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Abstract. Hashing arbitrary values to points on an elliptic curve is
a required step in many cryptographic constructions, and a number of
techniques have been proposed to do so over the years. One of the first
ones was due to Shallue and van de Woestijne (ANTS-VII), and it had
the interesting property of applying to essentially all elliptic curves over
finite fields. It did not, however, have the desirable property of being
indifferentiable from a random oracle when composed with a random
oracle to the base field.
Various approaches have since been considered to overcome this limi-
tation, starting with the foundational work of Brier et al. (CRYPTO
2011). For example, if f : Fq → E(Fq) is the Shallue–van de Woestijne
(SW) map and h1, h2 are two independent random oracles to Fq, we now
know that m 7→ f

(
h1(m)

)
+ f

(
h2(m)

)
is indifferentiable from a random

oracle. Unfortunately, this approach has the drawback of being twice as
expensive to compute than the straightforward, but not indifferentiable,
m 7→ f

(
h1(m)

)
. Most other solutions so far have had the same issue: they

are at least as costly as two base field exponentiations, whereas plain en-
coding maps like f cost only one exponentiation. Recently, Koshelev
(DCC 2022) provided the first construction of indifferentiable hashing
at the cost of one exponentiation, but only for a very specific class of
curves (some of those with j-invariant 0), and using techniques that are
unlikely to apply more broadly.
In this work, we revisit this long-standing open problem, and observe
that the SW map actually fits in a one-parameter family (fu)u∈Fq of en-
codings, such that for independent random oracles h1, h2 to Fq, F : m 7→
fh2(m)

(
h1(m)

)
is indifferentiable. Moreover, on a very large class of curves

(essentially those that are either of odd order or of order divisible by 4),
the one-parameter family admits a rational parametrization, which let
us compute F at almost the same cost as small f , and finally achieve
indifferentiable hashing to most curves with a single exponentiation.
Our new approach also yields an improved variant of the Elligator Squared
technique of Tibouchi (FC 2014) that represents points of arbitrary el-
liptic curves as close-to-uniform random strings.

Keywords: Elliptic curve cryptography · Hashing to curves · Indiffer-
entiability · Elligator · Algebraic geometry
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1 Introduction

Indifferentiable hashing to elliptic curves. Numerous cryptographic prim-
itives and protocols constructed over elliptic curve groups involve hashing to
an elliptic curve: they assume the existence of a public function H mapping
arbitrary bit strings to elliptic curve points / group elements. Moreover, the
function H is supposed to behave “like a random oracle”. Such a functionality is
required for example for many password-authenticated key exchange protocols,
identity-based encryption schemes, short signature schemes, verifiable random
functions, oblivious PRFs and more. It is therefore important to understand how
it can be efficiently instantiated in practice, and moreover with constant-time
implementations, since the data that is hashed to the curve is often sensitive
and can thus be compromised by timing side-channel attacks. This problem is in
fact currently the subject of an IETF standardization effort within the Crypto
Forum Research Group [FHSS+22].

It became an active research topic about a decade ago, particularly after the
work of Brier et al. [BCI+10], which applied Maurer et al.’s indifferentiability
framework [MRH04] to properly formalize what it meant for H to “behave like
a random oracle”, and proposed several constructions satisfying the required
properties. The design paradigm that emerged at the time as the main approach
to hashing to elliptic curve groups combines so-called encoding functions to the
elliptic curve, which are algebraic (or piecewise algebraic) maps from the base
field to the group of points on the curve, with random oracles to the base field
and other sets that are “easy to hash to”, as well as simple arithmetic operations
on the curve.

More precisely, consider for instance4 the problem of hashing to the subgroup
G of cofactor h in E(Fq), where E is an elliptic curve defined over the finite field
Fq and such that E(Fq) is cyclic of order n with generator P . Then Brier et
al. [BCI+10] showed that the following construction:

Hslow(m) = [h] ·
(
f
(
h1(m)

)
+ [h2(m)]P

)
(1)

is indifferentiable from a random oracle when h1 and h2 are modeled as inde-
pendent random oracles to Fq and Z/nZ respectively (which are easy to realize,
heuristically, using bitstring-valued hash functions) and f : Fq → E(Fq) is a
mapping (the encoding function) satisfying mild conditions. This means that
whenever5 a cryptographic scheme or protocol is proved secure in the random
oracle model with respect to a G-valued random oracle H, that random oracle
can be instantiated securely with the construction Hslow.

As we have mentioned, the construction above requires a suitable encoding
function f : Fq → E(Fq). A number of candidates were known at the time for

4 The general case of a non-cyclic E(Fq) can be treated similarly. We refer to Brier et
al. [BCI+10] for details.

5 Technically, this holds in the case of single-stage security games, as clarified by
Ristenpart et al. [RSS11]. This limitation is rarely of concern in our context.
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various classes of elliptic curves, such as those of Shallue and van de Woesti-
jne [SvdW06], Ulas [Ula07] or Icart [Ica09], and many more have been pro-
posed since [KLR10,FT10,Far11,FT12,FJT13,BHKL13,WB19]. All of them can
be computed in constant time at the cost of one full size exponentiation in Fq

(typically a square root or cube root computation), which dominates the com-
plexity, plus a few other less costly operations in the field, like multiplications,
inversions and Jacobi symbol computations.

In contrast, the second term of Hslow is a full-size scalar multiplication over
the curve, which typically exceeds the computationally cost of a field exponenti-
ation by a factor of 10 or more depending on base field size and curve arithmetic.
This makes Hslow a fairly inefficient construction.

To alleviate this issue, Brier et al. also proved that the following construction
is also indifferentiable from a random oracle:

Hsquare(m) = [h] ·
(
f
(
h1(m)

)
+ f

(
h1(m)

))
(2)

when h1 and h2 are modeled as independent random oracles to Fq, and when
f is specifically Icart’s function. The result was later extended by Farashahi et
al. [FFS+13], who showed that basically all of the known encoding functions
f could also be plugged into that construction. This provides indifferentiable
hashing to arbitrary elliptic curves at the cost of essentially two base fields
exponentiations.

On the other hand, in certain primitives and protocols proved secure with
respect to a G-valued random oracle H, one can show that H can be securely
instantiated using the following simpler construction:

Hnon-unif(m) = [h] · f
(
h(m)

)
(3)

where h is modeled as a random oracle to Fq. This construction is not nearly as
well-behaved as (2). In fact, f usually only reaches a fraction of the points on
E(Fq), and induces a non-uniform distribution over its image, so that Hnon-unif

can typically be efficiently distinguished from a random oracle, and in particu-
lar it is not indifferentiable in the sense discussed so far. Nevertheless, certain
primitives and protocols do not require the full strength of indifferentiability,
and Hnon-unif is sometimes sufficient to let their security proofs go through.

A rough idea of why this happens is that, in a random oracle proof of security,
the simulator generally want to program the random oracle by setting the hash
of some message m to a value Q, but that point Q itself can usually be anything
depending on some randomness. So assuming that h = 1, the simulator might
typically want to set H(m) to Q = [r] · P for some random r, say. Now if H is
defined in the protocol using a construction like (3), the simulator would pick
a random r and set h(m) to one of the preimages u ∈ f−1(P ) if P ∈ f(Fq). If
however P is not in the image of f , the simulator would pick another random r
and try again.

Therefore, construction (3), while less general and well-behaved than (2), is
sometimes good enough for security at half the computational cost. This is a
substantial difference in terms of efficiency that practitioners may be sensitive
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to, so much so that both of these constructions are in fact proposed in the current
IETF draft [FHSS+22]. Construction (3), however, comes with the caveats that
applications using it “SHOULD carefully analyze the security implications of
nonuniformity”, and that “cryptographic protocols whose security analysis relies
on a random oracle that outputs points with a uniform distribution MUST NOT”
use it. This results in the somewhat unfortunate situation that implementers
have to choose between two approaches for implementing hashing to elliptic
curves: one which is secure in all cases but slower, and one which is faster but
requires a careful analysis to ascertain that it does not fully compromise the
security of the scheme.

The quest for fast indifferentiable hashing. Ideally, one would prefer to
have the best of both worlds: indifferentiable hashing at the cost of a single
exponentiation in the base field instead of two. Obtaining this for general elliptic
curves is a long-standing open problem.

In special cases, solutions exist: this is particularly the case for supersingular
curves of j-invariant 0 and 1728, for which it has long been known [BF01,FT10]
that an “almost bijective” encoding function f exists; it is then easy to check
that plugging that f into construction (3) does achieve indifferentiability. Unfor-
tunately, those types of supersingular curves, which were popular to reach the
80-bit security level in pairing applications in the early 2000s, are no longer used
today due to exceedingly large parameters at higher security levels. Moreover,
there are strong reasons to believe that almost bijective encodings cannot exist
for general elliptic curves [Tib14b].

Progress towards adressing the general open problem was made by Tibouchi
and Kim [TK17], who extended the statistical results of Farashahi et al., and
established in particular that, asymptotically, it was possible to achieve indif-
ferentiable hashing at a cost of less than two exponentiations by tweaking con-
struction (1) with a random oracle h2 mapping to a short interval. That result
is mostly of theoretical significance, however, since it requires very large base
fields to provide meaningful error bounds.

Recently, Koshelev [Kos22] made a practically significant advance, by show-
ing that indifferentiable hashing at the cost of a single exponentiation was pos-
sible for certain ordinary curves of j-invariant 0 over suitable base fields. This is
still a negligible fraction of all elliptic curves, but it is practically relevant since
it includes pairing-friendly curves like some of the BLS12 used today. Koshelev’s
approach is also the first one considered in the last decade or so that substantially
departs from the framework of constructions (1)–(3) above. While those earlier
techniques reduce the problem of indifferentiable hashing to the encoding func-
tion f : Fq → E(Fq), which is defined over a one-dimensional domain, Koshelev
bases its construction on a map F : F2

q → E(Fq) with a two-dimensional range.
Looking back at Brier et al.’s original proof for the indifferentiability of construc-
tion (2) using Icart’s encoding function, this is fairly natural (since that proof
was constructed around a two-dimensional argument), but it is an important
shift in perspective.
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In this paper, we use a similar idea (albeit very different techniques) to settle
the open problem for a large class of elliptic curves: for essentially all curves
over fields Fq with q ≡ 1 (mod 3) with either odd order or order divisible by 4
(this includes almost all elliptic curves in current use), we are able to construct
a new indifferentiable hashing, which we call SwiftEC, at the cost of a single
exponentiation in the base field.

Representing points as uniform random strings. A very different ques-
tion, but which has been tackled using similar techniques, was introduced in
Bernstein et al.’s Elligator paper [BHKL13]: how can one represent a uniform
point on E(Fq) in a public way as a close to uniform random bit string. The
stated goal was to achieve a form of steganography for censorship circumven-
tion. Indeed, network traffic containing points on a certain elliptic curve (e.g.
public keys for encryption or signature) represented in usual ways (either as full
coordinates (x, y), in compressed form (x, sgn y) or in x-only form) can be easily
distinguished from random, which may lead to automated traffic interruption or
targeted surveillance.

As a countermeasure, Bernstein et al. suggested to use an encoding function
f : Fq → E(Fq) with the property that it maps an interval I ⊂ Fq of length
≈ q/2 injectively into E(Fq). Then, any point in f(I) can be represented by its
unique preimage under f in I. In particular, if q is close to a power of two, this
readily gives a simple representation of random elements in f(I) ⊂ E(Fq) as
uniform random bit strings (and when q is far from a power of two, it suffices to
represent elements of I as uniform random bit strings, which can be easily done
by expanding the representation and introducing randomness).

This approach has two drawbacks. First, suitable encodings f that are in-
jective over a large interval are hard to construct, and only known for limited
families of elliptic curves [Far11,FJT13,BHKL13], all of order divisible by 3 or 4
(and hence not including curves of prime order, for example). Second, one needs
to address the issue of points falling outside f(I). Since the goal is to represent
random points on E(Fq) as bit strings, the assumption is that in the crypto-
graphic protocol under consideration, the point to represent is obtained by some
sort of random process, and it is possible to use rejection sampling until reaching
f(I). Since the image size covers roughly half of all points on the curve, this will
require about two iterations on average, often an acceptable cost. However, if
the process generating the point is expensive, rejecting may be less than ideal.

Tibouchi’s Elligator Squared paper [Tib14a] addressed these shortcomings by,
in essence, applied construction (2) above “in reverse”. One of the key properties
that makes construction (2) an indifferentiable hash function is the fact that, for
an encoding function f : Fq → E(Fq), the following map:

f⊗2 : F2
q → E(Fq)

(u, v) 7→ f(u) + f(v)
(4)

induces a close-to-uniform distribution on its image. In particular, a uniformly
random preimage of a uniformly random point in E(Fq) is close to uniform in F2

q.
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This provides a simple solution to the point representation problem that works
for general elliptic curves and can represent all points, avoiding the need for
rejection sampling inside the protocol to reach a particular subset of the curve.
However, representation size is about twice as large as Elligator (a drawback
partially addressed in subsequent work [TK17]) and the representation func-
tion, computing uniformly random preimages under f⊗2, is also somewhat more
complicated and costly than that of Elligator.

Basically, to compute a random preimage of P ∈ E(Fq), one picks a uniform
v ∈ Fq and computes u as a preimage of P − f(v). However, rejection sam-
pling is necessary to ensure the uniformity of the distribution, which requires
multiple iterations, each of them evaluating the function f (at a cost of a field
exponentiation each).

In this paper, as a by-product of our new SwiftEC construction, we also
obtain ElligatorSwift, a much faster variant of Elligator Squared over all
the curves over which SwiftEC is defined. The idea is that fully computing the
underlying encoding in the forward direction becomes unnecessary, saving many
field exponentiations in the process.

Contributions and technical overview. The starting point of our work is to
revisit the first construction of an encoding function to general elliptic curves,
originally due to Shallue and van de Woestijne [SvdW06]. We observe that that
construction actually had a number of interesting properties that have not been
considered so far, and that we manage to build upon with suitable additional
analysis. To describe them, we need to first recall a few facts about the Shallue–
van de Woestijne encoding itself.

Given an elliptic curve E : y2 = g(x) (g(x) = x3 + ax + b) over a finite field
Fq of characteristic ≥ 5, Shallue and van de Woestijne construct a certain alge-
braic surface S in the affine space over Fq together with three rational functions
x1, x2, x3 such that the product g(x1)g(x2)g(x3) is a square. This means in par-
ticular that, when evaluated at any point P of S(Fq) (outside of the locus of
poles), at least one of x1(P ), x2(P ) or x3(P ) must be the x-coordinate of a point
in E(Fq). Indeed, the product g

(
x1(P )

)
g
(
x2(P )

)
g
(
x3(P )

)
is a square in Fq, and

since the product of three nonsquares in Fq is a nonsquare, at least one of the
factors must be square, yielding the x-coordinate of a point in E(Fq). Based on
that, we can define an encoding function from S(Fq) to E(Fq) simply by map-
ping a point P to one of the points of x-coordinate xi(P ) that works (selecting
the index i and the sign of the y-coordinate in a predetermined way).

The second step of the construction is to note that the specific surface S
under consideration can in fact be seen as a one-parameter family of conics over
Fq. Based on that, Shallue and van de Woestijne fix the value of the parameter,
obtain a single non-degenerate conic over Fq, and use the fact that such a conic
always admits a rational parametrization to obtain a map Fq → S(Fq) to the
chosen conic. Composing with the previous map finally gives an encoding Fq →
E(Fq) as desired, which can be used in constructions (1)–(3) above for hashing,
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and in the Elligator Squared framework: this is what is usually known as the
Shallue–van de Woestijne encoding.

Our contributions rely on two novel observations regarding that original con-
struction:

– first, for a large class of elliptic curves E which we characterize in details,
the surface S regarded as a family of conics actually admits a global, two-
parameter parametrization over Fq. This means that one can effectively con-
struct a rational map F2

q → S(Fq) that is essentially a bijection. This result is
obtained using techniques due to van Hoeij and Cremona [vHC06] classifying
conics over function fields;

– second, unlike each of the maps defined by individual conics, the map from
S(Fq) as a whole to the set XE,Fq

of elements of Fq which are x-coordinates
on E(Fq) is admissible: it satisfies the sufficient conditions of Brier et al. [BCI+10]
to construct indifferentiable hashing. The most important of those conditions
is regularity: the image of a uniform point in S(Fq) is close to uniform in
XE,Fq

. We are able to establish that property by giving a precise description
of the preimage of an x ∈ XE,Fq

: it consists of the union of one algebraic
curve drawn on S (the set of points P such that x1(P ) = x, say) and two
halves of two other curves (the subset of the curves given by x2(P ) = x and
x3(P ) = x respectively, with the condition that g(x1(P )) is a nonsquare).
By counting points on those curves and curve subsets, we are able to estab-
lish the required statistical properties, and deduce that S(Fq) → XE,Fq

is
admissible.

Combining those two observations, we obtain, for a large, explicit class of
elliptic curves E (including almost all curves in practical use), an admissible
encoding F2

q → XE,Fq
. Adding a sign bit to choose the y-coordinate on E yields

an admissible encoding F : F2
q ×{0, 1} → E(Fq) as well, which can be computed

at the cost of a single exponentiation in Fq (namely, the square root computation
needed to derive the y-coordinate). This has the two consequences mentioned
above, over the elliptic curves E of interest:

– given a hash function h modeled as a random oracle with values in F2
q ×

{0, 1} (which is easy to heuristically instantiate), the map m 7→ F
(
h(m)

)
is

indifferentiable from a random oracle, and can be computed at the cost of a
single exponentiation. This is the SwiftEC construction;

– given a uniform point on the curve, we can efficiently sample a uniform
preimage of it under F , and this becomes a close-to-uniformly distributed
element of F2

q×{0, 1}. Since such an element is easy to represent as a uniform
bit string, we thus obtain an Elligator Square-like representation technique
which is much faster than Elligator Square itself, as it requires far fewer field
exponentiations on average. This is the ElligatorSwift construction.

In addition, we also get indifferentiable hashing to the set XE,Fq
without

any field exponentiation at all. This even faster construction, XSwiftEC, is
particularly interesting in context where x-only arithmetic is feasible, such as
for example BLS signatures [BLS01].
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2 Preliminaries

2.1 Quadratic Residuosity

Throughout this paper, Fq denotes the finite field with q elements. We only
consider finite fields of characteristic 6= 2, 3. The quadratic character χ2 : Fq →
{−1, 0, 1} is the map that sends 0 to 0, nonzero squares to 1 and nonzero non-
squares to−1. It is well-defined, multiplicative, and extends the unique nontrivial
multicative group morphism F×q → {−1, 1}. A related map is IsSquare, which
sends all squares to 1 and nonsquares to 0.

When q is prime, the quadratic character coincides with the Legendre sym-
bol, and can be computed efficiently by repeated applications of quadratic reci-
procity. This can be implemented in fast constant time [Por20,Ham21,AG21],
similar to the constant-time binary GCD technique of Bernstein–Yang for field
inversion [BY19]. Similarly, the quadratic character over extension extension
fields can be computed fast by descending to the prime field, and IsSquare can
be trivially computed from χ2.

We also fix an efficiently computable map sgn: Fq → {−1, 0, 1} called the
“sign”, with the property that sgn 0 = 0, sgnx 6= 0 for x 6= 0, and sgn(−x) =
− sgnx. The choice is arbitrary, but for example over prime fields, it is customary
to use the sign of an integer representative in the interval (−q/2, q/2) (over
extension fields, one might choose the sign of the first nonzero coefficient in
some basis over the prime field).

An element x ∈ Fq which is a square has exactly two square roots (except 0
which has just one), exactly one of which is of nonnegative sign. We denote it by√
x; it typically requires a single base field exponentiation to compute (although

slightly faster approaches may exist over extension fields).

2.2 Elliptic curves and isogenies

An elliptic curve is a smooth projective curve of genus 1 endowed with a distin-
guished rational point. Such curves admit the definition of a point addition law,
which gives the curve a structure as group variety, with the distinguished point
playing the role of the group identity. Over Fq, any elliptic curve can be written
up to isomorphism in the short Weierstrass form:

E : y2 = x3 + ax+ b,

for some a, b ∈ Fq such that the discriminant ∆E := −16(4a3 + 27b2) is nonzero.
On such a curve, group inverses are defined by −(x, y) = (x,−y) and the points
of order 2 are those with y = 0. When ∆E is a square there are either zero or
three points of order 2. Otherwise, there is exactly one.

We denote by E(Fq) the group of Fq-rational points of E. The cardinality of
this group is always #E(Fq) = q − t + 1 for some t bounded by |t| ≤ 2

√
q. We

say that the curve is supersingular if t is a multiple of the field characteristic,
and otherwise the curve is ordinary. We focus on the case of ordinary elliptic
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curves, where finding adequate and efficient encodings has long been a greater
challenge.

An isogeny is any non-constant rational map between elliptic curves that
is also a group homomorphism. Up to an isomorphism, a separable isogeny is
uniquely determined by its kernel and its degree as a rational map is equal to the
size of the kernel. Any isogeny φ : E → E′ has a dual isogeny φ̂ : E′ → E such
that the composition φ̂◦φ equals the multiplication-by-d map, where d = deg(φ).
Two curves over a finite field are isogenous if and only if they have exactly the
same number of points.

2.3 Point counting and character sums

A generalization of the result above on the number of rational points of an elliptic
curve is that any (absolutely irreducible) smooth curve of bounded genus over Fq

has a number of points over Fq close to q. More precisely, the following celebrated
result holds:

Lemma 1 (Hasse–Weil bound). For any smooth projective absolutely irre-
ducible curve X/Fq of genus g, we have:∣∣#X(Fq)− (q + 1)

∣∣ ≤ 2g
√
q.

For curves of bounded degree, the number of points at infinity is also bounded,
and we thus get a bound of the form #Xaff(Fq) = q + c

√
q +O(1) (|c| ≤ 2g) on

the number of affine points on X.
A related result concerns character sums on such curves. Let χ be a multi-

plicative character of Fq (a group homomorphism F×q → C× extended by 0 at
0), and f ∈ Fq(X) a rational function on the curve X. We consider the following
character sum:

W (X,χ, f) =
∑

P∈X(Fq)
f(P ) 6=∞

χ
(
f(P )

)
.

Using the Bombieri–Weil methodology, Perret [Per91] proves the following bound.
See also [CM00,TK17].

Lemma 2 (Perret). Let X be a smooth projective absolutely irreducible curve
of genus g over Fq, χ a nontrivial multiplicative character of order m|q− 1, and
f ∈ Fq(X) a rational function which is not a perfect m-th power in F̄q(X). The
character sum W (X,χ, f) can be bounded as:∣∣W (X,χ, f)

∣∣ ≤ (2g − 2 + 2 deg f)
√
q.

2.4 Quadratic residuosity over function fields

Many results of classical arithmetic over Q and number fields have analogues
over function fields. This is in particular the case for quadratic reciprocity. We
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recall some of the relevant results below. An exhaustive treatment is provided
in Rosen’s textbook [Ros02, pp. 23-31].

For a fixed monic irreducible polynomial f ∈ Fq[t], we define the quadratic

residue symbol
(

g
f

)
2

for any g ∈ Fq[t] as the image of g under the quadratic

character of the finite field Fq[t]/(f). In other words:

(
g

f

)
2

=


0 if f divides g;

1 if g is coprime to f and a square modulo f ;

−1 if g is coprime to f and a nonsquare modulo f .

We then extend this symbol to not necessarily irreducible f ’s by multiplica-
tivity, similarly to how the Jacobi symbol extends the Legendre symbol. If
f = αfe1

1 · · · fenn with α ∈ F×q and the fi irreducible, we let:(
g

f

)
2

=
∏
i=1

n

(
g

fi

)
2

.

Note that the symbol does not depend on the leading coefficient lc(f) = α of f .

Lemma 3. The quadratic residue symbol has the following properties.

– If g1 ≡ g2 (mod f),
(

g1

f

)
2

=
(

g2

f

)
2
.

–
(

g1g1

f

)
2

=
(

g1

f

)
2

(
g2

f

)
2
.

–
(

g
f1f2

)
2

=
(

g
f1

)
2

(
g
f2

)
2
.

–
(

g
f

)
2
6= 0 if and only if f and g are coprime.

– If g is a nonzero square modulo f , then
(

g
f

)
2

= 1 (but the converse does not

need to hold).

Furthermore, it satisfies the following law of quadratic reciprocity. For f, g ∈
Fq[t] coprime and nonzero, it holds that:(

g

f

)
2

(
f

g

)
2

= (−1)
q−1

2 deg f deg g lc(f)
q−1

2 deg g lc(g)
q−1

2 deg f .

2.5 Statistical notions

For D a probability distribution on a finite set S, we write Pr[s ← D ] for the
probability assigned to the singleton {s} ⊂ S by D . The uniform distribution
on S is denoted by US (or just U if the context is clear).

Definition 1 (Statistical distance). Let D and D ′ be two probability distri-
butions on a finite set S. The statistical distance between them is defined as the
`1 norm:

∆1(D ,D ′) =
1

2

∑
s∈S

∣∣Pr[s← D ]− Pr[s← D ′]
∣∣.
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We simply denote by ∆1(D) the statistical distance between D and US:

∆1(D) =
1

2

∑
s∈S

∣∣∣Pr[s← D ]− 1

#S

∣∣∣,
and say that D is ε-statistically close to uniform when ∆1(D) ≤ ε. When ∆1(D)
is negligible, we simply say than D is statistically close to uniform.

Definition 2 (Pushforward). Let S, T be two finite sets and F any map-
ping from S to T . For any probability distribution DS on S, we can define the
pushforward F∗DS of DS by F as the probability distribution on T such that
sampling from F∗DS is equivalent to sampling a value s ← DS and returning
F (s). In other words:

Pr
[
t← F∗DS

]
= Pr

[
s← DS ; t = F (s)

]
= µS

(
F−1(t)

)
=

∑
s∈F−1(t)

Pr[s← DS ],

where µS is the probability measure defined by DS.

Definition 3 (Regularity). Let S, T be two finite sets and F any mapping
from S to T . We say that F is ε-regular when F∗US is ε-close to the uniform
distribution. We may omit ε if it is negligible.

2.6 Admissible encodings

In their work on the construction of indifferentiable hashing to elliptic curves,
Brier et al. [BCI+10] define the notion of an admissible map F : S → R between
two sets. The definition, which generalizes an early notion introduced by Boneh
and Franklin [BF01], is as follows.

Definition 4 (Admissible encoding). A function F : S → R between finite
sets is an ε-admissible encoding if it satisfies the following properties:

Computable: F is computable in deterministic polynomial time.
Regular: F is ε-regular (in the sense of the previous section).
Samplable: there is an efficient randomized algorithm I : R → S t {⊥} such

that for any r ∈ R, I (r) induces a distribution that is ε-statistically close
to the uniform distribution in F−1(r).

F is an admissible encoding if it is ε-admissible for some negligible ε.

That notion satisfies the suitable properties such that, given an S-valued
random oracle h, the composition F ◦h is indifferentiable from a R-valued random
oracle.

Moreover a similar results holds for arbitrary compositions of admissible
functions (even though admissibility need not be preserved under composition).
Namely, if Fi : Si → Si−1 are admissible encodings for i = 1, . . . , n, then it also
holds that, given an Sn-valued random oracle h, the composition F1◦· · ·◦Fn◦h is
indifferentiable from a S0-valued random oracle (even though it does not always
hold that F1 ◦ · · · ◦ Fn is admissible).
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3 The SW Encoding Family

In their seminal ANTS–VII paper [SvdW06], Shallue and van de Woestijne con-
structed the first encoding function to arbitrary elliptic curves. In this section,
we give a description of that construction (restricted for simplicity to base fields
of characteristic ≥ 5) that is slightly different but essentially equivalent to the
original one, and then we state new properties of that construction.

In the entire section, we fix an elliptic curve E : y2 = x3 + ax + b over the
finite field Fq (q prime power not divisible by 2 or 3), and denote by XE,Fq the
subset of Fq consisting of x-coordinates of poins in E(Fq); in other words:

XE,Fq
=
{
x ∈ Fq ; ∃y, (x, y) ∈ E(Fq)

}
.

3.1 Construction of the Shallue–van de Woestijne encoding

Let g and h be the polynomials over Fq defined by:

g(u) = u3 + au+ b and h(u) = 3u2 + 4a.

The starting point of the Shallue–van de Woestijne construction is the construc-
tion of a rational map ψ : S → V from the following quasi-affine surface in the
(x, y, u) affine space:

S : x2 + h(u)y2 = −g(u), y 6= 0 (5)

to the following threefold in the (x1, x2, x3, z) affine 4-dimensional space:

V : z2 = g(x1)g(x2)g(x3).

The rational map ψ is given by the following explicit equations and clearly
defined everywhere on S:

x1 =
x

2y
− u

2
x2 = − x

2y
− u

2

x3 = u+ 4y2 z =
g(u+ y2)

y
·R
(
u,

x

2y
− u

2

) (6)

where R(u, v) = u2 + uv + v2 + a. When referring to a point P on S, we will
denote by x1(P ), x2(P ), x3(P ) and z(P ) the corresponding coordinates of ψ(P )
in V . In particular, this defines x1, x2, x3 and z as rational functions on the
surface.

A remarkable property of the threefold V is that for any point (x1, x2, x3, z) ∈
V (Fq), at least one of the three values x1, x2, x3 must be in XE,Fq

. Indeed,
g(x1)g(x2)g(x3) is a square in Fq, so by multiplicativity of the quadratic char-
acter, they cannot be all nonsquares (and in fact, there must be exactly one or
three squares among them, except possibly when z = 0).
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As a result, one can therefore map points on S(Fq) to XE,Fq
by first map-

ping to V (Fq) with ψ, and then selecting one of the coordinates x1, x2, x3 in a
prescribed order. For example, in this paper we will consider the following map:

F0 : S(Fq)→ XE,Fq

P 7→


x3(P ) if g

(
x3(P )

)
is a square;

x2(P ) if g
(
x3(P )

)
is not a square but g

(
x2(P )

)
is;

x1(P ) if neither g
(
x3(P )

)
or g

(
x2(P )

)
are squares.

(7)

Note that F0(P ) is very efficient to compute from the coordinates (x, y, u) of
P using the formulas of (6) and a few quadratic character computations. In
particular, it requires no field exponentiation.

Of course, once we have an element x̄ ∈ XE,Fq
, it is easy to deduce a point in

E(Fq): simply compute a square root of g(x̄) to get the y-coordinate up to sign.
Since we prefer to select the sign separately, we define the following extended
map to E(Fq) which takes an additional input bit b:

F+
0 : S(Fq)× {0, 1} → E(Fq)

(P, b) 7→
(
F0(P ), (−1)b

√
g
(
F0(P )

))
.

(8)

The construction offers a way to map to E(Fq) provided that one can con-
struct rational points on the surface S itself, which may not be a priori obvious.
Fortunately, as seen from equation (5), each of the curves Su0 on S obtained by
fixing u to some u0 ∈ Fq are simply conics over Fq, with equations:

x2 + h(u0)y2 = −g(u0), y 6= 0.

Now, a conic over Fq always admits a rational parametrization. Therefore, we
can construct a map Fq → Su0

(Fq) that can then be composed with F+
0 to

obtain an encoding function F0,u0 : Fq → XE,Fq (and similarly to E(Fq)). This
is basically the approach taken in the original paper of Shallue and van de
Woestijne [SvdW06].

Note that obtaining the parametrization of the conic Su0
for a fixed u0 re-

quires an a priori costly precomputation (it requires finding a point on the
conic, typically by trial-and-error: this costs a square root, and a number of
quadratic character computations that is hard to bound uniformly). Therefore,
while it may be tempting to try and define a two-parameter map F2

q → XE,Fq by
(t, u) 7→ F0,u(t), this is not usually workable for hashing purposes, since a new
parametrization would have to be computed for any new input u.

Nevertheless, we show in the remainder of this section that the maps F0 and
F+

0 on the surface S(Fq) as a whole have nice statistical properties, and it would
therefore be beneficial to overcome the difficulty of efficiently parametrizing it.
That problem will then be addressed, at least for a large class of elliptic curves
E, in Section 4 below.
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3.2 Geometry of the SW family

For a fixed element x̄ ∈ XE,Fq
, we now want to describe the set of points in

S(Fq) that map to x under the encoding F0 of (7). By the previous description
of the encoding, this is the union of three disjoint sets:

F−1
0 (x̄) = C

(3)
x̄ (Fq) t C(2)

x̄ (Fq)+ t C(1)
x̄ (Fq)+,

where C
(i)
x̄ are algebraic curves on S defined by the condition that xi = x̄

(i = 1, 2, 3) and C
(i)
x̄ (Fq)+ is the subset of C

(i)
x̄ (Fq) under the condition that

g
(
xj(P )

)
is not a square for j 6= i. Note that since there are always exactly only

1 or 3 squares, it suffices to define

C
(1)
x̄ (Fq)+ := {P ∈ C(1)

x̄ (Fq); x2(P ) not a square}

C
(2)
x̄ (Fq)+ := {P ∈ C(2)

x̄ (Fq); x1(P ) not a square}

We would like to count the number of points in each of these sets. The first

step is to understand the geometry of the curves C
(i)
x̄ . It is easy to see that, for

a generic x̄, they are hyperelliptic curves of genus 2.

Consider for example C
(3)
x̄ . It is given by the equations (cf. (6)):

u+ 4y2 = x̄ and x2 + h(u)y2 = −g(u).

Eliminating u = x̄ − 4y2 between those two equations, we see that that C
(3)
x̄ is

isomorphic to the curve in the (y, x) affine plane given by the equation:

x2 = −g(x̄− 4y2)− h(x̄− 4y2)y2.

The right-hand side is a polynomial of degree 6 in y, namely:

16y6 − 24x̄y4 + 9x̄2y2 − g(x̄),

whose discriminant is a polynomial of degree exactly 11 in x̄ (or exactly 9 if

a = 0). We thus get that C
(3)
x̄ is a hyperelliptic curve of genus 2, except for at

most 11 points x̄. Other than for those exceptional points, we have:

#C
(3)
x̄ (Fq) = q + c3

√
q +O(1), for some c3 such that |c3| ≤ 4.

by the Hasse–Weil bound. Note that the O(1) term comes from the fact that
we consider the affine situation rather than the projective one, and we could
easily provide an explicit bound for it, but this is typically not of interest for
cryptographic applications.

Similarly, C
(2)
x̄ is given by the equations:

− x

2y
− u

2
= x̄ and x2 + h(u)y2 = −g(u).
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Eliminating x = −y(u+ 2x̄) between those two equations, we see that that C
(2)
x̄

is isomorphic to the curve in the (u, y) affine plane given by the equation:

y2
[
(u+ 2x̄)2 + h(u)

]
= −g(u),

which is again isomorphic to the curve in the (u, v) affine plane, v = y
[
(u +

2x̄)2 + h(u)
]
, of equation:

v2 = −g(u) ·
[
(u+ 2x̄)2 + h(u)

]
.

The right-hand side is a polynomial of degree 5 in u, namely:

−4
(
u5 + x̄u4 + (x̄2 + 2a)u3 + (ax̄+ b)u2 + (ax̄2 + bx̄+ a2)u+ b(x̄2 + a)

)
,

and its discriminant is always of degree 14 in x̄ (the degree 14 coefficient is

216 · 3 · (4a3 + 27b2) 6= 0). Thus, C
(2)
x̄ is a hyperelliptic curve of genus 2, except

for at most 14 points x̄. Other than for those exceptional points, we therefore
have:

#C
(2)
x̄ (Fq) = q + c2

√
q +O(1) for some c2 such that |c2| ≤ 4

by the Hasse–Weil bound.

A similar computation gives the same result for C
(1)
x̄ , given by the equations:

x

2y
− u

2
= x̄ and x2 + h(u)y2 = −g(u).

Indeed, eliminating x = y(u+ 2x̄) between those two equations shows that C
(1)
x̄

is also isomorphic to the curve in the (u, y) affine plane given by the equation:

y2
[
(u+ 2x̄)2 + h(u)

]
= −g(u),

the same as above. It therefore holds again that, except for at most 14 points x̄,

C
(2)

1̄
is a hyperelliptic curve of genus 2, and:

#C
(1)
x̄ (Fq) = q + c1

√
q +O(1) for some c1 such that |c1| ≤ 4

by the Hasse–Weil bound.

It remains to evaluate the cardinality of the subsets C
(i)
x̄ (Fq)+ ⊂ C(i)

x̄ (Fq) for
i = 1, 2. One can do so in various ways, but the simplest is probably to relate
them to character sums. Consider for example the following character sum on

C
(1)
x̄ :

W1 := W
(
C

(1)
x̄ , χ2, g ◦ x2

)
=

∑
P∈C(1)

x̄ (Fq)

χ2

(
g
(
x2(P )

))
,

where χ2 is the quadratic multiplicative character of Fq. The term χ2

(
g
(
x2(P )

))
is equal to −1 if g

(
x2(P )

)
is not a square in Fq, which is exactly when P ∈
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C
(1)
x̄ (Fq)+. Moreover, it is otherwise equal to 1 (for points outside C

(1)
x̄ (Fq)+

such that x2(P ) 6= 0) or 0 (for points outside C
(1)
x̄ (Fq)+ such that x2(P ) = 0).

As a result, we have:

W1 = (−1) ·#C(1)
x̄ (Fq)+ + 1 · (#C(1)

x̄ (Fq)−#C
(1)
x̄ (Fq)+ −N0) + 0 ·N0

= #C
(1)
x̄ (Fq)− 2 ·#C(1)

x̄ (Fq)+ −N0,

where N0 = O(1) is the number of points in C
(1)
x̄ (Fq) such that x2(P ) = 0. This

gives:

#C
(1)
x̄ (Fq)+ =

1

2
#C

(1)
x̄ (Fq)− W1

2
+O(1) =

q

2
+
c1
2

√
q − W1

2
+O(1),

where the O(1) term accounts both for N0 and for the fact that we consider an
affine situation instead of a projective one.

Then, by the character sum estimate of Lemma 2, we have:

|W1| ≤
(
4− 2 + 2 deg(g ◦x2)

)√
q+O(1) = (2 + 2 · 3 · 2)

√
q+O(1) = 14

√
q+O(1)

since x2 = u− x̄ on C
(1)
x̄ is a rational function of degree 2. It then follows that:

#C
(1)
x̄ (Fq)+ =

q

2
+ c+1

√
q +O(1) for some c+1 such that |c+1 | ≤

4 + 14

2
= 9.

Obviously, the exact same argument applies to C
(2)
x̄ , yielding:

#C
(2)
x̄ (Fq)+ =

q

2
+ c+2

√
q +O(1) for some c+2 such that |c+2 | ≤ 9.

Combining all the previous estimates, we finally obtain the following result.

Theorem 1. For all x̄ ∈ XE,Fq except at most 39 of them, the number of preim-
ages of x̄ under the F0 map of equation (7) is close to 2q, and the difference is
bounded as: ∣∣#F−1

0 (x̄)− 2q
∣∣ ≤ 22

√
q +O(1).

Proof. Indeed, except for the at most 11 + 14 + 14 = 39 exceptional points
mentioned above, we have:

#F−1
0 (x̄) =

(
1 +

1

2
+

1

2

)
q +

(
c+1 + c+2 + c3

)√
q +O(1)

and since
∣∣c+1 + c+2 + c3| ≤ 4 + 9 + 9 = 22, the result follows.

3.3 The SW family is admissible

Using Theorem 1, we are now in a position to prove that the encoding function
F0 is admissible in the sense of Section 2.6. The main step in doing so is to prove
that it is regular.



SwiftEC 17

Lemma 4. The map F0 : S(Fq) → XE,Fq
of equation (7) is ε-regular for ε =(

6 + o(1)
)
q−1/2.

Proof. Let ∆ = ∆1

(
(F0)∗US(Fq)

)
be the statistical distance between the distri-

bution induced by F0 on XE,Fq
and the uniform distribution. By definition, we

have:

∆ =
1

2

∑
x̄∈XE,Fq

∣∣∣∣#F−1(x̄)

#S(Fq)
− 1

#XE,Fq

∣∣∣∣.
Now for each element x̄ ∈ XE,Fq

, there are exactly two points of E(Fq) with
x-coordinate equal to x̄, except if g(x̄) = 0, in which case there is exactly one
(and this happens for at most three values of x̄). Taking the point at infinity
into account, we therefore get:

#XE,Fq =
1

2
#E(Fq) +O(1) =

q

2
+ cE

√
q +O(1) for some cE with |cE | ≤ 1

by yet another application of the Hasse–Weil bound. Up to sign, the constant
cE is half the normalized Frobenius trace of E.

Moreover, S(Fq) is the disjoint union of the various affine conics
{
x2 +

h(u0)y2 = −g(u0), u = u0

}
for all u0 ∈ Fq. Those conics are nondegenerate

whenever g(u0)h(u0) 6= 0, in which case they have q+O(1) points. In remaining
exceptional cases, they have at most 2q points. As a result, we get:

#S(Fq) =
(
q −O(1)

)
·
(
q +O(1)

)
+O(1) ·O(q) = q2 +O(q).

As for the number of preimages of F , we know by Theorem 1 that for each
x̄ ∈ XE,Fq \Xbad, where Xbad is a set of 39 points, there exists c0,x̄ ∈ [−22, 22]
such that:

#F−1(x̄) = 2q + c0,x̄
√
q +O(1) ∀x̄ ∈ XE,Fq

\Xbad

For x̄ ∈ Xbad, we can still obtain a less strict but simpler bound: note that
for any fixed u = u0 ∈ Fq the equations x̄ = x1(x, y, u0), x̄ = x2(x, y, u0) and
x̄ = x3(x, y, u0) have at most 2, 2, and 4 solutions in S, respectively (these
solutions are given explicitly in Section 6). Hence, any point can have at most 8
preimages for any fixed u0 and at most 8q preimages in all.

We can now bound ∆ as follows:

2∆ =
∑

x̄∈XE,Fq\Xbad

∣∣∣∣#F−1(x̄)

#S(Fq)
− 1

#XE,Fq

∣∣∣∣+
∑

x̄∈Xbad

∣∣∣∣#F−1(x̄)

#S(Fq)
− 1

#XE,Fq

∣∣∣∣
=

∑
x̄∈XE,Fq\Xbad

∣∣∣∣2q + c0,x̄
√
q +O(1)

q2 +O(q)
− 1

q/2 + cE
√
q +O(1)

∣∣∣∣+

∑
x̄∈Xbad

∣∣∣∣ cbad,x̄q

q2 +O(q)
− 1

q/2 + cE
√
q +O(1)

∣∣∣∣
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=
∑

x̄∈XE,Fq\Xbad

1

q

∣∣∣∣(2 + c0,x̄q
−1/2 +O(q−1)

)
−
(
2− cEq−1/2 +O(q−1)

)∣∣∣∣+

∑
x̄∈Xbad

1

q

∣∣∣∣(cbad,x̄ +O(q−3)
)
−
(
2− cEq−1/2 +O(q−1)

)∣∣∣∣
=

∑
x̄∈XE,Fq\Xbad

1

q

∣∣∣∣(c0,x̄ + cE
)
q−1/2 +O(q−1)

∣∣∣∣+
∑

x̄∈Xbad

1

q

∣∣∣∣cbad,x̄ − 2 +O(q−1/2)

∣∣∣∣
where each of the constants c0,x̄ is in [−22, 22] and each of the constants cbad,x̄

is in [0, 8]. In particular, |c0,x̄ + cE | ≤ 23 and |cbad,x̄ − 2| ≤ 6 for all x̄, and we
have:

2∆ ≤
#
(
XE,Fq

\Xbad

)
q

·
(
23q−1/2 +O(q−1)

)
+

#Xbad

q
·
(
6 +O(q−1/2)

)
=

1
2q +O(

√
q)

q
·
(
23 + o(1)

)
q−1/2 +

39

q
·
(
6 + o(1)

)
=
(23

2
+ o(1)

)
q−1/2 ≤ 2 ·

(
6 + o(1)

)
q−1/2

as required.

As an easy consequence, we obtain the following theorem.

Theorem 2. The map F0 : S(Fq) → XE,Fq of equation (7) is ε-admissible for

ε =
(
6 + o(1)

)
q−1/2. In particular, if h is a random oracle with values in S(Fq),

F0 ◦ h is indifferentiable from an XE,Fq
random oracle.

Moreover, the same results hold for F+
0 : S(Fq)× {0, 1} → E(Fq).

Proof. By definition, we need to prove that F0 is efficiently computatable, ε-
regular and ε-samplable. Computability is obvious. Regularity is the result of
Lemma 4. And 0-samplability is obtained using the preimage sampling algorithm
discussed in Section 6 below. To fix ideas, we sketch its construction.

Fix x̄ ∈ XE,Fq
. As previously mentioned, for any fixed u0 ∈ Fq, there are

at most 8 preimages (x, y, u) ∈ F−1(x̄) such that u = u0 (at most two coming
from each of x1 and x2 and four coming from x3). We can efficiently compute all
those preimages and in particular count them. Therefore, the following simple
rejection sampling algorithm has an output distribution uniform in F−1(x̄): pick
u0 uniformly at random, compute the list Lu0

of preimages with u = u0, restart
with probability 1−#Lu0

/8 and otherwise return a random element of Lu0
.

Finally, the extension to F+
0 is straightforward.

4 Parametrizing the SW Conic

4.1 Parametrizability conditions

In the previous section, we have seen how the Shallue–van de Woestijne construc-
tion could be leveraged to construct admissible encodings F0 : S(Fq) → XE,Fq
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and F+
0 : S(Fq)× {0, 1} → E(Fq). However, we have also seen that mapping to

Fq-points on the surface S efficiently (without base field exponentiations) is a
priori not straightforward, since the most naive approach involves finding points
on new conics for all inputs.

Fortunately, the surface S has a fairly simple description: it can be seen as a
one-parameter family of conics (the conics Su; this is also called a relative conic
over the u-line, or a fibration in conics, etc.). In any case, finding a global, two-
parameter parametrization of S is thus a function field analogue of the classical
problem, studied by Legendre, of finding rational points on conic over Q.

In their paper [vHC06], van Hoeij and Cremona show that Legendre’s orig-
inal approach can be directly adapted to the function field case. They provide
necessary and sufficient conditions for the existence of solutions, as well as an
effective algorithm to compute the parametrization if it exists.

A special case of their main result in as follows.

Lemma 5 (van Hoeij–Cremona). Let r, s be polynomials in Fq[u] that are
coprime, squarefree, and such that at least one of them is of odd degree. Then,
the following projective conic over Fq(t):

X2 + rY 2 + sZ2 = 0

admits rational points over Fq(u) (i.e., a global rational parametrization) if and
only if the following two conditions hold:

1. −r is a square in Fq[u]/(s)
2. −s is a square in Fq[u]/(r).

Moreover, if this is the case, there is an efficient algorithm to compute those
points.

Proof. This is a special case of [vHC06, Th. 1]. More precisely, the assumptions
ensure that the conic is in reduced form and in “case 1”, in the terminology
of van Hoeij and Cremona, and the squareness conditions are equivalent to the
existence of a “solubility certificate”.

The proof presented by van Hoeij and Cremona is constructive in that it
yields an explicit algorithm for finding the rational parametrization. Our case of
interest, corresponding to the surface S, is r = h(u) = 3u2 + 4a and s = g(u) =
u3 +au+b (except when a = 0, in which case a slight adjustment is necessary to
meet the assumptions of the theorem). In that case, if a parametrization exists,
it can be put in the form where Z = 1, and X,Y are polynomials of degree 2
and 1 in u respectively, as will be shown below. These polynomials depend only
on the parameters a, b of the target elliptic curve, so the polynomial coefficients
can be precomputed while their evaluation at a given u is done at runtime.

4.2 Curves with a parametrizable SW conic

Due to the conditions in Lemma 5, the SwiftEC encoding is not applicable
to every ordinary elliptic curve. We present a different characterization of these
conditions from the point of view of the target curve’s geometric properties.
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Theorem 3. The surface S, as a one-parameter family of conics, admits a
global two-parameter parametrization if and only if the following three condi-
tions are satisfied.

1. The size of the field satisfies q ≡ 1 mod 3 (i.e., −3 is a square in Fq).
2. The discriminant ∆E = −16(4a3 + 27b2) is a square in Fq (i.e. E has either

zero or three points of order 2).
3. At least one of the constants ν± = 1

2 (−b±
√
−3∆E/36) is a square in Fq.

Proof. As a first observation, note that if we let r = h(u) and s = g(u), then r
and s are indeed coprime (their resultant is 4a3 + 27b2 = −∆E/16 6= 0) and s is
of odd degree and squarefree. Moreover, r is squarefree if and only if a 6= 0. For
now, we assume that a 6= 0, so that Lemma 5 applies directly. We will treat the
special case of a = 0 at the end.

Let us first assume that −h is a square in Fq[u]/(g) and −g is a square in
Fq[u]/(h). Note that h and g are coprime since their resultant is 4a3 + 27b2 =
−∆E/16 6= 0, so the law of quadratic reciprocity over function fields gives(

−h
g

)
2

(
g

−h

)
2

= (−1)
q−1

2 deg g deg hχ2(1)deg hχ2(−3)deg g

1 ·
(
g

−h

)
2

= 1 · 1 · χ2(−3), (9)

where
(
·
f

)
2

and χ2(·) denote quadratic residue symbols over Fq[u]/(f) and Fq,

respectively.
On the other hand, we have

1 =

(
−g
h

)
2

=

(
−1

h

)
2

(
−g
h

)
2

= χ2(−1)2

(
g

−h

)
2

=

(
g

−h

)
2

,

so (9) reduces to χ2(−3) = 1, which shows the necessity of condition 1.
Next, since −g is a square in Fq[u]/(h), there exists α, β ∈ Fq such that:

−g ≡ (αu+ β)2 (mod h)

−u3 − au− b ≡ α2u2 + 2αβu+ β2 (mod 3u2 + 4a)

4a

3
u− au− b ≡ −4a

3
α2 + 2αβu+ β2 (mod 3u2 + 4a)

a

3
u− b = 2αβu+

(
− 4a

3
α2 + β2

)
.

It follows that the constants α, β satisfy

a

3
= 2αβ (10)

b =
4a

3
α2 − β2. (11)
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Recalling that a 6= 0, it follows from (10) that α, β 6= 0 and we can substitute
β = a/(6α) into (11) to obtain

48aα4 − 36bα2 − a2 = 0, (12)

which is a quadratic equation on α2 whose discriminant is 362b2+192a3 = −3∆E .
Since −3 is a square, it follows that ∆E must also be a square for α2 to exist,
showing the necessity of condition 2. The solution to (12) is then given by

α2 =
36b±

√
−3∆E

96a
=
−3

4a
ν±. (13)

If a is a square this means that at least one of ν± must be a square for α to
exist. On the other hand, if a is not a square then the same condition always
holds since the product ν+ν− = −a3/27 is a non-square.

The proof of the converse is similar: if conditions 2 and 3 are met then there
exists α, β ∈ Fq that are solutions to (10) and (11), which shows that −g has a
square root mod h, and then condition 1 together with (9) shows that −h is a
square mod g.

Finally, consider the special case a = 0. In that case, since h(u) = 3u2, we
can apply the change of variables Y ′ = uY to reduce to the case of the conic:

X2 + 3Y 2 + gZ2 = 0,

i.e., r = 3 and s = g. It is then clear that r and s are coprime, squarefree, and
one of them is of odd degree. Moreover, the condition that −s is a square modulo
r is vacuous, and the condition that −r is a square modulo s simply says that
−3 is a square in Fq[u]/(g); since that etale algebra admits either Fq or Fq3 as
a factor, this is equivalent to −3 being a square in Fq, namely q ≡ 1 (mod 3)
as required. This shows that in this case, condition 1 is necessary and sufficient.
The result still holds, however, because conditions 2 and 3 become vacuous: the
discriminant ∆E = −16(27b2) = −3 · 122b2 is always a square, and one of ν± is
always zero.

Out of the three conditions in Theorem 3, condition 1 is the most restrictive
discarding half of the prime fields. Condition 3 only fails about 1/4 of the time,
whereas condition 2 fails half of the time but can be circumvented half of those
times as discussed in the next section. Notable curves that satisfy the conditions
for SwiftEC include the NIST P-256 curve, the curve secp256k1 used in Bit-
coin [SEC10] and the pairing-friendly curve BLS12-381 [Bow17] as well as all
BN curves [BN06] and BLS curves [BLS03] over any field with q ≡ 1 mod 3.
On the other hand, curves such as the Ed448-Goldilocks curve [Ham15] and the
NIST P-384 curve are incompatible due to the field size alone.

4.3 Reaching more curves with 2-isogenies

While Theorem 3 discards the possibility of applying SwiftEC directly to curves
with a non-square discriminant, here we present a small modification that can
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work around this condition, at least some of the times. The condition that the
discriminant be a square is invariant under isomorphisms, but not under iso-
genies. Hence, we may hope that there is an isogenous curve that satisfies the
condition and compose the SwiftEC encoding to this curve with the isogeny
to obtain a map to the original curve. Curves with a non-square discriminant
always contain exactly one point of order 2, so one may be tempted to exploit the
small 2-isogeny that is available. The following result shows that this intuition
is correct, and indicates exactly when this is possible.

Theorem 4. Let E/Fq be an elliptic curve with non-square discriminant. There
exists a curve E′ with square discriminant isogenous to E over Fq if and only if
E(Fq) has a point of order 4. In this case, the isogeny can always be taken to be
of degree 2.

Proof. First suppose we have a point P4 ∈ E(Fq) of order 4, and let P2 = 2P4

be the unique point of order 2 in E(Fq). If φ : E → E′ is the isogeny with
kernel < P2 >, then φ(P4) is a point of order 2 in E′. There must also exist a

point P ′2 ∈ E′(Fq) of order 2 generating the dual isogeny φ̂, and we cannot have

φ(P4) = P ′2 because φ̂(P ′2) = 0 but φ̂(φ(P4)) = 2P4 6= 0. This means we have
two distinct points of order 2 in E′, and their addition yields a third point of
order 2, so E′ must have a square discriminant as desired.

Conversely, if E has no point of order 4 then the group order is divisible by
2 exactly once, so any isogenous curve will also have exactly one point of order
2 and hence have a non-square discriminant.

Note that the application of the 2-isogeny is a 2-to-1 map that would make the
distribution easily distinguishable from uniform. However, in essentially all cases
of interest, one needs to sample points only in a specific subgroup orthogonal to
the 2-torsion subgroup. For instance, consider Curve25519 [Ber06] which is non-
compatible with our construction because it does not have a square discriminant.
The curve is given by

E25519 : y2 = x3 + 486662x2 + x

over the prime field of size p = 2255 − 19. The group order for this curve is
#E25519 = 8` where ` is a large prime, and points in the `-torsion subgroup are
used in the ECDH scheme. We can use SwiftEC to map onto the 2-isogenous
curve

E′ : y2 = x3 − 102314837774592x+ 398341948567736549376

which does satisfy all conditions of Theorem 3. By composing with the 2-isogeny
generated by P ′2 = (−11679888, 0) and the multiplication-by-4 map, we are
able to hash into the `−torsion subgroup of Curve25519 at the cost of only
an additional 20 field multiplications, 7 squarings and 11 additions. This is to
our knowledge the only currently known way of hashing deterministically and
indistinguishably into this subgroup using a single square root.

Unfortunately, some curves remain out of reach for SwiftEC due to con-
dition 3 alone, even with this isogeny trick. One such example is NIST curve
P-521.
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Algorithm 1 x-picking algorithm.

Input: The projective xi coordinates (x1 : x2 : x3 : λ) of a point in V (Fq)
Output: One of the xi which is the x-coordinate of a point in E(Fq).

1: s2 ← x32λ+ ax2λ
3 + bλ4

2: s3 ← x33λ+ ax3λ
3 + bλ4

3: c2 ← IsSquare(s2)
4: c3 ← IsSquare(s3)
5: cswap(c2, x1, x2)
6: cswap(c3, x1, x3)
7: return (x1 : λ)

5 The SwiftEC Encoding

5.1 Efficient computation

As a proof of principle, we have prepared a Sage implementation of SwiftEC
that allows adding new compatible curves in a simple way. This implementation
makes explicit the number of field operations needed and uses a constant number
of them, but is non-constant time to the degree that the built-in field operations
are. Our implementation is freely available at https://github.com/Jchavezsaab/
SwiftEC.

The implementation makes use of the polynomials X0(u), Y0(u) that evaluate
a point in Su as discussed in Section 4. Since these polynomials only depend
on the curve coefficients a, b, they are precomputed and stored in the form of
five field elements as detailed in Appendix A. On input u, t, the initial point
(X0(u), Y0(u)) ∈ Su is evaluated and then a second point (X,Y ) ∈ Su is obtained
from the parametrization

X(u, t) =
g(u) + h(u)(Y0(u)− tX0(u))2

X0(u)(1 + t2h(u))
, (14)

Y (u, t) = Y0(u) + t(X −X0(u)).

Finally, we apply the map ψ from (6) to get a point (x1, x2, x3, z) ∈ V (Fq).
It is not actually necessary to compute the z-coordinate of this point, and the
xi coordinates are computed projectively so that what we actually obtain is a
projective triplet (x1 : x2 : x3 : λ). Note that this introduces a small bias towards
the point at infinity: if any of the xi are infinite then we have to set λ = 0 and
all three points will be interpreted as being infinite. However, we neglect this
since the bias is negligible and dealing with this case explicitly would produce a
non-constant-time implementation.

We must then find which of the xi is the x-coordinate of a point in E(Fq),
choosing one arbitrarily but deterministically if all three are. This can be imple-
mented in constant time as shown in Algorithm 1 which prioritizes x3.

Finally, we use a single inverse to compute the affine x-coordinate and a
square root computation (the only one throughout the whole program) to recover

https://github.com/Jchavezsaab/SwiftEC
https://github.com/Jchavezsaab/SwiftEC
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Table 1. Cost in operations of our implementations of SwiftEC for field additions,
squarings, multiplications, Jacobi symbol computations, inversions, and square roots.

Add Sqr Mul Jac Inv Sqrt

SwiftEC 25 7 18 2 1 1

SwiftEC with isogeny 36 14 38 2 1 1

XSwiftEC 22 9 23 2 0 0

XSwiftEC with isogeny 33 14 35 2 0 0

the y-coordinate. Note that there is a free choice for the sign of y in the end,
which we integrate as an additional input bit.

5.2 XSwiftEC: x-only computation without exponentiation

Note that the only inverse and square root needed for SwiftEC are at the
very end when the affine x, y coordinates are computed. However, there are
many applications where obtaining an output in x-only projective coordinates
is acceptable, and these operations can be omitted. The resulting XSwiftEC
algorithm requires no inversions, square roots or exponentiations of any kind,
but only two Jacobi symbol computations that are considerably cheaper and
other elementary field operations.

This is particularly useful for the cases when SwiftEC is composed with a
2-isogeny as described in Section 4.3: even if an affine x, y output is desired, we
are better off using XSwiftEC and recovering the affine coordinates until after
applying the projective x-only 2-isogeny formulas.

Although the output (x : λ) that is obtained is indistinguishable from uniform
as a projective pair, the individual values of x and λ are not and may leak
information about the input. This can be easily circumvented by multiplying
both coordinates by a random field element, or it may be ignored to avoid relying
on randomness in applications where this leakage is not a concern.

5.3 Implementation results

We summarize in Table 1 the cost in operations for each version of SwiftEC.
The most noteworthy feature is the requirement of only one square root compu-
tation (and none when the y coordinate is not required), which is an improvement
on previous admissible encodings to ordinary elliptic curves.

6 SwiftEC For Point Representation: ElligatorSwift

In this section we describe an algorithm to efficiently compute a uniformly ran-
dom preimage of any point under SwiftEC. The existence of this algorithm is
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required for the encoding to be admissible, which is crucial for using SwiftEC
as part of a cryptographically secure hash function as described in Section 2.
Moreover, it is important in practice because it allows us to encode points in
an elliptic curve as uniform bitstrings, as is done in Elligator [BHKL13] and
Elligator Squared [Tib14a].

Compared to Elligator Squared, our ElligatorSwift construction has the
advantage that it does not need to compute any encodings in the forward direc-
tion. Indeed, all we need is to sample a random u ∈ Fq and then find an inverse
F−1

0,u(P ) of the SW encoding.
We first focus on inverting the map Ψ and note that under a change of

variables v = x/2y − u/2 and w = 2y, the image in (6) becomes

x1 = v

x2 = −u− v
x3 = u+ w2,

while the equation for the conic becomes

w2(u2 + uv + v2 + a) = −(u3 + au+ b). (15)

This yields up to four possible preimages for a given point (x, y) ∈ E(F ), namely:

1. v = x and w2 derived from (15), if x was drawn from x1

2. v = −u− x and w2 derived from (15), if x was drawn from x2

3,4. w2 = x− u and v derived from (15), if x was drawn from x3,

where the last case actually contains two preimages since (15) is a quadratic
equation for v with solutions

v =
−u
2
±
√
−w2(4u3 + 4au+ 4b+ 3w2u2 + 4aw2)

2w2
.

Moreover, all cases have a duplicity from choosing the sign of w =
√
w2, so there

are up to 8 preimages in total. Of course, some of the square roots needed may
not exist and so different values of u will yield a different number of preimages
of a given point (including possibly none). On top of this, if the preimage comes
from cases 1 or 2 but results in values where all three xi yield points in E(Fq),
then the preimage will be invalid even if the square root is well-defined since
Algorithm 1 in the forward encoding would have prioritized x3 over the intended
one. Care must therefore be taken to check for the existence of the various square
roots and restart the procedure when appropriate, as shown in Algorithm 2. This
makes the algorithm run in non-constant time but ensures that the preimage is
uniformly sampled.

What remains is just to switch back to x, y coordinates and invert the
parametrization (14) to recover the parameter t.

We assume that the square root function makes a random choice of sign each
time it is called, and that it returns Null for non-squares. It is easy to see that
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Algorithm 2 ElligatorSwift.

Input:(x, y) ∈ E(Fq)

Output: u, t, b
$←− SwiftEC−1(x, y)

1: u
$←− Fq

2: case
$←− {1, 2, 3, 4}

3: if case == 1 then
4: v ← x
5: if IsSquare((−v − u)3 + a(−v − u) + b) then
6: go to 1
7: end if
8: w2 ← −(3u2 + 4a)/(u2 + uv + v2 + a)
9: else if case == 2 then

10: v ← −x− u
11: if IsSquare(v3 + av + b) then
12: go to 1
13: end if
14: w2 ← −(3u2 + 4a)/(u2 + uv + v2 + a)
15: else
16: w2 ← x− u
17: r ←

√
−w2(4u3 + 4au+ 4b+ 3w2u2 + 4aw2)

18: if r == Null then
19: go to 1
20: end if
21: v ← −u/2 + r/2w2

22: end if
23: w ←

√
w2

24: if w == Null then
25: go to 1
26: end if
27: Y ← 2w/2
28: X ← 2Y (v + u/2)
29: Evaluate X0(u) and Y0(u) from precomputed polynomials
30: t← (Y − Y0)/(X −X0)
31: b← sign(y)
32: return u, t, b
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the output of Algorithm 2 is uniformly distributed since each u is attempted
with a random choice of one of the 4 cases, so the probability of each u being
successful is proportional to how many preimages exist under it.

The main cost of Algorithm 2 is an average of 1.5 square root computa-
tions per iteration. Since most points have roughly 2q preimages as per The-
orem 1, we can expect each choice of u to contain on average 2 valid preim-
ages out of the 8 possible ones, and so the expected number of iterations is
4. Notice however that a failed iteration can be aborted before computing any
square roots by first computing the corresponding Jacobi symbols, which can
be done much more efficiently with constant-time efficient implementations such
as [Por20,Ham21,AG21]. The cost of ElligatorSwift is therefore always ex-
actly 1 or 2 square root computations, and 6 Jacobi symbol computations on
average. This is a considerable improvement over Elligator Squared, where each
failed iteration would have contributed an additional square root from computing
the forward map and the average total cost is 6.5 square roots.

Note that in the case of x-only arithmetic there are no savings on Elliga-
torSwift since Algorithm 2 is already agnostic to y but still requires several
square roots. As for curves where we need to compose SwiftEC with a 2-isogeny,
we can obtain a corresponding variant of ElligatorSwift by composing with
the dual isogeny, but this has the side effect of introducing a multiplication-by-2
in the round trip. This can be circumvented by starting with a point halving
before applying ElligatorSwift, which is important for demonstrating that
the encoding with the isogeny trick is still admissible. However, the resulting
ElligatorSwift construction is unappealing in terms of efficiency.

7 Conclusion

The SwiftEC construction introduced in this paper is the first admissible and
constant-time encoding using a single square root that is applicable to a large
class of ordinary elliptic curves. While some curves are still incompatible, the
construction applies to roughly 9/16 of all curves over fields with q ≡ 1 mod 3.
The inverse encoding also results in an Elligator-like encoding that is signifi-
cantly more efficient than previous constructions, using more than 4 times less
square roots on average than Elligator Squared, while retaining the same data
transmission size of two field elements.

It is still an open problem to determine if there are any workarounds that
could extend this encoding to more of the non-compatible curves, or even to find
a single-square root admissible encoding that could be applied to all ordinary
elliptic curves.
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A Explicit formulas for finding a point in the
parametrized conic

Here we detail the formulas used for the precomputation of the polynomials
X0(u), Y0(u) that are used for finding a fixed point (X0, Y0) ∈ Su. The polyno-
mials can be written as

X0(u) = (Au2 +Bu+ C)/Z

Y0(u) = (Du+ E)/Z,

where the coefficients A,B,C,D,E,Z are derived from van Hoeij and Cremona’s
algorithm FindPoint [vHC06] given the elliptic curve coefficients a, b. There
are four distinct cases, depending on whether the polynomails h, g from (5) are
reducible or not. Note that h is reducible if and only if a is a square, and g is
reducible if and only if E : y2 = g(x) has points of order 2.

A.1 Case 1: h, g are both irreducible

The coefficients are as follows:

A = −9β
√
∆E

B = −6aα
√
∆E

C = −6aβ
√
∆E

D = 48a2α+ 108bβ

E = 72abα− 24a2β

Z = 2a(4aα2 + 3β2)
√
∆E ,

where

α = −3

√
−36b−

√
−3∆E

2a∆E
, β = α(36b−

√
−3∆E)/(12a).

Note that there is exactly one choice of sign for
√
−3∆E that makes the radicand

in α a square, and the same sign must be used throughout.

https://tches.iacr.org/index.php/TCHES/article/view/8348
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A.2 Case 2: h reducible, g irreducible

Let s = 2
√
a/− 3 be a root of h, and define ξ± = 1/

√
g(±s) for arbitrarily

chosen square-root signs. The coefficients are then as follows:

A = −3s(ξ+ + ξ−)
√
∆E

B = −2a(ξ+ − ξ−)
√
∆E

C = −2as(ξ+ + ξ−)
√
∆E

D = 16a2(ξ+ − ξ−) + 36bs(ξ+ + ξ−)

E = 24ab(ξ+ − ξ−)− 8a2s(ξ+ + ξ−)

Z = 4asξ+ξ−
√
∆E ,

A.3 Case 3: h irreducible, g reducible

Let r1, r2, r3 be the roots of g, i.e. the x-coordinate of the points of order 2 in E
(note that g must split completely since ∆E is a square). Then, the coefficients
are as follows:

A = 3
√
∆E

(
(r1 + r2 + r3)α− 3β

)
B = −3

√
∆Eα(4a+ r2

1 + r2
2 + r2

3)

C =
√
∆E

(
4aα(r1 + r2 + r3) + 3β(r2

1 + r2
2 + r2

3)
)

D = −32ar2
1α+ 32ar1r2α+ 12r3

1r2α− 32ar2
2α− 24r2

1r
2
2α+ 12r1r

3
2α

+ 32ar1r3α+ 12r3
1r3α+ 32ar2r3α+ 12r3

2r3α− 32ar2
3α− 24r2

1r
2
3α

− 24r2
2r

2
3α+ 12r1r

3
3α+ 12r2r

3
3α− 24r3

1β + 12r2
1r2β + 12r1r

2
2β

− 24r3
2β + 12r2

1r3β + 12r2
2r3β + 12r1r

2
3β + 12r2r

2
3β − 24r3

3β

E = 16ar2
1r2α+ 16ar1r

2
2α+ 16ar2

1r3α− 96ar1r2r3α

− 24r3
1r2r3α+ 16ar2

2r3α+ 24r2
1r

2
2r3α− 24r1r

3
2r3α

+ 16ar1r
2
3α+ 16ar2r

2
3α+ 24r2

1r2r
2
3α+ 24r1r

2
2r

2
3α

− 24r1r2r
3
3α+ 12r3

1r2β + 12r1r
3
2β + 12r3

1r3β − 24r2
1r2r3β − 24r1r

2
2r3β

+ 12r3
2r3β − 24r1r2r

2
3β + 12r1r

3
3β + 12r2r

3
3β

Z =
√
∆E(4a+ r2

1 + r2
2 + r2

3)(4aα2 + 3β2)

A.4 Case 4: h, g are both irreducible

With all constants as before, the coefficients are as follows.

A = 3
√
∆E

(
(r1 + r2 + r3)(ξ+ − ξ−)− 3s(ξ+ + ξ−)

)
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B = −3
√
∆E(r2

1 + r2
2 + r2

3 + 4a)(ξ+ − ξ−)

C = 3
√
∆E

(
s(r2

1 + r2
2 + r2

3)(ξ+ + ξ−) + 4a(r1 + r2 + r3)(ξ+ − ξ−)
)

D = 12s
(
ξ+ + ξ−

)(
− 2r3

1 + r2
1r2 + r1r

2
2 − 2r3

2 + r2
1r3 + r2

2r3 + r1r
2
3 + r2r

2
3 − 2r3

3

)
+ 4
(
ξ+ − ξ−

)(
− 8ar2

1 + 8ar1r2 + 3r3
1r2 − 8ar2

2 − 6r2
1r

2
2 + 3r1r

3
2 + 8ar1r3 + 3r3

1r3

+ 8ar2r3 + 3r3
2r3 − 8ar2

3 − 6r2
1r

2
3 − 6r2

2r
2
3 + 3r1r

3
3 + 3r2r

3
3

)
E = 12s

(
ξ+ + ξ−

)(
r3
1r2 + r1r

3
2 + r3

1r3 − 2r2
1r2r3 − 2r1r

2
2r3 + r3

2r3 − 2r1r2r
2
3 + r1r

3
3 + r2r

3
3

)
+ 8
(
ξ+ − ξ−

)(
2ar2

1r2 + 2ar1r
2
2 + 2ar2

1r3 − 12ar1r2r3 − 3r3
1r2r3 + 2ar2

2r3 + 3r2
1r

2
2r3

− 3r1r
3
2r3 + 2ar1r

2
3 + 2ar2r

2
3 + 3r2

1r2r
2
3 + 3r1r

2
2r

2
3 − 3r1r2r

3
3

)
Z = 6

√
∆E(r2

1 + r2
2 + r2

3 + 4a)sξ+ξ−
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