
SortingHat: Efficient Private Decision Tree Evaluation
via Homomorphic Encryption and Transciphering

Kelong Cong , Debajyoti Das , Jeongeun Park , and Hilder V. L. Pereira

imec-COSIC, KU Leuven, Leuven, Belgium.
{kelong.cong,debajyoti.das,Jeongeun.Park,HilderVitor.LimaPereira}@esat.kuleuven.be

Abstract. Machine learning as a service scenario typically requires the client to trust the server and
provide sensitive data in plaintext. However, with the recent improvements in fully homomorphic
encryption (FHE) schemes, many such applications can be designed in a privacy preserving way. In this
work, we focus on such a problem, private decision tree evaluation (PDTE) — where a server has a
decision tree classification model, and a client wants to use the model to classify her private data without
revealing the data or the classification result to the server. We present an efficient non-interactive design
of PDTE, that we call SortingHat, based on FHE techniques. As part of our design, we solve multiple
cryptographic problems related to FHE: (1) we propose a fast homomorphic comparison function
where one input can be in plaintext format; (2) we design an efficient binary decision tree evaluation
technique in the FHE setting, which we call homomorphic traversal, and apply it together with our
homomorphic comparison to evaluate private decision tree classifiers, obtaining running times orders of
magnitude faster than the state of the art; (3) we improve both the communication cost and the time
complexity of transciphering, by applying our homomorphic comparison to the FiLIP stream cipher.
Through a prototype implementation, we demonstrate that our improved transciphering solution runs
around 400 times faster than previous works. We finally present a choice in terms of PDTE design:
we present a version of SortingHat without transciphering that achieves significant improvement in
terms of computation cost comparing to prior works; and another version with transciphering that has
a communication cost about 20 thousand times smaller but comparable running time.

1 Introduction

There is a growing demand for machine learning (ML) as a cloud-based service to provide useful
services like automatic health assessment, evaluation of property value, data classification, etc. Often
this requires the user to provide the service with sensitive data, like user’s DNA profile, medical
information, or financial records. Therefore it is crucial to ask whether such machine learning as a
service can be used by consumers without giving up the privacy of their data.

In this work, we focus on decision tree algorithms [Qui86,RM05,AEM13,RM14], which are an
important class of classifiers in machine learning, and useful in many scenarios such as health
analysis, credit-risk assessment, spam-filtering, etc. [WFH11,FPS02,AEM13,KTG06,SG11] Our
scenario consists of a server holding a decision tree model and a client wanting to classify their
private data using the server’s decision tree model without revealing the data to the server. An
obvious solution would be the server sending the decision tree model to the client and the client
running the computation locally — however, that beats the purpose of ML as a service. So, can we
design an efficient private decision tree evaluation (PDTE) algorithm, where a server has a decision
tree classification model and a client wants to use the computation power and the model of the
server to classify their private data without revealing the data to the server?

The PDTE problem can be considered as a secure two-party computation problem [HV16,KO04],
and generic algorithms (e.g., based on Yao’s garbled circuits [Yao86,BHKR13,BHR12,KRRW18])
can be used to solve it. However, such generic algorithms have high communication cost, require

https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0002-6777-0566
https://orcid.org/0000-0002-0557-3540
https://orcid.org/0000-0003-1303-3760

the client to participate in the computation, and are computationally less efficient for the server
compared to a solution specifically designed for the problem. There are a few recent works that
attempt to provide solutions [WFNL16a,TKK19,TBK20] specific to this problem based on fully
homomorphic encryption (FHE) [GHS12,vGHV10,CRRV17] or somewhat homomorphic encryption
(SHE) [LMSV12,CS16] techniques. Most of them are not very practical for the purpose of ML as
a service, because of the high communication and computation overhead for both the client and
the server. The work by Tueno et al. [TBK20] proposes a non-interactive protocol, and manages to
bring down the overhead for the client. However, the computation overhead for the server is still
very high (several seconds of computation time to run the classification on each input for a tree with
50− 500 decision nodes). Can we design a non-interactive protocol for PDTE with low computation
and communication overhead, so that it can be used in practice?

1.1 Our Contribution

We answer the above question by designing a new efficient and non-interactive private decision tree
evaluation (PDTE) protocol, SortingHat, that achieves low computation overhead for the server,
O(1) communication overhead1 in the sense that a client does not need any interaction with a
server apart from querying, and very low (only a few milliseconds) computation overhead for the
client. Furthermore, we provide a more bandwidth efficient version of our design, which we call
SortingHat2, that offers optimal size of query (O(t+ λ) bits of PDTE query to classify an input of t
bits for a security level of λ bits) using an efficient transciphering technique. Our improvements in
the performance of transciphering is useful in many other scenarios (as discussed in Section 2.2)
and is of independent interest. In our design, we make the following cryptographic breakthroughs:

1. In PDTE algorithms, encrypted values sent by the client have to be compared to threshold
values encoded in the nodes of the tree. Homomorphic comparison, taking two ciphertexts as inputs,
is a well-known and well-studied problem. Thus, there are several solutions to it and all past PDTE
algorithms based on FHE use such solutions [CGGI20,IZ21,CKK20]. However, we notice that the
server knows the tree model, and, in particular, the threshold values are in clear for the server. Thus,
we propose new homomorphic comparison algorithms between a ciphertext and a plaintext, which
are more efficient than ciphertext-ciphertext comparison. As a result, we can run the comparisons
much faster than existing generic homomorphic comparison functions. In some cases, our comparison
function requires only two polynomial multiplications whereas the fastest previous work [CGGI20]
needs more than 30 polynomial multiplications per bit.

2. We design an efficient binary decision tree evaluation technique using FHE, which we call
homomorphic traversal. It requires only one external product for each decision node (excluding the
cost of homomorphic comparison on each node). Comparing to the previous works on FHE-based
PDTE (e.g., [TBK20]), our method halves the number of multiplciations to evaluate a decision tree.
We instantiate our method using much less expensive homomorphic operations than the previous
works, which had to choose between a really expensive FHE scheme (e.g., BGV [BGV12]) and
an efficient GSW-like FHE scheme (e.g., TFHE [CGGI20]) that comes with the overhead of one
bootstrapping for every decision node. We discuss more about these tradeoffs in Section 1.2. Our
homomorphic traversal achieves the best of both worlds by using TFHE-based FHE while eliminating

1 The communication overhead also includes ciphertext expansion factor which depends on the security parameter λ
of the FHE scheme. However, that is independent of the size of the decision tree, and we drop that factor whenever
we mention communication overhead, for the ease of description.

2

the requirement of bootstrapping completely. This improves the cost of tree traversal by a huge
margin (e.g., each bootstrapping takes more than 600 external products for typical parameters).

3. We improve an existing transciphering method based on the stream cipher FiLIP [HMR20].
The main building blocks of FiLIP are a homomorphic hamming weight (HW) and a comparison
function. First of all, we propose a simpler way of computing the HW, which reduces drastically the
number of homomorphic operations needed in this step, then we use our homomorphic comparison
function instead of the general comparison algorithms. As a result, our new FiLIP evaluation is two
orders of magnitude faster than [HMR20].

4. We combine the improved transciphering technique with our tree traversal algorithm. With
this, we obtain the PDTE solution SortingHat2 which is slower than our first solution SortingHat,
but has much better communication cost, i.e., to classify an input with t bits under a security level
of λ bits, a user just has to send t+O(λ) bits to the server, which is optimal in the number of input
bits and has a very weak dependency on the security parameter. In concrete terms, t+O(λ) ≈ t
and we reduce the upload size by a factor of 20 thousand compared to previous solutions.

We instantiate all our constructions using the most modern FHE schemes, like TFHE and
FINAL [BIP+22], since they support efficient binary circuit evaluation and slow noise growth. Using
a prototype implementation, we demonstrate that SortingHat (without transciphering) provides a
performance improvement of over three orders of magnitude over prior work [TBK20]. For each clas-
sification, SortingHat takes only 42.3 milliseconds for computation with only one thread, compared
to 940 milliseconds with 16 threads of the previous work [TBK20] for the same dataset. Unfortu-
nately, SortingHat2 (with transciphering) can not fully utilize the advantages of our homomorphic
comparison technique used in SortingHat due to technical reasons discussed in Section 5.1. Hence,
we introduce other new comparison technique and employ it for SortingHat2. Our experiments show
that the running times of SortingHat2 are comparable to previous PDTE algorithms, and for some
databases it even has better running times than them, and the communication cost is about 20
thousand times smaller. The computation overhead of transciphering in SortingHat2 varies from
0.7% to 35%, depending on the depth of the tree.

1.2 Existing Works

The problem of private decision tree evaluation (PDTE) can be solved using techniques to solve
a secure two-party computation problem [HV16,KO04]. The generic algorithms for such prob-
lems based on Yao’s garbled circuits [Yao86,BHR12,KRRW18] are not suitable for the purpose of
ML as a service because they have high computation overhead, and many rounds of interactions
are required which results in a high communication overhead. There exist some specialized solu-
tions [BPSW07,BFK+09,TKK19] based on a combination of garbled circuits and other techniques,
however they also face the problems of high communication and computation overhead, and therefore,
not suitable for our purpose.

Some designs attempt to improve on the communication and computation overhead by em-
ploying homomorphic encryption schemes.2 Bost et al. [BPTG15] propose a design based on fully
homomorphic encryption (FHE) where they express the decision tree as a polynomial whose output
is the result of the classification. Another line of work [WFNL16b,TMZC17] introduce solutions
based on additive homomorphic encryption (ADE). However, they all incur high computation (for
both client and server) and communication overhead, and thus, not very practical.

2 By homomorphic encryption we consider partially or somewhat or fully homomorphic encryption.

3

Table 1: Protocol and system parameters for private decision tree evaluation

T The decision tree
m Number of decision nodes
M Total number of nodes
D Set of all decision nodes
L Set of all leave nodes
n Dimension of the attribute vector
d Depth of the decision tree
k The number of classification labels
x Attribute vector—{x0, . . . , xn}
a Function that assigns an attribute index to each decision node
t Function that assigns a threshold value to each decision node
M The decision tree model—(T , t,a)

λ Security parameter
〈v,w〉 Dot product of two vectors v,w
xi,x[i] The i-th component of vector x
‖ · ‖ Infinity norm

log(·) Logarithm function with base 2
R Z[X]/(XN + 1) for a positive integer N
Rq Z[X]/(XN + 1) mod q for positive integers q,N
M0 The constant term of a polynomial M(X)

Lu et al. [LZS18] improve on [TMZC17] by using a non-interactive comparison function, and
provide a non-interactive decision tree design. However, the communication (of O(2d) for a tree
depth d) and computation overhead for the client is still very high.

Tueno et al. [TBK20] propose a non-interactive PDTE in the FHE setting, and significantly
improve the computation overhead and bring down the communication overhead to O(1). By using
BGV [BGV12] and SIMD slots [SV11], their work outperform all the prior works in the amortized
scenario if the client wants to classify hundreds or thousands of attribute vectors. However, their
protocol comes with a few tradeoffs — BGV ciphertexts are much larger in size compared to TFHE
ciphertexts, and the noise grows much faster with number of multiplications. To keep the noise
small, they use a tree-traversal algorithm which has a computational complexity of O(2d · log d).
They provide a TFHE version of their protocol that has a computational complexity of O(2d) and
much less communication overhead (2 KBs in contrast to 1.7 MBs in BGV version). This version
performs at least five times faster than the BGV version for a single comparison, however cannot
support SIMD and does not get the advantage in the amortized scenario.

Our PDTE design SortingHat outperforms their TFHE version by a huge margin. (we refer to
Section 7.2 for a detailed performance comparison). Our scheme without transciphering achieves
the same communication overhead as their TFHE version. With transciphering we further reduce
the communication overhead to zero for upload by compromising the server performance.

About Transciphering. Ciphertexts of a fully homomorphic encryption scheme is much larger
than a traditional encryption schemes [PT20,ACLS18]. This issue is typically addressed using
transciphering, where the protocol messages are sent using a symmetric key cipher and the server
needs to homomorphically decrypt these messages using the encrypted secret keys that it obtains
during setup. A more detailed introduction to transciphering and a concrete scheme (FiLIP [MCJS19])
is given in Section 2.2, since our transciphering technique builds directly on top of the FiLIP design.

4

2 Preliminaries

Notation: We denote λ as the security parameter. We define vectors and matrices in lowercase
bold and uppercase bold, respectively. Dot product of two vectors v,w is denoted by 〈v,w〉. For a
vector x, both xi and x[i] denote either the i-th component scalar or the i-th element of an ordered
finite set. The norm notation ‖ · ‖ denotes infinity norm. log(·) is the logarithm function with base 2.
Let R and Rq denote Z[X]/(XN + 1) and Z[X]/(XN + 1) mod q, respectively, for positive integers
q,N . The constant term of a polynomial M(X) is denoted by M0. We summarize the notations in
Table 1.

2.1 Homomorphic Encryption

Our algorithms can be instantiated with any GSW-like homomorphic encryption scheme, such as
FHEW [DM15], TFHE [CGGI20], GAHE [Per21] or FINAL [BIP+22]. These schemes have the
benefit of keeping noise overhead additive after a long sequence of homomorphic multiplications by
utilizing asymmetric noise propagation. For concreteness, we describe them using the notation of
FHEW and TFHE, that is, with scalar ciphertexts defined over the Learning With Errors (LWE)
problem and its ring variant (RLWE). Let us discuss three different ciphertext formats which put
together such schemes.

LWE, RLWE, and RGSW ciphertexts. We define a ciphertext modulus as q and plaintext modulus
as t, where t� q. Let us denote ∆ = bq/te.

– An LWE ciphertext is defined as c := (a, b) ∈ Zn+1
q , where b = 〈a, s〉+∆ ·m+ e for a message

m ∈ Zt and a secret key s ∈ Zn. c is denoted by LWEn,t,q(m).

– An RLWE ciphertext is defined as c := (a, b) ∈ R2
q , where b = a · s+∆ ·m+ e for a message

polynomial m ∈ Rt and a secret key s ∈ R. c is denoted by RLWEN,t,q(m).

– Given a base Bg and ` = O(log q), we define a gadget vector g = (1, Bg, . . . , B
`−1
g)t. An

RGSW ciphertext is a form of C := (a,b) ∈ R2`×2
q , where b = Z +m ·G, where each row of Z is

an RLWE encryption of 0 and G is a gadget matrix which is defined by G = I2 ⊗ g.

Homomorphic Operations and Basic Algorithms. We introduce some homomorphic opera-
tions and basic algorithms that we use in this paper.

Homomorphic Addition. Let c1 := (a1, b1) and c2 := (a2, b2) be two RLWE ciphertexts. The addition
between two ciphertexts is defined as c+ := c1 + c2 = (a1 + a2, b1 + b2).

Gate Operation. Homomorphic NOT gate of a LWE ciphertext c encrypting a bit m is efficiently
instantiated as NOT(c) := (0, ∆)− c. This operation does not need bootstrapping at the end unlike
other gate operations such as XOR,AND,OR, and NAND [CGGI20], hence the computation is
almost free.

Plaintext-Ciphertext Product. We define a multiplication between a plaintext polynomial P (X) ∈
Zt[X] and an RLWE ciphertext c := (a, b) as

Plain.Mult(c, P (X))→ c′ := (a′, b′),

where a′ = a′ · P (X) and b′ = b · P (X).

5

External Product. We define a homomorphic multiplication between an RLWE ciphertext and
an RGSW ciphertext, which is called external product in [CGGI16a], denoted as �, as following:
A � b = G−1(b) ·A, where A is a RGSW(mA) ∈ {0, 1} and b is a RLWE(mb) sample of µb ∈ Rq
and G−1(·) is the gadget decomposition function which satisfies 〈G−1(a),G〉 ≈ a for a ∈ Rq.
Extract. We define two different versions of extract algorithms:

- ExtractRLWEtoLWE: Given an RLWE ciphertext encrypting
m(X) ∈ Rt, it outputs an LWE encryption of mi which is the i-th coefficient of m(X) for some
i ∈ [0, . . . N − 1]. We note that this algorithm is defined as SampleExtract in [CGGI20] which does
not add any noise in the output and the computation time is almost free in practice since it only
rearranges the order of components of input vector/polynomial. Note that one can use key switching
method additionally to change the dimension of output LWE ciphertext from N which is given from
the input RLWE ciphertext to n.

- ExtractRLWEtoRLWE: Given an RLWE encryption of a polynomial m(X), it outputs an RLWE
ciphertext encrypting of mi for some i ∈ [0, . . . , N − 1]. The algorithm is defined in [CCR19] which
mainly consists of logN external products.

Conversion. There is also an efficient conversion algorithm from a RLWE ciphertext encrypting
a polynomial m(X) to a RGSW ciphertext encrypting the constant term of m(X) which is m0

(Algorithm 4 of [CCR19]). In our case, the algorithm takes ` RLWE ciphertexts

{RLWEN,t,q(
∑N−1

i=0
mi ·Bj

g ·Xi))}j∈[`]

as input and then outputs RGSW(m0). To run this algorithm, it requires additional public evaluation
key denoted by ksk sent by the client beforehand. We call the algorithm RLWEtoRGSW throughout
the paper.

2.2 Transciphering: a General Strategy to Reduce Communication Cost

The ciphertext expansion, i.e., the ratio between the size of ciphertext and the size of plaintext, is
one way of measuring the efficiency of any cipher, as it represents the communication overhead
incurred by sending encrypted data instead of the data in clear.

It is well known that FHE schemes performs badly on this metric because their ciphertexts
are usually large (the ratio is almost 10 for most applications [PT20,ACLS18]). To amend this
problem, several papers have proposed that the client could use symmetric ciphers to encrypt the
data, and then the sever could use FHE to evaluate the decryption of the symmetric cipher, thus
obtaining FHE encryptions of the client’s data. In this scenario, there is a setup phase where the
client generates the symmetric key k, and the keys for the FHE scheme sk and pk. then the client
encrypts k under sk, generating ζ := FHE.Encsk(k), and sends (ζ, pk) to the sever.

To use the application provided by the server, the client encrypts their data x using the
symmetric cipher, and sends Sym.Enc(x) to the server instead of FHE.Enc(x). Since symmetric
ciphers typically have very low ciphertext expansion, close to one, the amount of data that the client
sends is close to the size of the data in clear. The server can compute Eval(Sym.Dec,Sym.Enc(x), ζ),
which yields FHE.Enc(Sym.Deck(Sym.Enc(x))) = FHE.Enc(x). Then the server can proceed with the
homomorphic computations as usual.

There are specialized FHE-friendly ciphers whose decryption function can be easily evaluated by
FHE schemes. In this work we consider FiLIP cipher [HMR20], a stream cipher specifically designed
to be evaluated with GSW-like FHE schemes like TFHE and FHEW.

6

Secret
Key

K
with

Z
bits

PRNG

fSubset
 with z
 bits

IV

plaintext

ciphertextPermutation Whitening

Fig. 1: FiLIP encryption of one bit. Using the PRNG, we select a subset of the bits of the keys, then we shuffle them
and apply an XOR with each bit of the whitening vector. Finally, we apply the non-linear function f and XOR the
result with the plaintext.

FiLIP Cipher. FiLIP is a binary stream cipher based on filter permutator and non-linear func-
tions [MCJS19]. The encryption and decryption algorithms work as follows: let K ∈ {0, 1}Z be the
the secret key; for each bit mi of the message, we use a forward secure PRNG to sample

– si: a vector with z bits of K,

– Pi: an z to z permutation,

– wi: an z-dimensional binary vector called whitening.

Then, for some function f : {0, 1}z → {0, 1} fixed beforehand, we compute ci := mi⊕f(Pi(si)⊕wi) ∈
{0, 1}. One round of FiLIP is illustrated in Figure 1.

We implemented the variant called FiLIP-144 in [HMR20], which consists in setting Z = 214, z =
144 and f as the function XTHR81,32,63 described in Definition 2.2. We note that those parameters
of FiLIP-144 yield 128 bit security, which is already proven in [MCJS19].

Definition 2.1 (Threshold Function (Definition 10 of [HMR20])). Let s ∈ N∗. For any
positive integer d ≤ s+ 1, the boolean function Td,s is defined as:

∀x = (x1, . . . , xs) ∈ Fs2, Td,s(x) =

{
1 if WH(x) ≥ d,
0, otherwise

where WH(x) is the Hamming weight of a binary vector x.

Definition 2.2 (XOR-THR function (Definition 11 of [HMR20])). For any positive integers
k, d, and s such that d ≤ s + 1, and for for all z = (x1, . . . , xk, y1, . . . , ys) ∈ Fk+s2 , XTHRk,d,s is
defined as:

XTHRk,d,s(z) = XORk(x1, . . . , xk) + Td,s(y1, . . . , ys) ∈ F2,

where XORk(x1, . . . , xk) = x1 + · · ·+ xk ∈ F2.

7

2.3 Decision Trees and Private Decision Tree Evaluation

Here we introduce the definitions and notations related to decision trees. Our notations are similar
to that of previous works [TKK19,TBK20], and are summarized in Table 1,

A decision tree implements a function T : Zn → {τ0, . . . , τk−1} that maps an attribute vector
x = (x0, . . . , xn−1) to a finite set of classification labels {τ0, . . . , τk−1}.3 Decision trees are binary tree
structures with a collection of decision nodes and leaf nodes. A decision tree model M = (T , t,a)
consists of the function T and the following functions on the nodes:

– t is a function that assigns to each decision node a threshold value, t : [0,m− 1]→ Z.

– a is a function which assigns to each decision node an attribute index, a : [0,m− 1]→ [0, n− 1].

– lab is a labelling function which assigns to each leaf node a label, lab : [m, . . . ,M − 1] →
{τ0, ..., τk−1}.

Node Indices. Given a decision tree, the index of a node is its order as computed by breadth-first
traversal, starting at the the root with index 0. If the tree is complete, then a node with index v
has left child 2v + 1 and the right child 2v + 2. With this indexing scheme, the leaves of the tree
is read from left to right, corresponding with the ordering `0, . . . `2s−1, where 2s is the number of
nodes of the complete tree.

Decision Tree Evaluation. Given an attribute vector x and a decision tree model M = (T , t,a),
then starting at the root, decision tree evaluation functionality evaluates at each decision node v
the decision b←

[
xa(v) ≥ t(v)

]
at each index v ∈ [m] and moves either to the right (if b = 0) or the

left (if b = 1) child node. The evaluation returns the label of the reached leaf as the result of the
computation, denoted by T (x).

Private Decision Tree Evaluation (PDTE). When the client has a private x = (x0, . . . , xn−1) and
the server has a private decision tree model M = (T , t,a), a PDTE functionality evaluates the
function T (x) in a way that reveals only T (x) to the client (other than the meta parameters about
the tree that the client already knows), and the server does not learn anything about x.

3 Building Blocks

In this section, we introduce our novel algorithms; homomorphic comparison and homomorphic
traversal, which are key building blocks of PDTE.

3.1 Homomorphic Comparison

In this section, we introduce our novel homomorphic comparison algorithms when one operand is in
clear. The techiques are different depending on how input messages are encoded. The first two cases
assume that one of the input which is encrypted is encoded on the exponent of the variable X of a
polynomial. And the last one assumes that the inputs are encrypted bit-by-bit.

A simple comparison function for fewer bits. In a decision tree, an input value sent by the
client is compared to a threshold value in each node. For our scenario, we require a homomorphic
comparison function that outputs 1 if the input is larger than a threshold value d, 0 otherwise.

3 Typically attribute vectors are in the feature space Rn, so we assume a fixed-point encoding of the values.

8

Such functions are typically instantiated based on TFHE by using bootstrapping technique [ZS21]
or deterministic automata [CGGI20]. Since the latter technique consists of only a few external
products to implement the desired function per bit, it is much faster than the former. However, if
we use deterministic automata, the client has to send two types of ciphertexts (RLWE and RGSW
ciphertexts) in our scenario and the size of a RGSW ciphertext is larger than a RLWE ciphertext.

More importantly, such homomorphic comparison functions are built for generic scenarios, i.e.,
two values for comparison are encrypted. However, in some cases, a computing party runs the
comparison function with its own data which is in cleartext. Therefore, we propose a new and
more optimal technique for such scenarios, detailed in Algorithm 1, which only requires RLWE
ciphertexts as input since it does not create additional communication overhead. We note that the
proposed algorithm outputs an RLWE ciphertext encrypting a polynomial of which the constant
term is the desired output bit (either 1 or 0). If we use ExtractRLWEToLWE at the end, one can get an
LWE ciphertext of comparison output with zero computational overhead.

Algorithm 1 Comparison function PolyComp.

1: Input: c := RLWEN,t,q(X
µ) and a threshold value t̄.

2: Output: RLWEN,t,q(µ(X)); µ0 = 1 if µ ≥ t̄, otherwise µ0 = 0, where µ0 is the constant term of µ(X).
3: Let T (X) := X2N−N +X2N−(N−1) +X2N−(N−2) + · · ·+X2N−(t̄+1) +X2N−t̄

4: compute Plain.Mult(c, T (X))→ c′

5: return c′.

As we can see that, the proposed comparison function has a limitation; it only supports N
bits comparsion. In other words, if one wants to compare larger bits than N , it is necessary to
increase underlying scheme’s parameters (however, this algorithm has a constant computation
complexity upto N bits.) Therefore, we suggest another two techniques to handle larger bits for the
aforementioned scenarios in the following sections.

Correctness: Suppose we want to compare a value µ with a threshold t̄. Let c = (a, b = a · s +
∆ ·Xµ + e) ∈ R2

q be an input RLWE ciphertext which encrypts Xµ. After the test vector Rq is
multiplied to both initial a and b (after the line 4), it produces c′ = (a′, b′) where a′ = a · T (X) and
b′ = b ·T (X) = a ·T (X) · s+∆ ·Xµ ·T (X) + e ·T (X). Therefore, the result c′ is an RLWE ciphertext
encrypting T (X) ·Xµ. What we want here is to have the comparison output bit on the constant
term of the message. In other words, T0 is 1 if t̄ ≤ µ ≤ N , 0 otherwise. Therefore, the result holds.

General Extension for Arbitrary number of bits. Let the bit size of input be larger than
the parameter N of the underlying homomorphic encryption scheme. We want to extend our novel
comparison algorithm for such large size of inputs. We are going to emulate digital comparator
homomorphically with N bit integers. First, we decompose two inputs, say A and B, with the base
2N , that is, A = A0 +A1 · 2N +A2 · 22N + · · ·+Ak · 2kN , all Ai’s are N bit integers for i ∈ {0, . . . , k},
and k ∈ Z≥0. And B is decomposed in the same way. Suppose we have efficienct equality check
algorithm such that it outputs yi which is 1 if Ai = Bi, 0 otherwise, and “greater than” algorithm
which outputs xi that is 1 if Ai > Bi, 0 otherwise, for some i. Then, we define our comparison
function as follows:

PolyCompA,B≥N := xk + yk · xk−1 + yk · yk−1 · xk−2 + yk · yk−1 · yk−2 · xk−3 + · · ·Πk
i=1(yi) · x0

9

We notice that if xi = 1, then yi = 0 always. If xi = 0 and yi = 1, we check the lower digits. In more
detail, we start from the most significant digit, Ak and Bk, gradually proceeding towards lower
significant digits until an inequality is found. When an inequality is found, i.e., yj = 0 for some j
and all yt = 1 for j + 1 ≤ t ≤ k, if the next comparison value xj = 1, then we conclude that A > B,
otherwise A < B.

Now, it is time to build efficient “greater than” and “equal to” function. All we need to do is
modify the test vector T (X) of Algorithm 1. For “equal to” function, we set T (X) = X2N−Bi , for
“greater than” function, T (X) is set as X(2N−N) + · · ·+X2N−(Bi+1) for all i’s.

The downside of this technique, however, is instantiating those multiplications between yi’s and
xj ’s homomorphically is not straightforward. The best methods are either converting the output
of the above subalgorithms (for less than N bits) to RGSW ciphertexts then do external product
between them, or evaluate bootstrapping. If k is small, nevertheless, either way is recommendable
since the complexity in terms of homomorphic multiplication is O(k·µN), where µ is the bit length of
the inputs A and B.

So far, we’ve studied efficient homomorphic comparison algorithm when the input is encoded
on the exponent of the polynomial variable X. Since it is a pretty special case, we introduce other
novel technique when the input is encrypted bit-by-bit.

Amortized comparison: a new strategy to compare an encrypted message with several
plaintexts. In this section, we use dynamic programming to construct an algorithm that, given
an encryption of m and several known values v(1), ..., v(n), outputs ciphertexts ci’s encrypting 1 if
m > v(i) and 0 otherwise. We assume that m is encrypted bit by bit with any FHE scheme that
allows us to execute binary gates efficiently, specially AND gates. Schemes like FHEW [DM15],
TFHE [CGGI20], GAHE [Per21] or FINAL [BIP+22], have a native homomorphic AND gate, while
with other schemes, like BGV [BGV12], AND gates are performed with homomorphic multiplications.

The main observation is that if we write the comparisons in a recursive way, by combining the
results of the comparisons of subsequences of the bits, then we can identify equal subsequences of
bits in different values v(i1), ..., v(ik), and execute only one comparison for this subsequence, instead
of k. For example, v(1), ..., v(10) have the same four most significant bits, then we can compare
m with msb4(v

(1)) and reuse this result for all the other nine v(i)’s. So we can run a single 4-bit
comparison instead of 10 comparisons.

Let m0, ...,mµ−1 and v0, ..., vµ−1 be the binary decomposition of two µ-bit integers m and v,
respectively, where m0 and v0 are the least significant bits. We define the homomorphic XNOR gate
as in Algorithm 2. Notice that evaluating such gate is almost for free, since a homomorphic NOT
gate is evaluated with just a few subtractions. Then, we define the following value, which tells us if
the bits µ− 1, . . . , k of m and v are equal:

Xk(v) = XNOR(Enc(mk), vk) · . . . · XNOR(Enc(mµ−1), vµ−1).

Notice that Xk(v) = Enc(1) if (mk, ...,mµ−1) = (vk, ..., vµ−1), and Enc(0) otherwise. In particular,
X0(v) indicates whether m = v.

Finally, for the “greater than” comparison, we define

Rk(v) =Enc(mµ−1) · v̄µ−1 +Xµ−1(v) · Enc(mµ−2) · v̄µ−2
+ Xµ−2(v) · Enc(mµ−3) · v̄µ−3 + . . .

+ Xk+1(v) · Enc(mk) · v̄k.

10

Algorithm 2 XNOR.

1: Input: Enc(mi) and vi, where mi, vi ∈ {0, 1}
2: Output: Enc(b) such that b = 1 if mi = vi and b = 0 otherwise.
3: if vi = 1 then

return Enc(mi).
4: else

return NOT(Enc(mi)).
5: end if

Notice that in Rk(v) each term Xµ−i(v) ·Enc(mµ−(i+1)) · v̄µ−(i+1) is testing if all the bits from µ− i to
µ− 1 are equal and if mµ−(i+1) > vµ−(i+1). Thus, the first most significant bit mj larger than vj will
yield an encryption of 1 and all the other terms will be encryptions of 0. In this case, Rk(v) = Enc(1).
But if there is no mj > vj , all the terms will be zero and Rk(v) = Enc(0). Thus, Rk(v) encrypts 1
iff msbµ−k(m) > msbµ−k(v). Otherwise, it encrypts 0. In particular, R0(v) = Enc(m > v).

Notice that a näıve strategy would be comparing m with each v(i), which would require us to
compute R0(v(i)) and X0(v(i)) for 1 ≤ i ≤ n, costing thus around 2 ·n ·µ homomorphic binary gates.

However, we can write Rk(v) and Xk(v) recursively as

Rk−1(v) = Rk(v) +Xk(v) · Enc(mk−1) · v̄k−1 and

Xk−1(v) = XNOR(Enc(mk), vk−1) ·Xk(v).

These recursions are the base of our first algorithm to compare Enc(m) with several different values
of v. Essentially, once we compute Rk(v), we store it, then to compare Enc(m) with some u, we
can check if the µ − k most significant bits of u and v are the same, and in this case, we have
Rk(v) = Rk(u), so we do not need to compute the comparison on those bits of u. We do the same for
Xk(v), until we compute R0(v) and X0(v) for all different v’s. We show it in detail in Algorithm 3.

To analyze the time complexity of Algorithm 3, let k = µ − j. Thus, in the j-th iteration of
the while loop, because each vi,k has j bits, there are up to min(2j , n) different vi,k’s. For each
of them, we execute up to 2 AND gates (lines 16 and 20), thus, the whole algorithm requires
2 ·
∑µ

j=2 min(2j , n) homomorphic binary gates. Now, we have two cases:

– If n ≥ 2µ, then n = min(2j , n) for all j and Algorithm 3 requires 2·(2µ+1−1−1−2) = 2µ+2−23

homomorphic binary gates. That is less than 4 · n, which is less than the 2 · n · µ required by the
naive strategy.

– If n < 2µ, then let ` := blog2(n)c. We have then∑µ

j=2
min(2j , n) =

∑`

j=2
2j +

∑µ

j=`+1
n

= 2`+1 − 4 + (µ− `− 1) · n
≤ 2 · n− 4 + (µ− `− 1) · n
≤ (µ− log n+ 1) · n− 4

So, the number of homomorphic gates evaluated is essentially 2 · (µ− log n+ 1) · n− 8.

It is clear from the analysis above that we save much more homomorphic gates (compared to
the naive strategy) when log n is larger than µ. Thus, our final algorithm recursively breaks down
the comparison by first comparing the most significant bits, then the last significant bits, then
combining the results. With this, the number of bits is always divided by 2 while n stays the same,

11

Algorithm 3 GroupComp: grouped comparison

1: Input: Enc(mi) for 0 ≤ i ≤ µ− 1 and µ-bit integers v(1), ..., v(n).
2: Output: R0(v(i)) and X0(v(i)) for 1 ≤ i ≤ n.
3: Rµ−1[0] = Enc(mµ−1)
4: Rµ−1[1] = 0
5: Xµ−1[0] = NOT(Enc(mµ−1))
6: Xµ−1[1] = Enc(mµ−1)
7: k = µ− 2
8: while k ≥ 0 do
9: Rk = [], Xk = [] . Empty lists

10: for 1 ≤ i ≤ n do
11: vi,k = v(i)/2k . µ− k most significant bits of v(i)

12: vi,k+1 = v(i)/2k+1

13: b = vi,k mod 2 . k-th bit of v(i)

14: if Xk[vi,k] = null then
15: Xk[vi,k] = XNOR(Enc(mk), b) ·Xk+1[vi,k+1]
16: if b = 1 then
17: Rk[vi,k] = Rk+1[vi,k+1]
18: else
19: Rk[vi,k] = Rk+1[vi,k+1] +Xk+1[vi,k+1] · Enc(mk)
20: end if
21: end if
22: end for
23: k = k − 1
24: end while
25: return R0, X0

until we have log n > µ/2k for some k, and we reach the base case of the recursion, where we finally
call Algorithm 3, which then runs in time O(n). We present this divide-and-conquer strategy in
Algorithm 4.

The time complexity of Algorithm 4 is O(n ·µ/ log n), which is better than the naive strategy by a
factor of log n. To analyze this time complexity, let k be an integer such that µ/2k ≤ log n < 2 ·µ/2k.
Now, notice that the cost of that algorithm can be expressed as T (µ) = 2 · T (µ/2) + 2 ·min(2µ, n).
Accounting for k recursive levels, we have

T (µ) = 2k · T (µ/2k) +
∑k

i=1
2i ·min(2µ/2

i−1
, n)

= 2k · T (µ/2k) +
∑k

i=1
2i · n

< 2k · T (µ/2k) + n · 2k+1

< 2k · (2µ/2k+2 − 23) + n · 2k+1

< 2k · 2µ/2k+2 + n · 2k+1 − 23 · 2k

< 2k · 4 · n+ 2 · n · 2k − 23 · 2k

and using the fact that log n < 2 · µ/2k, we obtain

T (µ) < (2 · µ/ log n) · 4 · n+ 2 · n · (2 · µ/ log n) ∈ O
(
nµ

log n

)
Moreover, we ran several experiments to verify if the constant hidden in the asymtoptic notation

is small. In more detail, we fixed some values of µ and varied log n, then we generated random µ-bit

12

Algorithm 4 RecGroupComp: recursive grouped comparison

1: Input: Enc(mi) for 0 ≤ i ≤ µ− 1 and µ-bit integers v(1), . . . , v(n).
2: Output: R0(v(j)) and X0(v(j)) for 1 ≤ j ≤ n.
3: if µ ≤ log(n) then
4: return GroupComp({Enc(mi)}µ−1

i=0 , {v(j)}nj=1)
5: end if
6: k = bµ/2c
7: L = [Enc(m0), ...,Enc(mk−1)]
8: M = [Enc(mk), ...,Enc(mµ−1)]
9: Lv = [lsbk(v(1)), ..., lsbk(v(n))]

10: Mv = [msbk(v(1)), ...,msbk(v(n))]
11: Rmsb, Xmsb = RecGroupComp(M,Mv)
12: Rlsb, Xlsb = RecGroupComp(L,Lv)
13: R = [], X = [] . Empty lists
14: for 1 ≤ i ≤ n do
15: if X[v(i)] = null then
16: X[v(i)] = Xmsb[Mv[i]] ·Xlsb[Lv[i]]
17: R[v(i)] = Rmsb[Mv[i]] +Xmsb[Mv[i]] ·Rlsb[Lv[i]]
18: end if
19: end for
20: return R,X

integers and ran Algorithm 4 and n times the naive comparison, counting the number of AND gates
used in both cases. We observed that for the naive comparison, the number of AND gates is always
very close to 1.5 · µ. Thus, to compare n integers, we need 1.5 · n · µ AND gates. As it is shown in
Fig. 2, even for very small values of n, like n = 4, our algorithm is already cheaper than the naive
strategy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

logn

W

µ = 16
µ = 32

Fig. 2: Performance comparison between naive and recursive grouped comparison algorithms. W denotes the number
of AND gates needed by the naive strategy divided by the number of AND gates required by our grouped comparison.

3.2 Homomorphic Traversal

The goal of homomorphic traversal algorithm is to move a value from the root to a desired leaf in a
binary tree of depth L. The path that the value on the root takes depends on the controller bits on
every node. In this algorithm, we use a homomorphic selection algorithm as a sub-routine. Let’s
assume that there is a complete binary tree with level L = logm, where m is the number of leaves.
The goal of this sub-algorithm is to copy the value of a parent node to one of the two child nodes

13

depending on a controller bit by using homomorphic multiplication. In more detail, if a controller
bit is 1, a value of the parent node is copied to the right child, otherwise it is copied to the left child.
We note that the homomorphic selection algorithm is executed in every non-leaf node.

Let us denote the element contained in the parent node by b and the element of the child node
is not determined/updated yet. If the controller c bit is 1, the value of the the parent node (b) is
copied to the right child node and the left child node becomes 0. Otherwise, vice versa; The above
computations in the left child node (denoted by HS-L) and the right child node (denoted by HS-R)
are instantiated as follows:

HS-L(b, c) := (1− c) · b, HS-R(b, c) := c · b,

where · denotes homomorphic multiplication. The whole algorithm of homomorphic selection HomSel
is described in Algorithm 5.

Algorithm 5 Homomorphic Selection HomSel

1: Input: c, a ciphertext encrypting a bit, and the value of parent node a
2: Output: a new updated value of the left child node bl, and the right child node br
3: Initiallize the childeren node values bl = 0 and br = 0
4: bl := HS-L(a, c))
5: br := HS-R(a, c)
6: return (bl, br)

Now, we can think of a binary tree based structure for homomorphic traversal with logm depth.
As a setup phase, all the nodes are initialized with 0 except the root which contains 1. The desired
index i is represented as its bit-decomposed form of logm binary elements, and each bit is encrypted.
Each of those (encrypted) bit is the controller bit of all nodes of each level. After m−1 homomorphic
selections, the value of the root (which is 1) is copied to a leaf at the position of the desired index (if
we read the index of the leaves from the right to left). In fact, our homomorphic traversal algorithm
is essentially a homomorphic demultiplexer when there are logm choice bits, one for every level.
This algorithm has a multiplicative depth of logm and the overall multiplication complexity is
O(m). Section 4 describes a more general case when there is a choice for every node, which is why
we prefer the term “homomorphic traversal” defined in Algorithm 6. This algorithm emulates the
decision tree evaluation homomorphically.

The advantage of this algorithm is that we can halve the number of multiplications by reusing
the value of one child node for the other one. In other words, we can reuse the value of HS-R for
HS-L without additional multiplication. Therefore, the number of multiplications is same as the
number of decision nodes. This makes our PDTE perform much better than other existing works.
We will discuss this later in Section 7.

4 Our Private Decision Tree Evaluation: SortingHat

4.1 System and Security Model

We consider a “single client single server” scenario, where the server holds a decision tree model,
and the client holds some private data that they do not want to reveal to the server; however they
want to use the decision tree model held by the server to classify the data. We want to design a

14

1

0

0

1

1 0 00

1 0

0 0

0 0 0

Fig. 3: Example homomorphic traversal on a binary decision tree: the circular nodes represent the non-leaf nodes, the
square nodes represent the leaf-nodes. The root node is set to 1 initially; given the controller bit c on each non-leaf
node, the values of left child and right child are set based on our homomorphic selection algorithm. In the first layer,
the left child is set to 1 because HS-L(b, c) = 1 (and the right child is set to 0 because HS-R(b, c) = 0), where b is the
value of the parent (root) node. In the second layer, the right child is set to 1 because HS-R(b, c) = 1. Similarly, all the
nodes on the blue path becomes 1, and all other nodes that are not on that path becomes 0 in our homomorphic
traversal algorithm. Note that, the values of b, c, and the output of HS-R and HS-L functions are encrypted.

protocol where the client provides the private data to the server in a format such that the server
can only run the decision tree model on the data and return the classification result to the client;
but cannot extract any information about the data or the classification result.

We want to design a non-interactive protocol, i.e., the client has to interact with the server only
to send the query and to retrieve the classification result. A protocol with multi-round interactions
between the server and the client not only increases the communication overhead, but also requires
the client to be active throughout the protocol execution.

Threat Model. Our security goals are similar to previous works [WFNL16a,TKK19,TBK20],
namely, we want to protect the privacy of the client’s data from the server. To do this, we consider
the semi-honest model, also known as honest-but-curios adversary, i.e., the server is supposed to
follow the protocol and perform all the computation correctly, but can store all the ciphertexts and
other data sent by the client and, afterwards, act as any probabilistic polynomial time adversary
and perform computation to try distinguish ciphertexts encrypting different messages, recover secret
keys, etc. As usual in FHE-based protocols, we do not address circuit privacy.

We want to highlight that our work is complementary to work on differential privacy in the
machine learning community. Differential privacy techniques aim to construct classifiers (such as
decision tress) from sensitive user training data without leaking more than a bounded amount of
information. Whereas, we try to protect the privacy of user data during the classification phase.

4.2 Data and Tree Structure

Let T be a binary tree with depth d which is is the length of the longest path from the root to a
leaf if the tree is not complete. In each decision node v, the output bit of comparison function is

15

Algorithm 6 Homomorphic Traversal HomTrav

1: Input: logm controller elements {c0, . . . , cs}, the value of the root a.
2: Output: m values of leaves: z0, . . . , zm−1

3: Initialize all the node values bi as 0 for i ∈ {1, . . . , 2m− 2}
4: b1, b2 := HomSel(c0, a) . Compute the first two children nodes from the root
5: for i← 2, . . . , s+ 1 do
6: for j ← 0, . . . , 2i−1 − 1 do
7: (b2i+2∗j−1, b2i+2∗j) := HomSel(ci, b2i−1−1+j)
8: end for
9: end for

10: for i← 0, . . . ,m− 1 do
11: zi := b2s+1−1+i

12: end for
13: return z0, . . . , zm−1

stored as t(v). Each child node of the parent node v computes different homomorphic operation
taking t(v) on input. The output of this operation, denoted by b2v+1 (resp. b2v+2), is stored in the
left (resp. right) child node.

Each leaf node l is associated with a classification result lab(l) = τj for some j ∈ [0, . . . , k − 1]
and a value zl which is initialized as 0 and updated to an output of homomorphic traversal at the
end of the protocol.

4.3 Overall Description

In each decision node, a server computes the comparison function taking its assigned attribute and
threshold value on input to obtain bit denoting which node to traverse. Let us denote the attribute
vector of client by x := (x0, . . . , xn−1). Once the server obtains the output of the comparision
function, he runs homomorphic traversal algorithm to obtain the final vector where the only
component corresponding to the classification label is encryption of 1, the rest are encryptions of 0.

1. Server initializes the value of each node as 0, denoted by bj for all j ∈ {0, . . . , 2m− 2} except
the root, denoted by b0, which contains 1.

2. For every decision node v, the server computes a comparison function with its assigned attributes
xa(v) with a node-specific threshold value t(v). We denote the output of each node by cv
corresponding to the node v for v ∈ {0, . . . ,m− 1}.

3. The server runs the homomorphic traversal algorithm HomTrav({cv}v∈{0,...,m−1}, {bi}i∈{0,...,2m−2})
→ {zl}l∈L.

At the end of the protocol, the only one leaf has a value which is an encryption of 1, corresponding
to the label lab(l) for some l ∈ L and the rest are encryptions of 0.

4.4 Our PDTE Instantiated with GSW-like HE Schemes

For each decision node v, the threshold value is already computed as t(v) in server’s tree model T .
Let k be the number of classification labels. Client sends RLWE ciphertexts as encryptions of its
attributes. Once a server obtains encryptions of attributes of a client, it runs comparison function
for each decision node with its assigned threshold value and stores the outputs as a controller
value of the decision node described as the first step in the previous section. The output of our

16

comparison function is an RLWE ciphertext, but the homomorphic traversal algorithm takes RGSW
ciphertexts as its inputs. Therefore there should be a conversion from an RLWE ciphertext to an
RGSW ciphertext. To do this, we use the efficient conversion algorithm RLWEtoRGSW for each
output of the comparison function. However, this algorithm takes ` number of RLWE ciphertexts
which encrypt the same message with different scaling factors. Hence, client sends basically n · `
RLWE ciphertexts which are RLWEN,t,q(

1
∆B

j
g ·Xxi) for i ∈ [0, . . . , n− 1] and j ∈ [0, . . . , `− 1]. This

setup for client is addressed in Algorithm 7.

Algorithm 7 Setup of our PDTE.

Input: Security parameter λ.
. Client’s computation

1: Select FHE parameters for λ bits of security
2: sk, pk← FHE.KeyGen()
3: Prepare attribute vector (x1, . . . , xn)
4: for i← 0, . . . , n− 1 do
5: for j ← 0, . . . , `− 1 do
6: ci,j ← RLWEN,t,q(

1
∆
Bjg ·Xxi)

7: end for
8: end for
9: generate an evaluation key ksk

10: Send ksk, {ci,j}i∈[0,...,n−1],j∈[0,...,`−1] to the server.

Next, server runs homomorphic traversal algorithm of which homomorphic multiplication is
instantiated as external product between a RGSW ciphertext and a RLWE ciphertext. At the end
of this step, server obtains the final classification value which is a vector of dimension k, where the
only one component assigned to the resulting classification label. We describe the process of the
server below:

Algorithm 8 Server’s computation for PDTE.

1: Input: {ci,j}i∈[0,...,n−1],j∈[0,...,`−1], ksk and classification labels τ0, . . . , τk−1

2: Output: c := RLWEN,t,q(T (x0, . . . , xn−1)) which is the resulting classification label
3: c← 0
4: a← 1
5: for i← 0 . . .m− 1 do
6: for j ← 0 . . . `− 1 do
7: Let t(i) be the threshold value of i-th node.
8: Run PolyComp(ca(i),j , t(i))→ bi,j
9: end for

10: Run RLWEtoRGSW({bi,j)}j∈[0,...,`−1], ksk)→ ĉi
11: end for
12: Run HomTrav({ĉi}i∈[0,...,m−1], a)→ {zl}l∈L
13: for l ∈ L do
14: c← c+ Plain.Mult(zl, lab(l))
15: end for
16: return c.

At the end of running homomorphic traversal algorithm, server’s output is a k dimensional vector
consists of values of leaves which are RLWE ciphertexts encrypting either 1 or 0. As a consequence,

17

the value of the reached leaf is the only ciphertext encrypting 1. Then server computes dot product
between the vector and the vector of classification labels to produce the correct classification label
as the last step of our PDTE. The server sends the result as his answer.

Security of SortingHat. The attribute vector sent by the client, the output of the comparison
function on each node, and outputs of HS-L() and HS-R(), and the final classification result are
encrypted using a semantic secure (IND-CPA) homomorphic encryption scheme (privacy of the
client data). Therefore, the server does not learn any information about the client’s attribute vector
(except the length), or the classification result.

5 Fast Transciphering via FiLIP cipher

We can further improve the communication overhead of SortingHat using standard transciphering
techniques. However, transciphering comes with additional computation overhead for the server. We
improve the performance of transciphering by providing a faster way to evaluate the decryption
function of FiLIP [HMR20] homomorphically for any GSW-like homomorphic encrypion schemes.
Our transciphering takes as input a ciphertext c = FiLIP.enc(m) and outputs a low-noise LWE
encryption c′ of m, so that further homomorphic computation is possible in the usual way, i.e., by
evaluating binary gates on c′.

Firstly, there is a setup phase where the client sends to the server RLWE and RGSW encryptions
of each bit ki of FiLIP’s secret key K, and the server produces LWE encryptions of NOT(ki) and
GSW encryptions of both Xki and XNOT(ki). To reduce communication cost, each RLWE ciphertext
encrypts N bits. This step is shown in detail in Algorithm 9

To efficiently evaluate the threshold function T32,63(y), where y := (y1, . . . , y63) ∈ {0, 1}63, our
main idea is to start with GSW encryptions of Xyi , then use external products to obtain a ring
encryption of X

∑
yi . Note that, because this sum is less than N , it holds that X

∑
yi = XWH(y),

i.e., we obtain the Hamming weight on the exponent. Finally, we multiply by a test-polynomial to
perform the comparison with d := 32 and extract an LWE sample. At the end of this step, we have
c′ := LWEn,2,q(T32,63(y)).

The second step consists of computing XOR gates. In a naive implementation, one could use
the homomorphic gates provided by the FHE scheme, however, because we are using scaling factor
∆ = q/2, we can simply use homomorphic additions, which are much cheaper. In more details, we
assume we have ci := LWEn,2,q(xi) for the bits xi of FiLIP’s secret key and we compute

c = c′ +
81∑
i=1

ci = c′ + LWEn,q(XORk(x1, . . . , xk))

= LWEn,2,q(XTHR81,32,63(x,y))

The last step consists in simply adding this to the FiLIP ciphertext. This procedure is shown in
detail in Algorithm 10. The subset, the permutation, and the whitening vector are in clear, therefore,
applying them to the encrypted bits of FiLIP’s secret key boils down to selecting some ciphertexts
pre-computed in the setup phase, thus, this is done almost for free.

5.1 Bandwidth efficient PDTE: SortingHat2

As a result of employing our improved transciphering technique, we achieve our bandwidth efficient
PDTE SortingHat2, which we describe below. The client and the server first run the transciphering

18

Algorithm 9 Setup of homomorphic FiLIP.

Input: Security parameter λ.
. Client’s computation

1: Select FiLIP and FHE parameters for λ bits of security
2: sk, pk← FHE.KeyGen()
3: K ← FiLIP.keygen()
4: for 1 ≤ i ≤ Z do
5: Let ki be the i-th bit of K
6: Ci ← RGSW(ki)
7: end for
8: for 1 ≤ i ≤ dZ/Ne do
9: Let k(X) :=

∑i·N
j=(i−1)·N kj ·X

j

10: c̃i ← RLWEN,2,q(k(X))
11: end for
12: Send pk, {Ci}Zi=1, {c̃i}

dZ/Ne
i=1 to the server.

. Server’s computation
13: for 1 ≤ i ≤ Z do
14: u← i mod N
15: v ← bi/Nc
16: ci ← ExtractRLWEtoLWE(c̃v, u) . LWEn,2,q(ki)
17: end for
18: for 1 ≤ i ≤ Z do
19: c̄i ← FHE.NOT(ci) . LWEn,2,q(NOT(ki)
20: Ci ← RGSW(1) + (X − 1) ·Ci . encryption of Xki

21: C̄i ← RGSW(X) + (1−X) ·Ci . encryption of XNOT(ki)

22: end for

setup described in Algorithm 9. Then, every time the client wants to classify one input with n
attributes and µ bits per attribute, the following protocol is executed:

Client. The client samples an IV v and use it to encrypt the n · µ bits of the input with FiLIP
cipher. The client then send v and the n · µ encrypted bits to the server.

Server. The server executes the following steps:
1) Runs homomorphic FiLIP decryption function (Algorithm 10) per bit. At the end of this step,

server obtains n · µ LWE ciphertexts.
2) Runs the group comparison function (Algorithm 4) n times using the threshold values of all

decision nodes {t(vj)}j∈[0,...,m−1], where vj ’s are decision nodes. We note that the better this
algorithm performs the more all t(vj)’s have common bits.

3) With the output value of the previous step, we run homomorphic traversal (Algorithm 6). We
note that the multiplication of homomorphic traversal is instantiated as homomorphic AND
gate in our instantiation.

4) Sends the output to the client.
We have to consider a technical issue when it is instantiated with GSW-like homomorphic

encryption schemes. Our transciphering method only outputs an encryption of bit (plaintext
modulus t = 2) since FiLIP is designed for bit operations. Moreover, it is not straightforward to
tweak the algorithm to work over larger plaintext space. In more detail, we only obtain ciphertexts
like RLWEn,2,q(m) from Algorithm 10 for m ∈ {0, 1}. Therefore, it is inevitable to use homomorphic
bit operation for the rest of computation. As a result, we employ our amortized comparison method

19

Algorithm 10 Homomorphic FiLIP.dec.

Input: c = FiLIP.enc(b), an IV, and ciphertexts ci, c̄i,Ci, C̄i computed in the setup phase.
Output: LWEn,2,q(b)
1: Sample a random subset S := {s1, ..., sz} ⊆ {1, ..., Z}
2: Sample a random permutation π : S → S.
3: Sample a random whitening vector w ∈ {0, 1}z
4: for 1 ≤ i ≤ z do
5: j ← π[si]
6: if wi = 0 then
7: c′i := cj , C′i := Cj

8: else
9: c′i := c̄j , C′i := C̄j

10: end if
11: end for

. Compute the function XORk(x1, . . . , xk)
12: x := LWEn,2,q(0)
13: for 1 ≤ i ≤ k do
14: x← x + c′i
15: end for

. Compute the threshold function Td,s(y)
16: y := RLWEN,2,Q(1)
17: for k + 1 ≤ i ≤ z do
18: y← C′i � y
19: end for
20: u← PolyComp(y, d)
21: t← ExtractRLWEtoLWE(u, 0)

. Add XTHRk,d,s(x,y) to the FiLIP ciphertext
22: return x + t + (0, (q/2) · c)

addressed in 3.1 and instantiate our homomorphic traversal by using homomorphic AND gate.
Despite of this downside, our practical result is better than the existing works [TBK20,LZS18] which
also uses homomorphic AND gate, since we use more efficient algorithms as our building blocks; our
homomorphic comparison function and homomorphic traversal. The efficiency comparison of each
building block is discussed in 7.

We notice that now the client just has to send n · µ+O(λ) bits to the server, while in previous
solutions the upload cost is at least Θ(n · µ · λ · log λ), because each FHE ciphertext sent by the
client has bit length Θ(λ · log λ).

6 Implementation

We have developed a proof-of-concept implementation of SortingHat without transciphering; as
well as an implementation of our improved transciphering technique for FiLIP cipher and grouped
comparison used in SortingHat2.

Our homomorphic traversal algorithm consists of binary circuits and has logm multiplicative
depth for a complete tree of depth logm, moreover, all logm multiplications are done sequentially.
Therefore, TFHE [CGGI20] which supports efficient binary circuit evaluation and slower noise
growth is the best choice for our construction to be instantiated. Our instantiations use the following
parameters which supports 128 bits of security.

– Ciphertext modulus q = 264.

20

– Ring dimension N = 2048.
– The standard deviation of the error distribution σ = 2−55.
– Decomposition parameters for key switching (B, `) = (24, 8).
– Decomposition parameters for everything else (B, `) = (24, 7).

Our PDTE algorithm written in the Rust programming language using the Concrete library [CJL+20].
The original TFHE library [CGGI16b] and Concrete use the same FFT library (FFTW [FJ05]) for
polynomial multiplication so we do not expect the performance to change significantly if our PDTE
is implemented in TFHE. Finally, we include the dependency manifest (Cargo.lock) to ensure
reproducible results.

Our homomorphic FiLIP and grouped comparison is implemented using C++ with the FINAL
library. Since it is not designed to be used with TFHE, we use a different set of parameters, which
can be found in [BIP+22, Table 1]. The FINAL library also uses the same FFT library (FFTW).

7 Performance Evaluation

In this section we evaluate the performance of our design based on our prototype implementation.
As we already explain in Section 1.2, only Tueno et al. [TBK20] achieve non-interactive PDTE
design with practical computation and communication overhead for the client.4 Therefore, we mainly
compare our performance with them.

7.1 Computation Complexity

PDTE: SortingHat. In order to compare our performance with the work of Tueno et al. [TBK20],
we first count the number of homomorphic operations (mainly multiplications) of both works in
Table 2. As we discussed in Section 3.1, our comparison function only consists of one multiplication
up to logN bits due to our novel optimization technique for plaintext-ciphertext comparison. For
general bit length of inputs, we suggest amortized comparison method when the threshold bits of
decision nodes have some common subsequence bits. The homomorpic multiplication complexity for
m comparison of the entire tree is O(m·µ

logm), for input bit length µ. As we discussed in Section 5.1, we
instantiated the multiplication with homomorphic AND gate which consists of n̄ external products,
where n̄ is the dimension of an LWE secret key. Note that evaluating one external product takes
2× ` polynomial multiplications, where ` = O(log q), q is a ciphertext modulus. On the other hand,
each comparison function used in [TBK20] consists of µ logµ homomorphic AND gates for any µ
bit inputs.

Next, the tree evaluation step (EvalPath of [TBK20]) consists of a chain multiplication for every
path per each leaf. Even though they mentioned their complexity of homomorphic multiplication
is O(m logm), their actual algorithm consists of 2 ·m multiplication over ciphertext by reusing
previously computed value. Furthermore, each multiplication is instantiated as TFHE AND gate
(2 ·m homomorphic AND gates in total) As a result, their tree evaluation requires 4 ·m · n̄ · `. The
parameters of TFHE scheme yielding 128 bits security are chosen as n̄ = 630, q = 232, and ` = 3 in
the original paper [CGGI20].

On the contrary, our tree evaluation EvalTree is instantiated in two ways depending on types
of input ciphertext. We note that our homomorphic traversal algorithm consists of m homomorphic
multiplication.

4 The design by Lu et al. [LZS18] also achieves non-interactive PDTE, however, the computation and communication
overhead for the client render their design impractical.

21

1) RLWE ciphertexts encrypting integer: EvalTree consists of two sub-algorithms: RLWEtoRGSW
and HomTrav.RLWEtoRGSW consists of logN external products for each decision node, where N is
the degree of the ciphertext polynomial. The homomorphic multiplication HomTrav is instantiated
with external product. Therefore, this step takes m external product, resulting in m · (logN + 1)
external products in total.

2) RLWE ciphertexts encrypting bit: EvalTree is mainly evaluating homomorphic traversal
algorithm which consists of m homomorphic AND gate as discussed in Section 5.1.

Table 2: Efficiency comparison in terms of the number of polynomial multiplication for comparison function. We
denote the complexity of evaluating comparison function up to logN bits by Comp(N) for the entire tree. Comp(General)
denotes the complexity of evaluating our amortized comparison function for entire tree. µ denotes the bit length of
the input. The tree evaluation is denoted by EvalTree1 for integer input and EvalTree2 for binary input. We count
the number of external product for this tree evaluation.

[TBK20] SortingHat

Comp (N) O(m · n̄ · µ · logµ · log q) O(m)

Comp (general) O(m · n̄ · µ · logµ · log q) O(m·µ
logm

)

EvalTree1 2 ·m · n̄ m · (logN + 1)

EvalTree2 2 ·m · n̄ m · n̄

Transciphering: FiLIP. In [HMR20], the authors propose some algorithms to evaluate FiLIP’s
decryption homomorphically. The fastest algorithm takes GSW ciphertexts as input and outputs
an LWE ciphertext. This is also the case in our Algorithm 10, except that we also need LWE
encryptions of the bits. Thus, in their setup phase, the client has to send only RGSW(ki) for every bit
ki of FiLIP’s secret key K ∈ {0, 1}Z , while in our case there are additional Z/N RLWE ciphertexts.
We stress that this is a small overhead, since LWE ciphertexts are very small compared to GSW
ciphertexts. For example, in our proof-of-concept implementation presented in Section 7.2, the
size of all RLWE ciphertexts sent during the setup phase is about 78 KB. Moreover, this setup is
executed only once.

For the homomorphic decryption, [HMR20] proposes a Boolean circuit to compute the hamming
weight, perform the comparison of the threshold function, and all the needed XOR gates. Then,
they use external products to compute AND gates. Since hamming weight and comparison are
not functions that can be easily expressed as circuits, even with their refined analysis, they need
(s− d)d+ s− 2 = Θ(sd) homomorphic multiplications to evaluate XTHRk,d,s, while we just need s
homomorphic multiplications. We summarize this in Table 3

Table 3: Comparison of communication cost of the setup phase and number of operations needed in our homomorphic
FiLIP and in the one from [HMR20].

Setup phase Homomorphic FiLIP.dec

RGSW RLWE Add. Mult.

[HMR20] Z 0 (s− d)(2d− 1) + k (s− d)d+ s− 2
Ours Z Z/N k s

22

7.2 Experimental Results

PDTE: SortingHat. We experimentally evaluate the performance by running our protocol on
real datasets from the UCI repository [DG17] and compare with prior works [TBK20,LZS18].

Datasets and Training. Many of our dataset is obtained from the UCI repository [DG17] via the
OpenML [VvRBT13] service. To compare with prior work, we try to use the same dataset but not
all of them were available. 5 For the ones that are not available, we generate artificial models that
has the equal number of depth and internal and leaf nodes. We also select a few more datasets
and train it with a variety of constraints on the number of nodes and depths to understand our
performance characteristics. The exact dataset is listed in Table 4 in the form of OpenML ID.6 The
training is performed using scikit-learn [PVG+11].

Results and Discussion. We evaluate various decision tree models using our method with a personal
computer running on AMD Ryzen 5 5600X 6-Core Processor @ 3.70 GHz. In the experiment we use
either one thread τ = 1 or six threads τ = 6, to evaluate multiple attribute vectors in parallel. Our
results are given in Table 4. All results are amortized over the client input. Real models are used to
compare with existing work ([TBK20, Table VII] and [LZS18, Table 6]) when available, otherwise
we generate the model. Our results range between 20x to 90x faster when compared to [TBK20]
and is roughly 50x times faster than [LZS18]. Although the CPU used in the experiment is different
between our work and existing work, our single-threaded version still significantly outperforms the
existing work.

Table 4: PDTE results for various datasets. The model attribute description can be found in Section 2.3. Dataset
marked with asterisk (*) are generated artificially. ID is the OpenML ID given for reproducibility purposes. The time
is given in milliseconds. τ is the number of threads.

[TBK20] [LZS18] SortingHat
dataset ID d m n τ = 16 τ = 16 τ = 1 τ = 6

heart 1565 3 5 13 940 590 42.3 10.5
breast 1510 7 17 30 - - 154 34.8
steel 1504 5 6 33 - - 51.9 12.3

housing* N/A 13 92 13 6300 10270 892 190
spam 44 16 58 57 3660 6880 553 115

artificial* N/A 10 500 16 22390 56370 4787 1045

Tueno et al. [TBK20] showed an alternative approach to speed up using SIMD slots [SV11] that
uses BGV [BGV12]. The authors use between 600 and 6198 plaintext slots in one ciphertext during
evaluation. In other words, hundreds or thousands of attribute vectors are evaluated at once. The
amortized efficiency gains from this approach is significant and matches our performance results, but
we argue it is not always realistic. If an individual wishes to perform secure decision tree evaluation
using his or her health data, for example, then there would be only one attribute vector. Similarly,
on-device spam detection also cannot batch hundreds of email or text messages due to the latency
requirement. Furthermore, the batching technique only applies to attribute vectors using the same
key. Whereas our multi-threaded approach does not have this constraint.

Overhead for the Client. In our design (and also for [TBK20]), the client only decrypts one ciphertext
to retrieve the result. This operation consists of one polynomial multiplication that takes only a few

5 The “Housing” dataset, used by both [TBK20] and [LZS18], does not exist in the UCI repository.
6 Accessing the dataset can be done via, e.g., https://www.openml.org/search?type=data&id=31 for ID 31.

23

https://www.openml.org/search?type=data&id=31

milliseconds. The design by Lu et al. [LZS18] requires 320 milliseconds for the client to decrypt the
result for the “heart” dataset, and 3.35 seconds for the “spam” dataset.

Transciphering: FiLIP. Our proof-of-concept implementation of homomorphic FiLIP uses the
FHE scheme FINAL [BIP+22] instead of TFHE [CGGI20]. Thus, each GSW ciphertext in our
protocol is around 12 KB long, while GSW ciphertexts in [HMR20] require 98 KB each. The authors
present a few different instantiations of homomorphic FiLIP and we compare our running times
with their most efficient version using a personal computer with a AMD Ryzen 5 5600X 6-Core
Processor. Our running times are nearly 400 times faster than theirs. We summarize these results in
Table 5. It is not clear if the prior work used multiple threads, hence, to be conservative, we are
assuming they used only one thread and we also run our experiments on a single thread. Similarly,
these results do not rule out influences of the difference in CPU. Nevertheless, we still expect our
results to be two orders of magnitude faster when hardware differences are accounted.

Table 5: Comparison between the communication cost of the setup phase and the running times of the homomorphic
FiLIP decryption.

[HMR20] Ours Improvement

Setup 800 MB 200 MB ×4

Timing 1018 ms 2.62 ms ×388

Grouped Comparison. In Table 6 we present our results of PDTE evaluation when the tran-
sciphering is used. We ran the experiments on the same machine as before (AMD Ryzen 5 5600X
6-Core Processor). These results only show the homomorphic comparisons executed in each decision
node and the tree traversal step, i.e., not including transciphering. But the total timing can be
easily derived from Table 5. For example, the artificial dataset has 16 features which are 16 bits
each, then transciphering would take an additional 670 ms on top of the results in Table 6, which is
marginal. The key observation we make is that when the number of nodes are much higher than the
number of features, e.g., in the case of the artificial dataset, then our comparison technique start to
outperform the naive approach. Notice that previous works used several threads to execute their
experiments, while we are using a single thread. We expect our results to improve significantly with
a parallel implementation.

Considering the communication cost of [TBK20], to run the classification on an input with n
attributes, each one with µ bits, the client has to send n · µ ciphertexts, and each ciphertext has
more than 20 thousand bits. In our case, thanks to the transciphering, the client just has to encrypt
the input with the stream cipher FiLIP, thus, there is no data expansion. In addition, the client has
to send an IV with λ bits. Thus, our communication cost is simply n · µ+ λ bits. Therefore, the
client has to upload around 2 · 104 times less data with our solution.

8 Conclusion and Future Work

In this paper, we have presented a new non-interactive design SortingHat for the private decision tree
evaluation problem. SortingHat has low computation (few milliseconds) and communication overhead
for the client, and because of our efficient homomorphic comparison and homomorphic traversal
techniques the computation overhead for the server is over three orders of magnitude lower than

24

Table 6: Performance results when using grouped comparison on a single thread for attribute vectors with 16 bits.
The timing is listed in seconds. The details of the dataset can be found on Table 4. Notice that the communication
cost is about 2 · 104 times lower in our solution, due to the use of transciphering.

dataset [TBK20] (τ = 16) Naive (τ = 1) Recursive (τ = 1)

heart 0.94 1.51 1.52
housing* 6.3 30.18 28.60

spam 3.66 20.3 21.49
artificial* 22.39 145.9 92.44

existing solutions — and these optimizations make SortingHat suitable for practical use. Moreover,
we provided a solution in the form of SortingHat2 to further reduce the communication overhead by
reducing the ciphertext expansion drastically using a computationally efficient transciphering method.
Unfortunately, the transciphering method is not compatible with our fast homomorphic comparison
function. An important future work would be design a computationally efficient transciphering
technique that is compatible with our fast comparison function.

Acknowledgement

This work is partially supported by the Research Council KU Leuven under the grant C24/18/049,
CyberSecurity Research Flanders with reference number VR20192203, Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific)
under contract numbers FA8750-19-C-0502 and HR0011-21-C-0034.

Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of any of the funders. The U.S. Government
is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright annotation therein.

References

ACLS18. Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries and
amortized query processing. In 2018 IEEE Symposium on Security and Privacy, pages 962–979, San
Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.

AEM13. Ahmad Azar and Shereen El-Metwally. Decision tree classifiers for automated medical diagnosis. Neural
Computing and Applications, 23:2387–2403, 11 2013.

BFK+09. Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. Secure evaluation of private linear branching programs with medical applications.
In Michael Backes and Peng Ning, editors, ESORICS 2009: 14th European Symposium on Research
in Computer Security, volume 5789 of Lecture Notes in Computer Science, pages 424–439, Saint-Malo,
France, September 21–23, 2009. Springer, Heidelberg, Germany.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations in Theoretical Computer
Science, pages 309–325, Cambridge, MA, USA, January 8–10, 2012. Association for Computing Machinery.

BHKR13. Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a
fixed-key blockcipher. In 2013 IEEE Symposium on Security and Privacy, pages 478–492, Berkeley, CA,
USA, May 19–22, 2013. IEEE Computer Society Press.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012: 19th Conference on Computer and
Communications Security, pages 784–796, Raleigh, NC, USA, October 16–18, 2012. ACM Press.

25

BIP+22. Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P. Smart. FINAL:
Faster fhe instantiated with ntru and lwe. Cryptology ePrint Archive, Report 2022/074, 2022. https:
//ia.cr/2022/074.

BPSW07. Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel. Privacy-preserving remote
diagnostics. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS
2007: 14th Conference on Computer and Communications Security, pages 498–507, Alexandria, Virginia,
USA, October 28–31, 2007. ACM Press.

BPTG15. Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning classification over
encrypted data. In ISOC Network and Distributed System Security Symposium – NDSS 2015, San Diego,
CA, USA, February 8–11, 2015. The Internet Society.

CCR19. Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM: Efficient constant bandwidth oblivious
RAM from (leveled) TFHE. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019: 26th Conference on Computer and Communications Security, pages 345–360.
ACM Press, November 11–15, 2019.

CGGI16a. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology – ASIACRYPT 2016, Part I, volume 10031 of Lecture Notes in Computer Science,
pages 3–33, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.

CGGI16b. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic
encryption library, August 2016. https://tfhe.github.io/tfhe/.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.

CJL+20. Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Concrete: Concrete
operates on ciphertexts rapidly by extending tfhe. In WAHC 2020–8th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, volume 15, 2020.

CKK20. Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomorphic comparison methods
with optimal complexity. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes in Computer Science, pages 221–256, Daejeon,
South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.

CRRV17. Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikuntanathan. Chosen-ciphertext
secure fully homomorphic encryption. In Serge Fehr, editor, PKC 2017: 20th International Conference on
Theory and Practice of Public Key Cryptography, Part II, volume 10175 of Lecture Notes in Computer
Science, pages 213–240, Amsterdam, The Netherlands, March 28–31, 2017. Springer, Heidelberg, Germany.

CS16. Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic encryption scheme is best?
In Kazue Sako, editor, Topics in Cryptology – CT-RSA 2016, volume 9610 of Lecture Notes in Computer
Science, pages 325–340, San Francisco, CA, USA, February 29 – March 4, 2016. Springer, Heidelberg,
Germany.

DG17. Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

DM15. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a second.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 617–640, Sofia, Bulgaria, April 26–30, 2015.
Springer, Heidelberg, Germany.

FJ05. Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and Platform Adaptation”.

FPS02. Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. Improving induction decision trees with
parallel genetic programming. Proceedings 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, pages 181–187, 2002.

GHS12. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
volume 7237 of Lecture Notes in Computer Science, pages 465–482, Cambridge, UK, April 15–19, 2012.
Springer, Heidelberg, Germany.

HMR20. Clément Hoffmann, Pierrick Méaux, and Thomas Ricosset. Transciphering, using FiLIP and TFHE
for an efficient delegation of computation. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj
Prabhakaran, editors, Progress in Cryptology - INDOCRYPT 2020: 21st International Conference in
Cryptology in India, volume 12578 of Lecture Notes in Computer Science, pages 39–61, Bangalore, India,
December 13–16, 2020. Springer, Heidelberg, Germany.

26

https://ia.cr/2022/074
https://ia.cr/2022/074

HV16. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the power of secure two-party com-
putation. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016,
Part II, volume 9815 of Lecture Notes in Computer Science, pages 397–429, Santa Barbara, CA, USA,
August 14–18, 2016. Springer, Heidelberg, Germany.

IZ21. Ilia Iliashenko and Vincent Zucca. Faster homomorphic comparison operations for bgv and bfv. Proceedings
on Privacy Enhancing Technologies, 2021(3):246–264, 2021.

KO04. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Matthew Franklin,
editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 335–354, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg, Germany.

KRRW18. Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated garbling for
faster secure two-party computation. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer Science, pages
365–391, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

KTG06. Hian Chye Koh, Wei Chin. Tan, and Chwee Peng Goh. A two-step method to construct credit scoring
models with data mining techniques. The International Journal of Business and Information, 1, 2006.

LMSV12. Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On CCA-secure somewhat
homomorphic encryption. In Ali Miri and Serge Vaudenay, editors, SAC 2011: 18th Annual International
Workshop on Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science, pages
55–72, Toronto, Ontario, Canada, August 11–12, 2012. Springer, Heidelberg, Germany.

LZS18. Wenjie Lu, Jun-Jie Zhou, and Jun Sakuma. Non-interactive and output expressive private comparison
from homomorphic encryption. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier
López, and Taesoo Kim, editors, ASIACCS 18: 13th ACM Symposium on Information, Computer and
Communications Security, pages 67–74, Incheon, Republic of Korea, April 2–6, 2018. ACM Press.

MCJS19. Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier Standaert. Improved filter
permutators for efficient FHE: Better instances and implementations. In Feng Hao, Sushmita Ruj, and
Sourav Sen Gupta, editors, Progress in Cryptology - INDOCRYPT 2019: 20th International Conference
in Cryptology in India, volume 11898 of Lecture Notes in Computer Science, pages 68–91, Hyderabad,
India, December 15–18, 2019. Springer, Heidelberg, Germany.

Per21. Hilder Vitor Lima Pereira. Bootstrapping fully homomorphic encryption over the integers in less than
one second. In Juan Garay, editor, PKC 2021: 24th International Conference on Theory and Practice of
Public Key Cryptography, Part I, volume 12710 of Lecture Notes in Computer Science, pages 331–359,
Virtual Event, May 10–13, 2021. Springer, Heidelberg, Germany.

PT20. Jeongeun Park and Mehdi Tibouchi. SHECS-PIR: Somewhat homomorphic encryption-based compact and
scalable private information retrieval. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider,
editors, ESORICS 2020: 25th European Symposium on Research in Computer Security, Part II, volume
12309 of Lecture Notes in Computer Science, pages 86–106, Guildford, UK, September 14–18, 2020.
Springer, Heidelberg, Germany.

PVG+11. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Qui86. J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
RM05. Lior Rokach and Oded Maimon. Top–down induction of decision trees classifiers–a survey. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, page 487, 2005.
RM14. Lior Rokach and Oded Maimon. Data Mining with Decision Trees. WORLD SCIENTIFIC, 2nd edition,

2014.
SG11. Anima Singh and John V. Guttag. A comparison of non-symmetric entropy-based classification trees and

support vector machine for cardiovascular risk stratification. In 2011 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pages 79–82, 2011.

SV11. N.P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Cryptology ePrint Archive, Report
2011/133, 2011. https://eprint.iacr.org/2011/133.

TBK20. Anselme Tueno, Yordan Boev, and Florian Kerschbaum. Non-interactive private decision tree evaluation.
In IFIP Annual Conference on Data and Applications Security and Privacy, pages 174–194. Springer,
2020.

TKK19. Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser. Private evaluation of decision trees using
sublinear cost. Proceedings on Privacy Enhancing Technologies, 2019(1):266–286, 2019.

TMZC17. Raymond K. H. Tai, Jack P. K. Ma, Yongjun Zhao, and Sherman S. M. Chow. Privacy-preserving decision
trees evaluation via linear functions. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors,

27

https://eprint.iacr.org/2011/133

ESORICS 2017: 22nd European Symposium on Research in Computer Security, Part II, volume 10493
of Lecture Notes in Computer Science, pages 494–512, Oslo, Norway, September 11–15, 2017. Springer,
Heidelberg, Germany.

vGHV10. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption
over the integers. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 24–43, French Riviera, May 30 – June 3, 2010. Springer,
Heidelberg, Germany.

VvRBT13. Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

WFH11. Ian H Witten, Eibe Frank, and Mark A Hall. Data mining: Practical machine learning tools and techniques,
2011.

WFNL16a. David Wu, Tony Feng, Michael Naehrig, and Kristin Lauter. Privately evaluating decision trees and
random forests. Proceedings on Privacy Enhancing Technologies, 2016, 02 2016.

WFNL16b. David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter. Privately evaluating decision trees and
random forests. Proceedings on Privacy Enhancing Technologies, 2016(4):335–355, October 2016.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario, Canada, October 27–29,
1986. IEEE Computer Society Press.

ZS21. Martin Zuber and Renaud Sirdey. Efficient homomorphic evaluation of k-nn classifiers. Proceedings on
Privacy Enhancing Technologies, 2021:111 – 129, 2021.

28

	SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption and Transciphering

