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Abstract. Nowadays, MILP is a very popular tool to help cryptographers search for
various distinguishers, in particular for integral distinguishers based on the division
property. However, cryptographers tend to use MILP in a rather naive way, modeling
problems in an exact manner and feeding them to a MILP solver. In this paper, we
show that a proper use of some features of MILP solvers such as lazy constraints,
along with using simpler but less accurate base models, can achieve much better
solving times, while maintaining the precision of exact models. In particular, we
describe several new modelization techniques for division property related models
as well as a new variant of the Quine-McCluskey algorithm for this specific setting.
Moreover, we positively answer a problem raised in [DF20] about handling the large
sets of constraints describing valid transitions through Super S-boxes into a MILP
model. As a result, we greatly improve the solving times to recover the distinguishers
from several previous works ([DF20], [HWW20], [SWW17], [Udo21], [EY21]) and we
were able to search for integral distinguishers on 5-round ARIA which was out of reach
of previous modeling techniques.
Keywords: block cipher · integral distinguisher · MILP

1 Introduction
Nowadays, modeling an attack against a symmetric primitive as a Mixed Integer Linear
Programming (MILP) problem and then solving it by some MILP solver is a popular method.
It was applied for the first time by Mouha et al. [MWGP11] and by Wu and Wang [WW11]
for studying the resistance of several ciphers (e.g. Enocoro) against both differential and
linear cryptanalysis. Since then, the use of MILP models in our community has increased,
the advantage being that many cryptanalytic problems are relatively easy to translate into
linear constraints (typically on bits) and available solvers, in particular Gurobi [Gur21],
are most often very efficient to solve them. Furthermore such generic solvers are used by
a large number of people and companies, ensuring a decent level of confidence in their
results. Currently, MILP solvers are mainly used for differential cryptanalysis [MWGP11],
including the search of sophisticated boomerang distinguishers [LS19, DDV20], and for
integral cryptanalysis by exhausting division trails on a cipher [XZBL16].

While generating a MILP model for a given problem is most often relatively easy,
generating a fast enough model is harder. This is mainly because there are no tight bounds
regarding the complexity of solving a system of n inequalities involving m variables as
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it depends on too many parameters, including the heuristic used for the exploration of
the underlying search tree. Still, it is commonly assumed that lowering the number of
inequalities as well as the number of variables involved in the model does speed-up the
solving process [ST17, BC20]. As an example, in [AST+17] Abdelkhalek et al. used the
Quine-McCluskey (QM) algorithm [Qui52, Qui55, McC56] to derive a minimum set of
linear inequalities on boolean variables to represent the DDT of an 8-bit S-box. Doing so
they were able to prove that no differential characteristic against 13-round Skinny-128
has probability greater than 2−128 while it would have been impossible to get this result
in a reasonable time with a naive modelization. However, Sasaki and Todo showed that
the most compact modelization is not always the fastest one to solve [ST17].

1.1 Division Property
In this paper we focus on modelization techniques for division property. For this crypt-
analysis technique, the goal is to answer the question of the existence of a division trail
through the cipher for particular inputs and outputs as the absence of trails implies the
existence of an integral distinguisher. Typically the cipher is decomposed into several
simple functions for which we know the valid transitions and a trail is said to be valid if
and only if all the internal transitions are valid. The main issue with this technique is
that the presence of a trail does not ensure the non-existence of integral distinguishers.
Indeed, the validity of a trail does depend on the internal decomposition of the cipher, and
a valid trail for one decomposition might be invalid for another one. In this case we say
that the trail is a false positive. This is because the core of division property is to track
the monomials through an iterated function and, to simplify, does not properly handle
the XOR operation. For instance, let p and q be two polynomials and a binary variable x
such that p = xp1 ⊕ p2 and q = xq1 ⊕ q2. Then both p and q depend on x but it is unclear
for p ⊕ q. To keep the process simple, in the 2-subset division property we do assume
that p⊕ q also depends on x but this obviously might be incorrect. Thus over the years,
researchers tried to provide more accurate modelization techniques to avoid as much as
possible false-positive trails. In [XZBL16], Xiang et al. showed how to use the convex hull
to provide an exact representation of valid transitions through an S-box (the method takes
a practical time up to a 6-bit S-box). Later in [ZR19], Zhang and Rijmen gave an exact
modelization for any linear layer which is practical for binary matrices on a field extension.
Then Hu et al. showed in [HWW20] that quadratic constraints could be used to modelize
the propagation through any linear layer and thus switched to SAT/SMT solvers that
seem better-suited for this kind of constraints. Derbez and Fouque described in [DF20] a
new algorithm to compute the propagation table of any 16-bit Super S-box and in [Udo21]
Udovenko described such big tables with hundreds of thousands logical constraints that he
successfully solved with a SAT-solver.

We observe that last works related to 2-subset division property all abandon MILP
solvers for either ad-hoc algorithms or SAT/SMT solvers. In this paper we show that
MILP solvers, and more precisely Gurobi, are still very competitive and that they can
actually solve faster all the problems from those previous works. Our main idea is that it
is unnecessary to deal with large and complicated models since most of the constraints are
not required to conclude on the existence of a division trail.

1.2 Exact Modelization vs. Lossy Modelization
Modelizing propagation rules through a cipher may require a large number of inequalities
but not all of them are required to conclude on the existence of a division trail from a
specific value u to a specific v. For instance it was shown in [XZBL16] that one may allow
only minimal valid transitions through the different layers composing the cipher without
affecting the result of the model. More generally, we can add constraints to the model or
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remove some of them as long as it does not remove all valid division trails nor add any
new one.

Thus in this work we propose to go further with the concept of lossy modelization to
modelize possible transitions u

f→ v through a function f . The main idea is to relax some
of the constraints to simplify the model. This means that we do not remove any valid
propagation but may allow invalid ones. So far this technique was only and unwillingly
used for functions too complex to be modelized in an exact manner, typically using a
Copy-Xor-And decomposition. But as shown by ElSheikh and Youssef, lossy modelizations
may sometimes lead to faster models than exact modelizations [EY21]. Indeed, if the
resulting model does not have any solution for a given input/output pair, we are still
sure that there would not be any solution for the corresponding exact model, and so all
distinguishers found using lossy modelizations are valid. On the other hand, a solution
to the model might be a false-positive resulting from the lossy modelization. Thus, for
each function for which we have access to a more accurate modelization than the one
used in the model, we do need to check whether the corresponding constraints hold or
not for the actual solution in order to conserve the same level of precision. To handle
this, the most efficient way is to exploit specific functionalities of the Gurobi solver named
callbacks and lazy constraints. A callback is a user-designed function that is called by the
solver whenever some predetermined events happen during the solving process (e.g. a
new solution is found), without fully interrupting it. This is very useful as it allows the
user to have more control over the solving process. During a callback it is possible to add
extra constraints to the model, called lazy constraints, mainly because of the way they are
processed by the solver.1

1.3 Our Contribution
In this paper we thus propose several new modelization techniques to search for division
trails on block ciphers, focusing on 2-subset (conventional) division property. In particular
we provide the following results:

1. We describe a new algorithm which greatly improves the computation time for the
Quine-McCluskey algorithm in the specific case of division property. We also propose
a greedy approach to compact inequalities output by the Quine-McCluskey algorithm
when inserted into a MILP model. Our approach is very fast and, as an example,
was able to compute the Quine-McCluskey inequalities for a Super S-box involved in
LED and to reduce the number of inequalities from 388134 to 108668 in few seconds.

2. We provide several new (lossy) modelization techniques including a new modelization
of S-boxes based on piecewise linear constraints (PWLC).

3. We also show that the ZR-technique [ZR19] for linear layers can be computed locally
on the fly to discard false-positive trails. In particular, this helps modeling linear
layers in an exact manner through callbacks and leads to models which are much
faster to be solved than with the simple technique of ElSheikh and Youssef.

4. Finally, we were able to retrieve with MILP models all the previous results which
required SAT/SMT solvers [HWW20, Udo21] or ad-hoc algorithms [DF20]. Further-
more, our models are consistently solved faster than with previous approaches. We
also solved the open problem of modeling Super S-boxes in MILP, as they would
require a very large amount of constraints. Contrary to Udovenko who solved it
as a SAT problem with millions of constraints, we show that by the use of lazy
constraints, this is easily handled by MILP. Surprisingly, our results suggest that

1Lazy constraints are slightly different than regular constraints, we refer the reader to the Gurobi
documentation for more details
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handling division property through Super S-boxes is not as promising as expected
in [DF20] and seems to be only interesting to generate the input/output pairs to try
for.

Some of the lossy modelizations we propose are quite close to the original word-based
division property [Tod15], which are then refined and made more precise using lazy
constraints, leading to bit-based division property [TM16]. Thus, one can see similarities
with the typical approach used to search for differential characteristics (e.g. [GLMS20])
since the search is performed in two steps : a first model to search for best truncated
differentials characteristics and a second model to find the best instantiations of them.
However in our case everything is handled by the same model thanks to Gurobi’s callback
functionality, thus not having to solve 2 different models in a row.

In Table 1, we give an overview of the best times achieved to search for integral
distinguishers over various block ciphers. We make the distinction between conventional
distinguishers (Conv. Dist.) which are the usual distinguishers, looking for balanced bits
resulting from a set of plaintexts with constant bits, and extended distinguishers (Ext.
Dist.), which are the distinguishers searched in [LDF20, DF20], where one is looking for
balanced linear combinations of bits coming from a set of plaintexts with constant linear
combinations of bits. Note that currently the linear combinations are computationally
limited to the size of an S-box or Super S-box (depending on the cases), which is given in
the "Word Size" column of Table 1 for extended distinguishers. More details are given in
Section 5 as well as in the Appendix.

Table 1: Comparison of our solving times with previous works.
∗ Time required to find the relevant trails, see Section B.5 for more details.
† Our implementation using [EY21] simple lazy constraints.
‡ With exact modeling for the linear layer, and all possible starting round for Camellia.

Cipher Rounds Type of Result Word Size Our Time Previous Time

AES
4 Conv. Dist. - 0.4s -
5 No Ext. Dist. 8-bit 13min 31min [EY21]†

ARIA
4 Conv. Dist. - 0.8s -
5 No Ext. Dist. 8-bit 5h ≥ 24h [EY21]†

CRAFT
13 Conv. Dist. - 3.6s -
14 No Ext. Dist. 16-bit 11min -

HIGHT
20 Ext. Dist. 16-bit 12min 13 days [DF20]
21 No Ext. Dist. 16-bit 14min -

LED 8 No Ext. Dist. 16-bit 3h∗ 16h [Udo21]

Skinny64
11 Ext. Dist. 16-bit 9min 22min [DF20]
12 No Ext. Dist. 16-bit 80s 4min [DF20]

Camellia 7 Conv. Dist. - 30s 99min [HWW20]
Camellia 8 No Conv. Dist.‡ - 18h -
CLEFIA 10 Conv. Dist. - 23min 82min [HWW20]
CLEFIA 11 No Conv. Dist.‡ - 4h -

LEA 8 Conv. Dist. - 20s 30min [SWW17]

Regarding ARIA, the previously best known integral distinguisher was given over 4
rounds with 24 balanced bits. We show that we can improve this to 128 balanced bits,
and thanks to our new modeling strategies, we can also efficiently search for extended
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distinguisher over 5 rounds, showing that there are no such distinguishers. Note that in
the case of ARIA, using the simple lazy constraints from [EY21] was not enough as getting
a result for a single input/output pair had to be interrupted after more than 3 hours
of computations for this pair, while with our new techniques, all computations are done
within about 5 hours.

Finally, all of our timings are given as real time, using a standard laptop with a 4-
core/8-thread CPU2, without any parallelization outside of the native multithreading from
Gurobi. As such, when comparing to timings given in [DF20] where they used a 128-core
server, one should remember that we could improve our timing further by conducting the
search in parallel, allocating 8 threads for each instance of Gurobi, which would be very
close to dividing our solving times by n if using 8n threads in the cases considered. Our
code is available at

https://github.com/FastMILPDivisionProperty/FastMILPDivision

2 Division Property
In this section, we give the notations and definitions we use in this paper. We also
succinctly introduce division property based distinguishers on block ciphers and refer
interested readers to [TM16, XZBL16] for more details.

2.1 Notations and Definitions
We denote by x = (x0, . . . , xn−1) ∈ Fn

2 an n-bit vector, where x0 is the least significant
bit and will often write x0x1 . . . xn−1 instead of (x0, . . . , xn−1). There is a trivial mapping
from n-bit vectors to monomials in variables (X0, . . . , Xn−1) and we will often refer to x
as a monomial.

Definition 1. We say that a monomial m0 contains a monomial m1 if and only if all the
variables of m1 belong to m0, i.e. if and only if m1 is a divisor of m0. In that case we
will write m1 �m0. For instance, x0 � x0x1 but x2 � x0x1.

Definition 2 (Bit-product). For x, u ∈ Fn
2 , we denote by xu the bit product

xu =
n−1∏
i=0

xui
i .

Definition 3 (Bit-based Division Property [TM16]). A set X ⊂ Fn
2 has the division

property Dn
K, where K ⊂ Fn

2 is a set, if for all u ∈ Fn
2 , we have

⊕
x∈X

xu =
{

unknown if there is k ∈ K s.t. u � k
0 otherwise

2.2 Integral Distinguishers
Given a block cipher, let Pb(X0, . . . Xn−1, K0, . . . , Km−1) be the polynomial describing
the b-th bit of the ciphertext as a function of the plaintext (X) and the master key (K).
If no monomial greater than or equal to X0X1 . . . Xi−1 appears in Pb then for any value y
of (Xi, . . . , Xn−1, K0, . . . , Km−1) we have that⊕

x∈{0,1}i

Pb(x, y) = 0,

2Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz

https://github.com/FastMILPDivisionProperty/FastMILPDivision
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which is a property a random function should not have. However, in practice we cannot
computationally obtain the polynomial expression of all the bits of the ciphertext because
the number of terms is too large. This is where division property is useful. Let f
and g be two n-bit functions and let yi = fi(x0, . . . , xn−1) and zi = gi(y0, . . . , yn−1) =
gi ◦ f(x0, . . . , xn−1) be the intermediate and final expressions of the coordinate functions
of f and g respectively. Division property captures that if for all monomials yv appearing
in zu, yv does not involve a monomial greater than xw then zu (now seen as a function
of the xi’s) does not either. Hence, a common way to search for integral distinguishers
is to study the division trails of this cipher, which show the propagation of the division
property through the basic operations composing the block cipher.

Definition 4 (Division Trails [XZBL16]). Let f denote the round function of an iterated
block cipher. Assume the input set to the block cipher has initial division property Dn

{k},
and denote the division property after propagating through i rounds of the block cipher
(i.e. i applications of f) by Dn

Ki
. Thus, we have the following chain of division property

propagations :
{k} ∆= K0

f−→ K1
f−→ K2

f−→ . . .
f−→ Kr.

Moreover, for any vector ki in Ki (i ≥ 1), there must exist a vector ki−1 in Ki−1 such that
ki−1 can propagate to ki by the division property propagation rules, i.e. fki contains a
monomial m such that m � ki−1. Furthermore, for (k0, k1, . . . , kr) ∈ K0 ×K1 × · · · ×Kr,
if ki−1 can propagate to ki for all i ∈ {1, 2, . . . , r}, (k0, k1, . . . , kr) is called an r-round
division trail.

In the rest of the paper, we will denote k f→ k′ if the vector k ∈ Fn
2 can propagate to a

vector k′ ∈ Fm
2 through the n-bit to m-bit function f .

2.3 Tools
Searching for division trails through a cipher is an interesting problem and many tools
and models have been developed to tackle it.

• Ad-hoc algorithms. The first ad-hoc algorithms dedicated to division property
were proposed by Todo and Morii in [TM16] but were limited to 32-bit block ciphers.
More recently in [DF20], Derbez and Fouque proposed a simple branch-and-bound
algorithm, which can handle a large amount of constraints3 and in particular the
propagation tables of 16-bit Super S-boxes.

• MILP models. Xiang et al. [XZBL16] were the first to show how to use MILP
models to search for division trails. Sasaki and Todo [ST17] proposed a way to
minimize (also using MILP) the number of inequalities required to modelize S-boxes.
Later on, MILP was also used to search for extended distinguishers [LDF20] taking
into account the addition of an extra linear mapping at both the input and output
of the cipher. Finally, ElSheikh and Youssef recently proposed to combine lossy
modelization and lazy constraints for linear layers [EY21].

• SAT/SMT models. In [SWW17], Sun et al. described the first SAT and SMT
models to search for division trails. The main argument to use such models instead
of MILP ones is that all propagation rules can be described as logical equations.
Following this work, Eskandari et al. developed Solvatore, a SAT-based tool they
used to find integral distinguishers against 30 primitives [EKKT18]. Later, Hu et al.
[HWW20] went further by giving an exact modelization of the propagation through
a linear layer using only a quadratic constraint. Finally, very recently Udovenko

3While technically not using constraints as their approach is based on propagation tables, these tables
could be easily be translated by constraints.
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showed how to modelize the propagation table of 16-bit functions using hundreds of
thousands logical constraints that he succesfully solved using a SAT solver [Udo21].

3 Previous Modelization Techniques
In this section we recall the main modelization techniques dedicated to cipher components
and used for MILP models.

3.1 Modelizing Basic Binary Operations
We first begin by the binary operations AND, XOR and Copy which are extensively used to
describe division trails. Indeed, any cipher can be decomposed using only those 3 operations
which are thus of fundamental importance. Linear constraints for those operations have
been originally proposed by Xiang et al. [XZBL16] and later generalized and improved by
Sun et al. [SWW20].

Operation XOR COPY AND

Trail (a1, a2, . . . , am)→ b a→ (b1, b2, . . . , bm) (a1, a2, . . . , am)→ b

Constraints a1 + . . . + am = b b1 + . . . + bm = a
a1 + . . . + am ≥ b

a1 + . . . + am ≤ mb

Note that constant ai’s can be removed from the inequalities (corresponding to key variables
in the cipher) related to both the XOR and AND operations.

3.2 Modelizing S-boxes
In the following we are considering an S-box S : Fn

2 → Fn
2 , and aim at modelizing the

propagations u
S→ v for u, v ∈ Fn

2 . A naive approach would be to modelize an S-box
by simply using its computational circuit (essentially its ANF), modelizing each basic
operation (XOR, AND, etc.) at the bit level. However this is largely inefficient, both in
term of number of constraints/variables and overall precision. Hence, it is better to first
construct a table containing the valid propagations, and then to modelize this table as a
whole. This means that we generate the set

S = {(u1, . . . , un, v1, . . . , vn) ∈ F2n
2 s.t. u

S→ v},

possibly removing redundant propagations, and aim at finding a set of linear inequalities
modelizing this set.

3.2.1 Exact Modelization : Convex Hull

The first technique used to modelize the propagation through an S-box is using the Convex
Hull of S, the smallest convex set containing all points of S. It can be represented by its
H-representation, a set of linear inequalities L such that the only feasible solutions of L are
exactly the points of S. This H-representation is typically computed using the SageMath
software [The20], which in backend is using the Parma Polyhedra Library [BHZ08]. Such
approach was first proposed in the context of differential cryptanalysis [SHW+14], and later
used to actually search for division trails [XZBL16]. Note that the number of inequalities
in the H-representation can be rather large. But hopefully, since in our case all coefficients
ui and vi belong to {0, 1}, one can significantly reduce the size of L while still maintaining
its correctness [SHW+14] (i.e. the feasible solutions of the reduced set are still exactly the
points of S).
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Unfortunately this technique is essentially limited to S-boxes of size n ≤ 6 since for
larger S-boxes the H-representation becomes quite hard to compute. For instance, it takes
few days to compute the inequalities for AES S-Box.

3.2.2 Exact Modelization : Quine-McCluskey Algorithm

In [AST+17], Abdelkhalek et al. proposed to use the Quine-McCluskey (QM) algorithm
to reduce the number of inequalities required to describe the difference distribution table
of an S-box. This approach was efficient enough so they were able to modelize the 8-bit
S-box of SKINNY-128 with few hundreds inequalities only while its DDT contains several
thousands of entries. Such approach was also used in the context of division property as
for instance to modelize division trails through the AES S-box to show lower bounds on
the degree [HLLT20].

The main idea used in the QM algorithm is to search for cosets of bit-aligned vector
spaces of impossible values. For instance, assume the following values for (x, y, z, t) are
impossible:

(0, 0, 1, 1) (0, 1, 1, 1) (1, 0, 1, 1) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 0, 0)

Discarding those 6 values from a MILP model can be done with the 6 inequalities:

x + y + (1− z) + (1− t) ≥ 1
x + (1− y) + (1− z) + (1− t) ≥ 1
(1− x) + y + (1− z) + (1− t) ≥ 1
x + y + z + (1− t) ≥ 1
x + y + (1− z) + t ≥ 1
x + y + z + t ≥ 1

In order to decrease the number of inequalities, the QM algorithm aims at identifying
pairs of impossible values that differ in only one bit. For instance {(0, 0, 1, 1), (0, 1, 1, 1)}
is such a pair and leads to the new impossible value (0, ?, 1, 1). Once all pairs have been
proceeded, the goal is to find a minimal cover of the impossible values. For our example it
could be:

(0, 0, ?, ?) (?, 0, 1, 1) (0, ?, 1, 1)

However, this algorithm is inherently exponential in the number of variables and most of
the public implementations handle systems containing no more than 16 variables. For more
complex systems it is recommended to use an heuristic version of the QM algorithm (e.g.
Espresso). It is also worth mentioning here that in [BC20], Boura and Coggia proposed
some alternative methods regarding this problem which most often lead to less inequalities
than Espresso.

3.2.3 Lossy Modelization: Modular Addition

Describing propagation of division property through the addition modulo 2n can be done
directly using the convex hull technique or Quine-McCluskey algorithm. But both the time
complexity and the number of inequalities increase so fast that it should be reserved for
very small values of n (i.e. n ≈ 4). For higher values, the best known technique is to use a
lossy modelization based on a Copy-Xor-And decomposition of the modular addition. For
instance in [SWW17], Sun et al. proposed a decomposition using 3n− 1 xor, 3n− 1 copy
and 2n− 1 and operations, leading to 10n− 4 linear constraints and 12n− 19 intermediate
variables.
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Note that, as for the and operation, if one of the two branches is constant (typically
in the case of a modular addition between a state variable and a key variable), then the
linear constraints required to describe valid transitions can be simplified [SWLW16].

In [BBdS+20], Beierle et al. proposed a much simpler modelization of the modular
addition requiring only 2 inequalities per bit. Consider an addition of two n-bit words
a, b ∈ 0, 1n and let y = a + b mod 2n. This operation can be computed from successive
applications of the function f(ai, bi, ci) = (Maj(ai, bi, ci), ai ⊕ bi ⊕ ci) where Maj is the
majority function and ci the i-th carry, using that (ci+1, yi) = f(ai, bi, ci). The division
table of the function f can be modelized with the two following inequalities:{

−ai − bi − ci + 2ci+1 + yi ≥ 0
ai + bi + ci − 2ci+1 − 2yi ≥ −1

.

3.3 Modelizing Linear Mappings
In this section we will consider linear mappings represented by a matrix M ∈ Fm×m

2n . Note
that by choosing a basis of F2n one can derive an equivalent matrix working at bit-level
Mb ∈ Fnm×nm

2 . Depending on the size of M and on which coefficients appear in it, several
modelizations exist in the literature.

3.3.1 Exact Modelization : As an S-box

An obvious way to modelize such a linear mapping is simply to ignore its linear nature and
see it as an S-box. While most often the size of linear mappings forbids the use of the exact
modelizations described in the previous section, there are still cases where considering it
as an S-box can be useful. The first one is when nm is small enough to be handled by
either the convex hull method or the QM algorithm. This is for example the case in the
HIGHT block cipher, for which the round function involves two linear mappings from F8×8

2
that can be handled by the QM algorithm. Another notable case is when M ∈ Fm×m

2n is
a binary matrix as in the block cipher CRAFT. In this case, the linear layer can actually
be seen as the application of n (linear) m-bit S-boxes in parallel. Indeed, let us see this
through an example with the MixColumns matrix M from CRAFT, for which it is easy to
derive an equivalent matrix Mb over F2 with

M =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 ∈ F4×4
24 , Mb =


I4 0 I4 I4

0 I4 0 I4

0 0 I4 0
0 0 0 I4

 ∈ F16×16
2 ,

where I4 is the identity matrix over F2 of dimension 4. Thus when applying this matrix to
a vector x = (x1, . . . , x16) ∈ F16

2 , one can observe that it is equivalent to performing the
following matrix multiplications in parallel:

1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1




xi

xi+4

xi+8

xi+12

 , i ∈ {1, 2, 3, 4}.

In other words, we apply the same (linear) 4-bit S-box in parallel over x (up to reordering
the variables), where the S-box has ANF:

S(x1, x2, x3, x4) = (x1 + x3 + x4, x2 + x4, x3, x4).
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3.3.2 Lossy Modelization : The Copy-XOR Technique

The Copy-XOR technique is the first one that was proposed to modelize division property
over linear layers [XZBL16]. The idea is very simple. To modelize the propagations u

M→ v
with corresponding variables u, v, one introduces temporary variables ti,j for each non-zero
coefficient at index (i, j) of the matrix M (over F2). Then the propagation is modelized
with the constraints:

(ti,j)i∈Cj
= COPY(uj), 1 ≤ j ≤ nm,

vi = XOR(ti,j)j∈Ri
, 1 ≤ i ≤ nm,

where Cj = {i s.t. Mi,j = 1} and Ri = {j s.t. Mi,j = 1}.
Zhang and Rijmen showed in [ZR19] that this modelization is actually lossy as it

may introduce some false-positive trails. Furthermore it relies on adding a possibly large
amount of additional variables to the model, namely as many as the number of non-zero
coefficients in the matrix over F2, and thus is hardly scalable.

3.3.3 Exact Modelization : The ZR Technique

To overcome weaknesses of the Copy-XOR modelization of linear layers, Zhang and Rijmen
proposed a new method relying on the following theorem:

Theorem 1. Let M ∈ Fn×n
2 be an invertible matrix and u, v ∈ Fn

2 . Let Iu = {i s.t. ui = 1}
and Iv = {i s.t. vi = 1} and assume |Iu| = |Iv|. Then u

M→ v is a valid propagation if and
only if the minor of M built with the columns with indexes in Iu and rows with indexes in
Iv is invertible.

Note that, because each of its components is of degree 1, a linear mapping M cannot
decrease the weight of division property vectors: if we have a valid propagation u→ v, we
necessarily have wt(u) ≤ wt(v). Furthermore, if u → v is a valid transition through M
then there exists v′ � v such that wt(v′) = wt(u) and u→ v′ is a valid transition as well.

From this theorem and careful observations, they thus give a way to generate a set of
inequalities that exactly modelize the valid propagations through a linear mapping. The
main idea of Zhang and Rijmen is to compute all possible linear combinations of rows and
for each of them they add a constraint to ensure that if the rows are selected then at least
one column with a non-zero coefficient (regarding the linear combination) should be also
selected. As a consequence, for an n × n binary matrix over F2, 2n − 1 inequalities are
required, one for each non-zero linear combination of rows.

Note that if M ∈ Fm×m
2n is a binary matrix (as for instance in SKINNY and Midori) the

number of inequalities can be lowered to n(2m − 1) inequalities since the application of
M can be seen as the parallel application of n binary matrices of size m×m (see Section
3.3.1).

3.4 Lazy Constraints
As mentioned in Section 1.2, using a lossy modelization might lead to false-positive trails
that can be removed with lazy constraints. One obvious way to get those extra constraints
is simply to use the constraints generated from an exact modelization technique described
in this section. Typically, when a trail is found by the MILP solver, all its transitions are
checked against a list of constraints. If one constraint is violated, it is added to the model
as a lazy constraint, discarding the current solution and each one that would involve the
same invalid transition. The main advantage of lazy constraints is to add into the model
only a fraction of the constraints that would be required to obtain an exact model. The
intuition is that given a trail u0

f0→ u1
f1→ . . .

fr−1→ ur for which both u0 and ur are set to
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specific values (which is exactly the framework of division property), the possible values for
the ui’s are restricted and thus it is not necessary to fully describe all the valid transitions
through each layer.

In [EY21], ElSheikh and Youssef proposed to combine the Copy-XOR modelization for
linear layers with lazy constraints to ensure the validity of a division trail. Given a MILP
solution to a model, for each transition u

M→ v through a linear layer, they check whether
the minor Mv,u is invertible or not. If it is not invertible then they propose to add a lazy
constraint to remove this transition. However this is a rather inefficient way of handling
false-positive for the linear layer, and we show in Section 4.5 how to better improve this.
Moreover, they used this idea for the linear layers only, while we show in next sections
that using it for both S-boxes and Super S-boxes can be very efficient as well.

4 New Modelization Techniques
In this section we describe our new proposal to modelize division trails for MILP solvers
such as Gurobi.

4.1 An Important Property

Regarding 2-subset division property, a transition u
f→ v through a function f is valid if

and only if xu divides at least one monomial of f(x)v. In particular, if transition u
f→ v

is valid then for all u′ � u, transition u′
f→ v is also valid. A direct consequence for the

search of division trails through a cipher is that for all v′ � v, the transition u
f→ v′ can be

safely added to or removed from the model. In other words, allowing or not the transition
u

f→ v′ does not affect the result of the model [XZBL16]. This property was originally used
to reduce the propagation tables and to focus on minimal valid transitions. But we found
that, in several cases, it might be faster to allow non-minimal transitions, even though they
are invalid. A simple example is related to the modelization of division property through
the and operator. If we allow the transition (0, . . . , 0) AND→ (1) (which is possible since
(0, . . . , 0) AND→ (0) is valid) then the operator can be modelized using only one inequality
instead of two:

a1 + . . . + am ≤ mb

4.2 Exact Modelization : Quine-McCluskey Algorithm
The property given Section 4.1 is very powerful when combined with QM. Let S be the
set of all transitions u′

f→ v′ for which there exists a valid transition u
f→ v such that

u � u′ and v � v′. The only transitions that must be removed from the model are thus
the ones that do not belong to S. Let denote by I the set of such transitions. Given
u

f→ v ∈ I, any transition u′
f→ v′ such that u′ � u and v′ � v is also impossible because

otherwise u
f→ v would belong to S. In other words, given a = (au|av) describing the

transition u
f→ v, we know that all 0’s of au as well as all 1’s of av can be replaced by a ?.

Furthermore if two such vectors differ at only one position then one of the vectors has a ?
at that position and thus covers the second vector. As a consequence there is no need to
perform the saturation phase of QM algorithm but only to extract maximal vectors. Let
Imax be the set of maximal impossible vectors. This set of vectors covers all impossible
transitions and is actually minimal, meaning that removing any element from it would
lead to allowing an impossible transition. Indeed, let a ∈ Imax and replace all ?’s of au

and av by 0 and 1 respectively. This vector corresponds to an impossible transition and
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should be removed by the constraints. But all vectors removing it must cover a and since
a is maximal it must belong to the set of impossible vectors.

Thus, given the propagation table of an n-bit to m-bit function f , we can construct a
minimal set of impossible transitions using Algorithm 1. The complexity of this algorithm
is upper bounded by (n + m)2n+m and in practice takes only few seconds for the values of
n + m considered in this paper.

Algorithm 1: Computing a minimal set of vectors describing all impossible
transitions
Data: T , the propagation table associated to an n-bit to m-bit function f
Result: I, a minimal set of vectors describing all impossible transitions
foreach (u, v) ∈ {0, 1}n+m do H[u|v]← 0
foreach u→ v ∈ T do // construct S

S1 ← u|v
while S1 6= ∅ do

u′|v′ ← an element of S1 such that |v′| − |u′| is minimal
remove u′|v′ from S1
if H[u′|v′] = 0 then

H[u′|v′]← 1
foreach u′′ � u′, |u′′| = |u′| − 1 do S1 ← u′′|v′
foreach v′′ � v′, |v′′| = |v′|+ 1 do S1 ← u′|v′′

end
end

end
I ← ∅
foreach (u, v) ∈ {0, 1}n+m do // construct Imax

if H[u|v] = 0 then
flag ← 1
foreach u′ � u, |u′| = |u| − 1 do flag ← flag & H[u′|v]
foreach v′ � v, |v′| = |v|+ 1 do flag ← flag & H[u|v′]
if flag = 1 then I ← u|v

end
end
return I

Comparison with Convex Hull. While the convex hull method is currently limited to 5
or 6-bit S-boxes, we were able to generate the inequalities for much larger S-boxes, including
for the 16-bit Super S-boxes described in [DF20]. However, there is somehow a limitation to
our QM algorithm. The inequalities resulting from the convex hull computation may allow
only the minimal valid transitions (and more generally any particular sets of transitions)
but our method necessarily allows all valid transitions.

Decreasing number of inequalities. Because MILP models can include inequalities
with non-binary coefficients, it is possible to decrease the number of inequalities obtained
by a direct application of the Quine-McCluskey algorithm. Indeed, all the inequalities
generated from the algorithm have the form:∑

a

a +
∑

b

(1− b) ≥ 1,

where all involved variables are binary ones. In particular, they can be rewritten as
A + b ≥ 1 where A is an expression taking positive integer values and b is a binary variable
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(or 1 minus a binary variable). Such inequalities can be compacted since a collection of k
inequalities of the form A + bi ≥ 1 for i ∈ {1, . . . , k} can be replaced by the inequality:

kA + b1 + b2 + . . . + bk ≥ k.

We emphasize that this new inequality is fully equivalent to the system of k inequalities
{A + b1 ≥ 1, . . . , A + bk ≥ 1}, meaning that solutions are exactly the same in both cases.4
Indeed, if A ≥ 1 then all inequalities are trivially satisfied and if A = 0 then all inequalities
are satisfied if and only if b1 = b2 = . . . = bk = 1. Finally, if A = 0 and for instance b1 = 0
then both the inequalities kA + b1 + b2 + . . . + bk ≥ k and A + b1 ≥ k do not hold.

There are many ways to compact inequalities and finding the best one is a hard problem.
This is because there are several possibilities for writing an inequality into the required
form, one for each involved variable. However we would like to solve this problem on
large instances, such as the system of 387070 inequalities describing the propagation table
of the 16-bit Super S-box of LED. Thus we propose a very fast greedy approach giving
good enough results for our needs. Let I be the set of all inequalities outputted by QM
algorithm. Then, and until I is empty, we apply the following procedure:

1. For each inequality from I, we generate all the possible A as described above.

2. If for one inequality, all the A’s but one appear in no other inequality, we pick the
remaining A. Otherwise we pick the A occurring in the most inequalities.

3. We generate the corresponding MILP inequality.

4. We remove from I all the inequalities covered by the inequality just created.

The results of our new approach are given in Table 2. We were able to compute sets
of inequalities for very large S-boxes with the Quine-McCluskey algorithm and then to
reduce them for MILP models. All those results were obtained in few seconds on a laptop
while omitting the time required to compute the corresponding propagation tables. An
example of the process is described in Appendix A.

4.3 Lossy Modelization : Piecewise Linear Constraints
Piecewise linear functions are functions defined such that there exists a set of intervals
where the function restricted to each interval is an affine function. Such a function is
defined by a list of points defining the start and end of each segment. We give an example
of such a function in dimension 2 in Figure 1, where the list of points is

L = [(0, 0), (1, 1), (2, 1), (3, 2), (4, 4)].

These functions can be modelized in MILP so that a pair of variables is constrained to
take the values of a piecewise linear function. A nice thing about the Gurobi solver is that
it has a direct way to add such a constraints (called PWL constraints) without having to
generate the corresponding set of linear inequalities (e.g. using addGenConstrPWL in the
Python interface). We will use such a constraint to get a lossy modelization of S-boxes as
follows.

Given the list of all valid propagations u
S→ v, we first compute

wi = min
wt(u)=i

(wt(v) s.t. u
S→ v), 0 ≤ i ≤ n

that is, wi is the minimum weight of any v such that u
S→ v where the hamming weight

of u is i. Our goal is to add a constraint so that if wt(u) = i, then wt(v) ≥ wi. While
4But high values of k might lead to numerical issues in Gurobi.
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Figure 1: Piecewise linear function defined by L.

this does not look very restrictive, it was enough to prove some results (see Section 5).
Actually, it is very close to asking Gurobi to first search for word-based division property
distinguishers before searching for bit-based division property. We can easily do so by
using the following constraints

s1 =
n∑

i=1
ui

s2 ≤
n∑

i=1
vi

addGenConstrPWL(s1, s2, [0, 1, . . . , n], [w0, w1, . . . , wn])
ui, vi binary variables , 1 ≤ i ≤ n

0 ≤ s1 ≤ n

0 ≤ s2 ≤ n

where addGenConstrPWL(x, y, Tx, Ty) defines a PWL constraints where the piecewise linear
function f(x) = y is defined by the pairs (Tx[i], Ty[i]).

A particular case. For most of the S-boxes used in common block ciphers, the piecewise
linear constraint does only ensure the following properties on transitions u

S→ v through a
n-bit S-box:

wt(v) = 0 =⇒ wt(u) = 0 and wt(u) = n =⇒ wt(v) = n.

For this particular case, using a piecewise constraint is unnecessary and it is more efficient
to only add the two following inequalities to the model:

u0+. . .+un−1 ≤ (n−1)(v0+. . .+vn−1) and n−v0−. . .−vn−1 ≤ (n−1)(n−u0−. . .−un−1).

4.4 Lossy Modelization : Weight Equality
As mentioned in Section 3.3.3, for any linear mapping M from Fn

2 to Fm
2 and a valid

propagation u
M→ v, we necessarily have wt(u) = wt(v). This directly provides a very

simple lossy modelization for linear mappings :∑
1≤i≤n

ui =
∑

1≤i≤m

vi.
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While very simple, this constraint is sometimes sufficient to prove the existence of an
integral distinguisher (i.e. to prove that there are no valid division trails through a cipher).

To estimate the complexity of such approach we need to evaluate the probability that
a transition u

M→ v is valid knowing that wt(u) = wt(v). Because it is valid if and only if
the corresponding minor is invertible, the question becomes what is the probability that a
minor of a matrix is invertible. For a random binary matrix, the probability goes from
50% for a matrix of size 1 and decreases to ≈ 30% when the size increases. But in practice
matrices involved in block ciphers are far from random ones and this drastically affects
the probabilities. For instance, sampling 1000 minors of each size for the AES MixColumns
matrix we obtained the following results:

1 : 15.9% 5 : 1.4% 9 : 1.9% 13 : 3.5% 17 : 5.1% 21 : 12.3% 25 : 18.6% 29 : 26.3%
2 : 6.4% 6 : 0.9% 10 : 1.3% 14 : 3.6% 18 : 6.0% 22 : 13.0% 26 : 18.7% 30 : 31.5%
3 : 2.9% 7 : 0.6% 11 : 1.6% 15 : 3.4% 19 : 7.5% 23 : 15.3% 27 : 20.5% 31 : 44.5%
4 : 1.9% 8 : 1.8% 12 : 1.9% 16 : 3.8% 20 : 11.4% 24 : 17.5% 28 : 22.5% 32 : 100%

As we can observe, those results are very different from what we would expect for
random matrices. In particular it seems unlikely to get anything but a false-positive using
only the weight equality.

4.5 Lossy Modelization : The local ZR Technique
Since most of the probabilities given above are very low, it would be too slow to rely on
lazy constraints that only discard one transition at a time as it was done in [EY21]. Thus
we propose to perform a local ZR in order to generate more efficient lazy constraints.
More precisely, if we have to test a transition u

M→ v through a linear layer M , we can
apply the ZR technique only locally. The idea is to extract the corresponding minor and
to check whether it is invertible or not. If not, there is at least one linear combination
of the rows equals to the null vector. Going back to the full matrix, we can compute the
same linear combination of rows and look at the columns with non-zero coefficients. Then
we add the constraint describing that if the rows involved in the linear combination are all
selected then at least one of the columns with a non-zero coefficient should be selected as
well. In other words, we compute and add constraints from the ZR technique if and only
if they are required. This is very powerful for SPN block ciphers because in that case u
(resp. v) is the concatenation of several outputs (resp. inputs) of m-bit S-boxes and such
outputs (resp. inputs) have almost always a weight of 0, 1 or m (resp. 0, m− 1 or m).
Improving performance. Because generating on the fly the constraints from the ZR
technique mainly makes sense for large matrices, the cost of checking the rank of minors has
to be taken into account. For instance on AES, we may have to compute rank of minors up
to dimension 31, leading to approximately 313 ≈ 214.9 extra computations per trail found
by Gurobi. Hopefully, based on a special property about the inverse of a block matrix, it
is possible to reduce the complexity from k3 (for a minor of size k) to min(k, n− k)3 for a
matrix of size n. This is based on a particular case of the Nullity theorem:
Theorem 2. An invertible matrix M and its inverse M−1 can be partitioned into 2× 2
block matrices as

M =
[

A B

C D

]
and M−1 =

[
E F

G H

]
,

where A, D, E and H are square matrices such that A and E (resp. D and H) have the
same size. The dimension of the kernel of A is equal to the dimension of the kernel of H.
In particular, A is invertible if and only if H is invertible as well.

This means that the transition u→ v through M is valid if and only if the transition
v̄ → ū through M−1 is valid as well.
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4.6 Lossy Modelization : Modular Addition
The modelization of Beierle et al. only requires two inequalities per bit:{

−ai − bi − ci + 2ci+1 + yi ≥ 0
ai + bi + ci − 2ci+1 − 2yi ≥ −1

.

The second inequality is used to remove the transitions (a, b, c)→ (1, 1) for (a, b, c) 6= (1, 1, 1)
as well as both the transitions (0, 0, 0) → (1, 0) and (0, 0, 0) → (0, 1). All of them are
non-minimal transitions which can be safely added to the model according to Section 4.1.
As a consequence this inequality can be removed from the model without affecting its
validity.

5 Results
In this section we discuss the results we obtained using our new modelization techniques.
As explained in the introduction, we make a distinction between conventional distinguishers
and extended distinguishers, and we only consider distinguishers that are not key-dependent.
Extended distinguishers are the ones considered by [LDF20, DF20] by adding a linear
mapping at the input and/or output of the cipher, and built by fixing a linear combination
of bits to be constant at the input while checking if some linear combination of bits at the
output are balanced. This makes extended distinguishers cover a larger scope but harder
to search, as, for a given input, conventional distinguishers only need to check whether
there is a division trail for n vectors of weight 1 (n being the block size), whereas extended
distinguishers need to do so for many input/output pairs.

An important trick to search for extended distinguishers is to use some memoization
on whether or not a given input/output pair leads to a division trail. Indeed, considering
that there is usually a large amount of sets, it is very likely that several pairs will appear
in multiple sets, meaning that a naive algorithm would do a large number of redundant
computations. Instead, we keep a hash table mapping input/output pairs to whether or
not it leads to a division trail. By doing so, whenever we start to examine a new set, we
first check if any pair in the set is already present in the hash table. If even a single pair is
present in the table and leads to a division trail, then there is no need to check any other
pair in this specific set as it cannot lead to a distinguisher.

5.1 Notations for Modeling Strategies
In the following, we compare how different modeling strategies affect the solving time
for several ciphers. To be more concise, we use several abbreviations for each modeling
strategy.

• CH will denote using the Convex Hull modeling from Section 3.2.1,

• QM will denote using the Quine-McCluskey algorithm from Section 4.2,

• PWL will denote using piecewise linear constraints from Section 4.3,

• ZR will denote using the modeling from Zhang and Rijmen from Section 3.3.3,

• CX will denote using the Copy-XOR modeling from Section 3.3.2,

• WE will denote using the Weight Equality modeling from Section 4.4.
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As most ciphers we considered have both an S-box and a linear layer, we commonly
use an expression of the form M + M ′ to denote the use of a modeling M for the S-box
layer and a modeling M ′ for the linear layer, where M and M ′ are taken from the list
above. For example, QM+CX denotes using the Quine-McCluskey algorithm for the S-box
layer and the Copy-XOR modeling for the linear layer. Note that when using a lossy
modelization (which are PWL, CX and WE), we will add lazy constraints to the model so
that we obtain a correct result, as described in Section 3.4.

5.2 Number of Inequalities
Using the approach described in Section 4.2, we were able to provide relatively small
sets of inequalities to describe various S-boxes and linear layers used in common ciphers.
Compared to the Convex Hull method, our QM-MILP greedy algorithm always led to
smaller sets of inequalities and takes only few seconds to run even for 16-bit Super S-boxes.
Thus it provides a simple way to generate inequalities for any S-box for which we know
the propagation table.

Table 2: Number of inequalities required to describe valid transitions. Note that the
Copy-Xor technique is lossy and does add extra variables.

Cipher Function CH/CX/ZR QM QM-MILP

Skinny

4-bit S-box 12/-/- 18 10
8-bit S-box - 193 105

16-bit Super S-box (col. 0) - 172812 48859
16-bit Super S-box (col. 1, 2, 3) - 173106 48964

4-bit MixColumn 6/8/16 10 6
AES 8-bit S-box - 87 33

LED

4-bit S-box 10/-/- 20 7
16-bit Super S-box (col. 0) - 387070 108199
16-bit Super S-box (col. 1) - 321797 78647

16-bit Super S-box (col. 2, 3) - 388134 108668
16-bit MixColumn -/32/65536 33412 33412

HIGHT

8-bit linear F0 -/16/256 162 162
8-bit linear F1 -/16/256 162 162

16-bit Super S-box (F0) - 15968 5493
16-bit Super S-box (F1) - 69455 23671

Midori 16-bit Super S-box - 1912088 520340

5.3 Different Strategies
We made experiments on several ciphers to observe how different modeling strategies
influence the solving time of the models. We give a summary of the modeling strategies
leading to the best solving time as well as the average number of lazy constraints added
for each cipher considered in Table 3. Our main observation is that while hundreds of
thousands inequalities are necessary to provide an exact modelization, only few hundreds
are actually required to conclude on the existence of a division trail. Note that when the
Super S-box (SSB) is available, it is used with an exact modelization for the first and last
rounds to derive the extended distinguishers to look for.
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Table 3: Fastest modeling strategy and average number of lazy constraints added per
input/output pair. LC-S-box, LC-Lin and LC-SSB denote respectively the average number
of lazy constraints coming from the S-box, the linear layer and the Super S-box, when
relevant.

Cipher Rounds Modeling LC-S-box LC-Lin LC-SSB

AES
4 PWL + WE 0 0 -
5 QM + WE - 60 -

ARIA
4 PWL + WE 0 0 -
5 QM + CX - 91 -

CRAFT
13 QM/CH + QM/CH - - 0
14 QM/CH + CX - 0 314

HIGHT
20 CX - 6 0
21 CX - 21 0

LED 8 QM/CH + WE - 107 54

Skinny64
11 QM/CH + QM/CH - - 7
12 QM/CH + QM/CH - - 93

Camellia
7 PWL + WE 0 0 -
8 QM + CX - 31 -

CLEFIA
10 PWL + WE 0 0 -
11 QM + CX - 9 -

5.3.1 Strategy PWL + WE

At the beginning of this work, our bet was that the strategy PWL + WE together with
lazy constraints to ensure an exact modelization, would lead to the best solving times.
This strategy is quite equivalent to first searching for word-based division trails before
confirming or invalidating them at the bit level. This strategy was the fastest to retrieve
the integral distinguisher against both AES and ARIA reduced to 4 rounds as well as against
10-round CLEFIA. However, while being very fast in finding word-based distinguishers, it
was rarely the best strategy regarding all the experiments we made. We believe there
are two main reasons. The first one is that such strategy does necessarily lead to more
lazy constraints being added to the model than other strategies. But lazy constraints are
typically slower than regular ones and are not preprocessed by Gurobi. The second reason
is more generic and related to the way Gurobi works. When some internal transitions
are valid it would make sense to modify the current wrong solution as little as possible to
converge to a solution. Unfortunately there is no easy way to do that and the best option
is to divide ourselves the model into two or more submodels.

5.3.2 Strategy CH/QM + WE

With this strategy the S-boxes are described in an exact manner into the model while the
linear layer is only modelized using the weight equality. Along our experiments QM was
a bit slower than CH and QM-MILP which are equivalent. But overall the difference is
not significant. In general this model is faster than the previous one and is probably the
first strategy to try against a block cipher. Its main advantage is its scalability. Indeed,
WE can be applied whatever the size of the matrix behind the linear layer and thus it
is the best-suited to handle ciphers with very large internal states including for instance
underlying block ciphers of hash functions (e.g. Whirlpool).
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5.3.3 Strategy CH/QM + CH/QM

When the linear layer operates on very few bits (≈ 4), as for instance in Skinny or Craft,
it is better to directly use an exact modelization for it. Actually the previous strategy will
quickly lead to the same constraints but it seems Gurobi does a better job if it has access
to those inequalities at the preprocessing phase.

5.3.4 Strategy CH/QM + CX

This strategy is in-between the two previous ones. With CX for the linear layer, we ensure
that, when we extract the minor to check its inversibility, it does contain at least a non-zero
coefficient per row and per column. This strategy typically gives faster models than WE
when the linear layer is sparse. For instance, it was the fastest one 5-round ARIA, 11-round
CLEFIA and for HIGHT. However CX requires an extra variable per non-zero entry of the
matrix, wherever it is used. As a consequence, this technique hardly scales for large block
ciphers and/or large matrices.

A hybrid approach. While we mainly tried models with the same modelization of
a particular component through the whole cipher it may be interesting to mix them.
For instance, as showed Section 4.4, the probability that WE leads to a valid transition
increases with the weight of the input to reach reasonable values. Thus it is possible that
ahybrid approach for which WE is used for the first rounds of the cipher and CX for the
last ones, leads to a faster model.

5.3.5 Super S-boxes

The number of inequalities required to modelize a Super S-box is too high to be handled
efficiently by the solver and it was always faster to use lazy constraints. We also always
described internal components of a Super S-boxes into our models, somehow providing a
lossy modelization of them. Indeed, if the internal transitions are all valid, the probability
that the transition pass the Super S-box check is quite high, around 50% for both Midori-64
and Skinny-64. Furthermore, the actual probability is much higher in practice because
most of the problems occur when the input weight is high (between 12 and 15 for 16-bit
Super S-boxes) and we rarely encountered more than 4 such transitions. As a consequence
only few inequalities from the Super S-box propagation table are added to the model as
it can be observed in Table 3. Furthermore, while constraints from Super S-boxes did
invalidate some internal transitions, we did not find any input/output pair for which all
trails were invalidated. In other words, we never encountered a case for which constraints
from Super S-boxes led to a new distinguisher. However, handling Super S-boxes is still
very important to identify the best linear maps to add at the front and at the end of a
cipher to look for extended distinguishers.

5.3.6 Lazy Constraints

Many times a false-positive solution does contain several invalid transitions. In that case
an interesting question is which constraints should we add to the model. Only one is
necessary to discard a specific false-positive trail but it might be more efficient to add
many of them at once. There is no universal answer to this question as it really depends
on the models under study. In our work we found that adding several constraints at once
was overall faster as long as we do not add too many of them (heuristically upper bounded
by 5).

The order in which constraints are added seems to play an important role as well. In
practice we found better to add constraints related to S-boxes before constraints related
to linear layers. We also observed that handling rounds according to their distance to
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the middle of the cipher was overall faster (i.e. the middle round is the last one to be
processed).

5.4 Observations on Some Ciphers
We give the detailed results of our experiments in Appendix B, however in this section we
would like to make few observations on some of these experiments.

5.4.1 HIGHT

An interesting observation for HIGHT is the number of solutions to the base model that
were examined and the amount of constraints added. To conduct the full search, we needed
to examine 1296 input/output pairs and determine whether or not there exists a division
trail for each, possibly finding wrong solutions due to the lossy modeling of CX and thus
needing to add lazy constraints. In total, 9626 solutions were found (including the final one
when a division trail existed, meaning no lazy constraints were added on those) and 8334
lazy constraints were added overall. This means that on average, for a given input/output
pair, the lossy model using CX is around 8331/1296 ' 6 constraints away from a model
that is complete enough for this specific input/output pair. Meanwhile with the lossy
model using the WE modeling on the subset we tested (containing 81 input/output pairs),
the total number of lazy constraints added was 15645, leading to an average of 193 lazy
constraints added per input/output pair. To give a comparison when modeling the Fi

functions with an exact modeling, using QM requires 162 inequalities for each application
of F0/F1, thus 20 × 4 × 162 = 12960 inequalities for a full model over 20 rounds, while
ZR requires 255 inequalities for each application of F0/F1, leading to a total of 20400
inequalities for the same model. Thus HIGHT is a very good example to show that for a
given input/output pair, a very large portion of the inequalities given by an exact modeling
is essentially useless and only makes the model more complicated.

5.4.2 LED

The main problem we encountered with LED is that, in the context of the search for
extended distinguisher, there is a large number of sets of pairs to examine, and each
contains a rather large amount of pairs themselves. In total, there are 1040384 different
sets to examine, each containing about 7000 pairs on average.

In addition to that, another problem we encountered was that some input/output pairs
took an very large amount of time to be solved. Considering the large amount of pairs to
examine, it was not reasonable to try to solve the full problem without some additional
tweaking. Our solution was simply to add a time limit for each input/output pair, which
we arbitrarily set to 30s. If a given set contains pairs that reached the time limit (and
thus for which the existence of a division trail could not be decided), then 2 cases happen :
either the set also contains a pair leading to a division trail, meaning the set cannot lead
to a distinguisher and thus we can stop the search for this set, or all pairs that haven’t
reached the time limit lead to no division trails. In the latter case, one would have to
increase the time limit to actually conclude anything, but in our case, this thankfully
never happened. Note that thanks to this and the use of memoization, we only needed to
examine 1409 pairs to solve all of the different input/output sets.

While not necessary in the other experiments we made, using such a time limit is again
another thing to consider when searching for extended distinguishers, as it can drastically
improve the total solving time.

Remark. The Super S-Boxes of LED actually do not depend on the key. While for columns
0, 2 and 3 the round constants involved do not depend on the round, this is not the case
for column 1. To simplify the analysis we thus considered the round constant as a key for
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the Super S-Box on column 1, and computed its propagation table using the algorithm
from [DF20]. As a consequence, we only show that there is no integral distinguisher on 8
rounds that would hold independently of the round constants used in column 1 along the
cipher. However, it might be possible that there exists one for specific values of the round
constants (but this seems quite unlikely).

6 Conclusion
In this paper, we showed that proper use of Gurobi’s functionalities to solve MILP models
can greatly improve the solving times to search for distinguishers based on the division
property. Especially, we showed that in a lot of cases, using a lossy model along with lazy
constraints not only results in better solving times, but also allows to handle more cases
than previously, such as large (Super) S-boxes or complicated linear layers without loss of
accuracy.

Moreover, this strategy of lossy modeling leads to overall much simpler (i.e. less
constraints) model, even when considering the lazy constraints added to remove false
positives. As such, a possible direction for future work would be to provide a human
readable proof of why a given case leads to no division trail, or at the very least a form of
easily verifiable certificate. We also believe the research direction pointed in this paper can
be extended to other cryptanalysis techniques as the search of cube attacks and differential
distinguishers. In particular, it would be interesting to see whether lossy modeling and
lazy constraints could be used with other variants of the division property, including the
variant used to provide lower bounds on the degree of block ciphers [HLLT20] as well
as the recent framework to prove resistance against integral attacks [HLLT21]. Finally,
while we highlighted how the modeling step can be improved by using lazy constraints,
another very common feature when solving MILP problems is the use of custom heuristics
to help the solver converge (either toward a solution, or to prove infeasibility). As far as
we know, no such heuristics exist for MILP problems derived from division property, or
from cryptanalysis in general, while it is very common when solving classical problems, for
example the 2-opt heuristic for the travelling salesman problem.
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A Example of the Greedy Algorithm
For instance, regarding the 4-bit S-box of Skinny, we can construct its propagation table
using the algorithm described in [DF20] and we obtain:

input minimal outputs input minimal outputs

0000 0000 1001 1000− 0110− 0011
1000 1000− 0100− 0001 0101 1000− 0100− 0011
0100 1000− 0100− 0010 0011 1000− 0100− 0001
0010 1000− 0100− 0010− 0001 1110 1000− 0110− 0011
0001 1000− 0100− 0010− 0001 1101 1100− 0110− 1011
1100 1000− 0100− 0011 1011 1100− 0111
1010 1000− 0110− 0101− 0011 0111 1000− 0100− 0011
0110 1000− 0100− 0010 1111 1111

Applying the Quine-McCluskey algorithm leads to the following impossible transitions:

(?, ?, 1, ? | 0, 0, 0, 0) (?, ?, ?, 1 | 0, 0, 0, 0) (1, ?, 1, ? | 0, ?, 0, 0) (1, ?, ?, ? | 0, 0, ?, 0)
(?, 1, ?, 1 | 0, 0, ?, 0) (?, ?, 1, 1 | 0, 0, ?, 0) (1, 1, ?, 1 | ?, 0, ?, 0) (1, ?, 1, 1 | 0, ?, ?, 0)
(1, 1, 1, 1 | ?, ?, ?, 0) (?, 1, ?, ? | 0, 0, 0, ?) (1, ?, 1, ? | 0, 0, 0, ?) (1, 1, ?, 1 | ?, 0, 0, ?)
(1, 1, 1, ? | 0, ?, 0, ?) (1, ?, ?, 1 | 0, ?, 0, ?) (1, 1, 1, 1 | ?, ?, 0, ?) (1, 1, ?, 1 | 0, 0, ?, ?)

(1, 1, 1, 1 | 0, ?, ?, ?) (1, ?, 1, 1 | ?, 0, ?, ?)

Let see how our algorithm does effectively compact the corresponding inequalities. For
instance, the impossible transition (1, ?, ?, ? | 0, 0, ?, 0) can be rewritten into 4 different
ways:

1. (1− u0 + v0 + v1) + v3 ≥ 1

2. (1− u0 + v0 + v3) + v1 ≥ 1

3. (1− u0 + v1 + v3) + v0 ≥ 1

4. (v0 + v1 + v3) + 1− u0 ≥ 1

None of those forms can be combined with another inequality to be compacted and thus
we remove the transition and add the corresponding inequality to the system. Transitions
(?, 1, ?, ? | 0, 0, 0, ?), (1, ?, ?, 1 | 0, ?, 0, ?) and (1, ?, 1, 1 | ?, 0, ?, ?) are handled in the same
way. At this step, each inequality can be combined with another one. We thus take one
of them that can be combined with most inequalities. For instance (?, 1, ?, 1 | 0, 0, ?, 0),
(?, ?, 1, 1 | 0, 0, ?, 0) and (?, ?, ?, 1 | 0, 0, 0, 0) can be combined to form the inequality:

3(1− u3 + v0 + v1 + v3) + 1− u1 + 1− u2 + v2 ≥ 3.

Again, each remaining inequality can be combined with another one and we thus pick for
instance (1, 1, 1, ? | 0, ?, 0, ?), (1, ?, 1, ? | 0, ?, 0, 0) and (1, ?, 1, ? | 0, 0, 0, ?) which lead to
the inequality:

3(1− u0 + 1− u2 + v0 + v2) + 1− u1 + v1 + v3 ≥ 3.

At this step, (?, ?, 1, ? | 0, 0, 0, 0) cannot be combined with any of the remaining inequalities
and we thus should add it to the system. However it can still be combined with previously
processed inequalities as for instance with (1, ?, 1, ? | 0, 0, 0, ?). We can thus add instead
the inequality:

2(1− u2 + v0 + v1 + v2) + 1− u0 + v3 ≥ 2.
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We continue this process, taking in priority inequalities that cannot be combined with
remaining inequalities or in exactly one way. At the end we can obtain for instance the
following system of 10 inequalities, 2 less than the CH method:

(1− u0 + v0 + v1) + v3 ≥ 1
(1− u1 + v0 + v1) + v2 ≥ 1

(1− u0 + 1− u3 + v0) + v2 ≥ 1
(1− u0 + 1− u2 + 1− u3) + v1 ≥ 1

3(1− u3 + v0 + v1 + v3) + 1− u1 + 1− u2 + v2 ≥ 3
3(1− u0 + 1− u2 + v0 + v2) + 1− u1 + v1 + v3 ≥ 3

2(1− u2 + v0 + v1 + v2) + 1− u0 + v3 ≥ 2
3(1− u0 + 1− u1 + 1− u3 + v1) + v0 + v2 + v3 ≥ 3

3(1− u0 + 1− u1 + 1− u2 + 1− u3) + v0 + v2 + v3 ≥ 3
2(1− u0 + 1− u2 + 1− u3 + v0) + 1− u1 + v3 ≥ 2

B Experiments
B.1 AES

AES [DR99] is the international block cipher standard and probably the most studied
block cipher. It is an SPN with block size 128 bits, using an 8-bit S-box and a linear
layer built using a byte-wise permutation as well as a multiplication by a matrix over F28

which is applied in parallel over each 32-bit blocks of the state. The best known integral
distinguisher on AES has been known since its design, covering 4 rounds and requiring 232

data. We give a short summary of the timings of our experiments in Table 4.

Table 4: Solving times for AES over 4 and 5 rounds depending on the modeling. Timings
are given in seconds, for the full solve for 4 rounds and over a subset of all cases for 5
rounds.

XXXXXXXXXXRounds
Model QM + CX QM + WE PWL + CX PWL + WE

4 7.7 2.7 2 0.4
5 14 10 55 22

We re-did the search for this (conventional) distinguisher, and obtained the following
solving times. Using QM+CX, we needed a total of about 7.7s to show that all 128 bits
at the output are balanced. Using QM+WE, the solving time comes down to about 2.7s,
and to about 2s when using PWL+CX. The best solving time was obtained by using
PWL+WE, requiring less than 0.4s to show that each of the 128 output bits are balanced.
Moreover, note that even in this later case, using PWL+WE on its own is enough, meaning
that we did not need to add lazy constraints as there was already no valid division trails.

We then searched for extended distinguishers over 5 rounds. As the Super S-box in
AES is of size 32 bits, we were not able to use it to filter out trails that could possibly be
invalid, and as such the precomputation was done for a single round at the start/end of the
cipher, i.e. while considering a linear mapping covering a single S-box at the input/output.
Testing over a subset of all sets of pairs, the shortest solving time was about 10s using
QM+WE. For reference over the same subset, QM+CX requires about 14s, PWL+CX
requires about 55s and finally PWL+WE requires about 22s.

In the end, using the parameters for which we obtained the fastest solving time above,
the full search over all sets of pairs was done in about 13min, resulting in no distinguisher
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found over 5 rounds. Note that this is technically a new result, as CX is a lossy modelization
and thus, using the lazy constraints as described in Section 4.2, we are able to show that
even when being exact on both the S-box and the linear layer, we still cannot find a
distinguisher over 5 rounds.

B.2 ARIA

ARIA [KKP+03] is a block cipher standardized in South Korea, built as an 128-bit SPN
using an 8-bit S-box. Its design differs from most recent SPNs as it’s linear layer is a single
matrix multiplication with a binary matrix over F28 applied over the whole state instead
of the usual "column-wise" matrix multiplication.

The best conventional integral distinguisher [LWZ10] requires 2120 data, and the authors
were only able to show that 24 bits at the output are balanced. We conducted the search
using the same input and checking all output bits, and were able to show that all 128 bits
at the output are balanced. Using QM+CX leads to a solving time of about 35s. Using
QM+WE reduces it down to 13.5s and using PWL+CX makes it even faster, down to 3.2s.
As for AES, the fastest solving time was obtained using PWL+WE, with a total solving
time to check each of the 128 bits of about 0.8s. Again, as for AES, PWL+WE is enough
on its own to show that all bits are balanced, without having to add any additional lazy
constraints, and thus no need for an exact model over all operations.

As a new result, we were able to conduct the search for extended distinguishers over 5
rounds of ARIA. Since there is no Super S-box structure in ARIA, we did the same as for AES
and do the precomputation over 1 round at the start/end of the cipher, thus considering a
linear mapping covering a single S-box at the input/output. Moreover, as the linear layer
is a 16× 16 matrix over F28 , we can use the strategy described in Section 3.3.1 and see this
as the parallel application of 8 (linear) S-boxes, thus using QM to generate inequalities.
This allows us to generate an exact model for the search using QM for both the S-box
and linear layer, which, over a subset of all input/output pairs to consider, requires about
1084s (∼18min) to be solved. However, the best time over this subset was obtained using
QM+CX, down to 141s, which is more than 7 times faster than directly using an exact
model. Conducting the full search with these parameters, we only needed about 5 hours
to solve all cases, though this resulted in no (extended) distinguisher found. A summary
of all timings is given in Table 5.

Table 5: Solving times for ARIA over 4 and 5 rounds depending on the modeling. Timings
are given in seconds, for the full solve for 4 rounds and over a subset of all cases for 5
rounds.
XXXXXXXXXXRounds

Model QM+CX QM+WE PWL+CX PWL+WE QM+QM

4 35 13.5 3.2 0.8 -
5 141 284 1674 1278 1084

B.3 CRAFT

CRAFT [BLMR19] is a lightweight 64-bit block cipher mainly designed to resist Differential
Fault Attacks. It uses an SPN structure, with a 4-bit S-box, a nibble wise permutation
and a column-wise MixColumn operation defined with a binary matrix over F4

2. The best
known integral distinguisher is given in the cipher’s specifications, covering 13 rounds,
requiring 260 data and leading to 12 balanced bits. Moreover in [HLLT21], it was showed
that 14 rounds of CRAFT should be safe from any key-independent integral distinguisher,
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including extended distinguishers. Nevertheless, we also tried to search for such an extended
distinguisher for the sake of completeness.

For the conventional distinguisher over 13 rounds, the fastest solving time was obtained
using CH+CH, with a total time of 3.6s. Very similar times were obtained when using
CH+CX, which is not very surprising as the distinguisher could already be proved using
CX despite it being lossy. A more surprising result however is that using ZR for the linear
layer (still with CH for the S-box) leads to about a 10 time slower solving process, requiring
38s of which 25s were dedicated to proving the balanced bits. This was rather unexpected
as both CH and ZR lead to an exact modeling of the linear layer, yet lead to very different
timings. Using either PWL the S-box or WE for the linear layer showed to not be very
successful for 13 rounds of CRAFT, as the best time was obtained with PWL+CH (39s) up
to 494s using PWL+WE.

For the search of extended distinguishers over 14 rounds (thus also including checks on
the Super S-box), the solving times follow about the same trend, with a few variations. As
in previous cases, we only examined the timings for different modeling and parameters for
a subset of all sets of input/output pairs to check. The fastest solving time turned out to
be using CH+CX (31s), but CH+CH and CH+ZR are close (41s and 65s respectively).
Using either PWL the S-box or WE for the linear layer showed again to be overall slower,
from 111s for CH+WE to 440s using PWL+WE. In the end, doing the full search with
the fastest parameters lead to a total time of about 11min, leading to no distinguisher,
which is in agreement with the results from [HLLT21].

Table 6: Solving times for CRAFT over 13 and 14 rounds depending on the modeling.
Timings are given in seconds, for the full solve for 13 rounds and over a subset of all cases
for 14 rounds.
XXXXXXXXXXRounds

Model CH+CH CH+CX CH+ZR PWL+CH PWL+WE

13 3.6 3.8 38 39 494
14 41 31 65 39 440

B.4 HIGHT

HIGHT [HSH+06] is a 64-bit block cipher using a variant of the Generalized Feistel Structure
with 8 branches each of size 8 bits, where some XORs in the branch merging are replaced
by an addition modulo 28. In [DF20], Derbez and Fouque found 4 different 20-round
extended distinguishers using their ad-hoc algorithm to search for such distinguishers.
However, it required more than 13 days (real time) to compute on their 128-core server.
We thus focused only on these extended distinguisher, in the hope of improving the search
time.

As usual, we did some timings on a subset of all the sets of pairs using different
modeling strategies. It turns out that the two exact modeling (QM and ZR) both give
about the same timings of about 70s, while the WE modeling was the slowest, requiring
about 100s. However, the fastest modeling ended up being CX, requiring only 30s to solve
the given subset of cases. In the end with these parameters, the complete search took us
only 12min on a standard 4-core/8-thread CPU, which is widely faster than the 13 days
time over a 128-core server in [DF20] (and our algorithm could still be sped up using more
parallelization).

We also ran the search for extended distinguisher over 21 rounds. Again, CX turned
out to be the fastest choice with about 40s on a subset of all sets to consider, with both
QM and ZR leading to about 95s and WE about 220s. Using CX, we were able to conduct
the full search in about 14min, which resulted in no extended distinguisher found.
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Table 7: Solving times for HIGHT over 20rounds depending on the modeling. Timings are
given in seconds, over a subset of all cases.

XXXXXXXXXXRounds
Model QM ZR CX WE

20 70 70 30 100

B.5 LED

LED [GPPR11] is another 64-bit SPN block cipher, which has the particularity that, unlike
a lot of other 64-bit lightweight block ciphers, is using a non-binary MixColumn matrix
over F24 . Conventional distinguishers were obtained over up to 7 rounds in [], however
the ad-hoc algorithm from [DF20] to search for extended distinguisher was not able to
finish in reasonable time over 8 rounds. We thus focused on the problem of searching for
extended distinguishers over 8 rounds of LED.

To determine the best model parameters, we did the timings with different modeling on
a rather large sample of 100 sets, totaling 700427 pairs to examine. The fastest parameters
were using CH+WE and leading to 146s to solve these 100 sets, which when normalized
by deducing the time spent on pairs reaching the 30s time limit (3 of them, thus 90s),
gives a 56s of "effective" computation. On the other hand, the slowest solving time was
328s using PWL+CX, which gets normalized to 178s of effective computation (5 pairs
reached the time limit). When comparing the normalized times, the difference is quite
impressive as there is a factor of almost 10 between the fastest and slowest modelization.
In the end, the full search required about 6.3h of computation on our standard laptop,
which only required to examine 1409 pairs thanks to memoization. However, 392 pairs
reached the 30s time limit, thus wasting 3.3h of computation, but resulting in only 3h of
effective computation which is quite reasonable. To compare, [Udo21] was able to do the
same search in about 16h using a SAT solver on twice more cores than us. Note that the
total time could possibly be improved by setting a lower time limit, however due to time
constraints, we were not able to experiment more as to what the lowest "good" time limit
would be.

Table 8: Solving times for LED over 8 rounds depending on the modeling. Timings are
given in seconds, over a subset of all cases, and normalized by deducing the time spent on
the pairs reaching the time limit.

XXXXXXXXXXRounds
Model CH + CX CH + WE PWL + CX PWL + WE

8 73 56 178 79

B.6 Skinny64

Skinny64 [BJK+16] is a 64-bit lightweight block cipher following an SPN structure with
a 4-bit S-box and a binary MixColumn matrix over F24 . Extended distinguishers were
found over 11 rounds in [DF20] in 683 CPU-minutes (22 minutes on their 128-core server),
and they were also able to conduct the search over 12 rounds in 152 CPU-minutes (4
minutes on their server), leading to no (extended) distinguisher. As for HIGHT, we looked
at whether we could still improve these solving times. For 11 rounds, the best choice for
the model was to use CH+CH, and we were able to find back the same distinguishers
as in [DF20] in about 530s (a bit less than 9min). For 12 rounds, the best times were
also obtained using CH+CH, and we were able to conduct the full search in about 80
seconds real time on a standard laptop. Both of these show a rather large improvement
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over the solving time, even more so since, as mentioned previously, the only parallelization
used is the one done by Gurobi internally (with 8 threads available in our case), while
we treat each input/output pair one by one. As such, one would be able to improve the
solving times even more so with more core available by conducting the search over multiple
input/output pairs at the same time.

Table 9: Solving times for Skinny64 over 11 and 12 rounds depending on the modeling.
Timings are given in seconds over a subset of all cases.

XXXXXXXXXXRounds
Model CH + CH CH + WE PWL + CH PWL + WE

11 238 > 3600 > 3600 > 3600
12 16 109 90 289

B.7 Camellia

Camellia [AIK+00] is another 128-bit block cipher which has especially been approved by
ISO/IEC. Its general structure is a Feistel network, however every 6 rounds, an additional
linear layer (the FL-layer) is applied to both branches of the Feistel, making the starting
round another variable to take into account. In [HWW20], Hu et al. showed that, one can
find a distinguisher over 7 rounds, starting from the round of index 0 (meaning 6 rounds +
FL-layer + 1 round), requiring 2127 data and leading to 64 balanced bits. Note that they
only provided results when starting from the round of index 0, and their algorithm needed
about 99min to show this distinguisher.

We ran the search for the same distinguisher, while also considering the starting round
as another variable (ranging from 0 to 5, after which everything becomes symmetrical). As
a result, we were able to show that this distinguisher holds for any of the possible starting
rounds, each time leading to 64 balanced bits. We give the timings for each starting round
and modeling in Table 10, where the columns indicate the modeling of the S-box (QM
or PWL) and the modeling of the linear layer (CX or WE). Note that again, even when
using a lossy model, we do not need to add lazy constraints to prove these distinguishers.
In the table, we also give the time spent on proving the balanced bits, meaning the total
time spent to prove that there was no division trails for 64 of the 128 output vectors.
This shows an interesting behavior for the case of Camellia, as when using QM+CX the
majority of the time is spent on proving the balanced bits, while when using a simpler
(lossy) modeling, proving the balanced bits is only a small fraction of the time spent.
Moreover, we can see that for a given starting round, there is a factor of about 4 up to 10
times between the slowest and fastest times. While all timings given here are rather short
in general, this is still a non-negligible factor to consider if one were to have to run many
of these searches, for example when designing a new block cipher and trying to evaluate
various choices, or in the case of searching for extended distinguishers where one needs to
examine a lot of different input/output pairs.

We also attempted to search for distinguishers over 8 rounds to estimate the time that
would be required to solve the MILP problems while considering the use of lazy constraints
for the linear layer. For a specific input division property and starting from round 0, using
QM+CX requires about 240s to check that there exists a division trail for each possible
output bit, while the other modeling strategies would require more than one hour at the
very least. Overall, to go through each possible input division property of weight 127 as
well as for each possible starting round, we needed about 18 hours in total, resulting in
no distinguisher found, even while taking into account an exact modeling for the linear
through the use of lazy constraints.
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Table 10: Solving times for Camellia over 7 rounds depending on the starting round and
modeling. Timings are given in seconds, where the number in parenthesis is the time spent
to prove only the balanced bits. Best total time for each starting round is in bold.

XXXXXXXXXXStart
Model QM + CX QM + WE PWL + CX PWL + WE

0 140 (107) 73 (19) 30 (3.4) 35 (1.6)
1 97 (63) 43 (21) 48 (2) 23 (1.2)
2 104 (80) 30 (20) 27 (1.9) 11 (1.4)
3 114 (93) 35 (27) 25 (2.3) 10 (1)
4 117 (89) 33 (20) 25 (2) 19 (1.1)
5 128 (66) 44 (19) 27 (2.6) 53 (1.6)

B.8 CLEFIA

CLEFIA [SSA+07] is another ISO standard, with block size 128 bits and using a Generalized
Feistel structure. A distinguisher over 10 rounds requiring 2127 data and leading to
64 balanced bits was first given in [SWW17] using word-based division property, and
[HWW20] verified this same distinguisher using bit-based division property, requiring
about 82min of computations.

We searched for the same distinguisher to evaluate different modeling strategies, which
led to some interesting observations. Using QM for the S-box (and either CX or WE for the
linear layer), we were able to solve the 64 cases where a division trial exists (meaning those
bits cannot be proved to be balanced) very fast, however we had to interrupt the search
after more than 3 days of computation to try to prove the first balanced bit (meaning
the very first case where there is no division trail). However, when switching to PWL for
the S-box, using CX for the linear layer allowed us to finish all computations (including
proving the 64 balanced bits) in about 4.5h, with almost all the time was spent proving
the cases where there is no division trail (about 50s were spent on proving the 64 cases
where there was a trail). However this can be further improved using the PWL+WE, with
the total solving time coming down to only 23min, again with almost all time spent on
proving the 64 balanced bits (only 15s spent on the other 64 bits).

As for Camellia, we attempted to search for distinguishers over one more round while
taking into account the effect of having an exact modeling for the linear layer (through the
use of lazy constraints). For a specific input division property of weight 127, the fastest
model to check that each output bit admits a division trail required us about 176s using
QM+CX, and using this modeling, we needed about 4 hours to check every input division
property of weight 127, showing that none of them lead to a distinguisher even when
modeling the linear layer exactly.

Table 11: Solving times for CLEFIA over 10 and 11 rounds depending on the modeling.
XXXXXXXXXXRounds

Model QM + CX QM + WE PWL + CX PWL + WE

10 > 3 days > 3 days 4.5h 23min
11 176s 441s > 1h > 1h

B.9 LEA

LEA [HLK+13] is 128-bit block cipher developed to provide a high-speed software encryption
on general-purpose processors. LEA is one of the cryptographic algorithms approved by
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the Korean Cryptographic Module Validation Program and is the national standard of
Republic of Korea. This algorithm has simple ARX structure and works on 32-bit words.

We searched for integral distinguishers using the same framework as [SWW17], where
the data complexity is lowered until no distinguisher is found. The only difference with
the work of Sun et al. is that we used a MILP model based on our new modelization of
modular addition described Section 4.6. As a result, we were able to retrieve the 8-round
integral distinguisher with data complexity of 2118 chosen plaintexts in less than 20 seconds
while it took 30 minutes with their previous modelization technique.
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