 + rm and rm + r1 rounds, respectively. We encode the
propagation of the upper truncated trail in a standard way over the first r0 rounds,
but switch to encoding the propagation forward with probability one for the last
rm rounds of the upper trail. Similarly, the truncated lower differential trail is
propagated backward with probability one over the first rm rounds, whereas its
propagation in the last r1 rounds is encoded in a standard way.

r0 rm r1

E0 Em E1
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Figure 3: High-level view of common active S-boxes in the boomerang switch.

Next, we encode the common active S-boxes between the upper and lower differential
trails in the middle part. We define additional variables to indicate whether a certain
S-box is active in both upper and lower truncated trails and use them to link the two
MILP models. Let u0, . . . , ut−1 denote the activity of S-boxes in the last rm rounds
of Em ◦ E0, and l0, . . . , lt−1 those in the first rm rounds of E1 ◦ Em, as depicted in
Figure 4. Consequently, ui and li correspond to the same S-box positions in the
middle part for all 0 ≤ i ≤ t− 1. We denote the corresponding t new binary variables
by s0, . . . , st−1. We use them to link ui with li for all 0 ≤ i ≤ t− 1 as follows:

ui − si ≥ 0, li − si ≥ 0, −ui − li + si ≥ −1.

As a result, si = 1 if and only if ui = li = 1. As Figure 4 illustrates, the binary
variables ũ0, . . . , ũm−1 and l̃0, . . . , l̃n−1 denote the activity of S-boxes in the first r0
and last r1 rounds, respectively. We use the constants w0, w1, and wm corresponding
to the cost of active S-boxes in E0, Em, and E1 to define our objective function:

min
m−1∑
i=0

w0 · ũi +
t−1∑
j=0

wm · sj +
n−1∑
k=0

w1 · l̃k.

2. Next, based on the discovered truncated differential characteristics for E0 and E1, our
tool looks for the best concrete differential trails instantiating the derived truncated
trails over E0, and E1. To do so, it generates a bit-wise MILP model encoding the
propagation of differential trails. If there is no differential satisfying the derived
truncated trails, we go back to step 1 and try again. After deriving the concrete
differential trails satisfying the desired activity pattern, we consider the clustering
effect of differential characteristics. Therefore, our tool fixes the input/output
differences of E0, and E1, and computes the differential effect of upper and lower
differentials, i.e., p = Pr(∆1

E0−−→ ∆2) and q = Pr(∇3
E1−−→ ∇4). To achieve this, we

create a new MILP model where we only fix the input/output difference and search
for all compatible differential characteristics. This is computationally feasible in our
case as we are working with rather few rounds for E0 and E1.
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r0 rm r1

E0 Em E1

ũ0, . . . , ũk−1 u0, . . . , ut−1

l0, . . . , lt−1

w0 wm

l̃0, . . . , l̃n−1

w1

Figure 4: The variables of our MILP model to find truncated upper/lower trails.

3. By using the fixed input/output differences of the middle part, we experimentally
evaluate the probability of the boomerang switch according to the following formula:

r = Pr
(
E−1
m (Em(x1)⊕∇3)⊕ E−1

m (Em(x2)⊕∇3) = ∆2 | x1 ⊕ x2 = ∆2
)
.

The number of common active S-boxes provides an initial estimate for r which allows
us to deduce the number of trials needed to experimentally estimate r. We always
make sure that the number of trials is significantly larger than r−1. If r = 0, the
discovered upper and lower differential trails are either incompatible, or combining
them yields a weak distinguisher. If so, we go back to step 1 and repeat the process.

4. In the final step, we compute the entire probability p2q2r of the discovered sandwich
distinguisher. To make sure that the computed probability is accurate enough, we
perform an additional check. The accuracy of the estimated probability is highly
related to correctly allocating the boundaries of the middle part. If the middle part
is too short, the upper and lower crossing differences are not uniformly distributed at
the boundaries of Em and the p2q2r formula underestimates the actual probability.
On the other hand, if we choose Em too large, the probability of the middle part
decreases, and more computational power is required to evaluate the probability
based on theoretical and experimental frameworks. A good indicator to see whether
the middle part was appropriately allocated is extending Em by a few rounds and
comparing the value p2q2r with the experimental probability of the extended Em. If
the boundaries of Em are chosen appropriately, p2q2r gives a good estimate of the
actual probability. Otherwise, we need to extend Em.

Our tool is very easy to use and extend for other ciphers. It receives the lengths
r0, rm, r1 of the partitions in sandwich distinguishers as well as the cost w0, wm, w1 of
active S-boxes in each partitions. It outputs the discovered truncated trails, the total
number of active S-boxes, the number of common active S-boxes in the middle part, and the
concrete differential trails covering E0 and E1. Note that our sandwich distinguishers do
not rely on individual differential characteristics and instead use more accurate estimates
for the probability of the differential and the boomerang switch. More precisely, when
computing p, q, and r, our tool fixes the differences at four positions only: the input of E0,
the input and output of Em (on two different sides of boomerang switch), and the output
of E1. All other differences are unrestricted. Besides the main outputs, our tool generates
a figure representing the propagation of upper and lower differential trails through different
parts of the sandwich distinguisher (e.g., Figure 6 and Figure 12) which not only gives
us intuition about correctly allocating Em but also makes the manual verification of our
discovered distinguishers much easier.
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To perform MILP optimization, we use the Gurobi solver [Gur22]. We also use this
solver to compute the differential effect by setting the PoolSearchMode parameter to 2,
which instructs Gurobi to find the n best solution, where n is a very large parameter. To
avoid deriving multiple solutions corresponding to the same differential characteristic and
thus counting it twice, we only define dummy variables in our bit-oriented MILP models
when strictly necessary. Even if we have to define dummy variables (e.g., to encode the
large binary matrices of CLEFIA), we ensure no extra solutions are created. In other
words, we make sure that there is a one-to-one correspondence between the solution space
of our models and the possible differential trails of the targeted cipher.

By adjusting the weights w0, wm, and w1 in step 1, we can find sandwich distinguishers
with different probabilities. In addition, if the targeted cipher employs different S-boxes
with different differential uniformity or different (Feistel) boomerang uniformity, we can
use a different weight for each S-box in our objective function to appropriately adjust the
cost of its activity in the resulting truncated boomerang trail. To show the utility of our
method, we demonstrate its application for several Feistel ciphers in the next sections.

To encode the differential behavior of nonlinear operations, particularly S-boxes, we have
implemented the methods introduced in previous works [AST+17, SWW18, AK18]. We
use the off-the-shelf logic minimization tool ESPRESSO, from the University of California,
Berkeley, to simplify the extracted MILP constraints. ESPRESSO includes the efficient
implementation of the Espresso [BHMSV84] algorithm and supports both fast and exact
logic minimization. Unlike Logic Friday, a closed-source Windows program supporting
Boolean functions with at most 16 input variables, ESPRESSO is an open-source tool that
supports Boolean functions with any input sizes. It also outperforms the results derived
by Logic Friday for large S-boxes [YK21]. Given that extracting and simplifying the MILP
(or SMT/SAT) constraints encoding the differential and linear behaviors of S-boxes is
important in automatic differential and linear analysis, we have implemented this part
of our tool as a subclass of the Sbox class in SageMath [Sag22]. Thus, other researchers
can use our S-box encoding tool with ease. Appendix H briefly describes the usage of our
SageMath module to derive and simplify the constraints encoding the DDT of S-boxes.

4 Application to WARP

In this section we briefly describe the specification of WARP and then illustrate the efficiency
of our tool to significantly improve the sandwich distinguishers of this cipher.

4.1 WARP

WARP is a lightweight block cipher that was proposed by Banik et al. at SAC 2020 [BBI+20].
It receives a 128-bit plaintext and a 128-bit master key and then performs 40 full rounds as
represented in Figure 5 plus one partial round (without nibble permutation) to produce a
128-bit ciphertext. Employing a 32-branch generalized Feistel structure (GFS), WARP aims
at providing 128-bit security in the single-key setting while achieving a small footprint.

The internal state of WARP can be represented as X = X0|| · · · ||X31, where Xi ∈ {0, 1}4.
WARP splits the 128-bit master key K into two 64-bit halves, K = K0||K1. K(r−1) mod 2

is used as the round-key in the rth round. As shown in Figure 5, the round function of
WARP applies the same 4-bit S-box and round-key addition to one of each two consecutive
nibbles of the internal state. Afterwards, a permutation π is applied to the nibbles of the
state. We refer to design paper [BBI+20] for a full specification. We use X(r) to denote
the input state of round r + 1. To denote the input difference of round r + 1 in upper
and lower trails of sandwich distinguishers, we use ∆X(r) and ∇X(r). In addition, we use
∆X(r)

i (or ∇X(r)
i ) to denote the difference of the ith nibble in the input of round r + 1.

https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
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Figure 5: The round function of WARP.

4.2 Sandwich Distinguishers for WARP

WARP’s designers investigated the security of their cipher against well-known attacks on
block ciphers. For instance, by applying the automatic methods for differential and linear
cryptanalysis, they found a 21-round impossible differential distinguisher for WARP and
computed the minimum number of differentially and linearly active S-boxes for up to
19 rounds of this cipher. They also applied the division property to find a 20-round
integral distinguisher. WARP has also received third-party analysis which mostly focused on
differential cryptanalysis [TB21, KY21]. For example, by employing the FBCT framework,
Teh and Biryukov [TB21] investigated the security of WARP against boomerang attacks
and introduced a 21-round sandwich distinguisher with probability 2−121.11 building upon
which they mounted a key-recovery attack on 24 rounds. This 21-round distinguisher has
been discovered with an automatic tool that takes the FBCT into account. However, as the
FBCT only handles the boomerang switch over one round, this tool also only considers the
boomerang switch for one round in the middle.

Here, using our method, we take advantage of boomerang switches up to 10 rounds of
WARP. This not only enables us to dramatically improve the probability of the sandwich
distinguishers but also allows us to improve the sandwich distinguishers of WARP by two
rounds and distinguish up to 23 rounds of WARP from a random permutation. WARP achieves
nibble-wise full diffusion after 10 rounds for both encryption and decryption. Hence, if only
one nibble is active at the input (output) of the middle part, the upper (lower) crossing
differences become almost uniformly distributed after 10 rounds. Consequently, 10 rounds
are a good choice for the length of the middle part. The FBCT of WARP’s S-box is shown in
Table 6 and its differential and (Feistel) boomerang properties are listed in Table 9. As
the FBCT shows, two difference values {2, a} result in a better boomerang switch compared
to the other difference values. Thus, we limit the input/output differences of the middle
part to 2 and a. This guides our tool to find better bit-wise differences for the boundary
between middle and outer parts when instantiating the truncated trails.

As the lower and upper crossing differences are propagated with probability one in
our tool, we are able to find the longest deterministic nibble-level sandwich distinguisher.
To do so, we set the length r0, r1 of the outer parts to zero and increase rm as long as
there is a deterministic sandwich distinguisher. Accordingly, we discover that there are
9-round deterministic sandwich distinguishers for WARP. One of these is listed in Table 2
and illustrated in Figure 6. This automatically generated figure shows that there is no
interaction between the propagation of upper crossing differences (red) and lower crossing
differences (blue). As a result, the probability of our 9-round distinguisher is one due to the
ladder switch. Compared to our 9-round deterministic distinguisher, the best differential
covering 9 rounds has a probability of 2−28.

Now, we set (r0, rm, r1) = (2, 10, 2) and apply our tool to find a 14-round sandwich
distinguisher. If r0 + r1 > 0, choosing appropriate weights for the active S-boxes in the
middle and outer parts affects the identified distinguisher. Given that WARP employs the
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Figure 6: Sandwich distinguisher for 9 rounds of WARP.

Table 2: 9-round deterministic sandwich distinguisher for WARP

r0 = 0, rm = 9, r1 = 0, p2q2r = 1 for all δ, γ ∈ F4
2 \ {0}

∆X(0) 000δ0000000000000000000000000000 ∇X(9) 000000γ0000000000000000000000000

same S-box in each round and taking the p2q2r formula into account, we set the weight
of active S-boxes as (w0, wm, w1) = (2, 1, 2). This guides our tool to find a near-optimal
sandwich distinguisher for 14 rounds. The resulting distinguisher is listed in Table 3.
Figure 12 (Appendix) shows how the differences are propagated through each part of this
distinguisher with common active S-boxes marked in yellow.
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Table 3: 14-round sandwich distinguisher for WARP

r0 = 2, rm = 10, r1 = 2, p = 2−4, q = 2−4, r = 2−4.58, p2q2r = 2−20.58

∆X(0) 0000000000000a00000000a500000000 ∆X(2) 0a000000000000000000000000000000
∇X(12) 0000a000000000000000000000000000 ∇X(14) 0000f0a000000000000000000f000000

Figure 12 shows that the middle part has been allocated properly: After 9 rounds,
there are still some zero differences, e.g., ∆X(11)

15 among the upper crossing differences and
∇X(3)

28 from the lower crossing differences, which means the propagated upper and lower
differences are not uniformly distributed after 9 rounds. However, after one additional
round, the upper and lower crossing differences become almost uniformly distributed.
Hence, choosing 10 rounds for the middle part is sufficient.

To motivate our approach of evaluating the probability of the Boomerang switch
experimentally, we compare it to the theoretical estimates of the FBCT framework [BHL+20].
For the theoretical estimate, we use lower case Greek letters such that α(r)

j and β(r)
j denote

the upper and lower crossing differences in the jth nibble ofX(r). As evident from Figure 12,
there are 3 common active S-boxes between the upper and lower trails. Additionally, for
the common active S-box in round 4, the input upper and lower crossing differences are α(3)

6
and β(3)

6 , where α(3)
6 is fixed and β(3)

6 originates from β
(12)
4 in the lower differential trail.

Therefore, its switching effect can be formulated by FBDT(α(3)
6 , α

(4)
8 , β

(3)
6 ). However, given

that the upper crossing difference α(4)
8 does not affect the other two common active S-boxes,

we can simply use FBCT(α(3)
6 , β

(3)
3 ) to formulate the switching effect of the common active S-

box in round 4. Concerning the common active S-box in the 8th round, the upper and lower
crossing differences at the input of this S-box are α(7)

28 and β(7)
28 . Since the output differences

of the common active S-box in round 8 do not affect the other two common active S-boxes,
its boomerang switch can be formulated by FBCT(α(7)

28 , β
(7)
28 ). Tracking the propagation of

α
(7)
28 backward in Figure 12 shows that this upper crossing difference originates from α

(3)
6

such that α(3)
6

DDT−−→ α
(6)
20

DDT−−→ α
(7)
28 . It can also be seen that β(10)

19
DDT−−→ β

(8)
8

DDT−−→ β
(7)
28 . For

the common active S-box in round 11, the lower crossing difference at the input of this
S-box is β(12)

4 , which is fixed by the lower trail, and the input upper crossing difference
at the input of this S-box is α(10)

18 . Consequently, the boomerang switch of the common
active S-box in round 11 can be formulated by FBDT(β(12)

4 , β
(10)
19 , α

(10)
18 ). Moreover, α(10)

18
originates from α

(6)
20 such that α(6)

20
DDT−−→ α

(9)
24

DDT−−→ α
(10)
18 . As a result, the total probability

of the boomerang switch over the 10 middle rounds of our distinguisher is

r(α(3)
6 , β

(12)
4 ) = 2−10×4 ·

∑
FBCT(α(3)

6 , β
(3)
6 ) · DDT(β(12)

4 , β
(3)
6 ) · FBCT(α(7)

28 , β
(7)
28 )

·DDT(α(3)
6 , α

(6)
20 ) · DDT(α(6)

20 , α
(7)
28 ) · DDT(β(10)

19 , β
(8)
8 )

·DDT(β(8)
8 , β

(7)
28 ) · FBDT(β(12)

4 , β
(10)
19 , α

(10)
18 )

·DDT(α(6)
20 , α

(9)
24 ) · DDT(α(9)

24 , α
(10)
18 ),

(2)

where the summation is over all the possible values of β(3)
6 , β

(12)
4 , α

(7)
28 , β

(7)
28 , α

(6)
20 , β

(10)
19 ,

β
(8)
8 , β

(7)
28 , α

(9)
24 , and α

(10)
18 . To speed up the computation, it is possible to split Equation 2

into some precomputed tables according to Equation 3. We computed the above formula
for several possible values of (α(3)

6 , β
(12)
4 ). For example, if (α(3)

6 , β
(12)
4 ) = (a, a) we obtain

r = 45801799680
240 = 2−4.58, which matches the experimental probability. Table 4 compares

the value of this formula with the experimental probability for some further input/output
differences (α(3)

6 , β
(12)
4 ). Evidently, choosing (α(3)

6 , β
(12)
4 ) from {(2, 2), (a, a)} results in a
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greater probability for the middle part, which is expected according to the FBCT (Table 6).
To evaluate the experimental values in Table 4, we set up several random tests including
226 boomerang queries corresponding to 213 random keys with 213 random messages each
and compute the average number of returned boomerangs.

Table 4: Comparison between the theoretical and experimental probabilities of the
boomerang switch over 10 rounds of WARP

Input/Output Differences Equation 2 Exp. Probability

(∆X(3)
6 ,∇(12)

4 ) = (a, a) 2−4.5853 2−4.5848

(∆X(3)
6 ,∇(12)

4 ) = (2, 2) 2−6.9714 2−6.9711

(∆X(3)
6 ,∇(12)

4 ) = (5, 7) 2−7.0428 2−7.0432

(∆X(3)
6 ,∇(12)

4 ) = (9, b) 2−8.6165 2−8.6128

(∆X(3)
6 ,∇(12)

4 ) = (c, 5) 2−9.0670 2−9.0644

(∆X(3)
6 ,∇(12)

4 ) = (a, 4) 2−11.5070 2−11.5050

(∆X(3)
6 ,∇(12)

4 ) = (3, 3) 0 0

Now, we examine the overall probability of our 14-round sandwich distinguisher. Our
tool calculates the probability of the differentials over E0 and E1 as p = q = 2−4 which takes
the clustering effect into account. As r(a, a) = 2−4.58 (see Table 4), the total probability
of our 14-round distinguisher is 2−20.58. This is large enough to be experimentally verified
on an ordinary laptop.

To perform this experimental verification, we evaluate 228 boomerang queries corre-
sponding to 210 random keys with 218 random messages each, and compute the average
number of returned boomerangs. Accordingly, the experimental value for the whole 14-
round distinguisher is 2−20.39, which is very close to our estimate based on the p2q2r
formula. The best differential effect reported for 14 rounds of WARP so far is 2−72.14 [TB21].
This shows the advantage of sandwich distinguishers compared to differential distinguishers
for reduced-round WARP.

To discover a 15-round sandwich distinguisher, we partition the cipher using (r0, rm, r1) =
(2, 10, 3). Interestingly, the sandwich distinguishers discovered in this setting are the exten-
sion of our 14-round sandwich distinguisher by one round forward. As a result, we achieve a
15-round distinguisher with p = 2−4, q = 2−8, and r = 2−4.58 as it is described in Table 10
with a total probability of 2−28.58. To experimentally verify our 15-round distinguisher
for WARP, we carried out several random tests, including 234 random boomerang queries
corresponding to 210 random keys with 224 messages each. The experimental probability
for the whole 15-round distinguisher is 2−28.33, which is very close to p2q2r and thus
verifies the validity of our estimate.

Similar to before, we apply our tool on up to 23 rounds of WARP. The full specification
of our sandwich distinguishers for 15, 16, and 20 to 23 rounds of WARP is listed in Table 10.
These results improve the best sandwich distinguishers for WARP on 20 and 21 rounds by
a factor of 238.28 and 236.56, respectively. We even distinguish 22 and 23 rounds of WARP
with great advantage from a random permutation for the first time.

When comparing the number of active nibbles at input/output differences in our 20-
and 21-round sandwich distinguishers with the best previous ones [TB21], we find that
our distinguishers not only have much higher probabilities but also have fewer active
nibbles in the input/output differences. This is advantageous when building key-recovery
attacks. For instance, the number of active nibbles at the input/output of our 21-round
distinguisher is 14, compared to previously 17 [TB21].



Hosein Hadipour (�), Marcel Nageler and Maria Eichlseder 15

5 Application to CLEFIA

CLEFIA[SSA+07] is a 128-bit block cipher supporting key lengths of 128, 192, and 256 bits
which are compatible with AES. Designed by Sony Corporation, CLEFIA was introduced
in FSE 2007 and is internationally standardized in ISO/IEC 29192-2. Depending on the
key size, the number of rounds in CLEFIA is 18 (128-bit key), 22 (192-bit key), and 26
(256-bit key). As shown in Figure 7, the round function of CLEFIA uses the generalized
Feistel structure with four 32-bit branches in which two 32-bit functions F0 and F1 are
applied in parallel. F0 and F1 follow the SP structure and perform three basic operations,
including sub-key addition, application of four 8-bit S-boxes in parallel, and diffusing the
output bytes of the S-box layer by applying a 4× 4 MDS matrix over F28 . As Figure 7
shows, CLEFIA employs two different S-boxes which are used in different order in F0 and
F1. Moreover, the diffusion mechanism of CLEFIA was designed based on a novel design
technique called Diffusion Switching Mechanism (DSM) [SS04, SSA+07] according to which
two different MDS matrices with a certain property are used in the two branches. This
guarantees a larger minimum number of active S-boxes in comparison to an ordinary GFS
cipher without DSM. For a full specification, we refer the reader to [SSA+07]. Consistent
with the previous sections, we use X(r) to denote the input state of the r + 1th round
and denote the differences in forward and backward directions by ∆X(r) and ∇X(r),
respectively.
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K1

=

P0 P1 P2 P3

F0

K0
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S0
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Figure 7: CLEFIA round function.

CLEFIA’s security has been investigated by its designers as well as many other researchers
[TTS+08, MDS11, Tez10, LWZ11, BGW+13, BN19]. The longest distinguishers for CLEFIA
so far are 9-round impossible differential distinguishers [SSA+07, TTS+08], a 9-round
integral distinguisher [LWZ11], and a 9-round zero-correlation distinguisher [BGW+13].
However, regarding the differential and boomerang analysis, the designers only estimated
some upper bounds for the probability of differential and sandwich distinguishers based on
the minimum number of differentially active S-boxes, and the best sandwich distinguisher
for CLEFIA so far covers 8-round with probability 2−92 [MQ14]. Here, we not only improve
the probability of the best previous 8-round sandwich distinguisher of CLEFIA by a factor
of 215.97, but also introduce a 9-round sandwich distinguisher for the first time. Thus,
we contradict the claim by Biryukov and Nikolic that 9-round boomerang distinguishers
for CLEFIA do not exist [BN19]. Still, their conclusion that 12 rounds of CLEFIA resist
boomerang attacks holds up.

5.1 Sandwich Distinguishers for CLEFIA

The differential and (Feistel) boomerang properties of the employed S-boxes in CLEFIA are
briefly described in Table 9. As can be seen, the S-box S0 is weaker against differential
and boomerang attacks. More precisely, the maximum differential probabilities of S0 and
S1 are 2−4.68 and 2−6 respectively. In addition, the Feistel boomerang uniformity of S0 is
20, whereas the Feistel uniformity of S1 is 4. Therefore, in contrast to our truncated MILP
model for WARP where the cost of active S-boxes is only determined by the parameters
w0, wm, w1, we treat S0 and S1 differently in our truncated MILP model for CLEFIA.

https://www.iso.org/standard/78477.html
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Concretely, depending on which part of the sandwich distinguisher the active S-box is
located in and which S-boxes it is, we use 4.68 · w and 6 · w for w ∈ {w0, wm, w1} as the
actual weight of S0 and S1, respectively. Additionally, we have to take the DSM property
of CLEFIA into account. According to DSM, the difference cancellation, which may occur
in multiple rounds of a normal GFS cipher, is prevented in CLEFIA thanks to a clever way
of choosing two different MDS matrices for the diffusion layer. To model the DSM, we
adopt the method introduced by Sajadieh and Vaziri [SV18] in our truncated MILP model
to avoid activity patterns excluded by the DSM property of CLEFIA.

Our bit-wise MILP model for CLEFIA is much heavier compared to WARP’s bit-wise
MILP model, which is mainly due to the large (8-bit) S-boxes and large MDS matrices
employed by CLEFIA. Table 5 briefly describes the number of constraints derived by our
tool to encode the differential behavior of S0 and S1.

Table 5: Number of MILP constraints to encode the pb-DDTs of CLEFIA

S-box Probability # Zero entries in sub-DDT # Constraints

S0

2−7 46035 6556
2−6 60499 2854

2−5.4 64688 779
2−5 65417 173

2−4.7 65527 30

S1
2−7 33406 7917
2−6 65281 320

As before, we apply our tool to find the longest deterministic sandwich distinguisher for
CLEFIA which results in a 3-round distinguisher. To search for longer distinguishers, we set
the length of the middle part in our sandwich distinguishers to 4 or 5 rounds. As CLEFIA
reaches full diffusion on byte-level after 5 rounds, this is sufficient to model the dependency
between the upper and lower trails. The specification of our sandwich distinguishers for 4
to 8 rounds is listed in Table 11. As evident from the table, by partitioning 7 rounds into
1 + 5 + 1 rounds, we discover a practical sandwich distinguisher with probability 2−32.67.
To the best of our knowledge, this is the first 7-round distinguisher for CLEFIA which can
be experimentally verified with a very limited computational power. The minimum number
of differentially active S-boxes over the 7 rounds is 14, and hence the probability of a
7-round differential characteristic is at most 2−14×4.68 = 2−65.52. In reality, the probability
will be much lower as the stronger S-box S1 will also be active. Consequently, even if we
take the clustering effect into account, there is still a huge gap between the probability of
our 7-round sandwich distinguisher and the best possible 7-round differential for CLEFIA.
For 8 rounds, we split the cipher into 2 + 5 + 1 rounds and discover a distinguisher with a
probability of 2−76.03. Similarly, for 9 rounds, we split the cipher into 2 + 4 + 3 rounds
and find a distinguisher with a probability of 2−99.12, which is illustrated in Figure 8.

The huge gap between the probabilities of our sandwich distinguishers for 7 and 8
rounds is due to the strong diffusion property of CLEFIA as well as a limitation of our
method. The diffusion switching mechanism (DSM) [SS04, SSA+07] of CLEFIA comes into
effect for more than 7 rounds and increases the minimum number of active S-boxes by
up to 40% in comparison to a normal GFS without DSM. This also increases the number
of active S-boxes in the middle part of our sandwich distinguisher. Unfortunately, when
the number of common active S-boxes in the middle increases, computing the probability
based on either theoretical frameworks or by experimental approach becomes infeasible.
Therefore, when applying our tool for more than 7 rounds of CLEFIA, we constrain it to
find sandwich distinguishers with a limited number of common active S-boxes so that
we can compute the probability of the middle part in a reasonable time. Due to the
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Figure 8: CLEFIA: 9-round boomerang distinguisher with probability 2−99.12 based on
2-round upper trail (left, probability 2−4.68), 4 middle rounds (left, 2−13.26), and 3-round
lower trail (right, probability 2−38.25 including differential effect).

importance of CLEFIA as a standardized cipher, we propose a key-recovery attack on 11
rounds of CLEFIA based on our 9-round sandwich distinguisher.

5.2 Key-recovery Attack on 11 rounds of CLEFIA
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Figure 9: CLEFIA: Key-recovery for 2 initial rounds.

We propose a key-recovery attack on 11 rounds of CLEFIA by prepending two rounds
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before our 9-round sandwich distinguisher. Our attack has a time complexity of 2116.1, a
data complexity of 2103.13, and a memory complexity of 2113.6.

To acquire the pairs, we use the initial structure depicted in Figure 9. This structure
is built such that for each of the 297 elements, there is a second element that leads to
the required difference at the beginning of round 3. Therefore, we get 296 pairs for
297 encryption and decryption queries (298 data). To arrive at 4 · 299.12 pairs for the
distinguisher, we need 25.13 ≈ 35 of these structures. Therefore, we expect at least one
right pair for the distinguisher with a probability of 98 %.

We carry out our attack in the following steps, which we repeat for each of the 25.13

initial structures.

1. Generate 297 plaintexts according to the initial structure.

2. For each plaintext P , obtain C = E(P ) and P ′ = E−1(C ⊕∇). Store (P, P ′, C) in
the list P. This leads to our data complexity of 25.13 × 2× 297 = 2103.13. Note that
while we iterate over all 232 values in the rightmost 32 bits in P , we only care about
pairs with a difference that can generate a difference of 0a14283c after being Xored
with the output of MixColumns. Concretely, we want pairs with a difference in the
set H = {M1(S1(x)⊕ S1(x⊕ 97), 0, 0, 0)⊕ 0a14283c} with |H| = 127.

3. For each of the 297 (P, P ′, C) ∈ P and the each of the (∆P,∆P ′) ∈ H ×H possible
differences in the rightmost 64 bits of P and P ′, find a matching second element
(Q,Q′, D) ∈ P. We require LSB64(P ⊕ Q) = 97000000 ‖ ∆P and LSB64(P ′ ⊕
Q′) = 97000000 ‖ ∆P ′. Therefore, we expect to find 297+97+14−64−32−1 = 2111

matching quartets. Accounting for the 25.13 initial structures, this step requires
about 25.13+97+14 = 2116.1 time complexity.

4. For each of the 2111 quartets (P, P ′, C,Q,Q′, D), find the possible values for K0
based on P and P ′ as well as based on Q and Q′. This can be done efficiently by
using the XDDT of the S-boxes. For each transition, we expect one valid key candidate
on average. Note that the key candidates for both pairs need to match. As this
happens with a probability of 2−32, we are left with about 279 quartets.

5. Next, we target 8 bits of K1 based on the transition of the relevant S-box in the
first round. We expect two candidates on average, as each quartet is already filtered
to only contain the 127 valid differences after the S-box. Due to the structure of
the XDDT, either both candidates or no candidates match, and we expect a match
with probability 2−7. Thus, we are left with 272 quartets. Note that when the key
candidates match, we always get two candidates: k and k ⊕ 97.

6. Now, we recover K3 ⊕WK1. The transition in the relevant S-boxes of F1 in the
second round also depends on K1. For each of the 225 candidates of K1, we find the
relevant candidates for K3 ⊕WK1. These candidates match with a probability of
2−32. Thus, we expect to be left with 265 quartets.

7. Now, we consider the final round by targeting 8 bits of K20 and K21 each. This
further reduces the number of quartets by 2−14 to 251.

8. Next, we target K18 ⊕WK3. We consider all 225 values for K21 and expect a match
with a probability of 2−32 and thus reduce the number of quartets to 244.

9. With the number of quartets reduced to 244 and each quartet only compatible with
a few candidates for K0 and K1, we can brute-force the remaining 64 bits of K2 and
K3. As K0, . . . ,K3 are calculated by applying 12 Feistel rounds to WK0, . . . ,WK3,
we unfortunately cannot use the additional key material to speed up this process.
Accounting for the fact that we have 25.13 initial structures leading 244 quartets each,
this step needs about 25.13+44+64 = 2113 time complexity.
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The overall time complexity is dominated by step 3, where we identified the set of quartets
with valid input and output differences. Thus, we get a total time complexity of 2116.1. The
memory complexity of 2113.6 = 6× 2111 is dominated by the need to store 2111 quartets.

6 Application to TWINE

Now, we apply our tool to TWINE, a 64-bit block cipher which supports key sizes of 80
and 128 bits [SMMK12]. This cipher uses a Type-2 generalized Feistel structure with 16
4-bit branches. Both variants perform 36 applications of the round function illustrated in
Figure 10. The round function includes a nonlinear layer consisting of 8 parallel applications
of the same 4-bit S-box and a diffusion layer permuting the 16 nibbles.

X0 X1
rk0

S

X2 X3
rk1

S

X4 X5
rk2

S

X6 X7
rk3

S

X8 X9
rk4

S

X10 X11
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X12 X13
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X14 X15
rk7

S

Figure 10: The round function of TWINE.

Table 8 shows the FBCT of TWINE’s S-box. Additionally, the differential and boomerang
properties of this S-box are briefly described in Table 9. The table shows that the
differential and F-boomerang uniformity of TWINE’s S-box are 4. As the minimum F-
boomerang uniformity of a non-APN function is 4 [BHL+20], TWINE’s S-box achieves
optimal values for differential and F-boomerang uniformity for 4-bit S-boxes. Hence, the
probability of the boomerang switch mainly depends on the position of active nibbles at the
input/output differences rather than the concrete difference in these nibbles. Consequently,
we expect that our method finds nearly optimal sandwich distinguishers for TWINE.

We apply our tool to find good sandwich distinguishers for TWINE. When searching for
deterministic sandwich distinguishers, we find that there is a 5-round sandwich distinguisher
with probability 1. To find longer distinguishers, we set the length of the middle part to 8
rounds as TWINE achieves full nibble-wise diffusion after 8 rounds. Our distinguishers for
13 to 16 rounds of TWINE are listed in Table 12. Figure 13 shows our 16-round sandwich
distinguisher. Our distinguishers have a higher probability than the best previous sandwich
distinguishers [TB21], while the number of active nibbles of input/output differences in
our distinguishers remains the same as before [TB21].

7 Application to LBlock and LBlock-s

In this section, we apply our tool to LBlock, a 64-bit block cipher with 80-bit keys proposed
at ACNS 2011 [WZ11]. As shown in Figure 11, the round function of LBlock follows
a 2-branch balanced Feistel structure, where the right branch is modified by an 8-bit
left rotation. The keyed F -function applies eight 4-bit S-boxes in parallel, after which a
permutation is applied to the nibbles. Similar to TWINE, for both encryption and decryption,
LBlock can provide the full nibble-wise diffusion after 8 rounds. Hence, we set the length
of the middle part of our sandwich distinguishers to 8. LBlock employs 8 different S-boxes
for the F -function. We do not need to differentiate between these S-boxes in our truncated
MILP model, as their differential and boomerang uniformity is identical. However, as
evident from the FBCT of LBlock’s Sboxes (Table 7), two difference values {3, b} yield a
better probability for the boomerang switch. Thus, these differences are a good choice for
the active nibbles at the input/output of the boomerang switch.
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Ki ≪ 8
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Figure 11: The round function of LBlock.

We obtain the following results for LBlock. First, we discover a 5-round deterministic
sandwich distinguisher. To find longer distinguishers, we set the length of the middle part
to 8 rounds, similar to the application on TWINE. The resulting distinguishers for 13 to 16
rounds are listed in Table 14. In comparison to the best previous boomerang distinguisher
for LBlock [CM13], our distinguisher has a higher probability.

We also apply our tool to LBlock-s, a simplified version of LBlock that uses the S-box
S0 for all nibbles in the F -function. Our distinguishers for 13 to 16 rounds of LBlock-s
are listed in Table 13. The best previous sandwich distinguisher for LBlock-s covers
16 rounds of this cipher with probability 2−56.14 [BHL+20]. As Table 13 illustrates, the
probability of the 16-round distinguisher discovered by our tool is 2−53.59 (improvement of
22.55), whereas the number of active nibbles at its input/output differences is the same as
before [BHL+20]. Although Boukerrou et al. [BHL+20] considered the boomerang switch
over the 8 rounds, they generated the upper and lower differential trails independently. In
contrast, our tool takes the switching effect into account while searching for a sandwich
distinguisher and thus yields a better distinguisher.

The diffusion strength of TWINE and LBlock are almost the same. Furthermore,
as Table 9 shows, TWINE’s and LBlock’s S-boxes have the same differential uniformity.
However, according to Table 9, the smaller F-boomerang uniformity of TWINE’s S-box
results in weaker sandwich distinguishers in comparison to LBlock.

8 Conclusion
In this paper, we introduced an improved automatic method to search for boomerang
distinguishers by enhancing the method proposed by Hadipour et al. and applied it to
several ciphers following the generalized Feistel structure. Thanks to the effectiveness of
our method, we managed to improve the best previous results concerning the boomerang
analysis on a wide range of GFS ciphers. Notably, we improved the probability of the
best previous boomerang distinguishers for 20 and 21 rounds of WARP by a factor of
238.28 and 236.56. In terms of the number of rounds, we also improved the boomerang
distinguishers of WARP by 2 rounds and managed to distinguish up to 23 rounds of WARP
from a random permutation. Applying our method to the internationally-standardized
cipher CLEFIA, we proposed a 9-round boomerang distinguisher for this cipher which
improves the best previous boomerang distinguisher by one round. We also built an
11-round key-recovery attack based on this distinguisher. Moreover, we introduced a
practical boomerang distinguisher with probability 2−32.67 for 7 rounds of CLEFIA which
is, to the best of our knowledge, the first practical distinguisher for 7 rounds of this cipher.
We also applied our method to TWINE, LBlock, and LBlock-s. In all cases, we succeeded
in improving the best previous boomerang distinguishers of these GFS ciphers.

Acknowledgments. This work has been supported in part by the Austrian Science
Fund (FWF SFB project SPyCoDe). The authors would like to express their gratitude to
the anonymous reviewers for their helpful feedback and suggestions.



Hosein Hadipour (�), Marcel Nageler and Maria Eichlseder 21

References
[AK18] Ralph Ankele and Stefan Kölbl. Mind the gap – A closer look at the security of

block ciphers against differential cryptanalysis. In SAC 2018, volume 11349 of
LNCS, pages 163–190. Springer, 2018. doi:10.1007/978-3-030-10970-7_8.

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) S-boxes to optimize probability of
differential characteristics. IACR Trans. Symmetric Cryptol., 2017(4):99–129,
2017. doi:10.13154/tosc.v2017.i4.99-129.

[BBI+20] Subhadeep Banik, Zhenzhen Bao, Takanori Isobe, Hiroyasu Kubo, Fukang
Liu, Kazuhiko Minematsu, Kosei Sakamoto, Nao Shibata, and Maki Shigeri.
WARP: Revisiting GFN for lightweight 128-bit block cipher. In SAC 2020,
volume 12804 of LNCS, pages 535–564. Springer, 2020. doi:10.1007/
978-3-030-81652-0_21.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack –
rectangling the Serpent. In EUROCRYPT 2001, volume 2045 of LNCS, pages
340–357. Springer, 2001. doi:10.1007/3-540-44987-6_21.

[BGW+13] Andrey Bogdanov, Huizheng Geng, Meiqin Wang, Long Wen, and Baudoin
Collard. Zero-correlation linear cryptanalysis with FFT and improved attacks
on ISO standards camellia and CLEFIA. In SAC 2013, volume 8282 of LNCS,
pages 306–323. Springer, 2013. doi:10.1007/978-3-662-43414-7_16.

[BHL+20] Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal, and
Marine Minier. On the Feistel counterpart of the boomerang connectivity
table introduction and analysis of the FBCT. IACR Trans. Symmetric
Cryptol., 2020(1):331–362, 2020. doi:10.13154/tosc.v2020.i1.331-362.

[BHMSV84] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis,
volume 2 of The Kluwer International Series in Engineering and Computer
Science. Springer, 1984. doi:10.1007/978-1-4613-2821-6.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In ASIACRYPT 2009, volume 5912 of LNCS,
pages 1–18. Springer, 2009. doi:10.1007/978-3-642-10366-7_1.

[BN19] Alex Biryukov and Ivica Nikolic. Security analysis of the block cipher CLEFIA.
Final Report for CRYPTREC, 2019. URL: https://www.cryptrec.go.jp/
exreport/cryptrec-ex-2202-2012p2.pdf.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.
Boomerang connectivity table: A new cryptanalysis tool. In EURO-
CRYPT 2018, volume 10821 of LNCS, pages 683–714. Springer, 2018.
doi:10.1007/978-3-319-78375-8_22.

[CM13] Jiageng Chen and Atsuko Miyaji. Differential cryptanalysis and boomerang
cryptanalysis of LBlock. In CD-ARES Workshops 2013, volume 8128 of
LNCS, pages 1–15. Springer, 2013. doi:10.1007/978-3-642-40588-4_1.

[DDV20] Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. Catching the
fastest boomerangs – application to SKINNY. IACR Trans. Symmetric
Cryptol., 2020(4):104–129, 2020. doi:10.46586/tosc.v2020.i4.104-129.

https://doi.org/10.1007/978-3-030-10970-7_8
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.1007/978-3-030-81652-0_21
https://doi.org/10.1007/978-3-030-81652-0_21
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/978-3-662-43414-7_16
https://doi.org/10.13154/tosc.v2020.i1.331-362
https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1007/978-3-642-10366-7_1
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2202-2012p2.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2202-2012p2.pdf
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-642-40588-4_1
https://doi.org/10.46586/tosc.v2020.i4.104-129


22 Throwing Boomerangs into Feistel Structures

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony.
In CRYPTO 2010, volume 6223 of LNCS, pages 393–410. Springer, 2010.
doi:10.1007/978-3-642-14623-7_21.

[DKS14] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key
attack on the KASUMI cryptosystem used in GSM and 3G telephony. J.
Cryptol., 27(4):824–849, 2014. doi:10.1007/s00145-013-9154-9.

[DQSW21] Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing
strategies for linear key-schedule algorithms in rectangle attacks. 2021. URL:
https://ia.cr/2021/856, doi:10.1007/978-3-031-07082-2_1.

[Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL:
https://www.gurobi.com.

[HBS21] Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle attacks
on SKINNY and CRAFT. IACR Trans. Symmetric Cryptol., 2021(2):140–198,
2021. doi:10.46586/tosc.v2021.i2.140-198.

[KKS00] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang
attacks against reduced-round MARS and Serpent. In FSE 2000, volume 1978
of LNCS, pages 75–93. Springer, 2000. doi:10.1007/3-540-44706-7_6.

[KY21] Manoj Kumar and Tarun Yadav. MILP based differential attack on round
reduced WARP. In SPACE 2021, volume 13162 of LNCS, pages 42–59.
Springer, 2021. doi:10.1007/978-3-030-95085-9_3.

[LMR22] Virginie Lallemand, Marine Minier, and Loïc Rouquette. Automatic search
of rectangle attacks on feistel ciphers: Application to WARP. IACR Trans.
Symmetric Cryptol., 2022(2):113–140, 2022. doi:10.46586/tosc.v2022.i2.
113-140.

[LWZ11] Yanjun Li, Wenling Wu, and Lei Zhang. Improved integral attacks on reduced-
round CLEFIA block cipher. In WISA 2011, volume 7115 of LNCS, pages
28–39. Springer, 2011. doi:10.1007/978-3-642-27890-7_3.

[MDS11] Hamid Mala, Mohammad Dakhilalian, and Mohsen Shakiba. Impossible
differential attacks on 13-round CLEFIA-128. J. Comput. Sci. Technol.,
26(4):744–750, 2011. doi:10.1007/s11390-011-1173-0.

[MQ14] Ming Mao and Zhiguang Qin. Sandwich-boomerang attack on reduced round
CLEFIA. High Technology 1 (2014), 20:48–53, 03 2014. doi:10.3772/j.
issn.1006-6748.2014.01.008.

[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE Trans. Inf.
Theory, 57(4):2517–2521, 2011. doi:10.1109/TIT.2011.2111091.

[QDW+21] Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, and Yunwen
Liu. Automated search oriented to key recovery on ciphers with linear key
schedule applications to boomerangs in SKINNY and ForkSkinny. IACR
Trans. Symmetric Cryptol., 2021(2):249–291, 2021. doi:10.46586/tosc.
v2021.i2.249-291.

[Sag22] Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.5.0), 2022. URL: https://www.sagemath.org.

https://doi.org/10.1007/978-3-642-14623-7_21
https://doi.org/10.1007/s00145-013-9154-9
https://ia.cr/2021/856
https://doi.org/10.1007/978-3-031-07082-2_1
https://www.gurobi.com
https://doi.org/10.46586/tosc.v2021.i2.140-198
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/978-3-030-95085-9_3
https://doi.org/10.46586/tosc.v2022.i2.113-140
https://doi.org/10.46586/tosc.v2022.i2.113-140
https://doi.org/10.1007/978-3-642-27890-7_3
https://doi.org/10.1007/s11390-011-1173-0
https://doi.org/10.3772/j.issn.1006-6748.2014.01.008
https://doi.org/10.3772/j.issn.1006-6748.2014.01.008
https://doi.org/10.1109/TIT.2011.2111091
https://doi.org/10.46586/tosc.v2021.i2.249-291
https://doi.org/10.46586/tosc.v2021.i2.249-291
https://www.sagemath.org


Hosein Hadipour (�), Marcel Nageler and Maria Eichlseder 23

[SMMK12] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE: A lightweight block cipher for multiple platforms. In SAC 2012,
volume 7707 of LNCS, pages 339–354. Springer, 2012. doi:10.1007/
978-3-642-35999-6_22.

[SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revis-
ited. application to SKINNY and AES. IACR Trans. Symmetric Cryptol.,
2019(1):118–141, 2019. doi:10.13154/tosc.v2019.i1.118-141.

[SS04] Taizo Shirai and Kyoji Shibutani. Improving immunity of feistel ciphers
against differential cryptanalysis by using multiple MDS matrices. In FSE
2004, volume 3017 of LNCS, pages 260–278. Springer, 2004. doi:10.1007/
978-3-540-25937-4_17.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu
Iwata. The 128-bit blockcipher CLEFIA (extended abstract). In FSE
2007, volume 4593 of LNCS, pages 181–195. Springer, 2007. doi:10.1007/
978-3-540-74619-5_12.

[SV18] Mahdi Sajadieh and Mohammad Vaziri. Using MILP in analysis of feistel
structures and improving type II GFS by switching mechanism. In IN-
DOCRYPT 2018, volume 11356 of LNCS, pages 265–281. Springer, 2018.
doi:10.1007/978-3-030-05378-9_15.

[SWW18] Ling Sun, Wei Wang, and Meiqin Wang. More accurate differential properties
of LED64 and Midori64. IACR Trans. Symmetric Cryptol., 2018(3):93–123,
2018. doi:10.13154/tosc.v2018.i3.93-123.

[TB21] Je Sen Teh and Alex Biryukov. Differential cryptanalysis of WARP. Cryptol-
ogy ePrint Archive, Report 2021/1641, 2021. URL: https://ia.cr/2021/
1641.

[Tez10] Cihangir Tezcan. The improbable differential attack: Cryptanalysis of reduced
round CLEFIA. In INDOCRYPT 2010, volume 6498 of LNCS, pages 197–209.
Springer, 2010. doi:10.1007/978-3-642-17401-8_15.

[TTS+08] Yukiyasu Tsunoo, Etsuko Tsujihara, Maki Shigeri, Teruo Saito, Tomoyasu
Suzaki, and Hiroyasu Kubo. Impossible differential cryptanalysis of CLEFIA.
In FSE 2008, volume 5086 of LNCS, pages 398–411. Springer, 2008. doi:
10.1007/978-3-540-71039-4_25.

[Wag99] David A. Wagner. The boomerang attack. In FSE 1999, volume 1636 of
LNCS, pages 156–170. Springer, 1999. doi:10.1007/3-540-48519-8_12.

[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds.
application to AES variants and Deoxys. IACR Trans. Symmetric Cryptol.,
2019(1):142–169, 2019. doi:10.13154/tosc.v2019.i1.142-169.

[WZ11] Wenling Wu and Lei Zhang. LBlock: A lightweight block cipher. In
ACNS 2011, volume 6715 of LNCS, pages 327–344, 2011. doi:10.1007/
978-3-642-21554-4_19.

[YK21] Tarun Yadav and Manoj Kumar. MILES: Modeling large s-box in MILP
based differential characteristic search. Cryptology ePrint Archive, Report
2021/1388, 2021. URL: https://ia.cr/2021/1388.

https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.1007/978-3-540-25937-4_17
https://doi.org/10.1007/978-3-540-25937-4_17
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-030-05378-9_15
https://doi.org/10.13154/tosc.v2018.i3.93-123
https://ia.cr/2021/1641
https://ia.cr/2021/1641
https://doi.org/10.1007/978-3-642-17401-8_15
https://doi.org/10.1007/978-3-540-71039-4_25
https://doi.org/10.1007/978-3-540-71039-4_25
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.13154/tosc.v2019.i1.142-169
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-642-21554-4_19
https://ia.cr/2021/1388


24 Throwing Boomerangs into Feistel Structures

A Comparison with Lallemand et al.’s Approach [LMR22]
In parallel to this work, Lallemand et al. [LMR22] introduced another method to search
for rectangle attacks on Feistel ciphers. Here, we provide a brief comparison between
our method and theirs, which were developed independently. Lallemand et al. adapted
the method proposed by Delaune et al. [DDV20] for finding boomerang distinguishers
to the case of Feistel ciphers. However, we enhanced the method proposed by Hadiour
et al. [HBS21]. Thus, most of the differences stem from the differences between these
original methods [HBS21, DDV20]. Hadipour et al. [HBS21, Section 8] provide a precise
comparison between these methods [DDV20, HBS21]. We first recall the main similarities.

Both approaches have three main steps. They first find suitable upper and lower
truncated differential trails. Then, they instantiate the discovered truncated trails with
concrete differential trails, and lastly, compute the probability of the three main parts of
the discovered sandwich distinguisher. Both approaches can also be extended to construct a
unified model for the key recovery of rectangle attacks. For instance, Qin et al. [QDW+21]
and Dong et al. [DQSW21] extended the methods proposed in [HBS21] and [DDV20],
respectively, to make a unified model for key recovery of rectangle attacks.

However, the two methods follow a different approach to computing the probability
of boomerang switch. Our method uses the experimental approach to compute the
probability of a boomerang switch, whereas the methods employed in [DDV20] and
[LMR22] automatically handle the probability computation of the boomerang switch.
To achieve a fully automatic tool, one has to encode different types of (F)BCT tables in
boomerang switch at the bit level. However, this makes the resulting models harder to
solve, and thus the execution time is longer when the boomerang switch includes many
rounds or the S-box size is large enough (≥ 8-bit). Therefore, there is no choice but to
sacrifice the accuracy of the probability computation. For example, the difference values
over the boomerang switch should be equal at both sides of boomerang distinguishers in
[DDV20] and [LMR22]. Lallemand et al. proposed more techniques for speeding up the
tool to keep the execution time reasonable. Although these techniques can decrease the
execution time, they can also reduce the accuracy of the probability computation. However,
we do not consider additional constraints on the difference values over the boomerang
switch. After finding suitable truncated upper and lower trails and instantiating them
with concrete differential paths, we only fix the difference values at four positions as
discussed in Section 3. That is why we achieved better distinguishers for WARP compared
to [LMR22]. For instance, we obtained a 23-round sandwich distinguisher for WARP, which
has a higher (by a factor of 28.41) success probability compared to the one proposed in
[LMR22]. Notably, our tool finds this distinguisher in 36 seconds running on a regular
laptop (Core(TM) i7-1165G7 @ 2.80GHz).

Comparing the results derived from our approach and the one used in [DDV20, LMR22]
reveals that the most important switching effect is the ladder switch which is taken into
account in our new truncated models accurately. Therefore, as long as the probability of
a boomerang switch is large enough (e.g., larger than 2−40), one can use our method to
efficiently find nearly optimal sandwich distinguishers for both SPN and Feistel ciphers.
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B Boomerang Properties of S-boxes

Table 6: FBCT of WARP’s S-box

∆ \∇ 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 16 4 4 0 0 0 0 0 0 0 0 0 0 0 0
2 16 4 16 4 4 0 4 0 0 4 0 4 4 0 4 0
3 16 4 4 16 0 0 0 0 0 0 0 0 0 0 0 0
4 16 0 4 0 16 0 4 0 0 0 0 0 0 0 0 0
5 16 0 0 0 0 16 0 0 0 0 8 0 0 0 0 8
6 16 0 4 0 4 0 16 0 0 0 0 0 0 0 0 0
7 16 0 0 0 0 0 0 16 0 0 8 0 0 8 0 0
8 16 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
9 16 0 4 0 0 0 0 0 0 16 0 4 0 0 0 0
a 16 0 0 0 0 8 0 8 0 0 16 0 0 8 0 8
b 16 0 4 0 0 0 0 0 0 4 0 16 0 0 0 0
c 16 0 4 0 0 0 0 0 0 0 0 0 16 0 4 0
d 16 0 0 0 0 0 0 8 0 0 8 0 0 16 0 0
e 16 0 4 0 0 0 0 0 0 0 0 0 4 0 16 0
f 16 0 0 0 0 8 0 0 0 0 8 0 0 0 0 16

Table 7: FBCT of S-box Si in LBlock for 0 ≤ i ≤ 9

∆ \∇ 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 16 0 0 0 0 0 0 0 0 8 8 0 0 0 0
2 16 0 16 0 0 0 0 0 0 8 0 8 0 0 0 0
3 16 0 0 16 8 8 8 8 0 0 0 0 0 0 0 0
4 16 0 0 8 16 0 0 8 0 0 0 0 0 0 0 0
5 16 0 0 8 0 16 8 0 0 0 0 0 0 0 0 0
6 16 0 0 8 0 8 16 0 0 0 0 0 0 0 0 0
7 16 0 0 8 8 0 0 16 0 0 0 0 0 0 0 0
8 16 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
9 16 0 8 0 0 0 0 0 0 16 0 8 0 0 0 0
a 16 8 0 0 0 0 0 0 0 0 16 8 0 0 0 0
b 16 8 8 0 0 0 0 0 0 8 8 16 0 0 0 0
c 16 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
d 16 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
e 16 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
f 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16
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Table 8: FBCT of TWINE’s S-box

∆ \∇ 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 16 0 0 0 0 4 4 0 0 0 0 0 0 0 0
2 16 0 16 0 0 0 0 0 0 0 0 0 4 0 4 0
3 16 0 0 16 0 0 0 0 0 4 4 0 0 0 0 0
4 16 0 0 0 16 0 0 0 0 0 0 4 0 0 0 4
5 16 0 0 0 0 16 0 0 4 0 0 0 0 4 0 0
6 16 4 0 0 0 0 16 4 0 0 0 0 0 0 0 0
7 16 4 0 0 0 0 4 16 0 0 0 0 0 0 0 0
8 16 0 0 0 0 4 0 0 16 0 0 0 0 4 0 0
9 16 0 0 4 0 0 0 0 0 16 4 0 0 0 0 0
a 16 0 0 4 0 0 0 0 0 4 16 0 0 0 0 0
b 16 0 0 0 4 0 0 0 0 0 0 16 0 0 0 4
c 16 0 4 0 0 0 0 0 0 0 0 0 16 0 4 0
d 16 0 0 0 0 4 0 0 4 0 0 0 0 16 0 0
e 16 0 4 0 0 0 0 0 0 0 0 0 4 0 16 0
f 16 0 0 0 4 0 0 0 0 0 0 4 0 0 0 16

Table 9: Differential and boomerang properties of S-boxes in our applications

Cipher Size (bits) Diff. uniformity Boom. uniformity F-Boom. uniformity
WARP 4 4 16 8
LBlock 4 4 16 8
TWINE 4 4 6 4
CLEFIA S0 8 10 32 20
CLEFIA S1 8 4 6 4

C Reformulation of Equation 2
Equation 3 reformulates Equation 2 by dividing it into precomputed tables T1, T2, T3, T4:

T1(α(3)
6 , β

(12)
4 ) =

∑
β

(3)
6

FBCT(α(3)
6 , β

(3)
6 ) · DDT(β(12)

4 , β
(3)
6 ),

T2(α(3)
6 , α

(6)
20 , β

(7)
28 ) =

∑
α

(7)
28

FBCT(α(7)
28 , β

(7)
28 ) · DDT(α(3)

6 , α
(6)
20 ) · DDT(α(6)

20 , α
(7)
28 ),

T3(β(10)
19 , β

(7)
28 ) =

∑
β

(8)
8

DDT(β(19)
10 , β

(8)
8 ) · DDT(β(8)

8 , β
(7)
28 ),

T4(α(6)
20 , β

(10)
19 , β

(12)
4 ) =

∑
α

(9)
24

∑
α

(10)
18

DDT(α(6)
20 , α

(9)
24 ) · DDT(α(9)

24 , α
(10)
18 ) · FBDT(β(12)

4 , β
(10)
19 , α

(10)
18 ).

r(α(3)
6 , β

(12)
4 ) = 2−10×4 ·

∑
FBCT(α(3)

6 , β
(3)
6 ) · DDT(β(12)

4 , β
(3)
6 ) · FBCT(α(7)
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(7)
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·DDT(α(3)
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(6)
20 ) · DDT(α(6)
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(7)
28 ) · DDT(β(10)
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(8)
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·DDT(β(8)
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(7)
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·DDT(α(6)
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(9)
24 ) · DDT(α(9)
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(10)
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= 2−10×4 ·
∑

α
(6)
20 ,β

(7)
28 ,β

(10)
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2

T1(α(3)
6 , β

(12)
4 ) · T2(α(3)

6 , α
(6)
20 , β

(7)
28 ) · T3(β(10)
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(7)
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(12)
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D Distinguisher for WARP

Table 10: Specification of Sandwich Distinguishers for WARP

15 Rounds
r0 = 2, rm = 10, r1 = 3, p = 2−4, q = 2−8, r = 2−4.58, p2q2r = 2−28.58

∆X(0) ∆X(2)

0000000000000a00000000a500000000 0a000000000000000000000000000000
∇X(12) ∇X(15)

0000a000000000000000000000000000 0a000000f000a00000500a0000000000

16 Rounds
r0 = 3, rm = 10, r1 = 3, p = 2−8, q = 2−4, r = 2−10.50, p2q2r = 2−34.50

∆X(0) ∆X(3)

0000000000000a00000000aaaa000000 0000000000000000000000000000000a
∇X(13) ∇X(16)

00000000000000000a00000000000000 00000000000aa00000a0000000000000

20 Rounds
r0 = 5, rm = 10, r1 = 5, p = 2−14, q = 2−14, r = 2−19.96, p2q2r = 2−75.96

∆X(0) ∆X(5)

00aa5a00000a000000000a00000000da 000000000000000000000000000000a0
∇X(15) ∇X(20)

000000000000000000000000000a0000 70007050000005a0000000000500007a

21 Rounds
r0 = 5, rm = 10, r1 = 6, p = 2−10, q = 2−19, r = 2−26.55, p2q2r = 2−84.55

∆X(0) ∆X(5)

00aa00000000000000000a00000000aa 000000000000000a000000a000000000
∇X(15) ∇X(21)

0000000a000000000000000000000000 f00a00a00a00a070000050a000000005

22 Rounds
r0 = 6, rm = 10, r1 = 6, p = 2−16, q = 2−19, r = 2−26.55, p2q2r = 2−96.55

∆X(0) ∆X(6)

5a0000aa05a50000000a000000000000 000000000000000a000000a000000000
∇X(16) ∇X(22)

0000000a000000000000000000000000 f00a00a00a00a070000050a000000005

23 Rounds
r0 = 6, rm = 10, r1 = 7, p = 2−24, q = 2−20, r = 2−27.59, p2q2r = 2−115.59

∆X(0) ∆X(6)

00000000aaaaaaaa0a00aa00000a000a a0000000000000000000000000000000
∇X(16) ∇X(23)

00000000000000aa0000000000000000 0000a0a00000000aa00a00a00a00a0a0
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Figure 12: Sandwich distinguisher for 14 rounds of WARP.
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E Distinguisher for CLEFIA

Table 11: Sandwich distinguishers for 4 to 8 rounds of CLEFIA (with final permutation)

4 Rounds
r0 = 0, rm = 4, r1 = 0, p = 1, q = 1, r = 2−6.46, p2q2r = 2−6.46

∆X(0) 00000000000000000000000000000100 ∇X(4) 00000001000000000000000000000000

5 Rounds
r0 = 0, rm = 5, r1 = 0, p = 1, q = 1, r = 2−12.26, p2q2r = 2−12.26

∆X(0) 000000000000000000000000000000e2 ∇X(5) 00e20000000000000000000000000000

6 Rounds
r0 = 0, rm = 5, r1 = 1, p = 1, q = 2−4.68, r = 2−13.09, p2q2r = 2−22.45

∆X(0) 00000000e20000000000000000000000 -
∇X(5) 000000000000000000e2000000000000 ∇X(6) 0000000000e20000680d721a00000000

7 Rounds
r0 = 1, rm = 5, r1 = 1, p = 2−4.68, q = 2−4.68, r = 2−13.95, p2q2r = 2−32.67

∆X(0) 0000000000000000003200001d205d40 ∆X(1) 00000000003200000000000000000000
∇X(6) 00000000000000000032000000000000 ∇X(7) 00000000003200001d205d4000000000

8 Rounds
r0 = 2, rm = 5, r1 = 1, p = 2−26.36, q = 2−4.68, r = 2−13.95, p2q2r = 2−76.03

∆X(0) 2bfcd77e9d96be910000000000000008 ∆X(2) 00000000000000080000000000000000
∇X(7) 00000000000000000000003200000000 ∇X(8) 00000000000000325d401d2000000000

F Distinguisher for TWINE

Table 12: Specification of Sandwich Distinguishers for TWINE

13 Rounds
r0 = 3, rm = 8, r1 = 2, p = 2−4, q = 2−4, r = 2−18.32, p2q2r = 2−34.32

∆X0 0000060052000000 ∆X3 0000000000000060
∇X11 6000000000000000 ∇X13 2000050000006000

14 Rounds
r0 = 3, rm = 8, r1 = 3, p = 2−4, q = 2−8, r = 2−18.25, p2q2r = 2−42.25

∆X0 0652000000000000 ∆X3 0000000000006000
∇X11 0060000000000000 ∇X14 5000060050a00002

15 Rounds
r0 = 4, rm = 8, r1 = 3, p = 2−8, q = 2−8, r = 2−19.03, p2q2r = 2−51.03

∆X0 052a006500000000 ∆X4 0000000060000000
∇X12 6000000000000000 ∇X15 a000020000505006

16 Rounds
r0 = 4, rm = 8, r1 = 4, p = 2−8, q = 2−8, r = 2−26.04, p2q2r = 2−58.04

∆X0 052a006500000000 ∆X4 0000000060000000
∇X12 0500000000000000 ∇X16 70000a0000202005



30 Throwing Boomerangs into Feistel Structures

Figure 13: Sandwich distinguisher for 16 rounds of TWINE
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G Distinguishers for LBlock and LBlock-s

Table 13: Specification of Sandwich Distinguishers for LBlock-s

13 Rounds
r0 = 3, rm = 8, r1 = 2, p = 2−4, q = 2−4, r = 2−14.23, p2q2r = 2−30.23

∆X0 0001000000010b00 ∆X3 0b00000000000000
∇X11 00000b0000000000 ∇X13 000b009000001000

14 Rounds
r0 = 3, rm = 8, r1 = 3, p = 2−8, q = 2−4, r = 2−14.47, p2q2r = 2−38.47

∆X0 3020000000062100 ∆X3 0000000000000030
∇X11 0000000000300000 ∇X14 0001003000200000

15 Rounds
r0 = 4, rm = 8, r1 = 3, p = 2−8, q = 2−8, r = 2−14.49, p2q2r = 2−46.49

∆X0 0001030000010220 ∆X4 0300000000000000
∇X12 0000030000000000 ∇X15 0260000100030020

16 Rounds
r0 = 4, rm = 8, r1 = 4, p = 2−8, q = 2−8, r = 2−21.59, p2q2r = 2−53.59

∆X0 0400000404400006 ∆X4 0000040000000000
∇X12 0000000040000000 ∇X16 0000444000004400

Table 14: Specification of Sandwich Distinguishers for LBlock

13 Rounds
r0 = 3, rm = 8, r1 = 2, p = 2−4, q = 2−4, r = 2−14.28, p2q2r = 2−30.28

∆X0 00070000000e0b00 ∆X3 0b00000000000000
∇X11 00000b0000000000 ∇X13 000b001000002000

14 Rounds
r0 = 3, rm = 8, r1 = 3, p = 2−4, q = 2−8, r = 2−14.86, p2q2r = 2−38.86

∆X0 0006000000080900 ∆X3 0900000000000000
∇X11 0000010000000000 ∇X14 0160000500010040

15 Rounds
r0 = 4, rm = 8, r1 = 3, p = 2−8, q = 2−8, r = 2−14.90, p2q2r = 2−46.90

∆X0 0001030000010a80 ∆X4 0300000000000000
∇X12 0000030000000000 ∇X15 0890000a00030020

16 Rounds
r0 = 4, rm = 8, r1 = 4, p = 2−8, q = 2−8, r = 2−25.18, p2q2r = 2−57.16

∆X0 0000b0402500000b ∆X4 b000000000000000
∇X12 0000000000000001 ∇X16 0120000100010030
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H Our Tool for Encoding the DDT and LAT of S-boxes
Our tool to extract and simplify the MILP and SMT/SAT constraints encoding the differ-
ential/linear behavior of S-boxes is publicly available in the following Github repository:

https://github.com/hadipourh/sboxanalyzer

The following example represents how to use our tool within the SageMath to extract
and simplify the MILP and SAT constraints encoding the DDT of LBlock’s S-box.

1 from sboxanalyzer import *
2 from sage . crypto . sboxes import LBlock_0 as sb
3 sa = SboxAnalyzer (sb)
4 cnf , milp = sa. minimized_diff_constraints (mode =2)
5

6 Number of constraints : 35
7 Input : a0 || a1 || a2 || a3; a0: msb
8 Output : b0 || b1 || b2 || b3; b0: msb
9 Weight : 3.0000 p0 + 2.0000 p1

10 pretty_print (milp)
11 [’- p0 - p1 >= -1’,
12 ’- a0 - b2 + p0 >= -1’,
13 ’- a1 - b3 + p0 >= -1’,
14 ’- b2 - b3 + p0 >= -1’,
15 ’a0 + a1 - b1 + b2 >= 0’,
16 ’a1 + b0 - b1 + b2 >= 0’,
17 ’a2 + a3 + b1 - p1 >= 0’,
18 ’a0 - a1 + b3 + p1 >= 0’,
19 ’a1 - a3 + b3 + p1 >= 0’,
20 ’- a0 + b0 + b2 + b3 >= 0’,
21 ’- a1 - b0 + b2 + p0 >= -1’,
22 ’a0 + a1 - a2 + a3 + b3 >= 0’,
23 ’a0 + a1 + a2 - b2 + b3 >= 0’,
24 ’a1 + a3 - b0 + b2 + b3 >= 0’,
25 ’a0 + a1 + a2 + a3 - p0 >= 0’,
26 ’a0 + b1 + b2 + b3 - p1 >= 0’,
27 ’a0 + b1 + b2 - b3 + p1 >= 0’,
28 ’a0 + a1 - a2 - a3 - b3 >= -2’,
29 ’- a0 + a2 + b0 + b1 + b2 >= 0’,
30 ’- a1 + a3 - b0 - b2 + b3 >= -2’,
31 ’- a1 - a3 + b0 - b2 + b3 >= -2’,
32 ’- a0 + a1 - a2 - b3 + p1 >= -2’,
33 ’a0 - a1 - a2 - a3 + b1 + b3 >= -2’,
34 ’a0 + a2 - a3 - b1 - b2 + b3 >= -2’,
35 ’a0 - a1 + a2 - a3 + b1 + p1 >= -1’,
36 ’a0 - a1 - a2 + a3 + b1 + p1 >= -1’,
37 ’a0 - a2 - a3 - b1 - b2 + p1 >= -3’,
38 ’a0 + a2 + a3 - b1 - b2 + p1 >= -1’,
39 ’- a0 + a2 - b0 - b1 + b2 - b3 >= -3’,
40 ’- a0 + a1 - b0 + b1 + b2 - b3 >= -2’,
41 ’- a0 - a2 - b0 - b1 - b3 + p1 >= -4’,
42 ’- a0 - a2 + b0 + b1 - b3 + p1 >= -2’,
43 ’a0 - a1 - a2 + b0 - b1 - b2 + b3 >= -3’,
44 ’- a0 - a1 + a2 + b0 - b1 - b2 - b3 >= -4’,
45 ’- a0 - a1 + a2 - b0 + b1 - b2 - b3 >= -4’]

1 cnf , milp = sa. minimized_diff_constraints (mode =5, cryptosmt_compatible = True )
2

3 Number of constraints : 37
4 Input : a0 || a1 || a2 || a3; a0: msb
5 Output : b0 || b1 || b2 || b3; b0: msb
6 Weight : p0 + p1 + p2

https://github.com/hadipourh/sboxanalyzer
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