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Abstract

The recently proposed YOSO model is a groundbreaking approach to MPC,
executable on a public blockchain, circumventing adaptive player corruption by hiding
the corruption targets until they are worthless. Players are selected unpredictably
from a large pool to perform MPC subtasks, in which each selected player sends
a single message (and reveals their identity). While YOSO MPC has attractive
asymptotic complexity, unfortunately, it is concretely prohibitively expensive due to
the cost of its building blocks.

We propose a modification to the YOSO model that preserves resilience to
adaptive server corruption, but allows for much more efficient protocols. In SCALES
(Small Clients And Larger Ephemeral Servers) only the servers facilitating the
MPC computation are ephemeral (unpredictably selected and “speak once”). Input
providers (clients) publish problem instances and collect the output, but do not
otherwise participate in computation. SCALES offers attractive features, and
improves over YOSO protocols in outsourcing MPC to a large pool of servers under
adaptive corruption.

We build SCALES from rerandomizable garbling schemes, which is a contribution
of independent interest, with additional applications.
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1 Introduction
A recent line of research, motivated by platforms such as blockchains, studies multi-party
computation (MPC) with specialized communication and computation patterns [BGG+20,
GHK+21,CGG+21,GMPS21]. While the specifics differ, these models leverage a dynamic
pool of workers, unavailable throughout the protocol. Most excitingly, [BGG+20,GHK+21]
show it is possible to only depend on ephemeral workers, who carry out some local
computation, publish a single message on a bulletin board, and then vanish from the
system. This is pithily captured in the name YOSO (You Only Speak Once) [GHK+21].
An attractive model for leveraging short-term workers, crucially, YOSO eliminates or
drastically reduces the window for adaptive corruption of these workers. In particular,
this for the first time enables efficient massive-scale MPC with adaptive corruption,
achieved simply by delegating the computation to a small unpredictably selected YOSO
subcommittee.

Even as the YOSO results [BGG+20,GHK+21] are powerful, they do leave room for
improvement: they rely on strong honest-majority assumptions and expensive target-
anonymous channels. Similarly, non-YOSO work requires honest majority [CGG+21] or
complex setups, such as Conditional Storage and Retrieval in [GMPS21].

We propose an alternate model, where light-weight input parties participate in the
initial and final stages of the protocol and do retain some state in between; but the bulk
of the computation is carried out by ephemeral servers that are capable of performing
computationally demanding tasks. Here, by ‘light-weight,’ we mean that the complexity
of each input client does not depend on the function’s complexity or inputs of other
parties, but only on the size of its own inputs, and the number of participating ephemeral
servers. There is no setup other than a bulletin board, and the corruption model allows
all-but-one server participating in the computation to be corrupt, allowing for even very
small numbers of servers. Moreover, by requiring the input parties to send a second
message, we let them control when the computation finishes — arguably a desirable feature,
especially when the number of servers used can be dynamic. Crucially, ephemeral servers
send a single message each, maintaining YOSO-like resilience to adaptive corruptions.

We seek a protocol in this model based only on standard cryptographic assumptions.
Our solution builds on rerandomizable Garbled Circuits, formalized as Rerandomizable
Garbling Schemes (RGS). In this work, we shall focus on security against passive corruption.

1.1 Summary of Our Contributions

Before going further, we summarize the contributions in this work:
• MPC with Small Clients and Larger Ephemeral Servers (SCALES). Our main high-level
contribution is the introduction of an attractive setting for MPC with ephemeral servers
and limited interaction in Section 3. SCALES preserves YOSO-like resilience to adaptive
server corruptions, and hence also allows outsourcing secure computation to blockchain
(Section 1.2). We construct an efficient semi-honest SCALES protocol, where each server
does work proportional to the circuit size, and each client proportional to its input size
(Section 6).
• Defining basic cryptographic primitives. We formalize the following notions used in
constructing a SCALES protocol, which we believe to be of independent interest, and
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investigate their relationship: 1) Rerandomizable Garbling Scheme (RGS) (Section 4),
a generalization of Garbling Schemes (GS) to the setting of multiple garblers, each is
sequentially involved in garbling, 2) Strong Key-and-Message Homomorphic Encryption
(strong KMHE), and 3) A new multi-party notion of a randomized encoding, incremental
Decomposable Randomized Encoding (iDRE) (Section 5).
• Corresponding constructions. We show that a construction of Boneh et al. [BHHO08],
following the analysis in [NS09,GHV10], yields strong KMHE for a useful class of key and
message transformations. Next, we show that such a strong KMHE scheme, when used
as the encryption scheme in a version of garbled circuit (GC) yields an RGS. We then
combine this RGS with a (weak) KMHE scheme, to obtain an iDRE scheme, which can
be directly used for SCALES.
• Further Applications. Beyond being building blocks for protocols in the SCALES
setting, RGS and iDRE are highly useful for other MPC settings as well.

• Outsourced Regarbling. We show that an RGS directly yields an “Outsourced
Regarbling” scheme. In a secure 2-party computation (2PC) setting, when Alice’s
(secret) function is to be securely evaluated on many inputs held by Bob, an
outsourced re-garbling scheme allows Alice to outsource much of her work to a
semi-honest server.

• Efficient MPC with optimal OT complexity. An iDRE can be used to im-
plement general n-party MPC protocols secure against a semi-honest corruption
of (n − 1) parties. For an input size m, such a protocol takes O(n × m) string-
OT calls, meeting the lower bound on OT complexity for this setting, as proven
in [HIK07]. While [HIK07] also presents a protocol that meets this bound, their
protocol requires OT strings to be of the size of the truth-table of the function being
computed. In contrast, an iDRE-based protocol runs OT of constant-size strings.
Although our iDRE uses computational assumptions, it does so in a way that does
not trivialize OT.

• Closing an analysis gap in previous work. Rerandomizing GCs has previously been
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explored in the context of multi-hop homomorphic encryption by Gentry et al. [GHV10].
They define rerandomizable SFE and instantiate it using the encryption scheme of
[BHHO08], though the specific security guarantees of strong KMHE were not identified
there. Although their construction does satisfy their definition of rerandomizable SFE,
their proof has a gap, which we point out. We also clarify that although [GHV10]
uses similar building blocks, its multi-hop homomorphic encryption setting is inherently
different from SCALES.

1.2 Our Main Contribution: SCALES MPC

The motivation for SCALES follows that of the recently proposed YOSO MPC. The
YOSO (You Only Speak Once) property and model of MPC, introduced by Gentry et
al. [GHK+21], requires that protocol participants each send a single message during the
execution. Combined with known techniques for players to self-select at random for a task
(cf. Bitcoin miners who self-select for proposing a block by finding a hash preimage of a
special form), YOSO finally offers hope for efficient large-scale MPC in the setting with
adaptive player corruption. Indeed, standard adaptively secure n-party MPC protocols
have costs quadratic in n. In large-scale MPC, electing a small committee who will then
evaluate the function on behalf of all n players is far more efficient, asymptotically and
practically. Unfortunately, with adaptive corruptions, this breaks down, as adaptive
adversary will simply corrupt all members of the committee (its corruption budget is a
fraction of n, which is greater than the committee size). This is where YOSO saves the
day: committee members are unidentifiable and are removed from the committee as soon
as they post a message, or “speak”. Thus, an adaptive adversary does not know whom
to corrupt until it is too late, and the committee executing the YOSO MPC is secure
against adaptive corruptions. A particular application of interest of YOSO MPC is MPC
over a blockchain, where blockchain nodes form the pool of MPC players, and inputs
may come from participants such as accounts or wallets. Quite surprisingly, YOSO is
achievable [GHK+21], despite numerous technical obstacles, such as the need for players
executing i-th MPC round to send encrypted messages (e.g. containing internal state)
to unidentified future round-(i + 1) committee members. Unfortunately, however, this
protocol’s costs are prohibitive for practice.
SCALES MPC motivation. Motivated by practically efficient YOSO-style large-scale
MPC, and with a particular eye on outsourced MPC and blockchain MPC, we introduce
our SCALES (Small Clients And Larger Ephemeral Servers) MPC model. We keep the
crucial YOSO property that servers speak once (and hence committee is protected against
full dynamic corruption). Our clients (input providers) speak twice, to publish a problem
instance and to collect the answer. This weakening of the model allows us to have a
much more efficient instantiation than YOSO. We compare the two models in more detail
in Section 1.5.

Syntactically, this is more permissive than YOSO; this is consistent with the goals of
blockchain and outsourced MPC, and YOSO. Indeed, dynamic corruption of individual
clients only threatens their security, and not of the computation and other clients. Es-
sentially, YOSO’s main advantage over SCALES is the ability to hide client identities, a
less appealing feature that can still be added to SCALES by clients sending their state to
future decoding players using expensive YOSO techniques once. In return, we get a much
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higher performance as discussed in Sections 1.3 and 1.5 and several additional features.
Note, we do not reduce computation per server, but rather total servers’ work.
SCALES model. A set of lightweight input providers wish to securely compute a
function of all their inputs. The bulk of the computation itself is outsourced to a pool of
servers. We assume broadcast through a public bulletin board and that every message
to be sent is posted onto it. In the computation, the set of input providers first post
encoding of their inputs. Next, one by one, a server from the pool, upon turning online,
reads the state of the bulletin board, performs specified computation, erases its state,
posts its outcome, and goes offline. Once sufficiently many servers have been involved
in the computation, the input providers post a second message based on the state of
the bulletin board, and the decoding procedure can take place publicly using all the
information posted.
SCALES features.

1. As in YOSO, the servers are speak-once and dynamically chosen, and are not
vulnerable to dynamic corruption. They are required to stay online only for a short
period of time.

2. Their identities need not be decided upon by some external entity, but instead,
each server can spontaneously choose to be part of the computation at any round.
Even the number of such rounds need not be fixed ahead of time, but the end of
the protocol can, for instance, be based on a function of the (unpredictable) server
identities.

3. The input parties need not interact with, or even be aware of, each other. Their
complexity is independent of the number of other input players.

4. A SCALES protocol is also useful in settings with very few – say, two – non-colluding
servers. We remark that while similar non-interactive outsourcing using GC has been
considered [MRZ15], without rerandomization they require that the GC evaluator
does not collude with either of the two servers.

5. An input provider could ensure that it is happy with the set of servers who have
taken part in the protocol, before allowing the final decoding to proceed (by holding
off from posting its second message).

6. In the case that more than one server posts a message in the same round, creating
a fork in the computation, the input providers can choose which chain of server
computations they want to recognize (by posting a second message only for that set
of servers).

Further, one could add a requirement that the first message from the input parties be
“reusable,” in the spirit of recent two-round MPC protocols [BJKL21,BGSZ21]. We omit
this from our definition for simplicity. However, this is satisfied by our construction that
is based on a 2-round OT protocol with a reusable first message.
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1.3 Other Contributions in More Detail

Rerandomizable Garbling Schemes. We formalize RGS as a powerful generalization
of Garbling Schemes (GS) to the setting of multiple garblers. This deviates from the
multi-party garbling of [BMR90] where all garblers symmetrically contribute to the final
garbling. An RGS retains the standard garbling procedure Gb, and supplements it with an
additional function Rerand. Given a garbling (without its input encoding function), Rerand
rerandomizes it, producing a new garbling that is indistinguishable from a fresh garbling.
Rerand also supplies a transformation that, when applied to the encoding function of the
original garbling, will yield the encoding function of the regarbling.

The RGS approach allows the garblers to be ephemeral. Further, the number of
garblers can be dynamically selected, if desired. The computation and communication
complexity of garblers remain constant with the number of garblers, vs quadratic in the
traditional approach.

Constructing a Rerandomizable Garbling Scheme. We provide an RGS construc-
tion based on GC [Yao86] that we endow with a secure regarbling procedure. To reran-
domize GC, we follow [GHV10], where each output label is additively secret-shared into
two shares, and each share is encrypted (with strong KMHE) under a single input label
as key. This garbling variant is rerandomization-friendlier than the double-key encryption
schemes used in standard versions of garbled circuits (e.g., [LP09]).

Our strong KMHE abstraction supports both key and message homomorphism, a
property that is crucial for achieving private garbling rerandomization. In essence, reran-
domization follows by transforming every garbled row into a fresh ciphertext, encrypting a
new label share. To maintain consistency across garbled gates, we apply a corresponding
transformation to wire labels.

RGS security requires that a fresh garbling is indistinguishable from a rerandomized
one, even given randomness used in the initial GC. Somewhat informally, this property
boils down to indistinguishability between a ciphertext that is either encrypted under
a transformed key or a fresh independent key, even given the original key. This is the
property needed to close the gap in the [GHV10] proof. We further prove that the scheme
of [BHHO08] meets our security definition.

A SCALES Scheme. In a SCALES scheme, all servers must garble jointly to prevent
a successful server-evaluator collusion. Our model requires that this is done in a sequential
manner. We build SCALES protocol from RGS by letting the ephemeral servers play the
role of the (re-)garblers, and output is obtained by evaluating the resulting GC. We must
securely apply the input encoding transformations generated by RGS. Regarblers can
do this because we use KMHE as our encryption scheme. Finally, active input keys are
obtained by clients by running OT with each of the garblers. This can be done to fit with
our communication pattern.

Our resulting protocol is secure against all-but-one corruption of the ephemeral garblers
and, given an OT that is secure against adaptive corruption of receivers, our protocol also
withstands adaptive corruption of a subset of the input clients.
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Performance. As SCALES approximates YOSO both in motivation and formalization,
we focus on the YOSO comparison. In SCALES, per client’s input bit, its work to generate
the first message (of total two) is constant; to generate the second message, the client’s
work is proportional to the number of ephemeral servers. Unlike all previous YOSO work,
the number of ephemeral servers required for SCALES, is arbitrary (as long as at least
one of them is honest), and is independent of the computed functionality, allowing small
clients, as well as small total server cost. Further, unlike YOSO protocols, we do not
require the use of expensive target-anonymous channels or even a PKI.

Our message and round complexity is significantly lower than in prior YOSO work.
This is crucial for performance in the blockchain setting, as blockchain latency dominates
the overall turn around time. We have a small number of messages posted, grouped into
a smaller number of rounds (the clients post in parallel, and the number of servers, who
post one message each, can be as low as 2, depending on the trust assumptions), while
other works (YOSO and non-YOSO such as fluid MPC, [RS21], and others) are based on
GMW/Beaver triples and have a number of rounds linear in the circuit depth, each one
with a committee (whose size depends on the trust assumptions).

1.4 Future Work

We mention a few important directions as follow-up for our work. Firstly, our RGS
construction’s efficiency overheads (beyond a conventional garbled circuit) stem from the
underlying strong KMHE scheme. While the scheme of Boneh et al. [BHHO08] happens
to meet this new definition, it was not designed just for that. 0This leads to the question
of designing a more efficient strong KMHE scheme, so as to reduce the overhead incurred
by our RGS construction.

Secondly, in our SCALES construction, for the sake of simplicity, we restricted ourselves
to the semi-honest setting. In a setting with a common reference string (CRS), full security
can be readily achieved using generic NIZK proofs. However, given the specific nature of
our protocol using RGS, it is plausible that cheaper cut-and-choose techniques or SNARGs
can be used instead of generic NIZK. Other alternatives, which may allow additional
interaction could also be explored. We leave this for future work.

Furthermore, note that in SCALES, we require that the input providers run in sublinear
time in |C|, the size of the circuit, and we may have only a constant number of servers.
We leave it open to construct protocols where the servers are also sublinear in |C|. In such
a case, we conjecture that the computation must be done in the public decoding phase.
Even assuming that the servers are all fully trusted, this entails a form of randomized
encoding, where not just the depth, but also the size of the encoding circuit is sublinear
in the circuit size. This simplified problem roughly corresponds to ‘succinct randomized
encodings’ [BCG+18], a primitive that entails indistinguishability obfuscation. The full
problem (SCALES with corruptible servers, and all clients and servers being sub-linear in
|C|) seems hard to solve even using iO.

We also leave open the question of whether there is an information-theoretic iDRE
with sub-exponential communication complexity for an interesting class of functions? This
has an important implication for a theoretical question studied by Harnik et al. [HIK07].
They showed that for n parties to compute a function against unlimited corruption with
information-theoretic security using oblivious transfer (OT) channels, all pairs of parties
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should use at least one instance of OT between them. They matched this lower bound with
a truth-table based construction, which requires exponential communication. We remark
that an iDRE yields a solution to the same problem with essentially an optimal number
of OTs, and hence an information-theoretic iDRE (for some family of functions) with
polynomial, or even sub-exponential, communication complexity would improve [HIK07].

Finally, we leave it open to obtain alternate RGS constructions based on garbling
schemes other than garbled circuits.

1.5 Related Work

Alternate MPC Models. Several recent works, many inspired by a blockchain-like
setting, have considered MPC with specialized communication patterns. These models are
generally incomparable with each other, and with SCALES. However, they do share some
of the motivations and features of SCALES, and we briefly discuss them below. Table 1
summarizes some of the features discussed below.

You Only Speak Once (YOSO). As discussed in Section 1.2, our work is motivated
by the YOSO model of MPC [BGG+20,GHK+21], which aims to eliminate the threat of
adaptive corruptions by ensuring that the adversary does not know who the committee
members are among many possible players, and hence cannot take advantage of its adaptive
corruption power.

We consider a complementary MPC model that admits potentially more efficient
solutions. We eliminate the need for expensive target-anonymous channels by requiring
that each server accesses a bulletin board and sends a single message to it. Further,
we permit a corrupted majority over all participating servers, whereas YOSO requires
minority of corruptions in each committee, with threshold close to t = 1/4. At the
same time, we keep the main attraction of YOSO: ephemeral servers that may securely
self-select, and thus facilitate, MPC service in the presence of an adaptive adversary.

As a trade off for better efficiency and larger corruption threshold, SCALES relies on
a less constrained communication model than YOSO’s: our input players speak twice.
However, corrupting input player only results in compromise of that player’s input. We
believe this does not significantly weaken the applicability of the model: in practice,
MPC input providers may be known to the adversary anyway. We outline conceptual
performance improvements over prior YOSO protocols in Section 1.3.

We remark that while in this work we have limited ourselves to semi-honest SCALES,
full security can be readily achieved using generic NIZK proofs, matching YOSO in this
aspect. However, given the specific nature of our protocol using RGS, it is plausible that
cheaper cut-and-choose techniques can be used instead of generic NIZK. We leave this for
future work.

Blockchain-Enabled Non-Interactive MPC. Goyal et al. [GMPS21] explores blockchain-
assisted MPC. Here input providers enjoy least-possible participation: they deposit input
and garblings of an MPC protocol’s next-message function into so-called conditional
storage and retrieval systems (CSaRs). CSaRs’ correct and secure operation is delegated
to the blockchain. Then the blockchain executes the MPC protocol at its leisure by
processing the garbled next-message functions. In contrast, our motivating application
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Construction Adversary Corruption Adaptive Ephemeral- Setup
Type Threshold Corruption Servers

YOSO Target-
[BGG+20] malicious minority Yes Yes Anonymous
[GHK+21] Channels
Fluid MPC unbounded minority Broadcast,
[CGG+21] malicious in each No No Private

committee Channels
Le Mans all-but-one Broadcast,
[RS21] malicious in each No No Private

committee Channels
MPC on the as in the
Blockchain malicious underlying No No CSaR
[GMPS21] protocol
SCALES semi-honest all-but one Yes Yes Bulletin

Definition 7 server Board

Table 1 Related committee-based MPC protocols and a summary of their features.

is MPC computation on the blockchain performed by a committee of servers, which
cannot be adaptively corrupted. While our communication model is more constrained,
our solution is far more practical and only requires a bulletin board; [GMPS21] should be
viewed as a fundamental feasibility result.

Fluid-MPC. Fluid MPC [CGG+21] allows parties to dynamically join and leave the
computation. These parties are designated by a computing committee, whose membership
itself evolves. It keeps and evolves the state of an MPC instance, eventually obtaining the
output. Fluid MPC is a practical protocol, which relies on a strong corruption assumption:
the adversary can adaptively corrupt only a minority of the servers in each committee.
In contrast, in our motivating application, we aim to frustrate adaptive corruption of
committee members by ensuring they only speak once.

A recent work [RS21] extends Fluid MPC to the dishonest majority setting. Crucially,
[RS21] still does not meet the YOSO speak-once requirement. We note also that there are
other costs of [RS21] (e.g., the number of epochs proportional to the size of the function)
that we avoid.

Distributed Garbling Schemes. The RGS-based protocol for SCALES can be viewed
as distributed garbling with crucial special properties needed for our application: (1)
each garbler posts one message, and (2) unidirectional communication among garblers.
We achieve this without preprocessing or correlated randomness. Previous distributed
garbling protocols do not offer these properties, even given correlated randomness, e.g.,
authenticated triples.

Two-round MPC. It is also instructive to compare SCALES with 2-round MPC
[GGHR14,GS18,BL18,BJKL21,BGSZ21]. The latter also involves input parties posting
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two rounds of messages to a bulletin board, based on which the output can be publicly
computed. However, there the input parties incur communication and computation costs
proportional to the entire circuit size of the function (in fact, the circuit size of an MPC
protocol for the function). SCALES could be thought of as allowing ephemeral servers to
process the bulletin board between the two rounds, so that the computational costs of the
input parties becomes only proportional to the size of their own inputs.

Further, while not part of our formal definition, the SCALES setting can be extended
to require the first message from the input players to be “reusable,” a feature explored
in the recent works on 2-round MPC [BJKL21,BGSZ21]. Our RGS-based construction
already meets this additional requirement, at no additional cost.

Where efficiency of our protocols is concerned, note that we require security in the
dishonest majority setting and so the concrete efficiency of our SCALES protocol is
incomparable to that of previous work in the honest majority setting (YOSO, Fluid-MPC,
etc.). However, our existing rerandomizing procedure is highly parallelizable. During
rerandomizing, a homomorphic function is chosen for each circuit wire independently,
and each garbled gate can be rerandomized independently. Both these tasks can be
parallelized.

Randomized encodings. The abstraction of randomized encodings was introduced
in [IK00], and has found a host of applications (see [Ish13]). GC is a randomized encoding
with desirable properties that were exploited in subsequent works such as [BMR90]. We
mention the following constructions that are somewhat similar to iDRE introduced in this
work.

• Multi-party randomized encodings. A notion of randomized encoding gener-
ated by multiple parties has been considered in the literature: [ABT18] proposed
Multi-Party Randomized Encoding (MPRE). As in the case of iDRE, MPRE con-
siders a distributed encoding of f(x1, . . . , xn). It uses many random strings, with
the property that revealing a subset of these random strings will keep the other
inputs hidden. A crucial distinction between iDRE and MPRE is that there is
a protected part of the randomness in MPRE that must not be revealed at all.
This is adequate for honest majority MPC, the main application in [ABT18], as
this protected randomness remains secret-shared. In iDRE, there is no protected
randomness, and all-but-one party could be corrupt. The two primitives also differ
in several other ways, as their goals are quite different (reducing rounds in honest
majority-MPC, in the case of MPRE, versus reducing the number of OTs in MPC
with unrestricted collusion, in the case of iDRE).

• Multi-hop homomorphic encryption. Gentry et al. in [GHV10] introduced
multi-hop homomorphic encryption. Setting aside the formulation as an encryption
(which requires a rerandomizable 2-round OT protocol to be interpreted as an
encryption process), their construction involved a set of servers jointly creating a
garbled circuit. A crucial difference from the MPC setting is that an adversary who
corrupts a subset of the players including the final evaluator would be able to learn
much more about the individual inputs than just the final output. Nevertheless, a
key tool used in this work – rerandomizable garbled circuits – turns out to be useful
in our work. Though the specific manner in which garbled circuit rerandomization is
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defined and used by [GHV10] is not adequate for our purposes, we can follow their
approach of using a key-and-message-homomorphic encryption to implement it.

1.6 Technical Overview

We define and realize a new notion of randomized encodings [AIK11] (Definition 5), the
iDRE. This is the key construction underlying our SCALES protocol. For concreteness and
simplicity, we first discuss our approach in the terminology of garbling schemes [BHR12],
before casting it in terms of randomized encodings.

To be cast as a SCALES protocol, informally, our goal is minimally interactive
multi-party circuit garbling. Therefore, we do not follow the constant-round BMR
approach [BMR90], but instead explore GC rerandomization. This is a mechanism where
an initial garbler generates a GC and each subsequent re-garbler re-randomizes the previous
circuit and the labels. Breaking the connection between the labels of the garbled circuit
and its regarbling will allow for security in the presence of all-but-one corruption: indeed,
even a single honest rerandomization will (if done right - we pay careful attention to
precisely defining security requirements here) result in a GC where none of the generators
knows the secrets completely (we get GC correctness “for free” in the semi-honest model).

Informally, a re-randomized garbled circuit Ĉ ′ should allow the evaluation of a circuit
C, where neither the garbler nor regarbler individually knows the correspondence between
the labels and the actual wire values; the wire labels of the resulting garbled circuit Ĉ ′ are
effectively secret shared between them. To evaluate Ĉ ′, each party P with an input bit
(aka, an input party) picks up the shares of its input wire labels from the garblers (e.g.,
via OT), reconstructs them, and uses them for the evaluation. To violate input privacy,
the evaluator would need to collude with all the garblers.

Rerandomizable Garbled Circuits from strong KMHE. Our main technical chal-
lenge was to design a garbling scheme that supports garbling rerandomization. We
demonstrate how this can be achieved based on a strong key-and-message-homomorphic
encryption (strong KMHE) scheme. We formalize a strong KMHE scheme as an encryption
scheme1 that permits transforming the key and/or the message in a ciphertext to obtain
fresh-looking ciphertexts. Even a party who knows the original ciphertext’s key should not
be able to distinguish the result of randomly transforming the key from a fresh ciphertext
using a fresh key. This is required to hold, even when given some leakage on the key
transformation, in the form of a different input-output pair of the transformation. For our
purposes, the message and key spaces would be the same, and the space of transformations
supported for the two will be the same as well; these transformations will be linear. The
specific instantiation of a strong KMHE scheme we use was constructed by Boneh et al.
for a different purpose [BHHO08], and was shown to be leakage resilient by Naor and
Segev [NS09]; further this scheme was used in [GHV10] for constructing a somewhat
related task, rerandomozable secure function evaluation (or SFE), but without abstracting
out the security properties we need.

We briefly sketch our construction of rerandomizable garbling schemes given a strong
KMHE scheme. We view a garbled circuit as a collection of garbled gates where each gate

1We define this notion as a symmetric key primitive which suffices for our purposes. Nevertheless, the
instantiation we give uses a public key encryption scheme [BHHO08].
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consists of four ciphertexts, each requires a pair of keys to decrypt. However, instead of
implementing a double-encryption scheme, as in standard garbling schemes, we additively
share the plaintexts and encrypt each share using a single key. Therefore, each garbled
row contains a pair of ciphertexts, encrypted under a single input key. (see Section 4).

To rerandomize a gate, the re-garbler R homomorphically alters each ciphertext,
such that the result is a (new share of the) new output label encrypted under a new
input key label. At a high level, we achieve this as follows. For each wire wi, R first
chooses a transformation σi that maps the space of the wire labels to itself. R’s goal is to
re-randomize each gate to enable correct evaluation. We do this by applying a sequence
of homomorphic operations to (each element of) each garbled row, encrypted using strong
KMHE: (1) update the plaintext using a transformation σg for the output wire of gate
g and (2) update the key using a transformation σi for the input wire wi. Note, we use
linear homomorphisms to ensure that applying the above to the ciphertexts encrypting
the two secret shares will allow for reconstruction of the new label: σg applied to the old
output label. To prevent a colluding G and E from learning extra information, we require
that the rerandomized garbled circuit Ĉ ′ together with active input wire labels reveals no
additional information. As a final step for rerandomization, the new 4-tuple of garbled
rows is permuted.

Depending on how strong KMHE is instantiated, there are different tweaks that let the
evaluator know which row of the garbled gate, when decrypted, gives a correct label. One
such way would be to append a known prefix to the message labels that are encrypted.
Care should be taken that during rerandomizing, the message domain operations do not
affect this message prefix. The [BHHO08] instantiation for strong KMHE, explained next,
supports such operations.

Strong KMHE instantiation. The encryption scheme of [BHHO08] can be used to instan-
tiate strong KMHE in the computational setting under the Decisional Diffie-Hellman
(DDH) hardness assumption. It allows homomorphic operations in both the key and
plaintext domains and has the property that a transformed ciphertext is indistinguishable
from a freshly encrypted ciphertext. For our purposes, and similarly in [GHV10], the key
and plaintext domains are identical and amount to the set of balanced binary strings.
Similarly, the key and plaintext function families are identical and correspond to a set of
permutations on the bits of the key/message. In order to differentiate a correct decryption
during evaluation, this construction allows padding the plaintext label shares with an
all-zero string. During rerandomizing, this prefix is always mapped onto itself. During
evaluation, decrypting a garbled row to get plaintexts padded with all-zero strings indicates
the correct output label. We point the reader to Appendix A for more details.

Casting as a randomized encoding. For generality, we use this approach to describe a
variant of a randomized encoding (Section 5). Without loss of generality, consider parties
providing a single input bit each. We separate the role of parties P = (P1, · · · , Pm)
providing input bits x1, · · · , xm from the role of encoders E = (E1, · · · , Ed) creating the
randomized encoding. A garbled circuit presented above can be cast as a decomposable
randomized encoding (DRE) f̂(x, r) = (f̂0(r), f̂1(x1, r), · · · , f̂m(xm, r)), where part of the
encoding f̂0(r) is independent of the input (and corresponds to the garbled circuit itself),
and each f̂i(xi, r) depends on a bit xi of the input (corresponding to the input labels).

Let r = (r1, · · · , rd) be the total randomness where encoder Ej possesses rj. Each Ej
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creates values that act as shares of f̂i(xi, r) for both possible values of each xi ∈ {0, 1}.
Then each input party Pi ∈ P upon concluding an OT with each encoder, receives all these
shares of f̂i(xi, r). E1 uses r1 to initiate the creation of f̂0(r) similarly to G above. E1

also incorporates encodings of the shares of each f̂i(xi, r) that it created, hence initiating
the creation of a final share si. E1 passes its initial f̂0(r) and all such si to E2. In turn,
E2 uses r2 ∈ r to rerandomize the initial f̂0(r) it received, augments each si, and passes
it on. This incremental process continues and the last encoder Ed hands the completed
f̂0(r) to the decoder D. Each value si is given to the corresponding input party Pi ∈ P.
These final shares are such that si, when combined with all the initial shares from the OT
phase, gives f̂i(xi, r). This is reconstructed and sent to D. D decodes the complete DRE
and receives the output. We denote our abstracted object by incremental Decomposable
Randomized Encoding to highlight the incremental nature in which the DRE is created. A
construction for this object directly implies a SCALES protocol.

2 Preliminaries
Circuit notation. For a function f : {0, 1}m → {0, 1}l, a boolean circuit that computes
it is denoted by C = (W , I, O,G). W is the set of all wires and I ⊂ W and O ⊂ W are
the set of input and output wires respectively. Within W, I = (w1, · · · , wm) are the m
input wires, wm+1, · · · , wm+p are the p internal wires, and O = (wm+p+1, · · · , wm+p+l) are
the l output wires. These make v = m+ p+ l total wires. G = (gm+1, ..., gm+q) is the set
of gates. Each gi = (w`, wr, wi, op) is a binary gate where w` and wr are the left and right
input wires respectively, wi is the output wire (uniquely defined by the gate index), and
op represents the gate functionality (AND, XOR, etc.).

We consider the following notions of indistinguishability in our definitions and proofs:

Definition 1. Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N defined over a
finite domain D are statistically indistinguishable, denoted X

s
≈ Y , if every positive

polynomial p(·) and all sufficiently large n’s,

∆(Xn, Yn) <
1

p(n)

where,

∆(Xn, Yn) =
1

2
·
∑
α∈D

|Pr[Xn = α]− Pr[Yn = α]|

Definition 2. Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N are computa-
tionally indistinguishable, denoted X

c
≈ Y , if for every PPT distinguisher D, every

positive polynomial p(·) and all sufficiently large n’s,

|Pr[D(Xn, 1
n) = 1]− Pr[D(Yn, 1

n) = 1]| < 1

p(n)
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2.1 Garbled Circuits

Garbling Schemes. We recall the notion of a garbling scheme abstracted in [BHR12]
and simplify it for our use. That is, a garbling scheme is a tuple of algorithms GS =
(Gb,En,Ev) where the probabilistic garbling algorithm Gb takes the function description
f and outputs a garbled representation F and an input encoding function e. The
deterministic input encoding algorithm En gets e and the function input x; and returns a
garbled input representation X. Finally, the deterministic evaluation algorithm Ev takes
F and X and outputs f(x) by evaluating the garbling.

For simplicity, we limit the security properties of a garbling scheme to just correctness
and privacy (and correspondingly, omit the separation between evaluation and “decoding”
in [BHR12]). More formally,

Definition 3. A Garbling Scheme for a function family F with input domain X , and
a leakage function φ : F → {0, 1}∗, is a tuple GS = (Gb,En,Ev) of PPT algorithms,
satisfying the following properties:

• Correctness: For every f ∈ F and input x ∈ X ,

Pr[y = f(x) : (F, e)← Gb(f), X = En(e, x), y = Ev(F,X)] = 1

• Privacy: For all functions f0, f1 ∈ F such that φ(f0) = φ(f1), and every x0, x1 ∈ X
such that f0(x0) = f1(x1),

{F0, X0}(F0,e0)←Gb(f0),X0=En(e0,x0)

c
≈ {F1, X1}(F1,e1)←Gb(f1),X1=En(e1,x1)

The above distribution ensembles are indexed by a security parameter κ that is an
implicit input to Gb. When we need to make the randomness used by Gb explicit, we
write it as an additional input, namely as Gb(f ; r).

A special case of the above, a projective garbling scheme [BHR12] is a variant of
garbling schemes whose input encoding function En is projective.

Definition 4. A Projective Garbling Scheme for a function family F with input
domain {0, 1}m, is a tuple GS = (Gb,En,Ev) of PPT algorithms, such that GS is a garbling
scheme (Definition 3) for F and the encoding function En : {0, 1}m × E → Zm is such
that ∀x, x′ ∈ {0, 1}m and ∀e ∈ E, En(x, e) = (L1, · · · , Lm) and En(x′, e) = (L

′
1, · · · , L

′
m)

such that ∀i ∈ [m], if xi = x′i then Li = L
′
i.

Our construction employs projective garbling schemes. Looking ahead, we extend
Definition 3 to a Rerandomizable Garbling Scheme (RGS) and instantiate it with reran-
domizable GCs.

2.2 Randomized Encodings

A Randomized Encoding, defined in [IK00, IK02,AIK04,AIK11], is as follows:

Definition 5. Let X, Y, Ŷ , R be finite sets and let f : X → Y . A function f̂ : X×R→ Ŷ
is a Randomized Encoding of f , if it satisfies:
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• Correctness: There exists a function Dec, a decoder, ∀x ∈ X, r ∈ R,

Dec(f̂(x; r)) = f(x)

• Privacy: There exists a randomized function Sim, a simulator, ∀x ∈ X,

{Sim(f(x))}
c
≈ {f̂(x; r)}r∈R

We require that f̂ is efficiently derivable from f using the function Enc, and that Dec
and Sim are PPT. A variant of the above, a Decomposable Randomized Encoding (DRE),
is defined as follows:

Definition 6. For f : X1 × · · · ×Xm → Y , a Decomposable Randomized Encoding
is a Randomized Encoding (Definition 5) of f with the form:

f̂((x1, · · · , xm); r) = (f̂0(r), f̂1(x1; r), · · · , f̂m(xm; r))

In a decomposable randomized encoding, each part of the encoding can depend on
at most one input bit. It is well known that a projective garbling scheme (Definition
4) is a DRE. Looking ahead, we extend Definition 6 to an incremental Decomposable
Randomized Encoding (iDRE) and instantiate it using a projective RGS.

2.3 Oblivious Transfer

Oblivious Transfer (OT) is a two party functionality between a sender S and a receiver
R defined by (eb,⊥) ← OT(b, (e0, e1)). Our protocol in the SCALES model (Section
6), requires a 2-round OT protocol (with semi-honest, adaptive-receiver security). We
denote this by the set of algorithms ΠOT = (OT1,OT2,OTout). The protocol starts by
R computing (m1,Aux) ← OT1(b) and sending the first OT message m1 to S. Next, S
computes the second OT message m2 ← OT2(m1, (e0, e1)) that is sent to R. Finally, R
computes its output via eb ← OTout(Aux,m2).

We require that ΠOT is secure in the presence of a semi-honest adversary that statically
corrupts S and adaptively corrupts R. This corruption can, in particular, take place after
R sends m1. In this case, the simulator is required to produce randomness t that is
consistent with OT1 upon corrupting R and learning its choice bit b.

We provide two definitions of the simulator, based on the corruption of S. First, for
both cases, the OT first message is generated as (m1, state)← SimOT

1 (·). In the case that
S is honest (and R is adaptively corrupted), the OT simulator is consists of the following
two additional functions: (m2, state

′)← SimOT
2 (m1, state) and t← SimOT

3 (state′, b, eb). In
the case that S is corrupted (and R is adaptively corrupted), the OT simulator is consists
of only of the later algorithm t← SimOT

3 (state′, b, eb).
We instantiate Oblivious Transfer with a two-round protocol that is based on public

key encryption schemes with an oblivious choice of the public key. Namely, an honest
R picks pk1−b obliviously while properly picking pkb together with the matching secret
key skb. It forwards these two public keys to S, receiving back two ciphertexts c0 and c1,
respectively encrypting e0 and e1. R then uses skb to decrypt cb.

In the adaptive simulation of OT1, the simulator chooses both public keys with the
knowledge of the secret key and later, upon corrupting R, declares that it chose the “right”
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key obliviously. Security follows here based on the obliviousness property of the underlying
public key scheme. In case S is honest, the simulator needs to emulate the second OT
message as well. In this case it cannot simply send two ciphertexts as it does not know
the content of eb (this is made public to it only upon corrupting R). We therefore use a
non-committing encryption scheme [CFGN96] to generate these two ciphertexts.2

3 MPC with Small Clients and Larger Ephemeral Servers
We define a model, MPC with Small Clients and Larger Ephemeral Servers (SCALES),
that is inspired by considerations that also underlie recent models like YOSO [BGG+20,
GHK+21] and MPC on a blockchain [GMPS21]. Our goal is to achieve secure MPC in
a setting where a set of light-weight input providers take the help of a dynamic set of
stateless workers or ephemeral servers. The entire process involves communication only
over a public bulletin board, and takes this form:

1. Initially, each input player posts a message on the bulletin board.

2. For as many iterations as desired, an ephemeral server is dynamically activated,
which reads the bulletin board, carries out some local computation, erases its
state, and posts a message back on the bulletin board. This computation may be
proportional to size of the computed functionality.

3. Each input player reads the bulletin board (in parallel), and posts back another
message on the bulletin board. These light weight parties’ work is proportional to
their input size times the number of ephemeral servers.

4. The output can be computed publicly based on the information in the bulletin
board, implemented by another ephemeral server.

We shall require that the amount of computation and communication by each input
player is proportional to its number of input bits, independent of the size of the overall
computation, or even the size of the overall input. The communication constraints apart,
we require the above to meet a standard security definition for MPC, against an adversary
who can corrupt any subset of input players (possibly adaptively) and all but one server.
As each server posts a single message before being erased, we shall consider only security
against static corruption of servers (since a server’s state is erased before it has started
posting its message on the bulletin board). In this work, we focus on security against
semi-honest corruption.

Definition 7. A scheme for MPC with Small Clients and Larger Ephemeral
Servers (SCALES) for a function family F over {0, 1}m is a tuple of PPT algorithms
(InpEnc,FEnc,Aggregate,Decode) such that the following random variables are defined as

2An encryption scheme is non-committing if it can generate a dummy ciphertext that is indistinguishable
from a real one. This can later be decrypted to any plaintext by producing an appropriate secret key
decrypting the ciphertext to this plaintext. [YKT19,BBD+20] provide non-committing encryption schemes
under the DDH assumption. The latter construction further achieves constant rate.
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a function of f ∈ F and x ∈ {0, 1}m (where R and T denote random-tape spaces for FEnc
and InpEnc respectively):

rj ← R, ti ← T ∀j ∈ [d], i ∈ [m]

(zi, wi)← InpEnc(xi; ti) ∀i ∈ [m]

Bj ←

{
(f, {zi}i∈m) for j = 1

(Bj−1,FEnc(Bj−1; rj)) for 1 < j ≤ d

yi ← Aggregate(Bd, wi) ∀i ∈ [m].

Then the following properties hold:

• Correctness: ∀x = (x1, · · · , xm) ∈ {0, 1}m and d ∈ N,

Pr[Decode(Bd, {yi}i∈[m]) = f(x)] = 1

where ∀j ∈ [d],Bj = ({zi}i∈[m], {αk}k∈[j]).

• Privacy: There exists a 2-stage PPT simulator Sim = (Sim1, Sim2) such that,
∀f ∈ F , x ∈ {0, 1}m, j∗ ∈ [d], and A1,A2 ⊆ [m], the following holds. Define the
following random variables:

(α,Aux)← Sim1(f, f(x), j∗, {xi}i∈A1)

β ← Sim2(Aux, {xi}i∈A2).

Then,

{α}
c
≈ {Bd, {yi}i∈[m], {rj}j∈[d]\{j∗}, {ti}i∈A1}

{α, β}
c
≈ {Bd, {yi}i∈[m], {rj}j∈[d]\{j∗}, {ti}i∈A1 , {ti}i∈A2}

In a SCALES protocol, first, each input player runs the algorithm InpEnc and posts zi
on the bulletin board B (Step 1). Next, for each round j, each ephemeral server (as in
Step 2) runs FEnc in the present state of the bulletin board Bj−1 and posts a message αj
on the board. After enough number of such iterations, each input player run Aggregate
(Step 3) and post a message yi. Finally, the function output is publicly derived using
Decode (Step 4). The privacy guarantee requires that an adversary can corrupt all but
the server indexed j∗ ∈ [d]. It may corrupt an initial subset A1 ∈ [m] of input clients
and between the first and the second time the clients speak, it can adaptively corrupt
an additional set of A2 ∈ [m] clients. Even in such a scenario, the view of the adversary
needs to be simulatable.

For simplicity, we have stated the definition without including any complexity re-
quirements. To formalize the complexity requirement, we consider the functions in F
as parametrized by a size parameter k, as fk : {0, 1}m(k) → {0, 1}q(k), so that fk has a
circuit of size polynomial in k. Then, the algorithms InpEnc and Aggregate are required
to be independent of k (but may depend on the security parameter κ). (Note that Bd
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has been specified as an input to Aggregate, but Aggregate is required to only use a part
of Bd which is independent of k.) While this requirement on the complexity of InpEnc
and Aggregate is an important aspect of a SCALES protocol, we omit the cumbersome
notation that it entails.

Building towards a protocol in the SCALES setting, we now define and construct our
key building blocks.

4 Rerandomizable Garbling Schemes
In this section we define Rerandomizable Garbling Schemes (RGS) and construct such a
scheme (Section 4.3) using a strong Key and Message Homomorphic Encryption scheme
(strong KMHE - Section 4.1). Loosely speaking, a rerandomizable garbling scheme allows
us to take a garbled representation F of a function and transform it into another garbled
representation F ′ for the same function. This is done in such a way that it is impossible
for a PPT distinguisher, given all the randomness used for garbling F , to distinguish F ′
from a fresh garbling of the function.

Formally, an RGS is a GS with an additional PPT algorithm (F ′, πEn)← Rerand(F )
that outputs a rerandomized garbling F ′ and a transformation πEn to be applied on e
such that the new encoding X ′, derived from applying En to πEn(e), when used with F ′,
decodes correctly to f(x). The security of RGS is captured by an additional property
denoted by Rerand-privacy that is formalized as follows:

Definition 8. A Rerandomizable Garbling Scheme for a function family F is a tuple
of PPT algorithms GS′ = (Gb,Rerand,En,Ev) where, (Gb,En,Ev) is a garbling scheme
(Definition 3) for F , and Rerand is a PPT algorithm such that the following is satisfied:

• Rerand-Privacy: For every f ∈ F , x ∈ X ,

{r, F0, X0} r←R, (F,e)←Gb(f ;r),
(F0,πEn)←Rerand(F ), X0=En(πEn(e),x)

c
≈ {r, F1, X1}r←R,(F1,e1)←Gb(f),

X1=En(e1,x)

where R is the space of random tapes for Gb. (Note that (F1, e1) is generated using
fresh randomness independent of r.)

Note that Rerand-privacy and correctness of garbling schemes together imply that
the rerandomized garbling F0 produced by Rerand is correct – i.e., for any input x,
and (F, e) produced by Gb(f), for (F0, πEn) ← Rerand(F ), it must be the case that
Ev(F0,En(πEn(e), x)) = f(x) (except possibly with negligible probability). Indeed, other-
wise it would be easy to distinguish this from a fresh garbling based on the outputs of
garbled evaluation. Note also that Rerand does not get f as input. Therefore, it cannot
operate by ignoring the prior garbling F and simply generating a fresh garbling as F ′.

Definition 8 can be applied to a projective encoding as well by simply requiring that
the input encoding X ′ = (L

′
1, · · · , L

′
m) = En(πEn(e), x) is projective. Formally,

Definition 9. A Projective Rerandomizable Garbling Scheme is a tuple GS′ =
(Gb,Rerand,En,Ev) where, (Gb,En,Ev) is a projective garbling scheme (Definition 4) for
a family F of functions with input domain {0, 1}m, and Rerand is a PPT algorithm as in
Definition 8 that satisfies the following:
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πEn produced by Rerand is in the form of encoding transformations {σi}i∈[m] such that
∀x ∈ {0, 1}m, ∀e ∈ E, En(e, x) = (L1, · · · , Lm) and En(πEn(e), x) = (L

′
1, · · · , L

′
m), such

that σi(Li) = L
′
i.

Looking ahead, we point out that for the construction of the SCALES protocol, a
slightly relaxed notion of projective RGS suffices. In this relaxed version we allow for
encoding transformations of the form {σbi}i∈[m],b∈{0,1} where a different transformation
may be applied to the labels L0

i and L1
i to obtain their rerandomized counterparts. But

we omit this for the sake of simplicity.

4.1 Strong Key and Message Homomorphic Encryption

Homomorphic encryption schemes allow the execution of mathematical operations over
the plaintexts within the encrypted domain. In this work we are interested in schemes
that support transformations on both the secret key and the plaintext domains within a
ciphertext, resulting in a ciphertext that looks “fresh”. We refer to such a scheme as a
Key-and-Message Homomorphic Encryption scheme (KMHE). We abstract KMHE as a
private key encryption primitive (Gen,Enc,Dec),3 that is amplified with an additional Eval
algorithm. This algorithm applies two homomorphic (potentially distinct and private)
transformations on a ciphertext, one on the secret key and one on the plaintext.

Definition 10. A key-and-message homomorphic encryption scheme is a set
of PPT algorithms KMH = (Gen,Enc,Dec,Eval) defined on domains of (private) keys,
messages and ciphertexts K,M, C, a key transformation family Fkey, and a message
transformation family Fmsg (all indexed by an implicit security parameter κ) such that the
following conditions hold:

• Correctness: ∀m ∈M, k ∈ K,

Pr[k ← Gen(1κ);Dec(k,Enc(k,m)) = m] = 1

• KMH Correctness: ∀m ∈M, k ∈ K, f ∈ Fkey, g ∈ Fmsg, r1, r2 ∈ R, ∃r′ ∈ R,

Eval(Enc(k,m; r1), f, g; r2) = Enc(f(k), g(m); r′)

where R is the space of random tapes for Enc and Eval.

• CPA Security: ∀ PPT adversary A, the advantage Pr[b′ = b] ≤ 1
2

+ ν(κ) for a
negligible function ν in the following experiment (κ being an implicit input to C and
A):

1. C samples a uniform random bit b← {0, 1}.
2. For as many times as A wants:

– A produces arbitrary m0,m1 ∈M and sends them to C.
– C samples a key k ← Gen(1κ) and sends cb = Enc(k,mb) to A.

3For simplicity we define KMHE as a private key primitive (where encryption is carried out using the
secret key). Nevertheless, the definition can be naturally extended to a public key setting as well.
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3. A outputs b′.

• Key Privacy: ∀k, k′ ← Gen(1κ), f ∈ Fkey,

{k, f(k)}
s
≈ {k, k′}

Looking ahead, we use KMHE as a primitive along with RGS in the construction for
incremental Decomposable Randomized Encodings in Section 5.

Next, we define a new object, a strong Key-and-Message Homomorphic Encryption
scheme (strong KMHE), that has an additional security property, KMH privacy, that is
required for rerandomizable garbling. We use strong KMHE as a building block in our
construction for rerandomizable garbled circuits (Section 4.3).

Definition 11. A strong key-and-message homomorphic encryption scheme (strong
KMHE) is the set of PPT algorithms KMH = (Gen,Enc,Dec,Eval) defined on domains
of (private) keys, messages and ciphertexts K,M, C, a key transformation family Fkey,
and a message transformation family Fmsg (all indexed by an implicit security parameter
κ) such that KMH is a KMHE scheme as in Definition 10 and the following additional
condition holds:

• KMH Privacy: ∀ PPT adversary A, the advantage Pr[b′ = b] ≤ 1
2

+ ν(κ) for a
negligible function ν in the following experiment (κ being an implicit input to C and
A):

1. C samples a uniform random bit b ← {0, 1}, keys k0, k1, k
′ ← Gen(1κ), and

f ← Fkey. It sends (k0, k1, f(k1)) to A.
2. For as many times as A wants:

– A produces arbitrary m,m′ ∈ M and g ∈ Fmsg, and computes c ←
Enc(k0,m). It sends (c, g,m′) to C.

– C sends cb to A, where c0 ← Eval(c, f, g) and c1 ← Enc(k′,m′).

3. A outputs b′.

We would like to stress here that we do not require the scheme to be fully homomorphic,
but only homomorphic with respect to certain (affine) function families. We prove in
that the [BHHO08] scheme satisfies strong KMHE. The details can be found in Appendix
A. The [BHHO08] encryption scheme is based on the DDH hardness assumption. We
follow the construction in [GHV10] and restrict the key space K to all binary strings of
length κ with κ

2
0’s and the rest 1’s. In order to use this scheme for garbling, we require

that M = K, and so we restrict the message space accordingly as well. The function
family Fkey for key domain transformations contains all permutations over κ-bit positions:
σ : {0, 1}κ → {0, 1}κ over the sub-domain of balanced strings. Therefore, key privacy
is maintained since ∀k, k′ ← Gen(1κ), f ∈ Fkey, the distributions {k, f(k)} and {k, k′}
are exactly identical. [BHHO08] also supports homomorphic operations on the key and
message domains in a way that KMH privacy is preserved.

Since a scheme satisfying Definition 11 also satisfies Definition 10, to avoid overloaded
notations, we instantiate both strong KMHE and KMHE in the same way.
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4.2 A Gap in the proof of [GHV10]

Strong KMHE is implicit in the rerandomizable SFE protocol of [GHV10]. We outline
a gap in the proof (but not the protocol!) of [GHV10]. We formalize this intuition in
Appendix B.

Informally, secure rerandomizing requires that any PPT distinguisher, given all the
randomness used for a prior garbling M , cannot distinguish between a garbling that is
rerandomized from M and a freshly created garbling M ′. [GHV10] instantiated rerandom-
izable garbled circuits using the encryption scheme from [BHHO08] and argues that it is
rerandomizable by reductions to the semantic security and key leakage resilience properties
of this scheme (the latter property has been proven in [NS09]). This latter property allows
semantic security even when the distinguisher is given some information about the secret
key. (This is required for showing that privacy is preserved in a rerandomized GC even
given leakage in the form of the two labels (k0, k1) of the prior GC and a transformed
active label f(kb) of the RGC.)

However, such a security argument applies only to indistinguishability of two ciphertexts
both encrypted under the same (transformed) key. In particular, it does not rule out
adversary’s ability to identify if a ciphertext was encrypted using a key obtained by
transforming a known key, or from a fresh key. This allows distinguishing between a
freshly garbled and a rerandomized GC.

We handle this security gap by strengthening the security definition of the underlying
encryption scheme. Specifically, in our abstraction of strong KMHE, a KMH privacy
property explicitly requires that a ciphertext computed under a fresh key be indistin-
guishable from a ciphertext acquired after homomorphic transformations that corresponds
to a transformed key. Another security property, denoted by key privacy, requires that
the distribution of transformed keys in the clear is indistinguishable from that of freshly
sampled keys.

4.3 Constructing Rerandomizable Garbled Circuits

In this section we present a construction for rerandomizable garbled circuits. By GC
rerandomization we mean a procedure that takes only the GC for a circuit C and generates
another GC for the same circuit, so that the latter is indistinguishable from a freshly
garbled circuit, even given input labels for one set of inputs, and all the randomness used
to generate the original GC that the rerandomized GC was derived from.

We describe a GC rerandomization procedure that is implicit in the construction
of [GHV10] with the difference that the underlying encryption scheme is a strong KMHE
scheme KMH = (Gen,Enc,Dec,Eval), as specified in Definition 11. We consider a special
case of KMH with an additional structural property:

Definition 12. A sharable key-and-message homomorphic encryption scheme is
a set of PPT algorithms (Gen,Enc,Dec,Eval, Share,Recon) where KMH = (Gen,Enc,Dec,Eval)
is a strong KMHE scheme as in Definition 11 for domains of (private) keys, messages
and ciphertexts K,M, C, a key transformation family Fkey, and a message transformation
family Fmsg with the additional property that K =M and Fkey = Fmsg.

The scheme has two additional functions (1) ([k]0, [k]1)← Share(k) that outputs two
random shares of a key k ∈ K. (2) k ← Recon([k]0, [k]1) that reconstructs the label k
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from its shares. These functions are such that the following property holds ∀σ ∈ Fkey and
∀k ∈ K,

Share(σ(k)) ≡ {(σ([k]0), σ([k]1)}([k]0,[k]1)←Share(k)

We denote by GS = (GbKMH,EnKMH,EvKMH,RerandKMH) a rerandomized garbling
scheme where all the garbling scheme algorithms are instantiated with a sharable KMHE
scheme KMH as the underlying encryption scheme. We next provide an overview of this
garbling scheme:

The garbling algorithm GbKMH(C, 1κ) works as follows:

• For every wire wi ∈ W −O, sample labels L0
wi
, L1

wi
← Gen(1κ).

• For every output wire wi ∈ O, use the same labels L0, L1 ∈ K across all output wires.
These are publicly known.

• For every gate gi = (w`, wr, wi, op) ∈ G, let ([Lbwi ]0, [L
b
wi

]1) be the shares of gi’s
output labels for b ∈ {0, 1} and π be a permutation on four positions. Then the
garbling of gate gi can be defined as:

Gi =


(Enc(L0

w`
, [L

op(0,0)
wi ]0),Enc(L0

wr , [L
op(0,0)
wi ]1))

(Enc(L0
w`
, [L

op(0,1)
wi ]0),Enc(L1

wr , [L
op(0,1)
wi ]1))

(Enc(L1
w`
, [L

op(1,0)
wi ]0),Enc(L0

wr , [L
op(1,0)
wi ]1))

(Enc(L1
w`
, [L

op(1,1)
wi ]0),Enc(L1

wr , [L
op(1,1)
wi ]1))

these four rows are then permuted according to π.

• Output Ĉ = ((G1, · · · , Gq), (L0, L1)) and L = {L0
wi
, L1

wi
}wi∈I .

An encoding algorithm EnKMH(L, x) gets a set of input labels L and the function input
x = (x1, · · · , xm) and outputs I = {Lxiwi}wi∈I .

The evaluation algorithm EvKMH(Ĉ, I) works gate by gate, by decrypting each row
in the garbled gate.4 The resulting plaintexts are combined to the output label using
Recon. Evaluating a gate lets us derive one label for a wire in the circuit. Following the
terminology of [LP09], this label is termed the active label of that wire. Such a label is
also derived for each output wire of the circuit and this belongs in the set (L0, L1) and can
be mapped to output values 0 or 1. This set of labels yields the function’s output f(x).

The rerandomizing algorithm (Ĉ ′,Π)← RerandKMH(Ĉ) works as follows:

• For all wires wi ∈ W −O, sample σi ∈ Fkey.

• For all output wires wi ∈ O, let σi be the identity function.
4We assume that the evaluator identifies the valid output label by adding a fixed suffix to the plaintext

as suggested originally in [LP09].
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• For all gates gi ∈ G, let (σ`, σr, σi) correspond to the wires (w`, wr, wi). Let πi be a
permutation on four elements. In order to rerandomize Gi into G′i, the following is
carried out:

G′i =


(Eval(c0,0, σ`, σi),Eval(c0,1, σr, σi))

(Eval(c1,0, σ`, σi),Eval(c1,1, σr, σi))

(Eval(c2,0, σ`, σi),Eval(c2,1, σr, σi))

(Eval(c3,0, σ`, σi),Eval(c3,1, σr, σi))

where Gi =


(c0,0, c0,1)

(c1,0, c1,1)

(c2,0, c2,1)

(c3,0, c3,1)

the rows in G′i are permuted using πi.

• Output Ĉ ′ = ((G′1, · · · , G′q), (L0, L1)) and Π = {σi}wi∈I .

The function Rerand(·) has computational complexity O(|C|) and the size of its output
is O(|C| · κ) where κ is a security parameter.

Theorem 1. Let KMH be a sharable KMHE scheme (Definition 12). Then GS = (GbKMH,
RerandKMH,EnKMH,EvKMH) is an RGS with projective encoding (Definition 9).

Proof outline. Correctness of GS is implied by the Correctness of KMH and the
Correctness of the underlying garbling scheme. Privacy is implied by the CPA security of
the encryption scheme KMH.

It remains to argue that GS preserves Rerand-privacy. Consider an intermediate hybrid
game where, along with a prior GC and all its labels, a new GC along with active input
labels are given to the distinguisher. This new GC is defined such that the active labels are
generated by applying transformations σi ← Fkey on each active label from the prior GC.
Nevertheless, the inactive labels are still freshly sampled as in the prior garbling. Fixing
these labels, the new GC is constructed as a fresh garbling. This game is indistinguishable
(in fact, these distributions are statistically close), from the case where the new GC and
all its labels are freshly created, via a reduction to the Key Privacy property of KMH. On
the other hand, this game is also indistinguishable from the case where the new GC is a
rerandomized garbling of the prior GC. This argument is reduced to the KMH Privacy
property of KMH. We conclude that Rerand-privacy is preserved in GS.

Proof. The instantiation GS = (GbKMH,RerandKMH, EnKMH,EvKMH) preserves Correctness
by definition of the garbled circuits construction, and also from the Correctness of KMH
(Definition 11).

Claim 1. GS = (GbKMH,RerandKMH, EnKMH,EvKMH) satisfies Privacy.

Proof. Privacy in Garbling Schemes requires that for two functions f0 and f1 such that
φ(f0) = φ(f1), and inputs x0 and x1 such that f0(x0) = f1(x1),

{F0, X0}(F0,e0)←Gb(f0,1κ);
En(e0,x0)=X0

c
≈ {F1, X1}(F1,e1)←Gb(f1,1κ);

En(e1,x1)=X1

In our instantiation, for a function fb, b ∈ {0, 1}, Fb is the GC Ĉb and Xb is the set of input
labels Ib. Letting Cb be the circuit for fb, φ(fb) reveals the circuit topology, that is, all of
Cb except the operation op for each gate gi ∈ G. We need to show that {Ĉ0, I0}

c
≈ {Ĉ1, I1}.
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This is done by first considering, for a function f and input x, the subroutine (Ĉ ′, I ′)←
SimGC(f(x)). This operates as in [LP09] and creates a garbled circuit Ĉ ′ in which each
garbled gate has ciphertexts that encrypt only the active label, i.e. labels that lead to the
circuit evaluating to f(x). The set I ′ is the corresponding set of active input labels.

In Definition 11, the KMH Privacy definition implies CPA security. Therefore the
proof of the following lemma follows from that in [LP09]:

Lemma 1. Assuming KMH Privacy (Definition 11) holds for KMH = (Gen,Enc, Dec,Eval),
then for any PPT adversary A, ∀x ∈ {0, 1}m,

{Ĉ ′, I ′}(Ĉ′,I′)←SimGC(f(x))

c
≈ {Ĉ, I}(Ĉ,L)←GbKMH(C,1κ),I=EnKMH(L,x)

In order to prove that GS satisfies RGS privacy, consider a set of hybrids where,

• H0 = {Ĉ0, I0}(Ĉ0,L0)←GbKMH(C0,1κ);
I0=EnKMH(L0,x0)

, corresponding to the distribution for f0 and x0.

• H ′ = {Ĉ ′, I ′}(Ĉ′,I′)←SimGC(f0(x0)) is an intermediate hybrid.

• H1 = {Ĉ1, I1}(Ĉ1,L1)←GbKMH(C1,1κ)
I1=EnKMH(L1,x1)

, corresponding to the distribution for f1 and x1.

Consider for the sake of contradiction that there exists a PPT adversary Adv that
can distinguish between the distributions H0 and H1 with non-negligible advantage ε.
Then it must hold that it can distinguish between either H0 and H ′, or H1 and H ′ with
non-negligible advantage > ε

2
. However, if Adv can distinguish between H0 and H ′, it

can be used as a subroutine for a PPT adversary Adv′ that can distinguish between the
distributions from Lemma 1. Adv′ works by receiving the set (Ĉ, I) from the challenger
and sending it to Adv. It then outputs the same bit as Adv. Therefore, Adv′ has advantage
ε
2
. However, since Lemma 1 holds, there can exist no such Adv′ and therefore Adv can’t

distinguish these hybrids. We can similarly argue for H1 and H ′ since f0(x0) = f1(x1).
Therefore, since Adv can distinguish between neither pair of hybrids, it must hold that
{Ĉ0, I0}

c
≈ {Ĉ1, I1}. Therefore, GS satisfies RGS privacy.

Claim 2. GS = (GbKMH,RerandKMH, EnKMH,EvKMH) satisfies Rerand-Privacy.

Proof. The Rerand-privacy property requires that for every function f , input x ∈ {0, 1}m,
and randomness r ∈ R used for garbling, letting

{r, F0, X0} (F,e)←Gb(f ;r);
(F0,e0)←Gb(f,1κ);

En(e0,x)=X0

c
≈ {r, F1, X1} (F,e)←Gb(f ;r);

(F1,πEn)←Rerand(F );
En(πEn(e),x)=X1

In the context of our instantiation, letting r be the randomness used in the prior garbling
and C be the circuit for f , we need to show that,

{r, Ĉ0, I0} (Ĉ,L)←GbKMH(C;r);

(Ĉ0,L0)←GbKMH(C,1κ);
I0=EnKMH(L0,x)

c
≈ {r, Ĉ1, I1} (Ĉ,L)←GbKMH(C;r);

(Ĉ1,Π)←RerandKMH(Ĉ);
I1=EnKMH(Π(L),x)

In order to show that GS satisfies Rerand-Privacy, consider the following hybrids:
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• J0 = {r, Ĉ0, I0}. This corresponds to a distribution having all the randomness r for
a prior (fresh) GC Ĉ and labels set L, along with another fresh GC, Ĉ0, and input
labels I0 corresponding to x.

• J ′ = {r, Ĉ ′, I ′}. This distribution is the same as J0 except (Ĉ ′, I ′)← SimGC(f(x)).
This function outputs a simulated garbled circuit Ĉ ′ as in [LP09] with freshly sampled
labels. Each gate in Ĉ ′ encrypts only the active wire labels, and I ′ is a set of such
active input wire labels.

• J ′′ = {r, Ĉ ′′, I ′′}. This is generated the same way as J ′ except, first, a set of all active
wire labels throughout the circuit are created by rerandomizing the wire labels of
the GC that generated using randomness r. The set I ′′ are a set of such transformed
active input wire labels. Then the inactive wire labels are sampled freshly and at
random. Using these, a simulated garbling Ĉ ′′ is created. The garbling procedure is
carried out as in SimGC(f(x)).

• J1 = {r, Ĉ1, I1}. This corresponds to the distribution where all the randomness r for
a prior GC Ĉ is given. Next, (Ĉ1,Π)← RerandKMH(Ĉ) is created by rerandomizing
the prior GC. Then, I1 = EnKMH(Π(L), x) is the input labels corresponding to input
x in Ĉ1.

Consider for the sake of contradiction that there exists a PPT adversary Adv that can
distinguish between the distributions J0 and J1 with non-negligible advantage ε. Then it
must hold that it can distinguish between either J0 and J ′, J ′ and J ′′, or J1 and J ′′ with
non-negligible advantage > ε

3
.

If Adv can distinguish between J0 and J ′, it can be used as a subroutine in a PPT adver-
sary Adv′ to distinguish between {Ĉ ′, I ′}(Ĉ′,I′)←SimGC(f0(x0)) and {Ĉ0, I0}(Ĉ0,L0)←GbKMH(C0,1κ)

I0=EnKMH(L0,x0)

.

Adv′ works by receiving a set (Ĉ, I) from the challenger, sampling fresh randomness r
and sending (r, Ĉ, I) to Adv. Adv′ then outputs the same bit as Adv and has advantage
ε
3
. However, since Lemma 1 holds, there can exist no such Adv′ and therefore Adv can’t

distinguish these hybrids.
The fact that J ′ and J ′′ are indistinguishable can be reduced to the Key Privacy

property of KMH (Definition 11). Note that the only difference between the distributions
is that for the active wire labels throughout the simulated garbled circuit, J ′ uses fresh
labels L′ ← Gen(1κ), whereas J ′′ uses labels rerandomized from those in a garbled circuit
generated using randomness r. That is, for label L ← Gen(r) that is the active label
in the prior circuit, f ← Fkey, each active wire label is of the form L

′′
= f(L). By key

privacy, it holds that L′ and L′′ are drawn from distributions that are statistically close.
Let their statistical distance be δ, that is negligible. Such pairs of active labels are visible
to the adversary for every wire in the circuit. Therefore, letting v be the number of wires
in the circuit, the total statistical distance between the distributions J ′ and J ′′ is v · δ,
that is still negligible. Therefore, it follows that J ′ and J ′′ are also statistically close.

It remains to show that J1 and J ′′ are indistinguishable:

Lemma 2. Assuming KMH privacy (Definition 11) holds for KMH = (Gen,Enc, Dec,Eval),
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then for any PPT adversary A, ∀x ∈ {0, 1}m, r ∈ R,

{r, Ĉ ′′, I ′′} (Ĉ,L)←GbKMH(C,r);

W ′′={Lb′′i =σ(Lb
′
i ),L¬b

′′
i ←Gen(1κ)}i∈v ;

(Ĉ′′)←SimGC(f(x);W ′′)

c
≈ {r, Ĉ1, I1} (Ĉ,L)←GbKMH(C;r);

(Ĉ1,Π)←RerandKMH(Ĉ);
I1=EnKMH(Π(L),x)

Proof. The proof of Lemma 2 follows from a set of hybrids R0, · · · , Rv, where v is the
number of wires in the GCs Ĉ ′′, Ĉ1. Each hybrid is of the form Ri = (r, (Ĉi, I i)) where I i
is the set of input labels corresponding to Ĉi and Ĉi is constructed as follows:

• first, using r, generate a garbled circuit Ĉ ← GbKMH(r) and let W = {L0
k, L

1
k}k∈[v]

be be the set containing both the labels of all wires in Ĉ.

• ∀k ∈ [i], for the wires wk, the corresponding inactive label L¬b′k for b ∈ {0, 1} is
chosen fresh. The active label is created by first sampling σk ∈ Fkey and then
Lb
′

k = σk(L
b
k). For all the gates that have all input / output wires as fresh, these

gates are constructed freshly and as in SimGC(f(x)). That is, all the ciphertexts
encrypt shares of the active labels.

• ∀k ∈ [v]\[i], for the wires wk, the corresponding labels L0′

k , L1′

k ∈ K are derived from
rerandomizing those in Ĉ. Any gate in Ĉi with only rerandomized wires will be a
real gate.

• Note that there may exist gates with both fresh and rerandomized wires. A gate
with both fresh input wires and one rerandomized output wire will be a simulated
gate. A gate that has one fresh input wire and rerandomized labels for the other
input wire and the output wire will also be a simulated gate. This is with the
exception of gates with wire wi (in hybrid Ri) as the input wires. These will be real
gates.

Among these hybrids, Rv = (r, Ĉ ′′, I ′′) and R0 = (r, Ĉ1, I1). Let A be a PPT adversary
that can distinguish between R0 and Rv with non-negligible advantage ε. Then there
must be an index i ∈ [v] for which A can distinguish between Ri−1 and Ri with advantage
> ε

v
. We show that this can be used as a subroutine for a PPT adversary AKMH that can

break KMH privacy. AKMH would work as follows:

• the challenger CKMH samples labels L0, L1, L
′ ∈ K, a bit b ∈ {0, 1}, f ← Fkey and

computes f(L1). It gives L0, L1 and f(L1) to AKMH.

• AKMH samples the index i at random. It first samples r and generates Ĉ ← GbKMH(r)
such that the labels of wire wi are L0 and L1.

• let gate Gi be the garbled gate whose output wire is wi. Let gates {Gn}n∈[t] be the
set of t gates such that one of its input wires is wi. Without loss of generality, let
L0 be the inactive label.

• AKMH creates the labels set {L0
n, L

1
n ∈ K}n∈[t] corresponding to the output wires of

gates {Gn}n∈[t] in Ĉ. In order to make Ĉi, a set of functions {gn ∈ Fmsg}n∈[t] are
sampled. These are used to transform the output label shares of {L0

n, L
1
n ∈ K}n∈[t].

Let [Lbn] be a share of the label Lbn. Set the tuple of 2t ciphertexts as {c0
n =

Enc(L0, [L0
n]), c1

n = Enc(L0, [L1
n])}n∈[t]. The other message set is {gn([L0

n]), gn([L1
n])}n∈[t].
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• AKMH sends functions {gn}n∈[t], messages {gn([L0
n]), gn([L1

n])}n∈[t], and ciphertexts
{c0
n, c

1
n}n∈[t] to CKMH.

• CKMH creates {c0,b
n , c

1,b
n }n∈[t] accordingly:

Setting f(L1) as the new active label, if b = 0, it creates {c0,0
n = Eval(c0

n, f, gn) =
Enc(f(L0), [L0

n]), c1,0
n = Eval(c1

n, f, gn) = Enc(f(L0), [L1
n])}n∈[t]. If b = 1, it samples a

fresh key L′ and creates {c0,1
n = Enc(L

′
, [L0

n]), c1,1
n = Enc(L

′
, [L1

n])}n∈[t].

• CKMH sends {c0,b
n , c

1,b
n }n∈[t], along with the corresponding public key pk to AKMH.

• AKMH now generates Ĉi, I i as follows:

– ∀k ∈ [i−1], for the wires wk, the corresponding inactive label L¬b′k for b ∈ {0, 1}
is chosen fresh. The active label is created by first sampling σk ∈ Fkey and
then Lb

′

k = σk(L
b
k). All the gates with these wires as inputs / outputs, are

constructed freshly and all the ciphertexts encrypt shares of the active labels.

– ∀k ∈ [v]\[i], for the wires wk, the labels L0′

k , L1′

k ∈ K are derived from reran-
domizing those in Ĉ. Any gate in Ĉi with only rerandomized wires will be a
real gate.

– for wire wi, gate Gi is constructed to be a simulated gate that encrypts shares
of f(L1) only. Here both input wires have fresh labels.

– For all gates {Gn}n∈[t], let the ciphertexts {c0,b
n , c

1,b
n }n∈[t] be the encryptions of

the output label share [L0
n] and [L1

n] under one input label of wire wi, be it
f(L0) or L′ . f(L1) is used as the other key for encrypting.

Note that for the case that b = 0, the wire is rerandomized and the GC created
corresponds to Ri. For b = 1, f(L1) and L′ have no correlation, and the GC created
corresponds to Ri−1.

• AKMH sends (r, (Ĉi, I i)) to A and finally, AKMH outputs whatever A outputs.

Since no such AKMH can exist, therefore no such A exists. So it must hold that
J ′′

c
≈ J1.

Therefore, since Adv can distinguish between neither pairs of adjacent hybrids, it must
hold that GS satisfies RGS Rerand-privacy.

Therefore, GS = (GbKMH,RerandKMH, EnKMH,EvKMH) is a projective RGS satisfying
Definition 9.

5 Incremental Decomposable Randomized Encodings
In this section, we introduce a variant of Decomposable Randomized Encodings (DRE
- Definition 6): an incremental Decomposable Randomized Encoding (iDRE). We also
present a construction for an iDRE scheme based on an RGS, and a KMHE scheme
(Definition 10). An iDRE is a key ingredient in realizing a secure protocol in the SCALES
setting.

28



The goal of iDRE is to allow multiple encoders to collaborate in an encoding process
while using minimal interaction. Specifically, our abstraction allows a chain of encoders to
incrementally carry out the encoding, with each one receiving the output of the previous
one. Informally, for a function f with m-bit inputs x, a chain of d encoders first each
locally prepare {e0

ij, e
1
ij}i∈[m] during an initial encoding phase (which prepares the labels

and may work offline). Then, in the incremental encoding phase, the first encoder runs En
to prepare an initial encoding B1. Each subsequent encoder runs En∗ which prepares Bj

from Bj−1. Next, each input bit xi is encoded as Zi = Combine({exiij }j∈[d], Bd). The final
encoding for f(x) consists of (Y, {Zi}i∈[m]) where Y ∈ Bd. The formal definition below
separates the encoding into PreEn and En∗ to allow for better efficiency and flexibility;
also Combine does not take all of Bd as input, but only a part of it, si. A basic privacy
condition would require that only f(x) is revealed by the final encoding; but as detailed
below, we shall require a stronger privacy condition corresponding to when a subset of the
encoders and input parties (combiners) are passively corrupt, privacy continues to hold.

Definition 13. An incremental Decomposable Randomized Encoding (iDRE)
scheme defined for a function family F , where each f ∈ F has domain {0, 1}m, is a
tuple of polynomial time algorithms iDRE = (PreEn,En,En∗,Combine,Dec) for ` polyno-
mial in m. Defining the following random variables as a function of x ∈ {0, 1}m:

rj ← {0, 1}` ∀j ∈ [d],

{e0
ij, e

1
ij}i∈[m] ← PreEn(j; rj) ∀j ∈ [d],

Bj ←

{
En(f ; r1) for j = 1

En∗(Bj−1; rj) for 1 < j ≤ d(
Y, {si}i∈[m]

)
← Bd

Zi ← Combine({exiij }j∈[d], si) ∀i ∈ [m]

Then the following properties need to be satisfied:

• Correctness: ∀x ∈ {0, 1}m, with probability 1 (over the choice of {rj}j∈[d]),

Dec(Y, {Zi}i∈[m]) = f(x).

• Privacy: There exists a simulator Sim such that ∀x ∈ {0, 1}m, j∗ ∈ [d] and
A ⊆ [m],{

Sim(f, f(x), j∗, {xi}i∈A)

}
c
≈
{
{rj}j 6=j∗ , Bj∗ , {exiij∗}i∈A, {Zi}i 6∈A

}
The privacy condition above corresponds to a semi-honest adversary who corrupts

all encoders other than the one with index j∗ – i.e., it learns rj for all j 6= j∗, as well as
the output Bj∗ ; further, for a set A ⊆ [m] it learns the input bits xi as well as the label
exiij∗ , for each i ∈ A. Note that this provides the adversary with enough information to
decode f(x). We require that such an adversary learns nothing more about the input bits
{xi}i 6∈A beyond what f(x) and {xi}i∈A reveals.
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5.1 Realizing iDRE using RGS

In this section we outline our construction of iDRE based on a projective RGS (Definition
8) and KMHE scheme (Definition 10) which has the following design: En generates a
projective garbling as well as a set of encrypted labels. The latter is a set of ciphertexts
encrypting both labels for every input bit position within the garbling. Next, each instance
of En∗ takes both a garbling and its encrypted labels as inputs, and outputs a rerandomized
garbling and a matching set of encrypted labels. This is achieved by modifying the
encrypted plaintexts to match the labels of the new garbling by applying consistent
transformations to the encrypted labels by exploiting the homomorphic properties.

Additionally, the keys under which the labels are encrypted are homomorphically
refreshed by each encoder using new randomness.5 This set of transformations is generated
by the different instances of algorithm PreEn. At last, the Combine algorithm takes the
final encrypted label for each input bit and all the randomness used to create the encryption
key, and creates the final key that is used to decrypt the label. This label corresponds to
an input label for the last GS, all given as inputs to the decoding algorithm Dec.

Notation. Let the input to the function f be x = {xi}i∈[m]. Moreover, let F1 be the GS
created by En and Fj be the rerandomized GS output by the jth instance of En∗. We
denote by Lj the set containing all the labels (corresponding to both the 0 and 1 value) for
all input bit positions of Fj. Namely, Lj = {Lbij}i∈[m],b∈{0,1}, where Lbij ∈ {0, 1}κ denotes
the label used in Fj for the ith input bit whose vale is b ∈ {0, 1}. Finally, we denote the
subset of active labels within Fj by Xj = {Lxiij }i∈[m] for the input x = {xi}i∈[m] ∈ {0, 1}m.

The encrypted labels set that corresponds to Fj is denoted by ELj where ELj =
{Enc(Kb

ij, L
b
ij)}i∈[m],b∈{0,1}. Starting with F1, each label Lbi1 ∈ L1 is encrypted using a key

Kb
i1 that is chosen from a KMHE scheme. We represent by ΠK1 = {Kb

i1}i∈[m],b∈{0,1} the
set of these keys. Each subsequent ELj is created from ELj−1. Namely, let ρbij ∈ Fkey
denote a transformation chosen to randomize the key ρbij−1, yielding a new transformed
key ρbij in the key domain. Then ΠKj = {ρbij}i∈[m],b∈{0,1} denote this set of transformations
for all j > 1.

Another set of transformations denoted by πEn = {σi ∈ Fkey}i∈[m] plays a different role
in our construction. Namely, these transformations are applied on the plaintexts within
ELj−1 with the aim of rerandomizing the input labels to match the garbling Fj. We refer
the reader to Section 4.1 regarding a discussion of these transformations as applied to
the [BHHO08] scheme.

Construction. Figure 2 contains the details of the algorithms for this instantiation
using a KMHE and a projective RGS. The circuit C that represents the function f is
publicly available to all involved parties.

Theorem 2. Let KMH = (Gen,Enc,Dec,Eval) be a KMHE scheme (Definition 10) and
let GS = (Gb,Rerand,En,Ev) be a projective RGS (Definition 9), then Figure 2 is an iDRE
(Definition 13).

5As different transformations are applied to the keys used for encrypting the different input labels,
and only on the key domain, it suffices to use KMHE.
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iDRE construction using projective RGS

Building blocks:
Projective RGS: GS = (Gb,Rerand,En,Ev), KMHE: KMH = (Gen,Enc,Dec,Eval) such that the set of encoding
transformations of GS is a subset of the message transformation family Fmsg of KMH

Function f : {0, 1}m → {0, 1}l
Function input x = (x1, · · · , xm)

function PreEn(j; rj)
parse rj = (r′j , r

0
1j , · · · , r0mj , r11j , · · · , r1mj)

if j = 1 then
ebi1 = Kb

i1 ← KMH.Gen(1κ; rbij) ∀i ∈ [m], b ∈ {0, 1}
else

ebij = ρbij ← Fkey using rbij ∀i ∈ [m], b ∈ {0, 1}
return {e0ij , e1ij}i∈[m]

function En(f ; r1)
parse r1 = (r′1, r

0
11, · · · , r0m1, r

1
11, · · · , r1m1)

{Kb
i1}i∈[m],b∈{0,1} ← PreEn(1; r1)

(F1, e1)← GS.Gb(f ; r′1)
(Lb11, · · · , Lbm1)← GS.En(bm, e1) ∀b ∈ {0, 1}
αbi1 ← KMH.Enc(Kb

i1, L
b
i1) ∀i ∈ [m], b ∈ {0, 1}

return (F1, {αbi1}i∈[m],b∈{0,1})

function En∗(Bj−1; rj)
parse Bj−1 = (Fj−1, {αbij−1}i∈[m],b∈{0,1})

parse rj = (r′j , r
0
1j , · · · , r0mj , r11j , · · · , r1mj)

{ρbij}i∈[m],b∈{0,1} ← PreEn(j; rj)

(Fj , {σi}i∈[m])← GS.Rerand(Fj−1; r′j)

αbij ← KMH.Eval(αbij−1, ρ
b
ij , σi) ∀i ∈ [m], b ∈ {0, 1}

return Bj = (Fj , {αbij}i∈[m],b∈{0,1})

function Combine({exiij }j∈[d], si)
parse {exiij }j∈[d] = (K

xi
i1 , ρ

xi
i2 , · · · , ρ

xi
id )

parse si = (α0
i , α

1
i )

K
xi
id ← ρ

xi
id ◦ · · · ◦ ρ

xi
i2 (K

xi
i1 )

return KMH.Dec(Kxi
id , α

xi
i )

function Dec(Y, {Zi}i∈[m])
return GS.Ev(Y, {Zi}i∈[m])

Figure 2 Instantiating an iDRE using a projective RGS and KMHE

Proof Outline. The correctness of the construction in Figure 2 is directly implied by
the correctness of the underlying RGS and KMH correctness.

In order to prove privacy holds, we define the actions of the iDRE simulator Sim.
Upon receiving f , f(x), a subset of the input bits {xi}i∈A and the index of the honest
encoding instance j∗, it first samples {rj}j 6=j∗ and invokes the adversary on this randomness
along with {xi}i∈A. It then executes the pre-encoding phase honestly PreEn(j∗) with
fresh randomness sampled internally. Next, during the encoding phase, Sim gets from
the adversary a projective garbling Fj∗−1 and a set of encrypted labels ELj∗−1. On
behalf of the honest input parties, it samples arbitrary input bits {x′i}i 6∈A and a new
function f ′ such that φ(f) = φ(f ′) and f ′(x′) = f(x), and computes a fresh garbling of f ′,
(Fj∗ , e)← Gb(f ′), and Xj∗ = En(x′, e), where x′ = {x′i}i 6∈A ∪ {xi}i∈A. It further samples
transformations for the message space to create ELj∗ and forwards (Fj∗ , ELj

∗
) to the
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adversary. Finally, upon receiving {si}i 6∈A, from the final encoder, it recreates ex
′
i
ij and use

them to the set {Zi}i 6∈A.
To prove indistinguishability between a simulation and a real executions, we define the

following sequence of hybrids. H0 is defined as the above simulation. H1 is identical to
H0, except that f and x are used to form Bj∗ . Next, H2, is defined with a rerandomized
garbling instead of a fresh one. Finally, H3 is defined with the encrypted labels of both the
active and inactive labels. Note that H3 is identically distributed to the real execution.

Indistinguishability of H0 and H1 can be reduced to the privacy of RGS. The indis-
tinguishability of H1 and H2 can be reduced to the Rerand-privacy of RGS. Lastly, the
indistinguishability of H2 and H3 can be reduced to the key privacy and CPA security of
KMHE.

Proof. The correctness of the construction in Figure 2 is directly implied by the correctness
of the underlying RGS and KMH correctness.

Claim 3. The construction in Figure 2 satisfies privacy of iDRE.

Proof. In order to show that privacy holds, we define the actions of the iDRE simulator
Sim. Sim knows f , the function output f(x), a subset of the input bits {xi}i∈A and the
index of the honest encoding instance j∗. Sim works as follows:

• It first samples {rj}j 6=j∗ and invokes the adversary with {rj}j 6=j∗ and {xi}i∈A.

• During the pre-encoding phase, if j∗ = 1, then it generates weak KMHE (Definition
10) keys for both values for each input bit, including those of the adversary, {exii1 =
Kxi
i1 ∈ K}i∈A. Otherwise, it samples key domain permutations at random for the

same, those of the adversary being {exiij∗ = ρxiij∗ ∈ Fkey}i∈A.

• During the encoding phase, first, for all input bit positions whose bits are unknown
to Sim, it samples at random {x′i}i 6∈A. Let x′ = {x′i}i 6∈A ∪ {xi}i∈A. Next, it picks
a function f ′ ∈ F such that φ(f) = φ(f ′) and f(x) = f ′(x′). Sim computes the
projective garbling (Fj∗ , e) ← Gb(f ′). It computes X ′ = En(x′, e) as the set of
projective labels X ′ = {Lxiij∗}i∈[m] corresponding to the active input values.

• If j∗ = 1, Sim uses {Kb
i1}b∈{0,1},i∈[m] that it sampled during the pre-encoding phase to

create the encrypted labels set EL1 = {Enc(Kb
i1, L

xi
i1)}b∈{0,1},i∈[m] using weak KMHE.

Then F1 and EL1 are passed to the adversary.

• If j∗ 6= 1, Sim receives Bj∗−1 = (Fj∗−1, ELj
∗−1) from the adversary. Given the

previous encrypted labels ELj∗−1 and knowing {rj}j 6=j∗ , each old plaintext label
Lbij∗−1 corresponding to Fj∗−1 can be derived. Now, Sim chooses transformations
σ0, σ1 ∈ Fmsg such that σ0(L0

ij∗−1) = Lxiij∗ and σ1(L1
ij∗−1) = Lxiij∗ . These are

applied to the ciphertexts in ELj∗−1 in the message domain. Next, it applies
{ρbij∗}b∈{0,1},i∈[m] that it sampled during the pre-encoding phase in the key domain
for each corresponding ciphertext. ELj∗ is hence formed and Bj∗ = (Fj∗ , ELj

∗
) is

given to the adversary.

• After the encoding phase is completed, Sim receives {si}i 6∈A ∈ Bd from the adversary.
Using each randomness rj, it recreates all e

x′i
ij for the honest input bits it sampled.

These are used in Combine and the set {Zi}i 6∈A is created and given to the adversary.
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Therefore, the view of the adversary that the simulator generates consists of,

{rj}j 6=j∗ , {exiij∗}i∈A, Bj∗, {Zi}i 6∈A

In order to prove indistinguishability between the output of Sim and a real execution,
we define the following hybrids: H0 is the same distribution as the simulation above.
We define an intermediate H1 to be a distribution similar to H0, except, during the
encoding phase, while creating Fj∗ and ELj

∗ , the garbling (Fj∗ , e)← Gb(f) comes from
the original function f and the active labels encoded are those corresponding to x, instead
of x′.
A hybrid H2 is defined the same as H1, with the exception that Fj∗ is a rerandomized
garbling and the active labels encrypted in ELj∗ are rerandomized to match.
The last hybrid H3 has the same view as the real execution. The difference between this
and H2 is is that ELj∗ now has both the active and inactive labels as the plaintexts.

Now consider by contradiction that there exists a PPT distinguisher D that can
distinguish between H0 and H3 with non-negligible advantage ε. Then it must follow that
it can distinguish between some pair of adjacent hybrids with advantage ε

3
.

If D can distinguish between H0 and H1, it can be used as a subroutine in the PPT
distinguisher D′ that breaks privacy of GS (Definition 3). D′ works as follows:

• D′ chooses two functions f0 = f and f1 = f ′ such that φ(f) = φ(f ′). It sets the
inputs as x0 = x and X1 = x′ such that f0(x0) = f1(x1). Then, f0, f1, x0, x1 are sent
to the challenger C.

• C samples b ∈ {0, 1} and sends back (Fb, Xb) that is created as (Fb, e) ← Gb(fb)
and Xb = En(xb, e).

• D′ sets Fb as Fj∗ in the view and creates ELj∗ using Xb as in the simulation. It also
generates the rest of the view exactly as in the simulation.

• D′ gives this view to D and outputs whatever D outputs.

Since privacy holds for GS, it follows that no such D′ can exist and so no such D can
exist. Therefore, H0

c
≈ H1.

If D can distinguish between H1 and H2, it can be used as a subroutine in the PPT
distinguisher D′ that breaks Rerand-privacy of GS(Definition 8). D′ works as follows:

• D′ gives the challenger C the function f and input x.

• C first samples randomness r and uses r to create a prior garbling: (F, e)← Gb(f, r).
Next, it samples a bit b ∈ {0, 1}. If b = 0, it creates a rerandomized garbling
(F0, πEn)← Rerand(F ) and X0 = En(xi, πEn(e). If b = 1, it creates a fresh garbling
(F1, e1)← Gb(f) and X1 = En(xi, e1). Then (r, Fb, Xb) are sent to D′.

• D′ uses r to set {rj}j 6=j∗ and sets Fj∗ as Fb. It creates ELj∗ using Xb as in the
simulation. It also generates the rest of the view exactly as in the simulation and is
sent to D.

• Finally, D′ outputs whatever D outputs.

33



Since Rerand-privacy holds for GS, it follows that no such D′ can exist and so no such D
can exist. Therefore, H1

c
≈ H2.

Lastly, if D can distinguish between H2 and H3, it can be used as a subroutine in the
PPT distinguisher D′ that breaks CPA security of KMHE (Definition 10). D′ works as
follows:

• Letting m be the number of input bits, D′ first creates (Fj∗ , e) ← Gb(f ′) and
X0 = En(x′, e). Let x′′ = ¬x be the input bits for the inactive labels. It also
computes X1 = En(x′′, e).

• D′ sends X0 and X1 to the challenger C.

• C samples a bit b ∈ {0, 1}. It samples m different keys and returns the set
ELb = {Enc(ki, Li)}Li∈Xb .

• D′ samples m more keys and creates EL′ = {Enc(ki, Li)}Li∈X0 . It sets ELj∗ =
EL′ ∪ ELb.

• D′ then completes the view as in the simulation and sends it to D.

• Finally, D′ outputs whatever D outputs.

Since CPA security holds for KMHE, it follows that no such D′ can exist and so no such
D can exist. Therefore, conditioned on the fact that a fresh key (as sampled by the
challenger) is statistically close to a rerandomized key (as in the real execution, after
multiple key transformations), H2

c
≈ H3. This condition is ensured by the key privacy

property of KMHE (Definition 10).
This concludes the proof.

Therefore, the construction in Figure 2 satisfies Definition 13. Letting d be the total
number of encoding instances, the functions ∀j ∈ [d], {e0

ij, e
1
ij}i∈[m] ← PreEn(rj; j), in the

instantiation, return ΠKj. For j = 1, this is a set of keys from the key space K of KMH.
Otherwise, it is a set of elements in Fkey. Each such element is a κ-bit string. So the size
of each ebij for this instantiation is κ.

6 Realizing SCALES
In Construction 1, we show how one can obtain a SCALES scheme from an iDRE scheme,
combined with a 2-message OT protocol (with semi-honest, adaptive-receiver security),
ΠOT = (OT1,OT2,OTout) (corresponding to computing the receiver’s message and state,
the sender’s message, and the receiver computing its output) as described in Section 2.3.
The construction is quite simple: Each Pi encodes xi as (zi, wi) = OT1(xi) and posts zi.
The ephemeral servers play the role of the encoders in iDRE: Ej will post the encoding
Bj and also, for each input party Pi, it will post OT2(zi, e

0
ij, e

1
ij) on the bulletin board.

Afterwards, each input party Pi reads the OT messages posted by each Ej, and using wi,
recovers exiij ; then it runs Combine and posts the result back on the bulletin board. The
final output computation is done using iDRE’s Dec algorithm.
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Construction 1. Let f be the function for input x = (x1, · · · , xm) where xi is Pi’s
private input. Let iDRE = (PreEn,En,En∗,Combine) be the iDRE (Definition 13) for
f and ΠOT = (OT1,OT2,OTout) be the OT protocol as above. Then the algorithms in
SCALES are instantiated as:

• ∀i ∈ [m], (zi, wi)← InpEnc(i, xi; ti) -

– output (zi, wi)← OT1(xi; ti) where zi is the OT first message

• ∀j ∈ [d], αj ← FEnc(Bj−1; rj) -

– if j = 1, compute B1 = iDRE.En(f ; r1)

– if j 6= 1, compute Bj = iDRE.En∗(j, Bj−1; rj) using Bj−1 ∈ Bj−1

– compute {e0
ij, e

1
ij}i∈[m] = iDRE.PreEn(j; rj)

– compute ∀i ∈ [m],mi,j
2 ← OT2(zi, (e

0
ij, e

1
ij))

– output αj = {Bj, {mi,j
2 }i∈[m]}

• ∀i ∈ [m], yi ← Aggregate(Bd, wi) -

– compute ∀j ∈ [d], exiij ← OTout(wi,m
i,j
2 ) using mi,j

2 ∈ Bd
– output yi = iDRE.Combine({exiij }j∈[n], si) using si ∈ Bd

• y ← Decode(Bd, {yi}i∈[m]) -

– output f(x) = iDRE.Dec(f̂0(r), {yi}i∈[m]) using f̂0(r) ∈ Bd

Complexity. We note that in this construction, each ephemeral server carries out one
execution of PreEn and En∗ (or En) and m executions of OT2 (reading their inputs from
the bulletin board, and posting the outputs back there); when instantiated using our iDRE
construction, this translates to O(κ|f |) computational and communication complexity for
each server. More importantly, note that each input party carries out a single execution of
OT1, d instances of OTout, and a single instance of Combine, all of which are independent
of the complexity of f .

Theorem 3. Let iDRE = (PreEn,En,En∗,Combine) be an iDRE (Definition 13)for the
function family F where each f ∈ F has domain {0, 1}m and let ΠOT = (OT1,OT2,OTout)
be a 2-message OT protocol (Section 2.3) that semi-honest securely computes the 2-party
OT functionality OT in the presence of a static-corrupted sender and an adaptively
corrupted receiver. Then the protocol described in Construction 1 is a secure SCALES
scheme (Definition 7).

Proof outline. The correctness for Construction 1 follows from the correctness of the
underlying iDRE and the OT protocol.

Next, for function output f(x), let A1 ⊂ [m] be the indices of the subset of input
providers that are initially corrupted, A2 ⊂ [m] be the indices of the input providers that
are adaptively corrupted, and j∗ be the index of the single honest encoder. These are the
inputs for the SCALES simulator Sim. The description of Sim is based on the output of

35



Sim′, the iDRE simulator (Definition 13), and the OT simulators, performing different
actions for the case that the sender is corrupted or not.

Within Sim, Sim1 first runs an instance of SimOT
1 each for all input providers that are

not statically corrupted. Next, it runs the iDRE simulator Sim′ with inputs f(x) and the
input bits of the statically corrupted input providers. Using the randomness returned by
this, Sim1 can create the OT input for each corrupt encoder. These are used in OT2 to
create second OT messages. For the honest encoder, SimOT

2 is used to produce the second
OT message. All this is also used to generate the complete state of the bulletin board,
completing the view that Sim1 needs to output.

Next, Sim2 executes with the input bits of the adaptively corrupted input providers
as its additional input. Here, for each adaptively corrupted input bit, SimOT

3 is executed
to output a candidate randomness t that can be used to explain m1 and m2 generated
previously in the protocol.

We prove indistinguishability between the simulation and the real executions by a
sequence of four hybrids. Let H0 be the simulated distribution as outlined above. Next,
H1 differs from H0 by switching to real iDRE function executions as opposed to simulated
executions in the prior hybrid. The indistinguishability between H0 and H1 is reduced to
the privacy of the iDRE. Next, for all input providers that are not statically corrupted
the first OT messages in H2 are also generated as in the real execution, instead of using
SimOT

1 . The two hybrids are proven indistinguishable based on a reduction to the receiver
OT privacy.

Finally, H3 is the real execution. Note that the only difference between H2 and the
real execution is that all OT second messages are no longer simulated in H3. A similar
argument made here as well, reducing the indistinguishability between these two hybrids
into the privacy of the honest OT sender.

Proof. The correctness for Construction 1 follows from the correctness of the underlying
iDRE and the OT protocol.

Claim 4. Construction 1 satisfies privacy of SCALES.

In this setting, since servers do not maintain state, we only consider static corruption
for the servers Ej ∈ S. In contrast, we consider adaptive corruption for the input clients.
Consider a semi-honest adversary Adv that statically corrupts all but one encoding servers
E = {Ej}j∈[d],j 6=j∗ and a subset of the input providers P1 = {Pi}i∈A1⊂[m]. Then, after the
input providers post their first message, Adv further corrupts the set P2 = {Pi}i∈A2⊂[m].
The final view of the adversary includes the function f , the output f(x), and the input bits
{xi}i∈A1∪A2 of all the corrupt input providers. These are given to a SCALES simulator
Sim that also gets the index j∗ of the honest server and outputs a view that is required to
be indistinguishable from,

{Bd, {yi}i∈[m], {rj}j∈[d]\{j∗}, {ti}i∈A1 , {ti}i∈A2}

We define the SCALES simulator to be a pair of PPT algorithms Sim = (Sim1, Sim2).
It uses as a subroutine the iDRE simulator Sim′ (Definition 13) and an OT simulator
SimOT = (SimOT

1 , SimOT
2 , SimOT

3 ) (Section 2.3). The following are the inputs and outputs
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of these subroutines:

({r′j}j 6=j∗ , Bj∗ , {exiij∗}i∈A1 , {Zi}i 6∈A1)← Sim′(f, f(x), j∗, {xi}i∈A1)

(m1, state)← SimOT
1 (·)

(m2, state
′)← SimOT

2 (m1, state)

t← SimOT
3 (state′, b, eb)

We now define the actions of the simulator. First, we define the actions of Sim1. It
gets as input the function f and its output f(x), the index j∗ of the honest server, and
the input bits {xi}i∈A1 of the statically corrupted input providers. It then performs the
following:

• first, Sim1 obtains a simulated view for the iDRE be invoking Sim′(f, f(x), j∗, {xi}i∈A1)
to get ({r′j}j 6=j∗ , Bj∗ , {exiij∗}i∈A1 , {Zi}i 6∈A1).

• it sets {rj}j 6=j∗ = {r′j}j 6=j∗ .

• on behalf of all input providers Pi ∈ P − P1 that are not statically corrupted, Sim1

invokes (mi
1, state)← SimOT

1 (·).

• each statically corrupted input player generates mi
1 using OT1. This completes the

set of all first OT messages on Bd.

• for each corrupt encoder Ej, using rj, Sim1 can obtain the string inputs to the
OT functionality: {e0

ij, e
1
ij}i∈[m] ← PreEn(j; rj). With these, using OT2, all the OT

second messages {mi,j
2 }i∈[m],j 6=j∗ for the corrupt encoders are created.

• on behalf of the honest encoder, Sim1 invokes m instances of (mi,j∗

2 , state′) ←
SimOT

2 (mi
1, state). This completes the set of all second OT messages on Bd.

• finally, for each corrupt encoder Ej , using rj , compute Bj using En or En∗ as required.
This completes the view of Bd as required.

• for the statically corrupt input providers, using {exiij∗}i∈A1 from the iDRE simulation,
all the {exiij }i∈A1,j 6=j∗ created using PreEn, and {si}i∈A1 compute Combine to get each
{Zi}i∈A1 .

• for the initially honest input providers, {Zi}i 6∈A1 is part of the iDRE simulation
output. These complete the set {yi}i∈[m].

• lastly, for each statically corrupt input provider, Sim1 computes ti ← SimOT
3 (state′, xi, e

xi
ij∗)

and derives the set {ti}i∈A1 .

Next, we define the actions of Sim2. It gets as input a state variable from Sim1 that
typically contains all its input, output and randomness; and additionally, the input bits
{xi}i∈A2 for the input providers that have been adaptively corrupted. Sim2 works by
simply invoking for each Pi ∈ P2, the OT simulator ti ← SimOT

3 (state′, xi, e
xi
ij ) to obtain

the receivers randomness that explains its OT messages. Sim2 then outputs {ti}i∈A2 .
We now prove that the view generated by Sim is indistinguishable from that in the

real execution of the functions by employing the following set of hybrids:
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• The initial hybrid H0 is the same as the view output by the simulator.

• The hybrid H1 is generated in the same way as H0 except that instead of using the
iDRE simulator subroutine Sim′, ({rj}j 6=j∗ , Bj∗ , {Zi}i∈[m]) come from a real execution
of the iDRE functions.

• The next hybrid H2 is the same as H1 except in H2, for all statically corrupted
input providers the OT first message comes from a real execution of OT1 as opposed
to coming from a simulation SimOT

1 subroutine.

• Next, hybrid H3 is generated the same way as H2 except for the fact that for the
honest encoder, the second OT message is derived from an execution of OT2 instead
of from SimOT

2 . As a result, all the receivers randomness in this view is also the real
randomness used, as opposed to being simulated using SimOT

3 . Therefore, this view
is the same as in the real execution.

Consider for the sake of contradiction that there exists a PPT distinguisher D that can,
with non-negligible advantage ε distinguish between a simulation H0 and a view in the
real execution H3. Then it follows that there exists an index i such that D would have at
least ε

3
advantage in distinguishing between the adjacent hybrids Hi and Hi−1.

If D could distinguish between hybrids H0 and H1, then it can be used as a subroutine
by a PPT distinguisher D′ that can break iDRE privacy (Definition 13) with advantage ε

3
.

D′ would work as follows:

• The challenger has the public function f and the input x.

• D′ would give the challenger an index j∗ for the honest encoder, and a set of input
indices A1 ⊂ [m].

• D′ receives a tuple ({rj}j 6=j∗ , Bj∗ , {Zi}i∈[m]) along with {xi}i∈A1 , the input bits of
the statically corrupted input providers.

• Using this challenge, it generates the rest of the view exactly as in the simulation
and passes it on to D.

• finally, D′ outputs whatever D outputs.

Note that if the challenge is a simulated view of the iDRE, then D receives a tuple
distributed as in H0. It receives a tuple from H1 otherwise. D′ has advantage ε

3
in this

game, which is non negligible. However, since iDRE privacy holds, no such D′ could exist
and so D can’t distinguish the two distributions.

In order to show that H1
c
≈ H2, we define a sequence of hybrids. Let t = m−|A1| be the

number of input providers that are not statically corrupted. Then the hybrids J0, · · · , Jt,
are each of the form where in Ji, the first i OT first messages of these honest input
providers come from a real execution of OT1 and the rest come from SimOT

1 . In all the
hybrids, the iDRE outputs belong to the real execution and so J0 = H1 and Jt = H2. If a
PPT distinguisher D that can distinguish for SCALES privacy can distinguish between H1
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and H2, then it follows that there must exist an index i ∈ [t] for which it can distinguish
between neighbouring hybrids Ji−1 and Ji with a non-negligible advantage > ε

3t
. Such a

D can be used as a subroutine by a PPT distinguisher D′ that can distinguish for OT
receiver privacy:

• D′ is given a challenge message m1. It first chooses a position i ∈ [t] uniformly at
random.

• D′ samples a function f and input x = (x1, · · · , xm). It locally generates the iDRE
outputs as real executions of the iDRE functions.

• For all corrupt input providers Pi ∈ P1, the OT first message mi
1 is generated using

OT1.

• For the first i− 1 honest input providers, the OT first message mi′
1 is also generated

using OT1. For all honest input providers after the ith input provider, this message
is created using Sim1. For the ith input provider, the challenge m1 is set as its OT
first message.

• The rest of the view for D is completed as in the simulation and this is sent to D.

• Finally, D′ outputs whatever D outputs.

However, since no such D′ can exist, no such D can distinguish for any index between Ji
and Ji−1. Therefore, H2

c
≈ H1.

In order to show that H2
c
≈ H3, we define a sequence of hybrids. Let t = m be the

number of OT second messages that are simulated on behalf of the honest encoder j∗.
Then the hybrids J0, · · · , Jt, are each of the form where in Ji, the first i OT second
messages come from a real execution of OT2 and the rest come from SimOT

2 . In all the
hybrids, the iDRE outputs belong to the real execution and all the OT first messages also
belong to the real execution of OT1. So J0 = H2 and Jt = H3. If a PPT distinguisher
D that can distinguish for SCALES privacy can distinguish between H2 and H3, then
it follows that there must exist an index i ∈ [t] for which it can distinguish between
neighbouring hybrids Ji−1 and Ji with a non-negligible advantage > ε

3t
. Such a D can

be used as a subroutine by a PPT distinguisher D′ that can distinguish for OT sender
privacy:

• D′ is given a challenge message m2. It first chooses a position i ∈ [m] uniformly at
random.

• D′ samples a function f and input x = (x1, · · · , xm). It locally generates the iDRE
outputs as real executions of the iDRE functions. Then it generates all the OT first
messages using OT1.

• For all corrupt encoders Ej, j 6= j∗, each OT second message mi,j
2 is generated using

OT2.
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• For the honest encoder, the first i− 1 OT second messages mi′,j∗

2 are also generated
using OT2. Corresponding to all input providers after the ith input provider, this
message is created using Sim2. For the ith input provider, the challenge m2 is set as
its OT second message.

• The rest of the view for D is completed as in the real execution and this is sent to
D.

• Finally, D′ outputs whatever D outputs.

However, since no such D′ can exist, no such D can distinguish for any index between Ji
and Ji−1. Therefore, H2

c
≈ H3.

Therefore, it follows that since D can distinguish between neither H0 and H1, H1 and
H2, and nor H2 and H3 with non-negligible advantage, D can’t distinguish between H0

and H3. Therefore, privacy of SCALES holds for Construction 1.

7 Applications of RGS and iDRE
We outline certain other applications for the cryptographic objects we define.

7.1 RGS for Outsourced Re-Garbling

Consider a setting where a party Pfun holding a private function f would like to let a client
Peval securely evaluate f(x) on various inputs x of its choice, using a GC-based protocol.
Because of the one-time nature of GCs, this requires Pfun to carry out garbling once for
each evaluation. This motivates the problem of outsourced re-garbling – i.e., out-sourcing
the task of creating many copies of a garbled circuit for a private function to a semi-honest
server (say, a cloud service).

Outsourced Re-Garbling presents an immediate application of RGS. The following
definition of the Outsourced Re-Garbling task captures the security requirement that the
parties Pfun and Peval learn nothing more than in the original two-party setting, while a
regarbling server Sgb that Pfun interacts with (before Peval arrives) would learn nothing
about the function f (except a permitted leakage φ(f)). The security guarantees below
assume that the server Sgb does not collude with Peval.

Definition 14. An Outsourced Re-Garbling scheme for a function family F with
input domain X and a leakage function φ : F → {0, 1}∗, is a tuple of PPT algorithms
(InitGb,ReGb,En,Ev) that satisfy the following properties:

• Correctness: ∀f ∈ F , ∀x ∈ X ,

Pr[Ev(F,X) = f(x) : (F0, e)← InitGb(f),

(F, π)← ReGb(F0), X ← En(x, π(e))] = 1
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• Privacy against Sgb: ∀f ∈ F , there exists a PPT simulator Simgb such that

{Simgb(φ(f))}
c
≈ {F0}(F0,e)←InitGb(f)

• Privacy against Peval: ∀f ∈ F , ∀n ∈ N,∀i ∈ [n] and ∀xi ∈ X , there exists a PPT
simulator Simeval such that

{Simeval({f(xi), xi}i∈[n], φ(f))}
c
≈ {{Fi, Xi}i∈[n]} (F0,e)←InitGb(f),

{(Fi,πi)←ReGb(F0),
Xi←En(xi,πi(e))}i∈[n]

These algorithms can be employed by the parties Pfun, Peval and Sgb as follows. Pfun

first executes (F0, e)← InitGb(f) and sends F0 to Sgb. Then Sgb runs multiple instances
of (Fi, πi) ← ReGb(F0) and sends all πi back to Pfun. When Peval comes online with an
input xi to f , it first gets Fi directly from Sgb (this is only to avoid Pfun from having
to incur the corresponding communication overhead). It then participates in a secure
function evaluation protocol with Pfun to obtain Xi ← En(xi, πi(e)); looking ahead, in our
construction this can be implemented directly using parallel OTs. Following that, Peval

computes f(xi)← Ev(Fi, Xi).
Note that the computational and communication complexity of Pfun involves a single

instance of InitGb, followed by n instances of computing πi(e) and n instances of carrying
out En. There is an implicit efficiency requirement that the latter two steps (which are
repeated n times each) depend linearly on the input size m of f and are independent of
its circuit size |f |. This would reduce the computational complexity of Pfun from O(|f |n)
to O(|f |+mn) (ignoring factors involving the security parameter). This is a significant
saving when |f | and n are both large (e.g., evaluating a large machine learning model on
inputs from the user-base of a popular app).

Theorem 4. An RGS GS = (Gb,Rerand,En,Ev) (Definition 8) is an Outsourced Re-
Garbling scheme (InitGb,ReGb,En,Ev) (Definition 14).

The proof directly follows from correctness and privacy properties of an RGS, except
that for privacy against Peval a routine hybrid argument is used to argue that multiple
instances of regarbled circuits are simultaneously indistinguishable from multiple instances
of freshly garbled circuits.

Proof. The fact that (InitGb,ReGb,En,Ev), when initialized with GS = (Gb,Rerand,
En,Ev), satisfies Correctness follows directly from the Correctness and Rerand-Privacy
(Definition 8) of the RGS, as indicated in Section 4.

Claim 5. GS = (Gb,Rerand, En,Ev) satisfies Pfun-privacy (against Sgb).

Proof. In this corruption case Sgb is corrupted and we are required to protect the privacy
of Pfun’s input, f , from it. The view of the adversary is the message α that it receives and
φ(f) that it may infer from α. It has no private inputs.

In order to show that Pfun-privacy is preserved, we define Simgb(φ(f)) to pick an
arbitrary f ′ ∈ F such that φ(f ′) = φ(f) and then execute (F ′, e′) ← Gb(f ′). We
designate F ′ = α′ as the output of Simgb. The fact that this view is indistinguishable
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from α ← InitGb(f) can be claimed via a reduction to the privacy of garbling schemes
(Definition 3).

Namely, consider for the sake of contradiction that there exists a PPT distinguisher D
that, given φ(f), and a message α can tell weather α came from a real execution or was
output by Simgb(φ(f)) with non-negligible advantage ε. Then D can be used to construct
a PPT distinguisher D′ for breaking the GS privacy (Definition 3) as follows:

• D′ samples functions f0 = f and f1 = f ′, and inputs x0 and x1 such that f0(x0) =
f1(x1) and φ(f0) = φ(f1).

• D′ sends φ(f0) to D and sends f0,f1,x0 and x1 to the challenger C.

• C samples b ∈ {0, 1}, creates (Fb, eb) ← Gb(fb) and Xb ← En(xb, eb), and sends
Fb, Xb to D′.

• D′ sends Fb to D and outputs whatever D outputs.

Note that when b = 0 this is distributed as in the real execution since F0 is a garbling of
f and when b = 1, this is distributed as in the simulation created by Simgb. D′ has the
same advantage ε as D in breaking the privacy of the underlying garbling scheme which
violates the security of GS. Consequently, no such distinguishers D′ and D can exist, and
Pfun-privacy is preserved.

Claim 6. GS = (Gb,Rerand, En,Ev) satisfies Pfun-privacy (against Peval).

Proof. In this corruption case Peval is corrupted and we are required to protect Pfun’s input
f from it. The view of the adversary is its set of inputs {xi}i∈[n], the messages {Fi}i∈[n]

obtained from Sgb and the outputs {Xi}i∈[n] obtained from FEn. It then evaluates each of
these to get {f(xi)}i∈[n].

In order to show that Pfun-privacy is preserved, Simeval({f(xi), xi}i∈[n], φ(f)) is defined
to do the following: for each i ∈ [n], pick f ′i ∈ F such that φ(f ′i) = φ(f) and f ′i(xi) = f(xi).
Run (F ′i , e

′
i)← Gb(f ′i), and X ′i ← En(xi, e

′
i); and output the set {(F ′i , X ′i)}i∈[n].

In order to show that this distribution is indistinguishable from the real execution, we
define a sequence of 2n+1 hybrid games where each is comprised out of n pairs of (Fi, Xi),
a garbling and an input encoding. The first hybrid H0 is the simulated distribution output
by Simeval.
In the next n hybrids, Hi is defined such that the first i pairs (F1, X1) · · · (Fi, Xi) are
generated as fresh garblings corresponding to the same secret function f , whereas the
remaining pairs (Fi+1, Xi+1) · · · (Fn, Xn) are generated as fresh garblings for different
functions fj as in the simulation. The hybrid Hn consists of n pairs of fresh garblings
{Fi, Xi}i∈[n] of f with different inputs xi being encoded as Xi.
In the last n hybrids, Hn+i is defined such that the first i pairs (F1, X1) · · · (Fi, Xi) are
generated as rerandomized garblings corresponding to f , whereas the remaining pairs
(Fi+1, Xi+1) · · · (Fn, Xn) are generated as fresh garblings for f . Note that H2n is distributed
as in the real execution.

Consider for the sake of contradiction that there exists a PPT distinguisher D that,
given φ(f) and {f(xi), xi}i∈[n], and a set {(Fi, Xi)}i∈[n] can say weather it came from a
real execution or the {(Fi, Xi)}i∈[n] was output by Simeval with non-negligible advantage
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ε. Then there must exist an index i for which D can distinguish Hi and Hi−1 with an
advantage at least ε

2n
.

If i ≤ n, then such a D can be used as a subroutine by D′, a PPT distinguisher for
Privacy of GS (Definition 3) as follows:

• D′ samples samples an index i ∈ [n] uniformly at random. It then picks a function
f0 = f .

• Next, D′ picks f1 ∈ F such that φ(f0) = φ(f1), and inputs x0 and x1 such that
f0(x0) = f1(x1).

• D′ sends f0,f1,x0 and x1 to the challenger C.

• D′ also n− i other functions f i+1, · · · , fn ∈ F such that for each such function f j,
φ(f) = φ(f j). It sets f 1, · · · , f i−1 equal to f . Finally, it samples n− 1 other inputs
x1, · · · , xi−1, xi+1, · · · , xn ∈ {0, 1}m and sets xi = x0. The latter inputs xi+1, · · · , xn
are picked such that each f j(xj) = f(xj).

• D′ sends ({f(xj), xj}j∈[n], φ(f)) to D.

• The challenger C samples b ∈ {0, 1}. Then it creates (Fb, eb) ← Gb(fb) and
Xb ← En(xb, eb). It sends (Fb, Xb) to D′.

• D′ creates the set H by putting in the ith position, the challenge (Fb, Xb). For every
other position j, it generates (Fj, ej)← Gb(f j) and Xj ← En(xj, ej). The final set
H = {Fj, Xj}j∈[n] is given to D. Note that for b = 0 this is Hi since (F0, X0) are
also formed from f0. For b = 1 this is Hi−1.

• Finally, D′ outputs whatever D outputs.

D′ has advantage ε
2n
, since this is the advantage that D wold have in distinguishing the

hybrids. However, since privacy for GS holds, there can exist no such D′ there can exist
no such D.

For i > n, D can be used as a subroutine byD′′, a PPT distinguisher for Rerand-Privacy
of GS (Definition 8) as follows:

• D′ samples samples an index i ∈ [n] uniformly at random. It then picks a function
f , and a set of inputs {xj}j∈[n] where each xj ∈ {0, 1}m.

• D′ sends ({f(xj), xj}j∈[n], φ(f)) to D.

• Next, D′ gives f, xi to the challenger C.

• C first samples randomness r and uses r to create a prior garbling: (F, e)← Gb(f, r).
Next, it samples a bit b ∈ {0, 1}. If b = 0, it creates (F0, πEn) ← Rerand(F ) and
X0 = En(xi, πEn(e). If b = 1, it creates a fresh garbling (F1, e1) ← Gb(f) and
X1 = En(xi, e1). Then (r, Fb, Xb) are sent to D′.
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• D′ creates the set H by putting in the ith position, the challenge (Fb, Xb). For every
position j < i, it generates (F ′j , ej) ← Gb(f), (Fj, πEn) ← Rerand(F ′j) and Xj ←
En(xj, πEn(ej)). For all j > i, it generates (Fj, ej) ← Gb(f) and Xj ← En(xj, ej).
The final set H = {Fj, Xj}j∈[n] is given to D. Note that for b = 0 this is Hn+i since
(F0, X0) are rerandomized garblings. For b = 1 this is Hn+i−1.

• Finally, D′ outputs whatever D outputs.

D′ has advantage ε
2n
, since this is the advantage that D wold have in distinguishing the

hybrids. However, since Rerand-privacy for GS holds, there can exist no such D′ there
can exist no such D.

Therefore, Pfun-privacy is preserved.

So, it follows that, GS = (Gb,Rerand, En,Ev) satisfies Definition 14.

7.2 iDRE for MPC

An iDRE can be used to implement a general n-party protocol under static semi-honest
corruption of up to n− 1 parties. Let P1, · · · , Pn be the parties, f be the public function
and x ∈ {0, 1}m be its input out of which each Pi possesses xi ⊂ x. The iDRE-based
protocol can compute f(x) using O(n×m) string-OT calls, meeting the lower bound on
OT complexity for this setting, as proven in [HIK07]. This is achieved by letting each
Pi act as one of the encoders in the sequential process along with playing the role of an
input party. All the parties first employ PreEn and then every pair of parties engages in
an OT for every input bit. Next, starting from P1, the incremental chain of encoding
follows with each Pi creating Bi and passing it on to Pi+1. Finally, Pn passes {si}i∈[m] to
all other parties. Each party runs Combine for each of their input bits. These results are
passed back to Pn that decodes and broadcasts the output.

Theorem 5. Let (PreEn,En,En∗,Combine,Dec) be an iDRE (Definition 13) for the func-
tion family F where f ∈ F has domain {0, 1}m. There exists an n-party semi-honest
protocol securely computing f in the (string) OT-hybrid under (n− 1)-corruption. The
protocol uses ((n− 1)×m) OT calls and the iDRE in a black-box way.

Proof. The correctness of the protocol follows from the correctness of the iDRE: there
exists a decoder Dec such that Dec(f̂0(r), {f̂i(xi, r)}i∈[m]) = f(x).

We now show that the protocol in Figure 3 is secure in the OT-hybrid model. Let OT
be the two party functionality through which OT is carried out in the OT-hybrid. For
m0,m1 ∈ {0, 1}∗ and b ∈ {0, 1}, (⊥,mb) ← OT((m0,m1), b). Let S be the sender with
input (m0,m1), and let R be the receiver with input b that receives mb from OT. Let Adv
be the semi-honest PPT adversary that controls a subset of (n− 1) of the n parties and
let Pj∗ be the remaining honest party.

In the ideal model, let F be the trusted functionality computing f . It takes inputs xi′

from each party Pi′ and returns to Pn the value f(x). Let Sim be the simulator in this
model for the view of Adv. Sim has access to a simulator Sim′ that exists by definition
for the iDRE of f . It knows the input of the semi-honest adversary: {xi}xi∈x−xn which it
gives as input to F .
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n party protocol for t=n-1 corruption

f : {0, 1}m → {0, 1}l is a public function to be computed
(PreEn,En,En∗,Combine,Dec) is the iDRE for f
for input x ∈ {0, 1}m, the subset of bits xi

′ ⊂ x, |xi′ | = mi′ is Pi′ ’s private input

for Pj ∈ {P1, · · · ,Pn} do
Pj executes PreEn(rj ; j)→ {e0ij , e1ij}i∈[m]

for Pi′ ∈ {P1, · · · ,Pn} do
for xi ∈ xi

′
do

for Pj ∈ {P1, · · · ,Pn} − {Pi′} do . get shares
Pi′ performs OT with Pj :

Receiver Pi′ ’s input choice bit is xi
Sender Pj ’s input strings are e0ij , e

1
ij

Pi′ receives exiij

P1 executes En(r1)→ B1

for Pj ∈ (P2, · · · ,Pn) do . actions for each party Pj
Pj gets Bj−1 from Pj−1

Pj executes En∗(rj ; j, Bj−1)→ Bj

for Pi′ ∈ {P1, · · · ,Pn} do
for xi ∈ xi

′
do

get si ∈ Bn from Pn
execute Combine({exiij }j∈[n], si)→ Zi

send Z′
i′ = {Zi}xi∈xi′ to Pn

Pn gets Z′1, · · · , Z′n−1 . actions for Pn
Pn has Z′n, Bn
Pn executes Dec(f̂0(r), {Zi}i∈[m])→ f(x)

Figure 3 semi-honest MPC protocol based on iDRE

Sim needs to simulate the view of Adv in the OT-hybrid and therefore, besides sending
and receiving messages, also emulates the OT calls for Adv. In the protocol, for the OT
calls in which Adv acts as S, it gives to Sim the messages (m0,m1) and receives nothing.
For the OT calls in which Adv plays the role of R, it gives its choice bit b to Sim and
receives mb.

In the protocol, the view of Adv is different for the case where the honest party
Pj∗ = Pn, the last party, and where it is not. Therefore, Sim works differently for these
two cases as well.

Case 1: Pn is honest and Adv controls all the other parties. For this case, the
view of Adv contains the following:

• {xi}xi∈x−xn - the input bits of the corrupt parties.

• {rj}j∈[n−1] - the randomness of the corrupt parties.

• {exiin}xi∈x−xn - strings received from OT with Pn where Adv acts as R.

• {si}xi∈x−xn - the final share for each input bit of Adv from Pn.

In order to simulate this in the ideal world, Sim works as follows:
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• Sim possesses input bits {xi}xi∈x−xn . It picks uniformly at random the elements in
{rj}j∈[n−1]. Then, Sim invokes Adv with these values.

• Corresponding to each input bit of the honest party, Sim emulates (n− 1) calls to
OT where Adv is S. For each call, Sim receives (e0

ij, e
1
ij) for the ith input bit. Adv

does not get an output.

• Sim honestly runs {e0
in, e

1
in}i∈[m] ← PreEn(rn;n). Then for each bit xi ∈ x− xn, it

emulates OT by receiving xi from Adv and returning exiin.

• Sim receives Bn−1 from Adv and honestly executes Bn ← En∗(rn;n,Bn−1).

• It gives Adv, the set {si}xi∈x−xn ∈ Bn.

• Finally, Sim receives {Zi}xi∈x−xn from Adv and terminates.

Note that the view generated by Sim here is exactly identical to that in the OT-hybrid
model.

Case 2: Adv controls all parties except for a party Pj∗ 6= Pn. For this case, the
view of Adv consists of the following:

• {xi}xi∈x−xj∗ - the input bits of the corrupt parties.

• {rj}j 6=j∗ - the randomness of the corrupt parties.

• {exiij∗}xi∈x−xj∗ - strings received from OT with Pj∗ where Adv acts as R.

• Bj∗ - the intermediate encoding that Adv receives from Pj∗ .

• {Zi}xi∈xj∗ - the reconstructed encodings that Pj∗ gives Adv.

• f(x) - the final output that Adv learns on decoding.

In order to simulate this in the ideal world, Sim works as follows:

• Sim has the input bits {xi}xi∈x−xj∗ . After passing this to F , it receives f(x).

• Sim invokes the iDRE simulator using these:

{rj}j 6=j∗ ,Bj∗ , {exiij∗}xi∈x−xj∗ , {Zi}xi∈xj∗ ← Sim′(f(x), {xi}xi∈x−xj∗ )

Then, Sim invokes Adv with {xi}xi∈x−xj∗ and {rj}j 6=j∗ .

• Corresponding to each input bit of the honest party, Sim emulates (n− 1) calls to
OT where Adv is S. For each call, Sim receives (e0

ij, e
1
ij) for the ith input bit. Adv

does not get an output.

• Then for each bit xi ∈ x − xj
∗ , Sim emulates OT by receiving xi from Adv and

returning exiij∗ .

• Sim receives Bj∗−1 from Adv during the encoding phase.
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• It gives back Bj∗ to Adv. Then, Adv proceeds to perform the rest of the encoding
with this as the basis until Bn is created.

• For each xi ∈ xj
∗ , Adv gives si to Sim.

• Adv receives {Zi}xi∈xj∗ from Sim.

• Finally, Adv performs the decoding process for Pn and gets f(x).

• Thus, the simulated view consists of:

{xi}xi∈x−xj∗ , {rj}j6=j∗ , {exiij∗}xi∈x−xj∗ ,Bj∗ , {Zi}xi∈xj∗ , f(x)

The differences between the simulated and the real views is that in the simulated view, the
sets {rj}j6=j∗ ,Bj∗ , {exiij∗}xi∈x−xj∗ , {Zi}xi∈xj∗ are all derived from the execution of Sim′, whereas
in the OT-hybrid model, these were created according to the protocol.
Assume, by contradiction, that there exists a PPT distinguisher D′ that can distin-
guish between the real and simulated views of the protocol. D′ receives as input a set
({xi}xi∈x−xj∗ , {rj}j 6=j∗ , {e

xi
ij∗}xi∈x−xj∗ , Bj∗ , {Zi}xi∈xj∗ , f(x)), performs operations in polyno-

mial time, and returns a bit b. If b = 1, D′ decides that the view received is the real view
and it is a simulated view otherwise. D′ has non-negligible advantage ε in the given game.

Then we can construct a PPT distinguisher D that can break iDRE privacy by
using D′ as a subroutine. D gives ({xi}xi∈x−xj∗ , f(x)) to a challenger and gets back
({rj}j 6=j∗ , {exiij∗}xi∈x−xj∗ , Bj∗ , {Zi}xi∈xj∗ ). It needs to perform operations that take polynomial-
time overall and returns a bit b such that b = 0 if D decides that the view received has been
generated by Sim′, the iDRE simulator, and is generated from a real execution of the iDRE
functions otherwise. D works by simply passing all of ({xi}xi∈x−xj∗ , {rj}j 6=j∗ , {e

xi
ij∗}xi∈x−xj∗ ,

Bj∗ , {Zi}xi∈xj∗ , f(x)) to D′ and returning the bit that D′ returns. As D′ has ε advantage,
D has the same advantage in its game.

Since iDRE privacy holds and no such D exists that has non-negligible advantage and
therefore no such D′ can exist.

Therefore, we have that the protocol in Figure 3 securely computes f in the OT-hybrid
model in the presence of any semi-honest PPT adversary Adv corrupting up to n − 1
parties.6 Furthermore, as is evident from the protocol itself, no more than ((n− 1)×m)
calls to OT are made.

OT complexity. For each input bit xi ∈ x, the party Pi′ possessing it participates
in OT with all other parties Pj in order to receive {exiij }j 6=i′∈[n]. It possesses exiii′ as the
encoder that created it. This corresponds to n− 1 OT calls for each input bit. No other
step in the protocol uses OT. Hence, the protocol uses no more than ((n− 1)×m) OT
calls in all.

6This protocol can be extended to have all parties (not only Pn) learn the output. In such a scenario,
each party can either locally act as a decoder, or Pn can send f(x) to all other parties. This eliminates
the need for separate cases in the security proof since a computationally indistinguishable simulated view
of the adversary now can be generated by the iDRE simulator Sim for all cases.
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A Instantiating KMHE for Garbling
Strong KMHE (Definition 11) can be instantiated by existing schemes like the one given
in [BHHO08]. In our instantiation, we restrict the more general cryptosystem in [BHHO08]
to a limited key and message space and functionality. Along with being a CPA secure
encryption scheme, this scheme also is λ-key leakage resilient as shown in [NS09]. This
property is defined as follows:

Definition 15. (key-leakage attacks) A public-key encryption scheme Π = (Gen,Enc,Dec)
is semantically secure against λ(n)-key-leakage attacks if for any probabilistic polynomial-
time λ(n)-key-leakage adversary A = (A1,A2) it holds that

AdvLeakage
Π,A (n) =

∣∣∣∣Pr[ExptLeakage
Π,A (0) = 1]− Pr[ExptLeakage

Π,A (1) = 1]

∣∣∣∣
is negligible in n, where ExptLeakage

Π,A (b) is defined as follows:

1. (SK,PK)← Gen(1n)

2. (M0,M1, state)← ALeakage(SK)
1 (PK) such that |M0| = |M1|

3. C ← EncPK(Mb)

4. b′ ← A2(C, state)

5. output b′.

Let G be a group of order q and gi ∈ G be a generator of G. For a negligible function
δ, let the key length parameter κ = λ+ 2 log q + 2 log 1

δ
where λ is a leakage parameter,

and let Sκ be the set of all permutations on κ positions.
Informally, the secret key sk is restricted for the domain of κ-bit strings with κ

2
0s

and κ
2
1s. Let g0, g1 ∈ G be two elements that represent the numeric values for 0 and

1 respectively. Then, the message space consists of plaintexts m = (m1, · · · ,mκ) where
each mi ∈ {g0, g1} and m contains exactly κ

2
g0’s and κ

2
g1’s. During encryption, loosely

speaking, first a set of public keys pk = (pk1, · · · , pkκ) are sampled where pki ∈ Gκ+1

is derived from sk. Then pki is used to create ci ∈ Gκ+1 for each mi ∈ m. The final
ciphertext is c = (c1, · · · , cκ).

The message space transformations g ∈ Fmsg is the set of permutations over κ length
strings. A transformation is applied to a ciphertext c = (c1, · · · , cκ) by permuting the
elements in c according to g. Note that in the ciphertext, each ci ∈ c was computed for a
bit mi ∈ m. Therefore permuting the ci elements results in permuting the bits mi ∈M.
Let Mg be the permutation matrix for g. Such a permutation is therefore applied by
computing Mg × c.

The key space transformations f ∈ Fkey is also the set of permutations over κ length
strings. In order to apply this, the first κ elements in each vector ci ∈ c are permuted
according to f , effectively rearranging the order in which the public key elements were
used to compute the ciphertext. Therefore, letting Mf be the permutation matrix for f ,
such a permutation is therefore applied by computing c×Mf for the first κ columns of c.
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The Eval algorithm is used to apply both the key space and message space permutations
to a ciphertext. Along with applying the permutation matrices to the ciphertext rows and
columns, it also performs an additional step of blinding the ciphertext. That is, given a
ciphertext c and a product c′ = Eval(c, f, g), c′ would look like a freshly created ciphertext.
This is carried out by sampling a random element ri ∈ G for each row ci of the ciphertext.
Next, for each pki ∈ pk, each element in pki is raised to the power of ri. Finally, elements
in the resulting vector are multiplied to elements in ci ∈ c that have in the same positions.

Formally, strong KMHE is instantiated with [BHHO08] as follows:

Construction 2. KMH = (Gen,Enc,Dec,Eval) instantiated using [BHHO08] is defined
over the following spaces:

• K is the set of all (s1, · · · , sκ) ∈ {0, 1}κ with κ
2
0s and the rest 1s

• M is the set of all (m1, · · · ,mκ) ∈ {g0, g1}κ with κ
2
g0’s and the rest g1’s

• C = G(κ+1)×κ

• Fkey = Sκ. For f ∈ Fkey, Mf is its matrix representation

• Fmsg = Fkey. For g ∈ Fmsg, let Mg be its matrix representation

These are used to instantiate the following functions:

• sk← Gen(1κ):

– choose sk← K
– output - sk = (s1, · · · , sκ)

• pk← PKgen(sk):

– input - sk = (s1, · · · , sκ)← K
– choose g1, · · · , gκ ← G
– let h = Πκ

i=1g
si
i

– output - pk = (g1, · · · , gκ, h)

• c← Enc(sk,m):

– input - key sk = (s1, · · · , sκ)← K
– input - message m = (m1, · · · ,mκ) ∈M
– for each mi ∈ m, choose ri ← Zq
– for each mi ∈ m, get pki = (g1,i, · · · , gκ,i, h)← PKgen(sk)

– for each mi ∈ m, compute ci = (gri1,i, · · · , g
ri
κ,i, h

ri ·mi)

– let pk = (pk1, · · · , pkκ)
– let c = (c1, · · · , cκ)
– output - c′ = (c, pk)
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• Dec(sk, c) = m:

– input - key sk = (s1, · · · , sκ)← K
– input - ciphertext c′ = (c, pk)

– let c = (c1, · · · , cκ) ∈ C

– for each ci = (u1, · · · , uκ, e) ∈ c, compute mi = e ·
(
Πκ
i=1u

si
i

)−1

– output - m = (m1, · · · ,mκ)

• c′ ← Eval(c, f, g):

– input - key permutation matrix Mf for f ∈ Fkey
– input - message permutation matrix Mg for g ∈ Fmsg
– input - ciphertext c′ = (c, pk)

– let c = (c1, · · · , cκ) ∈ C
– let pk = (pk1, · · · , pkκ)
– compute c′′ = Mg × c, applying the plaintext transformation

– compute c′′ = c′′ ×Mf to the first κ columns, for the key transformation

– sample r = (r1, · · · , rκ)← Zκq
– for each pki = (g1, · · · , gκ, h) ∈ pk, for each ci = (α1,i, · · · , ακ,i, ακ+1,i) ∈ c′′,
compute c′i = (α1,i · gri1 , · · · , ακ,i · griκ , ακ+1,i · hri)

– let c = (c′1, · · · , c′κ) ∈ C
– let pk = (r1 · pk1, · · · , rκ · pkκ)
– output - c′ = (c, pk)

Informally, KMH privacy, as in Definition 11, requires indistinguishability between
two ciphertexts of known messages encrypted under two different keys, for one of which,
the adversary knows some additional information. It is already proven in [NS09] that
assuming the hardness of DDH, the [BHHO08] encryption scheme is resilient against key
leakage attacks as in Definition 15. We use this to prove the following theorem:

Theorem 6. Assuming the hardness of DDH, the [BHHO08] encryption scheme as in
Construction 2 is a strong KMHE scheme that satisfies Definition 11.

Proof. Construction 2 satisfies Correctness and KMH Correctness by definition.

Claim 7. Construction 2 satisfies Key Privacy.

Proof. The key space K contains all κ-bit strings with κ
2
0’s and κ

2
1’s. Let k, k′ ∈ K be

such keys. The key domain transformation family Fkey contains all permutations over
κ positions. Let f ← Fkey be picked uniformly at random. In order for Key Privacy to
hold, we require that,

{k, k′}k←Gen(1κ),k′←Gen(1κ)

s
≈ {k, f(k)}k←Gen(1κ),f←Fkey
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In Construction 2,

Pr[(k, k′) : k = k0 ← Gen(1κ), k′ = k1 ← Gen(1κ)] =
1

|K| · |K|

since Gen(1κ) samples a key uniformly at random from the key space. Furthermore, a
permutation on the positions within the key can map a given key to any other key with
equal probability. Therefore,

Pr[(k, k′) : k = k0 ← Gen(1κ), f ← Fkey, k′ = f(k)] =
1

|K| · |K|

Thus for a key pair (k, k′), both these distributions are identical and Key Privacy holds.

Claim 8. Construction 2 satisfies KMH Privacy.

Proof. We assume, by contradiction, that there exists a PPT adversary Adv that can
distinguish in the KMH privacy game with non-negligible advantage ε. Adv gets the
keys k0, k1, f(k1) ∈ K from the challenger. Letting the total number of queries be t, Adv
samples {mi,m

′
i ∈M, gi ∈ Fmsg}i∈[t]. For each such instance (mi,m

′
i, gi), it forwards to

the challenger the triple (ci, gi,m
′
i) where c = Enc(k0,mi) using the encryption algorithm

of Construction 2. Adv receives a ciphertext cib each time, and finally it needs to output
its guess b′ for b.

The proof for KMH privacy follows via a sequence of hybrids for the view of the
adversary. These hybrids are as follows:

• H0 = {k0, k1, f(k1), {mi,m
′
i, gi, ci,Enc(f(k0), gi(mi))}i∈[t]} : this view corresponds

to the case in the KMH privacy game when b = 0. The function f ∈ Fkey is a secret
chosen by the challenger. The keys k0, k1, f(k1) are given by the challenger in the
beginning of the game. Each tuple (mi,m

′
i, gi) are sampled by the adversary and

ci is also created by it using the encryption algorithm from Construction 2. Each
ciphertext Enc(f(k0), gi(mi)) is rerandomized by the challenger from ci.

• H1 = {k0, k1, f(k1), {mi,m
′
i, gi, ci,Enc(f(k0),mi

1)}i∈[t]} : in this hybrid, the elements
(k0, k1, f(k1), {mi,m

′
i, gi, ci}i∈[t]) are sampled and computed in the same way as in

H0. However, each ciphertext Enc(f(k0),mi
1) is created differently: for the ith query,

the challenger samples a fresh mi
1 uniformly at random and this is kept secret

from Adv. Then mi
1 is encrypted using f(k0) using the encryption algorithm from

Construction 2.

• H2 = {k0, k1, f(k1), {mi,m
′
i, gi, ci,Enc

′(f(k0),m
i
1)}i∈[t]} : in this hybrid, again, the

elements (k0, k1, f(k1), {mi,m
′
i, gi, ci}i∈[t]) are sampled and computed in the same

way as in H0 and H1. But each challenge ciphertext Enc′(f(k0),m
i
1) created by

first sampling a fresh mi
1 uniformly at random that is kept secret from Adv. Then

encryption is performed using an algorithm Enc′(·, ·). This is a modified encryption
function where for a message m ∈ M as in Construction 2, for each mi ∈ m, κ
different elements r1, · · · , rκ ∈u.a.r. Zq are first sampled. Then, ci = (gr11 , · · · , grκκ , h′ ·
mi) where h′ = Πκ

j=1g
rj ·sj
j .
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• H3 = {k0, k1, f(k1), {mi,m
′
i, gi, ci,Enc

′(k′,mi
1)}i∈[t]} : this hybrid is identical to

the previous hybrid except, again, for the way in which each challenge ciphertext
Enc′(k′,mi

1) is created. Here, the challenger samples a fresh key k′ ← Gen(1κ) that is
used to encrypt all the challenges (instead of using f(k0)). This key is independent
of (k0, k1, f(k1)) that Adv is given. For the ith query, a fresh message mi

1 is sampled
uniformly at random and kept secret from Adv. It is encrypted under k′ using
Enc′(·, ·) as in the previous hybrid.

• H4 = {k0, k1, f(k1), {mi,m
′
i, gi, ci,Enc(k

′,mi
1)}i∈[t]}: this hybrid is identical to H3

except that each challenge ciphertext Enc(k′,mi
1) is created using the encryption

algorithm as in Construction 2.

• H5 = {k0, k1, f(k1), {mi,m
′
i, gi, ci,Enc(k

′,m′i)}i∈[t]} : this view corresponds to the
case in the KMH privacy game when b = 1. From the previous hybrid, we switch
here, for each challenge ciphertext, from an encryption of an unknown random mi

1,
to that of m′i chosen by Adv.

If Adv is a PPT adversary that can distinguish between hybrids H0 and H5 with a non-
negligible advantage ε, it then follows that one of the adjacent hybrids can be distinguished
with advantage at least ε

5
. The proof for the theorem follows from the fact that each pair

of adjacent hybrids can be shown as indistinguishable:

1. The fact that H0
c
≈ H1 can be reduced to security against λ-key leakage attacks

(Definition 15). Intuitively, we require that given leakage k0, k1, f(k1) for some secret
key f(k0) of the challenger, any PPT adversary Adv′ cannot distinguish between
two ciphertexts computed as ci0 = Enc(f(k0), gi(mi)) and ci1 = Enc(f(k0),mi

1) for an
unknown mi

1 that is sampled uniformly at random by the challenger.

2. Proving that H1
c
≈ H2 and H3

c
≈ H4 are both shown in a similar manner by a

reduction to the DDH problem: the difference between these adjacent hybrids stems
from the fact that in one, a Diffie-Hellman tuple is used in the encryption algorithm
for each challenge ciphertext and this is not the case for the other. Furthermore,
since the ciphertexts encrypt a message mi

1 that was sampled uniformly at random
and is unknown to Adv, it follows that there could be multiple possible correct
decryptions.

3. We argue that H2 and H3 are identically distributed. This is because,going to
the latter hybrid from H2 the encryption key is switched from f(k0) to a freshly
sampled k′. For each unknown mi

1 chosen at random since, a ciphertext ci created
using Enc′(·, ·) can potentially be decrypted to the same message for the public key
(g1, · · · , gκ, h) and different values of (r1, · · · , rκ) in the exponent given that they
satisfy the constraints on h. These constraints are the different secret keys of the
form (s1, · · · , sκ).

4. Lastly, the fact that H4
c
≈ H5 can be reduced to the standard CPA security

requirement satisfied by Construction 2.
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First, in order to show that H0
c
≈ H1, we define a sequence of hybrids J0, · · · , Jt, each

of the form,

Ji = {k0, k1, f(k1), {mj,m
′
j, gj, cj}j∈[t], {Enc(f(k0),mi

1)}j≤i, {Enc(f(k0), gi(mi))}j>i}

Note that J0 = H0 and Jt = H1. If the PPT distinguisher Adv that can distinguish for
KMH privacy of Construction 2 with non-negligible advantage ε, can distinguish between
H0 and H1, it follows that there must exist an index i ∈ [t] for which it can distinguish
between neighbouring hybrids Ji−1 and Ji with a non-negligible advantage > ε

5t
. Such an

Adv can be used as a subroutine to define a new PPT key-leakage adversary Aleak, that
works as follows:

• Aleak first samples the keys k0, k1 ← Gen(1κ).

• Letting Cleak be the key leakage challenger, Cleak samples a secret key sk′ ← Gen(1κ).
It gives to Aleak, a corresponding public key pk′ ← PKgen(sk′).

• Next, Aleak defines a leakage function leakagek0,k1(·) that works as follows: on input
sk′ ∈ K, first sample a function f ← Fkey uniformly at random under the constraint
that sk′ = f(k0). Then output f(k1) ∈ K.

• Aleak sends leakagek0,k1(·) as a query to Cleak and gets back f(k1) as a response.

• Aleak then sends k0, k1, f(k1) to Adv. It also samples an index i ∈ [t] uniformly at
random.

• Aleak receives from Adv, the tuple {cj = Enc(k0,mj), gj,m
′
j}j∈[t], where eachmj,m

′
j ∈

M and gj ∈ Fmsg is sampled by Adv.

• Now, Aleak creates the challenge ciphertext set as follows:

– It samples a fresh message m′1 = mi
1 ← M uniformly at random. It sets

m′0 = gi(Dec(k0, ci)) = gi(mi). Then, (m′0,m
′
1) are sent to the challenger Cleak.

– It gets back a challenge ciphertext cb. Note that when b = 0, c0 = Enc(f(k0), gi(mi))
that is equivalent to Eval(c, f, g) by definition in Construction 2. Otherwise,
c1 = Enc(f(k0),mi

1).

– It appends the public key to the ciphertext, making c′b = (cb, pk
′). This is set

as ci.

– For all j < i, Aleak samples a fresh mj
1 ∈M uniformly at random and encrypts

mj
1 with pk, getting cj = Enc(f(k0),mj

1).

– For all j > i, Aleak first decrypts cj using k0 to get gj(mj) ∈ M. It then
encrypts the message with pk, getting cj = Enc(f(k0), gj(mj)).

• Aleak sends the set {cj}j∈[t] to Adv.

• Finally, Aleak outputs whatever Adv outputs.
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It follows that conditioned on the correctness of Eval and the fact that leakageK0,K1
(·)

is a valid leakage function according to [NS09], Aleak has advantage > ε
5t

in this game,
which is non-negligible. However, since no such Aleak can exist for [BHHO08], no such
Adv can distinguish for any index between Ji and Ji−1. Therefore, H0

c
≈ H1.

Note that Eval is correct by definition in Construction 2. The leakage function
leakagek0,k1(·) is valid since we set the permissible leakage to λ = κ− 2 log q − 2 log 1

ε
=

κ(1− o(1)) in the construction. The fact that leakagek0,k1(·) reveals no more than λ bits
of the secret key sk′ to Aleak is derived from the lemma in [GHV10]:

Lemma 3. Let L1, L2 ∈ HWκ,κ/2 and π ∈ Sκ be chosen uniformly at random. Then,

H̃∞(π(L1)|L1, L2, π(L2)) ≥ κ− 3

2
log κ

Here, HWκ,k denote the set of all κ bit strings with hamming weight k, and Sκ denotes
the set of all permutations over κ elements. leakagek0,k1(·) gives us λ′ = 3

2
log κ bits of

information. This is less than λ for large enough κ. Therefore, leakagek0,k1(·) is a valid
leakage function for Construction 2.

In order to show for the set of hybrids, H1
c
≈ H2, and H3

c
≈ H4, we would require

a similar sequence of hybrids as in the above argument. We show now that H1
c
≈ H2,

and a similar argument can be made to show H3
c
≈ H4. Consider a sequence of hybrids

J0, · · · , Jt, each of the form,

Ji = {k0, k1, f(k1), {mj,m
′
j, gj, cj}j∈[t], {Enc′(f(k0),mi

1)}j≤i, {Enc(f(k0),mi
1)}j>i}

Note that J0 = H1 and Jt = H2. If the PPT distinguisher Adv that can distinguish for
KMH privacy of Construction 2 with non-negligible advantage ε, can distinguish between
H1 and H2, it follows that there must exist an index i ∈ [t] for which it can distinguish
between neighbouring hybrids Ji−1 and Ji with a non-negligible advantage > ε

5t
. Such an

Adv can be used as a subroutine to define a distinguisher ADDH for the Decisional Diffie
Hellman problem, that works as follows:

• A DDH challenger gives ADDH a tuple (a, b, c, d) and the goal is to output a bit b′
such that if b′ = 1, the challenge is a DH tuple (of the form g1, g2, g

r
1, g

r
2) and it is a

non-DH tuples (of the form g1, g2, g
r1
1 , g

r2
2 ) otherwise.

• ADDH works by first sampling k0, k1 ← Gen(1κ) and f ← Fkey uniformly at random.
It sends k0, k1, f(k1) to Adv.

• ADDH gets from Adv the tuple {cj = Enc(k0,mj), gj,m
′
j}j∈[t], where eachmj,m

′
j ∈M

and gj ∈ Fmsg is sampled by Adv.

• ADDH samples a position i ∈ [t] uniformly at random and creates the set of responses
to Adv as follows:

– For each jth query, it samples a fresh message mj
1 ∈M uniformly at random.
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– Then, for all j < i, it samples κ different elements rj1, · · · , rjκ ∈u.a.r. Zq. Let
f(k0) = (s1, · · · , sκ). Then, for each element mk ∈ mj

1, it computes ck =

(g
rj1
1 , · · · , gr

j
κ
κ , h

′ · mk) where h′ = Πκ
j=1g

rkj ·sj
j . The resulting ciphertext cj =

(c1, · · · , cκ) is an encryption of mj
1 under the key f(k0) using the algorithm

Enc′(·, ·) that uses a non-DDH tuple.

– For all i < j, it creates cj = Enc(f(k0),mi
1).

– Lastly, for the ith response, it first extends the challenge from the DDH
challenger to (g1, · · · , gκ, gr11 , · · · , grκκ ). In the public key, h and h′ are computed
using these along with f(k0) and this is used to encrypt mi

1. Note that if this
is a DH tuple, then the ci formed is according to the algorithm Enc(·, ·) is as
in Construction 2. Otherwise, it is as in Enc′(·, ·).

• ADDH sends the set {cj}j∈[t] to Adv.

• Finally, ADDH outputs whatever Adv outputs.

ADDH has advantage > ε
5t

in this game, which is non-negligible. However, since no such
ADDH can exist for [BHHO08], no such Adv can distinguish for any index between Ji and
Ji−1. Therefore, H2

c
≈ H1.

We argue next that H2 and H3 are distributed identically when switching between
secret keys f(K0) and K ′. For each query i ∈ [t], the challenger samples a plaintext
mi

1 ←M uniformly at random. Therefore, for a challenge ciphertext ci that is formed
using Enc′(·, ·), there could exist multiple valid decryptions to different plaintexts using
different secret keys, each case being equally probable. This is possible since a non-DDH
tuple allows different values (r1, · · · , rκ) in the exponent for the public key elements. This
makes for a more general constraint for calculating h in pk = (g1, · · · , gκ, h) that can
be satisfied by different secret keys for different values of (r1, · · · , rκ) in the exponent.
In fact, fixing any message m1, and corresponding h′ (due to c being fixed), for each
K = (s1, · · · , sκ), there is an (r1, · · · , rκ) that satisfies h′ = Πκ

i=1g
ri·si
i in Enc′(·, ·) for a

fixed (g1, · · · , gκ, h). Therefore, Pr[f(K0)|c] = Pr[K ′|c].

Finally, we claim that if Adv can distinguish between H4 and H5 with non-negligible
advantage ε

5
, it can be used by a PPT adversary ACPA to break the CPA security of

Construction 2. Consider a sequence of hybrids J0, · · · , Jt, each of the form,

Ji = {k0, k1, f(k1), {mj,m
′
j, gj, cj}j∈[t], {Enc(k′,m′i)}j≤i, {Enc(k′,mi

1)}j>i}

Note that J0 = H4 and Jt = H5. If the PPT distinguisher Adv that can distinguish for
KMH privacy of Construction 2 with non-negligible advantage ε, can distinguish between
H4 and H5, it follows that there must exist an index i ∈ [t] for which it can distinguish
between neighbouring hybrids Ji−1 and Ji with a non-negligible advantage > ε

5t
. Such an

Adv can be used as a subroutine to define a distinguisher ACPA, that works as follows:

• ACPA first samples the keys k0, k1, k
′ ← Gen(1κ) and the transformation f ← Fkey.

It gives k0, k1, f(k1) to Adv.
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• Letting CCPA be the challenger, CCPA samples a secret key sk′ ← Gen(1κ). It gives
to ACPA, a corresponding public key pk′ ← PKgen(sk′).

• ACPA then samples an index i ∈ [t] uniformly at random.

• It receives from Adv, the tuple {cj = Enc(k0,mj), gj,m
′
j}j∈[t], where each mj,m

′
j ∈

M and gj ∈ Fmsg is sampled by Adv.

• Now, ACPA creates the challenge ciphertext set as follows:

– It samples a fresh message m′1 = mi
1 ← M uniformly at random. It sets

m′0 = m′i. Then, (m′0,m
′
1) are sent to the challenger.

– It gets back a challenge ciphertext cb. Note that when b = 0, c0 = Enc(k′,m′i)
and, otherwise, it is c1 = Enc(k′,mi

1).

– It appends the public key to the ciphertext, making c′b = (cb, pk
′). This is set

as ci.

– For all j > i, ACPA samples a fresh mj
1 ∈M uniformly at random and encrypts

mj
1 with pk, getting cj = Enc(k′,mj

1).

– For all j < i, ACPA encrypts the message m′j with pk, getting cj = Enc(k′,m′j).

• ACPA sends the set {cj}j∈[t] to Adv.

• Finally, ACPA outputs whatever Adv outputs.

Assuming the hardness of DDH, Construction 2 is CPA secure and therefore no such Adv
can exist.

Therefore, assuming DDH, [BHHO08] as in Construction 2 is a strong KMHE scheme
as in Definition 11.

B A Gap in the Analysis of [GHV10]
The notion of a rerandomizable garbled circuit (RGC) was introduced in [GHV10], where
they define rerandomizable SFE (Definition 7) and implement it using an RGC (though a
formal definition for RGC was not given).7 The RGC was then instantiated using the
encryption scheme of [BHHO08]. Although their construction of a rerandomizable SFE is
secure, it turns out that their proof has a slight gap, which we identify here. We stress
that all the constructions in [GHV10] are secure as claimed, and only the analysis needed
adjustment.

First, we briefly recall the structure of the RGC in [GHV10]. Each garbled gate of the
RGC carries, for each pair of values for the gate’s input wires, encryptions of additive
shares of output labels using the two input labels as keys. This construction, similar
to Yao’s garbled circuit construction, admits the simulation of the GC and the set of

7Rerandomizable SFE was defined as an intermediate notion in [GHV10], whose main contribution
was a “multi-hop homomorphic encryption” primitive.
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labels for a single input, based only on the circuit’s output on that input (Theorem 7
in [GHV10]). This relies only on the semantic security of the encryption scheme used.

Next, a rerandomization procedure is provided: To rerandomize the GC, the bits of
the labels are permuted, using independent permutations for each wire, but the same
permutation for both values of a wire. Towards this, the authors exploit two properties
of the encryption scheme of [BHHO08]. Firstly, it allows such transformations to be
applied to both the key and the message of a ciphertext, and secondly, as established
by Naor and Segev [NS09], it is resistant to leakage from the secret key. Gentry et al.
insightfully note that the leakage-resilience property aligns with the goal of securing
a rerandomizable garbled circuit, when the encryption keys used in the rerandomized
garbled circuit could be correlated with keys of the original circuit which are known
to the adversary. This requires that the keys become sufficiently random when a key-
transformation is applied, and [GHV10] ensure this using a clever choice of the key-space
and the transformation-space.

However, their proof does not match their security definition of a Rerandomizable
SFE, which requires that a rerandomized second message in a 2-round SFE protocol is
indistinguishable from a freshly generated one. In particular, it is shown that even given
the original GC, the rerandomized GC is simulable, thanks to semantic security of the
BHHO scheme under leakage-resilience, as defined by [NS09]. However, this semantic
security applies only to indistinguishability of two ciphertexts which are both encrypted
under the same (transformed) key. As such, it does not rule out the ability of an adversary
to identify if a ciphertext was encrypted using a key obtained by transforming a known
key, or from a fresh key. As we shall see, such ability would render their rerandomization
scheme insecure; nevertheless, the encryption scheme of [BHHO08] enjoys additional
properties that rule out this attack.

Below, in appendix B.1, we shall see an example of an encryption scheme which enjoys
all the properties that are explicitly used in the proof in [GHV10], yet fails to meet
their definition of rerandomizable SFE. We also present a definition of Key-and-Message
Homomorphic Encryption, which explicitly models a key-privacy requirement, in addition
to message-privacy. Further, following the proof in [NS09], we prove that the construction
in [BHHO08] satisfies this definition. This lets us complete the proof of security of the
rerandomizable SFE construction in [GHV10].

B.1 A Counter-Example

Note that Definition 15 of key-leakage resilience from [NS09] guarantees indistinguishability
between encryptions of two messages under the same key, given that λ bits of the key are
leaked.

Now, we provide an example of an encryption scheme which satisfies the above
definition, as well as supports key-and-message homomorphism as relied upon by [GHV10].
We start from an encryption scheme E = (Gen,Enc,Dec) that is semantically secure and
λ-key leakage resilient (this can be thought of as the scheme in [BHHO08]). Let K be the
key domain and Fkey be the key transformation space for E .

We use this to create another scheme E ′ = (Gen′,Enc′,Dec′) which simply has an
extra bit in the secret-key that is included in the ciphertext during encryption. The
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transformation space for the keys is expanded as described below.8

• Gen′(1n)→ k ∈ K′ gives an n-bit key k = (a, y) where a ∈ {0, 1}, and y ← Gen(1n−1)
is n− 1 bits long.

• Enc′(k,m) = (Enc(y,m), a) encrypts m using y and appends a to the result.

• Dec′(k, c) = Dec′((a, y), (c′, a)) = Dec(y, c′) decrypts c′ using y, ignoring a.

• E ′ is homomorphic in the key domain for a function family F ′key with functions Fd,f ∈
F ′key where f ∈ Fkey and d ∈ {0, 1}, such that Fd,f (k) = Fd,f (a, y) = (a⊕ d, f(y)).

• The message space contains the key space, and the scheme is homomorphic in the
message domain for the same function family F ′key as above. For this, we assume
that E has such a message space and message transformation space (which is the
case for the scheme in [BHHO08]).

The following claim is easy to immediately verify:

Claim 9. If E is λ-key leakage resilient, then E ′ is also λ-key leakage resilient.

Further, [GHV10] lower bound the average conditional min-entropy H̃∞(f(k1) |
k0, k1, f(k0)), where k0, k1 ← K and f ← Fkey, so that the key leakage resilience of
the encryption scheme E can be invoked (Lemma 9 in [GHV10]). We note that for keys
k′0, k

′
1 ← K′ and F ← F ′key, H̃∞(F (k′1) | k′0, k′1, F (k′0)) = H̃∞(f(k1) | k0, k1, f(k0)) as

above, and hence the same argument continues to apply for E ′.
Now we point out that a GC Ĉ, with input wire labels L, that is created using E ′

as in the construction in [GHV10], and then rerandomized to Ĉ0, does not meet the
rerandomizable SFE definition. Specifically, Ĉ0 and the keys corresponding to the labels
for an input can be distinguished from a fresh GC, as these keys can be linked to the keys
in the original GC.

Let GHVE ′ denote the GC construction of [GHV10], but instantiated using the en-
cryption scheme E ′ (instead of the one in [BHHO08]). Below we refer to the garbling and
rerandomization operations, Gb and Rerand in this scheme.

Claim 10. Let (Ĉ,L) ∈ GHVE ′ .Gb(f). Then there exists a PPT distinguisher that, given
(Ĉ,L), can distinguish between Ĉ0 ← GHVE ′ .Rerand(Ĉ) and Ĉ1 ← GHVE ′ .Gb(f), a fresh
garbling of f with a positive constant advantage.

Proof. Fix Ĉ. First consider a wire with keys k0, k1 ∈ K′ where both keys have the first
bit (the “extra” bit) equal. In Ĉ0, a gate to which this wire is an input, includes four
ciphertexts encrypted with keys F (k0) or F (k1), where F ∈ F ′key (encrypting shares of a
key for the gate’s output wire – but we shall be concerned only about the keys). Note that
F (k0) and F (k1) will also have their first bits equal. Thus, all four of these ciphertexts will
have the same first bit in Ĉ0. However, in Ĉ1, freshly sampled keys k′0, k′1 ← K′ are used to

8 [GHV10] relies on the specifics of their transformation space only to ensure that (1) it is supported
by the encryption scheme, and (2) the leakage on a key f(k1), where f is drawn from the transformation
space, by (k0, k1, f(k0)) is bounded, so that the semantic security guarantee by [NS09] applies. As we
shall see, these properties remain intact.
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create these ciphertexts, and their first bits are equal only with probability 1/2. (Similarly,
when k0, k1 from Ĉ have different first bits, in Ĉ0, these four ciphertexts will not all have
the same first bit, but in Ĉ1, this will happen with probability 1/2.) Thus a distinguisher
(which “knows” Ĉ) can distinguish between Ĉ0 and Ĉ1 with constant advantage.

Therefore, even though the scheme E ′ satisfies both semantic security and λ-key leakage
resilience, the rerandomizable SFE construction of [GHV10] is rendered insecure when its
GC scheme is instantiated with E ′ instead of the encryption scheme of [BHHO08].

In our instantiation, we achieve rerandomizing using strong KMHE. The KMH privacy
requirement explicitly requires that ciphertexts under an unknown freshly sampled key
are indistinguishable from ciphertexts computed under a key that is rerandomized from
a known prior key. This also holds given the prior keys k0, k1 and the new value of the
(active) key k′1.

Strong KMHE can be instantiated under the DDH hardness assumption based on the
public-key encryption scheme from [BHHO08], and relying on its analysis from [NS09].
(Note that for simplicity, we have defined strong KMHE as a symmetric-key primitive;
however, the definition can be extended to a public-key primitive naturally, and the
scheme of [BHHO08] would satisfy this definition.) This is because not only is [BHHO08]
semantically secure and secure against λ-key leakage resilience attacks, both of whose
difficulty can be reduced to DDH, but it also holds that encryptions under any two keys
are statistically indistinguishable from each other, even given certain leakage about one of
the keys. Therefore, strong KMHE is sufficient for rerandomizing garbled circuits.

B.2 The Source of the Gap

What the proof in [GHV10] establishes is that given a garbled circuit Ĉ ∈ GHV.Gb(f), the
rerandomized garbled circuit Ĉ0 along with input labels for an input x, can be simulated
using f(x) (and not f itself). In this simulated garbled circuit, the messages in the
ciphertexts that are part of the garbled gates are replaced; however, this simulated garbled
circuit continues to use ciphertexts whose keys are as in Ĉ0. These keys are correlated
with the keys in Ĉ, and further the ciphertexts may reveal this correlation (as is the case
in our counter-example). Thus Ĉ0 (as well as the simulated garbled circuit) can be linked
to Ĉ, contradicting the security requirement of Rerandomizable SFE that it should appear
as a fresh garbled circuit.

Incidentally, as the proof in [GHV10] focused on the simulability of Ĉ0, it does not
refer to another basic requirement for a Rerandomizable SFE: since the evaluator learns
one “active” key for each wire of the garbled circuit, this key should look like a fresh key
independent of Ĉ. This is indeed satisfied by the choice of the key transformation space (of
bit permutations of a balanced string) used in [GHV10], as well as in the counter-example
we presented above.
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