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Abstract. Proofs of Retrievability (PoR) protocols ensure that a client
can fully retrieve a large outsourced file from an untrusted server. Good
PoRs should have low communication complexity, small storage overhead
and clear security guarantees. We design a good PoR based on a family
of graph codes called expander codes. We use expander codes based on
graphs derived from point-line incidence relations of finite affine planes.
Høholdt et al. showed that, when using Reed-Solomon codes as inner
codes, these codes have good dimension and minimum distance over a
relatively small alphabet. Moreover, expander codes possess very efficient
unique decoding algorithms. We take advantage of these results to de-
sign a PoR scheme that extracts the outsourced file in quasi-linear time
and features better concrete parameters than state-of-the-art schemes
w.r.t storage overhead and size of the outsourced file. Using the Con-
structive Cryptography framework of Maurer, we get sharper and more
rigourous security guarantees for our scheme than the ones given by the
usual ε-adversary model. We follow an unbounded-use audit procedure
to ensure that the extraction of the outsourced file will succeed w.h.p..
The properties of our expander codes yield an audit with communication
complexity comparable to other code-based PoRs.

Keywords: Proofs of Retrievability · Expander Codes · Outsourced
Storage

1 Introduction

1.1 Context and state-of-the-art

With the continuous increase in data creation, individuals and business entities
call upon remote storage providers to outsource their data. This new dependency
raises some issues, as the storage provider can try to read and/or modify the
client’s data. Besides, when a client does not often access his data, the service
provider can delete it to make room for another client’s data. In this context,
it appears important to deploy client side protections designed to bring security
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guarantees like confidentiality and integrity. In this work, we focus on the fol-
lowing problem : given a client who stored a file on a server and erased its local
copy, how can he check if he is able to retrieve his file from the server in full
? Addressing this issue is the goal of a class of cryptographic protocols called
Proofs of Retrievability (PoRs).

The first PoR scheme was proposed in 2007 by Juels and Kaliski [10] and
was based on checking the integrity of some sentinel symbols secretly placed
by the client before uploading its file. This scheme has low communication but
its drawback is that it is bounded-use only, as the number of possible verifica-
tions depends on the number of sentinels. Shacham and Waters [17] proposed
to correct this drawback by appending some authenticator symbols to the file.
Verification consists in checking random linear combinations of file symbols and
authenticators. Then comes a few PoR schemes based on codes. Bowers et al. [3]
proposed a double-layer encoding with the use of an inner code to recover infor-
mation symbols and an outer code to correct the remaining erasures. Dodis et
al. [4] formalize the verification process as a request to a code which models the
space of possible answers to a challenge. They use Reed-Solomon codes to design
their PoR scheme. In 2013, Paterson [15] laid the foundation for studying PoR
schemes using a coding theoretic framework. Following these ideas, Lavauzelle
and Levy-dit-Vehel [11] (2016) used the local structure of the lifted codes in-
troduced by Guo et al. [5] to build a PoR scheme, that compares favourably
to those presented above w.r.t. storage overhead. In 2022, Levy-dit-Vehel and
Roméas [12] proposed a framework for the design of secure and efficient PoR
schemes based on Locally Correctable Codes. They also reevaluated the security
and the parameters of the [11] PoR scheme.

In this work, we design a PoR scheme based on expander codes. In 1996,
Sipser and Spielman [18] introduced these codes that are based on expander
graphs. Expander codes are linear codes obtained by taking a d-regular expander
graph G and a linear inner code C0 ⊆ Fd. The codewords are labelings of the
edges of the graph satisfying the following condition : for each vertex v of G, the
labels on the d edges incident to v form a codeword in C0. Expander codes pos-
sess very efficient unique decoding algorithms. We will use an erasure decoding
algorithm derived from [18,21] during the extraction phase of our PoR.

The expander codes used for our PoR scheme are based on a family of graphs
with excellent expansion. These graphs are derived from point-line incidence
relations in the affine plane F2

q. The expansion of these graphs was studied by
Tanner in 1984 [20]. A line of work of Høholdt et al. [6,7,2] studied the dimension
and minimum distance of expander codes based on the previously mentioned
graphs with Reed-Solomon codes as inner code.

Finally, we use an audit procedure for generic erasure codes adapted from
[10,17] in the Constructive Cryptography (CC) framework of [13] by Badertscher
and Maurer [1]. We also prove the security of our PoR scheme using the CC
security model for PoRs of [1].
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1.2 Contributions

We use an audit procedure from [10,17] translated in the CC framework by
Badertscher and Maurer [1] to design a PoR scheme based on expander codes.
Recall that an expander code is constructed using a regular expander graph, a
so-called inner linear code and, for every vertex v of the graph, an ordering on
the edges incident to v. A codeword is a labeling of the edges such that, for
every vertex v of the graph, the vector supported by the edges incident to v is a
codeword of the inner code.

By encoding the client’s file with a well-chosen expander code, we manage to
design a PoR scheme with asymptotically :
1. Storage overhead linear in the size of the outsourced file |F |.
2. Communication complexity in O(|F |1/3 · log |F | · σ) for σ bits of statistical

security.

Furthermore, we give concrete parameters for file sizes ranging from a few
Mo to hundreds of Go. Our parameters are better than the ones of [11] for usual
lifting parameters such as m = 2, 3. When using the same alphabet size and
security parameters as other code-based PoRs [10,17,11], our scheme is capa-
ble of reaching higher rates and storing larger files. We give parameters and
comparisons with other PoRs in sec. 3.4.

We optimize the parameters of our scheme using expander codes based on
q-regular graphs derived from point-line incidence relations in finite geometries.
The properties of these graphs and of expander codes based on these graphs are
studied in [20,6,7,2]. We chose these graphs because they have very good expan-
sion and a good ratio between their regularity q and their number of edges q3.
We show that these two facts combined permit us to reach lower communication
complexity and storage overhead than previous code-based PoRs.

Moreover, these graphs exist for every prime power q. By choosing q to be
a power of 2 and a Reed-Solomon code of length q as inner code, we can use
the erasure decoder for Reed-Solomon codes of [19] with complexity O(q log2 q).
Using this decoder along with a fast unique erasure decoding algorithm for ex-
pander codes [18,21], we are able to extract the outsourced file in quasi-linear
time O(q3 log2 q) in the input size Rq3 log q, where 0 < R < 1 is the rate of the
code.

Organization of the paper. In sec. 2, we give the required material to understand
our PoR construction. Then, in sec. 3, we describe our audit procedure and we
optimize our PoR by choosing a good graph, a good inner code and by tuning
its parameters. Finally, we compare the performance of our PoR against other
schemes in sec. 3.4.

2 Background

2.1 The Constructive Cryptography model

The CC model, introduced by Maurer [14] in 2011, aims at asserting the real
security of cryptographic primitives. To do so, it redefines them in terms of so-
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called resources and converters. In this model, starting from a basic resource
(e.g. communication channel, shared key, memory server...), a converter (a cryp-
tographic protocol) aims at constructing an enhanced resource, i.e., one with
better security guarantees. The starting resource, lacking the desired security
guarantees, is often called the real resource and the obtained one is often called
the ideal resource, since it does not exist as is in the real world. An example of
such an ideal resource is a confidential server, where the data stored by a client
is readable by this client only. The only information that leaks to other parties
is its length. This resource does not exist, but it can be emulated by an inse-
cure server on which the client uses an encryption protocol where the encryption
scheme is IND − CPA secure. We say that this construction of the confidential
server is secure if the real world - namely, the insecure server together with the
protocol - is just as good as the ideal world - namely, the confidential server.
This means that, whatever the adversary can do in the real world, it could as
well do in the ideal world. We use the fact that the ideal world is by definition
secure and contraposition to conclude. This construction notion is illustrated in
fig. 2.

The CC model follows a top-down approach, allowing to get rid of useless
hypotheses made in other models. A particularity of this model is its compos-
ability, in the sense that a protocol obtained by composition of a number of
secure constructions is itself secure.

We give the required material to understand how we use CC in app. A. We
follow the presentation of [9].

Server-Memory Resources We recall the constructions of [1,12] that we will use in
this work. The first resource is the basic server-memory resource (SMR) denoted
by SMRΣ,n where Σ is the alphabet and n the memory size. The resource allows
the client to read and write data blocks that are encoded as elements of a finite
alphabet Σ via its interface C. The interface C0 is the initialization interface
used to set up the initial state of the resource. The server can be “honest but
curious” by obtaining the entire history of accesses made by the clients (a log
file) and reading their data at interface SH . The server can also be intrusive and
overwrite data using its interface SI when the resource is set into a special write
mode. This write mode can be toggled by the distinguisher at the world interface
W. The specification of the resource SMRΣ,n is given in fig. 1.

We recall the figure 2 given in [1] to illustrate the CC construction notion on
SMRs. The SMR security guarantees can be augmented to provide authenticity
by using a suitable protocol in this construction notion. This new server-memory
resource, called authentic SMR and denoted by aSMRΣ,n, is introduced in [1].
In the aSMR, the behavior of the server at its interface SI is weakened as the
server cannot modify the content of data blocks but is limited to either delete or
restore previously deleted data blocks at this interface. A deleted data block is
indicated by the special symbol ε. Thus, if we store a codeword on the aSMR,
the adversary can only introduce erasures and not errors.

We use the aSMRΣ,n specification of [12] because it is tailored for code-
based PoRs with its O(log n) communication complexity per read query. Indeed,
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Resource SMRΣ,n

Initialization Initialization
Init,Active, Intrusion← false
Hist← [ ]

Interface C0

Input: init
if not Init then

for i = 1 to n do
M[i]← λ

Hist← Hist || (init)
Init← true

Input: (read, i) ∈ [1, n]
if Init and not Active then

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]×Σ
if Init and not Active then

Hist← Hist || (W, i, x)
M[i]← x

Input: initComplete
Active← true

Interface SH
Input: getHist

return Hist
Input: (read, i) ∈ [1, n]

return M[i]

Interface SI
Input: (write, i, x) ∈ [1, n]×Σ

if Intrusion then
return M[i]← x

Interface W
Input: startWriteMode

if Active then
Intrusion← true

Input: stopWriteMode
if Active then

Intrusion← false

Interface C

Input: (read, i) ∈ [1, n]
if Active and not Intrusion
then

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]×Σ
if Active and not Intrusion
then

Hist← Hist || (W, i, x)
M[i]← x

Fig. 1. Description of the basic server-memory resource of [1].
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code-based PoRs require a large number of read queries and only one write query
to outsource the encoded file. The aSMR resource is described in fig. 3 and is
constructed in [12] using a simple MAC-based protocol. Each symbol is stored
alongside a MAC tag, this yields a storage overhead of κn where κ is the length
of a MAC tag.

Real
SMR

W

S

SH

SI

init

prot

C0

C

Ideal
SMR

W

S

SH

SI

C0

C

≈ sim

Fig. 2. Illustration of the construction notion for SMRs. On the left, we have a real
SMR with a protocol for the client. On the right, we have an ideal SMR with stronger
security guarantees. The construction is secure if there exists a simulator that makes
these two resources (computationally or statistically) indistinguishable.

2.2 Proofs of Retrievability

Proofs of Retrievability (PoR) are cryptographic protocols whose goal is to guar-
antee that a file stored by a client on a server remains retrievable in full. PoRs
thus involve two parties : a client who owns a file F and a server, here modelled
as an SMR, on which F is stored.

We use the CC based definition of PoR security as presented in [1]. Namely,
a PoR scheme is composed of a pair of converters por := (por_init, por_audit)
and works in three phases :

• An initialization phase. The client converter init encodes the file F into
Init(F ) = (F̃ , data). The converter sends data (e.g. keys, etc.) to the client,
then it sends F̃ to the SMR with a write query and erases F from the client’s
memory.

• An audit phase. The client converter audit probes some symbols of the
server’s memory and outputs accept if it believes that the file is retriev-
able in full and reject otherwise.

• An extraction phase. If the client has been convinced by the audit phase, he
can send read to recover his whole file with high probability.

A PoR scheme is considered secure if it constructs an ideal abstraction of
PoRs (introduced in [1]). This abstraction consists of an ideal SMR that sees
the client’s interface augmented with an auditmechanism. On an audit request,
the resource checks whether the current memory content is indeed the newest
version that the client wrote to the storage. If a single data block has changed,
the ideal audit will detect this and output reject to the client. In case of a
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Resource aSMRΣ,n

The aSMR definition is identical to SMR except for the influence of an ad-
versary at interface SI and the addition of a version number ctr.
Interface C

Input: (read, i) ∈ [1, n]
if Active and not Intrusion
then

Hist← Hist || (R, i)
return M[i]

Input: (write, i, x) ∈ [1, n]×Σ
if Active and not Intrusion
then

ctr ← ctr + 1
Hist← Hist || (W, i, x, ctr)
M[i]← x

Interface SI

Input: (delete, i) ∈ [1, n]
if Intrusion then

M[i]← ε

Input: (restore, i) ∈ [1, n]
if Intrusion then

if ∃k, x : Hist[k] = (W, i, x, ctr)
then

M[i]← x

Fig. 3. The authentic SMR of [12] (only the differences with SMR are shown)

successful audit (returning accept), this guarantee holds until the server gains
write-access to the storage, in which case a new audit has to reveal whether
modifications have been made. We present the specification of the auditable and
authentic SMR denoted by aSMRaudit

Σ,n in fig. 4.

2.3 Expander graphs and expander codes

We recall the definitions and well known properties of expander graphs and
expander codes. We follow the presentation of [16].

Let G = (V,E) be an undirected d-regular graph on n vertices. The expansion
of G is λ := max{λ2, |λn|}, where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of the
adjacency matrix of G. We say that G is a Ramanujan graph if λ ≤ 2

√
d− 1.

For a vertex v ∈ V , let Γ (v) be the set of vertices adjacent to v. Let C0 ⊆ Fdq
be a linear code, called the inner code. Fix an order on the edges incident to
each vertex of G, and let Γi(v) be the i-th neighbor of v.

Using the graph G and the inner code C0 we can construct a new code, called
an expander code. The expander code C := C(G, C0) is defined as the set of all
labelings of the edges of G that respect the inner code C0. It has length nd. More
precisely, we have the following definition.

Definition 1 (Expander Code). Let C0 ⊆ Fdq be a linear code, and let G =
(V,E) be a d-regular expander graph on n vertices. The expander code C(G, C0) ⊆
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Resource aSMRaudit
Σ,n

Interface C
Input: (write, i, x) ∈ [n]×Σ
Defined as in aSMR except the ver-
sion number ctr has been removed.

Input: audit
if Active and not Intrusion
then

output auditReq to SH
Let d ∈ {allow, abort} be the re-

sult
if d = allow then

M′ ← [ ]
for i = 1 to n do

if ∃k, x : Hist[k] =
(W, i, x) then

k0 ← max{k | ∃x :
Hist[k] = (W, i, x)}

Parse Hist[k0] as
(W, i, x0)

M′[i]← x0
else

M′[i]← λ

if M′ = M then
return accept

else
return reject

else
return reject

Interface SI
Input: (restore, i) ∈ [n]

if Intrusion then
if ∃k, x : Hist[k] = (W, i, x)

then
k0 ← max{k | ∃x :

Hist[k] = (W, i, x)}
Parse Hist[k0] as (W, i, x0)
M[i]← x0

else
M[i]← λ

Fig. 4. Description of the auditable and authentic SMR of [1] (only the differences with
the aSMR of fig. 3 are shown)
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FEq is a linear code of length nd, so that for c ∈ FEq , c ∈ C if and only if, for all
v ∈ V , (

c(v,Γ1(v)), . . . , c(v,Γd(v))

)
∈ C0

If C0 is a linear code of rate R0, then C(G, C0) is a linear code of rate at least
2R0 − 1.

We say that an undirected graph G = (L∪R,E) is bipartite if, for all vertices
v ∈ L, we have Γ (v) ∩ L = ∅ and, for all vertices v ∈ R, we have Γ (v) ∩R = ∅.
Let G = (V,E) be an undirected d-regular graph on n vertices with expansion λ.
From G, we can construct a d-regular graph G̃ on 2n vertices with expansion λ
in the following way. The double-cover of G is the bipartite graph G̃ = (L∪R, Ẽ)
defined as follows; let L and R be two copies of V . There is an edge between
u ∈ L and v ∈ R if and only if (u, v) ∈ E.

It is known that expander codes constructed from bipartite graphs have good
distance [18,21] :

Proposition 1. Let C0 ⊆ Fdq be a linear code with relative distance δ, and let
G = (L ∪ R,E) be a d-regular bipartite expander graph with expansion λ. Then
the expander code C(G, C0) has distance at least δ(δ − λ/d).

Moreover, C can be efficiently uniquely decoded up to this fraction of erasures
[18,21]. The decoder and a proof of the following proposition can be found in
app. B.

Proposition 2. Let C0 ⊆ Fdq be a linear code with relative distance δ. Let D(d)
be the time needed to uniquely decode C0 from δ−1/d erasures. Let G = (L∪R,E)
be a d-regular bipartite expander graph on n vertices with expansion λ. Let ε > 0
and suppose that λd <

δ
2 . Then, there is an algorithm which uniquely decodes the

expander code C(G, C0) from up to (1− ε)δ(δ− λ/d) erasures in time n · D(d)/ε.

3 PoR with expander codes

3.1 Audit

Our scheme will use a generic audit for erasure codes presented in the CC frame-
work by Badertscher and Maurer in [1]. We give the description and the security
proof of [1].

First, we give notation for erasure codes. An (n, k, d) erasure code over the
alphabet Σ with erasure symbol ⊥/∈ Σ, is a pair of algorithms (enc, dec) that
satisfy : for all F ∈ Σk, let F̄ := enc(F ) ∈ Σn and define the set

E := {W ∈ (Σ ∪ {⊥})n | ∀i,Wi ∈ {F̄i,⊥} and at most d− 1 positions of W
are equal to ⊥}

Then, for all W ∈ E, we have dec(W ) = F .
We now describe how Badertscher and Maurer implemented the ideas of

[10,17] to construct an aSMRaudit
Σk,1 from an aSMRΣ,n. Let (enc, dec) be an
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(n, k, d) erasure code and F ∈ Σk be the client’s file. We describe the PoR
scheme ecPor := (ecInit, ecAudit) for erasure codes.

On input init to ecInit, the converter sends init to aSMRΣ,n and computes
the encoding F̄ := enc(F ) ∈ Σn. Then, for each location i ∈ [n], the converter
sends (write, i, F̄i) to aSMRΣ,n.

On input (read) to either ecInit or ecAudit, the converter retrieves the whole
memory content via (read, i) requests and obtains for each location, either a
symbol vi ∈ Σ or the erasure symbol ⊥. If vi is returned, set Wi := vi else set
Wi :=⊥. If |{i ∈ [n] | Wi =⊥}| > d − 1, the converter outputs ε at its outside
interface, otherwise it computes F := dec(W ), and outputs F .

Finally, on a query audit to converter ecAudit, the converter chooses a ran-
dom subset S ⊆ [n] of size t and outputs (read, i) to aSMR for each i ∈ S
to retrieve the memory content at location i. If all read instructions for i ∈ S
returned a non-erased symbol, the converter outputs accept. Otherwise, it out-
puts reject. The integer t is chosen according to the security level we want to
achieve. The security of the scheme is given by :

Theorem 1 ([1]). Let n, k, d ∈ N. Let (enc, dec) be an (n, k, d) erasure code
for alphabet Σ and erasure symbol ⊥. Let ρ := 1 − d−1

n be the minimum frac-
tion of symbols needed to recover the file. Then, the above protocol ecPor :=
(ecInit, ecAudit) that chooses a random subset of size t during the audit, con-
structs the aSMRaudit

Σk,1 from the aSMRΣ,n with respect to the simulator sim
(described in the proof). More specifically, for all distinguishers D performing at
most q audits,

∆D(ecInitC0ecAuditC aSMRΣ,n, sim
S aSMRaudit

Σk,1 ) ≤ q · ρt

Proof (Sketch [1]). We only compare the behaviors of the audit of the real
system (the aSMR with the protocol) and of the ideal one (the aSMRaudit

with the simulator). The two systems behave in the same way in every other
case, the reader can refer to [1] for a full proof.

Assume that a fraction α of cells of the real world aSMR have been deleted
such that a β := 1− α fraction is still available. A standard bound for binomial
coefficients ensures that the probability of selecting a subset of memory locations
containing no erased symbol during the audit is(

β·n
|S|
)(

n
|S|
) ≤ β|S|

In the case when decoding would not be possible, i.e. if β < ρ, we see that the
probability that the audit succeeds in the real world is no larger than ρ|S|.

We describe the simulator sim. It maintains a simulated memory, emulating
the real world memory, using the history of the ideal resource. On (delete, i), the
simulator replaces the i-th entry of its simulated memory by ε. On (restore, i),
the simulator restores the content of the i-th entry of its simulated memory to
the last value written there. The simulator maintains a simulated history using
the (ideal) history of the aSMRaudit.
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If, after a delete request, the simulated memory contains d or more erased
locations, the simulator deletes the whole ideal memory by sending delete re-
quests to aSMRaudit. Similarly, if after a restore request, the simulated mem-
ory contains d−1 or less erased locations, the simulator restores the whole ideal
memory by sending restore requests to aSMRaudit.

On an audit request, the simulator simulates the random locations probed
during the audit by adding the appropriate read requests to its simulated his-
tory and evaluates if the audit succeeds by checking that none of the simulated
locations are deleted. If so, it outputs allow to instruct the ideal resource to
output the right result to the client, and otherwise it instructs the resource to
output reject. The simulation is perfect until the following BAD event occurs
: having simulated a real audit, the simulator answers allow (audit should
succeed) whereas d or more memory locations are currently erased. It is the only
case when simulation can differ from real execution. Thus, the probability of dis-
tinguishing can be upper bounded by the probability that event BAD happens in
an execution. As discussed above, this happens with probability no larger than
q ·ρ|S| over q audits. We give a detailed explanation of the BAD event in app. C.

3.2 Description of our PoR with expander codes : the general case

Let C0 be a linear code of length d, relative distance δ0 and rate R0. Using the
Singleton bound, we have δ0 ≤ 1 + 1

d −R0. Let G be a d-regular bipartite graph
on n vertices with expansion λ.

We instantiate the PoR scheme ecPor := (ecInit, ecAudit) with the expander
code C(G, C0).

In the following, we determine the number t of edges probed during the
audit needed to reach a given security level. If we suppose that λ

d <
δ0
2 , using

the Singleton bound, we must have R0 < 1+ 1
d−

2λ
d . Moreover, if C0 is Maximum

Distance Separable, this implication becomes an equivalence. This is why, from
now on, we will suppose that the inner code C0 is MDS.

We took G to be a bipartite expander graph with expansion λ such that
λ
d <

δ0
2 . Using prop. 1, the minimum distance δC of C(G, C0) is at least

δ0(δ0 −
λ

d
) >

2λ2

d2

Let ε > 0. If we want to correct a (1− ε)δC fraction of erasures, the minimum
fraction of valid edges needed to recover our file is

ρ = 1 +
1

nd
− (1− ε)δC ≤ 1 +

1

nd
− (1− ε)2λ2

d2

Let σ be a statistical security parameter and t be the number of edges probed
during the audit. Our scheme is considered secure if ρt ≤ 2−σ. We want to choose
t such that t ≥ −σ/ log ρ.

Approximation : If 1
nd − (1− ε) 2λ2

d2 ≈ 0, we have
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−σ
log ρ

≈ nd2σ

2(1− ε)nλ2 − d

=
d2σ

2(1− ε)λ2 − d
n

Moreover, if G is Ramanujan, we have λ ≤ 2
√
d− 1 and

−σ
log ρ

≈ dσ

8(1− ε)

If G has expansion
√
d instead, we have

−σ
log ρ

≈ dσ

2(1− ε)

Note that our scheme requires the adversary to only introduce erasures (and
not errors). We enforce this using our authenticated server-memory resource
(aSMR).

After a successful audit, the client can extract its file by running the decoder
of prop. 2 which runs in time O(n ·D(d)/ε), where D(d) is the complexity of C0’s
decoder.

3.3 Instantiation with the point-line incidence graph of the plane

Let Γ be the point-line incidence graph of the affine plane over Fq without the
vertical lines. This graph is q-regular, has 2q2 vertices and expansion √q (see
the work of Tanner [20]). We have Γ := (V1 ∪ V2, E) where

V1 := {(x, y) | x, y ∈ Fq}, V2 := {(a, b) | a, b ∈ Fq}

and
E := {((x, y), (a, b)) | (x, y) ∈ V1, (a, b) ∈ V2, ax+ b− y = 0}

This graph is an excellent choice for our PoR scheme. Recall that the rate
of the inner code is upper bounded by 1 + 1

d −
2λ
d and the rate of the expander

code is lower bounded by 2R0−1. Moreover, going from expansion 2
√
q − 1 (the

expansion of a q-regular Ramanujan graph) to √q permits us to decrease the
number of edges probed during the audit- and thus the communication complex-
ity of our PoR -by a factor of 4. See sec. 3.4 for a comparison of the parameters
of our PoR using the graph Γ and a Ramanujan graph.

The graph Γ also has a nice ratio between its regularity q and its number of
edges q3. Since we need to probe a number of edges linear in q, this ensures that
our PoR scheme has communication complexity of order cubic root of the size
of the outsourced file. This is in line or even better than other code-based PoR
schemes, such as [11] (which has communication complexity of order square root
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of the file size for m = 2). In sec. 3.4, we will show that, at a given security level,
our PoR scheme stores much larger files than the lifted code-based PoR scheme
of [11].

Our inner code C0 will be a Reed-Solomon code of rate R0 < 1 + 1
d −

2λ
d .

This code is MDS and thus, we can use the decoder of prop. 2 for our extraction
phase. Moreover, because our inner code is a Reed-Solomon code, we can use
the following result of Beelen et al. [2].

Let Fq := {α1, α2, . . . , αq}. We use the following labeling (of [2]) for the
edges of Γ : if (x, y) ∈ V1, Φ(x,y)(i) := (x, y, αi, y − xαi) and, if (a, b) ∈ V2,
Φ(a,b)(i) := (αi, aαi + b, a, b).

When q is a power of 2 or a prime, Beelen et al. [2] showed that when using
this labeling on the graph Γ with a Reed-Solomon code of rate 1/2 < R0 ≤ 1
as inner code, we obtain an expander code of rate exactly R := R3

0 + R0(1 −
R0)(2R0 − 1).

3.4 Parameters

Let σ be the statistical security parameter (σ = 40) and κ be the computational
security parameter3 (κ = 128). Set q, a power of 2. Let G be the q-regular point-
line incidence graph on the affine plane F2

q. This graph has 2q2 vertices, q3 edges
and expansion λ :=

√
q.

Let the inner code C0 be a Reed-Solomon code of length q and rate R0 =
max{kq | k ∈ N and k

q < 1 + 1
q −

2λ
q }. We take R0 to be as big as possible (to

reduce the storage overhead of the PoR) while still having a quasi-linear time
decoder for the expander code. Indeed, since q is a power of 2, C0 can be erasure
decoded in time O(q log2 q) thanks to the decoder of Tang and Lin [19].

Our expander code C(G, C0) has length q3, rate R := R3
0+R0(1−R0)(2R0−1)

and alphabet Fq. Let |F | be the size of the outsourced file in bits. It is such that
|F | = Rq3 log(q). Using prop. 2, we get an erasure decoder for C(G, C0) (and
thus an extraction phase) running in time O(2q3 log2 q) which is quasi-linear in
the input size q3 log q. The storage overhead is given by 1/R − 1, which is the
redundancy of the code. The parameters of our PoR scheme and their asymptotic
behavior are given in table 1. Even though our PoR has the same asymptotic
behavior than the PoR of [11], we will show below that we get much better
parameters in practice.

In table 2, we give concrete parameters of our PoR scheme for different values
of q. Let us compare our scheme with the PoR of [11]. For q = 512, [11, Fig.
6] gives a code-based PoR with codewords of length q3 and storage overhead
of 68%. In table 2, we see that for q = 512 and codeword length q3, our PoR
has storage overhead of 21%, the same communication complexity as [11] and a
quasi-linear time extraction phase. Moreover, the security analysis of [12] shows
that the security of the PoR of [11] was overestimated, which means that, for
a similar security level, our PoR compares even more favourably than in the
previous example.
3 of the MAC used to construct the aSMR
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Exact value Asymptotics (|F | → ∞)

C. storage overhead κ O(1)
S. storage overhead ( 1

R
− 1)|F |+ q3κ O(|F |)

comm. C. → S. qσ
2
log(q3) O(|F |

1
3 log |F |)

comm. S. → C. qσ
2
(κ+ log q) O(|F |

1
3 log |F |)

Table 1. The parameters of our scheme when using the point-line incidence graph
over F2

q and a Reed-Solomon code as inner code. |F | denotes the file size in bits, κ the
security parameter of the MAC, σ the statistical security parameter and R the rate of
the code. We have Rq3 log(q) = |F |.

q R0 R 2q2 |F | 1
R
− 1 comm./|F |

256 0.878 0.758 131, 072 12Mo 0.320 2× 10-4

512 0.913 0.827 524, 288 124Mo 0.210 6× 10-5

1024 0.938 0.876 2, 097, 152 1.176Go 0.141 1× 10-5

2048 0.956 0.912 8, 388, 608 10.772Go 0.096 3× 10-6

4096 0.968 0.936 33, 554, 432 96.485Go 0.068 8× 10-7

8192 0.978 0.956 134, 217, 728 854.055Go 0.046 2× 10-7

Table 2. Effective parameters of our PoR using the point-line incidence graph over
F2
q for different values of q and Reed-Solomon codes as inner code. The graph is q-

regular with 2q2 vertices. We choose the largest possible rate yielding a quasi-linear
time decoder. The statistical security parameter is 40.

To give some perspective on the impact of the choice of the point-line inci-
dence graph on the parameters of the PoR, we give the parameters of our scheme
using a Ramanujan graph of the same size with expansion 2

√
q − 1 instead of√

q. These parameters can be found in table 3.

q R0 R |F | 1
R
− 1 comm./|F |

256 0.754 0.509 8Mo 0.965 1× 10-4

512 0.825 0.651 98Mo 0.537 2× 10-5

1024 0.876 0.752 1.009Go 0.330 4× 10-6

2048 0.912 0.824 9.735Go 0.213 1× 10-6

4096 0.938 0.875 90.246Go 0.142 2× 10-7

8192 0.956 0.912 814.614Go 0.097 5× 10-8

Table 3. Effective parameters of our PoR using a q-regular Ramanujan graph with
2q2 vertices and expansion 2

√
q − 1 for different values of q and a Reed-Solomon code

as inner code. The graph is q-regular with 2q2 vertices. We choose the largest possible
rate yielding a quasi-linear time decoder. The statistical security parameter is 40.
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A Background on Constructive Cryptography

A.1 Resources, Converters and Distinguishers

A resource R is a system that interacts, in a black-box manner, at one or more
of its interfaces, by receiving an input at a given interface and subsequently
sending an output at the same interface. Do note that a resource only defines
the observable behavior of a system and not how it is defined internally. We
use the notation [R1, . . . ,Rk] to denote the parallel composition of resources. It
corresponds to a new resource and, if R1, . . . ,Rk have disjoint interfaces sets,
the interface set of the composed resource is the union of those.

In CC, converters are used to link resources and reprogram interfaces, thus
expressing the local computations of the parties involved. A converter is plugged
on a set of interfaces at the inside and provides a set of interfaces at the outside.
When it receives an input at its outside interface, the converter uses a bounded
number of queries to the inside interface before computing a value and outputting
it at its outside interface.

A converter π connected to the interface set I of a resource R yields a
new resource R′ := πIR. The interfaces of R′ inside the set I are the interfaces
emulated by π. A protocol can be modelled as a tuple of converters with pairwise
disjoint interface sets.

A distinguisher D is an environment that connects to all interfaces of a
resource R and sends queries to them. At any point, the distinguisher can end
its interaction by outputting a bit. Its advantage is defined as ∆D(R,S) :=
|Pr[D(R) = 1]− Pr[D(S) = 1]|.
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In this work, we make statements about resources with interface sets of the
form I := P ∪ {S,W}, where P := {C0,C} is the set of honest client interfaces.
A protocol is a tuple of converters π := (πC0 , πC). The goal of this protocol is to
construct a so-called ideal resource from an available real resource in presence
of a potentially dishonest server S. The world interface W models the direct
influence of a distinguisher on a resource.

A.2 Specifications and Relaxations

An important concept of CC is the one of specifications. Systems are grouped
according to desired or assumed properties that are relevant to the user, while
other properties are ignored on purpose. A specification S is a set of resources
that have the same interface set and share some properties, for example confi-
dentiality. In order to construct this set of confidential resources, one can use a
specification of assumed resources R and a protocol π, and show that the specifi-
cation πR satisfies confidentiality. Proving security is thus proving that πR ⊆ S,
sometimes written asR π−→ S, and we say that the protocol π constructs the spec-
ification S from the specification R. The composition property of the framework
comes from the transitivity of inclusion. Formally, for specifications R,S and T
and protocols π for R and π′ for S, we have R π−→ S ∧ S π′

−→ T ⇒ R π′◦π−−−→ T .
We use the real-world/ideal-world paradigm, and often refer to πR and S

as the real and ideal-world specifications respectively, to understand security
statements. Those statements say that the real-world is "just as good" as the
ideal one, meaning that it does not matter whether parties interact with an
arbitrary element of πR or one of S. This means that the guarantees of the ideal
specification S also apply in the real world where an assumed resource is used
together with the protocol.

In this work, we use simulators, i.e., converters that translate behaviors of the
real world to the ideal world, to make the achieved security guarantees obvious.
For example, one can model confidential servers as a specification S that only
leaks the data length, combined with an arbitrary simulator σ, and show that
πR ⊆ σS. It is then clear that the adversary cannot learn anything more that
the data length.

In order to talk about computational assumptions, post-compromise security
or other security notions, the CC framework relies on relaxations which are
mappings from specifications to larger, and thus weaker, relaxed specifications.
The idea of relaxation is that, if we are happy with constructing specification S in
some context, then we are also happy with constructing its relaxed variant. One
common example of this is computational security. Let ε be a function that maps
distinguishers D to the winning probability, in [0, 1], of a modified distinguisher
D′ (the reduction) on the underlying computational problem. Formally,

Definition 2. Let ε be a function that maps distinguishers to a value in [0, 1].
Then, for a resource R, the reduction relaxation Rε is defined as Rε := {S |
∀D, ∆D(R,S) ≤ ε(D)}. This (in fact any) relaxation can be extended to a spec-
ification R by defining Rε := ∪R∈RRε.
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B Unique erasure decoding of expander codes

We present the unique erasure decoder for expander codes of prop. 2 that we
recall below.

Proposition 2. Let C0 ⊆ Fdq be a linear code with relative distance δ. Let D(d)
be the time needed to uniquely decode C0 from δ−1/d erasures. Let G = (L∪R,E)
be a d-regular bipartite expander graph on n vertices with expansion λ. Let ε > 0
and suppose that λd <

δ
2 . Then, there is an algorithm which uniquely decodes the

expander code C(G, C0) from up to (1− ε)δ(δ− λ/d) erasures in time n · D(d)/ε.

We use the algorithm given in [16] and we follow their presentation and proof.
This algorithm is well-known and follows from [18,21], we describe it in fig. 5.
Since we use it in the extraction phase of our PoR, we prove its correction and
complexity.

Algorithm UniqueDecode
Input: A description of the graph G = (L∪R,E) of degree d and of the code C0 ⊆ Σd

of relative minimum distance δ, and z ∈ (Σ ∪ {⊥})E .
Output: The unique c ∈ C(G, C0) so that c agrees with z on all un-erased positions.
1: E1 := {e ∈ E | ze 6=⊥}
2: P0 := {v ∈ R | v is incident to an edge e ∈ E \ E1}
3: P1 := {v ∈ L | v is incident to an edge e ∈ E \ E1}
4: for t = 2, 3, . . . do
5: if Pt−1 = ∅ then
6: Return the fully labeled codeword.
7: Pt ← ∅ and Et ← Et−1.
8: for each vertex v ∈ Pt−1 so that |({v} × Γ (v)) ∩ Et−1| > (1− δ)d do
9: Run C0’s erasure-correction algorithm to assign labels to the edges incident

to v.
10: Remove v from Pt−1.
11: For any (v, u) /∈ Et−1, add (v, u) to Et.
12: For each vertex v ∈ Pt−1, for any (v, u) /∈ Et−1, add u to Pt.

Fig. 5. Unique expander code erasure decoder from up to δ(δ− λ/d)(1− ε) where λ is
the expansion of the graph G and ε > 0.

We will need to use the expander mixing lemma.

Theorem 2 (Expander Mixing Lemma, see e.g. [8]). Suppose that G =
(L ∪ R,E) is the double cover of a d-regular expander graph on n vertices with
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expansion λ. Then, for any S ⊆ L and T ⊆ R,∣∣∣∣E(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |
where E(S, T ) denotes the set of edges with endpoints in S ∪ T .

First, notice that on any iteration t ≥ 2, Et−1 is the subset of edges that
have already been labeled before this iteration, and Pt−2 ∪ Pt−1 is the set of
vertices touching an edge in E \ Et−1 that is still erased. The following lemma
bounds the size of Pt, and thus the number of steps the algorithm takes before
terminating on line 6.

Lemma 1 ([16]). The following holds:

1. For any t ≥ 1, |Pt+1| ≤ (1− ε)(δ − λ
d )n

2. For any t ≥ 2, |Pt+1| ≤ ( 1
1+ε )

2|Pt|
Proof. For any t ≥ 1, let Bt−1 ⊆ Pt−1 be the subset of vertices v ∈ Pt−1 that
are incident to less than (1− δ)d un-erased edges in Et−1. We have

Pt+1 ⊆ Bt−1 ⊆ Pt−1 (1)

since all vertices v ∈ Pt−1 \ Bt−1 are removed from Pt−1 on line 10, and conse-
quently will not be in Pt+1.

For the first item, we have |P3| ≤ |B1| by (1), and that |B1| ≤ (δ−λ/d)(1−ε)n
since there are at most (1− ε)δ(δ−λ/d)nd erasures to begin with. Moreover, we
have that |P3| ≥ |P5| ≥ |P7| ≥ . . ., thus |Pt+1| ≤ (1− ε)(δ − λ/d)n for any even
t ≥ 1. Using a similar technique, one can show that this holds for any odd t ≥ 1.

For the second item, the expander mixing lemma implies, for t ≥ 2,

δd|Bt−1| ≤ |E(Bt−1, Pt)| ≤
d

n
|Bt−1||Pt|+ λ

√
|Bt−1||Pt|

as any vertex v ∈ Bt−1 has at least δd erased incident edges, and those edges
are incident to Pt. After some rewriting, we have

|Bt−1| ≤
(

λ/d

δ − |Pt|/n

)2

|Pt| ≤
(

1

1 + ε

)2

|Pt|

where the last inequality follows from the assumption that λ/d ≤ δ/2 and from
|Pt|/n ≤ (1− ε)(δ − λ/d) by the first item. Using (1) we finally get

|Pt+1| ≤ |Bt−1| ≤
(

1

1 + ε

)2

|Pt|

Using the above lemma, we conclude that after O((log n)/ε) iterations, Pt−1
is empty and the algorithm terminates. Moreover, the amount of work done is
at most

D(d) ·
∞∑
t=1

|Pt| = D(d) · n
∞∑
t=1

(
1

1 + ε

)2t

= D(d) · n
ε
,

where D is the complexity of C0’s erasure decoder, which proves the proposition.
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C Detailed description of the BAD event

We here detail the interactions between the audit requests, the simulator, the
distinguisher and the ideal resource, during an audit. It is very important to
notice that the simulator is only connected to the interfaces SI and SH of the
server, and has no interaction with the clients. As audit is a functionality avail-
able at clients’ interfaces, it follows that an audit request is not directly treated
by the simulator. As described in fig.4, the following steps are done when the
ideal resource aSMRaudit receives an audit request at the client interface C :

1. the resource sends auditReq at interface SH .
2. via its interface SH , the simulator either responds allow or abort.
3. if allow, the audit is run and the resource sends back to the client either

accept or reject, depending on whether the ideal audit has succeeded or
failed.

4. if abort, the ideal resource always sends reject back to the client.

Thus, in the proof, the simulator cannot directly control the outcome of
the audit, in the sense that it cannot decide whether the ideal resource would
send accept or reject back to the client. On the other hand, as it receives the
auditReq request at interface SH , the simulator can choose to answer abort or
allow to the ideal resource. Let us now examine how the simulator behaves in
both cases :

1. The simulator answers abort :
It has received an audit request via auditReq. It then runs a simulation of a
real audit (the one of the protocol) on its simulated memory: it chooses a set
of t addresses, adds the corresponding read requests to its simulated history,
and tests whether the values stored at those addresses (in its simulated
memory) are not erased (6= ε). In this case, this test fails : at least one value
is erased, and the simulator is convinced that the real audit has to fail. It thus
decides to answer the ideal resource abort. Consequently, the ideal resource
does not run an ideal audit, but rather answers the client reject. The client
is in fact controlled by the distinguisher in the ideal setting. Looking at the
simulated history, it (the distinguisher) believes to interact with the real
resource.

2. The simulator answers allow:
It has received an audit request via auditReq. It then runs a simulation of a
real audit (the one of the protocol) on its simulated memory: it chooses a set
of t addresses, adds the corresponding read requests to its simulated history,
and tests whether the values stored at those addresses (in its simulated
memory) are not erased ( 6= ε). In this case, this test succeeds, all values
are valid, and the simulator is convinced of the success of the real audit,
as it simulated it with success. It thus sends allow to the ideal resource.
The subtlety lies here : the ideal resource receives allow but it does not
imply that it will send accept back to the client. It will run its ideal audit,
and send the outcome of this audit to the client. The point is, when the
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simulator sends its answer (here allow) to the ideal resource, it already has
simulated the real audit (here with success), and written the corresponding
entries in its simulated history. Being not connected to the client’s interface,
the simulator does not “see” the result of the ideal audit (accept or reject)
sent by the ideal resource to the client. Thus it cannot a posteriori modify
its audit simulation to comply with the response of the ideal resource. The
distinguisher, being connected to server and client’s interfaces, has access
to the ideal audit response and, by comparing it to the simulated history,
can see the incoherence; (the trace of the audit in the simulated history
corresponds to one which should fail). This incoherence never happens in
the real resource, thus the distinguisher has distinguished between the two
systems.
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