
Curve Trees:
Practical and Transparent Zero-Knowledge Accumulators

Matteo Campanelli1, Mathias Hall-Andersen2, and Simon Holmgaard Kamp2

1 Protocol Labs
matteo@protocol.ai

2 Aarhus University, Denmark
{ma,kamp}@cs.au.dk⋆

Abstract. In this work we improve upon the state of the art for practical zero-knowledge for set mem-
bership, a building block at the core of several privacy-aware applications, such as anonymous payments,
credentials and whitelists. This primitive allows a user to show knowledge of an element in a large set with-
out leaking the specific element. One of the obstacles to its deployment is efficiency. Concretely efficient
solutions exist, e.g., those deployed in Zcash Sapling, but they often work at the price of a strong trust
assumption: an underlying setup that must be generated by a trusted third party.
To find alternative approaches we focus on a common building block: accumulators, a cryptographic data
structure which compresses the underlying set. We propose novel, more efficient and fully transparent con-
structions (i.e., without a trusted setup) for accumulators supporting zero-knowledge proofs for set mem-
bership. Technically, we introduce new approaches inspired by “commit-and-prove” techniques to combine
shallow Merkle trees and 2-cycles of elliptic curves into a highly practical construction. Our basic accu-
mulator construction—dubbed Curve Trees—is completely transparent (does not require a trusted setup)
and is based on simple and widely used assumptions (DLOG and Random Oracle Model). Ours is the first
fully transparent construction that obtains concretely small proof/commitment sizes for large sets and a
proving time one order of magnitude smaller than proofs over Merkle Trees with Pedersen hash. For a
concrete instantiation targeting 128 bits of security we obtain: a commitment to a set of any size is 256
bits; for |S| = 240 a zero-knowledge membership proof is 2.9KB, its proving takes 2s and its verification
40ms on an ordinary laptop.
Using our construction as a building block we can design a simple and concretely efficient anonymous
cryptocurrency with full anonymity set, which we dub Vcash. Its transactions can be verified in ≈ 80ms
or ≈ 5ms when batch-verifying multiple (> 100) transactions; transaction sizes are 4KB. Our timings are
competitive with those of the approach in Zcash Sapling and trade slightly larger proofs (transactions in
Zcash Sapling are 2.8KB) for a completely transparent setup.

1 Introduction

Zero-knowledge proofs are a cryptographic primitive that allows one to prove knowledge of a secret without
revealing it. In many applications the focus is on proofs that are short and with efficient running time. One of
the rising applications of zero-knowledge is in set-membership: given a short digest to a set S, we want to later
show knowledge of a member in the set without revealing the latter. This primitive is useful in domains such
as privacy-preserving distributed ledgers, anonymous broadcast, financial identities and asset governance (see,
e.g., discussion in [9]).

Limitations of prior work. Our focus in this work is on solutions that are highly practical. That is, solutions
with concretely short proving/verification time and short proofs. While efficient solutions to zero-knowledge set-
membership already exist, we argue that they have limitations. In particular, either they still have a high
computational/communication cost (we elaborate in Section 1.1 where we compare to transparent polynomial
commitments and ring signatures [41]) or they rely on proof systems that are non-transparent. The latter means
that, in order for the system to be bootstrapped, it is necessary to invoke a trusted authority. This is true for
example in Zcash (Sapling) [38] and in [17]. While we can partly overcome this issue by emulating the trusted
authority through a large-scale MPC, this is still highly expensive, both computationally and logistically3. Other
solutions, such as [9, 19], mitigate this problem by requiring a trusted setup for parameters that are reusable
⋆ Mathias Hall-Andersen and Simon Holmgaard Kamp are funded by the Concordium Foundation.
3 https://z.cash/technology/paramgen/

https://z.cash/technology/paramgen/

in other cryptographic settings (an RSA modulus). This, however, still requires invoking a trusted authority or
arranging a parameter-generation ceremony [24], which may not always be viable. We then turn to solutions
that are fully transparent and still very efficient.

Our contributions. Our main contribution is a concretely efficient construction for proving private set-
membership with a fully transparent setup. Specifically we design a new data structure, Curve Trees, that
supports concretely small commitment to a set and where we can show set membership in zero-knowledge and
with a small proof.

The design of a curve tree is simple and relies on discrete logarithm and the random oracle model (ROM)
for its security. A curve tree can be described as a shallow Merkle tree where the leaves are points over an
elliptic curve (and so are internal nodes). To hash, at each level we use an appropriately instantiated Pedersen
hash alternating curves at each layer (we require a 2-cycle of curves). To prove membership in zero-knowledge
we use commit-and-prove4 capabilities of Bulletproofs and leverage the algebraic nature of our data structure.
Our curves can be instantiated with existing ones in literature (see “Supported Curves” in Section 2.1). While
we focus on accumulators and set membership, our approach can straightforwardly be applied to opening of
vectors rather than sets obtaining an “index-hiding” vector commitment [53].

For a concrete instantiation targeting 128 bits of security we obtain: a commitment to a set of any size is
256 bits; for |S| = 240 a zero-knowledge membership proof is 2.9KB, its proving takes 2s and its verification
40ms on an ordinary laptop.

Using our construction as a building block we can construct a simple and concretely efficient anonymous
payment system with full anonymity set5 and transparent setup. We dub this payment system VCash6. In VCash,
the constraint system used for the zero-knowledge proof of a “spend” transaction is 20x smaller than that in
Zcash Sapling.

The main distinguishing feature of VCash is that it can be concretely efficient and still support full anonymity
sets. The latter is roughly the subset of existing transactions a spent transaction can be narrowed down to (if
a protocol supports a full anonymity set then this set consists of the whole history of transactions so far). For
“two inputs/two outputs” settings and for anonymity sets of size 232 (like in Zcash) our confidential transactions
(Vcash) require participants to compute/verify two Bulletproofs proofs of < 5000 constraints each. Verifying
each of the proofs in parallel (4 cores) in batches of at least 100 transactions (e.g. when verifying the validity of
all transactions in a block) yields a very practical per-transaction verification time of ≈ 5 ms. Transaction sizes
are 4 KB. Our timings are competitive with those of the approach in Zcash Sapling and trade slightly larger
proofs for a completely transparent setup and simpler curve requirements.

As a side contribution, we provide the first optimized implementation of Bulletproofs that can be instantiated
with arbitrary curves and supports vector commitments of arbitrary dimension and arbitrary computations at
the same time. To the best of our knowledge, previous implementations were not written modularly to work
with arbitrary curves or supported only specific computations, such as range proofs.

Structure-Preserving Features. From the theoretical side, one interesting feature of curve trees is their
structure-preserving properties[2]. This means our construction never needs to use any combinatorial hash (e.g.,
SHA) to convert representation of elements at each level or use their bit decomposition, but it only relies on
basic structural properties of groups. In this sense, this construction provides some nuances to the implications
of the recent impossibility result in [21]. See also Remark 4.

1.1 Related Work

1.1.1 Zero-Knowledge Sets. Seminal work by Micali, Rabin and Kilian [46] introduce the notion of a
“zero-knowledge set”: a hiding commitment to a set, enabling membership and non-membership proofs. Note
that this is exactly complementary to the goal of this paper: in zero-knowledge sets, the set is hidden and the
retrieved elements public, here the set is public and the retrieved element hidden. In Camenisch-Stadler notation
(Section 2.2.1) this relation is {(S, r) : c = Com(S; r) ∧ x ∈ S} instead of {(x, r) : c = Com(x; r) ∧ x ∈ S}.

Highly efficient constructions of zero-knowledge sets are known under a range of assumptions, notably Chase
et al. [23] generalize the original construction by Micali et al. using Mercurial commitments.
4 In the sense of the commit-and-prove building blocks in LegoSNARK [18] and in the work by Lipmaa [44].
5 An anonymity set can be seen as the subset of existing transactions a spent transaction can be narrowed down to. We

say that a protocol supports a full anonymity set if the set consists of the whole history of transactions.
6 As a reference to both Zcash and Veksel [19] from which it borrows part of its design.

2

1.1.2 Accumulators from Groups of Unknown Order. The original work by Benaloh and de Mare [8]
introducing cryptographic accumulators provides a simple construction based on strong RSA: a set of prime
integers are accumulated by iteratively exponentiation in an RSA group. Camenisch and Lysyanskaya [15]
extended this accumulator to be dynamic, Baldimtsi et al. [5] generically obtaining an adaptively sound dynamic
accumulator by combining 1) an adaptively sound positive additive accumulator and 2) a non-adaptively sound
positive dynamic accumulator. Rather than RSA, these constructions can be can instantiated with class groups:
which avoids the need for a trusted setup, ut incurs a sustantial ≈ 20× computational overhead at the same
security level.

1.1.3 Accumulators from Bilinear Pairings. Nguyen constructed accumulator from bilinear pairings [50],
this construction was subsequently extended by Damgård and Triandopoulos [25] to support non-membership
proofs. More recently Ghosh et al. [34] showed how to prove membership in zero-knowledge. In the concurrent
work Zapico et al. [54] reduces the computational cost of proving membership from O(n) to O(log(n)), by
relying on an O(n log n) precomputation. Common for all these works is the reliance on a structured “powers-of-
τ ” style structured reference string (SRS): size of the public parameters is proportional to the (apriori bounded)
maximum set size and knowledge of the trapdoor breaks binding.

1.1.4 Authenticated Hash Tables & Verkle Trees. Charalapos, et al. [51] suggests using a tree of
accumulators: where every internal node is a cryptographic accumulator containing all its children. Which
allows a trade-off between membership proof size and cost of updating the accumulator. The same concept
(“Verkle Trees”) was subsequently independently rediscovered by industry-afflicated people [36]. We observed
that Charalapos et al. holds a patent for this construction [22] when used for authenticated computation, it is
unclear if this applies to the scheme as used in the Ethereum blockchain. Our work differs from these by not
using an accumulator at each level, the compression function is a simple Pedersen commitment, furthermore
these works do not allow/describe efficient zero-knowledge membership proofs.

1.1.5 More related-work: A broader landscape of approaches to zero-knowledge for set mem-
bership Some works with transparent setup do not achieve succinctness (that is, practically short proofs and
a o(|S|) verification time). For example, Monero [3]—or, generally, approaches based on ring signatures—have
proofs linear in the set and where the verifier’s running time is linear in the size of the set |S|. Other approaches
such as Omniring reduce the proof size to O(log(|S|)) but still have linear verification time [41].

Other approaches to accumulator with zero-knowledge properties do not involve general-purpose SNARKs.
This includes for example the multilinear pairing-based polynomial commitment in [9], the seminal KZG [40]
and the polynomial commitments in [14]. They, however, all require knowledge-based assumptions and a trusted
setup. Similar observations hold for the recent work in Caulk[53].

Other works apply asymptotically efficient polynomial commitments with a transparent setup, but their
commitment and proof size are concretely large. This is the case of Hyrax [52], where for large set sizes commit-
ments can be ≫ 10KB, and Dory [42] where commitments are 190 bytes (6-7 times larger than ours). Proofs of
single opening are also large (18 KB) in Dory, although the scheme can amortize this cost with batching (expect
for very large opening batches this amortized proof size is still significantly higher than ours). The Spartan proof
system has overall opening sizes, proving and verification time that are competitive with respect to ours (for
sets up to approximately 220 where Spartan starts to perform worse), but it has very high commitment sizes,
e.g. ≥ 20KB for sets of size 220 (625× worse than ours)7. Other transparent polynomial commitments include
those based on Reed-Solomon IOPs [6] or on Diophantine ARguments of Knowledge (DARK) [13]. As argued
in [42] (Section 1.1) they achieve worse concrete performances than the works above in practice.

Works that apply specialized proving techniques on accumulators in unknown-order groups: Veksel, [19, 20,
9, 17]. These works obtain concretely small proofs/verifier with an efficient proving time, but require an RSA
modulus (non-transparent) for their efficient instantiations8. While the work in [17] obtains concretely efficient
proving time with a slightly larger proof size in Zcash it requires trusted setup to instantiate its proof system
in addition to RSA modulus.
7 See [42] for numbers referred in this section.
8 In all these works we can replace the RSA group with a transparent class-group [11] at a substantial efficiency cost.

See, e.g., discussion in [26].

3

1.2 Subsequent Work

Recently Eagen has built upon our work to show how to design confidential transactions of smaller size seemingly
at the cost of additional proving time [28] through nested proving and other techniques. It is still unclear how
to compare these extensions to our work: the current writeup in [28] does not make all the assumptions behind
its estimates concrete and the work does not have a complete implementation yet.

1.2.1 Curve Trees and Algebraic Merkle Trees. The closest related (zero-knowledge) accumulator is
the approach taken in Zcash (Sapling and Orchard versions) [38], in which a Merkle tree is instantiated with
a hash function admitting an efficient algebraic description. In case of Zcash this hash function is based on
multi-scalar exponentation over specially chosen elliptic curves. For “Pedersen hashes” as used in Zcash Sapling,
the resulting circuit requires ≈ 44000 constraints (multiplications) for memberships of size 232, Our approach,
on the other hand, requires proving ≈ 4500 constraints in zero-knowledge; roughly an order of magnitude less.
Merkle trees instantiated with “SNARK-friendly hash functions” (e.g. Poseidon [35]) has similar performance
compared to ours (see Section 8), however the concrete security of these hash functions is less well understood
[7] [1].

1.2.2 Halo2 and Recursive Proofs. Halo29 is a transparent (zero-knowledge) proof system enabling effi-
cient recursion using “atomic accumulation” and cycles of elliptic curves. For efficiency the curves used by Halo2
need to have a “smooth” multiplicative subgroup to perform FFT which rules out some curves, in particular
the secp256k1 / secq256k1 cycle (instead supported by our Bulletproofs implementation). This requirement
restricts Halo2’s compatibility with systems using other curves.

Although both—curve trees and Halo2—rely on the special algebraic structure of a cycle of curves, their goals
are orthogonal: Halo2 is a proof system, ours a specialized data structure for zero-knowledge for set membership.
Our techniques rely on a commit-and-prove which we instantiate with Bulletproofs for easy comparison.10 It is
possible to instantiate our scheme with Halo2; Halo 2 is ultimately not a competing approach but a potential way
to apply the Curve Tree framework. However Halo2’s generalized PLONK-based arithmetization [33] enables
a more complex set of potential optimizations, including custom gates and lookups, which makes an apple-
to-apple comparison substantially harder. We believe that replacing Bulletproofs with Halo2 would improve
concrete performance: via custom gates for ECC operations and tables of precomputed points.

2 Preliminaries

Familiarity with elliptic curves and non-interactive proof systems is a prerequisite for this paper and in this
section we provide a brief (and incomplete) introduction to these subjects. Since our techniques will only apply
to elliptic curves we do not generalize to other group structures.

2.1 Elliptic Curves

We denote by E[Fq] ⊆ Fq×Fq the set of points in (x,y) on the elliptic curve E [48]. We denote points on elliptic
curves using upper-case letters (e.g. G and H). Whenever clear from context we might omit the base field Fq

and simply write E. The curve points form an Abelian group (E[Fq],+); we use “additive notation”. Throughout
this paper, the number of points on E[Fq] denoted p := |E[Fq]| will always be prime, hence the group is cyclic.
We call the prime field Fp

∼= Z/(pZ) the scalar field of E[Fq] and denote by [s] ·G, with s ∈ Fp and G ∈ E[Fq],
s acting on G in the Z-module (“scalar multiplication”). We denote by ⟨s⃗, G⃗⟩ =

∑
i [si] ·Gi the “inner product”

between a vector of scalars s⃗ ∈ Fn
p and a list of group elements G⃗ ∈ E[Fq]

n.

2.1.1 Assumption: Generalized Discrete-Log We rely on a common variant of the discrete logarithm
assumption for multiple generators over elliptic curves:

9 https://electriccoin.co/blog/explaining-halo-2/
10 The Bulletproof arithmetization is R1CS, hence comparing the number of constraints is easy

4

https://electriccoin.co/blog/explaining-halo-2/

Assumption 1 (Generalized Discrete-Log) Let G(1λ) a procedure for sampling a new elliptic curve. For
all PPT adversaries A and m ≥ 2:

Pr

⟨⃗a, G⃗⟩ = 0 ∈ E[Fq]

∧ a⃗ ̸= 0⃗ ∈ (Fp)
m

:

(E,Fq,Fp)← G(1λ)

G⃗←$ E[Fq]
m

a⃗← A((E,Fq,Fp), G⃗)

 ≤ negl(λ)

We refer to this assumption as DLOG throughout the paper. Note that generalized variant of DLOG has a tight
reduction to the standard (m = 2) variant.

2.1.2 Pedersen Commitments Throughout the paper we will rely on the ubiquitous Pedersen commitment
scheme. The setup consists of (E,Fp,Fq, ℓ, G⃗,H), with Fp = |E[Fq]|, G1, . . . , Gℓ, H ∈ E[Fq]. The commitment to
v⃗ ∈ Fℓ

p with randomness r is computed as follows:

C = Com(v⃗; r) = ⟨v⃗, G⃗⟩+ [r] ·H ∈ E[Fq]

It is easy to see that computational binding follows from DLOG (Assumption 1). Hiding is perfect and follows
from the observation that [r] · H with r ←$ Fp is uniformly distributed over the group E[Fq]. Importantly,
Pedersen commitments are rerandomizable commitments: sampling δ ←$ Fp and computing C∗ ← C + [δ] · H
yields a commitment to the same v⃗ with randomness r + δ, furthermore the distribution of C∗ is independent
of C: it is a “fresh” perfectly hiding commitment to the same value.

2.1.3 Avoiding Bit Decomposition via 2-Cycles of Curves A 2-cycle of elliptic curves consists of two
elliptic curves {E(evn),E(odd)} and two prime fields {Fp,Fq} such that:

p = |E(evn)[Fq]| And q = |E(odd)[Fp]|

In other words: the base/scalar fields of the two curves are complementary. Crucial for our application will be the
observation that a point (x,y) ∈ E(evn)[Fq] can be treated as a pair of scalars on E(odd), e.g. [x] ·G1 + [y] ·G2 ∈
E(odd)[Fp] for G1, G2 ∈ E(odd)[Fp] is a well-defined operation. The observant reader will see that this defines
Pedersen commitments in E(odd) to lists of points on E(evn), without relying on bit-decomposition for field
elements or hashing, making it cheaper in zero-knowledge. Numerous instantiations of 2-cycles exists, e.g., the
Pasta cycle [37] (used in this paper and Halo2) or the well known secp256k1 / secq256k1 cycle 11. No known
attacks make use of this additional structure, additionally we do not require any efficiently computable pairings
on either curve.

2.2 Non-Interactive Zero-Knowledge Proofs

2.2.1 Camenisch-Stadler Notation When expressing an NP relation R(x,w) we use a variant of Camenisch-
Stadler notation[16], the witness w is explicitly (enclosed in brackets) and the public statement x is defined by
all remaining terms e.g. the “discrete log relation” R :=

{
(z) : y = [z] ·G

}
– the witness is the scalar z ∈ Fp,

while group elements G, y ∈ E constitute the instance.

2.2.2 NIZKAoKs

Definition 1. A NIZKAoK for a relation family R = {Rλ}λ∈N is a tuple of algorithms ZK = (Prove,VerProof)
with the following syntax:

– ZK.Prove(urs, R, x, w)→ π takes as input a string urs, a relation description R, a statement x and a witness
w such that R(x,w); it returns a proof π.

– ZK.VerProof(urs, R, x, π) → b ∈ {0, 1} takes as input a string urs, a relation description R, a statement x
and a proof π; it accepts or rejects the proof.

11 With secp256k1 being used by the Bitcoin blockchain.

5

Non-Interactive Zero-Knowledge schemes (or NIZKs) require a reference string which can be either uniformly
sampled (a urs), or structured (a srs). In the latter case it needs to be sampled by a trusted party. In this work
we use and assume transparent NIZKAoKs, i.e. whose algorithms use a reference string urs sampled uniformly.

We require a NIZKAoK to be complete, that is, for any λ ∈ N, R ∈ R and (x,w) ∈ R it holds with
overwhelming probability that VerProof(urs, R, x, π) where urs←$ {0, 1}poly(λ) and proof π ← Prove(urs, R, x, w).
For security we require standard notions of knowledge-soundness and zero-knowledge:

Knowledge-Soundness. For all λ ∈ N and for all (non-uniform) efficient adversaries A, there exists a
(non-uniform) efficient extractor E such that

Pr

urs←←$ {0, 1}poly(λ);
(x, π)← A(urs)
w ← E(urs)

:
Rλ(x,w) ̸= 1 ∧

Vfy(urs, x, π) = 1

 ≤ negl(λ)

Note the order of quantifiers: the extractor E depends on A.

Zero-Knowledge. There exists a PPT simulator S such that for any λ ∈ N, PPT A, relation R ∈ R,
(x,w) ∈ R, it holds p0 = p1 where:

pb := Pr

 urs1 ←$ {0, 1}poly(λ)

(urs0, π0)← S(1λ, x)
π1 ← Prove(urs, x, w)

: A(1λ, ursb, πb) = 1


Remark 1 (Practical Efficiency). For a broad class of NIZKs the “cost” of the NZIK12 scales with the number of
multiplicative constraints in the relation. Hence when comparing/estimating how “expensive” a certain relation
is prove using a NIZK, the number of multiplications is a broadly useful metric which translates to concrete
performance for a wide range of NIZKs.

2.2.3 Commit-and-Prove for Pedersen Commitments The techniques in this paper rely heavily on
efficient “commit-and-prove” NIZKs for Pedersen commitments (Section 2.1.2). A “commit-and-prove” (C&P)
NIZKs for Pedersen commitments enable efficient proofs of relations in which (part of) the witness is additionally
committed inside a pedersen commitment, i.e. relations of the form:

R∗ := {(w⃗, r) : C = Com(w⃗; r) ∈ E[Fq] ∧R(x, w⃗) = 1}

Many efficient “commit-and-prove” NIZKs exists e.g. Bulletproofs[12], Compressed Σ-Protocols[4] and Halo2.
All these schemes make black-box use of the group E[Fq], i.e. avoid expressing the group operation as an NP
relation over Fq. Note that in the example above w⃗ ∈ Fℓ

p, where Fp is the scalar field of E[Fq].

2.2.4 A Concrete C&P-NIZKAoK: Bulletproofs We denote by zk-BP[E] an instantiation of the Bullet-
proofs [12] NIZKAoK on the elliptic curve E. The Bulletproofs scheme exbibits the following relevant properties:
(1) It is a commit-and-prove for Pedersen commitments on E[Fq] and an concretely efficient proof system for
R1CS relations over Fp. (2) The URS consists of a list of random group elements in E with size linear with
the size of the relation being proved. (3) zk-BP[E] is computationally (simulation) sound in the random oracle
model under the DLOG assumptions (Assumption 1) on E[Fq].

3 Zero-Knowledge Set Membership

In this section we describe a modular primitive for proving set memberships in zero-knowledge, which can
be composed with commit-and-proof zero-knowledge proof system to prove additional properties about the
member of the set. Informally, for a set of rerandomizable commitments (see Section 2.1.2) S = {C1, . . . , Cn}
the primitive proves:

{(r, i) : Ĉ = Rerand(Ci, r)}
12 In prover time, verifier time or proof size, depending on the concrete NIZK.

6

In other words, the commitment Ĉ is a rerandomization of a commitment in S, without revealing which.
Additional properties about the opening of Ĉ can then be proved using commit-and-prove techniques (see
Section 2.2.3).

Need for Compression. The relation outlined above has size n, as a result verifying a proof for the relation
requires O(n) work – to even read the statement. To reduce this cost, the set of commitments itself can be
compressed using a commitment. When the set is fixed, or incrementally updated, this greatly reduces compu-
tation for both prover and verifier. We formalize this general primitive below. Our scheme achieves O(log(n))
communication and O(D

√
n) computation where D is a parameter of the scheme (D is both constant and small)

and n is the size of the set. 13

3.1 Select-and-Rerandomize Accumulators

Below, we fix the message space of the commitment scheme to Fk for some k and its randomness space to F –
as is the case for Pedersen commitments (Section 2.1.2). Our definitions below can be generalized easily.

Definition 2 (Select-and-Rerandomize). A select-and-rerandomize accumulator scheme consists of six al-
gorithms:

SelRerand.Setup(1λ)→ pp returns public parameters of the scheme. These parameters are transparent—no trusted
party needs be invoked.

SelRerand.Comm(pp, vleaf, o)→ C commits to a string vleaf with randomness o.
SelRerand.Rerand(pp, C, r)→ Ĉ rerandomizes committment C with randomness r.
SelRerand.Accum(pp, S)→ A deterministically accumulates a set of commitments. We assume the set S to have

a canonical order.
SelRerand.Prove(pp, S, C, r)→ π returns a proof showing that C ∈ S verifiable through a rerandomized commit-

ment to c with randomness r.
SelRerand.Vfy(pp, A, Ĉ, π)→ 0/1 verifies that Ĉ is a rerandomization of an element in the set.

Correctness of Select-and-Rerandomize. For any λ ∈ N, for any set S = {vi}i, j∗ ∈ [|S|], commitment
randomness (o1, . . . , on) and commitment rerandomization r the verification always succeeds, i.e.

1 = Pr



pp← SelRerand.Setup(1λ)

∀i ∈ [n] : Ci ← SelRerand.Commit(pp, vi, oi)

A← SelRerand.Accum(pp, {C1, . . . , Cn})
Ĉ ← SelRerand.Rerand(ck, Cj∗ , r)

π ← SelRerand.Prove(pp, S, Cj∗ , r)

SelRerand.V(pp, A, Ĉ, π) = 1


The above can be thought as a main correctness property. For it to be meaningful, it needs to be com-

plemented by the following one, which specifically makes explicit what it means for commitments (output of
Comm) to be rerandomizable: for any λ ∈ N, for any message m ∈ Fk, opening o and randomness r ∈ F, it
should hold that SelRerand.Rerand(pp,Comm(pp,m; o)) = Comm(pp,m; o+ r) and pp← SelRerand.Setup(1λ)14.

For our application/instantiation we require the select-and-rerandomize scheme to satisfy the following security
notions:
Select-and-Rerandomize Binding. This is the main security definition of our model. We say the select-
and-rerandomize scheme is binding if there exists a negligible function negl(λ) such that for any PPT adversary

13 The circuit has O(D
√
n) constraints for each layer, but as D is constant this does not affect the asymptotic complexity.

Similarly the size of the proof is Θ(log(D
√
n)) = Θ(logn)

14 Notice that homomorphic commitments (and thus Pedersen commitments) satisfy this property.

7

A:

negl(λ) ≥ Pr



pp← SelRerand.Setup(1λ)

(v⃗, o⃗, v̂, ô, π)← A(pp)
∀i ∈ [n] : Ci ← SelRerand.Commit(pp, vi, oi)

Ĉ ← SelRerand.Commit(pp, v̂, o′)

A← SelRerand.Accum(pp, {C1, . . . , Cn})
if v̂ /∈ v⃗ ∧ SelRerand.Vf(pp, A, Ĉ, π) = 1


Perfect Hiding of Commitment. For all m, m′, pp ← SelRerand.Setup(1λ) the following distributions are
perfectly indistinguishable:

{SelRerand.Comm(pp,m, o) | o←$ F}
≈ {SelRerand.Comm(pp,m′, o′) | o′ ←$ F}

Select-and-Rerandomize Zero-Knowledge. A select-and-rerandomize is (perfect) zero-knowledge if there
exists an efficient simulator S, such that for any λ ∈ N, any (stateful) adversary A, any j∗ ∈ [n], it holds p0 = p1
where

pb := Pr



pp← SelRerand.Setup(1λ);

(v1, . . . , vn, o1, . . . , on)← A(pp)
S := {Ci = SelRerand.Commit(pp, vi, oi)}i∈[n]

r ←$ F; Ĉ = SelRerand.Rerand(pp, Cj∗ , r)

π ← Xb(pp, S, C, Ĉ, r)

A(pp, Ĉ, π) = 1


With X0(pp, S, C, Ĉ, r) := S(pp, S, Ĉ) and X1(pp, S, C, Ĉ, r) := SelRerand.Prove(pp, S, C, r).

Remark 2. Our formalization of SelRerand combines together commitments, accumulators (Definition 7) and
zero knowledge properties. There are, of course, other possible way to model this primitive. We found this
natural enough. We also observe that our definition of correctness and binding imply their counterparts in a
standard accumulator as a special case (where the commitment and the rerandomization are trivial).

4 Curve Trees as Accumulators

In this section we first define curve trees. We then describe some of its properties in terms of commitments
(that are binding and hiding). Finally, we show how to traverse a tree to show membership of a an element in
zero-knowledge. The latter represents our actual construction (Fig. 2).

4.1 Intro to (ℓ,E(evn),E(odd))-Curve Trees

Recall (from Section 2.1) the observation that [x] ·G1+[y] ·G2 ∈ E(odd) for any (x,y) ∈ E(evn)
15 is a meaningful

operation. This is generalizable to any number ℓ of E(evn) points: computing ⟨x⃗, G⃗x
E(odd)

⟩+ ⟨y⃗, G⃗x
E(odd)

⟩ ∈ E(odd)

for i ∈ [ℓ] : (xi,yi) ∈ E(evn). This is a compression function fE(odd) : E(evn)
ℓ 7→ E(odd). At this point a natural

strategy to obtain an accumulator is to use fE(odd) to construct a Merkle tree from fE(evn) : a tree in which
every parent (an E(odd) point) is the hash of its children (E(evn) points) using fE(odd) . However this encounters
an obvious “type problem”: the output of fE(odd) is a point on E(odd), while the inputs are points on E(evn),
preventing us from applying fE(odd) to the resulting outputs. The solution to this “type mismatch” is to define
fE(evn) : E(odd)

ℓ 7→ E(evn) analogously to fE(odd) and alternate the compression function at every level of the
tree. We call this construction a Curve Tree, which can be seen as an “algebraically compatible” Merkle tree
using Pedersen commitments alternating over E(evn)/E(odd): a parent node on one curve will be the hash of its
children, represented as points on the other curve. To refer more easily to curves alternating within a tree, we
introduce the following piece of notation.
15 Assuming the identity (“point-at-infinity”) is represented in Fq × Fq

8

Remark 3 (Notation for alternating curves). As mentioned above, a curve tree alternates between curves at each
level. If we are referring to a specific “current” level (obvious from context), we will denote the corresponding
curve as E(_). The “other” curve will be denoted by Eother(_). That is: if E(_) is E(evn), then Eother(_) is E(odd), and
vice versa. We extend this notation to subscripts for group elements in the natural way (see, e.g., usage in the
following definition).

In order to define a Curve Treewe adopt a variant of (standard) approaches to defining a tree as a recursive
data structure: an internal node is a list of (a function of) its children. The function which maps children
to parents that we adopt uses an intermediate “labeling” step. A label can be thought of as a group element
succinctly describing the node.

Definition 3 (Curve Trees). A Curve Tree is parameterized by (I). a depth D ∈ N, (II). a branching factor
ℓ ∈ N, (III). a 2-cycle of Elliptic curves (E(evn),E(odd),Fp,Fq) (IV). 2ℓ points G⃗x

(evn), G⃗
y
(evn) ∈ Eℓ

(evn) (V). 2ℓ

points G⃗x
(odd), G⃗

y
(odd) ∈ Eℓ

(odd).

The tree is defined recursively over D a follows:

Leaves: (0, ℓ,E(_),Eother(_))−CurveTree:
A leaf node is completely described by a curve point C ∈ E(_). The label of a leaf is C .

Parents: (D, ℓ,E(_),Eother(_))−CurveTree:
An internal node C is a list of ℓ (D − 1, ℓ,Eother(_),E(_))-Curve Trees. Let C1 = (x1,y1) ∈ Eother(_), . . . , Cℓ =
(xℓ,yℓ) ∈ Eother(_) be their respective labels. The label C ∈ E(_) for the internal node is then defined as:

C = ⟨x⃗, G⃗x
(_)
⟩+ ⟨y⃗, G⃗y

(_)
⟩ (1)

(Note that the curves are switched between levels)

Trees for Sets. When we say that a curve tree is built for a set S ⊆ E (of size ℓD) we mean the natural
layer-by-layer algorithm inductively constructing a tree with S as the leafs: partitioning S into subsets of size
ℓ in some fixed way, then computing a Curve Tree for each set in the partition and forming a parent for the
resulting ℓ children.

4.2 Binding and Hiding within Curve Trees

The previous notion (Definition 3) uses 2ℓ points per curve (G⃗x
(evn), G⃗

y
(evn) ∈ Eℓ

(evn) and G⃗x
(odd), G⃗

y
(odd) ∈ Eℓ

(odd))
in order to label parent nodes by compressing their children. This already achieves a form of binding. By
sampling one additional point per curve– H(odd) ∈ E(odd), H(evn) ∈ E(evn)– we can blind / rerandomize a Curve
Tree in the natural way. The root of a tree (and of each subtree) thus becomes a Pedersen commitment that is
both binding and hiding. We formalize these observations below:

Lemma 1. Assuming DLOG (Assumption 1) on E(evn) and E(odd), the root C ∈ E(_) of a (D, ℓ,E(_),Eother(_))–CurveTree
is a (non-hiding) Pedersen commitment whose opening is the ℓ roots of its children (in Eother(_)). Additionally,
for the same C and a random scalar r, the group element Ĉ := C + [r] ·H(_) is a hiding Pedersen commitment
to C’s children.

Proof. The first part is a direct implication of the definition above. Also, observe then any internal node is
already a root to a subtree. Let r′ be a scalar (in the appropriate field) and let Ĉ = C + [r′] · H(_). From
standard properties of Pedersen commitments, we can observe Ĉ is still bound to the children of C. Hiding
follows immediately (see Section 2.1.2).

Remark 4 (Curve Tree as somewhat structure-preserving). The recent results of [21] on commitments to vectors
that have linear verification show that (informally) it is not possible to have a short commitment and a short
opening at the same time in a setting that makes no assumption on the underlying group (in Maurer’s generic
group model [45]). One could think that the moral corollary of these results is a need for heavily destructuring
or “non-algebraic” (e.g., SHA) operations in succinct vector commitments. However, the underlying approach
in our work rules out this extreme conclusion: the basic Curve Tree construction uses algebraic operations at
each step and a linear verification assuming only the representation of group elements as “pairs of scalars for
a (distinct) group”. This bypasses the stricter definition of “structure-preserving” in [21], which considers one

9

single abstract group and black-box use of its addition. Curve trees, on the other hand, exploit several groups
(assumed to constitute a cycle of groups of elliptic curves) while still making black-box use of their respective
addition operations (after representing them as pairs of scalars as mentioned above). We stress that our claim is
not that we can contradict the impossibility result in [21], nor is our intention to undermine it. Instead, we argue
Curve Trees provides further nuances to the observations in [21]: they show that we can meaningfully go around
them by only slightly weakening the algebraic requirements of the model. We finally remark that the above only
refers to curve trees as an authenticated data structure (this section), but not to the privacy-preserving variant
of its opening (Section 3).

4.3 Traversing (ℓ,E(evn),E(odd))-Curve Trees

We now extend upon the observation in Section 4.2 that a node in a tree can be rerandomized. A natural
strategy which stems from this observations is that, to prove membership of a Curve Tree in zero-knowledge,
we can descend the tree one layer at a time starting from the root and following this approach: open a (hiding)
commitment to a (D, ℓ,E(_),Eother(_))-Curve Tree, pick one of it children (in zero-knowledge), then rerandomize
the child and “output” the resulting hiding commitment to the (D−1, ℓ,Eother(_),E(_))-Curve Tree; apply recursion.
In this section we formalize a more efficient version of this informal sketch.

4.3.1 Descending a Single Level of the Tree Our central component is a simple construction for a select-
and-rerandomize-like relation for a single level in a curve tree. We later apply this at many levels at once in
order to obtain a full select-and-rerandomize (Fig. 2). Consider a curve tree whose internal nodes at layer d− 1
are in E(_). The inputs to relation R(single-level,(evn)) (resp. R(single-level,(odd))) are:

– public inputs: a rerandomized commitment Ĉ ∈ E(odd) (resp. E(evn)); its alleged parent C ∈ E(evn) (resp.
E(odd));

– witnesses: index i whose semantics is “Ĉ is the (rerandomized) i-th child of C”; Pedersen opening scalars
r, δ, x⃗, y⃗.

At each layer, this relation opens the parent commitment C to x⃗, y⃗ using a commit-and-prove over E(_), plus it
shows rerandomization of one of the children. At each level, even or odd, it is defined as follows.

Definition 4 (Relation for Select-and-Rerandomize).

R(single-level,E(_)) :=



(
i, r, δ,

x⃗, y⃗

)
:

// open parent

C = ⟨[x⃗] , G⃗x
(_)
⟩

+ ⟨[y⃗] , G⃗y
(_)
⟩

+ [r] ·H(_) ∈ E(_)

// randomize i’th child

Ĉ = (xi,yi) + [δ] ·Hother(_) ∈ Eother(_)


We can implement this efficiently because the “parent opening” constraints can be directly enforced using a

commit-and-prove for Pedersen commitments (Section 2.2.3). The additional “child opening” requires a single,
cheap fixed-based exponentiation explicitly expressed as constraints. We describe an optimized arithmetic circuit
for the relation above in Appendix B.

The following property will be useful for correctness later. It states that the relation above expresses the
parent-child relation in a curve tree and that this holds even if we rerandomize children or internal nodes.

Lemma 2. Consider a set S and a single-level curve tree (one root immediately followed by leaves) built on
it. Let Cleaf = (xi,yi) be one of the leaves. Then the above relation R(single-level,(_))—for the only existing level
d = 1—is satisfied for any rerandomization factor δ such that Ĉ = Cleaf + [δ] ·Hother(_). This property still holds
if the root of the tree is rerandomized by some scalar r.

Proof. This is a straightforward implication of how curve trees are defined. More in detail: In a single-level curve
tree, C will be the root and thus constructed with r = 0. The first equation will be trivially satisfied by x⃗, y⃗

10

such that ((xj ,yj))j are the leaves (i.e., the children of the root C). The second equation will be satisfied by
our assumption on Ĉ. We finally observe that we can pick an honestly generated root, rerandomize it by adding
[r] ·H(_) for a scalar r and use the latter to let the first equation check. This proves the last part of the lemma
statement.

4.3.2 Descending all D Layers of The Tree So far we discussed proving membership zooming in on a
single level of a curve tree. We now want an approach that works for multiple levels. One straightforward method
works by providing a separate proof for each level (this would be a proof for the relation in Definition 4). We
will do something better instead. We leverage two facts: i) that there are two algebraic groups we are working
with (depending on the layer parity); ii) that we can produce a single proof at once and for multiple layers
“working in the same group”. This way we are able to reduce our relation to two proofs only, one for the parents
at odd layers and one for parents at even layers.

These two proofs will show respectively two “multi-leveled” relations, one for odd layers and on for even
layers. They are defined below.

R(evn-levels) :=

 ∧
j∈{0,2,...,D−2}

R(single-level,(evn))


R(odd-levels) :=

 ∧
j∈{1,3,...,D−1}

R(single-level,(odd))


The witnesses and public statements for these relations are respectively the concatenation of the witnesses

and public statements in Definition 4. See also Fig. 1. The full construction is in Fig. 2.

x(evn) :=
(
Ĉ(j−1), Ĉ(j)

)
1≤j<D,j odd

x(odd) :=
(
Ĉ(j), Ĉ(j+1)

)
1≤j<D,j odd

w(evn) :=
(
ij , r

(j−1), r(j),x(pathChildrenj),

y(pathChildrenj)
)
1≤j<D,j odd

w(odd) :=
(
ij+1, r

(j), r(j+1),x(pathChildrenj+1),

y(pathChildrenj+1)
)
1≤j<D,j odd

ij : index of node along the path at layer j (see Definition 4)
pathChildrenj : sibling nodes along the path at layer j

(see Definition 4)

Fig. 1: Public input and witness for relations R(evn-levels)/R(odd-levels) (used in Fig. 2.

5 Correctness and Security

Theorem 1. The construction in Fig. 2 is a transparent select-and-rerandomize (Section 3.1). Its security relies
on DLOG (Assumption 1) in E(evn) and E(odd) and the security of Bulletproofs as a NIZKAoK. It has O(D

√
n)

prover/verifier complexity16 and its proof consists of D − 1 group elements and two Bulletproofs (each of size
O(log n

D)).
16 In practice D ≈ 4.

11

SelRerand.Setup(1λ)→ pp

Sample G⃗(evn) ∈ E(evn)
Nurs , H(evn) ∈ E(evn)

Sample G⃗(odd) ∈ E(odd)
Nurs , H(odd) ∈ E(odd)

Return all sampled elements as pp

SelRerand.Comm(pp, vleaf ∈ F||E(evn)|, o ∈ F||E(evn)|)→ C

C ← G
(evn)
1 · [vleaf] +H(evn) · [o]

return C ∈ E(evn)

SelRerand.Rerand(pp, C ∈ E(evn), r ∈ F||E(evn)|)→ Ĉ

Ĉ ← C +H(evn) · [r]

return Ĉ ∈ E(evn)

SelRerand.Accum(pp, S′ = {C1, . . . , Cn})→ rt

Return rt, root of a tree computed on S′ as by Definition 3

SelRerand.P(pp, S, Cleaf, r
(D))

Reconstruct tree from S; let rt be its root

Let C(0), . . . , C(D) be the path elements to Cleaf in the tree

(with C(0) corresponding to rt, C(D) = Cleaf)

Let Ĉ(0) := rt and r(0) := 0

for k = 1, . . . ,D/2 do

j ← 2k − 1// j = 1, 3, . . .

j′ ← 2(k − 1)// j′ = 0, 2, . . .

Sample r(j) ←$ F|E(odd)|

if j′ < D then Sample r(j
′) ←$ F|E(evn)|

Ĉ(j) ← C(j) +
[
r(j)

]
·H(odd)

Ĉ(j′) ← C(j′) +
[
r(j

′)
]
·H(evn)

endfor

π(evn) ← zk-BP[E(evn)].Prove
(
pp,R(evn-levels), x(evn),w(evn)

)
π(odd) ← zk-BP[E(odd)].Prove

(
pp,R(odd-levels), x(odd),w(odd)

)
Return π∗ :=

(
Ĉ(1), . . . , Ĉ(D−1), π(evn), π(odd)

)
SelRerand.V(pp, rt, Ĉleaf, π

∗)

Parse π∗ as
(
Ĉ(1), . . . , Ĉ(D−1), π(evn), π(odd)

)
Let Ĉ(D) := Ĉleaf

Let Ĉ(0) := rt

b(evn) ← zk-BP[E(evn)].VerProof
(
pp,R(evn-levels), x(evn), π(evn)

)
b(odd) ← zk-BP[E(odd)].VerProof

(
pp,R(odd-levels), x(odd), π(odd)

)
Accept iff b(evn) ∧ b(odd) = 1

Fig. 2: Construction of Curve Tree Select-and-Rerandomize for a set of size n, branching factor ℓ, depth D (which
we assume to be even), on cycle (E(evn),E(odd)).

12

Fig. 3: Illustrating proving select-and-rerandomize for a tree with D = 2 and ℓ = 4. Letters R,M,L hint
respectively to commitments to root, a “middle” and “lower” layer respectively. The textured box and diamond
areas denote the relation proven through Bulletproofs (on different curves, hence the different color). The dashed
arrows going towards the right denote rerandomization.

Proof. We first observe that, by the DLOG assumption on both curves E(odd) and E(evn), we can use the fact that,
by the standard Fiat-Shamir transformation [30], zk-BP[E(odd)] (resp. zk-BP[E(evn)]) is a correct, zero-knowledge
and extractable NIZK. This will be useful in the remainder of the proof.

Correctness. Correctness of rerandomization is immediate: we are using standard Pedersen as a commitment,
which is rerandomizable. That is if C = G

(evn)
1 · [vleaf] + H(evn) · [o] then its rerandomization by r is Ĉ =

C +H(evn) · [r] = G
(evn)
1 · [vleaf] +H(evn) · [o+ r].

To argue Select-and-Rerandomize correctness we will invoke these facts: that the output of Comm—i.e.,
leaves—are rerandomizable objects (observation from previous paragraph), the fact that internal nodes are
rerandomizable (Lemma 1) and finally the correctness of Bulletproofs as NIZK. We can use the above to observe
that, for an honestly generated commitment to a set, the honest prover will reconstruct a path, rerandomize
each elements and then prove a conjunction of the level equation (R(single-level,(_))). We can invoke correctness of
Bulletproofs if its prover is invoked with a statement satisfying those equations (see Lemma 2). Observing that a
conjunction of satisfiable R(single-level,(_))-s is satisfiable (with corresponding witnesses) concludes the correctness
proof.

Hiding and Zero-knowledge. Hiding is immediate from properties of Pedersen commitments. We describe
a simulator S for the zero-knowledge which outputs π∗ consisting of : Ĉ(1), . . . , Ĉ(D−1) fresh commitments to
dummy values; π(evn) and π(odd) outputs of the respective simulators for the Bulletproofs NIZK on the respective
relations. Notice that—by the definition of the game for select-and-rerandomize zero-knowledge and Lemma 2—
the Bulletproofs simulators are invoked on true statements, crucially. To argue indistinguishability of the output
of our simulator from that of the honest prover, we can just apply a hybrid argument where we invoke hiding
of commitments and zero-knowledge of the underlying Bulletproofs.

Select-and-Rerandomize Binding. For sake of clarity and simplicity of notation, we first show our proof
for the two-level case D = 2 and then describe how it generalizes.

The verifier will then receive the following (see also definition of π⋆ in Fig. 2 for context as well as Fig. 3 for
visual cues and an example):
– A rerandomized commitment to the leaf Cleaf

– A proof π∗ consisting of: 1. a rerandomized commitment Ĉmid to the intermediate layer (Ĉ(1) in Fig. 2);
2. an “upper-level” proof π↑, “linking” root and mid layer; 3. a “lower-level” proof π↓, “linking” mid and leaf
layer.

13

As in the definition of binding (Section 3.1), we denote by v̂ a malicious value not in the honestly generated set
(but which the adversary “will claim” it’s in the set).
We mark in blue elements that are extracted from the proofs.

Step 1. Apply knowledge-soundness to extract from the upper proof:

Ĉroot =⟨. . .x(Cmid) . . . , G⃗
x
(_)
⟩

+ ⟨. . .y(Cmid) . . . , G⃗
y
(_)
⟩+ [rroot] ·H(_)

(2)

Ĉmid = Cmid + [δmid] ·Hother(_) (3)

Observation a). We observe that above that the extracted Cmid will be the same as in the honest construction
step of the tree (w.l.o.g. we can ignore the specific index on the path for it—this holds for all indices). If this
were not the case we would be violating Lemma 1: Croot is an internal node of the tree and so it is a binding
commitment to its children (see statement of Lemma 1). This observation will be useful later since we know the
discrete logarithm of Cmid in G⃗x

other(_)
, G⃗y

other(_), Hother(_).

Step 2. Apply knowledge-soundness to extract from the lower proof:

Ĉmid =⟨. . .x(Cleaf) . . . , G⃗
x
other(_)

⟩

+ ⟨. . .y(Cleaf) . . . , G⃗
y
other(_)

⟩+ [rmid] ·Hother(_)

(4)

Ĉleaf = Cleaf + [δleaf] ·H(_) (5)

In addition to the group elements above, we will also extract, i∗, the index Cleaf refers to (see first witness in
Definition 4).

Observation b). Because the adversary is successful in the binding experiment (through some claimed v̂ ̸∈
S = {vi}i), we can conclude that i∗ such that Cleaf ̸= Comm(vi∗ , oi∗). (Otherwise we would have Comm(vi∗ , oi∗)+
[δleaf] ·H(_) = Ĉleaf = Comm(v̂, ô) which would break DLOG) This is equivalent to saying that x(Cleaf) ̸= xi∗ or
y(Cleaf) ̸= yi∗ , where xi∗ := x(Comm(vi∗ , oi∗)),yi∗ := y(Comm(vi∗ , oi∗)).

Step 3. Combine equations Eq. (3) and Eq. (4): Now, combining the equations, we can observe that:

[rmid − δmid] ·Hother(_) − Cmid+

⟨. . .x(Cleaf) . . . , G⃗
x
other(_)

⟩+ ⟨. . .y(Cleaf) . . . , G⃗
y
other(_)

⟩ = 0

This allows an adversary to break DLOG (Assumption 1) by using the following facts. As we observed (obs. (a)),
Cmid is the same as in the honest tree construction, which implies its discrete logarithms can be derived knowing
the original honest set. If x(Cleaf) ̸= xi∗ , the adversary can then break DLOG for the generator Gx

i∗,other(_)
. This

becomes clear when rewriting the equation above like this:

Gx
i∗,other(_)

=
(
xi∗ − x(Cleaf)︸ ︷︷ ︸

̸=0

)−1 ·
(
[rmid − δmid] ·Hother(_)+

⟨x⃗(leaf)
̸=i∗ , G⃗x

̸=i∗,other(_)
⟩+ ⟨. . .y(Cleaf) . . . , G⃗

y
other(_)

⟩
)

where x⃗
(leaf)
̸=i∗ :=

(
x(Comm(vi, oi))

)
i ̸=i∗

. If y(Cleaf) ̸= yi∗ , we can modify the above accordingly to apply to y.
This concludes the proof.

To generalize the proof to D ≥ 2. First, we recursively apply Step 1 and observation (a), i.e., we repeatedly
apply Lemma 1 to argue that is the same as in the honestly constructed tree for each internal node Cmid on
the path. Then, as we did above, we apply step 2 and step 3 for the last two layers, as well as observation b).
(Notice that, in order to extract the equations, we will still use two proofs but now each of them will allow us to
extract multiple levels. There are still only two proofs—even and odd—but now they refer to multiple disjoint
levels of the tree instead of just two).

14

6 Final Construction: Curve Trees with Compressed Points

In this section we describe some optimizations we employ in our final construction. Our initial observation
is that a curve tree (as defined in Definition 3) uses both x and y coordinates to represent a node (leaf or
internal). This requires 2ℓ generators at each level. The factor 2 will become a cost at commitment, proving and
verification time, as well in proof size. Here we discuss how to remove this factor.

The starting point of our idea are folklore approaches to point compression which rely on encoding a point
through the x coordinate. We need to take extra care though. Where we need to take extra care is in: a) making
sure, through appropriate checks. that a malicious prover cannot exploit this compression; b) making sure the
latter checks are efficient constraints-wise when we prove/verify them in zero-knowledge. In order to do this
we exploit the fact that the leaves in the tree are agreed on publicly (we remind that in our model as well in
confidential transactions, the whole set of points is public; the item we prove membership on is hidden). This
way, we can make sure at commitment time that each leaf is represented through pairs of points of a certain
form. We call these points permissible. We modify our definition of curve trees to explicitly take compression and
permissibility into account (Definition 5). To efficiently prove/verify this we rely on 2-universal hash functions
(see rest of this section and Eq. (6)). Their algebraic nature allows us to not to employ bit decomposition. As
a consequence, these techniques have nearly no impact on any additional complexity of the relation proved in
zero-knowledge.

When we to plug in these additional tricks, our construction (Fig. 2) stays essentially the same: we can
describe its changes in a modular fashion (see Section 6.3). The same holds for security and correctness proofs.

6.1 Point Compression and Permissible Points

In order to reduce the number of exponentiations during commitment and the size of the witness we rely on
committing only to the x-coordinate of children node. To guarantee that our construction remains binding we
ensure that only one of (x,y) and (x,−y) is “allowed”. One common choice is to take the numerically smallest
between y and −y, or discriminate based upon the parity (even/odd) over Z, however neither of these constraints
can be efficiently expressed as an arithmetic circuit; instead we use a universal hash function (which does not
require bit decomposition). Let S(v) = 1 iff. v ∈ F is a quadratic residue (i.e. there exists w ∈ F st. w2 = v) and
S(v) = 0 otherwise. Now consider the following family of 2-universal hash functions from any field to {0, 1}:

Uα,β(v) : F→ {0, 1} Uα,β(v) 7→ S(α · v + β) (6)

Observe that the constraint Uα,β(v) = 1 can be enforced using a circuit with multiplicative complexity 1, showing
{(w) : w2 = (α · v + β)}. We exploit this to efficiently define a set of “permissible points” on E:

PE = {(x,y) | (x,y) ∈ E(Fp) ∧ Uα,β(y) = 1 ∧ Uα,β(−y) = 0}

Note that 1/4 of the points on E are permissible and any (x,y) ∈ PE is uniquely defined by its x-coordinate –
this is the case for any finite field of characteristic /∈ {2, 3}.

AsPermissibleE(_)
(C)→ (P(_),F)

1 : rP ← 0 ∈ F// Scalar field of E(_)

2 : while C /∈ P(_) :

3 : C ← C +H(_)

4 : rP ← rP + 1

5 : return (C, rP)

Fig. 4: Explicit algorithm for permissible compression. Any Pedersen commitment C can be “made permissible”
by simply iteratively adding an additional generator H(_) (“incrementing the randomness”) until the point is
permissible. The algorithm returns the x coordinate and the permissibility scalar.

15

We make sure at commitment time that nodes are converted to permissible points by adding appropriate
randomness. This is formalized in the supplementary material in Fig. 4 in the procedure AsPermissible as well
in the “compressed points” definition of curve trees (Definition 5), which invokes it. In expectation, procedure
AsPermissible requires 4 curve additions and 8 square roots.

6.2 Curve Trees with Compressed Points

The following definition simply adapts a curve tree to the setting where leaves are required to be permissible
and internal children nodes are compressed through AsPermissible before committing to them in their parent.

Definition 5 (Curve Trees with compressed points). A Curve Tree with compressed points follows
the same basic inductive definition as Definition 3, but with the following differences: first, the tree is also
parametrized by two permissible sets P(evn) ⊆ E(evn) and P(odd) ⊆ E(odd). Second, Eq. (1) (root label C of an
internal node) becomes

C = ⟨x⃗′, G⃗x
(_)
⟩ ∈ E(_) (7)

where for each i ∈ [ℓ], x′
i is such that (x′

i, . . .)← AsPermissibleE(_)
(xi,yi), and (xi,yi) are as in Eq. (1). Third,

leaves are required to be permissible.

Since the definition above makes a tree only out of permissible points17 this gives a “decompression” that is
unique. This in turn reduces the the complexity single-level relations. We thus define a new optimized relation
R(single-level⋆,(_)):

Definition 6 (Optimized single-level relation).

R(single-level⋆,(_)) :=


(
i, r, δ,

x⃗,y

)
:

C = ⟨[x⃗] , G⃗x
(_)
⟩

+ [r] ·H(_)

∧ (xi,y) ∈ Pother(_)

∧ Ĉ = (xi,y) + [δ] ·Hother(_)


Note that the constraint (xi,y) ∈ Pother(_) only requires a check that (xi,y) ∈ Eother(_) in addition to Uα,β(y) = 1.

6.3 Adapting Construction in Fig. 2 to Compressed Points

Our final construction essentially remains the same as in Fig. 2 with two exceptions.

– In order to accumulate a set (SelRerand.Accum) we generate a root through the procedure derived from
Definition 5 instead of the one for Definition 3.

– The proofs π(evn) and π(odd) are for slightly different relations: they prove/verify relations for R(evn-levels)

and R(odd-levels) but defined in terms of R(single-level⋆,(_)) from Definition 6 (instead of Definition 4).

This variant construction is also correct and secure:

Theorem 2. The variant of the construction of Fig. 2 described in this section is a transparent select-and-
rerandomize primitive (under the same assumptions as in Theorem 1).

The proof for theorem above follows the same blueprint as the one in Theorem 1. Zero-knowledge/hiding is
trivially untouched by the changes in the construction. Binding is clearly still guaranteed since the relation
we prove (R(single-level⋆,(_))) is now stricter than the one in R(single-level,(_)). Observing correctness only requires
observing that a variant of Lemma 2 also holds (easily) for definition Definition 5.

7 VCash: Transparent and Efficient Anonymous Payment System

In this section we informally describe our anonymous payment system, which we dub VCash. The techniques
and model here follow mostly prior work.
17 In case of our anonymous cryptocurrency application, this is enforced by the network of block validators: as a condition

for a transaction being valid.

16

7.1 Model

A formal description of our model is in the appendix in Appendix C. The ideal functionality in the appendix
describes the simple expected behavior of an anonymous payment system: parties hold values; they can transfer
part of these values to other parties; an adversary can observe transactions but it cannot tamper them or
learn anything about the sender/receiver/value of the transaction. This functionality, in particular, supports
the largest possible anonymity set at every transaction like ZCash.

7.2 A high-level view of our protocol

The flow of our protocol roughly follows known blueprints. We refer the reader to, e.g., the technical overview
and Section 3 in [19, 20] for further background.

Intuition about our construction. At any given moment in time, each party holds a certain number of
coins18. Coins are the fundamental concept in a transaction. During a transaction we pour a certain amount
from user to user by using two (unspent) input coins and producing two new output coins.

Each user is also holding a public state (the ledger L) roughly containing all the transfers occurred so far.
Through the state any user can verify the validity of each transfer. In addition to the public state, users hold a
private state containing information as: the aforementioned auxiliary information to spend their coins, signing
keys, etc.

In order to implement an anonymous payment system we thus require four algorithms that are run locally
by each party in the system:

Setup The setup algorithm produces the initial parameters of the system. We emphasize that it does not
require being run by a trusted setup.

Pour A sender S can “pour” the value of two input coins into two new output coins nullifying the input ones.
The recipients of the two new coins can be distinct. It is possible for S itself to be one or both of the
recipients. We require that the total value of input and output coins is the same. The algorithm Pour has
two outputs: a new transaction that is publicly broadcasted and a private auxiliary opening that is sent to
the respective recipients of the new output coins.

Verify A verifying algorithm allows any party to check a transaction is valid. It takes as a input the public
parameters and the public state observed so far.

Process By a processing algorithm parties can update their public and private state after observing a trans-
action.

7.3 Our protocol in more detail

We describe our protocol in Fig. 6 and in the rest of this section.
A transaction consist of the creation of output coins from input coins. A coin roughly consists of a commit-

ment to its amount and other information that ensures it will be used only once and by its intended recipient.
For a transaction to be valid it must be the case that:

1. Output coins are in an appropriate non-negative range (we want to give money and not take it in a trans-
action). This corresponds to the Mint in Fig. 5.

2. Input coins “exist” and are valid themselves. This corresponds to the Spend in Fig. 5.
3. The total value of input and output coins is the same. This is handled by πbal in Fig. 6.

We use zero-knowledge proofs to ensure the above. The first and third property can be ensured respectively
by range proofs and homomorphic properties of Pedersen commitments & proving knowledge of appropriate
discrete logarithms. The second property is where we use our select-and-rerandomize constructions from the
previous sections: all coins are stored in an accumulator (a Curve Tree) and whenever they aim to spend an
input coin, they can select-and-rerandomize it obtaining a rerandomized version of that input coin. This is
included in the transaction together with a proof that it refers to the rerandomization of something existing in
the accumulator.
18 “Holding” a coin requires knowing a certain secret key associated to the user. In this section we ignore the aspect of

registering with a new key to the system, but we stress it is straightforward to add.

17

Further details on our building blocks follow.
Breakdown of public parameters: – public parameters for SelRerand – urs (uniform reference string) for
zero-knowledge – generators

(
Gv, Gt, Ĥ

)
for Pedersen commitments whose semantics we explain below.

Structure of a coin: A coin is a Pedersen commitment to: 1) the amount v transferred through the coin;
2) the tag/nullifier t, i.e. the (rerandomized) public key of the recipient. Hence each coin c is of the form
c = [v] ·Gv + [t] ·Gt + [r] · Ĥ where r is the randomness we use for masking the polynomial.
Additional cryptographic primitives:

– Digital signatures with rerandomizable keys (see, e.g., [31]). The key property we require is that we can
rerandomize a public key and correspondingly update a signing key. We use this feature in Mint in Fig. 5.

– Non-Interactive zero-knowledge for different relations:
• Relation Rdlog, which shows knowledge of discrete logarithm for given generators for an input group ele-

ment c. We use this relation to show zero-balance among input and output coins and to show knowledge
of values in the input coins. Whenever we use relation Rdlog we also explicitly describe with respect to
what tuple of generators. For instance, if we write Rdlog

(
Gt, Ĥ

)
it means that we are showing knowledge

of (t, r) so that a certain commitment equals [t] ·Gt+[r] · Ĥ. The last example is instructive in one more
way: that relation is equivalent to stating that the “transferred value v” inside a certain commitment (a
coin) is zero. We use this fact to assert that the values of input and output coins is balanced overall.

• Relation R≥0, which shows knowledge of discrete logarithms for a coin plus that the value of the coin is in
a positive range. That is it shows knowledge of (v, t, r) such that c = [v] ·Gv+[t] ·Gt+[r] ·Ĥ∧v ∈ [0, 264).

– We denote by HF a collision resistant hash function mapping group elements—the public keys of the users—
to the appropriate scalar field F. We use this hash function to be able to commit to the public keys as tags.
Notice that we do not need to prove this hash function in zero-knowledge.

Other components of public state (i.e., the ledger):

– Set of coins Scoins (from which it is possible to compute the corresponding Curve Tree root rtcoins)
– Set of seen “tags”. Tags are (rerandomized) public keys of recipients. These are revealed every time an input

coin is spent. We stress that they are unlinkable to the actual input coins they refer to because of the
select-and-rerandomize proof.

We describe setup and processing algorithm at a very high level since they are almost immediate from the
rest of the protocol. The setup algorithm generates all the public parameters described above; it should also
provide an initial distribution of coins to users (the mechanism of this initial distribution is unimportant for
our focus). The processing algorithm consists in keeping the public state above up to date after each (valid)
transaction. It simply updates the set of coins with the new observed output coins and the set of seen tags with
those in the latest transaction.

Remark 5 (Optimizations). The construction in Fig. 6 shows a separate proof for each of the relations of
interest. This is for clarity only. Our final construction produces a single Bulletproof proof whenever possible,
thus avoiding a linear overhead in the number of relations. The final numbers are those stated in Section 8.2
and consist of two Bulletproofs lying on two different curves.

Remark 6 (Full security through efficient PRF). The scheme in Fig. 6 is a slightly simplified version of our
final protocol for didactic purposes. The simplification has to do with how we generate new tags (G(j)

nll,out). The
scheme in the figure, as it is, has an additional leakage: a party S sending a transaction tx to a party R can
learn when R will spend the coins received in tx (but not to whom). Only sender S can infer this. Additionally
the scheme suffers from “Faerie’s Gold Attack”, which enables an adversary to create two distinct transactions
of which only one can be spent by the honest receiver. Our final scheme mitigates both of these issues using a
PRF. This solution is similar to that used in Zcash. Differently than Zcash we can exploit a more efficient way
to prove the PRF computation—thanks to our choice of PRF and groups. However, in order to avoid bloating
the circuit to be proven in ZK, we use a “commit-and-prove friendly” PRF with bounded-query security. The
fact that we need to require this bound beforehand is not a problem since we can use a bound on the number
of transactions we expect in the system (e.g. a very conservative bound of 232 transactions per-user). We give a
concrete instantiation based on Diffie-Hellman Inversion Assumption (DHI) using a PRF is based upon Dodis

18

and Yampolskiy [27] where PRFK(x) =
[
(K + x)−1

]
·G. Security of this extensions follows from the well-studied

Diffie-Hellman Inversion (DHI) assumption [49]. More details are in Appendix D. NB: differently from [27], our
instantiation group is pairing-free and thus we can instead obtain an evaluation proof through an additional
opening of a group element in Bulletproof (alternatively one could use a Sigma-protocol).

Spend
(
aux

(j)
in

)
// Reconstruct input coin

Parse aux
(j)
in as

(
v
(j)
in ,S(j)

rr , r
(j)
in

)
G

(j)
nll,in ← HF

(
S(j)

rr

)
·Gt// reconstruct input tag

c
(j)
in ←

[
v
(j)
in

]
·Gv +G

(j)
nll,in +

[
r
(j)
in

]
· Ĥ// reconstruct coin

// Select-and-Rerandomize input coin(
c(j)rr , πSR(j), r

(j)
rr

)
← SelRerand.P

(
ppSR, Scoins, c

(j)
in

)
// Prove knowledge of opening of input coin

π
(j)
spnd ← ZK.Prove

(
urs, Rdlog

(
Gv, Ĥ

)
, c(j)rr −G

(j)
nll,in; aux

(j)
in , r(j)rr

)

Mint
(
R(j), v

(j)
out

)
r
(j)
out ←$ F// to mask coin

r
(j)
pk ←$ F// to rerandomize pk

R(j)
rr ←

[
r
(j)
pk

]
· R(j)// rerandomized pk

G
(j)
nll,out ← HF

(
R(j)

rr

)
·Gt// make output tag

c
(j)
out ←

[
v
(j)
out

]
·Gv +G

(j)
nll,out +

[
r
(j)
out

]
· Ĥ// make coin

aux
(j)
out ←

(
v
(j)
out,R

(j)
rr , r

(j)
out

)
// opening of coin

// Proves value of coin ≥ 0

π
(j)
≥0 ← ZK.Prove

(
urs, R≥0, c

(j)
out; aux

(j)
out,R

(j)
)

Fig. 5: Auxiliary algorithms for algorithm Pour. We assume all variables have the same scope as Pour.

8 Implementation and Evaluation

We implement select-and-rerandomize and VCash in Rust on top of the dalek Bulletproofs library19. The Bullet-
proof implementation has been extended with support for vector commitments20and elliptic curves implemented
using the arkworks21 curve traits.
Code. All our code is available and released as open source at

https://github.com/simonkamp/curve-trees.

Experimental Setting and Instantiations. Our benchmarks were run on a C6i.2xlarge22 instance with 8
vCPUs, which corresponds to 4 physical cores on an Intel Xeon 8375C processor with 2.9 GHz clock speed23.
When possible (and unless otherwise explicitly specified) we have benchmarked alternative schemes on the same
hardware. We use Curve Trees of even depth D in our evaluation and instantiate the two underlying elliptic
curves through both those in the Pasta cycle [37] and the secp256k1 / secq256k1 cycle. We use Schnorr
signatures for VCash.

8.1 Zero-Knowledge for Set-Membership

The results in Table 1 summarize the efficiency of our select and rerandomize scheme (Section 3) using the final
construction in Section 6.3 for different set sizes—modest, medium and large. Given a choice of parameters—the
branching factor ℓ and (even) depth D—the total number of constraints to prove in zero-knowledge amounts to
D(912 + ℓ − 1) (half per even/odd layers respectively). We heuristically choose the set size (|S| = ℓD) in order
19 https://github.com/dalek-cryptography/bulletproofs
20 Some details about how we approach this extension can be found in the code and at the link https://hackmd.io/

6g5oC5xWRLOoYcTnYBuE7Q?view.
21 https://github.com/arkworks-rs
22 https://aws.amazon.com/ec2/instance-types/c6i/
23 While we tabulate only results for this architecture, we also performed benchmarks on a common laptop.

19

https://github.com/simonkamp/curve-trees
https://github.com/dalek-cryptography/bulletproofs
https://hackmd.io/6g5oC5xWRLOoYcTnYBuE7Q?view
https://hackmd.io/6g5oC5xWRLOoYcTnYBuE7Q?view
https://github.com/arkworks-rs
https://aws.amazon.com/ec2/instance-types/c6i/

Pour

(
pp, stS ,

(
S(j), aux(j)in ,R(j), v

(j)
out

)
j∈[2]

)
// Create output coins
for j ∈ [2] :

Mint
(
R(j), v

(j)
out

)
// Show we are using existing coins
for j ∈ [2] :

Spend
(
aux

(j)
in

)
// Show that v

(1)
in + v

(2)
in = v

(1)
out + v

(2)
out

cbal ← c
(1)
out + c

(2)
out − c(1)rr − c(2)rr

πbal ← ZK.Prove
(
urs, Rdlog

(
Gt, Ĥ

)
, cbal;

aux
(j)
in , r(j)rr , aux

(j)
out,R

(j))
tx :=

((
S(j)

rr , c(j)rr , c
(j)
out,S

(j)
rr

)
j∈[2]

, proofs π⋆

)
Double sign tx with sk-s for S(1) and S(2)

Privately send
(
aux

(j)
out

)
j∈[2]

;Broadcast tx

Vfy

(
pp, tx :=

((
S(j)rr , c

(j)
rr , c

(j)
out,S

(j)
rr

)
j∈[2]

, proofs π⋆

)
,L
)

for j ∈ [2] :

check SelRerand.Vfy
(
ppSR, rtcoins, c

(j)
rr , π

(j)
SR

)
G

(j)
nll,in ← HF

(
S(j)

rr

)
·Gt// reconstruct tags

Reject if G(j)
nll,in has been seen before already

check ZK.Vfy
(
urs, Rdlog

(
Gv, Ĥ

)
, c(j)rr −G

(j)
nll,in, π

(j)
spnd

)
check ZK.Vfy

(
urs, R≥0, c

(j)
out, π

(j)
≥0

)
cbal ← c

(1)
out + c

(2)
out − c(1)rr − c(2)rr

Check ZK.Vfy
(
urs, Rdlog

(
Gt, Ĥ

)
, cbal, πbal

)
Verify signatures on tx with public keys for S(j)

rr -s
Accept iff all checks above succeed

Fig. 6: Pour and Verification algorithms in VCash.

to optimize the running time by obtaining a number of constraints which “does not overflow” powers of two if
possible. This is illustrated by the benchmarks for sets of size 232 and 240: despite the gap between the set sizes
they show similar performance.

If only proofs of membership of field elements are needed, these can be achieved by using the select and
rerandomize scheme on vector commitments of ℓ′ elements obtaining a scheme which uses only D(912+ ℓ− 1)+
(ℓ′ − 1) constraints to show membership of a set with ℓD · ℓ′ elements. Using the parameters D = 3, ℓ = 256,
and ℓ′ = 64 we get a direct comparison (|S| = 230) with [35] in which they use bulletproofs to show membership
in Poseidon based Merkle trees with 230 leaves and ℓ = 2, 4, or 8. The best performing instances in [35] are
using branching factors of 4 and 8 on the ed25519 curve: one results in slightly fewer constraints and faster
proving time, while the other verifies faster. The results in Table 2 show that the accumulator based on Curve
Trees is > 5 times faster at proving and > 20 times faster at verifying compared to the fastest instances of
Poseidon-based Merkle trees.

Curves (D, ℓ) |S| # Con-
straints

Proof
(kb)

Prove
(s)

Verify
(ms)

Verify
batch (ms)

(2, 1024) 220 3870 2.6 0.88 23.17 1.44
Pasta (4, 256) 232 4668 2.9 1.71 39.63 2.35

(4, 1024) 240 7740 2.9 1.74 40.41 2.73

(2, 1024) 220 3870 2.6 0.97 26.81 1.61
Secp/Secq (4, 256) 232 4668 2.9 1.89 47.39 2.64

(4, 1024) 240 7740 2.9 1.92 48.40 3.02

Table 1: Benchmarks of the select and rerandomize primitive with depth D and branching factor ℓ. Batch
verification time refers to the amortized cost of verifying a batch of size 100.

20

Scheme # Con-
straints

Prove
(s)

Verify
(ms)

Verify
batch (ms)

Curve Trees (Pasta) 3565 1.5 31 1.8
Curve Trees (Secp/Secq) 3565 1.7 37 2
Poseidon 4:1 4515 8.8 651 -
Poseidon 8:1 4180 8.5 825 -

Table 2: Benchmarks of accumulators over sets of size 230 based respectively on curves trees and on Merkle
trees with Poseidon (Appendix F). Batch verification time is for the amortized time for a batch of size 100.

8.2 VCash

Table 3 compares VCash with various anonymous payment systems. When used for batch verification, VCash out-
performs other schemes, sometimes by orders of magnitude (for the same anonymity sets). Non-batched ver-
ification time is highly competitive when compared to transparent constructions, but 10× slower than the
non-transparent Zcash Sapling (which mainly consists of a few pairing operations). Orchard—the recent trans-
parent version of Zcash based on Halo2 and Pasta (see also Appendix F—achieves a 5× faster verification time
than VCash. We believe that basing VCash on a Curve Tree using Halo2 would outperform Orchard. On the
other hand this would come at the price, as it is the case for Orchard, of not supporting arbitrary 2-cycles of
curves (see Section 1.2.2). The transaction size in Orchard is roughly twice as large as in VCash. The only other
better transaction size among transparent constructions is that of Omniring (we estimate VCash to be less than
2× larger for same anonymity sets).

Concretely, a “pour” in VCash for two inputs/two outputs and anonymity sets of 232 (like in Zcash) our
confidential transactions (Vcash) require participants to compute/verify two Bulletproofs proofs of < 5000
constraints each. We can contrast that to another approach supporting large anonymity sets, Zcash Sapling,
compared to which our circuit for “spend” transaction is 20x smaller. The cost of the set membership proofs
dominate the combined transaction circuit. For instance the VCash combined circuit (over both fields) has 9464
constraints of which 9336 are used for the proof of membership and the Orchard action circuit has 211 rows and
40 columns while the membership by itself uses 211 rows and 35 columns.

We remark that, in the table, we only compare to approaches with concretely small transaction size (of a
few kilobytes for large enough anonymity sets). Solutions not in the table because of their large transaction size
include: the original approach in Zerocoin [47] (45KB for full security [20]); Quisquis [29] (13KB for |S| = 24);
Monero [3] (whose transaction grows linearly with |S| and is already at 1.3KB for |S| < 24).

21

Anonymity
set size

Transparent
setup

Tx size
(kb)

Proving
time (S)

Verification
time (ms)

Amort. batch verification
time (ms)

Zcash Sapling 232 ✗ 2.8 2.38 7 -
Zcash Orchard 232 ✓ 7.6 1.77 15 -
Veksel Any ✗⋆ 5.3 0.44 61.88 -

210 ✓ 2.7 0.27† - 6.8†
Lelantus 214 ✓ 3.9 2.35† - 10.2†

216 ✓ 5.6 4.8† - 52†
Omniring 210 ✓ 1 ≈ 1.5‡ ≈ 130‡ -

220 ✓ 3.4 1.76 41.40 2.87
VCash (Pasta) 232 ✓ 4 3.43 78.40 4.98

240 ✓ 4 3.48 80.52 5.77

220 ✓ 3.4 1.95 48.27 3.15
VCash (Secp/Secq) 232 ✓ 4 3.80 90.40 5.60

240 ✓ 4 3.86 91.97 6.32

Table 3: Benchmarks of VCash against other anonymous payment schemes. The VCash schemes are instantiated
with Curve Trees with the corresponding set size in Table 1. The batch verification time is measured as the
cost per proof of verifying a batch of 100 proofs. If batch verification is empty, it means it is not available as an
option for that specific construction or not possible to estimate from the related work.
⋆ Veksel only needs setup if using accumulators instantiated with RSA (which provide the smallest tx size), but not for
zero-knowledge.
† Lelantus was benchmarked on an Intel i7-4870HQ (4 cores, 2.5GHz).[39]
‡ Omniring was benchmarked on an Intel i7-7600U (2 cores, 2.8GHz).[41].

22

References

1. Report on the security of stark-friendly hash functions (version 2.0), 2020.
2. Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo. Constant-

size structure-preserving signatures: Generic constructions and simple assumptions. Journal of Cryptology, 29(4):833–
878, October 2016.

3. Kurt M. Alonso and Jordi Herrera Joancomartí. Monero - privacy in the blockchain. Cryptology ePrint Archive,
Report 2018/535, 2018. https://eprint.iacr.org/2018/535.

4. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application to plug & play secure
algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 513–543. Springer, Heidelberg, August 2020.

5. Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid Reyzin, Kai Samelin, and Sophia
Yakoubov. Accumulators with applications to anonymity-preserving revocation. 2017 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 301–315, 2017.

6. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle proofs of
proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP
2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.

7. Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK friendly hash – survey and recommendation. Cryptology
ePrint Archive, Report 2020/948, 2020. https://eprint.iacr.org/2020/948.

8. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital sinatures
(extended abstract). In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 274–285. Springer,
Heidelberg, May 1994.

9. Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-knowledge proofs for
set membership: Efficient, succinct, modular. In Nikita Borisov and Claudia Diaz, editors, Financial Cryptography
and Data Security, pages 393–414, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

10. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with applications to IOPs and
stateless blockchains. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692
of LNCS, pages 561–586. Springer, Heidelberg, August 2019.

11. Johannes Buchmann and Safuat Hamdy. A survey on iq cryptography. In Public-Key Cryptography and Computa-
tional Number Theory, pages 1–15, 2001.

12. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334.
IEEE Computer Society Press, May 2018.

13. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer, Heidelberg,
May 2020.

14. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for inner pairing products and
applications. In International Conference on the Theory and Application of Cryptology and Information Security,
pages 65–97. Springer, 2021.

15. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation of anonymous
credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, August
2002.

16. Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete logarithms. 1997.
17. Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh. Succinct zero-

knowledge batch proofs for set accumulators. Cryptology ePrint Archive, Report 2021/1672, 2021. https:
//ia.cr/2021/1672.

18. Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modular design and composition of succinct
zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019, pages 2075–2092. ACM Press, November 2019.

19. Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, efficient, anonymous payments with large anonymity
sets from well-studied assumptions. Cryptology ePrint Archive, Report 2021/327, 2021. https://ia.cr/2021/327.

20. Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, efficient, anonymous payments with large anonymity
sets from well-studied assumptions. In Proceedings of the 2022 ACM on Asia Conference on Computer and Com-
munications Security, pages 652–666, 2022.

21. Dario Catalano, Dario Fiore, Rosario Gennaro, and Emanuele Giunta. On the impossibility of algebraic vector
commitments in pairing-free groups. Cryptology ePrint Archive, 2022.

22. Nikolaos Triandopoulos Charalampos Papamanthou, Roberto Tamassia. U.S Patent. US9098725B2, Cryptographic
accumulators for authenticated hash tables, 2014.

23. Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin. Mercurial commitments with
applications to zero-knowledge sets. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
422–439. Springer, Heidelberg, May 2005.

23

https://eprint.iacr.org/2018/535
https://eprint.iacr.org/2020/948
https://ia.cr/2021/1672
https://ia.cr/2021/1672
https://ia.cr/2021/327

24. Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, abhi shelat, Muthu
Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight scalable RSA modulus generation with a dishonest
majority. Cryptology ePrint Archive, Report 2020/374, 2020. https://eprint.iacr.org/2020/374.

25. Ivan Damgård and Nikos Triandopoulos. Supporting non-membership proofs with bilinear-map accumulators. Cryp-
tology ePrint Archive, Report 2008/538, 2008. https://eprint.iacr.org/2008/538.

26. Samuel Dobson, Steven D. Galbraith, and Benjamin Smith. Trustless groups of unknown order with hyperelliptic
curves. Cryptology ePrint Archive, Report 2020/196, 2020. https://eprint.iacr.org/2020/196.

27. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In Serge
Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January 2005.

28. Liam Eagen. µcash: Transparent anonymous transactions. Cryptology ePrint Archive, Paper 2022/1104, 2022.
https://eprint.iacr.org/2022/1104.

29. Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new design for anonymous
cryptocurrencies. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of
LNCS, pages 649–678. Springer, Heidelberg, December 2019.

30. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

31. Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder, and Mark Simkin.
Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys. In Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614 of LNCS, pages 301–330.
Springer, Heidelberg, March 2016.

32. Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for lookup tables. Cryptology
ePrint Archive, Report 2020/315, 2020. https://eprint.iacr.org/2020/315.

33. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases for oe-
cumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

34. Esha Ghosh, Olga Ohrimenko, Dimitrios Papadopoulos, Roberto Tamassia, and Nikos Triandopoulos. Zero-knowledge
accumulators and set algebra. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 67–100. Springer, Heidelberg, December 2016.

35. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. Poseidon: A new
hash function for zero-knowledge proof systems. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 519–535. USENIX Association, August 2021.

36. Vitalik Buterin Guillaume Ballet, Dankrad Feist. Verkle tree eip, 2021.
37. Daira Hopwood, 2020. https://github.com/zcash/pasta.
38. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification, version 2021.2.16 [nu5

proposal], 2021.
39. Aram Jivanyan. Lelantus: A new design for anonymous and confidential cryptocurrencies. Cryptology ePrint Archive,

Paper 2019/373, 2019. https://eprint.iacr.org/2019/373.
40. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and their appli-

cations. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg,
December 2010.

41. Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Krishnan Thyagarajan, and
Jiafan Wang. Omniring: Scaling private payments without trusted setup. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 31–48. ACM Press, November 2019.

42. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial commitments.
In Theory of Cryptography Conference, pages 1–34. Springer, 2021.

43. Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. Cryptology ePrint Archive,
Report 2016/046, 2016. https://eprint.iacr.org/2016/046.

44. Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge SNARKs. In David Pointcheval, Abderrahmane
Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS, pages 185–206. Springer, Hei-
delberg, April 2016.

45. Ueli Maurer. Abstract models of computation in cryptography. In IMA International Conference on Cryptography
and Coding, pages 1–12. Springer, 2005.

46. Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In 44th FOCS, pages 80–91. IEEE Computer
Society Press, October 2003.

47. Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed E-cash from
Bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397–411. IEEE Computer Society Press, May
2013.

48. Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, CRYPTO’85, volume 218 of
LNCS, pages 417–426. Springer, Heidelberg, August 1986.

49. Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE Transactions, E85-A(2):481–
484, February 2002.

24

https://eprint.iacr.org/2020/374
https://eprint.iacr.org/2008/538
https://eprint.iacr.org/2020/196
https://eprint.iacr.org/2022/1104
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://github.com/zcash/pasta
https://eprint.iacr.org/2019/373
https://eprint.iacr.org/2016/046

50. Lan Nguyen. Accumulators from bilinear pairings and applications. In Alfred Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 275–292. Springer, Heidelberg, February 2005.

51. Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Authenticated hash tables. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 437–448. ACM Press, October 2008.

52. Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient zkSNARKs without
trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–943. IEEE Computer Society Press,
May 2018.

53. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and Mark Simkin. Caulk:
Lookup arguments in sublinear time. Cryptology ePrint Archive, Paper 2022/621, 2022. https://eprint.iacr.
org/2022/621.

54. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and Mark Simkin. Caulk:
Lookup arguments in sublinear time. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 3121–3134. ACM Press, November 2022.

25

https://eprint.iacr.org/2022/621
https://eprint.iacr.org/2022/621

Supplementary Material

A Accumulators

For reference and to make easier a comparison to our primitive in Definition 2, we provide the more standard
definition of accumulators [10].

Definition 7 (Accumulator scheme). An accumulator scheme Acc over universe Uλ(Acc) (for a security
parameter λ) consists of PPT algorithms Acc = (Setup,Accum,PrvMem,VfyMem) with the following syntax:

Setup(1λ)→ pp generates public parameters pp.
Accum(pp, S)→ A deterministically computes accumulator A for set S ⊆ Uλ(Acc).
PrvMem(pp, S, x)→W computes witness W that proves x is in accumulated set S.
VfyMem(pp, A, x,W)→ b ∈ {0, 1} verifies through witness whether x is in the set accumulated in A. We do not

require parameter x to be in Uλ(Acc) from the syntax.

Correctness: For any set S = {vi}i, j∗ ∈ [|S|] the following holds

Pr

 ppacc ← Acc.Setup(1λ)

A = Acc.Accum(pp, S)

π ← Acc.PrvMem(ppacc, S, vj∗)

:

 = 1

Security: For any PPT adversary A the following holds:

Pr

 pp← Acc.Setup(1λ)

(S, v′, π)← A(ppacc)

A = Acc.Accum(pp, S)

:
Acc.VfyMem(pp, A, v′, π)

∧ v′ ̸∈ S


≤ negl(λ)

B Circuit Specifications

Remark 7 (Custom Gates). We keep the explication of our techniques as broadly applicable as possible: working
for any elliptic curve on short Weierstrass form and any commit-and-proof system for Pedersen commitments.
However, the circuits in this section can be further optimized for particular curves (e.g. with non-trivial efficient
endomorphisms) and proof systems (e.g. Plonk [33] with custom gates for elliptic curve operations, and/or,
Plookup [32]).

We provide all circuit specifications as Rank-1 constraint systems (R1CS): the left side of any constraint
consists of a product (×) of affine combinations, while the right side consists of an affine combination.

B.1 2-Set Membership

To constrain w ∈ {v1, v2}, enforce the following R1CS constraint:

(w − v1)× (w − v2) = 0 (8)

Most commonly w ∈ {0, 1} (i.e. v1 = 0 and v2 = 1).

B.2 Not Zero

To enforce v ̸= 0, introduce t1 and constrain:

t1 × v = 1 (9)

B.3 Curve Check

For a point P = (x,y) ∈ E(F), introduce t1, t2 and constraints:

x× x = t1 (10)
x× t1 = t2 (11)
y × y = t2 +Ax+B (12)

B.4 Incomplete Curve Addition

We denote by � incomplete addition on the short Weierstrass curve E, formally:

E ∪ {⊥} � E ∪ {⊥} → E ∪ {⊥}
⊥ � _ 7→ ⊥
_ � ⊥ 7→ ⊥
1 � _ 7→ ⊥
_ � 1 7→ ⊥

P � −P 7→ ⊥, P ∈ E
P � P 7→ ⊥, P ∈ E
P � Q 7→ P +Q,P ∈ E, Q ∈ E, Otherwise

In other words: for points (x1,y1), (x2,y2) ∈ E(F) the operation is undefined when x1 = x2 (and undefined
on points not on the curve) or when one of the operands is the point at infinity. For three points (witnesses)
(x1,y1), (x2,y2), (x3,y3) we enforce (x3,y3) = (x1,y1) � (x2,y2), by introducing a free variable for the slope
δ and the 3 constraints:

δ × (x2 − x1) = y2 − y1 (13)
δ × (x3 − x1) = −y3 − y1 (14)

δ × δ = x3 + x1 + x2 (15)

B.5 Checked Curve Addition

When exceptional cases may occur, we can check for these by enforcing distinct x-coordinates. i.e. to enforce:

(x3,y3) = (x1,y1) + (x2,y2)

Enforce the constraints:

x1 ̸= x2 (16)
(x3,x3) = (x1,y1) � (x2,y2) (17)

B.6 Secret 3-Bit Lookup

An n-dimensional secret lookup in a constant table, i.e. v = T [b0+2 · b1+22 · b2] for secret b0, b1, b2 ∈ {0, 1} ⊆ F
and v ∈ Fn with T : N8 → Fn. For a table T : N8 → F the lookup requires 5 R1CS constraints:

b0 ∈ {0, 1} (18)
b1 ∈ {0, 1} (19)
b2 ∈ {0, 1} (20)
b& = b1 × b2 (21)

b0 ×


−T0 · b& + T0 · b2 + T0 · b1 − T0 + T2 · b&
−T2 · b1 + T4 · b& − T4 · b2 − T6 · b&

+T1 · b& − T1 · b2 − T1 · b1 + T1 − T3 · s&
+T3 · b1 − T5 · b& + T5 · b2 + T7 · b&


=

v − T0 · b& + T0 · T2 + T0 · b1 − T0 + T2 · b&
−T2 · b1 + T4 · b& − T4 · b2 − T6 · b&

In general, for tables T : N8 → Fn the technique above requires 4 + n constraints: repeating the last constraint
for each additional coordinate.

B.7 Circuit for Fixed-Base Exponentiation and Rerandomization

Abusing notation, we write (x̃, ỹ) = (x,y) � T for the constraint: (x̃, ỹ) = (x,y) � (x̂, ŷ) and (x̂, ŷ) ∈ T .
Multiplying a constant curve point by a secret scalar is implemented by decomposing the scalar into 3-bit
windows (b0, b1, b2) and defining the tables T st. the exceptional cases does not occur (except for the last table
– where we use the checked version). Let m = ⌊λ/3⌋+ 1, for for i ∈ 1, . . . ,m− 1, define the table Ti as:

Ti =
{[

j · 23·(i−1) + 23·i)
]
·H

∣∣∣ j ∈ 0, . . . , 23 − 1
}

Define Tm as follows:

Tm =

{[
j · 23·(m−1) −

m−1∑
i=1

23·i

]
·H

∣∣∣ j ∈ 0, . . . , 23 − 1

}
To enforce (x̃, ỹ) = [r] ·H + (x,y), we express it as:

(x̃, ỹ) =

Rerand(x,y)
:=

{
(x̃, ỹ) = (x,y) + Tm+

(Tm−1 � Tm−2 � . . . � T1)

}
(22)

Note the use of incomplete addition except for two curve additions. And decompose with witness r ∈ Z|⟨H⟩| as

r =
∑
i

vi · 23i

B.8 Range Check

A range check for v ∈ [0, 2i) requires i constraints:

∀ bi ∈ {0, 1} (23)

v =
∑
i

2i · bi (24)

B.9 Selection

Selecting a single secret entry (hidden index) from a secret vector:

Select(X⃗) :=

{
(x, X⃗) : 0 =

∏
i=1

(Xi − x)

}

We shall occasionally write the relation check above—selecting x among all siblings X⃗—as follows:

x = Select(X⃗)

B.10 Permissibility

As discussed in Section 6, when checking permissibility condition at proving time, we can just verify a weaker
condition: in an honestly generated tree, this will imply the stronger condition. Specifically in our circuits we
check permissibility as:

(x,y) ∈ PE ⇐⇒ (x,y) ∈ E(Fp) ∧ Uα,β(y) = 1

That is, we do not check Uα,β(−y) = 0 as in the strong definition.

C Anonymous Payments Formalized

In Fig. 7 we formally describe our model for UTXO-based payments with privacy requirements through a
functionality. The functionality describes the ideal behavior of the system as “a trusted party would execute
it”. Proving that our construction is secure, intuitively requires showing that any attack against the protocol
was already possible in the case of parties interacting with the functionality. This is usually tantamount to
showing the existence of a simulator that, by interacting with functionality, can produce an output that is
indistinguishable by that of an adversary against the protocol. We defer the reader to Section 6 in [43] for
further details.

Below, we refer to our concrete construction the protocol described in Section 7.3 and Fig. 6.

Theorem 3 (VCash security, Informal). Our concrete construction securely computes the functionality
FAnonUTXO in Fig. 7 in the presence of static malicious adversaries in the random-oracle model, under DLOG
for the groups of E(evn) and E(odd) and under the simulation extractability of Bulletproofs.

We can also obtain a stronger version of our protocol without the leakage mentioned in Remark 6 under
one additional assumption, Diffie-Hellman Inversion (or DHI). We refer the reader to Appendix D for further
details on the extension.

Theorem 4 (VCash security with PRF, Informal). Our concrete construction securely computes the func-
tionality FStrongAnonUTXO in Fig. 7 in the presence of static malicious adversaries in the random-oracle model,
under the same assumptions as Theorem 3 and under the hardness of the B-Diffie-Hellman Inversion problem
(Section 3.1 in [27]) for E(odd) where B is a bound on the total number of transactions per user throughout the
history of the payment system.

D Rerandomization of Key with PRF

At a high level, the ameliorated scheme works as follows:
– The receiver’s public key is a rerandomizable commitment csk to a PRF key sk; the sender creates an output

by sending tx = (c∗sk, c
(1)
out, c

(2)
out, . . .) to the network, where c∗sk is a rerandomization of the receivers public key

and cout-s are homomorphic commitments (as described earlier). For each cout, the network homomorphically
adds H(cout) and c∗sk to cout and obtains c′out, which is added to the accumulator as before (this should be
a permissible point).

– To spend c∗out (rerandomization of c′out) the receiver proves t = PRFsk(H(cout)) without revealing sk or
H(cout), where t acts as a spending tag.

– The PRF key is sk ∈ F|E|. One can commit to the PRF key using a Pedersen commitment:

csk ← [sk] ·G+ [r] ·H ∈ E
– The network computes:

csk+H(cout) ← c∗sk + [H(cout)] ·G
and adds csk+H(cout) to cout “in the exponent” (we abuse notation and letting [X] be the encoding of X ∈ E
as a scalar). That is, we rerandomize as in the select-and-rerandomize proof; notice that cout has a proof of
well-formedness. The network computes: c′out ← cout +

[
csk+H(cout)

]
· ĜPRF ∈ Ê.

– To spend, the receiver extracts and rerandomizes the commitment csk+H(cout) in the exponent using the
same technique as select-and-rerandomize to obtain c∗sk+H(cout)

and proves:

c∗sk+H(cout)
= [x] ·G+ [r∗] ·H ∧ t =

[
x−1

]
·G

where t is the tag of the spent coin.
– All additional items are added to the signature for validation.

FAnonUTXO

Setup: (setup,UTXO) recv← port.infl

1 : assert
∑

(...,v)∈UTXO

v ≤ MAX-MONEY∧

2 :

∣∣∣∣∣∣
⋃

(id,...)∈UTXO

id

∣∣∣∣∣∣ ≤ |UTXO|
Corrupt: (corrupt, p) recv← port.infl

1 : Corrupt← Corrupt ∪ {p}

Transfer: (tx, id1, id2, (v′1, t′1), (v′2, t′2))
recv← port.Pp

// Check that outputs were sent to p and balances match

1 : assert tx1 = (id1, f1, p, v1) ∈ UTXO

2 : assert tx2 = (id2, f2, p, v2) ∈ UTXO

3 : assert v1 + v2 = v′1 + v′2

// Corrupted party created the output: learns when it is spent

4 : if f1 ∈ Corrupt : port.leak send← id1

5 : if f2 ∈ Corrupt : port.leak send← id2

// Update UTXO set

6 : id′1
recv← port.infl; id′2

recv← port.infl; // fresh id’s.

7 : tx′1 ← (id′1, p, t
′
1, v

′
1); tx

′
2 ← (id′2, p, t

′
2, v

′
2)

8 : UTXO← UTXO \ {tx1, tx2}
9 : UTXO← UTXO ∪ {tx′1, tx′2}
// Notify recipients

10 : port.Pt′1

send← tx′1; port.Pt′2

send← tx′2

Fig. 7: Ideal Functionality FAnonUTXO for Anonymous Payments. A stronger version FStrongAnonUTXO (see also
Remark 6) is obtained by removing leakages marked in blue inside frameboxes.

E Dynamic Sets with Curve Tree

In our exposition in the main text we described a construction for a static set. In many applications, including
VCash, we will require dynamically updating the accumulator.

An easy solution is to represent all uninitialized leaf positions with a conventional dummy value. Whenever
we insert a new leaf, it is easy to update Curve Trees without holding the whole set, as for Merkle Trees. This
can be done by storing a “frontier“ of internal nodes (of size O(D)) to the group of leaves we are updating. We
then update each one of these internal nodes through group operations removing the dummy value, removing the
permissibility masking, adding the new value in the appropriate generator and then making the node permissible
again. This consists of O(D) group operations.

Using this solution in concrete applications we should naturally make sure that one cannot exploit the
dummy value to convincingly open to that element (which is supposed to be absent from the set). A simple
solution is to choose a dummy value that is not permissible.

F Other Implementations Used in Experimental Comparison

The Poseidon implementation can be found at

https://github.com/lovesh/ursa/tree/zmix/libzmix/bulletproofs_amcl.

The Orchard protocol was benchmarked using the implementation at

https://github.com/zcash/orchard

https://github.com/lovesh/ursa/tree/zmix/libzmix/bulletproofs_amcl
https://github.com/zcash/orchard

	Curve Trees:Practical and Transparent Zero-Knowledge Accumulators
	Introduction
	Related Work
	Zero-Knowledge Sets.
	Accumulators from Groups of Unknown Order.
	Accumulators from Bilinear Pairings.
	Authenticated Hash Tables & Verkle Trees.
	More related-work: A broader landscape of approaches to zero-knowledge for set membership

	Subsequent Work
	Curve Trees and Algebraic Merkle Trees.
	Halo2 and Recursive Proofs.

	Preliminaries
	Elliptic Curves
	Assumption: Generalized Discrete-Log
	Pedersen Commitments
	Avoiding Bit Decomposition via 2-Cycles of Curves

	Non-Interactive Zero-Knowledge Proofs
	Camenisch-Stadler Notation
	NIZKAoKs
	Commit-and-Prove for Pedersen Commitments
	A Concrete C&P-NIZKAoK: Bulletproofs

	Zero-Knowledge Set Membership
	Select-and-Rerandomize Accumulators

	Curve Trees as Accumulators
	Intro to (, E(evn), E(odd))-Curve Trees
	Binding and Hiding within Curve Trees
	Traversing (, E(evn), E(odd))-Curve Trees
	Descending a Single Level of the Tree
	Descending all D Layers of The Tree

	Correctness and Security
	Final Construction: Curve Trees with Compressed Points
	Point Compression and Permissible Points
	Curve Trees with Compressed Points
	Adapting Construction in fig:constr-compl to Compressed Points

	VCash: Transparent and Efficient Anonymous Payment System
	Model
	A high-level view of our protocol
	Our protocol in more detail

	Implementation and Evaluation
	Zero-Knowledge for Set-Membership
	VCash

	Accumulators
	Circuit Specifications
	2-Set Membership
	Not Zero
	Curve Check
	Incomplete Curve Addition
	Checked Curve Addition
	Secret 3-Bit Lookup
	Circuit for Fixed-Base Exponentiation and Rerandomization
	Range Check
	Selection
	Permissibility

	Anonymous Payments Formalized
	Rerandomization of Key with PRF
	Dynamic Sets with Curve Tree
	Other Implementations Used in Experimental Comparison

