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Abstract

Adaptive security is a highly desirable property in the design of secure protocols. It tolerates
adversaries that corrupt parties as the protocol proceeds, as opposed to static security where
the adversary corrupts the parties at the onset of the execution. The well-accepted folklore is
that static and adaptive securities are equivalent for perfectly secure protocols. Indeed, this
folklore is backed up by the transformation of Canetti et al. (EUROCRYPT’01), showing that
any perfectly secure protocol that is statically secure and satisfies some basic requirements is
also adaptively secure. Yet, this transformation results in an adaptively secure protocol with
inefficient simulation (i.e., where the simulator might run in super-polynomial time even if the
adversary runs just in polynomial time). Inefficient simulation is problematic when using the
protocol as a sub-routine in the computational setting.

Our main question is whether an alternative efficient transformation from static to adaptive
security exists. We show an inherent difficulty in achieving this goal generically. In contrast
to the folklore, we present a protocol that is perfectly secure with efficient static simulation
(therefore also adaptively secure with inefficient simulation), but for which efficient adaptive
simulation does not exist (assuming the existence of one-way permutations).

In addition, we prove that the seminal protocol of Ben-Or, Goldwasser, and Wigderson
(STOC’88) is secure against adaptive, semi-honest corruptions with efficient simulation. Pre-
viously, adaptive security of the protocol, as is, was only known either for a restricted class of
circuits or for all circuits but with inefficient simulation.
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1 Introduction

Secure multiparty computation (MPC) [Yao82, GMW87] enables a set of mutually distrustful par-
ties to compute a joint function while keeping the privacy of their inputs and the correctness of
their outputs. The seminal results from the ’80s [Yao82, GMW87, BGW88, CCD88, RB89] as
well as the vast majority of MPC protocols in the literature were proven secure with respect to
a static adversary; that is, security is guaranteed as long as the adversary decides which parties
to corrupt at the onset of the execution. A more realistic setting, first considered by Beaver and
Haber [BH92] and by Canetti et al. [CFGN96], considers an adaptive adversary, who can dynami-
cally decide which parties to corrupt during the course of the protocol. Adaptive security is known
to be strictly stronger than static security, with many impossibility results separating the two
notions, e.g., [CFGN96, CDD+04].

In this work, we focus on the well-studied setting of perfect security, where all existing sep-
arations from the literature no longer hold. Perfectly secure protocols guarantee security facing
computationally unbounded adversaries without any error probability. This is a highly desirable
property that, in some sense, provides the strongest security notion for MPC. For example, Kushile-
vitz et al. [KLR10] showed that any perfectly secure protocol that is proven secure in the standalone
model using a straight-line and black-box simulation1 automatically guarantees security under uni-
versal composition (UC) [Can01].2 Most relevant to our work, Canetti et al. [CDD+04] showed that
any perfect statically secure protocol, satisfying basic requirements, remains secure also in the pres-
ence of adaptive adversaries. This result, however, comes with a caveat, since the transformation
from static to adaptive security does not preserve the efficiency of the simulation.

Roughly speaking, a protocol is deemed secure if any attack on an execution of the protocol in
the real world can be simulated also in an ideal world where a trusted party receives the inputs
from all the parties and computes the function on their behalf. It is desirable that the simulator,
i.e., the adversary who simulates the attack in the ideal world, will use roughly the same resources
as the adversary who carries out the attack on the real-world protocol. In particular, we would
like the simulator to run in polynomial time with respect to the running time of the real-world
adversary; if so, we say that the simulation is efficient.

Unfortunately, the adaptive simulator in [CDD+04] does not run in polynomial time with re-
spect to the real-world adversary. This means that given a perfectly secure protocol against static
adversaries with an efficient simulator, the transformation in [CDD+04] guarantees adaptive secu-
rity, albeit with an inefficient simulator. This leads us to the following fundamental question:

Does perfect, static security with efficient simulation imply
perfect, adaptive security with efficient simulation?

Stated differently, is there another generic transformation from static to adaptive security, other
than [CDD+04], that preserves the efficiency of the simulation? Are there other assumptions on
the structure of the protocol and/or on the static simulation that might lead to such an efficient
transformation? Or, perhaps, do there exist statically secure protocols for which efficient adaptive
simulation simply does not exist?

Efficient vs. inefficient simulation. One may ask whether the efficiency loss in the simula-
tion makes a difference when considering perfect security: If security is anyway guaranteed against

1A simulator is called straight-line if it does not rewind the adversary and is called black-box if it does not rely
on the code of the adversary.

2We note that Backes et al. [BMU07] showed that this transformation no longer holds if the simulator is not
straight-line.
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computationally unbounded adversaries, does it matter if the simulator is inefficient? Indeed, inef-
ficient simulation is a weaker-yet-acceptable security notion when considering information-theoretic
security.

It turns out that inefficient simulation has an undesirable impact when considering compo-
sition of secure protocols. For example, consider a perfectly secure protocol π for computing a
function f that is defined over secure communication channels, and consider a computationally
secure realization of secure channels over authenticated channels (e.g., using non-committing en-
cryption [CFGN96]). If π is secure with efficient simulation, then a composition theorem (e.g., from
[Can00, Can01]) can be used to derive a computationally secure protocol for f over authenticated
channels. However, if the simulation is inefficient then the composition will not go through since
it will result in a super-polynomial time adversary that can break the cryptographic assumptions
used to realize secure channels.

A case study: on the adaptive security of the BGW protocol. The seminal results of
Ben-Or, Goldwasser, and Wigderson [BGW88] and of Chaum, Crépeau, and Damg̊ard [CCD88]
show that any function f can be computed by an n-party protocol with perfect security as long
as t < n/2 of the parties are corrupted in the semi-honest setting, and as long as t < n/3 are
corrupted in the malicious setting. A full proof of security for the BGW protocol was given in 2011
by Asharov and Lindell [AL11, AL17]. The proof was specified in the static, standalone setting, and
universally composable security and security against adaptive adversaries were derived using the
transformations of Kushilevitz et al. [KLR10] and Canetti et al. [CDD+04], respectively. However,
as discussed above, adaptive security is obtained with an inefficient simulation.

This issue was revisited by Damg̊ard and Nielsen [DN14], who showed that the semi-honest
version of the BGW protocol achieves adaptive security with efficient simulation. However, the
result of [DN14] holds only for circuits where each output wire is a direct output of a multiplication
gate. Obviously, one can manually add such “multiplications with 1” to each output wire. While this
seems sufficient, there are two reasons why we revisit this problem: First, for linear functions, the
semi-honest version of the BGW protocol can tolerate up to n corruptions, whereas the requirement
that each output wire is a direct output of a multiplication gate reduces the corruption threshold to
t < n/2. Second, this subtlety has been neglected by prior works that relied on [DN14], e.g., Lin et
al. [LLW20, Lem. 6.2] claimed that any degree-2 function could be computed by the BGW protocol
in two rounds with adaptive security and efficient simulation. Yet, when adding multiplication
gates, the round complexity increases, which implies a gap in the literature as there is no proof for
the claim mentioned in [LLW20].3

Alternatively, one can interpret this additional restriction on the circuit as adding some re-
randomization step at the very end of the protocol before the parties reconstruct their output. Is
this step essential to achieve adaptive security for all circuits? Can one prove the adaptive security
of the original protocol directly, without the additional communication round?

1.1 Our Results

Our work revisits the question of static versus adaptive in perfectly secure multiparty computation.
We show that in contrast to the “weaker” definition of adaptive security (i.e., inefficient simulation),
perfect static security no longer implies perfect adaptive security when demanding the simulation

3As discussed below, one can add a re-randomization for the output wires, and this re-randomization can already
be sent in the first round, leading to a 2-round protocol; however, this modification of BGW is also not proven
anywhere. In any case, we emphasize that the results in [LLW20] are correct, and merely were lacking a proof of the
lemma.
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to be efficient, even when merely considering semi-honest adversaries. Complementarily, we show
that the BGW protocol is adaptively secure with efficient simulation even without changing the
underlying circuit; this answers an open question posed by Damg̊ard and Nielsen [DN14]. We focus
on semi-honest security, which is enough to highlight the subtleties that arise; indeed, the gap
in the literature discussed above already appears in this setting. We conjecture that the analysis
extends to the malicious case using standard secret-sharing techniques.

We proceed to describe our results in more detail.

Separating perfect adaptive security from perfect static security. Our first result shows
that under some cryptographic assumptions, there is no hope of finding an alternative (efficient)
transformation to that of Canetti et al. [CDD+04], and that the inefficiency of the adaptive sim-
ulation is inherent. More precisely, there exist protocols that admit perfect, static security with
efficient simulation but for which an efficient adaptive simulation does not exist.

Theorem 1.1. Assume the existence of a one-way permutation. Then, there exists an n-party
functionality f and a protocol that securely computes f with efficient, perfect static simulation, but
for which efficient, perfect adaptive simulation does not exist.

The theorem is proven by showing a protocol for which all the additional requirements
of [CDD+04] hold and therefore (inefficient) adaptive simulation does exist for this protocol, but an
efficient adaptive simulator can be used to invert the one-way permutation with inverse-polynomial
probability. Interestingly, this implies that the protocol is regarded as adaptively secure in the
perfect setting, but the exact same protocol is not adaptively secure in the computational set-
ting, where both the adversary and the simulator should run in polynomial time in the security
parameter. We, therefore, derive the following somewhat counter-intuitive corollary.

Corollary 1.2. Assume the existence of a one-way permutation. Then, there exists an n-party
functionality f and a protocol that securely computes f with perfect adaptive security, but that does
not securely compute f with computational adaptive security.

Revisiting adaptive security in the standalone setting. The above does not rule out the
possibility of finding additional requirements from the protocol that would imply efficient adaptive
simulation. This is exactly the approach taken by Damg̊ard and Nielsen [DN14], who showed that
under additional requirements of the protocol, an efficient adaptive simulation exists.

The transformation of [DN14] is directly proved in the UC framework with its full generality,
capturing reactive functionalities and concurrency issues at once. However, the strong guarantees
do not come without a price, since the requirements from the static simulator must capture multiple
input phases (as required for reactive computations) and deal with the technical overhead needed
for concurrent composition, e.g., incorporating an “online” environment to the definition. As a
small side contribution, we simplify this transformation.

Specifically, in addition to proving perfect static security, the transformation of [DN14] requires
an additional (efficient!) algorithm, called “Patch,” for sampling randomness that explains the sim-
ulated protocol whenever a corruption occurs. The adaptive simulator invokes the static simulator
on a dynamically growing set of corrupted parties (initially empty). At any point, the simulation
of the protocol towards the adaptive adversary is done by forwarding messages from the adaptive
adversary to the static simulator, and vice-versa. Upon a corruption of a new party, say of Pi, the
Patch algorithm receives the state of the static simulator until this point together with the input
and output of Pi, and outputs a new state for the static simulator that allows the continuation of
the simulation as if Pi was statically corrupted from the beginning.
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We then propose an alternative recipe for proving universal composability and (efficient) adap-
tive security in the perfect setting:

1. Prove that the protocol is (efficiently) statically secure in the perfect standalone setting and
that the protocol satisfies some natural requirements (similar to those in [CDD+04]).

2. Show the existence of an efficient “Patch” algorithm corresponding to the static simulator.
3. We show a transformation (which is essentially a distilled version of [DN14]) that the protocol

is perfectly adaptively secure with an efficient simulator in the standalone setting.
4. Using [KLR10], the protocol is also secure in the perfect adaptive setting with efficient sim-

ulation and with universal composability.

We remark that this result is not technically novel and is inspired by [DN14]. We hope that pro-
viding an alternative definition in the standalone setting would simplify proofs of efficient adaptive
security in the future, as the protocol designer can focus on the standalone setting.

Adaptive security of the BGW protocol. Finally, we follow our recipe proposed above and
show that the (semi-honest) BGW protocol is adaptively secure with efficient simulation. No
additional step to the protocol is needed, and the proof works for any circuit (as opposed to the
proof of [DN14]). This result solves an open problem raised by [DN14], whether the assumption
on the circuit (that each output wire is a direct output of a multiplication gate) is necessary. This
reaffirms the security of the BGW protocol [BGW88], and closes a gap in the proofs of [AL11, DN14],
providing sound foundations for cryptography.

Theorem 1.3. Let f be a deterministic n-party functionality. The BGW protocol securely computes
f with perfect adaptive security and efficient simulation facing a semi-honest adversary corrupting
t < n/2 parties.

Further, if f is a linear function, the BGW protocol securely computes f with perfect adaptive
security and efficient simulation facing a semi-honest adversary corrupting t < n parties.

1.2 Technical Overview

We provide a technical overview of our results. In Section 1.2.1 we review our separation result,
showing the existence of a protocol that has inefficient adaptive simulation but no efficient adaptive
simulation (under some cryptographic assumptions). In Section 1.2.2, we review the adaptive
security of the BGW protocol.

1.2.1 Static Security Does Not Imply Adaptive Security

Definition of adaptive security. We first recall the definition of adaptive security. We remark
that since the transformation of [CDD+04] assumes some additional properties from the statically
secure protocol and its simulation (specifically, it assumes that the protocol has a straight-line,
black-box simulation), our description here incorporates those properties in the informal definition.

Given a protocol π, an adaptive adversary might corrupt parties on the fly as the protocol
proceeds. Upon corruption, the adversary sees the corrupted party’s random tape, the input it
used, and all the messages it has received so far. From that point on, the adversary completely
controls the behavior of Pi. As the protocol proceeds, the adversary might decide to corrupt
additional parties, as a function of whatever it saw so far.

We follow the ideal/real simulation paradigm and say that a protocol is adaptively secure if for
every such an adversary in the real world, there exists a simulator in the ideal world that simulates
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its behavior. In the ideal world, the simulator invokes the real-world adversary and simulates the
honest parties sending their message to the corrupted parties (without knowing the inputs of the
honest parties). At every round, the adversary might ask to corrupt some party Pi in the simulated
protocol, and the simulator corrupts the corresponding party in the ideal world. Upon corruption,
the simulator learns the input of Pi (and its output, if it was already computed by the trusted
party), and it has to provide the adversary the input together with randomness that explains the
messages sent by this party in the simulation until this point (also known as “equivocation” in the
literature).

This is the challenging part of the proof as the simulator has to first simulate Pi without knowing
its input, “commit” to some messages on its behalf, and later upon corruption find a randomness ri

that explains all the messages that were sent so far according to the input xi. Note that the
simulator is not allowed to rewind the adversary at any point of the execution, i.e., the simulation
is “straight-line.”

First attempt. The transformation of [CDD+04] shows that for any perfectly secure protocol,
randomness ri describing the behavior of Pi so far, exists. This implies that the simulator can always
find it; however, finding it might not be an efficient procedure. Our first attempt is adding some
cryptographic hardness while targeting exactly this procedure of finding the matching randomness.
That is, our goal is to make the finding of the randomness a computationally hard problem.

It is intuitive to simply take the BGW protocol, even just for semi-honest security and for
computing a linear function, with one modification:4 Before a party starts the protocol, it takes
its random tape ρ, and uses OWP(ρ) as its randomness in the protocol, where OWP is a one-
way permutation. The intuition is that whenever the adversary asks to corrupt some party, the
simulator effectively has to invert the one-way permutation, which is computationally infeasible.
The construction is still statically secure since the static simulator only goes “forward”; that is,
it chooses some randomness ρ and then uses OWP(ρ) as the randomness of the simulated honest
party. However, it seems that an adaptive adversary will have to move “backward” and invert the
one-way permutation.

To elaborate further, let n be the number of parties, and consider the function f(x1, . . . , xn) =∑n
i=1 xi; that is, all parties receive the same output, which is the sum of their inputs. We consider

some finite field F with |F| > n. The protocol is defined as follows:

• Input: Pi has xi ∈ F as input, and randomness ρi ∈ Fn−1.
• The protocol:

1. Pi computes (ri→1, . . . , ri→n−1) = OWP(ρi), where each ri→j ∈ F.
2. For every j ∈ [n− 1] Pi sends ri→j to party Pj . Next, Pi defines

ri→n
..= xi − (ri→1 + . . . + ri→n−1)

and sends ri→n to party Pn.
3. Upon receiving r1→i, . . . , rn→i from all the parties, party Pi computes βi

..= ∑n
j=1 rj→i

and sends βi to all other parties.
4. Upon receiving β1, . . . , βn, each party computes y ..= β1 + . . . + βn, and outputs y.

The above protocol can be statically simulated for every t < n corruptions. Moreover, an
inefficient adaptive simulator exists by [CDD+04]. What about efficient adaptive simulation?

4Since the function is linear, security holds for any t < n number of corruptions. For brevity, we change the
underlying secret sharing from threshold-Shamir sharing to additive secret sharing.
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The problem – the reduction to OWP. Unfortunately, assuming the existence of an efficient
adaptive simulator, it is hard to construct an inverter to the one-way permutation. In order to
see that, let’s simply try to construct such a reduction. Recall that the inverter receives some
challenge y∗ = (r∗1, . . . , r∗n−1) ∈ Fn−1 and it has to find ρ ∈ Fn−1 such that y∗ = OWP(ρ). Consider
an efficient adaptive simulator, and assume that the adversary have already corrupted n−2 parties
at the onset of the execution, say P1, . . . , Pn−2. The simulator then simulates just two honest
parties: Pn−1 and Pn. As it does not know their inputs, it must give the adversary 2 · (n − 2)
independent random values as the messages of the two honest parties it simulates (those are the
shares that Pn−1 and Pn send to the corrupted parties, P1, . . . , Pn−2). For concreteness, assume
that the messages that the simulated Pn sent to the adversary are (γn→1, . . . , γn→n−2).

If it happened to be that (γn→1, . . . , γn→n−2) = (r∗1, . . . , r∗n−2) then potentially we can use the
simulator to invert: The adversary asks to corrupt Pn and it might receive back the pre-image
of (r∗1, . . . , r∗n−1), as required. Note that the simulator did not commit to γn→n−1, and therefore
there are |F| many different other pre-images that the efficient adaptive simulator might give us
(there are |F| possible ways to set γn→n−1; only if γn→n−1 = r∗n−1 then the simulator must invert the
challenge). In any case, there is no guarantee whatsoever that (γn→1, . . . , γn→n−2) = (r∗1, . . . , r∗n−2).
Likewise, we can try to adaptively corrupt Pn−1 instead of Pn if it happened to be that the shares
Pn−1 sent match the challenge, but again there is no such guarantee. In particular, inverting is
possible only if the simulator explains the view in a way that connects the challenge that the
inverter receives and the partial view that the simulator generated earlier.

Second attempt. To solve the above technicality, we change the functionality and the protocol.
Instead of having the input of each party Pi be just xi ∈ F, it is augmented to be an ordered set of
values (xi, (ai→1, . . . , ai→n−1)) over F. The functionality is then defined as:

f
(
(x1, (a1,1, . . . , a1,n−1)), . . . , (xn, (an,1, . . . , an,n−1))

)
=

n∑
i=1

xi.

Note that the parties input n elements, while all but the first ones do not affect the output of the
computation. In the protocol, each party Pi then invokes (ri,1, . . . , ri,n−1) = OWP(ρi) where ρi is
its random tape, and then defines the share γi→j = ai,j + ri,j for party Pj for every j ∈ [n − 1],
and the share γi→n = xi− ((ai,1 + ri,1) + . . . + (ai,n−1 + ri,n−1)) for party Pn. It then sends to each
other party Pj the corresponding share, just as in Step 2 in the previous protocol.

The difference is that now, no matter what points (γn→1, . . . , γn→n−2) the adversary commits
to as the messages Pn had sent, for any challenge y∗ = (r∗1, . . . , r∗n−1), the inverter of the OWP can
choose an input (xn, (an,1, . . . , an,n−1)) such that an,j = γn→j − r∗j for every j ∈ [n− 2].

To see that, given a challenge y∗ = (r∗1, . . . , r∗n−1) to the inverter, and given (γn→1, . . . , γn→n−2)
that were chosen by the simulator as the messages Pn had sent in the first round, the inverter
chooses two additional points xn−1 and an,n−1 at random. It gives (xn−1, (an,1, . . . , an,n−1)) to the
adaptive simulator as the input of Pn.

The simulator now has to reply with some randomness ρ′ for which (r′n,1, . . . , r′n,n−1) = OWP(ρ′)
such that γn→j = an,j + r′n,j for every j ∈ [n − 2]. Since γn→n−1 is not determined, the simulator
essentially has |F| different randomness to choose from. However, one of them corresponds to the
challenge y∗. Moreover, y∗ is distributed uniformly in the support of all valid solutions for the
simulator. Since the adaptive simulator simulates with perfect security, the inverter succeeds in
inverting y∗ with probability 1/|F|. By tuning the parameters (such that |F| is polynomial in the
security parameter), this is an inverse-polynomial advantage. Assuming that OWP is a one-way
permutation, this implies that the adaptive simulator cannot run in polynomial time.
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1.2.2 Adaptive Security of the BGW Protocol

The BGW Protocol. We briefly recall the semi-honest version of the BGW protocol [BGW88]
that is secure for t < n/2 corruptions; see [AL11] for more details.

Input sharing: Initially, each party Pi secret shares its input xi using a (t + 1)-out-of-n Shamir
secret sharing (t is the privacy threshold and t + 1 are needed for reconstruction), and sends
the jth share to Pj . Specifically, Pi chooses a random polynomial qi of degree (at most) t
with constant term xi, and sends to Pj the share qi(αj).

Circuit emulation: The parties evaluate the circuit gate by gate on their shares. Addition and
scalar-multiplication gates are evaluated locally; that is, each party performs the operation
on its shares. Multiplication requires a dedicated sub-protocol in which each party inputs
shares for two values a and b, and obtains a share for the product ab as output. For simplicity
of the technical overview, we consider that this operation is done using the help of a trusted
party (i.e., we work in the fmult-hybrid model).

Output reconstruction: Upon conclusion of the circuit emulation, each party holds one share for
each output wire. For simplicity, assume that output wire oi is the private output for Pi.
Then, each party Pj sends the relevant share βj→i for Pi, who can reconstruct the polynomial
gi interpolating the points (α1, β1→i), . . . , (αn, βn→i), and obtain gi(0) as its output.

Static simulation. To simulate the adversary’s view for the set of corrupted parties I of car-
dinality at most t, the static simulator simulates the input-sharing phase by choosing randomness
for the corrupted parties (which, in turn, determines the polynomials they use in the input-sharing
phase). Moreover, for the honest parties, the simulator just chooses |I| random elements for each
honest party and simulates the honest parties sending their shares on their inputs to the adversary.
The simulator can then locally compute the shares of the corrupted parties on each internal wire
of the circuit, while for simulating an invocation of fmult, the simulator again just provides the
adversary with |I| random shares. In the output-reconstruction phase, the simulator has to provide
all shares on the output wires of corrupted parties. It knows the constant term of each such wire,
and it knows |I| shares on each wire, and therefore it is possible to interpolate a random polyno-
mial that passes through the |I| ≤ t shares and the known constant term, and simulate the honest
parties sending shares on this polynomial to the adversary. When |I| = t, this is a deterministic
process as we already have t + 1 shares that are determined on the output wires; however, when
|I| < t, the simulator needs to generate some new shares on that output wire.

The assumption on the circuit. Damg̊ard and Neilsen assumed that the output wires are
direct outputs of multiplication gates. As a result, the shares on each output wire are independent
of each other – and the simulator can just choose additional |I|−t random shares on the output wire
to interpolate the polynomial on that wire. When considering arbitrary circuits, output wires that
are not a result of a multiplication gate may have some linear relation between them. To illustrate
the challenge, consider output wires o1, o2, and o3, corresponding to three corrupted parties P1,
P2, and P3, respectively, such that o3 = o1 + o2. Denote the output values by y1, y2, and y3,
respectively. The shares that the parties hold on the output wires define polynomials g1(x), g2(x)
and g3(x), respectively. In the real execution, it holds that g3(x) = g1(x) + g2(x), and therefore the
simulator must choose the shares on the output wires wisely to guarantee the same dependency,
which makes the simulation more challenging.
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Our static simulator. To guarantee such consistencies, our static simulator generates t random
shares on each input wire and each output of a multiplication wire. That is, while the adversary
corrupts some set I, the simulator, “in its head,” chooses an arbitrary set Î ⊇ I of cardinality
exactly t and simulates the shares for all parties in Î, while giving the adversary only shares for
the parties in I. As a result, we have no random choice when simulating the output wires. The
simulator holds t shares on each output wire, and also knows the constant term on the output wires
of the corrupted parties. It can deterministically interpolate the polynomials on the output wire,
and simulate the honest parties sending their shares on those wires. This guarantees that if there
is any dependency between output wires, then the simulator provides consistent shares.

Our adaptive simulator. Assume that the adaptive adversary corrupts some party Pi∗ . If
i∗ ∈ Î \ I, then providing the view of that party is easy. The simulator has already sampled all
the shares that Pi∗ is supposed to receive. On the other hand, if i∗ ̸∈ Î \ I, then we face a new
obstacle. This is because the simulator has already defined t shares on each wire, and defining
an additional share on each wire would completely determine each polynomial. Let j∗ ∈ Î \ I.
The key idea of our adaptive simulator is to “replace” the sampling of shares for party Pj∗ with
sampling shares for party Pi∗ . Specifically, we show that each random choice made for Pj∗ that
leads to the current view of the adversary, can also be interpreted by a random choice made for
Pi∗ that leads to the exact same view. This procedure then changes the set of the simulator and
“forgets” all the random choices made for Pj∗ , but instead samples matching choices for Pi∗ . This is
essentially sampling random shares for Pi∗ on the input wires of all honest parties and the outputs
of fmult, under the constraints posed by the shares of Pj∗ on the output wires. Such sampling can
be performed efficiently by solving a linear set of equations. Then, we are back to the previous
case, where the corruption is made on some i∗ ∈ Î \ I.

1.3 Related Work

Adaptive security is known to be strictly stronger than static security in many settings, with many
impossibility results separating the two notions. Below, we compare our separation to existing
separations between static and adaptive security from the literature.

The first separation was presented by [CFGN96] and relied on a positive error probability of
the statically secure protocol. They considered a dealer that secret shares a value to a random
set of parties and later announces their identities; an adaptive adversary can corrupt the members
of the set and learn the value while a static adversary can only guess this set ahead of time and
succeed with negligible (yet positive) probability. In this setting, Cramer et al. [CDD+99] showed
that certain protocols from [RB89] guarantee statistical information-theoretic security against static
corruptions but are not secure in the adaptive setting. Separations based on statistical security are
different than ours as we consider perfect protocols that have zero error probability.

In the computational-security setting, many statically secure primitives do not remain secure
under adaptive corruptions. For example, Beaver [Bea96] showed that if the zero-knowledge proofs
of GMW [GMW86] are adaptively secure then the polynomial hierarchy collapses. Nielsen [Nie02]
ruled out public-key encryption for unbounded messages in the non-programmable random oracle
model. Canetti et al. [CDD+04] separated adaptively secure commitments from statically secure
ones. Lindell and Zarosim [LZ11] showed that achieving adaptively secure oblivious transfer (OT)
requires stronger assumptions than statically secure OT. Katz et al. [KTZ13] ruled out adaptively
secure fully homomorphic encryption; the latter result was generalized in [CsW19]. Separations
based on computational assumptions are different than ours as we consider information-theoretic
protocols that remain secure against computationally unbounded adversaries.

8



Canetti et al. [CDD+04] showed a separation based on the ability of the adversary to corrupt a
party and change its input to the protocol based on messages that have already been transmitted.
Similar separations were illustrated also for broadcast protocols [HZ10, GKKZ11, CGZ23]. Canetti
et al. [CDD+04] showed that such separations no longer hold when considering protocols that have
a committal round [MR91], i.e., a fixed round in which all inputs to the protocol are committed.
These separations hold only for malicious adversaries that can deviate from the protocol; our
separation applies for semi-honest adversaries that cannot deviate from the protocol in any way.

Other separations are known when considering restricted interaction patterns, as was shown by
Garay et al. [GIOZ17] for protocols with sublinear communication, and by Boyle et al. [BCDH18]
for protocols whose communication graph admits a sublinear cut. Our separation relies on the
BGW protocol that induces a complete communication graph.

Finally, Garg and Sahai [GS12] showed that constant-round MPC with black-box simulation in
the plain model cannot tolerate corruption of all of the parties. Our result holds irrespective of the
number of rounds and does not require corrupting all the parties.

2 Preliminaries

Our results hold in any natural model that captures perfect adaptive security, for example,
[CFGN96, Can00, DM00, Can01, KTR20, HLM21]. For concreteness, we will state our results
using the modular (non-concurrent) composability framework of Canetti [Can00]. Indeed, the sep-
aration in this limited setting extends to any of the models listed above, whereas our positive
results translate to the universal-composability setting via the transformation in [KLR10]. Before
describing the security model, we give basic notation and define the cryptographic primitive used
in our separation.

Notation. We denote by λ the security parameter. For n ∈ N, let [n] = {1, . . . , n}. Let poly
denote the set of all positive polynomials and let PPT denote a probabilistic algorithm that runs in
strictly polynomial time. A function ν : N → [0, 1] is negligible if ν(λ) < 1/p(λ) for every p ∈ poly
and large enough λ. Given a random variable X, we write x ← X to indicate that x is selected
according to X, and given a set X we write x ← X to indicate that x is selected uniformly at
random from X .

2.1 One-Way Permutations

Our separation in Section 3 will rely on the existence of a one-way permutation (OWP); that is a
one-way function which is length preserving and one-to-one; we refer the reader to [Gol04] for more
details.

Definition 2.1 (OWP). A polynomial-time function f : {0, 1}∗ → {0, 1}∗ is a one-way permutation
if the following conditions are satisfied.

1. For every λ ∈ N, f induces a permutation over {0, 1}λ, i.e., f : {0, 1}λ → {0, 1}λ is one-to-
one and onto.

2. There exists a deterministic polynomial-time algorithm A such that on input x ∈ {0, 1}∗ the
algorithm A outputs f(x).

3. For every PPT algorithm A, every positive polynomial p(·), and all sufficiently large λ’s, it
holds that

Pr
x←{0,1}λ

[
A(f(x)) = x

]
<

1
p(λ) .
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2.2 Secret Sharing and Hiding

The BGW protocol is based on Shamir’s secret sharing [Sha79]. In our analysis of the protocol in
Section 5 we rely on the following claim, taken from [AL11, Claim 3.2].

Claim 2.2. For any set of distinct non-zero elements α1, . . . , αn ∈ F, any pair of values s, s′ ∈ F,
any subset I ⊂ [n] where |I| = ℓ ≤ t and every y⃗ ∈ Fℓ it holds that:

Pr
[
y⃗ = (f(αi))i∈I

]
= Pr

[
y⃗ = (g(αi))i∈I

]
= 1
|F|ℓ

where the probability on the left (resp. right) is taken over the choice of f(x) (reps. g(x)) uniformly
at random from the set of all polynomials of degree-t with s (resp. s′) as its constant term.

2.3 Security Model: Static Corruptions

The definition in [Can00] is based on the simulation paradigm, where the security of a protocol
running in the real world is compared to an ideal computation of the function. We start by defining
secure protocols in the non-adaptive case. We first formalize the real-life model; next we describe
the ideal process; finally the notion of emulation of the ideal process by a computation in the
real-life model is presented.

Real-world execution. An n-party protocol π = (P1, . . . , Pn) is an n-tuple of PPT interactive
Turing machines (ITMs). The term party Pi refers to the ith ITM. Each party Pi starts with
input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. An adversary A is another ITM describing the
behavior of the corrupted parties. It starts the execution with input that contains the identities
of the corrupted parties and their private inputs, an additional auxiliary input, and random coins
rA ∈ {0, 1}∗. The parties execute the protocol in a synchronous network. That is, the execution
proceeds in rounds: Each round consists of a send phase (where parties send their messages for this
round) followed by a receive phase (where they receive messages from other parties). The adversary
is assumed to be rushing, which means that it can see the messages the honest parties send in a
round before determining the messages that the corrupted parties send in that round. The parties
communicate over a fully connected point-to-point network of ideally private communication lines,
meaning that the adversary cannot modify messages sent between two honest parties nor read
them.

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary. A
semi-honest adversary always instructs the parties to continue the execution honestly, whereas a
malicious adversary can instruct the corrupted parties to deviate from the protocol in any arbitrary
way. At the conclusion of the execution, the honest parties output their prescribed output from the
protocol, the corrupted parties do not output anything and the adversary outputs an (arbitrary)
function of its view of the computation (containing the views of the corrupted parties). The view of
a party in a given execution of the protocol consists of its input, its random coins, and the messages
it sees throughout this execution.

Definition 2.3 (real-world execution: static case). Let π = (P1, . . . , Pn) be an n-party protocol
and let I ⊆ [n] denote the set of indices of the parties corrupted by A. Denote by REALπ,I,A(x, z, r)
the output vector of P1, . . . , Pn and A resulting from the protocol interaction on input vector x =
(x1, . . . , xn), auxiliary input z, and randomness r = (rA, r1, . . . , rn). Let REALπ,I,A(x, z) denote the
probability distribution of REALπ,I,A(x, z, r) where r is uniformly chosen.
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Ideal-world execution. The ideal-world computation is parameterized by a (potentially ran-
domized) n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n to compute. An ideal computation of f
on input x = (x1, . . . , xn) for parties (P1, . . . , Pn) in the presence of an adversary (a simulator) S
controlling the parties indexed by I ⊆ [n], proceeds via the following steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the trusted party. If
the adversary is semi-honest it sends xi to the trusted party for every corrupted party Pi; if
the adversary is malicious it may send to the trusted party arbitrary inputs for the corrupted
parties. Let x′i be the value actually sent as the input of party Pi.

Computation stage: If x′i is outside of the domain for Pi or if Pi sends no input, the trusted party
sets x′i to be some predetermined default value. Next, the trusted party samples randomness
rf ← {0, 1}∗, computes (y1, . . . , yn) = f(x′1, . . . , x′n; rf ), and sends yi to party Pi.

Outputs: Honest parties always output the message received from the trusted party while the
corrupted parties output nothing. The adversary S outputs an arbitrary function of the
initial inputs {xi}i∈I , the messages received by the corrupted parties from the trusted party,
and its auxiliary input.

Definition 2.4 (ideal computation: static case). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party func-
tionality and let I ⊆ [n] be the set of indices of the corrupted parties. Denote by IDEALf,I,S(x, z, r)
the output vector of P1, . . . , Pn and S resulting from the above described ideal process on input vector
x = (x1, . . . , xn), auxiliary input z, and randomness r = (rf , rS). Let IDEALf,I,S(x, z) denote the
probability distribution of IDEALf,I,S(x, z, r) where r is uniformly chosen.

Security definition. Having defined the real and ideal computations, we can now define static
security of protocols.

Definition 2.5 (static security). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality. A
protocol π statically t-securely computes f with perfect security if for every real-world adversary,
there exists an ideal-world adversary S, such that for every I ⊆ [n] of size at most t, it holds that

{REALπ,I,A(x, z)}(x,z)∈({0,1}∗)n+1 ≡ {IDEALf,I,S(x, z)}(x,z)∈({0,1}∗)n+1 .

If S runs in polynomial time with respect to the running time of A than we say that π statically
t-securely computes f with perfect security and efficient simulation.

If A and S are semi-honest, we say that π statically t-privately computes f with perfect security
and efficient simulation.

2.4 Security Model: Adaptive Corruptions

In the adaptive setting, the adversary has the ability to corrupt parties during the protocol execution
and learn their internal state. This means that the adversary learns their input, output, incoming
messages, and random coins used in the current execution of the protocol, but also their internal
states from previous runs. To capture information about previous executions, the model includes
an additional ITM called the environment, denoted Z, whose role is to provide the adversary with
auxiliary information about newly corrupted parties. The environment may also issue corruption
requests after the conclusion of the protocol, in the post-execution corruption stage.
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Real-world execution. An execution of a protocol is similar to the non-adaptive case with small
adjustments. As before, an n-party protocol π = (P1, . . . , Pn) consists of n PPT ITMs, where every
party Pi starts with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. An adversary A is an ITM
that starts with random coins rA ∈ {0, 1}∗, and the environment Z is an ITM that starts with
auxiliary information z and random coins rZ . We say that the adversary is t-limited if it can
corrupt at most t parties during the protocol (including the post-execution corruption stage).

At the beginning of the execution, the adversary receives a message from Z (corresponding
to the auxiliary information seen by A in the static case), and then the execution proceeds in
synchronous rounds, where each round proceeds in mini-rounds as follows: Each mini-round starts
by allowing A to corrupt parties one by one in an adaptive way. Next, A chooses an uncorrupted
party Pi that was not yet activated in this round and activates it. Upon activation, Pi receives
the messages sent to it in the previous round, generates its messages for this round, and the next
mini-round begins. The adversary learns the messages sent by Pi to all (currently) corrupted
parties. Once all the uncorrupted parties were activated, A generates the messages to be sent by
the corrupted parties that were not yet activated in this round, and the next round begins.

Once a party is corrupted, the party’s input, random input, and the entire history of the
messages sent and received by the party become known to A. In addition, Z learns the identity of
the corrupted party, and hands additional auxiliary information to A. From this point, A learns
all the messages received by the party. If A is semi-honest, then the corrupted parties continue
running protocol π, whereas if A is malicious, it can instruct the corrupted party to deviate from
the protocol in any arbitrary way.

At the conclusion of the execution, the honest parties output their prescribed output from the
protocol, the corrupted parties do not output anything and the adversary outputs an (arbitrary)
function of its view of the computation (containing the views of the corrupted parties).

Next, a “post-execution corruption process” begins. Initially, Z learns the outputs of all the
parties and of the adversary, and later Z and A interact in rounds, where in each round Z sends
a “corrupt Pi” request to A, who may corrupt more parties as before (in which case Z learns their
identity) and hands Z some arbitrary response. The interaction continues until Z halts with some
output.

Definition 2.6 (real-world execution: adaptive case). Let π = (P1, . . . , Pn) be an n-party protocol.
Denote by REALπ,A,Z(x, z, r) the output of Z resulting from the protocol interaction, as described
above, on input vector x = (x1, . . . , xn), auxiliary input z, and randomness r = (rZ , rA, r1, . . . , rn).
Let REALπ,A,Z(x, z) denote the random variable describing REALπ,A,Z(x, z, r) where r is uniformly
chosen.

Ideal-world execution. As in the static case, the ideal-world computation is parameterized by
a (potentially randomized) n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n to compute. An ideal
computation of f on input x = (x1, . . . , xn) for parties (P1, . . . , Pn) in the presence of an adversary
(a simulator) S and an environment Z, proceeds via the following steps.

First corruption stage: Initially, S receives auxiliary information from Z. Next, S proceeds in
iterations, where in each iteration S may decide to corrupt some party, based on its random
input and the information gathered so far. Once a party is corrupted its input becomes known
to S. In addition, Z learns the identity of the corrupted party and hands some extra auxiliary
information to S. Let I denote the set of corrupted parties at the end of this stage.

Sending inputs to trusted party: An honest party Pi sends its input xi to the trusted party. If
the adversary is semi-honest it sends xi to the trusted party for every corrupted party Pi; if
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the adversary is malicious it may send to the trusted party arbitrary inputs for the corrupted
parties. Let x′i be the value actually sent as the input of party Pi.

Computation stage: If x′i is outside of the domain for Pi or if Pi sends no input, the trusted party
sets x′i to be some predetermined default value. Next, the trusted party samples rf ← {0, 1}∗,
computes (y1, . . . , yn) = f(x′1, . . . , x′n; rf ), and sends yi to party Pi.

Second corruption stage: After learning the output, S proceeds in another sequence of itera-
tions, where in each iteration S may decide to corrupt some additional party, based on the
information gathered so far. Upon corruption, Z learns the identity of the corrupted party,
S sees the corrupted party’s input and output, plus some additional information from Z as
before.

Outputs: Honest parties always output the message received from the trusted party while the
corrupted parties output nothing. The adversary S outputs an arbitrary function of its view
in the computation.

Post-execution corruption (PEC): Once the outputs are generated, S and Z proceed in rounds
where in each round Z generates some “corrupt Pi” request, and S generates some arbitrary
answer based on its view of the computation so far. For this purpose, S may corrupt more
parties as described in the second corruption stage. The interaction continues until Z halts
with an arbitrary output.

Definition 2.7 (ideal computation: adaptive case). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
functionality. Denote by IDEALf,S,Z(x, z, r) the output of Z resulting from the above described
ideal process on input vector x = (x1, . . . , xn), auxiliary input z, and randomness r = (rf , rZ , rS).
Let IDEALf,S,Z(x, z) denote the probability distribution of IDEALf,S,Z(x, z, r) where r is uniformly
chosen.

Security definition. We can now ready to define adaptive security of protocols.

Definition 2.8 (adaptive security). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality.
A protocol π adaptively t-securely computes f with perfect security if for every real-world t-limited
adversary A and every environment Z, there exists an ideal-world adversary S, such that

{REALπ,A,Z(x, z)}(x,z)∈({0,1}∗)n+1 ≡ {IDEALf,S,Z(x, z)}(x,z)∈({0,1}∗)n+1 .

If S runs in polynomial time with respect to the running time of A than we say that π adaptively
t-securely computes f with perfect security and efficient simulation.

If A and S are semi-honest, we say that π adaptively t-privately computes f with perfect security
and efficient simulation.

2.5 Static vs. Adaptive for Perfect Security

Canetti [Can00] proved the intuitive result that adaptive security implies static security; i.e., if
a protocol adaptively t-securely computes f according to Definition 2.8 than it also statically t-
securely computes f according to Definition 2.5.

Canetti et al. [CDD+04] showed that under a few assumptions on the static simulation, the other
direction also holds, i.e., that static security implies adaptive security. Namely, they considered the
following:
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• The simulation is black-box with respect to the adversary, in the sense that the simulator has
an oracle access to the adversary and does not rely on its code.

• The simulation is straight-line in the sense that the simulator does not rewind the adversary.
• There exists an explicit committal round, denoted CR, in which all of the parties’ inputs are

committed and cannot be changed (as in [MR91]). Specifically, the simulation can be “split”
into two phases. The first is up to and including the committal round: at the conclusion of
this phase, S outputs a partial view of A up to and including CR together with the inputs
to be sent to the trusted party on behalf of the corrupted parties {xi | i ∈ I}. After sending
these inputs to the trusted party and receiving the output, the second phase is carried out,
where the simulator generates a partial view of A from the round after CR till the end of the
protocol.

Theorem 2.9 ([CDD+04]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, let t be
an integer, and let π be a protocol that statically t-securely computes f with perfect security with
a black-box, straight-line simulation with a committal round. Then, π also adaptively t-securely
computes f with perfect security.

We remark, however, that the adaptive simulator in the theorem above might run in super-
polynomial time in the running time of the adaptive adversary.

2.6 The Hybrid Model and Sequential Composition

Canetti [Can00] showed that the definitions presented in Sections 2.3 and 2.4 satisfy a natural
sequential composition operation. We formalize it below in the adaptive setting, and refer the
reader to [Can00] for the static analogue.

The hybrid model. The hybrid model is a model that extends the real model with a trusted
party that provides ideal computation for specific functionalities. The parties communicate with
this trusted party in exactly the same way as in the ideal model described above.

An execution of a protocol π computing a functionality g in the f -hybrid model involves the
parties sending normal messages to each other (as in the real model) and in addition, having access
to a trusted party computing f . It is essential that the invocations of f are done sequentially,
meaning that before an invocation of f begins, the preceding invocation of f must finish. In
particular, there is at most one call to f per round, and no other messages are sent during any
round in which f is called. Specifically, during a round in which the trusted party is called, the
adversary in the hybrid model serves as an ideal-world adversary toward the trusted party. A round
in which the trusted party is invoked proceeds as follows.

• The adversary may first adaptively corrupt parties (as in the ideal model) and learn their
inputs for the current computation of f . Further, the adversary learns the corrupted party’s
internal state in the computation of π until this point; this corresponds to the auxiliary
information received from the environment.

• The parties hand their inputs to the trusted party. The values for the honest parties are
determined by the protocol and the values for the corrupted party are determined by the
adversary (in case the adversary is semi-honest the corrupted parties’ values are also deter-
mined by the protocol). Once received all inputs, the trusted party computes the function f
and sends to each party the corresponding output.

• The adversary can corrupt parties as before, and the round completes.

14



• A corruption of a party after the round completes corresponds to the post-execution corrup-
tion. In this case, the adversary learns the entire state of the party including its input and
output to the trusted party.

We denote by HYBRIDf
π,A,Z(x, z) the random variable consisting of the output of Z following an

execution of π in the f -hybrid model described above (with ideal calls to a trusted party computing
f according to the ideal model) on input vector x and auxiliary input z given to Z.

Definition 2.10 (adaptive security in hybrid model). Let f and g be n-party functionalities. A
protocol π adaptively t-securely computes g with perfect security in the f -hybrid model if for every
t-limited adversary A for the f -hybrid model and every environment Z, there exists an ideal-world
adversary S, such that{

HYBRIDf
π,A,Z(x, z)

}
(x,z)∈({0,1}∗)n+1

≡ {IDEALf,S,Z(x, z)}(x,z)∈({0,1}∗)n+1 .

If S runs in polynomial time with respect to the running time of A than we say that π adaptively
t-securely computes f with perfect security and efficient simulation in the f -hybrid model.

Sequential composition. The sequential composition theorem of Canetti [Can00, Cor. 12] states
the following. Let ρ be a protocol that securely computes f in the ideal model. Then, if a protocol
π computes g in the f -hybrid model, then the protocol πρ, that is obtained from π by replacing all
ideal calls to the trusted party computing f with the protocol ρ, securely computes g in the real
model. We adjust the statement of the theorem to our setting.

Theorem 2.11 ([Can00]). Let f and g be a n-party functionalities, let ρ be a protocol that adaptively
t-securely computes f with perfect security and efficient simulation, and let π be a protocol that
adaptively t-securely computes g with perfect security and efficient simulation in the f -hybrid model.

Then, protocol πρ adaptively t-securely computes g with perfect security and efficient simulation
in the real world.

3 Static Security Does Not Imply Adaptive Security

In this section we prove Theorem 1.1. We show a functionality together with a protocol that
privately computes it with perfect static security and efficient simulation. Further, we show that
if the protocol privately computes the functionality with perfect adaptive security and efficient
simulation, then one-way permutations do not exist.

We start by defining the functionality and the protocol. Next, in Lemma 3.2 we prove static
security and in Lemma 3.5 we prove that adaptive security with efficient simulation cannot be
achieved assuming OWP. Combined, this proves Theorem 1.1.

3.1 The Functionality

The n-party functionality fsum is parametrized by a finite binary field F2ℓ such that 2ℓ > n. Looking
ahead, having a binary field will enable using a one-way permutation OWP : {0, 1}∗ → {0, 1}∗ that
is applied on a vector of field elements in a clean way. During the proof below, we will denote the
field by F ..= F2ℓ . The private input of every party consists of n elements over the field F, and the
common output is the sum of the first element of each input.

• Input: The input of party Pi is a set of n elements (xi, (ai,1, . . . , ai,n−1)).
• Output: The output of every party is y = ∑n

i=1 xi.
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3.2 The Protocol

The n-party protocol πsum is parametrized by the field F and assumes the existence of a one-way
permutation OWP : Fn−1 → Fn−1, i.e., OWP : {0, 1}ℓ(n−1) → {0, 1}ℓ(n−1).

Protocol 3.1: Separating Protocol πsum

• Private input: The input of party Pi is a set of n elements (xi, (ai,1, . . . , ai,n−1)) ∈ Fn.
• Randomness: The random tape of party Pi is ρi ← Fn−1.
• The protocol: code for party Pi:

1. Compute (ri,1, . . . , ri,n−1) = OWP(ρi).
2. For every j ∈ [n− 1] compute the share γi→j

..= ri,j + ai,j .
3. Compute the share γi→n

..= xi −
∑n−1

j=1 γi→j .
4. Send to every Pj its share γi→j .
5. Having received all shares γ1→i, . . . , γn→i, party Pi locally computes βi = ∑n

j=1 γj→i and
sends βi to all other parties..

6. Having received β1, . . . , βn, party Pi computes y ..= β1 + . . . + βn.
• Output: y.

3.3 Static Security

We start by proving static security of πsum. We note that static security holds even if OWP is
simply a permutation that is not necessarily one way and can be inverted efficiently.

Lemma 3.2. Protocol πsum statically (n − 1)-privately computes fsum with perfect semi-honest
security and efficient simulation.

Proof. Let A be a static semi-honest adversary and let I ⊂ [n] of size |I| < n denote the set of
corrupted parties’ indices. We construct a simulator S as follows:

1. The simulator initially receives auxiliary information z and the inputs of the corrupted parties
(xi, (ai,1, . . . , ai,n−1))i∈I . First, S sends (xi, (ai,1, . . . , ai,n−1))i∈I to the trusted party and
receives back the output value y. Next, S invokes A on z and (xi, (ai,1, . . . , ai,n−1))i∈I .

2. To simulate the first round, for every j /∈ I, the simulator chooses a random ρj ←
Fn−1 and computes (rj,1, . . . , rj,n−1) = OWP(ρj). Next, S chooses random elements
(x̃j , (ãj,1, . . . , ãj,n−1))j ̸∈I , under the constraint that∑

j ̸∈I

x̃j = y −
∑
i∈I

xi,

Next, for every k ∈ [n − 1] the simulator computes the share γj→k
..= rj,k + ãj,k. Then,

the simulator computes γj→n
..= x̃j −

∑n−1
k=1 γj→k. Finally, for every j /∈ I and i ∈ I, the

simulator sends γj→i to A as the message from an honest Pj to a corrupted Pi, and receives
the messages γi→j from A as the message from a corrupted Pi to an honest Pj .

3. To simulate the second round, for every j /∈ I, the simulator computes βj
..= ∑n

k=1 γk→j and
sends βj as the message from Pj . Next, S receives the message βi from A on behalf of every
corrupted Pi.

4. Finally, S outputs whatever A outputs, and halts.
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Note that by construction, the simulator S runs in polynomial time in the running time of A.

Claim 3.3. {REALπsum,I,A(x, z)}(x,z)∈({0,1}∗)n+1 ≡ {IDEALfsum,I,S(x, z)}(x,z)∈({0,1}∗)n+1 .

Proof. Note that the only difference between the real execution of the protocol and the simulated
execution in the ideal world is the construction of the first elements of each honest party:

• In the real protocol, these elements are part of the original inputs of the honest parties
(xj , (aj,1, . . . , aj,n−1))j ̸∈I . In this case it holds that the output is y = ∑n

i=1 xi.
• In the simulated execution, these elements are part of the elements (x̃j , (ãj,1, . . . , ãj,n−1))j ̸∈I .

These elements are generated under the constraint that ∑
j ̸∈I x̃j = y −

∑
i∈I xi, where y is

computed by the trusted party to be ∑n
i=1 xi. It follows that∑

j ̸∈I

x̃j =
∑
j ̸∈I

xj .

The claim now follows by the perfect privacy of the secret sharing. □

This concludes the proof of Lemma 3.2. □

3.4 Inefficient Adaptive Security

By the construction of the static simulator it is clear that the simulation is straight-line and black-
box; further, since we consider a semi-honest adversary that in particular does not change the
corrupted parties’ inputs, “round zero” (the beginning of the protocol) can be set as the committal
round. Therefore, we can use Theorem 2.9 to derive the following corollary.

Corollary 3.4. Protocol πsum adaptively (n− 1)-privately computes fsum with perfect semi-honest
security.

3.5 No Efficient Adaptive Simulator

We proceed to prove that an efficient adaptive simulator can be used to invert the one-way permu-
tation.

Lemma 3.5. Assume that OWP is a one-way permutation. Then, Protocol πsum does not adaptively
(n− 1)-privately computes fsum with perfect semi-honest security and efficient simulation.

Proof. Let λ denote the security parameter, i.e., the one-way permutation is defined as OWP :
{0, 1}λ → {0, 1}λ. For simplicity, assume that λ = (n − 1) log(n + 1) for some n such that n + 1
is a power of 2 (this holds without loss of generality, since the security of the OWP holds for all
sufficiently large λ’s). We consider the n-party functionality fsum that is defined with respect to
the field F = F2ℓ where ℓ = log(n + 1); then, indeed, |F| > n as required and OWP induces a
permutation over Fn−1.

Defining the adversary and the environment. Consider the following adaptive, semi-honest,
(n− 1)-limited adversary A and the environment Z for πsum.

1. The environment does not send any auxiliary information to the adversary at the beginning.
2. The adversary A starts by corrupting the parties P1, . . . , Pn−2 and learns their inputs

(x1, (a1,1, . . . , a1,n−1)), . . . , (xn−2, (an−2,1, . . . , an−2,n−1)) and random tapes (ρ1, . . . , ρn−2).
The environment does not send any auxiliary information to the adversary for these cor-
ruptions.
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3. Next, A receives first-round messages γn−1→1, . . . , γn−1→n−2 from Pn−1 and γn→1, . . . , γn→n−2
from Pn.

4. The adversary completes the execution honestly and outputs its view.
5. The environment corrupts Pn in the PEC phase and learns (amongst other things) its input

(xn, (an,1, . . . , an,n−1)), randomness ρn, and the values (rn,1, . . . , rn,n−1) computed in Step 1
of πsum.

6. The environment checks whether (rn,1, . . . , rn,n−1) = OWP(ρn); if so it outputs real and
otherwise ideal.

The corresponding adaptive simulator. By the assumed security of πsum, there exists an
efficient adaptive simulator S for A and Z. Note that by construction, the adversary A runs in
polynomial time with respect to the parameter λ; hence, S is PPT with respect to λ. We will use
S to construct a PPT inverter D for the OWP.

Constructing the inverter from the simulator. The inverter D receives as input the challenge
y∗ ∈ {0, 1}λ. We will consider y∗ as an element of Fn−1, i.e., y∗ = (r∗1, . . . , r∗n−1) ∈ Fn−1. The
inverter D proceeds as follows:

1. D invokes the simulator S and emulates the ideal computation of fsum toward S; initially, D
sends nothing as the auxiliary information to S.

2. When S corrupts the parties P1, . . . , Pn−2 in the emulated ideal computation, D chooses
arbitrary elements (x1, (a1,1, . . . , a1,n−1)), . . . , (xn−2, (an−2,1, . . . , an−2,n−1)) over F and hands
(xi, (ai,1, . . . , ai,n−1)) to S as the input value of Pi; D sends nothing as the auxiliary informa-
tion to S.

3. When S sends inputs to the trusted party on behalf of the corrupted parties, D responds
with an arbitrary output value y ∈ F.

4. Once S generates its output, containing the view of A, the inverter D extracts the first-
round messages that each corrupted party received from the honest party Pn, denoted
γn→1, . . . , γn→n−2.

5. D samples two field elements xn and an,n−1 and for every i ∈ [n−2] computes an,i = γn→i−r∗i .
6. D sends a “corrupt Pn” request to S during the PEC phase. When S corrupts Pn in the

emulated ideal computation, D sets the input of Pn to be (xn, (an,1, . . . , an,n−1)). Next, S
responds with the view of Pn, containing the content of its random tape ρn.

7. D outputs ρn.

Efficiently inverting the OWP. First, notice that by construction, the running time of the
inverter D is polynomial with respect to its input y∗ and to the running time of S; therefore, D
is PPT with respect to the parameter λ. We proceed to show that the success probability of D in
inverting a random challenge y∗ ← {0, 1}λ is 1/|F|.

Claim 3.6. Pr
y∗←Fn−1

[
OWP(D(y∗)) = y∗

]
= 1/|F|.

Proof. In our proof, we do not assume any specific behavior of the adaptive simulator S (i.e., we do
not know how the simulator generates its output messages). However, based on the assumed perfect
security of the protocol, the adaptive simulator S operates according to the following interface:

1. S begins by corrupting the parties P1, . . . , Pn−2 and learning their corresponding inputs
(x1, (a1,1, . . . , a1,n−1)), . . . , (xn−2, (an−2,1, . . . , an−2,n−1)).
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2. S sends the inputs (x1, (a1,1, . . . , a1,n−1)), . . . , (xn−2, (an−2,1, . . . , an−2,n−1)) to the trusted
party and obtains the output value y.

3. S generates the simulated view of the adversary, which in particular contains the messages
γn→1, . . . , γn→n−2 from Pn to parties P1, . . . , Pn−2.

4. S corrupts party Pn and learns its input (xn, (an,1, . . . , an,n−1)).
5. S outputs the view of Pn, including its random tape ρn and values (rn,1, . . . , rn,n−1) =

OWP(ρn), such that γn→i = an,i + rn,i for i ∈ [n− 1].

Recall that in Step 5 of the construction of the inverter, D computes an,i
..= γn→i − r∗i for

every i ∈ [n − 2]. Therefore, for every i ∈ [n − 2] it holds that rn,i = r∗i . It follows that the
inverter succeeds in inverting y∗ if and only if rn,n−1 = r∗n−1. Since party Pn−1 remains honest
throughout the simulation, the message γn→n−1 remains unspecified when S outputs the view of Pn,
including (rn,1, . . . , rn,n−1) = OWP(ρn). Hence, the support of S for the random tape ρn includes
all possibilities of rn,n−1, which is of size |F|. Since r∗n−1 is uniformly distributed in F and rn,n−1 is
computed by S independently of r∗n−1, we conclude that rn,n−1 = r∗n−1 with probability 1/|F|. □

Finally, note that y∗ ∈ Fn−1, i.e., y∗ ∈ {0, 1}(n−1) log(n+1) = {0, 1}λ. However, the inverting
probability is 1/|F|, which is non-negligible in λ. We conclude that D is PPT in λ and succeeds
in inverting OWP with non-negligible probability. This contradicts the assumption that OWP is a
one-way permutation. □

4 Boosting Static Security to Adaptive Security

Damg̊ard and Nielsen [DN14] showed that any prefect UC-secure protocol against static adver-
saries that satisfies several additional properties is also perfect UC-secure with efficient simulation
against adaptive adversaries. Due to the inherent technical complexity of the UC framework, the
requirements from the statically secure protocol in [DN14] simultaneously need to address multi-
ple input/output phases and concurrent security. In this section we distil the transformation to
only require simpler, standalone requirements from the underlying statically secure protocol. UC
security can be automatically derived using the transformation of [KLR10].

In Section 4.1 we define compatible static simulation, in Section 4.2 show how this notion yields
adaptive security with efficient simulation, and in Section 4.3 simplify the requirements for the
semi-honest setting.

4.1 Compatible Static Simulation

We start by describing the requirements from the static simulator in the standalone model and the
Patch algorithm to be compatible with the transformation of [DN14]. We emphasize that these
requirements are in the standalone model as opposed to the UC framework used in [DN14]. Later,
in Section 4.2, we will show how to efficiently achieve adaptive security.

The static simulator. The basic requirements from the static simulator Sstatic are to be black-
box and straight-line, and that the simulation admits a committal round CR (as defined in Sec-
tion 2.5). Further, given a static adversary Astatic and a set of corrupted parties I ⊆ [n], the
simulator Sstatic is assumed to invoke a single instance of Astatic and interact with Astatic in a
round-by-round fashion. In this case we say that this is a round-by-round simulation.

Below we explicitly describe the structure of a round-by-round simulation, focusing on the state
of the simulator and the interface of the simulator toward every corrupted party:
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• The state of the simulator, denoted state, consists of its input, all messages received by the
simulator (from the adversary and from the trusted party) and its random coins. The state
fully determines the behavior of the simulator.

• For every corrupted party Pi, the interface of the simulator toward Pi, denoted interfacei,
consists of all messages sent to/recieved from Pi during the simulation, as well as the input
value sent by the simulator to the trusted party for Pi and the corresponding output.

Looking ahead, we will use these values when boosting static security to adaptive security, observing
that the state of the simulator fully determines the messages generated by the simulator, and the
interface can be viewed as values “committed” by the simulator.

• Initially, the internal state of Sstatic consists of the set of corrupted parties I ⊆ [n], their
original input values (xi)i∈I , the auxiliary information z, and random coins rS . Sstatic invokes
Astatic on I, (xi)i∈I , z, and on random coins rA (that are derived from rS).
For every corrupted P̃i, initialize the interface interfacei to be the empty string.

• To simulate rounds 1, . . . , CR, the simulator sets up virtual honest parties, P̃1, . . . , P̃n, and
runs {P̃h}h/∈I honestly on arbitrary input values (e.g., on zeros). That is, in round k, Astatic
selects an honest party P̃h and Sstatic sends to Astatic a message on behalf of P̃h to each
corrupted party P̃i, denoted by mk

h→i. After Astatic selected all honest parties, Sstatic receives
from Astatic a message from each corrupted party P̃i to each honest party P̃h, denoted mk

i→h,
and the next round begins (note that this models a rushing adversary). For every corrupted
P̃i, all messages mk

h→i and mk
i→h, for h /∈ I, are concatenated to interfacei.

In case the protocol is defined in an f -hybrid model, for some functionality f , the simulator
computes the messages that the virtual honest parties send to f , receives messages from
Astatic on behalf of every corrupted party, and based on those produces an output for each
party and simulates sending the output to each party. For every corrupted P̃i, the message
sent as output from f is concatenated to interfacei.
Throughout this part, every message received from Astatic is concatenated to the state of
Sstatic.

• Once round CR is completed in the simulation, Sstatic extracts an input value x′i for every
corrupted party P̃i (recall that this can be done by the definition of a committal round) and
sends it to the trusted party; next, Sstatic receives the output value yi for each corrupted
party. Those values (x′i, yi)i∈I are concatenated to the state of Sstatic, and for every corrupted
P̃i, the values x′i and yi are concatenated to interfacei.

• Based on the output values for all corrupted parties and the state of the simulation so far,
Sstatic continues simulating rounds CR + 1 till the completion of the protocol, as before.

• Finally, Sstatic outputs whatever Astatic outputs.

We emphasize that the state of Sstatic is well-defined and updates in a monotonic manner after
every message it receives from Astatic or from the trusted party. Denote by

stateρ,H(Sstatic, I, x, z, rS , rf )

the state of Sstatic in the ρth round after a subset of honest parties, denoted by H, sent messages
(i.e., H ⊆ [n] \ I), when simulating Astatic on corrupted set I, inputs x = (x1, . . . , xn), auxiliary
input z, random coins rS for Sstatic and rf for the trusted party.

The patch algorithm. Given an adaptive adversary Aadaptive, the idea of [DN14] is to construct
an adaptive simulator Sadaptive as follows. Sadaptive uses the static simulator Sstatic for simulating
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the (so-far) honest parties towards Aadaptive in a round-by-round fashion. Say that the corrupted
parties are indexed by the set I (initially, this set is empty) and Aadaptive corrupts party P̃j with
j /∈ I. Denote the round number by ρ and the set of honest parties who sent messages so far in
round ρ by H. The (pre-corruption) state of the simulator at this point is denoted by

statepre ..= stateρ,H(Sstatic, I, x, z, rS , rf ).

At this point Sadaptive corrupts the dummy party Pj in the ideal computation and learns its
input xj , its output yj (the output tape of Pj may still be empty at this point), and the auxiliary
information zj received from the environment.

It is required that there exists a PPT algorithm Patch that on input statepre, j, xj , yj , and
zj , outputs a new (post-corruption) state statepost and random coins rj such that the following is
satisfied:

• The new state statepost corresponds to a static simulation of Sstatic on corrupted set I ∪ {j}
on the same values, i.e., statepost = stateρ,H(Sstatic, I ∪ {j}, x, z, r′S , rf ), for some r′S .

• For every i ∈ I, denote by interfacei
pre the interface of P̃i in the simulation of Sstatic on state

statepre (with corrupted parties I and honest parties [n] \ I), and by interfacei
post the interface

of P̃i in the simulation of Sstatic on state statepost (with corrupted parties I ∪ {j} and honest
parties [n] \ (I ∪ {j})). Denote by interfacei\j

pre the values in interfacei
pre after removing all

messages sent/received from P̃j . Then, it is required that interfacei\j
pre = interfacei

post.
Stated differently, messages from honest parties to corrupted parties (other than P̃j) remain
the same.

• For every round k ∈ [ρ] and every i ∈ I, let mk
i→j and mk

j→i be the messages sent between
P̃i to P̃j in round k in the simulation of Sstatic on state statepre (as set in interfacei

pre); for
every h /∈ I ∪ {j}, let mk

h→j and mk
j→h be the messages sent between P̃h to P̃j in round k in

the simulation of Sstatic on state statepost (as set in interfacej
post). Then, these messages are

compatible with an honest execution of P̃j on input xj on random coins rj .
Stated differently, the interface of an honest P̃j with corrupted parties in the simulation on
statepre can be explained using random coins rj and messages from honest parties to (the now
corrupted) P̃j in the simulation on statepre, as if P̃j played honestly until this point in the
simulation.

Definition 4.1 (Compatible simulation). Let f be an n-party functionality and let π be a protocol
that statically t-securely computes f with perfect security. We say that the simulation is efficient
and compatible if for every adversary A there exists a simulator S such that:

• The running time of S is polynomial in the running time of A (i.e., the simulation is efficient).
• The simulation is black-box, straight-line, and admits a committal round CR.
• The simulation is round-by-round.
• There exists a PPT Patch algorithm as described above.

4.2 Static Security implies Adaptive Security

The following theorem is a simplified version of [DN14, Thm. 1]. The proof follows the same
arguments from [DN14], with the difference of working in the simpler, standalone model as opposed
to the UC framework.
Theorem 4.2. Let f be an n-party functionality and let π be an n-party protocol that statically
t-securely computes f with perfect security and with efficient and compatible simulation. Then, π
adaptively t-securely computes f with perfect security and efficient simulation.
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Proof. Let Aadaptive be an adversary and let Sstatic be an efficient static simulator that is guaranteed
to exist from the efficient static security of π. We will construct an efficient adaptive simulator
Sadaptive such that no environment can distinguish between a real execution of π with Aadaptive and
an ideal execution of f with Sadaptive. Let Z be an environment.

1. Initially, Sadaptive receives as input auxiliary information z from Z. The simulator initializes
the dynamic set of corrupted parties I = ∅, samples random coins rS for Sstatic, sets the
dynamic state to state ..= (I, z, rS), invokes Sstatic on state, and invokes Aadaptive on z.

2. To simulate rounds 1, . . . , CR, in the protocol, let state denote the current state of the static
simulator and let I denote the current set of corrupted parties. When Aadaptive activates
an honest party for this round, Sadaptive forwards the message to Sstatic and once receiving
from Sstatic the messages to be sent for this honest party, Sadaptive forwards them to Aadaptive.
Once Aadaptive finished activating all honest parties, it sends messages on behalf of corrupted
parties, and Sadaptive forwards them to Sstatic.
Every message received from Aadaptive is appended to state.

3. In round CR, Sadaptive receives from Sstatic input values (x′i)i∈I and forwards them to the
trusted party. Once receiving output values (yi)i∈I from the trusted party, Sadaptive forwards
them to Sstatic and appends them to the state.

4. To simulate rounds CR + 1 till the end, Sadaptive proceeds as in Step 2.
5. Upon a corruption request by Aadaptive of party Pj , the simulator Sadaptive corrupts the dummy

party Pj and learns its original input xj , and possibly its output yj . In addition, Z sends
auxiliary information zj for Pj . Next, denote by statepre the current (pre-corruption) state of
the static simulation. Sadaptive calls Patch(statepre, j, xj , yj , zj) to receive the post-corruption
state statepost and random coins rj for Pj .
Next, Sadaptive sets the state of the static simulation to be statepost and responds to Aadaptive
with the internal state of Pj set as follows:

• The content of the input tape is xj .
• The content of the output tape is yj (possibly empty, if the corruption is before round

CR).
• The content of the random tape is rj .
• The content of the incoming communication tapes from every corrupted party Pi with

i ∈ I is set according to the interface interfacei
pre that is derived from statepre. That is,

as the messages sent/received on behalf of Pj to Pi during the simulation thus far.
• The content of the incoming communication tapes from every honest party Ph with

h /∈ I ∪ {j} is set according to the interface interfacej
post that is derived from statepost.

• The content of the incoming communication tapes from calls to ideal functionalities are
set according to the interface interfacej

post that is derived from statepost.

Decomposing the adaptive adversary. We proceed to prove that the output of the ideal
computation is identically distributed as the output of the real computation. To see this, we
“decompose” the t-limited adaptive adversary Aadaptive into (t+1) static adversaries. Fix a sequence
(k1, ρ1), . . . , (kt, ρt) that corresponds to an ordered corruption pattern Aadaptive, where party Pki

is the ith corrupted party in round ρi. Denote by Ei the event that the first i corruptions are
according to the sequence (k1, ρ1), . . . , (kt, ρt). If Pr [Ei > 0], then conditioned on Ei we can define
the following static adversaries from Aadaptive.

• The first adversary A0
static does not corrupt any party.
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• For every i ∈ [t], the ith adversary Ai
static statically corrupts parties {Pk1 , . . . , Pki

}. The
adversary Ai

static controls {Pk1 , . . . , Pki−1} just like Ai−1
static till round ρi. Further, Ai

static plays
with Pki

honestly until round ρi. Ai
static continues to play according to Aadaptive till round

ρi+1 (where the (i + 1)th corruption occurs).
We define the corresponding static simulators as follows:

• The first simulator S0
static is exactly Sstatic running on I = ∅.

• For every i ∈ [t], the ith simulator Si
static statically corrupts parties {Pk1 , . . . , Pki

}. The
simulator Si

static proceeds just like Ai−1
static till round ρi. If ρi ≥ CR, Si

static uses the original
input value xki

for Pki
. Next, in round ρi, Si

static calls Patch on its current state, denoted
statepre, on i, on xi, on yi (which could be empty), and on the auxiliary information z together
with the view of Pki

in the simulation thus far. Upon receiving statepost as the output from
Patch, the simulator Si

static continues its simulation on state statepost.
Given a sequence (k1, ρ1), . . . , (kt, ρt) we define two games as follows.

• The first game, denoted REALi,ρ
π,A,I(x, z) outputs the view of A until round ρ when the cor-

rupted parties’ indices are I = {k1, . . . , ki}, together with the output of the honest parties
[n] \ I. In case the protocol did not complete yet, these values are bottom; otherwise, these
values are computed as in REALπ,A,I(x, z).

• The second game, denoted IDEALi,ρ
f,S,I(x, z) outputs a simulated view generated by a compat-

ible simulator S until round ρ when the corrupted parties are I = {k1, . . . , ki}, together with
the output of the honest parties [n] \ I. In case the honest parties did not receive output yet,
these values are bottom; otherwise, these values are computed as in IDEALf,S,I(x, z).

Claim 4.3. For every sequence (k1, ρ1), . . . , (kt, ρt) and every i ∈ {0, . . . , t}, if Pr [Ei] > 0 then
conditioned on Ei it holds that for I = {k1, . . . , ki}:{

REALi,ρi

π,Ai
static,I

(x, z)
}

(x,z)∈({0,1}∗)n+1
≡

{
IDEALi,ρi

f,Si
static,I

(x, z)
}

(x,z)∈({0,1}∗)n+1
.

Proof. We will prove the claim by induction on i. The base case is immediate since no party is
corrupted. Let i ∈ [t] and assume the claim holds for i−1; we will prove the claim for i. Conditioned
on the event Ei, it holds by the induction hypothesis that the view simulated by Sstatic on corrupted
parties {Pk1 , . . . , Pki−1} until round ρi−1 is identically distributed as the view of Ai−1

static until round
ρi−1.

Now, Ai
static proceeds as Ai−1

static where party Pki
is also corrupted but plays honestly until round

ρi. In round ρi, the simulator Si
static calls Patch on its current state, and on the simulated view of

party Pi. By the requirement on the Patch algorithm, the new state statepost corresponds to the
internal state of Sstatic till round ρi when simulating the adversary Ai

static. By the perfect security
of Sstatic, the simulation can resume and perfectly simulate the view of Ai

static till round ρi+1. □

Suppose that there are ℓ ≤ t corruptions till the completion of the protocol, and potentially
additional t − ℓ corruptions requests in the PEC stage. It follows from Claim 4.3 that the only
difference between Sℓ

static and Sadaptive is in answering those corruption requests. Again, relying on
the assumption of the Patch algorithm, Sadaptive can respond with the internal view of a party in
the PEC stage in a way that is compatible with the simulation thus far. We therefore conclude
that {

REALπ,Aadaptive,Z(x, z)
}

(x,z)∈({0,1}∗)n+1

≡
{

IDEALi,ρi
f,Sadaptive,Z(x, z)

}
(x,z)∈({0,1}∗)n+1

.

□
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Using [KLR10] we derive the following corollary.

Corollary 4.4. Let f be an n-party functionality and let π be an n-party protocol that statically
t-securely computes f with perfect security and with efficient and compatible simulation. Then, π
UC-realizes f with perfect adaptive security and efficient simulation against t-adversaries.

4.3 A Simplification for Semi-Honest Adversaries

In case the adversary is semi-honest and all corrupted parties follow the protocol, the requirements
from the Patch algorithm are much simpler. In this case, the simulator knows exactly how each
corrupted party will behave, and once sampling their random coins the simulator can simply run
the code of each corrupted party honestly.

In this case, the state of the simulation is defined by the random coins sampled for each party,
the random coins sampled for each call to an ideal functionality, and the input/output values of
the corrupted parties. The entire simulated execution is set according to those values.

The Patch algorithm receives the state of a simulated execution with a corrupted set I, and the
input xi and output yi of the newly corrupted party, and should produce a new state that explains
the simulation when the corrupted set is I ∪ {i}. Specifically, the random coins of all corrupted
parties and all communication involving corrupted parties must remain the same; however, the
Patch algorithm may adjust the random coins of honest parties and of Pi, as well as honest-to-
honest communication and honest-to-Pi communication, to retain compatibility with xi and yi.

In this case it is also sufficient to compare the output produced by Sstatic on statepre and on
statepost and show that they are identically distributed, as opposed to compare the partial state of
the simulation at the point the Patch was invoked. This is because in the semi-honest setting the
state fully determines the rest of the simulation.

In Section 5 we will prove the semi-honest security of the BGW protocol using this simplified
requirement.

5 Adaptive Security of the BGW Protocol

In this section we prove Theorem 1.3. In Section 5.1 we prove efficient adaptive security of the
multiplication protocol and in Section 5.2 we prove efficient adaptive security of the BGW protocol
in the fmult-hybrid model. The proof of Theorem 1.3 follows from the composition theorem of
Canetti (Theorem 2.11). Throughout this section, we denote by F a finite field satisfying |F| > n.

5.1 Computing a Multiplication Gate

We start by defining the multiplication functionality fmult that will be used to compute a multi-
plication gate in the circuit. The functionality receives from each party Pi a pair of points qa(αi)
and qb(αi), where α1, . . . , αn ∈ F are public. The functionality interpolates these points to recover
two degree-t polynomials qa(x) and qb(x), randomly samples a degree-t polynomial qab(x) satisfying
qab(0) = qa(0) · qb(0), and returns to each Pi the value qab(αi). That is,

fmult
((

qa(α1), qb(α1)
)
, . . . ,

(
qa(αn), qb(αn)

))
=

(
qab(α1), . . . , qab(αn)

)
.

The protocol. We present here the multiplication protocol of [GRR98]. Each party holds shares
βi and γi corresponding to some polynomials qa(αi) and qb(αi). The goal is to obtain shares on
a random degree-t polynomial qc(x) satisfying qc(0) = qa(0) · qb(0). Towards that end, each party
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multiplies its two shares βi·γi, which is essentially a share on the degree-2t polynomial h(x) ..= qa(x)·
qb(x). Note that there exists fixed, public coefficients (known as Lagrange coefficients) λ1, . . . , λn,
satisfying h(0) = λ1 · h(α1) + . . . + λn · h(αn). The protocol proceeds by instructing each party
Pi to secret share h(αi) using some degree-t polynomial gi(x), and then given g1(αi), . . . , gn(αi),
output δi = ∑n

k=1 λk · gk(αi). That is, the parties jointly compute shares on the polynomial
H(x) ..= ∑n

k=1 λk · gk(x), which is a random degree-t polynomial satisfying

H(0) =
n∑

k=1
λk · gk(0) = λ1 · h(α1) + . . . + λn · h(αn) = h(0) = qa(0) · qb(0) .

Protocol 5.1: Realizing fmult

• Private input: Each party Pi holds as input βi, γi ∈ F.
• Auxiliary input: Each party holds α1, . . . , αn ∈ F and Lagrange coefficients λ1, . . . , λn.
• The protocol:

1. Pi chooses a random polynomial gi(x) of degree at most t such that gi(0) = βi · γi and
sends to each party Pj the point gi(αj).

2. Output: Given g1(αi), . . . , gn(αi), output δi = ∑n
k=1 λk · gk(αi).

5.1.1 Static Security

Lemma 5.2. Let t < n/2. Then, Protocol 5.1 statically t-privately computes fmult in the presence
of a semi-honest adversary with efficient simulation.

Proof. We start by describing the static simulator.

The static simulator.

• Input: The simulator S receives the inputs βi and γi for every i ∈ I. Initially, S sends these
inputs to the trusted party computing fmult and receives the output value δi for every i ∈ I.

• The simulation: The simulation consists of two parts:
1. Sample randomness for corrupted parties:

For every i ∈ I, sample the random tape ri uniformly at random. Note that this defines
the polynomials gi(x) that the corrupted Pi uses to hide βi · γi.

2. Sample random points for honest parties:
For every j ̸∈ I and i ∈ I, choose points gj(αi) uniformly and at random in F, under the
constraint that for every i ∈ I:

n∑
k=1

λk · gk(αi) = δi .

Note that this defines at most |I| ≤ t points on each polynomial and does not uniquely
define the polynomial. A possible way to sample all the points is as follows: Set j∗ ̸∈ I
arbitrarily. For every j ̸∈ I ∪{j∗} and i ∈ I, the simulator chooses gj(αi) uniformly and
independently at random, and then determines:

gj∗(αi) ..= 1
λj∗
·
(
δi −

∑
k∈[n]\{j∗}

λk · gk(αi)
)
.
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• Output: The simulator outputs the view of the adversary in the simulated execution. This
includes ri for every i ∈ I as the random tapes of the corrupted parties, and all the messages
(gj(αi))j ̸∈I,i∈I .

We now show that the joint distribution of the outputs of all parties and the view of the
corrupted parties in the real world is identically distributed to the joint distribution of the output
of all parties and the output of the simulator in the ideal execution. Towards that end, we show a
sequence of hybrid experiments:

1. Hyb0: This is the real execution. Each Pk starts with input βk and γk. The output of this
hybrid is the output values of all parties and the view of the corrupted parties.

2. Hyb1: In this hybrid execution, we consider a simulator that receives the inputs and outputs
of all parties, i.e., receives βj , γj , δj for j ̸∈ I in addition to the inputs and outputs of the
corrupted parties. Then, the simulator chooses polynomials (gj(x))j ̸∈I of degree-t uniformly
at random under the following constraints:

gj(0) = βj · γj and
n∑

k=1
λk · gk(αj) = δj .

A possible way to sample such polynomials is as follows: Set j∗ ̸∈ I arbitrarily. Then, for
every j ̸∈ I ∪ {j∗} and i ∈ I, the simulator chooses gj(x) uniformly and independently at
random such that gj(0) = βj · γj . This uniquely determines the polynomial

gj∗(x) ..= 1
λj∗
·
(
qab(x)−

∑
k∈[n]\{j∗}

λk · gk(x)
)
.

Given all those polynomials, the simulator outputs (gj(αi))j ̸∈I,i∈I in addition to the random
tapes of the corrupted parties. The output of this experiment is the output of all parties as
determined by the trusted party, and the output of the modified simulator.

3. Hyb2: This hybrid is similar to the previous one, except that the modified simulator is not
given βj , γj , δj (for j ̸∈ I). Instead, it is only given the |I| shares of the corrupted parties,
i.e., (βi, γi, δi)i∈I . It then works as the simulator in Hyb1, while choosing the constant terms
of each polynomial gj(x) for j ̸∈ I ∪ {j∗} to be 0; further, gj∗(x) is determined in a similar
way to Hyb1. The output of this experiment is the output of all parties as determined by the
trusted party, and the output of the modified simulator.

4. Hyb3: This is the ideal execution. The output of this hybrid is the output of all parties as
determined by the trusted party, and the output of the simulator as described in the proof.

The only difference between Hyb0 and Hyb1 is in the choice of the polynomial gj∗(x), and
whether the output of all parties is determined by the output of the protocol or by the trusted
party. In Hyb0, we first choose gj∗(x) as a random degree-t polynomial with the constant term
qa(αi) · qb(αi) and then derive qab(x) = ∑n

k=1 λk · gk(x). Note that

qab(0) =
n∑

k=1
λk · gk(0) =

n∑
k=1

λk · qa(αi) · qb(αi) = qa(0) · qb(0),

and so qab(x) is a random degree-t polynomial with constant term qa(0) · qb(0). In Hyb1, the
trusted party first chooses qab(x) as a random degree-t polynomial with qa(0) · qb(0) as its constant
term, and then after choosing random polynomials {gk(x)}k ̸=j∗ we determine gj∗(x) such that
qab(x) = ∑n

k=1 λk · gk(x). Those two processes are therefore, equivalent.
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The difference between Hyb1 and Hyb2 is the following: In Hyb1 we choose the polynomials
gj(x) for j ̸∈ I ∪ {j∗} uniformly and independently at random with constant term βj · γj , and in
Hyb2 we choose each such polynomial with constant term 0. In both experiments we determine
gj∗(x) deterministically in the same way. In both executions, the view of the adversary consists of
at most |I| ≤ t points on each such polynomial, which according to Claim 2.2 implies that these
two processes have the exact same distribution.

The difference between Hyb2 and Hyb3 is that in Hyb3 the simulator now does not even choose the
polynomials gj(x) and just chooses the points on the polynomials uniformly at random. However,
one way to perform such a random choice is as described in Hyb2, and the two processes are
identical. □

5.1.2 The Patch Algorithm

We now describe the Patch algorithm when corrupting some party Pi∗ for i∗ ̸∈ I. The input to
Patch is a state of the static simulator statepre, which consists of the inputs and outputs of the
corrupted parties, the randomness sampled for the corrupted parties and the points sampled on the
polynomials of the honest parties. Moreover, it receives the index i∗ of the corruption request, and
the input and output of that corrupted party. The output of Patch is a new state for the simulator
statepost that is consistent with statepre. Namely, the simulator would generate the exact same
messages sent/received by corrupted parties in I as with statepre, and will use the same randomness
for those parties. Moreover, statepost corresponds to statically corrupting I ∪ {i∗}. For the sake
of clarity, we explicitly add the set of corrupted parties to the input of Patch (although it can be
derived from statepre); further, as we focus on semi-honest adversaries that do not rely on auxiliary
information, we omit it from the description of Patch.

The algorithm Patch (statepre, I, i∗, (βi∗, γi∗), δi∗):

1. First, decompose statepre to the inputs, outputs, and randomness of corrupted parties, and
the points that were sampled on the polynomials of the honest parties (which determine the
honest-to-corrupt messages). That is, (βi, γi, δi, ri)i∈I and (gj(αi))j ̸∈I,i∈I .

2. Sample randomness for Pi∗: In statepre, Pi∗ was honest and the simulator had sampled
points gi∗(αi) for every i ∈ I. Choose a random polynomial g′i∗(x) under the following
constraints:

g′i∗(αi) = gi∗(αi) for every i ∈ I, and g′i∗(0) = βi∗ · γi∗ .

There are |F|t−|I| such polynomials. Sample one of them uniformly at random (this can be
done, if |I| < t, by choosing t − |I| random points and then interpolate the polynomial).
Let ri∗ be the corresponding random tape that leads to the polynomial g′i∗(x). By abuse of
notation, we set gi∗(x) ..= g′i∗(x).

3. Sample points on polynomials of honest parties: For every j ̸∈ I ∪ {i∗}, sample an
additional point on each of the polynomials gj(x). That is, sample {gj(αi∗)}j ̸∈I∪{i∗} such that

δi∗ =
n∑

k=1
λk · gk(αi∗).

Note that so far we sampled |I| < t points on each polynomial, so this can be chosen, for
instance, in a similar way as the simulator (choosing independent points for all honest parties
except for one, and then uniquely determining its point).
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4. Output: The output is the updated state statepost consisting of (βi, γi, δi, ri)i∈I∪{i∗} and
(gj(αi))j ̸∈I∪{i∗},i∈I∪{i∗}.

By inspection, it is clear that the view of the adversary is compatible with the view it already
received. Before proving correctness of the Patch algorithm, we introduce the following notation.
Given the simulator S for the semi-honest adversary, we denote by S(βI , γI , δI , I) the state of S
upon producing the output when simulating corrupted set I on input βI , γI and output δI . Recall
that by Section 4.3, it is sufficient to compare the output produced by S on statepre and on statepost
and show that they are identically distributed.

Claim 5.3. Let t < n. For every I ⊆ [n] of cardinality at most t and i∗ /∈ I, for every pair of
degree-t polynomials qa(x), qb(x), and for every degree-t polynomial qab(x) satisfying:

• qab(0) = qa(0) · qb(0), and
• (δ1, . . . , δn) = fmult ((β1, γ1), . . . , (βn, γn)) where βj = qa(αj), γj = qb(αj), δj = qab(αj) for

every j ∈ [n],

it holds that:{
Patch (S(βI , γI , δI , I), i∗, (βi∗ , γi∗), δi∗)

}
≡

{
S(βI∪{i∗}, γI∪{i∗}, δI∪{i∗}, I ∪ {i∗})

}
.

Proof. Fix some z in the support of S(βI∪{i∗}, γI∪{i∗}, δI∪{i∗}, I ∪ {i∗}). Let k′ = |I ∪ {i∗}|. Note
that each element in the support is obtained with exactly the same probability, as S just makes
independent random choices:

1. For each i ∈ I ∪ {i∗}, the simulator chooses the randomness ri∗ for the polynomial gi(x)
uniformly and independently at random. This is equivalent to choosing (|I| + 1) · t random
field elements (recall that the constant term is fixed).

2. For each i ̸∈ I ∪ {i∗}, the simulator chooses the view of Pi, which consists of all messages
honest parties send to Pi. This includes sampling n− (|I|+1)−1 = n−|I|−2 random points
(as the last one is determined). In total, here we have (|I|+ 1)(n− |I| − 2) random choices.

In total, sampling a view consists of (|I|+ 1) · t + (|I|+ 1)(n− |I| − 2). Thus, each element in the
support is chosen with probability (1/|F|)(|I|+1)(n+t−|I|−2).

We now consider the process Patch (S(βI , γI , δI , I), i∗, (βi∗ , γi∗), δi∗). We first choose an output
for S(βI , γI , δI , I) to obtain some output w. Each element in the support of S(βI , γI , δI , I) is chosen
with probability (1/|F|)|I|(n+t−|I|−1).

Then, we run Patch (w, i∗, (βi∗ , γi∗), δi∗). For choosing ri∗ , Patch samples additional t − |I|
random points. For sampling its view, Patch samples additional n − |I ∪ {i∗}| − 1 = n − |I| − 2
points, i.e., Patch samples n + t − 2|I| − 2 elements in total. Thus, sampling w and then running
Patch results in a total of (|I|+ 1)(n + t− |I| − 2) random choices. Moreover, it is easy to see
that for every possible vector z in the support of S(βI∪{i∗}, γI∪{i∗}, δI∪{i∗}, I ∪ {i∗}) there exists
one unique possible w′ such that Patch (w′, i∗, (βi∗ , γi∗), δi∗) leads to z: Given z, removing gi∗(0),
gi∗(αj) for every j ̸∈ I ∪ {i∗}, and gj(αi∗) for every j ̸∈ I ∪ {i∗}, fully defines w′. Thus, the two
distributions are identical. □

5.1.3 Efficient Adaptive Security

Lemma 5.2 proves static security of Protocol 5.1. By construction, it holds that the static simulator
is efficient, black-box, straight-line, and round-by-round. It also admits a committal round since
the inputs never change in the semi-honest setting. Finally, by Claim 5.3 there exists an efficient
Patch algorithm. Therefore, Theorem 4.2 yields the following corollary.

28



Corollary 5.4. Let t < n/2. Then, Protocol 5.1 adaptively t-privately computes fmult in the
presence of a semi-honest adversary with efficient simulation.

5.2 The BGW Protocol in the fmult-Hybrid Model

We now present the BGW protocol in the fmult-hybrid model. Given an n-party functionality
(y1, . . . , yn) = f(x1, . . . , xn), we consider an arithmetic circuit C over F that computes f . The
following is taken verbatim from [AL11]:

Protocol 5.5: Computing f in the fmult-hybrid model
• Private input: Each party Pi has a private input xi ∈ F.
• Auxiliary input: Each party Pi holds an arithmetic circuit C over the field F, such that for

every x ∈ Fn it holds that C(x) = f(x), where f : Fn → Fn. The parties also hold distinct
non-zero values α1, . . . , αn ∈ F.

• The protocol:
1. The input-sharing stage: Each party Pi chooses a polynomial qi(x) uniformly from the

set of all polynomials of degree at most t with constant term xi. For every j ∈ [n], party
Pi sends to party Pj the value qi(αj). Each party Pi records the values q1(αi), . . . , qn(αi)
that it received.

2. The circuit-emulation stage: Let G1, . . . , Gℓ be a predetermined topological ordering
of the gates of the circuit. For k = 1, . . . , ℓ the parties proceed as follows:

– If Gk is an addition gate: Let βk
i and γk

i be the shares of input wires held by party Pi.
Then, Pi defines its share of the output wire to be δk

i = βk
i + γk

i .
– If Gk is a multiplication-by-a-constant gate with constant c ∈ F: Let βk

i be the share
of the input wire held by party Pi. Then, Pi defines its share of the output wire to be
δk

i = c · βk
i .

– If Gk is a multiplication gate: Let βk
i and γk

i be the shares of input wires held by party
Pi. Then, Pi sends (βk

i , γk
i ) to the ideal functionality fmult and receives back a value

δk
i . Party Pi defines its shares of the output wire to be δk

i .
3. The output-reconstruction stage: Let o1, . . . , on be the output wires, where party Pi’s

output is the value on wire oi. For every k = 1, . . . , n denote by βk
1 , . . . , βk

n the shares that
the parties hold for wire ok. Then, each Pi sends to Pk the share βk

i . Upon receiving all
shares (βk

1 , . . . , βk
n), Pk finds the unique degree-t polynomial gk(x) satisfying gk(αj) = βk

j

for every j ∈ [n].
• Output: Each party Pk outputs gk(0).

5.2.1 Static Security

After recalling the protocol, we prove static security for completeness.

Lemma 5.6. Let f be a deterministic n-party functionality. Protocol 5.5 statically t-privately
computes f in the fmult-hybrid model with perfect security and efficient simulation facing a semi-
honest adversary, for t < n/2.

Further, if f is a linear function, Protocol 5.5 statically t-privately computes f in the plain
model with perfect security and efficient simulation facing a semi-honest adversary, for t < n.

Proof. We start by constructing a static simulator. Let I ⊆ [n] of size |I| ≤ t.
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The Simulator

• Inputs: The simulator S receives the inputs of the corrupted parties (xi)i∈I . S sends these
inputs to the trusted party computing f and receives the output values (yi)i∈I .

• The simulator is parameterized by an arbitrary subset Î ⊆ [n] of cardinality exactly t such
that I ⊆ Î (if |I| = t then Î = I).

• The simulator:
1. First, S initializes two sets view = ∅ and secretChoices = ∅.
2. Simulating the input-sharing stage:

(a) For every i ∈ I, the simulator S chooses a uniformly distributed random tape for
Pi denoted as ri; this random tape and the input xi fully determine the degree-t
polynomial qi(x) with qi(0) = xi chosen by Pi in the input-sharing phase.

(b) For every j /∈ I, the simulator S chooses random points qj(αi) for every i ∈ Î
uniformly and independently at random.

(c) Add (ri)i∈I and (qj(αi))j ̸∈I,i∈I to view, and (qj(αi))j ̸∈I,i∈Î\I to secretChoices.
3. Simulating the circuit-emulation stage: For every Gk ∈ {G1, . . . , Gℓ} proceed as follows.

(a) Gk is an addition gate: Let (fa(αi))i∈Î and (fb(αi))i∈Î be the shares of the input
wires of the corrupted parties that were generated by S. For every i ∈ Î, the
simulator S computes fa(αi) + fb(αi) = (fa + fb)(αi) which defines the shares of the
output wire of Gk for the set Î.

(b) Gk is a multiplication-with-constant gate: Let (fa(αi))i∈Î be the shares of the input
wire and let c ∈ F be the constant of the gate. S computes c · fa(αi) = (c · fa)(αi)
for every i ∈ Î which defines the shares of the output wire of Gk for the set Î.

(c) Gk is multiplication gate: S chooses |Î| = t points fab(αi) uniformly at random
for every i ∈ Î, and defines the shares of the set Î of the output wire of Gk to be
(fab(αi))i∈Î . Add (fab(αi))i∈I to view and (fab(αi))i∈Î\I to secretChoices.

S adds these shares to the corrupted parties’ views.
4. Simulating the output-reconstruction stage: Let o1, . . . , on be the output wires. We now

focus on the output wires of the corrupted parties. For every k ∈ I, the simulator S has
already defined exactly t shares on the polynomial that hides the value on the wire ok,
denoted as gk(αi) (for every i ∈ Î).
Then, find the unique degree-t polynomial g′k(x) such that g′k(αi) = gk(αi) for every
i ∈ Î, and g′k(0) = yk. Note that Î defines exactly t points, and g′k(0) is one additional
point, and therefore g′k(x) is fully determined. Add the shares (g′k(αj))j ̸∈I to view as
simulating the shares from the honest parties to the adversary.

• Output: Output view as the view of the adversary, and store secretChoices for further adap-
tive corruption (as explained in Section 5.2.2).

We now show that the joint distribution of the outputs of all parties and the view of the
corrupted parties in the real world, is identically distributed as the joint distribution of the output
of all parties and the output of the simulator in the ideal execution. Towards that end, we show a
sequence of hybrid experiments:

1. Hyb0: This is the real execution. We run the protocol on inputs as determined by (xi)i∈[n].
The output of this hybrid is the output values of all parties and the view of the corrupted
parties.

2. Hyb1: In this hybrid execution, we consider a simulator that receives the input values of all
parties (i.e., receives (xk)k∈[n]) and also receives the outputs of the corrupted parties (yi)i∈I as
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computed by the trusted party. It then works as the simulator where instead of just choosing
the points that are sent to the honest parties, it chooses random degree-t polynomial with
the correct constant term, and adds to the view of the adversary only the shares of corrupted
parties, I. In the output stage, for each output wire of a corrupted party, it just sends the
shares that the simulated honest parties hold on that wire. The output of this experiment
is the output of all parties as determined by the trusted party, and view as generated by the
modified simulator.

3. Hyb2: In this hybrid execution, we again consider a simulator that receives all the inputs of
all parties and the outputs of the corrupted parties. It works exactly as the simulator of Hyb1
with one modification: In the output wires, instead of just sending the shares on the output
wires, we first take the yi as the output of the circuit, we take the t shares on the output
wire of the parties in Î, and interpolate them to the polynomial g′k(x) as the simulator in the
ideal process. It then simulate the honest parties sending shares on g′k(x). The output of this
experiment is the output of all parties as determined by the trusted party, and the view as
generated by the modified simulator.

4. Hyb3: This is the ideal execution. The output of this hybrid is the output of all parties as
determined by the trusted party, and view as generated by the simulator.

There is just one difference between Hyb0 and Hyb1: In Hyb0, the output of all honest parties is
determined by the protocol whereas in Hyb1 the output is determined by the trusted party. In Hyb1,
the output is simply (y1, . . . , yn) = f(x1, . . . , xn). In Hyb0, the parties emulate the computation of
the circuit C on the inputs x1, . . . , xn. We have the invariant that the value on each wire is hidden
using secret sharing, i.e., the shares that the parties hold define a unique polynomial with constant
term that correspond to the value on the wire when computing (y1, . . . , yn) = C(x1, . . . , xn). This
is true for the input-sharing phase, as each party Pi shares its input xi. Then, this holds from
the properties of the secret-sharing scheme (addition and multiplication-by-a-constant gate) and as
guaranteed from fmult. We then obtain that the output wires carry the correct values y1, . . . , yn,
and in the output-reconstruction phase, each party simply reconstruct its output. We conclude
that the output of all parties is exactly the same in both executions and that the output of Hyb0
and Hyb1 is exactly the same.

The difference between Hyb1 and Hyb2 is in the output stage only. In Hyb1, the simulator
computes the polynomials of the output wires according to the circuit. In Hyb2 it computes the
polynomials on the output wires, but then takes just t shares on that polynomial (corresponding
to the set of parties Î), takes the value on the output wire, and interpolate them to a polynomial
g′k(x). It then adds to the view the shares of all honest parties on the polynomials g′k(x), for k ∈ I.
We claim that the two processes are exactly the same. Namely, as follows from the computation
of the circuit, gk(0) is yk where (y1, . . . , yn) = C(x1, . . . , xn), and the simulator also receives yk as
input as computed from the trusted party. The two polynomials are identical, and the view of the
adversary is therefore identical.

The difference between Hyb2 and Hyb3 is as follows. In Hyb2, the simulator receives the inputs
of all parties, and therefore computes all polynomials with the correct constant term. In Hyb3, the
simulator just chooses random points uniformly at random on each input polynomial of the honest
parties, and each polynomial of fmult. In both executions, the output phase is a deterministic
process of the shares defined before. We conclude that the two outputs are identically distributed,
as follows from Claim 2.2. □
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5.2.2 The Patch Algorithm

We now describe the Patch algorithm when corrupting some party Pi∗ for i∗ ̸∈ I. The input to
Patch is a pre-corruption state of the static simulator statepre, which consists of the inputs and
outputs of the corrupted parties, the view of the adversary view, secretChoices, and the set Î ⊇ I.
We have two cases to consider:

1. When i∗ ∈ Î, the Patch algorithm that we will present is deterministic and make no random
choices.

2. When i∗ ̸∈ Î, we first present a procedure called Replace, which re-samples a state for the
simulator corresponding to some set I ′ in which i∗ ∈ I ′ instead of Î. For that, it needs to
remove from its secret state shares that were sampled for some j∗ ∈ Î \ I. We then simply
run Replace to replace j∗ with i∗, followed by Patch for i∗.

We proceed with describing the above two procedures.

The first Patch algorithm. We first describe the Patch algorithm for the case where i∗ ∈ Î \ I.

Patch(statepre, I, i∗, xi∗ , yi∗) for i∗ ∈ Î \ I.

1. Input: statepre includes the inputs and outputs of all corrupted parties (xi, yi)i∈I , the random
tapes (ri)i∈I as chosen by the simulator, the view of the adversary view which includes all
qj(αi) for i ∈ I for each input of an honest party j ̸∈ I, the shares on each output of fmult,
i.e., fab(αi) for i ∈ I and the polynomials gi(x) for each output wire i ∈ I. In addition, it has
secretChoices which include of qj(αi) for i ∈ Î \ I and fab(αi) for i ∈ Î \ I.

2. Since i∗ ∈ Î \ I, the values qj(αi∗) have already been sampled for every j ̸∈ I, as well as
fab(αi∗) for each multiplication gate. All that is left is to sample the random tape of Pi∗ and
the shares it receives in the output stage.
(a) Random tape: The simulator already sampled qi∗(αi) for every i ∈ Î. Reconstruct the

unique polynomial qi∗(x) that agrees with the points that were sampled, and for which
qi∗(0) = xi∗ . Let ri∗ be the random tape that corresponds to qi∗(x). Add to view the
random tape ri∗ and move qj(αi∗) for every j ̸∈ I from secretChoices to view.

(b) Output wire: Compute the t shares on the output wire oi∗ , corresponding to the set Î.
Reconstruct the unique degree-t polynomial gi∗(x) that agrees with all the shares defined
on oi∗ for the set Î, and with the output yi∗ . Add to view the shares gi∗(αj) for every
j ̸∈ I ∪ {i∗}.

Note that there are no random choices here.
3. Output: the post-corruption state statepost which includes all the inputs and outputs of all

corrupted parties (xi, yi)i∈I∪{i∗}, the random tapes (ri)i∈I∪{i∗} of the corrupted parties, the
modified view and modified secretChoices.

By construction, the new view is compatible with the previous one (i.e., agrees with all the
messages and the randomness that the corrupted parties received).

Claim 5.7. Let t < n. For every I ⊂ [n] of cardinality at most t, for every Î ⊃ I of cardinality
exactly t and i∗ ∈ Î \ I, for every x1, . . . , xn ∈ Fn, f : Fn → Fn and (y1, . . . , yn) = f(x1, . . . , xn), it
holds that: {

Patch
(
S(xI , yI , I, Î), i∗, xi∗ , yi∗

)}
≡

{
S

(
xI∪{i∗}, yI∪{i∗}, I ∪ {i∗}, Î

)}
.

32



Proof. Fix some z in the support of S(xI∪{i∗}, yI∪{i∗}, I ∪ {i∗}, Î). Note that each element in the
support is obtained with exactly the same probability, as S just makes independent random choices:

1. For each i ∈ I ∪ {i∗}, the simulator chooses t coefficients for the polynomial qi(x) uniformly
and independently at random. Those are |I ∪ {i∗}| · t random choices.

2. For each j ̸∈ I ∪ {i∗}, the simulator chooses t random points qj(αi) for every i ∈ Î. Those
are (n− |I ∪ {i∗}|) · t random choices.

3. For each multiplication gate G1, . . . , Gk, the simulator chooses t random points
h1(αi), . . . , hk(αi) for every i ∈ Î. Those are k · t random choices.

All other values (such as the polynomials on the output wires) are deterministically determined
given those random choices. Each element in the support of S(xI∪{i∗}, yI∪{i∗}, I ∪{i∗}, Î) is chosen
with probability ϵ ..= (1/|F|)t·(n+k).

We now consider the process Patch(S(xI , yI , I, Î), i∗, xi∗ , yi∗). We first choose an output w for
S(xI , yI , I, Î). It is easy to see that each element in the support of S(xI , yI , I, Î) is chosen with
probability ϵ as well. Next, we run Patch (w, i∗, xi∗ , yi∗). Since Patch has no random choices, observe
that each w defines a unique value in the support of S(xI∪{i∗}, yI∪{i∗}, I ∪ {i∗}, Î). Moreover, for
every possible element z in the support of S(xI∪{i∗}, yI∪{i∗}, I∪{i∗}, Î) there exists a unique w′ such
that Patch (w′, i∗, xi∗ , yi∗) might lead to z. We conclude that the two distributions are identical. □

The second Patch algorithm: Replace. As mentioned above, when i∗ ̸∈ Î \ I, we first choose
some j∗ ∈ Î \ I for which we already sampled a view, and replace it with i∗, i.e., sample a view
for i∗ that is compatible with the consequences of the random choices we made for j∗. This is the
algorithm Replace.
Replace(statepre, I, j∗, i∗) for j∗ ∈ Î and i∗ ̸∈ Î. Recall that the simulator sampled also shares for

parties not in I, those are the parties in Î \ I. When corrupting a party Pi∗ for i∗ ̸∈ Î, we first
want to replace the underlying corruption set to I ′ = (Î \ {j∗})∪ {i∗} and then invoke Patch as for
i∗ ∈ I ′ \ I. The replace is performed as follows:

1. Input: statepre as above, and j∗ ∈ Î and i∗ ̸∈ Î.
2. The simulator already sampled qj(αj∗) for every j ̸∈ I. Moreover, let G1, . . . , Gk be the

multiplication gates, and let h1(x), . . . , hk(x) be the associated polynomials with the multi-
plication gates. The simulator already sampled h1(αj∗), . . . , hk(αj∗). All of those are part of
secretState. Finally, let (gi(x))i∈I be the polynomial associated with the output wires of the
corrupted parties, and recall that those are part of the view that the simulator has committed
to. Note also that each output wire is a linear combination of the input wires and the outputs
of the multiplication wires.
The simulator now samples qj(αi∗) for every j ̸∈ I and h1(αi∗), . . . , hk(αi∗) that agree with
gi(αi∗) for every i ∈ I. We have |I| constraints, and a total of n− |I|+ k variables, where k
is the number of multiplication gates. We claim below that this set of equations always has
a solution, as we show below. Standard Gauss elimination enables an efficient sampling of a
random solution.

3. Output: Remove from secretChoices all samples qj(αj∗) for j ̸∈ I and h1(αj∗), . . . , hk(αj∗).
Include instead qj(αi∗) for every j ̸∈ I and h1(αi∗), . . . , hk(αi∗). The view of the adversary is
the exact same view. The output is statepost = (view, secretChoices).

We claim that the output distribution of S(xI , yI , I, I ′) (the joint distribution of view and
secretChoices) is distributed identically to running Replace(S(xI , yI , I, Î), j∗, i∗), where the view
obtained in the two processes is exactly the same. We have:
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Claim 5.8. Let t < n. For every I ⊂ [n] of cardinality at most t, for every Î ⊃ I of cardinality
exactly t, for every j∗ ∈ Î \ I and i∗ ̸∈ Î, for every x1, . . . , xn ∈ Fn, deterministic f : Fn → Fn and
(y1, . . . , yn) = f(x1, . . . , xn), it holds that:{

Replace(S(xI , yI , I, Î), j∗, i∗)
}
≡

{
S(xI , yI , I, I ′)

}
,

where I ′ = Î \ {j∗} ∪ {i∗}.

Proof. Recall that the circuit has n input wires marked as i1, . . . , in which hold x1, . . . , xn as the
input values, and k multiplication gates G1, . . . , Gk which hold w1, . . . , wk as the values of the
output wires of the gates. For some known matrix M the output wires of the protocol can be
represented as:

y1
...

yn

 = M ·



x1
...

xn

w1
...

wk


=

m1,1 . . . m1,n+k
... . . . ...

mn,1 . . . mn,n+k

 ·



x1
...

xn

w1
...

wk


.

For the input xI and output yI , we say that a possible sequence of values (x′1, . . . , x′n, w′1, . . . , w′k)
is compatible with xI and yI if the following holds:

1. x′I = xI ;
2. Let (y′1, . . . , y′n) = M · (x′1, . . . , x′n, w′1, . . . , w′k). Then, y′I = yI .

Let compatible(xI , yI) be the set of all (x′, w′) that are compatible with xI an yI , and denote its size
as T ..= |compatible(xI , yI)|. Note that T ≥ 1, as the true inputs that trusted party used (which
fully determine w1, . . . , wk) are always compatible with xI and yI .

Fix some z in the support of S(xI , yI , I, I ′). Note that each element in the support is obtained
with exactly the same probability, as S just makes independent random choices:

1. For each i ∈ I, the simulator chooses t coefficients for the polynomial qi(x) uniformly and
independently at random.

2. For each j ̸∈ I, the simulator chooses t random points qj(αi) for every i ∈ I ′.
3. For each multiplication gate G1, . . . , Gk, the simulator chooses t random points

h1(αi), . . . , hk(αi) for every i ∈ I ′.

All other values (such as the polynomials on the output wires) are deterministically determined
given those random choices. Thus, each element in the support of S(xI , yI , I, I ′) is obtained with
probability ϵ ..= (1/|F|)t·|I|+t·(n−|I|)+kt.

We now consider the process Replace(S(xI , yI , I, Î), j∗, i∗). We first choose an output for
S(xI , yI , I, Î) to obtain some output w. Then, we run Replace(w, j∗, i∗). We claim that for each w
there are T possible values in the support of S(xI , yI , I, I ′) that it might be mapped to, and each is
obtained with probability 1/T . Specifically, each w and set of values (x′, w′) ∈ compatible(xI , yI)
defines a unique possible output z: Since w contains all the shares on all wires of exactly t parties,
it is possible to completely determine the polynomials on the wires given the constant terms. The
set of values x′ defines the constant terms on the input wires, and the set of values w′ defines the
constant terms on the output wires of the multiplication gates.

Thus, the shares of Pi∗ are uniquely determined, and are consistent with the view of the ad-
versary on all wires, as well as the output wires. We claim that the set of shares are different for
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each pair of different values (x′, w′), (x′′, w′′) ∈ compatible(xI , yI). The two vectors of values are
different on at least one input wire of an honest party Pj (or one output wire of multiplication
gate Gl). We claim that qj(αi∗) (or hl(αi∗)) is different in the two executions; otherwise, the two
polynomials equal on t + 1 points (the t point of the parties in Î and on i∗) and therefore are equal;
thus, the input of Pj is the same in both executions, yielding a contradiction.

Next, we claim that for every possible vector z in the support of S(xI , yI , I, I ′) there exist
exactly T possible w′ such that Replace(w′, j∗, i∗) might lead to z. Similarly to the above, given
z, each set of values (x′, w′) ∈ compatible(xI , yI) defines a unique w′ for which Replace(w′, j∗, i∗)
might lead to z. Let Supp(z) define the set of possible such outputs, and recall that |Supp(z)| =
|compatible(xI , yI)| = T . Thus, we can conclude that for every z in the support of S(xI , yI , I, I ′):

Pr
[
Replace

(
S

(
xI , yI , I, Î

)
, j∗, i∗

)
= z

]
=

∑
w∈Supp(z)

Pr
[
S(xI , yI , I, Î) = w

]
· Pr [Replace(w, j∗, i∗) = z]

= T · ϵ · 1
T

= ϵ = Pr
[
S(xI , yI , I, I ′) = z

]
.

This concludes the proof of Claim 5.8. □

5.2.3 Efficient Adaptive Security

Lemma 5.6 proves static security of Protocol 5.5. By construction, it holds that the static simulator
is efficient, black-box, straight-line, and round-by-round. It also admits a committal round since
the inputs never change in the semi-honest setting. Finally, by Claims 5.7 and 5.8 there exists an
efficient patch algorithm. Therefore, Theorem 4.2 yields the following corollary.

Corollary 5.9. Let f be a deterministic n-party functionality. Protocol 5.5 adaptively t-privately
computes f in the fmult-hybrid model with perfect security and efficient simulation facing a semi-
honest adversary, for t < n/2.

Further, if f is a linear function, Protocol 5.5 adaptively t-privately computes f in the plain
model with perfect security and efficient simulation facing a semi-honest adversary, for t < n.
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