
Public-Key Watermarking Schemes for
Pseudorandom Functions

Rupeng Yang1,2?, Zuoxia Yu1,2, Man Ho Au1, and Willy Susilo2

1 Department of Computer Science, The University of Hong Kong, Hong Kong, China
orbbyrp@gmail.com, zuoxia.yu@gmail.com, allenau@cs.hku.hk

2 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong NSW, Australia

wsusilo@uow.edu.au

Abstract. A software watermarking scheme can embed a message into
a program while preserving its functionality. The embedded message can
be extracted later by an extraction algorithm, and no one could remove
it without significantly changing the functionality of the program. A wa-
termarking scheme is public key if neither the marking procedure nor the
extraction procedure needs a watermarking secret key. Prior construc-
tions of watermarking schemes mainly focus on watermarking pseudo-
random functions (PRFs), and the major open problem in this direction
is to construct a public-key watermarkable PRF.
In this work, we solve the open problem via constructing public-key wa-
termarkable PRFs with different trade-offs from various assumptions,
ranging from standard lattice assumptions to the existence of indistin-
guishability obfuscation. To achieve the results, we first construct wa-
termarking schemes in a weaker model, where the extraction algorithm
is provided with a “hint” about the watermarked PRF key. Then we
upgrade the constructions to standard watermarking schemes using a
robust unobfuscatable PRF. We also provide the first construction of ro-
bust unobfuscatable PRF in this work, which is of independent interest.

? Corresponding author.

Table of Contents

1 Introduction . 1

2 Technical Overview . 5

2.1 Constructing Public-Key Hinting Watermarkable PRFs 5

2.2 From Public-Key Hinting Watermarkable PRFs to Public-Key

Watermarkable PRFs . 10

2.3 Constructing Robust Unobfuscatable PRFs . 11

3 Notations . 16

4 Definition of Public-Key Watermarkable PRFs . 16

5 Public-Key Hinting Watermarkable PRFs . 18

5.1 The Definition . 18

5.2 Public-Key Hinting Watermarkable PRFs from Puncturable PRFs 20

5.3 Public-Key Hinting Watermarkable PRFs from Functional Encryption . 21

5.4 Public-Key Hinting Watermarkable PRFs from Secret-Key

Watermarkable PRFs . 23

6 Robust Unobfuscatable PRFs . 24

6.1 The Definition . 24

6.2 Robust Unobfuscatable PRFs from One Way Functions 25

6.3 Robust Unobfuscatable PRFs from Fully Homomorphic Encryption . . . 28

7 Construction of Public-Key Watermarkable PRFs . 31

A Related Work . 38

B Preliminaries . 39

B.1 Injective One Way Function . 41

B.2 Pseudorandom Objects . 41

B.3 Public Key Encryption . 43

B.4 Statistically Sound NIZK Proof . 44

B.5 The Jump Finding Algorithm . 45

B.6 Secret-Key Watermarkable PRFs . 46

C Functional Encryption with Strong Correctness . 47

D Special Fully Homomorphic Encryption . 51

D.1 The Definition . 51

D.2 The Construction . 54

E Deferred Proofs . 59

E.1 Security Analysis of Public-Key Hinting Watermarkable PRFs from

Puncturable PRFs . 59

E.2 Security Analysis of Public-Key Hinting Watermarkable PRFs from

Functional Encryption . 60

E.3 Security Analysis of Public-Key Hinting Watermarkable PRFs from

Secret-Key Watermarkable PRFs . 69

E.4 Security Analysis of Robust Unobfuscatable PRFs from One Way

Functions . 70

E.5 Security Analysis of Special FHE . 84

E.6 Security Analysis of Robust Unobfuscatable PRFs from Fully

Homomorphic Encryption . 99

E.7 Security Analysis of the General Construction of Public-Key

Watermarkable PRFs . 116

1 Introduction

A software watermarking scheme allows one to embed a message into a program
without significantly changing its functionality. Moreover, any attempt to re-
move the embedded message would destroy the functionality of the watermarked
program. Watermarking schemes have many real-world applications, including
ownership protection, traitor tracing, etc., and recently, it is also applied in new
applications such as quantum copy-protection [ALL+21,KNY21].

The theoretical study of software watermarking is initiated by Barak et al.
[BGI+01] and Hopper et al. [HMW07], where formal definitions are presented.
They also explore the (im)possibility to achieve certain definitions of watermark-
ing and study connections between different definitions. However, neither of them
provides a concrete construction. It is notoriously hard to construct watermark-
ing schemes with provable security, and early constructions [NSS99,YF11,Nis13]
are only proven secure against restricted adversaries, which are not allowed to
change the format of the watermarked object.

Cohen et al. [CHN+16] propose the first watermarking scheme with provable
security against arbitrary removal strategies. They also show that it is impossible
to watermark learnable functions. A natural class of non-learnable functions
are the cryptographic ones, such as pseudorandom function (PRF). Therefore,
Cohen et al. and subsequent works mainly study watermarking for cryptographic
functionalities, with a primary focus on watermarkable PRFs, which can be
applied to construct watermarking schemes for various primitives in minicrypt
and has many real-world applications as discussed in [CHN+16]. In this work, we
also consider watermarking schemes for PRFs and refer the readers to Appendix
A for other related work.

Watermarking PRFs. A watermarkable PRF is a PRF family F with two addi-
tional algorithms, namely, the marking algorithm and the extraction algorithm.
The marking algorithm takes as input the mark key, a message, and a PRF key
k, and outputs a watermarked circuit, which approximately evaluates Fk(·). The
extraction algorithm extracts the embedded message from a watermarked cir-
cuit with an extraction key. Its main security property is unremovability, which
requires that given a watermarked circuit C∗ for a random PRF key (namely,
the challenge key), the adversary is not able to produce a circuit that agrees
with C∗ on almost all inputs, yet the extraction algorithm fails to extract the
original message from it. The mark key and the extraction key are generated
when setting up the scheme, and a watermarking scheme is public key if both
the mark key and the extraction key can be made public. Also, a secret-key
watermarking scheme has public extraction (resp. public marking) if it is secure
against an adversary with the extraction key (resp. mark key).

The first construction of watermarkable PRF is presented by Cohen et al.
in [CHN+16]. The construction is based on an indistinguishability obfuscation
(iO) and has public extraction. Then in [YAL+19], Yang et al. improve Cohen et
al.’s scheme to further achieve collusion resistant security, where the adversary
is allowed to view multiple watermarked circuits for the challenge key. However,
in both constructions, the mark key should be kept private.

1

In another line of work, Boneh et al. [BLW17] propose a new approach that
builds watermarkable PRF from variants of constrained PRFs [BW13,KPTZ13,
BGI14]. The scheme in [BLW17] is still instantiated from iO. Then in [KW17],
Kim and Wu present the first watermarkable PRF from standard assumptions.
Later, in [PS18, PS20], Peikert and Shiehian also instantiate the construction
in [BLW17] from standard lattice assumptions. However, these schemes need a
secret key in both the marking algorithm and the extraction algorithm.

Subsequent works explore how to construct watermarkable PRF with stronger
security from standard assumptions. In [QWZ18, KW19], watermarkable PRFs
that have public marking are constructed. The schemes also achieve security with
extraction queries, where the adversary can learn extraction results of its gener-
ated circuits. However, they do not have standard pseudorandomness against an
adversary with the extraction key. Recently, in [YAYX20], Yang et al. upgrade
previous watermarkable PRFs from standard assumptions to further achieve col-
lusion resistance. Nonetheless, none of these schemes support public extraction.

Motivation. There are no candidate constructions of public-key watermarkable
PRFs in the literature. Even worse, in previous secret-key watermarkable PRFs,
the watermarking authority, who holds the secret key, can remove the watermark
embedded in any watermarked circuit. This is a severe threat to all users. In
contrast, in a public-key watermarking scheme, no one has this privilege since
the scheme does not have such secret key. Therefore, no trust assumption is
needed in a public-key watermarking scheme and it can provide a much better
security guarantee in practice. This raises the following natural question:

Can we construct public-key watermarkable PRFs?

There are a few technical barriers towards this goal. First, existing approaches
for achieving public marking [QWZ18,KW19] will lead to a watermarkable PRF
that is only pseudorandom against adversaries without the extraction key of
the scheme, and one can compromise its pseudorandomness using the extraction
key. This relaxed pseudorandomness is acceptable in the secret extraction setting
since the extraction key is held by an authority. However, there is no authority
for a public-key watermarking scheme. Thus, if we combine previous ideas for
obtaining public marking and that for obtaining public extraction, we will get a
public-key watermarkable “PRF” without pseudorandomness.

Moreover, known techniques for constructing watermarkable PRFs with pub-
lic extraction rely on iO. Despite recent breakthrough [JLS21] that constructs
indistinguishability obfuscations from well-founded assumptions, the construc-
tion is not post-quantum secure. Thus, new ideas that construct watermarkable
PRFs with public extraction from standard lattice assumptions are desired.

Our Results. In this work, we affirmatively answer the above question and
present constructions of public-key watermarking schemes for PRFs. To over-
come the technical issues, we introduce a new framework that constructs wa-
termarkable PRFs from an unobfuscatable PRF [BGI+01] with robust learn-
ability [BP13] and a new primitive called hinting watermarkable PRF, which
relaxes a standard watermarking scheme by allowing its extraction algorithm
to use an extra “hint” about the watermarked PRF key. We remark that via

2

Message Public Public Unremovability Pseudorandomness
Assumptions

Embedding Marking Extraction ε CR UK MK

[CHN+16] 3 7 3 ≈ 1
2

7 3 7 Lattice+iO

[BLW17] 3 7 7 negl 7 3 7 Lattice+iO

[YAL+19] 3 7 3 negl 3 3 7 Lattice+iO

[KW17] 3 7 7 negl 7 3 7 Lattice

[QWZ18] 3 3 7 ≈ 1
2

7 7 7 Lattice

[KW19] 3 3 7 ≈ 1
2

7 3‡ 7 Lattice

[YAYX20]
3 7 7 negl 3 3 7 Lattice

3 3 7 ≈ 1
2

3 3‡ 7 Lattice

7 3 3 negl - 3 3 Lattice

3 3 3 1/exp 3 3 3 Lattice

7 3 3 ≈ 1
6

- 3 3 Lattice+FHE

3 3 3 negl 7 3 3 Lattice+iO

This Work

3 3 3 ≈ 1
6

7 3 3 Lattice+FHE+iO

‡: A weaker T -restricted pseudorandomness (see [KW19]) is achieved.

Table 1: Properties achieved by existing watermarkable PRFs. For the parameter
ε, the term “≈ 1

2
” denotes that ε = 1

2
− 1

poly
, the term “negl” denotes that ε can

be any negligible function, the term “1/exp” denotes that ε is equal to a concrete
value that is exponentially-small, and the term “≈ 1

6
” denotes that ε = 1

6
− 1

poly
. We

use “CR” to denote collusion resistant unremovability. We consider pseudorandomness
against an adversary with the mark key and the extraction key (even for a secret-key
watermarking scheme). We use “UK” to denote pseudorandomness of PRF evaluations
using unmarked keys and use “MK” to denote pseudorandomness of PRF evaluations
using marked keys.

our framework, we can obtain (public-key) watermarkable PRFs with standard
pseudorandomness from (public-key) hinting watermarkable PRFs with relaxed
pseudorandomness, and this solves the first technical issue described above. We
then construct public-key hinting watermarkable PRFs from either standard lat-
tice assumptions or iO, with different trade-offs that will be discussed below. To
obtain the lattice based constructions, we introduce some new techniques for
achieving public extraction from standard lattice assumptions. Besides, we con-
struct the first unobfuscatable PRF with robust learnability in this work. The
new framework, notion and constructions may find further applications.1

By instantiating our constructions, we obtain public-key watermarkable PRFs
from different assumptions. We consider three types of assumptions in this work,
namely, standard lattice assumptions, the assumption that the GSW encryption
scheme [GSW13] is circular secure2, and the existence of iO. The three assump-
tions are denoted as “Lattice”, “FHE”, and “iO” respectively. Also, we consider
constructions in either the mark-embedding setting, where a program is either
marked or unmarked, or the message-embedding setting, where a marked pro-
gram is embedded with a message. Besides, we use ε to denote the fraction of

1 For example, we can apply our new framework to upgrade the watermarking schemes
in [QWZ18, KW19] to achieve full pseudorandomness, by viewing them as (secret-
key) hinting watermarkable PRFs. This solves an open problem in these two works.

2 Formal definition for this assumption can be found in Definition E.1.

3

inputs of the watermarked circuits that can be modified by the adversary when
defining unremovability. More precisely, let λ be the security parameter, we have:

• From Lattice, we construct a public-key watermarkable PRF in the mark-
embedding setting, where ε = negl(λ), i.e., the scheme guarantees that an
adversary cannot remove the mark in a watermarked circuit if it modifies
the circuit on a negligible fraction of inputs.

• From Lattice, we construct a public-key watermarkable PRF in the message-
embedding setting. The scheme also has collusion resistant security. A caveat
of this construction is that it only has exponentially-small ε, i.e., the adver-
sary can modify the watermarked circuit on at most M = 2n/2poly(λ) inputs,
where n is the input length. Nonetheless, we still have M = 2poly(λ).

• From Lattice and FHE, we construct a public-key mark-embedding water-
markable PRF with ε = 1/6− 1/poly(λ).

• From Lattice and iO, we construct a public-key message-embedding water-
markable PRF with ε = negl(λ).

• From Lattice, FHE and iO, we construct a public-key message-embedding
watermarkable PRF with ε = 1/6− 1/poly(λ).

Features of our constructions, together with comparison with previous water-
markable PRFs are presented in Table 1. Also, we illustrate how to instantiate
our public-key watermarkable PRFs from concrete assumptions in Figure 1.

We stress that all public-key watermarkable PRFs constructed in this work
have pseudorandomness for marked keys, i.e., no one could distinguish outputs
of a watermarked PRF key and outputs of a random function. This property
is not achieved in previous watermarkable PRFs with public extraction. This is
because in these constructions, an adversary with an extraction key can extract
meaningful information via oracle access to the marked key. In our construction,
we circumvent this barrier by using a white-box extraction algorithm, where the
algorithm must view the code of the marked key. We refer the reader to [Zha21]
for a more detailed discussion on the notion of white-box tracing/extraction.

Open Problems. We initiate the study of public-key watermarkable PRFs in
this work. We give mark-embedding constructions from lattice and message-
embedding constructions from iO. We also construct a lattice based message-
embedding scheme, but it restricts the parameter ε = 1/2poly(λ). This is smaller
than the parameter ε in previous works, which is either a constant number or
restricted by any (rather than a concrete) negligible function. The main open
problem is therefore to construct a message-embedding public-key watermark-
able PRF with larger ε from standard lattice assumptions. Besides, in our mark-
embedding constructions and iO based constructions, we need additionally as-
sume circular security of the GSW scheme to achieve a constant ε. It will be
interesting to obtain constant ε without such additional assumptions.

Another important security property that is not discussed in this paper is un-
forgeability, which requires that no one could watermark a new program without
a mark key. This property is useful for certifying the watermarked objects in the
ownership protection scenario. It was believed that watermarking schemes with

4

LatticeiO FHE

Secret-Key Watermarkable

PRF with Public Extraction

Puncturable

PRF

Functional

Encryption

One Way

Function

Public-Key Hinting Watermarkable PRF Robust Unobfuscatable PRF

Public-Key Watermarkable PRF

Sec. 7

Sec. 5.4
Sec. 5.2Sec. 5.3 Sec. 6.2 Sec. 6.3

Fig. 1 The roadmap for constructing public-key watermarkable PRFs from concrete
assumptions. The dotted lines denote results from previous work.

public marking contradicts with unforgeability, since there is no secret mark key
in the scheme. However, as shown in [YAYX20], the conflict can be overcome
via defining security in a hybrid model, where the unremovability and pseudo-
randomness are defined against an adversary with the mark key (i.e., the mark
key can be made public when considering these two security properties), and the
unforgeability is defined against an adversary without the mark key. They also
construct watermarkable PRFs secure in this hybrid model, but their techniques
cannot be applied to our constructions here. It is an interesting open problem
to construct a public-key watermarkable PRF with unforgeability in the hybrid
model.

2 Technical Overview

In this section, we provide a technical overview of our constructions of public-
key watermarkable PRFs. We first consider a relaxed notion of watermarking,
where each PRF key is associated with a “hint” that can be used to help extract
messages. We call it hinting watermarking and in Sec. 2.1, we explain our main
ideas for constructing public-key hinting watermarkable PRFs. Then in Sec. 2.2,
we show how to upgrade a public-key hinting watermarkable PRF to a standard
public-key watermarkable PRF by using an unobfuscatable PRF with “robust
learnability”. Existing constructions of unobfuscatable PRFs [BGI+01] do not
have robust learnability and in Sec. 2.3, we describe how to achieve it.

2.1 Constructing Public-Key Hinting Watermarkable PRFs

The syntax of a hinting watermarkable PRF is identical to a standard water-
markable PRF except that each of its PRF keys is associated with a hint and the
hint is used in the extraction algorithm to help extract messages. We assume
that the extraction algorithm always uses the correct hint when defining the
security of a hinting watermarking scheme, i.e., given a (modified) watermarked

5

PRF key, the hint associated with the PRF key will be employed in the extrac-
tion algorithm. Besides, we require its security to hold against an adversary that
has the hint associated with the challenge key, yet we only need its pseudoran-
domness to hold against an adversary without the hint. Next, we describe how
to construct public-key hinting watermarkable PRFs.

Construction from Indistinguishability Obfuscation. We first present a
general construction of public-key hinting watermarkable PRF from a water-
markable PRF F with secret marking and public extraction. Our main strategy
is to generate a fresh mark key/extraction key pair for each PRF key. In this
way, there are no global mark keys that should be kept secret. In addition, we
set the hint for a PRF key as its extraction key and this allows the extraction
key to be used in the extraction algorithm.

In more detail, the PRF key of the public-key hinting watermarkable PRF
is K = (mk, k) and the associated hint is hint = ek, where (mk, ek) is a
mark key/extraction key pair of F and k is a PRF key of F. Given the PRF
key K = (mk, k) and an input x, the evaluation algorithm of the new scheme
runs the evaluation algorithm of F on input (k, x), and given K = (mk, k) and
a message msg, the marking algorithm of the new scheme runs the marking
algorithm of F on input (mk, k,msg). Besides, given a circuit C and a hint
hint = ek, the extraction algorithm runs the extraction algorithm of F on input
(ek, C). Security of the constructed public-key hinting watermarkable PRF comes
from the assumption that the correct hint is always used and the fact that F is
unremovable even if ek is public.

Now, if we instantiate this general construction from previous watermark-
able PRFs with public extraction [CHN+16], we obtain public-key hinting wa-
termarkable PRFs from iO. Next, we propose constructions from cryptographic
primitives that can be instantiated from standard lattice assumptions, including
puncturable PRF, functional encryption, etc.

Mark-Embedding Public-Key Hinting Watermarking from Lattices.
First, we consider mark-embedding public-key hinting watermarkable PRFs.

The Starting Point. The starting point of our construction is a watermarking
scheme with public marking and secret extraction presented in [QWZ18]. The
scheme is built on a puncturable PRF [SW14] and a public key encryption
(PKE). A puncturable PRF F is a family of PRF that allows one to derive
a punctured key kx∗ from a PRF key k, where Fkx∗ (·) and Fk(·) evaluate iden-
tically on almost all inputs except at the “punctured” point x∗. Its security
requires that given the punctured key kx∗ , Fk(x∗) is still pseudorandom.

Here, we slightly modify the scheme and describe it as a hinting watermarking
scheme. Its extraction key is a secret key of the PKE scheme. Also, the PRF
key K = k is a key of the puncturable PRF F, and the hint is hint = (x∗, ct∗),
where x∗ is a random input of F and ct∗ is an encryption of y∗ = Fk(x∗). Given
a PRF key K = k and an input x, the evaluation algorithm outputs Fk(x).
Also, on input a PRF key K = k, the marking algorithm punctures k on x∗ and
generates a circuit C s.t. C(x) = Fkx∗ (x). To test if a circuit C is watermarked, the

6

extraction algorithm first recovers y∗ by decrypting ct∗ in the hint and outputs
“marked” iff C is punctured (i.e., C(x∗) 6= y∗).

By security of the puncturable PRF and the PKE scheme, y∗ is hidden from
an adversary given a watermarked circuit and the hint. Thus, the adversary
cannot create a circuit that outputs y∗ on input x∗ and security of the scheme
follows. However, when the extraction key, which is the secret key of the under-
lying PKE scheme, is made public, the adversary will be able to recover y∗ from
ct∗ and thus compromise security of the scheme.

On Achieving Public Extraction. We solve the problem by designing an extrac-
tion algorithm that tests if output of a circuit equals to a given value without
knowing the target value. This is achieved by using an injective one way function
f . More precisely, in our new scheme, there are no extraction keys and the ci-
phertext ct∗ in the hint is replaced with z∗ = f(y∗) (i.e., hint = (x∗, z∗)), where
y∗ = Fk(x∗). For a PRF key K = k, the evaluation algorithm still outputs Fk(x)
on input x and the marked version of K is still a circuit C s.t. C(x) = Fkx∗ (x).
Besides, to test if a circuit C is watermarked, the extraction algorithm outputs
“marked” iff z∗ 6= f(C(x∗)).

The new extraction algorithm actually tests if C(x∗) is not equal to y∗. Also,
security of the one way function plus security of the puncturable PRF guarantee
that the adversary cannot learn y∗ from a watermarked circuit and the hint.
Thus, it is not able to produce a circuit that outputs y∗ on input x∗. Therefore,
our new construction achieves security in the public extraction setting and thus
is a secure public-key hinting watermarkable PRF.

Message-Embedding Public-Key Hinting Watermarking from Lattices.
Next, we show how to construct public-key hinting watermarkable PRFs with
message embedding from lattices. The construction relies on a functional encryp-
tion (FE) scheme [BSW11,O’N10] and is inspired by the construction of water-
markable PKE scheme presented in [GKM+19]. In a nutshell, an FE scheme is
a PKE scheme that associates each secret key skf with a function f , where the
secret keys can be derived from a master secret key. Besides, by using the secret
key skf to decrypt a ciphertext that encrypts a plaintext m, one can obtain
f(m), but nothing else.

From FE to Publicly Verifiable Puncturing. We can use the FE scheme to realize
a puncturable “PRF” that supports public verifiability of punctured keys. More
precisely, we set the normal PRF key as a secret key skfε of FE, where fε(t‖µ) =
µ. Also, we puncture the key on (inputs that encrypts) plaintexts with prefix t∗

by generating a key skft∗ , where ft∗(t‖µ) = µ if t 6= t∗ and ft∗(t‖µ) = 0 if t = t∗.
To evaluate the PRF (with either a normal PRF key or a punctured key), the
evaluation algorithm just decrypts the input with the secret key. Note that the
normal PRF key and the punctured key function identically on an input if it
encrypts a plaintext with prefix t 6= t∗. In addition, given a punctured key, one
could not learn any information about µ from punctured inputs that encrypt
t∗‖µ, due to security of the FE scheme. Finally, given the master public key, one
can publicly check if a key is punctured on plaintexts with prefix t∗ by sampling
a random µ, encrypting t∗‖µ, and checking if its decryption is not equal to µ.

7

From Publicly Verifiable Puncturing to Public-Key Hinting Watermarking. The
FE-based puncturable “PRF” with public verifiability implies a public-key hint-
ing watermarkable “PRF” with mark embedding immediately. In particular, the
PRF key of the scheme is K = (msk, skfε), where msk is a master secret key
of FE and skfε is a secret key derived from msk. The hint for K is the master
public key mpk for msk. Given an input x, the evaluation algorithm decrypts x
with skfε and outputs the decryption result. The marking algorithm punctures
skfε on a public random string t∗ and outputs a circuit that decrypts inputs with
the punctured key. Given a circuit C, the extraction algorithm outputs “marked”
iff the circuit is punctured on plaintexts with prefix t∗. The extraction algorithm
can be run publicly with the hint mpk since the underlying puncturable PRF
is publicly verifiable. Also, security of the hinting watermarking scheme follows
from security of the puncturable PRF directly.
On Supporting Message Embedding. Based on this, we construct hinting water-
marking scheme with message embedding by employing the message embed-
ding technique introduced in [GKM+19, YAL+19]. To support this, we define
gε(ind‖t‖µ) = µ and define

gmsg,t∗(ind‖t‖µ) =

{
0 If t = t∗ ∧ ind ≥ msg
µ Otherwise

In the message-embedding construction, the PRF key is K = (msk, skgε) and
the hint is still the corresponding master public key. The evaluation algorithm
decrypts the input with skgε , and to embed a message msg into a PRF key,
the marking algorithm generates a circuit that decrypts with the secret key
skgmsg,t∗ . Then, to extract the embedded message from a circuit C, the extraction
algorithm will test if the circuit is punctured on prefix ind‖t∗ for all possible3 ind
and output msg if it is not punctured on prefix (msg − 1)‖t∗, but is punctured
on prefix msg‖t∗.

Now, given a watermarked circuit embedded with a message msg∗, the adver-
sary cannot modify the embedded message since by security of the FE scheme:
1. The adversary cannot distinguish a ciphertext encrypting ind‖t∗‖µ from a

ciphertext that encrypts a random plaintext if ind < msg∗. As the adversary
is not allowed to change the functionality of the watermarked circuit too
much, it cannot puncture on these ciphertexts.

2. The adversary cannot learn µ from a ciphertext encrypting ind‖t∗‖µ if
ind ≥ msg∗, thus it cannot “unpuncture” the watermarked circuit on these
punctured points.

Similarly, we can show that the construction is collusion resistant if the under-
lying FE is collusion resistant.
On Achieving Pseudorandomness. The above construction actually does not have
pseudorandomness. We solve the problem by using a PKE scheme with pseudo-
random ciphertexts and a PRF F. In more detail, we add a secret key k of F in

3 Here, we assume that the message space of the hinting watermarking scheme is
of polynomial-size, and this restriction can be removed if we use the jump finding
technique introduced in [BCP14,NWZ16].

8

both the normal PRF key and the marked keys. Then the evaluation algorithm
(resp. the marked circuit) will encrypt the output of the evaluation algorithm
(resp. the marked circuit) of previous construction with the PKE scheme, where
the encryption randomness is Fk(x). Note that we can put the secret key of the
PKE scheme into the hint and thus the extraction algorithm can still test if a
given circuit is punctured on plaintexts with a specific prefix. Thus, security of
the scheme still holds. In addition, its pseudorandomness is guaranteed by the
(ciphertext) pseudorandomness of the underlying PRF and PKE scheme.

On Instantiating the FE Scheme. In above discussion, we implicitly assume that
all ciphertexts in the ciphertext space of the FE scheme (i.e., the input space
of the hinting watermarkable PRF) can be output by the encryption algorithm.
However, to the best of our knowledge, existing FE schemes from standard as-
sumptions [GVW12, GKP+13, AR17, AV19] do not satisfy this property. Even
worse, in all of these schemes, the ratio between the number of honestly en-
crypted ciphertexts and the size of the ciphertext space is exponentially-small.
Thus, we have to carefully deal with those “invalid” ciphertexts, which are not
output by the encryption algorithm, in the ciphertext space.

First, to ensure that the functionality of a PRF key will not change signif-
icantly after watermarking, we need to guarantee that both the normal PRF
key and the watermarked PRF key, which use different secret keys of the FE
scheme, evaluate identically on input an invalid ciphertext. We achieve this by
requiring the FE scheme to have a special correctness, namely, given any se-
cret key and any invalid ciphertext, the decryption result is always a decryption
failure symbol ⊥. We construct FE scheme with this correctness property from
any FE scheme with perfect correctness and statistically sound non-interactive
zero-knowledge (NIZK) proofs.

Besides, since the ratio ρ between the number of valid ciphertexts and the
number of all possible ciphertexts is exponentially-small, the adversary can dam-
age the evaluation on all valid ciphertexts and thus remove the embedded mes-
sage even if it can only modify the watermarked circuit on a negligible fraction of
inputs. We circumvent this problem by requiring that the adversary has to sub-
mit a circuit that agrees with the watermarked circuit on a (1−ρ·(1−1/poly(λ)))
fraction of inputs. Note that even with this restriction, the adversary can still
modify the watermarked circuit on exponentially-many inputs.

Remark 2.1. Our FE based construction only allows the adversary to modify
the watermarked circuit on an exponentially-small fraction of inputs. Actually,
a simple construction from any PRF also satisfies this weak security requirement.
In particular, the marking algorithm replaces the PRF outputs with the embed-
ded message if the input has prefix 0λ, and the extraction algorithm runs the
watermarked circuit on random inputs with prefix 0λ and outputs the majority
of the evaluation results. In this construction, the marking algorithm changes
the PRF on 1/2λ fraction of inputs, and an adversary can remove the watermark
only if it changes the watermarked circuit on about 1/2λ+1 fraction of inputs.
However, the scheme is less preferable for the following two reasons:

9

• In this construction, the adversary can remove the watermark by merely
changing the circuit on half of the points modified by the marking algorithm.
In contrast, the marking algorithm in our construction only changes the
output on a negligible fraction of valid ciphertext, and the adversary has to
change the outputs on nearly all valid ciphertexts to remove the watermark.

• Our construction will have a good parameter if we use an FE scheme with
dense valid ciphertexts in its ciphertext space, but it seems impossible to
improve the parameter of the simple construction described above.

We also would like to stress that our goal is to explore the possibility of building
full-fledged public-key watermarkable PRFs from standard assumptions rather
than constructing a watermarking scheme with weak security guarantee. We
demonstrate that the goal is achievable, but our solution has some restrictions.
The restrictions can be removed via either using a better FE scheme or improving
the proposed construction. We believe our result would inspire future works that
completely solve the problem.

2.2 From Public-Key Hinting Watermarkable PRFs to Public-Key
Watermarkable PRFs

Next, we discuss how to transform a public-key hinting watermarkable PRF to
a public-key watermarkable PRF. Note that a hinting watermarking scheme is
already a standard watermarking scheme except that its extraction algorithm
needs the correct hint for the given watermarked key. Thus, the main problem
here is how to send the correct hint to the extraction algorithm.

To complete this task, we use an unobfuscatable PRF with robust learnabil-
ity. In a nutshell, in an unobfuscatable PRF UF, each secret key uks is embedded
with a secret information s. The function UFuks(·) is still pseudorandom if the
adversary is only given oracle accesses to it. In addition, one can learn the secret
information s given any circuit that implements the function. An unobfuscatable
PRF has robust learnability if the secret information s can be learned from any
circuit that approximately implements UFuks(·), i.e., the circuit may differ from
the function on a small fraction of inputs.

Given a public-key hinting watermarkable PRF HF and an unobfuscatable
PRF UF, we can construct a public-key watermarkable PRF as follows. The
PRF key of the new scheme includes the PRF key k of HF and the PRF key
ukhint of UF, where hint is the hint for k and is embedded into ukhint as the
secret information. Given an input x, the evaluation algorithm outputs (HFk(x),
UFukhint(x)). To embed a message msg into the PRF key, the marking algorithm
first generates kmsg by embedding msg to k and then outputs a circuit C s.t.
C(x) = (HFkmsg (x),UFukhint(x)). Finally, given a circuit C, the extraction algo-
rithm first recovers hint from the second part of the circuit and then extracts
the message from the first part of the circuit with hint.

Robust learnability of UF ensures that the extracted hint is correct, thus,
security of the new scheme comes from the security of the underlying hinting wa-
termarking scheme directly. The above construction also has pseudorandomness
for unmarked keys due to the pseudorandomness of the underlying schemes, but

10

it would not have pseudorandomness for marked keys if the underlying hinting
watermarkable PRF does not have this property (recall that we do not require
it when defining hinting watermarkable PRFs).

On Achieving Pseudorandomness for Marked Keys. We solve this issue by addi-
tionally using a PRF F to mask outputs of HF in both the evaluation algorithm
and the marked circuit. The key k′ of F is also embedded into the PRF key of
UF and this allows the extraction algorithm to obtain k′ and use it to unmask
outputs of HF. In this way, security of the scheme is preserved. Besides, pseu-
dorandomness of UF guarantees that k′ is hidden to an adversary that can only
access the marked key in a black-box manner. Then by the pseudorandomness
of F and UF, the outputs of the marked key are also pseudorandom.

2.3 Constructing Robust Unobfuscatable PRFs

It remains to show how to construct an unobfuscatable PRF with robust learn-
ability, which is a PRF family UF that allows one to learn the secret information
s embedded in a PRF key ks from any circuit that agrees with UFks(·) on a
large fraction of inputs. We first review existing constructions of unobfuscatable
functions and explain why they do not lead to a robust unobfuscatable PRF.

The first constructions of unobfuscatable (pseudorandom) functions are pre-
sented by Barak et al. in [BGI+01]. Their unobfuscatable PRF also supports
learnability from a circuit that approximates the PRF, but it does not allow the
circuit to modify the PRF evaluation on particular inputs with a high proba-
bility. In contrast, we require that the secret information can be learned from a
circuit that may modify the PRF evaluation on any input with probability 1 as
long as the fraction of modified inputs is small. Then, in [BP13], Bitansky and
Paneth construct an unobfuscatable function with robust learnability. However,
the extraction algorithm of the scheme needs a verification key and it should
be included in all outputs of the function. Therefore, the scheme cannot be
pseudorandom. Recently, Zhandry [Zha21] constructs a robust unobfuscatable
function for decryption functionality from an unobfuscatable function without
robust learnability and a public-key traitor tracing scheme. It seems that the
idea also works for the PRF setting, but this needs a public-key watermarkable
PRF, which does not have a candidate construction yet4.

Next, we describe our constructions of unobfuscatable PRFs with robust
learnability. The constructions are inspired by techniques provided in [BGI+01,
BP13]. In particular, both our construction and the construction of robust un-
obfuscatable function given in [BP13] can be viewed as random-self-reducible
versions of the non-robust unobfuscatable functions constructed in [BGI+01].
However, as discussed above, the main techniques in [BP13] contradict the re-
quirement of pseudorandomness, and we introduce some new ideas to overcome
the difficulties.

4 Recall that the main goal of this work is to construct the first public-key watermark-
able PRF.

11

Construction from Fully Homomorphic Encryption. The construction
needs two PRFs F and F′. Besides, it relies on a special fully homomorphic
encryption (FHE) scheme with the following properties5:

1. One can homomorphically evaluate a circuit over a ciphertext and reran-
domize a ciphertext, without using the public key of the FHE scheme.

2. The ciphertext of the FHE scheme should be pseudorandom.
3. Even given the secret key of the FHE scheme, no one could distinguish a

rerandomized ciphertext that encrypts a random plaintext from a random
string in the ciphertext space.

The PRF key of the constructed robust unobfuscatable PRF UF is K = (α,
β, k, k′, pk, sk, s), where α, β are random strings, k and k′ are PRF keys of F
and F′ respectively, (pk, sk) is a key pair of the FHE scheme, and s is the secret
information. Then, given an input X = (ind, x, ct), the PRF is defined as follows:

UFK(X) =


Enc(pk, α;F′k′(X)) If ind=0;

Fk(x‖ct) If ind=1;

Fk(x⊕ α‖ct)⊕ β If ind=2;

Fk(x⊕ Dec(sk, ct)⊕ β‖ct)⊕ s If ind=3.

where Enc and Dec are the encryption algorithm and the decryption algorithm
of the underlying FHE scheme respectively.

Robust Learnability of the Construction. We first explain why the above con-
struction has robust learnability. For simplicity, we assume that the extractor is
given a circuit C that agrees with UFK(·) on all but negligible fraction of inputs.

The extractor first gets an encryption of α via computing ct∗α = C(0‖x1‖ct1),
where x1 and ct1 are random strings. As C and UFK(·) agree on all but negligible
fraction of inputs, we have ct∗α = UFK(0‖x1‖ct1) = Enc(pk, α;F′k′(0‖x1‖ct1))
with all but negligible probability, i.e., ct∗α should be an encryption of α.

Then, the extractor obtains an encryption of β as follows. It first computes
y2 = C(1‖x2‖ct2), where x2 and ct2 are random strings. Similar, we have y2 =
Fk(x2‖ct2) with all but negligible probability. Next, it runs a circuit P(·) on ct∗α
to obtain ct∗β , where for any string a, P(a) = C(2‖x2 ⊕ a‖ct2)⊕ y2. Again, with
all but negligible probability, we have C(2‖x2 ⊕ α‖ct2) = UFK(2‖x2 ⊕ α‖ct2) =
Fk(x2‖ct2)⊕ β , which implies P(α) = β, i.e., ct∗β is an encryption of β.

Now, with ct∗α and ct∗β , the extractor is ready to learn the secret information.
It first samples a random γ and computes ct∗3 as a rerandomized encryption of
β⊕γ. Then it computes y3 = C(3‖x3‖ct∗3), where x3 is a random string. Note that
ct∗3 is also random due to Property 3 of the special FHE scheme and the fact that
γ is a random string. Thus we have y3 = UFK(3‖x3‖ct∗3) = Fk(x3⊕γ‖ct∗3)⊕s with
all but negligible probability. Next, the extractor computes y′3 = C(1‖x3⊕γ‖ct∗3)
and recovers s̄ = y3 ⊕ y′3. As x3 is a random string, γ is still hidden given
x3 ⊕ γ, thus x3 ⊕ γ‖ct∗3 is indistinguishable from a random string and with all
but negligible probability, we have y′3 = UFK(1‖x3 ⊕ γ‖ct∗3) = Fk(x3 ⊕ γ‖ct∗3),

5 We show how to construct the desired FHE scheme later in this section.

12

which implies that s̄ = s. Therefore, the extractor can succeed in recovering s
from the circuit C with all but negligible probability.

Remark 2.2. The above construction also supports learnability from a circuit
that deviates from UFK(·) on a constant fraction of inputs. To achieve this,
the extractor needs to produce multiple test points in each step and choose the
majorities. In more detail, let N be a suitable polynomial. The extractor first
produces N ciphertexts ct∗α via running the circuit C on N independent inputs
(x1, ct1). Then for each ct∗α, it produces N ciphertexts ct∗β and for each pair
(ct∗α, ct

∗
β), it computes N results s̄. The extractor sets the extraction outputs as

the majority-of-majorities-of-majorities. More precisely, for each pair (ct∗α, ct
∗
β),

it chooses the extracted result for this pair as the majority of all N results
s̄ produced for this pair. It also chooses the extracted result for each ct∗α as
the majority of all N results for the N pairs (ct∗α, ct

∗
β). Finally, it outputs the

majority of all N results for the N ciphertexts ct∗α.
In above extraction procedure, inputs (excluding the index ind) to the circuit

C are all random since they are composed of either random strings or rerandom-
ized ciphertexts encrypting random plaintexts, which are random due to Prop-
erty 3 of the special FHE scheme. Thus, if the fraction of inputs that C differs
with UFK(·) is a small constant δ, the majority result at each step should be the
correct secret information. In particular, the extraction result will be correct if

Pr[C(0‖x1‖ct1) = UFK(0‖x1‖ct1)] > 1/2

Pr[C(1‖x2‖ct2) = UFK(1‖x2‖ct2) ∧ C(2‖x2 ⊕ α‖ct2) = UFK(2‖x2 ⊕ α‖ct2)] > 1/2

Pr[C(1‖x3 ⊕ γ‖ct∗3) = UFK(1‖x3 ⊕ γ‖ct∗3) ∧ C(3‖x3‖ct∗3) = UFK(3‖x3‖ct∗3)] > 1/2

for random x1‖ct1, x2‖ct2, and x3‖ct∗3, and all three inequalities can be satisfied
if δ < 1/8. Besides, the constant δ can be improved to be about 1

6 if we slightly
modify the above construction. Please see Sec. 6.3 for more details.

Pseudorandomness of the Construction. Next, we explain why UF is pseudoran-
dom. We assume w.l.o.g. that all queries submitted by the adversary are distinct.

First, suppose that there are no collisions in the inputs to Fk(·) when answer-
ing queries from the adversary, then outputs of Fk(·) would be indistinguishable
from strings sampled uniformly and independently from its output space, i.e.,
outputs of UFK(ind‖x‖ct) will be pseudorandom if ind ∈ {1, 2, 3}. This also
implies that the adversary cannot learn any information about sk. Then by ci-
phertext pseudorandomness of the FHE scheme, outputs of UFK(ind‖x‖ct) will
also be pseudorandom if ind = 0. To summarize, the adversary cannot distin-
guish UF from a random function if there are no collisions in the inputs to Fk(·).

Next, we show why the collisions do not occur. In a nutshell, this is because to
make a collision, the adversary must have the knowledge of α, β, or encryption
of β, and none of them can be obtained via black-box accesses to UFK(·). In
more detail, assume that there are no collisions in the first q queries to the
oracle, then responses of these q queries would be indistinguishable from random
strings, which contain no information. Thus, the adversary also cannot make a
collision in the (q+1)-th query. There is no collision if the adversary only makes

13

one oracle query, then by the above statement, the adversary cannot make any
collision when querying UFK(·). Therefore, the pseudorandomness follows.

Construction from One Way Function. Next, we show how to construct ro-
bust unobfuscatable PRFs without using FHE. More precisely, the new construc-
tion only relies on a standard secret-key encryption scheme with some specific
properties, which can be instantiated from any one way function.

Following [BGI+01, BP13], we remove the dependency on homomorphic en-
cryption via performing the homomorphic operations by UFK(·). In particular,
given an input X = (ind, x, ct), the new PRF proceeds identically as in the con-
struction from FHE if ind ∈ {0, 1, 2, 3}. In addition, if ind = 4, it decrypts the
ciphertext ct, performs the specified homomorphic operation over the decrypted
bits and outputs an encryption of the evaluation result, where the randomness
is derived from F′k′(X).

The extractor can use this additional functionality of UF to evaluate P gate
by gate. Thus, it can still succeed in extracting the secret information from a
circuit C that approximates UFK(·) even if the underlying encryption scheme
does not support homomorphic evaluation over encrypted data.6

Constructing Special Fully Homomorphic Encryption. We finally show
how to construct the special FHE needed. Our starting point is the GSW homo-
morphic encryption scheme presented in [GSW13]. In a nutshell, the secret key
of the scheme is a random vector s ∈ Znq . Its public key contains a matrix

A =

(
B

sᵀB + eᵀ

)
mod q

and a ciphertext ct∗sk, where B is a random matrix in Zn×mq , e is a “short”
vector in Zm and ct∗sk is an encryption of the secret key s. The ciphertext that
encrypts a bit µ is defined as7

C = µ ·G+A ·R mod q

where R is a random binary matrix and G is the standard powers-of-two gadget
matrix [MP12]. Besides, to rerandomize a ciphertext C, the rerandomization
algorithm adds the ciphertext with an encryption of 0. Next, we describe how
to adapt the construction to achieve the three properties needed.
Achieving Property 1 and Property 2. In the evaluation algorithm of the GSW
scheme, the ciphertext ct∗sk should be used to perform the bootstrapping proce-
dure. Also, the rerandomization algorithm needs the matrix A to generate an
encryption of 0. Both variables are contained in the public key and thus the first
property, which requires that the evaluation algorithm and the rerandomization
algorithm can be performed without using the public key, is not satisfied.

6 We notice that however, the trick presented in Remark 2.2 does not work in this
setting as it will require the extractor to produce NO(|C|) test points, which is expo-
nential in the size of the circuit C. Thus, the construction only supports learnability
from a circuit that deviates from UFK(·) on a negligible fraction of inputs.

7 Here, we change the format of the ciphertext of the original GSW scheme slightly.

14

We solve the problem by putting randomized versions of both variables into
the ciphertext of the scheme. In particular, the new ciphertext is (ctµ, ctsk, ct0),
where ctµ is an encryption of the message, ctsk is generated by reramdomizing
ct∗sk and ct0 is a fresh encryption of 0. Then we can use ctsk and ct0 instead
of ct∗sk and A when running the evaluation algorithm and the rerandomization
algorithm, and Property 1 follows. In addition, as the new ciphertext consists
of ciphertexts of the original scheme, the ciphertext pseudorandomness of the
modified scheme (i.e., Property 2) comes from that of the original scheme, which
can be guaranteed by the circular-secure learning with errors (LWE) assumption.

There is one subtle issue when employing this scheme in the construction of
unobfuscatable PRF. That is the extractor can obtain ct0 only from output of
the circuit, which may deviate the PRF evaluation on a 1/6 fraction of inputs,
and the obtained ct0 may not be pseudorandom (e.g., the circuit could rejects
to output ct0 if its first 3 bits are 000). As a result, the output distribution
of the rerandomization algorithm may also be changed. We fix the issue by
including multiple ct0 in each ciphertext and use a random subset sum of them
in the rerandomization algorithm. The selection of the subset provides additional
entropy and we can show that the result is pseudorandom by using the leftover
hash lemma and the fact that A is pseudorandom.
Achieving Property 3. The third property of the special FHE scheme requires
that a rerandomized ciphertext of a random plaintext should look uniform even
given the secret key of the FHE scheme. Here we relax this property and only
require that one can transform a rerandomized ciphertext of the FHE scheme
into a ciphertext with this strong uniformity. The transformed ciphertext is still
decryptable, but does not have to support homomorphic evaluation over it. Note
that this relaxed property is sufficient in our construction of unobfuscatable PRF.

Given a ciphertext CT = (C, ctsk, ct0), where C encrypts a bit µ, we first
transform it as:

c =

(
0

µ · q+1
2

)
+Ar mod q

where r is a short vector in Zmq . We can obtain c via summing some columns of
C. In addition, to decrypt the ciphertext, one can first compute

(−sᵀ, 1) · c = µ · q + 1

2
+ eᵀ · r mod q (1)

where e is the short error term in A. Then the decryption result will be 1 if
Equation (1) is close to q+1

2 and it will be 0 if Equation (1) is close to 0.
However, the above transformed ciphertext can be distinguished from a ran-

dom vector given s due to the following decryption attack. Given a ciphertext c,
which is either a transformed ciphertext or a random vector, the distinguisher
with the secret key s first computes Equation (1). It will get a number that is
close to q+1

2 or 0 if c is a transformed ciphertext and it will get a random number
in Zq if c is a random vector. Thus, it could distinguish these two cases.

We prevent the attack via adding a number z
$← [0, q−1

2] to the last element
of the transformed ciphertext and require that q is much larger than the error

15

term eᵀ · r. One will get µ · q+1
2 + eᵀ · r + z via computing Equation (1) on a

transformed ciphertext that encrypts µ, and this will be a random number in
[µ · q+1

2 , µ · q+1
2 + q−1

2] due to the smudging lemma [AJLA+12], which states
that a small error (i.e., eᵀ · r) can be smudged out by a large error (i.e., z). The
encrypted message can still be recovered from c via computing Equation (1) and
checking if the result exceeds q−1

2 . Besides, if c is a transformed ciphertext that
encrypts a random bit, then Equation (1) would also be a random number in Zq
and thus the distinguisher cannot distinguish it from a random vector.

3 Notations

We write negl(·) to denote a negligible function and write poly(·) to denote a
polynomial. For integers a ≤ b, we write [a, b] to denote all integers from a to b.
Let s be a string, we use |s| to denote the length of s. For integers a ≤ |s|, s[a]
denotes the a-th character of s and for integers a ≤ b ≤ |s|, s[a : b] denotes the
substring (s[a], s[a+ 1], . . . , s[b]). Let S be a finite set, we use |S| to denote the

size of S, and use s
$← S to denote sampling an element s uniformly from set

S. Let D be a distribution, we use d← D to denote sampling d according to D.
Following the syntax in [BLW17], for a circuit family C indexed by a few, say m,
constants, we write C[c1, . . . , cm] to denote a circuit with constants c1, . . . , cm.
We use Z to denote the NAND gate and suppose that all circuits are composed
exclusively by NAND gates unless otherwise specified. We use bold lower-case
letters to denote vectors, and use bold upper-case letters to denote matrices. All
elements in vectors and matrices are integers unless otherwise specified. Let v be
a vector of length n, v[i] denotes the i-th element of v for i ∈ [1, n] and v[i : j]
denotes the vector (v[i],v[i + 1], . . . ,v[j])ᵀ for 1 ≤ i < j ≤ n. For an m-by-n
matrix A, A[i, j] denotes the element on the i-th row and the j-th columon of A
for i ∈ [1,m] and j ∈ [1, n]. We provide more background knowledge and recall
definitions of cryptographic primitives employed in this work in Appendix B.

4 Definition of Public-Key Watermarkable PRFs

In this section, we provide the definition of public-key watermarkable PRFs,
which is adapted from definitions of watermarkable PRFs in previous works
[CHN+16,BLW17,KW17,QWZ18,KW19,YAL+19,YAYX20]. More precisely, a
public-key watermarkable PRF with key space K, input space X , output space
Y, and message space M consists of the following algorithms:

• Setup(1λ)→ PP : On input the security parameter 1λ, the setup algorithm
outputs the public parameter PP .
• KeyGen(PP) → k : On input the public parameter PP , the key generation

algorithm outputs a PRF key k ∈ K.
• Eval(PP, k, x)→ y : On input the public parameter PP , a PRF key k ∈ K,

and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

16

• Mark(PP, k,msg) → C : On input the public parameter PP , a PRF key
k ∈ K, and a message msg ∈ M, the marking algorithm outputs a marked
circuit C : X → Y.

• Extract(PP, C) → msg : On input the public parameter PP and a circuit
C, the extraction algorithm outputs a message msg ∈ M ∪ {⊥}, where ⊥
denotes that the circuit is unmarked.

Correctness. The correctness of a watermarking scheme includes three prop-
erties. The functionality preserving property requires that the watermarked key
can roughly preserve the functionality of the original key.

Definition 4.1 (Functionality Preserving). For any msg ∈ M, let PP ←
Setup(1λ), k ← KeyGen(PP), C ← Mark(PP, k,msg), x

$← X , then we have
Pr[C(x) 6= Eval(PP, k, x)] ≤ negl(λ).

The extraction correctness requires that the extraction algorithm can ex-
tract the correct message from an honestly-watermarked key and will obtain the
“unmarked” symbol when extracting an unmarked key.

Definition 4.2 (Extraction Correctness). For any msg ∈ M, let PP ←
Setup(1λ), k ← KeyGen(PP), and C← Mark(PP, k,msg), then we have

Pr[Extract(PP, C) 6= msg] ≤ negl(λ)

Pr[Extract(PP, Eval(PP, k, ·)) 6=⊥] ≤ negl(λ)

The meaningfulness property requires that most circuits are unmarked, which
rules out the trivial construction that regards all circuits as marked.

Definition 4.3 (Watermarking Meaningfulness). For any circuit C : X →
Y, let PP ← Setup(1λ), then we have Pr[Extract(PP, C) 6=⊥] ≤ negl(λ).

Pseudorandomness. Our definition of pseudorandomness is twofold, including
pseudorandomness for unmarked keys and that for marked keys. The properties
require that given oracle access to an unmarked PRF key (or a marked key), the
adversary cannot distinguish it from a random function.

Definition 4.4 (Pseudorandomness for Unmarked Keys). Let PP ←
Setup(1λ), k ← KeyGen(PP), and f be a random function from X to Y. Also,
let O0(·) be an oracle that takes as input a string x ∈ X and returns Eval(PP,
k, x), and let O1(·) be an oracle that takes as input a string x ∈ X and returns
f(x). Then for all probabilistic polynomial-time (PPT) adversary A, we have:

| Pr[AO0(·)(PP) = 1]− Pr[AO1(·)(PP) = 1] |≤ negl(λ)

Definition 4.5 (Pseudorandomness for Marked Keys). For any PPT ad-
versary A = (A1,A2), let PP ← Setup(1λ) and k ← KeyGen(PP). Also, let
(msg, state) ← A1(PP), C ← Mark(PP, k,msg), and f be a random function
from X to Y. Let O0(·) be an oracle that takes as input a string x ∈ X and
returns C(x), and let O1(·) be an oracle that takes as input a string x ∈ X and
returns f(x). Then we have:

| Pr[AO0(·)
2 (state) = 1]− Pr[AO1(·)

2 (state) = 1] |≤ negl(λ)

17

Unremovability. This is the main security requirement for a watermarking
scheme, which requires that the adversary cannot remove or modify the messages
embedded in a random PRF key without significantly changing its functionality.

Definition 4.6 (Q-Bounded ε-Unremovability). A watermarkable PRF is
Q-bounded ε-unremovable if for all PPT and ε-unremoving-admissible adver-
saries A, we have Pr[ExptURA,Q(λ) = 1] ≤ negl(λ), where we define the experi-
ment ExptUR as follows:
1. The challenger samples PP ← Setup(1λ) and k∗ ← KeyGen(PP).
2. Then, it returns PP to A and answers A’s challenge oracle queries. Here,
A is only allowed to query the challenge oracle for at most Q times.

• Challenge Oracle. On input a message msg ∈M, the challenge oracle
returns a circuit C∗ ← Mark(PP, k∗,msg) to the adversary.

3. Finally, A submits a circuit C̃ and the experiment outputs 1 iff Extract(PP,
C̃) 6∈ Q∗. Here, we use Q∗ to denote all messages submitted to the challenge
oracle and use R∗ to denote all circuits returned by the challenge oracle.

We say that an adversary A is ε-unremoving-admissible if there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ ε · |X |.

Remark 4.1. We can also define negl(λ)-unremovability for a watermarkable
PRF, which is identical to the definition of ε-unremovability for concrete ε, ex-
cept that A should be negl(λ)-unremoving-admissible, i.e., there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ negl(λ) · |X |.

5 Public-Key Hinting Watermarkable PRFs

We define and construct public-key hinting watermarkable PRFs in this section.
We provide its formal definition in Sec. 5.1. Then in Sec. 5.2, Sec. 5.3, and Sec.
5.4, we give constructions with different properties.

5.1 The Definition

The definition of public-key hinting watermarkable PRF is similar to the defi-
nition of standard public-key watermarkable PRFs given in Sec. 4 except that
its key generation algorithm will generate a “hint” together with the PRF key,
which can be used later in the extraction algorithm. More precisely, a public-key
hinting watermarkable PRF with key space K, input space X , output space Y,
and message space M consists of the following algorithms:

• Setup(1λ)→ PP : On input the security parameter 1λ, the setup algorithm
outputs the public parameter PP .

• KeyGen(PP) → (k, hint) : On input the public parameter PP , the key
generation algorithm outputs a PRF key k ∈ K and a hint hint.

• Eval(PP, k, x)→ y : On input the public parameter PP , a PRF key k ∈ K,
and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

18

• Mark(PP, k,msg) → C : On input the public parameter PP , a PRF key
k ∈ K, and a message msg ∈ M, the marking algorithm outputs a marked
circuit C : X → Y.

• Extract(PP, C, hint)→ msg : On input the public parameter PP , a circuit
C, and a hint hint, the extraction algorithm outputs a message msg ∈
M∪ {⊥}, where ⊥ denotes that the circuit is unmarked.

Correctness. The correctness of a public-key hinting watermarkable PRF also
requires the following three properties. Here for the extraction correctness, we
require that the correct hint is used.

• Functionality Preserving. For any msg ∈ M, let PP ← Setup(1λ),

(k, hint) ← KeyGen(PP), C ← Mark(PP, k,msg), x
$← X , then we have

Pr[C(x) 6= Eval(PP, k, x)] ≤ negl(λ).
• Extraction Correctness. For any msg ∈ M, let PP ← Setup(1λ), (k,
hint)← KeyGen(PP), and C← Mark(PP, k,msg), then we have

Pr[Extract(PP, C, hint) 6= msg] ≤ negl(λ)

Pr[Extract(PP, Eval(PP, k, ·), hint) 6=⊥] ≤ negl(λ)

• Watermarking Meaningfulness. For any circuit C : X → Y and any hint,
let PP ← Setup(1λ), then we have Pr[Extract(PP, C, hint) 6=⊥] ≤ negl(λ).

Pseudorandomness. The pseudorandomness property requires that the eval-
uation of the PRF with an unmarked key should be pseudorandom. Here, the
adversary is not allowed to access the hint associated with the PRF key.

Definition 5.1 (Pseudorandomness). Let PP ← Setup(1λ), (k, hint) ←
KeyGen(PP), and f be a random function from X to Y. Also, let O0(·) be an
oracle that takes as input a string x ∈ X and returns Eval(PP, k, x), and let
O1(·) be an oracle that takes as input a string x ∈ X and returns f(x). Then for
all PPT adversary A, we have:

| Pr[AO0(·)(PP) = 1]− Pr[AO1(·)(PP) = 1] |≤ negl(λ)

Unremovability. The unremovability property also requires that an adversary
cannot remove or modify the message embedded in a watermarked PRF key
while keeping its functionality. Here, we allow the adversary to learn the hint
associated with the PRF key. Also, we require that the correct hint should be
used when extracting the circuit submitted by the adversary.

Definition 5.2 (Q-Bounded ε-Unremovability). A hinting watermarkable
PRF is Q-bounded ε-unremovable if for all PPT and ε-unremoving-admissible
adversaries A, we have Pr[ExptURA,Q(λ) = 1] ≤ negl(λ), where we define the
experiment ExptUR as follows:

1. The challenger samples PP ← Setup(1λ) and (k∗, hint∗)← KeyGen(PP).
2. Then, it returns (PP, hint∗) to A and answers A’s challenge oracle queries.

Here, A is only allowed to query the challenge oracle for at most Q times.

19

• Challenge Oracle. On input a message msg ∈M, the challenge oracle
returns a circuit C∗ ← Mark(PP, k∗,msg) to the adversary.

3. Finally, A submits a circuit C̃ and the experiment outputs 1 iff Extract(PP,
C̃, hint∗) 6∈ Q∗. Here, we use Q∗ to denote all messages submitted to the
challenge oracle and use R∗ to denote all circuits returned by the challenge
oracle.

We say that an adversary A is ε-unremoving-admissible if there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ ε · |X |.8

5.2 Public-Key Hinting Watermarkable PRFs from Puncturable
PRFs

In this section, we present our construction of public-key hinting watermarkable
PRFs from puncturable PRFs and injective one way functions.

Let λ be the security parameter. Let n,m, l be positive integers that are
polynomial in λ.

Our construction is built on the following building blocks:

• A puncturable PRF PPRF = (PPRF. KeyGen,PPRF. Eval,PPRF. Constrain,
PPRF. ConstrainEval) with input space {0, 1}n and output space {0, 1}m.
• An injective one way function F : {0, 1}m → {0, 1}l.

We construct the public-key hinting watermarkable PRF HWF = (Setup,
KeyGen, Eval, Mark, Extract), which has input space {0, 1}n, output space {0,
1}m and message space {“marked”} as follows:

• Setup. On input the security parameter 1λ, the setup algorithm samples

w
$← {0, 1}λ and outputs the public parameter PP = w.

• KeyGen. On input the public parameter PP = w, the key generation algo-
rithm computes:

1. k ← PPRF. KeyGen(1λ).

2. x∗
$← {0, 1}n.

3. y∗ = PPRF. Eval(k, x∗).
4. z∗ = F(y∗).

and outputs the PRF key K = (k, x∗) and the hint hint = (x∗, z∗, w).
• Eval. On input the public parameter PP = w, the PRF key K = (k, x∗) and

an input x ∈ {0, 1}n, the evaluation algorithm outputs y = PPRF. Eval(k, x).
• Mark. On input the public parameter PP = w and the PRF key K = (k, x∗),

the marking algorithm computes ck ← PPRF. Constrain(k, x∗) and outputs
a circuit C : {0, 1}n → {0, 1}m s.t. for any x ∈ {0, 1}n:

C(x) = PPRF. ConstrainEval(ck, x)

8 Similar to a standard watermarkable PRF, we can define negl(λ)-unremovability,
which requires that ∃ C∗ ∈ R∗ s.t. |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ negl(λ) · |X |.

20

• Extract. On input the public parameter PP = w, a circuit C, and a hint
hint = (x̄∗, z̄∗, w̄), the extraction algorithm outputs “marked” if

w̄ = w ∧ z̄∗ 6= F(C(x̄∗))

Otherwise, it outputs ⊥.

Theorem 5.1. If PPRF is a secure puncturable PRF and F is an injective one
way function, then HWF is a secure public-key hinting watermarkable PRF with
1-bounded 1-unremovability.

We present proof of Theorem 5.1 in Appendix E.1.

5.3 Public-Key Hinting Watermarkable PRFs from Functional
Encryption

In this section, we construct public-key hinting watermarkable PRFs from func-
tional encryption. Our construction relies on an FE scheme with additional prop-
erties, which is defined and constructed in Appendix C.

Let λ be the security parameter. Let n,m, κ,Q be positive integers that are
polynomial in λ. Let ρ, θ be real values in (0, 1) s.t. 1/θ is polynomial in λ. Let
ϕ = θ/(5 + (κ− 1)Q). Let T = λ/ϕ2. Let ε = ρ · (1− θ).

Also, for any (msg, t∗) ∈ [0, 2κ−1]×{0, 1}λ, we define the following functions
from [0, 2κ − 1]× {0, 1}λ × {0, 1}λ to {0, 1}λ:

f⊥(ind‖t‖µ) = µ

fmsg,t∗(ind‖t‖µ) =

{
0λ If t = t∗ ∧ ind ≥ msg
µ Otherwise

Our construction is built on the following building blocks:

• An FE scheme FE = (FE. Setup,FE. KeyGen,FE. Enc,FE. Dec) with message
space {0, 1}κ+2λ, ciphertext space {0, 1}n and density ρ.9 In addition, we
assume w.l.o.g. that FE. Dec is a deterministic algorithm (See Remark C.2).
• A PKE scheme PKE = (PKE. KeyGen,PKE. Enc,PKE. Dec) with message

space {0, 1}λ and ciphertext space {0, 1}m. Also, we use RPKE. Enc to denote
the randomness space for the algorithm PKE. Enc.
• A PRF F = (F. KeyGen,F. Eval) with input space {0, 1}n and output space
RPKE. Enc.

We construct the public-key hinting watermarkable PRF HWF = (Setup,
KeyGen, Eval, Mark, Extract), which has input space {0, 1}n, output space {0,
1}m and message space {0, 1}κ\{0κ} = [1, 2κ − 1] as follows:

9 We use density to denote the fraction of honestly generated ciphertexts in the ci-
phertext space. Its formal definition is given in Remark C.1.

21

• Setup. On input the security parameter 1λ, the setup algorithm samples

w
$← {0, 1}λ, t∗

$← {0, 1}λ, and outputs the public parameter PP = (w, t∗).
• KeyGen. On input the public parameter PP = (w, t∗), the key generation

algorithm computes
1. (mpk,msk)← FE. Setup(1λ).
2. (pk, sk)← PKE. KeyGen(1λ).
3. k ← F. KeyGen(1λ).
4. fsk ← FE. KeyGen(mpk,msk, f⊥).

and outputs the PRF key K = (mpk,msk, pk, k, fsk) and the hint hint =
(mpk, sk, w).
• Eval. On input the public parameter PP = (w, t∗), the PRF key K = (mpk,
msk, pk, k, fsk), and an input x ∈ {0, 1}n, the evaluation algorithm outputs
M[mpk, fsk , pk, k](x), where M is defined in Figure 2.
• Mark. On input the public parameter PP = (w, t∗), the PRF key K = (mpk,
msk, pk, k, fsk), and a message msg ∈ [1, 2κ − 1], the marking algorithm
computes fskmsg ← FE. KeyGen(mpk,msk, fmsg,t∗) and outputs the circuit
M[mpk, fskmsg , pk, k], where M is defined in Figure 2.
• Extract. On input the public parameter PP = (w, t∗), a circuit C, and a

hint hint = (mpk, sk, w̄), the extraction algorithm output ⊥ if w̄ 6= w.
Otherwise, it runs the jump finding algorithm Trace (recalled in Appendix
B.5 and also described in Figure 3) to extract messages from C, where the
oracle P used in the algorithm is simulated by the Test algorithm defined in
Figure 3. More precisely, it proceeds as follow:
1. Set the constant for the algorithm Test as (C,mpk, sk, t∗).
2. p0 = Test(0).
3. p2κ−1 = Test(2κ − 1).
4. M ← Trace(0, 2κ − 1, p0, p2κ−1). Here, the extraction algorithm will

abort and output ⊥ if the Test algorithm has been invoked for more
than Q · (κ+ 1) times in the Trace algorithm.

5. If M = ∅, output ⊥.

6. msg
$←M.

7. Output msg.

M

Constant: mpk, fsk , pk, k

Input: x

1. µ = FE. Dec(mpk, fsk , x).

2. If µ =⊥, set µ = 0λ.

3. Output y = PKE. Enc(pk, µ;F. Eval(k, x)).

Fig. 2 The circuit M.

Theorem 5.2. If FE is a secure functional encryption scheme with Q-adaptive
indistinguishability and strong correctness (as defined in Appendix C), PKE is a
secure PKE scheme with ciphertext pseudorandomness, and F is a secure PRF,
then HWF is a secure public-key hinting watermarkable PRF with Q-bounded
ε-unremovability.

22

Trace

Input: ind1, ind2, p1, p2
1. ∆ = |p1 − p2|.
2. If ∆ ≤ ϕ:

Return ∅.
3. If ind2 − ind1 = 1:

Return {ind2}.
4. ind3 = b ind1+ind2

2
c.

5. p3 = Test(ind3).
6. Return Trace(ind1, ind3, p1, p3)∪

Trace(ind3, ind2, p3, p2).

Test

Constant: E,mpk, sk, t∗

Input: ind
1. Acc = 0
2. For i ∈ [1, T]:

(a) Sample µ
$← {0, 1}λ.

(b) x← FE. Enc(mpk, ind‖t∗‖µ).
(c) y = E(x).
(d) µ̄ = PKE. Dec(sk, y).
(e) If µ = µ̄: Acc = Acc+ 1.

3. Return Acc
T

.

Fig. 3 The algorithms Trace and Test.

We present proof of Theorem 5.2 in Appendix E.2.

5.4 Public-Key Hinting Watermarkable PRFs from Secret-Key
Watermarkable PRFs

In this section, we show how to construct public-key hinting watermarkable PRFs
from any secret-key watermarkable PRF with public extraction.

Let λ be the security parameter. Let m,n, κ be positive integers that
are polynomial in λ. Let SK-WPRF = (SK-WPRF. Setup,SK-WPRF. KeyGen,
SK-WPRF. Eval,SK-WPRF. Mark,SK-WPRF. Extract) be a secret-key water-
markable PRF with public extraction (see Appendix B.6 for its definition) that
has input space {0, 1}n, output space {0, 1}m, and message space {0, 1}κ.

We construct the public-key hinting watermarkable PRF HWF = (Setup,
KeyGen, Eval, Mark, Extract), which has input space {0, 1}n, output space {0,
1}m, and message space {0, 1}κ as follows:

• Setup. On input the security parameter 1λ, the setup algorithm samples

w
$← {0, 1}λ and outputs the public parameter PP = w.

• KeyGen. On input the public parameter PP = w, the key generation
algorithm first generates (pp,mk, ek) ← SK-WPRF. Setup(1λ) and k ←
SK-WPRF. KeyGen(pp). Then, it outputs the PRF key K = (pp,mk, ek, k)
and the hint hint = (pp, ek, w).
• Eval. On input the public parameter PP = w, the PRF key K = (pp,
mk, ek, k) and an input x ∈ {0, 1}n, the evaluation algorithm outputs y =
SK-WPRF. Eval(pp, k, x).
• Mark. On input the public parameter PP = w, the PRF key K = (pp,
mk, ek, k) and a message msg ∈ {0, 1}κ, the marking algorithm outputs
C← SK-WPRF. Mark(pp,mk, k,msg).
• Extract. On input the public parameter PP = w, a circuit C and a hint
hint = (pp, ek, w′), the extraction algorithm outputs⊥ if w 6= w′. Otherwise,
it outputs msg ← SK-WPRF. Extract(pp, ek, C).

Theorem 5.3. If SK-WPRF is a secure secret-key watermarkable PRF with pub-
lic extraction and Q-bounded ε-unremovability, then HWF is a secure public-key

23

hinting watermarkable PRF with Q-bounded ε-unremovability, where ε is a real
value in (0, 1) (or the negligible function negl(λ)) and Q is a positive integer
that is polynomial in λ.

We present proof of Theorem 5.3 in Appendix E.3.

6 Robust Unobfuscatable PRFs

In this section, we define and construct robust unobfuscatable PRFs. We first
give its formal definition in Sec. 6.1. Then in Sec. 6.2 and Sec. 6.3, we present
constructions with different properties.

6.1 The Definition

We give definition of robust unobfuscatable PRFs in this section, which follows
definitions in previous works [BGI+01, BP13, Zha21] with slight modifications.
More precisely, an unobfuscatable PRF with input space X , output space Y,
and message space M consists of the following algorithms:

• Setup(1λ)→ PP : On input the security parameter 1λ, the setup algorithm
outputs the public parameter PP .

• KeyGen(PP,msg)→ K : On input the public parameter PP and a message
msg ∈M, the key generation algorithm outputs a PRF key K.

• Eval(PP,K, x) → y : On input the public parameter PP , a PRF key K,
and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

• Extract(PP, C) → msg : On input the public parameter PP and a circuit
C, the extraction algorithm outputs a message msg ∈ M ∪ {⊥}, where ⊥
denotes that the extraction fails.

Correctness. Its correctness requires that the extraction algorithms can always
output the correct message given an honestly generated secret key.

Definition 6.1 (Correctness). For any msg ∈ M, let PP ← Setup(1λ)
and K ← KeyGen(PP,msg), then we have Pr[Extract(PP, Eval(PP,K, ·)) 6=
msg] = 0.

Pseudorandomness. Its black-box pseudorandomness requires that outputs of
the evaluation algorithm are indistinguishable from outputs of a random function
if the adversary is only given oracle access to the evaluation algorithm.

Definition 6.2 (Black-Box Pseudorandomness). For any PPT adversary
A = (A1,A2), let PP ← Setup(1λ). Also, let (msg, state) ← A1(PP), K ←
KeyGen(PP,msg), and f be a random function from X to Y. Let O0(·) be an
oracle that takes as input a string x ∈ X and returns Eval(PP,K, x), and let
O1(·) be an oracle that takes as input a string x ∈ X and returns f(x). We have

| Pr[AO0(·)
2 (state) = 1]− Pr[AO1(·)

2 (state) = 1] |≤ negl(λ)

24

Learnability. Its robust non-black-box learnability requires that one can learn
the message from a circuit that approximately evaluates the PRF. In particular,
for any function ε ∈ [0, 1], we define ε-robust learnability as follows.

Definition 6.3 (ε-Robust Learnability). For all PPT and ε-admissible ad-
versaries A = (A1,A2), we have

Pr


PP ← Setup(1λ);

(msg, state)← A1(PP);

K ← KeyGen(PP,msg);

C← A2(K, state);

msg ← Extract(PP, C);

: msg 6= msg

 ≤ negl(λ)

Here, we say that an adversary A is ε-admissible if |{x ∈ X : C(x) 6= Eval(PP,
K, x)}| ≤ ε · |X |.10

6.2 Robust Unobfuscatable PRFs from One Way Functions

In this section, we provide our construction of robust unobfuscatable PRFs from
one way functions.

Let λ be the security parameter. Let n0 = 3, n1 = (λ+ 2) · λ, n2 = 2(λ+ 1),
n3 = λ+ 1, n4 = λ, n5 = λ · (λ+ 1). Let n = n0 + n1 + n2 + n3 + n4 + n5. Let
m be a positive integer that is polynomial in λ s.t. m ≥ λ · (λ+ 1).

Our construction is built on the following building blocks, all of which can
be constructed from one way functions:

• A PRF Fenc = (Fenc . KeyGen,Fenc . Eval) with input space {0, 1}λ and out-
put space {0, 1}.
• An invoker randomizable PRF FIR = (FIR. KeyGen,FIR. Eval) with input

space {0, 1}n−n1 × {0, 1}n1 and output space {0, 1}n1 .
• A PRF Fmask = (Fmask . KeyGen,Fmask . Eval) with input space {0, 1}n−n0

and output space {0, 1}m.
• A PRF Fpad = (Fpad . KeyGen,Fpad . Eval) with input space {0, 1}n and out-

put space {0, 1}m.

We construct the robust unobfuscatable PRF UOF = (Setup, KeyGen, Eval,
Extract), which has input space {0, 1}n, output space {0, 1}m, and message
space {0, 1}m as follows:

• Setup. There is no need to set the public parameter in this construction and
the setup algorithm outputs PP = 1λ on input the security parameter 1λ.

• KeyGen. On input the security parameter 1λ and the message msg, the

key generation algorithm samples α
$← {0, 1}λ and β

$← {0, 1}λ. Then
it generates PRF keys kenc ← Fenc . KeyGen(1λ), kIR ← FIR. KeyGen(1λ),

10 Similar to a (hinting) watermarkable PRF, we can define negl(λ)-robust learnability,
which requires that |{x ∈ X : C(x) 6= Eval(PP,K, x)}| ≤ negl(λ) · |X |.

25

kmask ← Fmask . KeyGen(1λ), and kpad ← Fpad . KeyGen(1λ). Finally, it out-
puts the PRF key

K = (α, β, kenc , kIR, kmask , kpad ,msg)

• Eval. On input the secret key K = (α, β, kenc , kIR, kmask , kpad ,msg) and an
input x ∈ {0, 1}n, the evaluation algorithm first parses x = (u0, u1, u2, u3,
u4, u5) ∈ {0, 1}n0×{0, 1}n1×{0, 1}n2×{0, 1}n3×{0, 1}n4×{0, 1}n5 . Then it
sets w = (u0, u2, u3, u4, u5) and computes (r1, r2, . . . , rλ+2) = FIR. Eval(kIR,
w, u1), where ri ∈ {0, 1}λ for i ∈ [1, λ+ 2]. Next, it deals with the following
cases:

– If u0 = 0:
1. For i ∈ [1, λ]:

(a) cti = ri‖Fenc . Eval(kenc , ri)⊕ α[i].
2. ypad = Fpad . Eval(kpad , x)[1 : m− λ · (λ+ 1)].
3. Output ct1‖ . . . ‖ctλ‖ypad .

– If u0 = 1:
1. Parse u2 = (r̄1, c̄1, r̄2, c̄2) ∈ {0, 1}λ × {0, 1} × {0, 1}λ × {0, 1}.
2. µ1 = Fenc . Eval(kenc , r̄1)⊕ c̄1.
3. µ2 = Fenc . Eval(kenc , r̄2)⊕ c̄2.
4. µ = µ1 Z µ2.
5. ct = rλ+1‖Fenc . Eval(kenc , rλ+1)⊕ µ.
6. ypad = Fpad . Eval(kpad , x)[1 : m− (λ+ 1)].
7. Output ct‖ypad .

– If u0 = 2:
1. Parse u3 = (r̄, c̄) ∈ {0, 1}λ × {0, 1}.
2. µ = Fenc . Eval(kenc , r̄)⊕ c̄.
3. ct = rλ+2‖Fenc . Eval(kenc , rλ+2)⊕ µ.
4. ypad = Fpad . Eval(kpad , x)[1 : m− (λ+ 1)].
5. Output ct‖ypad .

– If u0 = 3:
1. z = (u1, u2, u3, u4, u5).
2. ymask = Fmask . Eval(kmask , z).
3. Output ymask .

– If u0 = 4:
1. u′4 = u4 ⊕ α.
2. z = (u1, u2, u3, u

′
4, u5).

3. ymask = Fmask . Eval(kmask , z).
4. Output (β‖0m−λ)⊕ ymask .

– If u0 = 5:
1. Parse u5 = (r̄i, c̄i)i∈[1,λ] ∈ ({0, 1}λ × {0, 1})λ.
2. For i ∈ [1, λ]:

(a) µi = Fenc . Eval(kenc , r̄i)⊕ c̄i.
3. ν = µ1‖ . . . ‖µλ.
4. u′4 = u4 ⊕ ν ⊕ β.
5. z = (u1, u2, u3, u

′
4, u5).

26

6. ymask = Fmask . Eval(kmask , z).
7. Output msg ⊕ ymask .

– If u0 = 6 or u0 = 7:
1. ypad = Fpad . Eval(kpad , x).
2. Output ypad .

• Extract. On input a circuit C, the extraction algorithm first obtains ct1, . . . ,
ctλ as follows:

x′0
$← {0, 1}n−n0 , x0 = 000‖x′0, y0 = C(x0)

(ct1, . . . , ctλ) = y0[1 : λ · (λ+ 1)]

Then it computes:

x′1
$← {0, 1}n−n0 , x1 = 011‖x′1, y1 = C(x1)

and samples γ
$← {0, 1}λ. Let P = P̄[x′1, C, y1, γ], where P̄ is defined in Figure

4. Let |P| be the number of wires for the circuit P and label each wire of P
with a number in [1, |P|], where each wire has a larger label than its children.
We can label the input wires as 1, . . . , λ. Also, we can label the output wires
as |P| − λ+ 1, . . . , |P|, where the i-th output wire is labeled with |P| − λ+ i.
Next, the extraction algorithm proceeds as follows for j ∈ [λ+ 1, |P|], where
jL and jR are the labels of the children of the wire labelled with j:

1. u
(j)
1

$← {0, 1}n1 .

2. (u
(j)
3 , u

(j)
4 , u

(j)
5)

$← {0, 1}n3 × {0, 1}n4 × {0, 1}n5 .
3. If jL 6= jR:

(a) u
(j)
2 = (ctjL , ctjR).

4. If jL = jR:

(a) (ū
(j)
1 , ū

(j)
2)

$← {0, 1}n1 × {0, 1}n2 .

(b) (ū
(j)
4 , ū

(j)
5)

$← {0, 1}n4 × {0, 1}n5 .

(c) ū
(j)
3 = ctjL .

(d) ū
(j)
0 = 010.

(e) x̄2,j = ū
(j)
0 ‖ū

(j)
1 ‖ū

(j)
2 ‖ū

(j)
3 ‖ū

(j)
4 ‖ū

(j)
5 .

(f) ȳ2,j = C(x̄2,j).
(g) c̄tjL = ȳ2,j [1 : λ+ 1].

(h) u
(j)
2 = (ctjL , c̄tjL).

5. u
(j)
0 = 001.

6. x2,j = u
(j)
0 ‖u

(j)
1 ‖u

(j)
2 ‖u

(j)
3 ‖u

(j)
4 ‖u

(j)
5 .

7. y2,j = C(x2,j).
8. ctj = y2,j [1 : λ+ 1].

After obtaining ct|P|−λ+1, . . . , ct|P|, the extraction algorithm finally extracts
the message as follows:

1. (u1, u2, u3, u4)
$← {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}n4 .

2. u5 = (ct|P|−λ+1, . . . , ct|P|).

27

3. u0 = 101.
4. x3 = u0‖u1‖u2‖u3‖u4‖u5.
5. y3 = C(x3).
6. ũ0 = 011.
7. ũ4 = u4 ⊕ γ.
8. x̃3 = ũ0‖u1‖u2‖u3‖ũ4‖u5.
9. ỹ3 = C(x̃3).

10. msg = ỹ3 ⊕ y3.
Finally, it outputs msg.

P̄

Constant: x′1, C, y1, γ

Input: a

1. Parse x′1 = (u1, u2, u3, u4, u5) ∈ {0, 1}n1 ×{0, 1}n2 ×{0, 1}n3 ×{0, 1}n4 ×{0, 1}n5 .

2. ũ0 = 100.

3. ũ4 = u4 ⊕ a.

4. x̃1 = ũ0‖u1‖u2‖u3‖ũ4‖u5.

5. ỹ1 = C(x̃1).

6. b = (ỹ1 ⊕ y1)[1 : λ].

7. Output b⊕ γ.

Fig. 4 The circuit P̄.

Theorem 6.1. If Fenc ,Fmask ,Fpad are secure PRFs and FIR is a secure invoker
randomizable PRF, then UOF is a secure robust unobfuscatable PRF family with
negl(λ)-robust learnability.

We present proof of Theorem 6.1 in Appendix E.4.

6.3 Robust Unobfuscatable PRFs from Fully Homomorphic
Encryption

In this section, we construct robust unobfuscatable PRFs from fully homomor-
phic encryption. Our construction relies on a special FHE scheme, which is
defined and constructed in Appendix D.

Let λ be the security parameter. Let Lc, Lt, Lp, Le, lenc , lrpk , lrek be positive
integers that are polynomial in λ. Let n0 = λ, n1 = λ · lenc + lrpk + lrek , n2 = λ,
and n3 = λ ·Lt. Let m1 = λ ·Lc +Lp +Le and let m2 be a positive integer that
is polynomial in λ. Let n = n0 +n1 +n2 +n3 and m = m1 +m2. Let ε be a real
value in (0, 1) s.t. 1/ε is polynomial in λ and N = λ/ε2.

Our construction is built on the following building blocks:

• A special FHE SFHE = (SFHE. KeyGen,SFHE. Enc,SFHE. Dec,SFHE. Eval,
SFHE. RandPK,SFHE. RandEK,SFHE. TranCT,SFHE. TCTDec). Here, the mes-
sage space is {0, 1}, the output space of algorithms SFHE. Enc, SFHE. RandPK,

28

SFHE. RandEK and SFHE. TranCT are {0, 1}Lc , {0, 1}Lp , {0, 1}Le and {0, 1}Lt
respectively. In addition, the randomness space of the algorithms SFHE. Enc,
SFHE. RandPK, and SFHE. RandEK are {0, 1}lenc , {0, 1}lrpk , and {0, 1}lrek re-
spectively.
• An invoker randomizable PRF FIR = (FIR. KeyGen,FIR. Eval) with input

space {0, 1}n−n1 × {0, 1}n1 and output space {0, 1}n1 .
• A PRF Fmask = (Fmask . KeyGen,Fmask . Eval) with input space {0, 1}n and

output space {0, 1}m2 .

We construct the robust unobfuscatable PRF UOF = (Setup, KeyGen, Eval,
Extract), which has input space {0, 1}n, output space {0, 1}m, and message
space {0, 1}m2 as follows:

• Setup. There is no need to set the public parameter in this construction and
the setup algorithm outputs PP = 1λ on input the security parameter 1λ.
• KeyGen. On input the security parameter 1λ and the message msg, the

key generation algorithm samples α
$← {0, 1}λ and β

$← {0, 1}λ. Then it
generates kIR ← FIR. KeyGen(1λ), kmask ← Fmask . KeyGen(1λ), and (pk, sk,
ek)← SFHE. KeyGen(1λ). Finally, it outputs the PRF key

K = (α, β, kIR, kmask , pk, sk, ek,msg)

• Eval. On input the secret key K = (α, β, kIR, kmask , pk, sk, ek,msg), and
an input x ∈ {0, 1}n, the evaluation algorithm first parses x = (u0, u1, u2,
u3) ∈ {0, 1}n0×{0, 1}n1×{0, 1}n2×{0, 1}n3 . Then it generates the first part
of the output, which contains ciphertexts for α, the randomized public key,
and the randomized evaluation key as follows:
1. w = (u0, u2, u3).
2. (r1, . . . , rλ, rrpk , rrek) = FIR. Eval(kIR, w, u1) (Here, ri ∈ {0, 1}lenc for
i ∈ [1, λ], rrpk ∈ {0, 1}lrpk and rrek ∈ {0, 1}lrek).

3. For i ∈ [1, λ]:
(a) cti = SFHE. Enc(pk, α[i]; ri).

4. rpk = SFHE. RandPK(pk; rrpk).
5. rek = SFHE. RandEK(pk, ek; rrek).
6. yct = ct1‖ct2‖ . . . ‖ctλ‖rpk ‖rek

Let d ∈ {0, 1, 2} s.t. d = u0 mod 3. Then the evaluation algorithm deals
with the following cases:

– If d = 0:
1. z = (u0, u1, u2, u3).
2. ymask = Fmask . Eval(kmask , z).
3. Output yct‖ymask .

– If d = 1:
1. u′0 = u0 − 1.
2. u′2 = u2 ⊕ α.
3. z = (u′0, u1, u

′
2, u3).

4. ymask = Fmask . Eval(kmask , z).
5. Output yct‖((β‖0m2−λ)⊕ ymask).

29

– If d = 2:
1. Parse u3 = (tct i)i∈[1,λ] ∈ ({0, 1}Lt)λ.
2. For i ∈ [1, λ]:

(a) µi = SFHE. TCTDec(sk, tct i).
3. ν = µ1‖ . . . ‖µλ.
4. u′2 = u2 ⊕ ν ⊕ β.
5. u′0 = u0 − 2.
6. z = (u′0, u1, u

′
2, u3).

7. ymask = Fmask . Eval(kmask , z).
8. Output yct‖(msg ⊕ ymask).

• Extract. On input a circuit C, the extraction algorithm outputs ExtractI(C),
where we define the algorithms ExtractI, ExtractII, and ExtractIII as
follows:
• ExtractI. On input a circuit C, the algorithm proceeds as follows for
i ∈ [1, N]:

1. x
(i)
1

$← {0, 1}n.

2. y
(i)
1 = C(x

(i)
1).

3. Let (ct
(i)
α , rpk (i), rek (i)) = y

(i)
1 [1 : m1], where ct

(i)
α is a vector of λ

ciphertexts in {0, 1}Lc , rpk ∈ {0, 1}Lp , and rek ∈ {0, 1}Le .
4. msg(i) ← ExtractII(C, ct

(i)
α , rpk (i), rek (i)).

Finally, after obtaining msg(i) for i ∈ [1, N], the algorithm outputs msg
if there exists msg ∈ {0, 1}m2 s.t. |{i : msg(i) = msg}| > N

2 ; otherwise,
it outputs ⊥.

• ExtractII. On input a circuit C, a vector of ciphertexts ctα, a random-
ized public key rpk , and a randomized evaluation key rek , the algorithm
proceeds as follows for i ∈ [1, N]:

1. ψ(i) $← [0, b 2λ

3 c − 1].

2. u
(i)
0 = 3 · ψ(i).

3. ũ
(i)
0 = u

(i)
0 + 1. (As u

(i)
0 < ũ

(i)
0 < 2λ − 2, u

(i)
0 , ũ

(i)
0 ∈ {0, 1}λ)

4. (u
(i)
1 , u

(i)
2 , u

(i)
3)← {0, 1}n1 × {0, 1}n2 × {0, 1}n3 .

5. x
(i)
2 = (u

(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3).

6. y
(i)
2 = C(x

(i)
2).

7. Let P(i) = P[ũ
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3 , C, y

(i)
2], where P is defined in Figure 5.

8. ct
(i)
β ← SFHE. Eval(rek , ctα, P(i)).

9. msg(i) ← ExtractIII(C, ct
(i)
β , rpk , rek).

Finally, after obtaining msg(i) for i ∈ [1, N], the algorithm outputs msg
if there exists msg ∈ {0, 1}m2 s.t. |{i : msg(i) = msg}| > N

2 ; otherwise,
it outputs ⊥.

• ExtractIII. On input a circuit C, a vector of ciphertexts ctβ , a random-
ized public key rpk , and a randomized evaluation key rek , the algorithm
proceeds as follows for i ∈ [1, N]:

1. ψ(i) $← [0, b 2λ

3 c − 1].

2. ũ
(i)
0 = 3 · ψ(i).

30

3. u
(i)
0 = ũ

(i)
0 + 2. (As ũ

(i)
0 < u

(i)
0 < 2λ − 1, u

(i)
0 , ũ

(i)
0 ∈ {0, 1}λ)

4. (u
(i)
1 , u

(i)
2)← {0, 1}n1 × {0, 1}n2 .

5. γ(i) $← {0, 1}λ.
6. Let P′(i) = P′[γ(i)], where P′ is defined in Figure 5.

7. ct
(i)
β,γ ← SFHE. Eval(rek , ctβ , P′(i)).

8. For j ∈ [1, λ]:

(a) tct (i)
j ← SFHE. TranCT(rpk , ct(i)β,γ [j])

9. u
(i)
3 = tct (i)

1 ‖ . . . ‖tct (i)
λ .

10. x
(i)
3 = (u

(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3).

11. y
(i)
3 = C(x

(i)
3).

12. ũ
(i)
2 = u

(i)
2 ⊕ γ(i).

13. x̃
(i)
3 = (ũ

(i)
0 , u

(i)
1 , ũ

(i)
2 , u

(i)
3).

14. ỹ
(i)
3 = C(x̃

(i)
3).

15. msg(i) = (y
(i)
3 ⊕ ỹ

(i)
3)[m1 + 1 : m].

Finally, after obtaining msg(i) for i ∈ [1, N], the algorithm outputs msg
if there exists msg ∈ {0, 1}m2 s.t. |{i : msg(i) = msg}| > N

2 ; otherwise,
it outputs ⊥.

P

Constant: ũ0, u1, u2, u3, C, y2

Input: a

1. ũ2 = u2 ⊕ a.

2. x̃2 = (ũ0, u1, ũ2, u3).

3. ỹ2 = C(x̃2).

4. Output b = (ỹ2 ⊕ y2)[m1 + 1 : m1 + λ].

P′

Constant: γ
Input: b
1. Output b⊕ γ.

Fig. 5 The circuit P and P′.

Theorem 6.2. If SFHE is a secure special FHE scheme defined in Appendix D,
Fmask is a secure PRF and FIR is a secure invoker randomizable PRF, then UOF
is a secure robust unobfuscatable PRF family with (1

6 − ε)-robust learnability.

We present proof of Theorem 6.2 in Appendix E.6.

7 Construction of Public-Key Watermarkable PRFs

Now, we present the general construction of public-key watermarkable PRFs
from public-key hinting watermarkable PRFs and robust unobfuscatable PRFs.

Let λ be the security parameter. Let n,m,m1,m2, κ, l, l1, l2, Q be positive
integers that are polynomial in λ and satisfy m = m1 +m2 and l = l1 + l2. Let
ε1, ε2, ε be real values in (0, 1) s.t. ε = min(ε1, ε2).11

Our construction is built on the following building blocks:

11 Here, ε1, ε2, ε can be the negligible function negl(λ) instead of a concrete value.

31

• A public-key hinting watermarkable PRF HWF = (HWF. Setup,
HWF. KeyGen,HWF. Eval,HWF. Mark,HWF. Extract) with input space {0,
1}n, output space {0, 1}m1 , and message space {0, 1}κ. Also, we use l1 to
denote the length of the hint of HWF (i.e., each hint can be represented by
a string in {0, 1}l1).

• A robust unobfuscatable PRF UOF = (UOF. Setup,UOF. KeyGen,
UOF. Eval,UOF. Extract) with input space {0, 1}n, output space {0, 1}m2 ,
and message space {0, 1}l.

• A PRF F = (F. KeyGen,F. Eval) with key space {0, 1}l2 , input space {0, 1}n
and output space {0, 1}m1 .

We construct the public-key watermarkable PRF WPRF = (Setup, KeyGen,
Eval, Mark, Extract), which has input space {0, 1}n, output space {0, 1}m and
message space {0, 1}κ as follows:

• Setup. On input the security parameter 1λ, the setup algorithm samples
pphw ← HWF. Setup(1λ) and ppuo ← UOF. Setup(1λ). Then it outputs the
public parameter PP = (pphw , ppuo).
• KeyGen. On input the public parameter PP = (pphw , ppuo), the key gen-

eration algorithm first generates (khw , hint) ← HWF. KeyGen(pphw), kf ←
F. KeyGen(1λ), and kuo ← UOF. KeyGen(ppuo , hint‖kf). Then, it outputs the
PRF key K = (khw , kf , kuo).
• Eval. On input the public parameter PP = (pphw , ppuo), the PRF key K =

(khw , kf , kuo), and an input x ∈ {0, 1}n, the evaluation algorithm proceeds
as follows:
1. yhw = HWF. Eval(pphw , khw , x).
2. yf = F. Eval(kf , x).
3. yuo = UOF. Eval(ppuo , kuo , x).
4. Outputs y = (yhw ⊕ yf , yuo).

• Mark. On input the public parameter PP = (pphw , ppuo), the PRF key
K = (khw , kf , kuo), and a message msg ∈ {0, 1}κ, the marking algorithm
computes Chw ← HWF. Mark(pphw , khw ,msg). Then it outputs a circuit
C : {0, 1}n → {0, 1}m s.t. for any x ∈ {0, 1}n:

C(x) = (Chw (x)⊕ F. Eval(kf , x),UOF. Eval(ppuo , kuo , x))

• Extract. On input the public parameter PP = (pphw , ppuo), and a circuit
C, the extraction algorithm proceeds as follow:
1. Set Cuo as a circuit that for any x ∈ {0, 1}n, Cuo(x) = C(x)[m1 + 1 : m].
2. (hint, kf)← UOF. Extract(ppuo , Cuo).
3. If (hint, kf) =⊥: output ⊥.
4. Set Chw as a circuit that for any x ∈ {0, 1}n, Chw (x) = C(x)[1 : m1] ⊕

F. Eval(kf , x).
5. Output msg ← HWF. Extract(pphw , Chw , hint).

Theorem 7.1. If HWF is a secure public-key hinting watermarkable PRF with
Q-bounded ε1-unremovability, UOF is a secure robust unobfuscatable PRF with
ε2-robust learnability, and F is a secure PRF, then WPRF is a secure public-key
watermarkable PRF with Q-bounded ε-unremovability.

32

We present proof of Theorem 7.1 in Appendix E.7.

On Integrating the Building Blocks. The general construction is built on
a public-key hinting watermarkable PRF HWF, a robust unobfuscatable PRF
UOF, and a standard PRF F. We require that the input spaces of HWF, UOF,
and F are all {0, 1}n. We also require that the output spaces of HWF and F are
both {0, 1}m1 . In addition, we require that the message space of UOF is large
enough. We explain how these requirements can be satisfied.

First, it is easy to construct a PRF with any given input/output space via the
GGM framework [GGM84], where the key space can be fixed as {0, 1}λ. Also,
as in both constructions of robust unobfuscatable PRFs proposed in this work,
the message space is determined by the output space of a standard PRF, we can
set it to be large enough without affecting other parameters. Besides, for each
of the public-key hinting watermarkable PRFs and robust unobfuscatable PRFs
constructed in this work, we can extend its input length to be of a given (large
enough) number as follows. Therefore, all three requirements can be satisfied.

It remains to show how to adjust the input lengths. First, the input space
of the public-key hinting watermarkable PRF constructed in Sec. 5.2 is exactly
the input space of a puncturable PRF and we can construct a puncturable PRF
with any given input space via the GGM framework. Also, the input spaces of
the public-key hinting watermarkable PRFs constructed in Sec. 5.3 and Sec. 5.4
(after instantiating with existing watermarkable PRFs with public extraction)
are ciphertext space of a functional encryption scheme and that of a puncturable
encryption scheme respectively, and we can extend the ciphertext spaces of both
schemes (without compromising their security) via appending a random string
of suitable length to the original ciphertext. Moreover, for both robust unobfus-
catable PRFs constructed in this work (given in Sec. 6.2 and Sec. 6.3), we can
increase the input length n by increasing the parameter n1 and it is easy to see
security of the schemes still holds after this modification.

Instantiations from Concrete Assumptions. We next indicate how to in-
stantiate the general construction from concrete assumptions.

First, in Sec. 5.2, we construct a mark-embedding public-key hinting water-
markable PRF that achieves 1-bounded 1-unremovability from a puncturable
PRF and an injective one way function, both of which can be instantiated from
standard assumptions such as the LWE assumption. In addition, the robust
unobfuscatable PRF from Sec. 6.2 is constructed from one way function and
achieves negl(λ)-robust learnability. Therefore, we obtain a mark-embedding
public-key watermarkable PRF with 1-bounded negl(λ)-unremovability from
standard lattice assumptions:

Corollary 7.1. Assuming the worst-case hardness of appropriately parameter-
ized GapSVP problem, there exist public-key watermarkable PRFs with 1-bounded
negl(λ)-unremovability and message space {“ marked”}.

Alternatively, we can use the robust unobfuscatable PRF provided in Sec.
6.3, which has (1

6 − 1/poly(λ))-robust learnability and is constructed from a
special FHE scheme and PRFs. In Appendix D, We construct the special FHE

33

scheme via modifying the GSW FHE scheme [GSW13] and its security relies on
the circular security of the GSW scheme. Formally, we have:

Corollary 7.2. Assuming the circular security of the GSW homomorphic en-
cryption scheme12 and the worst-case hardness of appropriately parameterized
GapSVP problem, there exist public-key watermarkable PRFs with 1-bounded
(1

6 − 1/poly(λ))-unremovability and message space {“ marked”}.

The message-embedding and collusion resistant public-key hinting water-
markable PRF given in Sec. 5.3 can be constructed from an FE scheme with
strong correctness, a PKE scheme, and a PRF. In Appendix C, we show that
the desired FE scheme can be instantiated from standard lattice assumptions.
The FE scheme achieves poly(λ)-adaptive indistinguishability, but it has an
exponentially-small ciphertext density. Thus our hinting watermarking scheme
has poly(λ)-bounded ε-unremovability for some exponentially-small ε.13 Now, if
we employ this scheme and the one way function based robust unobfuscatable
PRF in our general construction, we have:

Corollary 7.3. Assuming the worst-case hardness of appropriately parameter-
ized GapSVP problem, there exist public-key watermarkable PRFs with poly(λ)-
bounded ε-unremovability, input space {0, 1}n and message space {0, 1}poly(λ),

where 2poly(λ)

2n ≤ ε ≤ 1
2poly(λ) .

Besides, the general construction of public-key hinting watermarkable PRF
presented in Sec. 5.4 can be instantiated with the watermarkable PRF presented
in [CHN+16], which satisfies all properties defined in Appendix B.6 and achieves
1-bounded (1/2−1/poly(λ))-unremovability. The scheme is constructed from iO
and injective one way function. Next, combing this instantiation with robust
unobfuscatable PRFs constructed in this work, we have:

Corollary 7.4. Assuming the existence of indistinguishability obfuscation and
worst-case hardness of appropriately parameterized GapSVP problem, there ex-
ist public-key watermarkable PRFs with 1-bounded negl(λ)-unremovability and
message space {0, 1}poly(λ).

Corollary 7.5. Assuming the existence of indistinguishability obfuscation, the
circular security of the GSW homomorphic encryption scheme, and the worst-
case hardness of appropriately parameterized GapSVP problem, there exist public-
key watermarkable PRFs with 1-bounded (1

6 − 1/poly(λ))-unremovability and

message space {0, 1}poly(λ).

Remark 7.1. In [YAL+19], a secret key watermarkable PRF that achieves public
extraction and collusion resistance is also presented, but the scheme only has
a selective version of collusion resistant unremovability, where the adversary

12 Formal definition for this assumption can be found in Definition E.1, and its relations
to the original GSW scheme and the standard LWE assumption are discussed in
Remark E.2 and Remark E.3 respectively.

13 Nonetheless, the watermarked circuit can be modified on exponentially-many inputs.

34

has to submit all its challenge oracle queries simultaneously. It seems that the
restriction can be removed if we modify their construction slightly. However, as
our main focus is to construct public-key watermarkable PRFs and achieving
collusion resistance would be a secondary concern of this work, we leave the
detailed description for the revised construction as future work.

Acknowledgement. We appreciate the anonymous reviewers for their valuable
comments. Part of this work is supported by the National Science Foundation
China (Project No. 61972332), the Innovation Technology Fund (Project No.
ITS/224/20FP), the Hong Kong Research Grant Council (Project No. 17201421),
and HKU Seed Fund (grant number: 201909185070). Willy Susilo is partially
supported by the Australian Research Council Discovery Projects DP200100144
and DP220100003.

References

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. In FOCS, pages 166–175. IEEE, 2004.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally
private randomizing polynomials and their applications. computational
complexity, 15(2):115–162, 2006.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In EU-
ROCRYPT, pages 483–501. Springer, 2012.

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe
Zhang. New approaches for quantum copy-protection. In CRYPTO,
pages 526–555. Springer, 2021.

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded
collusions, revisited. In TCC, pages 173–205. Springer, 2017.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-
collusion secure functional encryption. In TCC, pages 174–198. Springer,
2019.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfus-
cation. In TCC, pages 52–73. Springer, 2014.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In STOC, pages 103–112. ACM, 1988.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating
programs. In CRYPTO, pages 1–18. Springer, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In PKC, pages 501–519. Springer, 2014.

[BKS17] Foteini Baldimtsi, Aggelos Kiayias, and Katerina Samari. Watermarking
public-key cryptographic functionalities and implementations. In ISC,
pages 173–191. Springer, 2017.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. In STOC,
pages 575–584, 2013.

35

[BLW17] Dan Boneh, Kevin Lewi, and David J Wu. Constraining pseudorandom
functions privately. In PKC, pages 494–524. Springer, 2017.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate
obfuscation and applications to resettable cryptography. In STOC, pages
241–250, 2013.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Def-
initions and challenges. In TCC, pages 253–273. Springer, 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In FOCS, pages 97–106, 2011.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In ASIACRYPT, pages 280–300. Springer, 2013.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan,
and Daniel Wichs. Watermarking cryptographic capabilities. In STOC,
pages 1115–1127, 2016.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. In
EUROCRYPT, pages 523–540. Springer, 2004.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169–178, 2009.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
randolli functions. In FOCS, pages 464–479. IEEE, 1984.

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J
Wu. Watermarking public-key cryptographic primitives. In CRYPTO,
pages 367–398. Springer, 2019.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional
encryption. In STOC, pages 555–564, 2013.

[GKWW21] Rishab Goyal, Sam Kim, Brent Waters, and David J Wu. Beyond soft-
ware watermarking: Traitor-tracing for pseudorandom functions. In ASI-
ACRYPT, pages 250–280. Springer, 2021.

[Goe15] Michel Goemans. Lecture notes on Chernoff bounds. http://math.mit.
edu/~goemans/18310S15/chernoff-notes.pdf, February 2015.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO, pages 75–92. Springer, 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption with bounded collusions via multi-party computation. In
CRYPTO, pages 162–179. Springer, 2012.

[HMW07] Nicholas Hopper, David Molnar, and David Wagner. From weak to strong
watermarking. In TCC, pages 362–382. Springer, 2007.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new
representation with applications to round-efficient secure computation.
In FOCS, pages 294–304. IEEE, 2000.

[ILL89] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random
generation from one-way functions. In STOC, pages 12–24, 1989.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfusca-
tion from well-founded assumptions. In STOC, pages 60–73, 2021.

[KN22] Fuyuki Kitagawa and Ryo Nishimaki. Watermarking PRFs against quan-
tum adversaries. In EUROCRYPT, pages 488–518. Springer, 2022.

36

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure soft-
ware leasing from standard assumptions. In TCC, pages 31–61. Springer,
2021.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and applica-
tions. In CCS, pages 669–684. ACM, 2013.

[KW17] Sam Kim and David J Wu. Watermarking cryptographic functionali-
ties from standard lattice assumptions. In CRYPTO, pages 503–536.
Springer, 2017.

[KW19] Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger
security via extractable PRFs. In CRYPTO, pages 335–366. Springer,
2019.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More
efficient multilinear maps from ideal lattices. In EUROCRYPT, pages
239–256. Springer, 2014.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755. Springer, 2012.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In EUROCRYPT, pages 700–718. Springer, 2012.

[MW22] Sarasij Maitra and David J Wu. Traceable PRFs: Full collusion resistance
and active security. In PKC, pages 439–469. Springer, 2022.

[Nis13] Ryo Nishimaki. How to watermark cryptographic functions. In EURO-
CRYPT, pages 111–125. Springer, 2013.

[Nis20] Ryo Nishimaki. Equipping public-key cryptographic primitives with
watermarking (or: A hole is to watermark). In TCC, pages 179–209.
Springer, 2020.

[NSS99] David Naccache, Adi Shamir, and Julien P Stern. How to copyright a
function? In PKC, pages 188–196. Springer, 1999.

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor
tracing: How to embed arbitrary information in a key. In EUROCRYPT,
pages 388–419. Springer, 2016.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology
ePrint Archive, Report 2010/556, 2010. https://ia.cr/2010/556.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest
vector problem. In STOC, pages 333–342, 2009.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and program-
ming PRFs, the LWE way. In PKC, pages 675–701. Springer, 2018.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. In CRYPTO, pages 89–114. Springer,
2019.

[PS20] Chris Peikert and Sina Shiehian. Constraining and watermarking PRFs
from milder assumptions. In PKC, pages 431–461. Springer, 2020.

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking PRFs
under standard assumptions: Public marking and security with extrac-
tion queries. In TCC, pages 669–698. Springer, 2018.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93. ACM, 2005.

[Rén61] Alfréd Rényi. On measures of entropy and information. In Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and Prob-
ability, Volume 1: Contributions to the Theory of Statistics. The Regents
of the University of California, 1961.

37

https://ia.cr/2010/556

[Rey11] Leo Reyzin. Extractors and the leftover hash lemma. https://www.cs.

bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf, 2011.
[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfusca-

tion: deniable encryption, and more. In STOC, pages 475–484, 2014.
[VEH14] Tim Van Erven and Peter Harremos. Rényi divergence and kullback-

leibler divergence. IEEE Transactions on Information Theory,
60(7):3797–3820, 2014.

[YAL+19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu.
Collusion resistant watermarking schemes for cryptographic functionali-
ties. In ASIACRYPT, pages 371–398. Springer, 2019.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS,
pages 162–167. IEEE, 1986.

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion
resistant watermarkable PRFs from standard assumptions. In CRYPTO,
pages 590–620. Springer, 2020.

[YF11] Maki Yoshida and Toru Fujiwara. Toward digital watermarking for cryp-
tographic data. IEICE transactions on fundamentals of electronics, com-
munications and computer sciences, 94(1):270–272, 2011.

[Zha21] Mark Zhandry. White box traitor tracing. In CRYPTO, pages 303–333.
Springer, 2021.

A Related Work

Watermarking Public-Key Cryptographic Primitives. In [CHN+16], Co-
hen et al. also construct watermarking schemes for PKE and signature. The
constructions rely on their watermarkable PRF and achieves secret marking and
public extraction. Then in [BKS17], Baldimtsi et al. construct (stateful) water-
markable PKE with secret marking and public extraction from any identity-
based encryption scheme. Subsequently, in [GKM+19], Goyal et al. present con-
structions of public-key watermarking schemes for various public key crypto-
graphic primitives from standard assumptions. Recently, in [Nis20], Nishimaki
gives a general framework to watermark any public key primitive that uses some
specific techniques in its security proof.

Note that while public-key watermarking schemes for public key primitives
are achieved in [GKM+19,Nis20], it is unknown if those techniques can be applied
to construct public-key watermarkable PRFs.

Traceable PRFs. In recent works [GKWW21,MW22], a variant of watermark-
able PRF called traceable PRF, which has a stronger security requirement, is
presented. Specially, in their security definition, the extraction algorithm should
still be able to extract the embedded message from a circuit that changes all
outputs of the watermarked circuit, as long as the circuit can be used to break
pseudorandomness of the PRF. Traceable PRFs that have secret extraction and
public extraction are constructed from standard lattice assumptions and iO re-
spectively, but the constructions only support secret marking.

Watermarkable PRFs against Quantum Adversaries. In a concurrent
work [KN22], Kitagawa and Nishimaki present watermarkable/traceable PRFs

38

https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf
https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf

that are secure against a quantum adversary, which can produce a quantum cir-
cuit as its challenge. They construct a scheme with public marking and secret
extraction from LWE and a scheme with public marking and public extraction
from iO. However, in their schemes, the extraction algorithm needs to take as
input a tag associated with the watermarked PRF key. This is similar to the syn-
tax of the hinting watermarkable PRF defined in this work, and it is interesting
to see if this restriction can be removed using our techniques.

B Preliminaries

We first recall some useful facts used in this work.

Chernoff Bound. We make use of the Chernoff bound in the security analysis
of our schemes. There are various forms of the Chernoff bound, here we use the
one from [Goe15].

Lemma B.1 (Chernoff Bounds). Let X =
∑n
i=1Xi, where Xi = 1 with

probability pi and Xi = 0 with probability 1−pi, and all Xi are independent. Let
µ = E(X) =

∑n
i=1 pi. Then

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δµ for all δ > 0;

Pr[X ≤ (1− δ)µ] ≤ e− δ
2

2 µ for all 0 < δ < 1.

Statistical Distance and Entropy. For any two random variables X,Y , we
use

SD(X,Y) =
1

2

∑
u

|Pr[X = u]− Pr[Y = u]|

to denote the statistical distance between X and Y . We say that X is statistically
indistinguishable from Y (denoted as X ≈s Y) if SD(X,Y) is negligible. We use
the following properties of statistical distance in this paper. Proofs of these
properties can be found in many previous works, e.g., this lecture [Rey11].

Lemma B.2. Let X, Y , Z be random variables with range U .

• Let T = {u ∈ U : Pr[X = u]− Pr[Y = u] > 0}, then

SD(X,Y) =
∑
u∈T

(Pr[X = u]− Pr[Y = u])

• For any deterministic function F , SD(F (X), F (Y)) ≤ SD(X,Y).
• SD(X,Z) ≤ SD(X,Y) + SD(Y,Z).

For any random variable X, we use H∞(X) to denote its min-entropy, which
is defined as H∞(X) = − log(maxx Pr[X = x]). Given two random variables
X,Y , the average min-entropy ([DRS04]) of X conditioned on Y (denoted as
H∞(X | Y)) is defined as

H∞(X | Y) = − log(Ey←Y [maxx Pr[X = x | Y = y]])

39

Lemma B.3 ([DRS04]). Let X,Y, Z be random variables and Z has at most
2l possible values, then H∞(X | (Y,Z)) ≥ H∞(X | Y)− l.

The leftover hash lemma allows one to map a random variable with high
(average) min-entropy to a uniform string. It relies on a universal hash family:

Definition B.1. A family H of hash functions from {0, 1}n to {0, 1}m is called
universal if for any distinct x, y ∈ {0, 1}n,

Pr[h
$← H : h(x) = h(y)] ≤ 2−m

Lemma B.4 (Leftover Hash Lemma, [ILL89,DRS04]). Let H be a univer-
sal hash function family from X to Y. Let X,Z be random variables that satisfy

H∞(X | Z) ≥ log |Y|+ω(log λ) and X is over X . Let H
$← H and Y

$← Y, then

SD((H,H(X), Z), (H,Y, Z)) ≤ negl(λ)

In this work, we consider the concrete universal hash family that maps a
vector in Zmq to a vector in Znq by multiplying a matrix in Zn×mq , where q is a
prime. Formally, we will use the following lemma, which is implied by the leftover
hash lemma directly.

Lemma B.5. Let q be a prime. Let r ∈ Zmq that satisfies H∞(r) ≥ n · log q +

ω(log λ). Let A
$← Zn×mq and b

$← Znq . Then we have

SD((A,A · r), (A, b)) ≤ negl(λ)

Discrete Gaussian Distribution. The continuous Gaussian distribution over
R with standard deviation σ is defined by the function

ρσ(x) =
1√

2πσ2
· e
−x2

2σ2

The discrete Gaussian distribution over Z with standard deviation σ is defined
as

Dσ(x) =
ρσ(x)

ρσ(Z)

where
ρσ(Z) =

∑
x∈Z

ρσ(x)

Lemma B.6 ([Lyu12]). For any k > 0, Pr[|z| > kσ : z ← Dσ] ≤ 2e
−k2

2 .

We also use the following truncated discrete Gaussian distribution over Z:

D̃σ(x) =


Dσ(0) +

∑
x∈Z∧|x|>λ·σDσ(x) If x = 0;

Dσ(x) If 0 < |x| ≤ λ · σ;

0 If |x| > λ · σ.

40

where λ is a security parameter. By Lemma B.6, the statistical distance between
Dσ and D̃σ is negligible in λ. Also, to sample an element from Dσ, one can first
sample x← Dσ and outputs x if |x| ≤ λ · σ, and outputs 0 otherwise.

The LWE Assumption. We will use the LWE assumption in this paper.

Definition B.2 (Decision-LWEn,m,q,χ). Given a random matrix A ∈ Zm×nq ,
and a vector b ∈ Zmq , where b is generated according to either of the following
two cases:
1. b = A · s+ e mod q, where s

$← Znq and e← χm

2. b
$← Zmq

distinguish which is the case with non-negligible advantage.

Let m = poly(n), poly(n) ≤ q ≤ 2poly(n), and χ = Dσ (or D̃σ) be a (trun-
cated) discrete Gaussian error distribution with standard deviation σ ≥ O(

√
n),

then solving the decision-LWEn,m,q,χ problem is as hard as solving the GapSVPγ
problem on arbitrary n-dimensional lattices by a quantum algorithm [Reg05],
where γ = Õ(nq/σ). In subsequent works [Pei09, BLP+13], classical reductions
from LWE to GapSVP are also presented for different parameterizations.

B.1 Injective One Way Function

An injective function F : {0, 1}n → {0, 1}m is an injective one way function if it
can be evaluated in polynomial time and satisfies the following condition:

• One-wayness. For all PPT adversary A, we have:

Pr[x
$← {0, 1}n, y = F(x), x′ ← A(1n, y) : F(x′) = y] ≤ negl(n)

Injective One way functions can be constructed from standard assumptions such
as the LWE assumption.

B.2 Pseudorandom Objects

We will use pseudorandom functions, puncturable pseudorandom functions, and
invoker randomizable pseudorandom functions in our constructions. All of them
can be constructed from the (standard) one way function.

Pseudorandom Functions. A PRF with input space {0, 1}n and output space
{0, 1}m consists of two PPT algorithms:

• KeyGen. On input the security parameter 1λ, the key generation algorithm
outputs a PRF key k.
• Eval. On input the PRF key k and an input x ∈ {0, 1}n, the evaluation

algorithm outputs an output y ∈ {0, 1}m.

Also, it satisfies the following conditions:

41

• Pseudorandomness. Let k ← KeyGen(1λ), and f be a random function
from {0, 1}n to {0, 1}m. Also, let O1(·) be an oracle that takes as input a
string x ∈ {0, 1}n and returns Eval(k, x), and let O2(·) be an oracle that
takes as input a string x ∈ {0, 1}n and returns f(x). Then for all PPT
adversary A, we have:

| Pr[AO1(·)(1λ) = 1]− Pr[AO2(·)(1λ) = 1] |≤ negl(λ)

Puncturable Pseudorandom Function. A puncturable pseudorandom func-
tion [SW14] with key space K, input space {0, 1}n and output space {0, 1}m
consists of four PPT algorithms:

• KeyGen. On input the security parameter 1λ, the key generation algorithm
outputs the secret key k ∈ K.
• Eval. On input the secret key k ∈ K and an input x ∈ {0, 1}n, the evaluation

algorithm outputs a string y ∈ {0, 1}m.
• Constrain. On input the secret keys k ∈ K and an input x ∈ {0, 1}n, the

constrain algorithm outputs a punctured key ck.
• ConstrainEval. On input the punctured key ck and an input x ∈ {0, 1}n,

the constrained evaluation algorithm outputs a string y ∈ {0, 1}m.

Also, it satisfies the following conditions:

• Correctness. For any k ∈ K, any x∗ ∈ {0, 1}n, and any x ∈ {0, 1}n\{x∗},
let ck ← Constrain(k, x∗), then we have ConstrainEval(ck, x) = Eval(k,
x).
• Pseudorandomness. Let k ← KeyGen(1λ), and f be a random function

from {0, 1}n to {0, 1}m. Also, let O1(·) be an oracle that takes as input a
string x ∈ {0, 1}n and returns Eval(k, x), and let O2(·) be an oracle that
takes as input a string x ∈ {0, 1}n and returns f(x). Then for all PPT
adversary A, we have:

| Pr[AO1(·)(1λ) = 1]− Pr[AO2(·)(1λ) = 1] |≤ negl(λ)

• Constrained Pseudorandomness. For any PPT adversary A = (A1,A2),
we have

Pr



(x∗, state)← A1(1λ);

k ← KeyGen(1λ);

ck ← Constrain(k, x∗);

b
$← {0, 1};

y0 = Eval(k, x∗);

y1
$← {0, 1}m;

: A2(ck, yb, state) = b


≤ 1/2 + negl(λ)

Invoker Randomizable Pseudorandom Function. An invoker randomiz-
able PRF [BGI+01] with input space {0, 1}n×{0, 1}m and output space {0, 1}m
consists of two PPT algorithms:

42

• KeyGen. On input the security parameter 1λ, the key generation algorithm
outputs a PRF key k.

• Eval. On input the PRF key k and an input pair (x, r) ∈ {0, 1}n × {0, 1}m,
the evaluation algorithm outputs an output y ∈ {0, 1}m.

Also, it satisfies the following conditions:

• Pseudorandomness. Let k ← KeyGen(1λ), and f be a random function
from {0, 1}n+m to {0, 1}m. Also, let O1(·) be an oracle that takes as input
(x, r) ∈ {0, 1}n×{0, 1}m and returns Eval(k, x, r), and let O2(·) be an oracle
that takes as input (x, r) ∈ {0, 1}n × {0, 1}m and returns f(x‖r). Then for
all PPT adversary A, we have:

| Pr[AO1(·)(1λ) = 1]− Pr[AO2(·)(1λ) = 1] |≤ negl(λ)

• Invoker Randomization. For any k ← KeyGen(1λ) and any x ∈ {0, 1}n,
the mapping r 7→ Eval(k, x, r) is a permutation over {0, 1}m. This implies
that for any k ← KeyGen(1λ) and any x ∈ {0, 1}n, if r is sampled uniformly
at random from {0, 1}m, then the value Eval(k, x, r) is distributed uniformly
in {0, 1}m.

As shown in [BGI+01], we can construct invoker randomizable function from
any secure pseudorandom function.

B.3 Public Key Encryption

A public Key Encryption scheme with message space M and ciphertext space
CT consists of three PPT algorithms:

• KeyGen. On input the security parameter 1λ, the key generation algorithm
outputs a public key pk and a secret key sk.
• Enc. On input the public key pk and a message m ∈ M, the encryption

algorithm outputs a ciphertext ct ∈ CT .
• Dec. On input the secret key sk and a ciphertext ct ∈ CT , the decryption

algorithm outputs a message m ∈M∪ {⊥}.

Also, it satisfies the following conditions:

• Perfect Correctness. For any message m ∈M, we have

Pr[(pk, sk)← KeyGen(1λ), ct← Enc(pk,m) : Dec(sk, ct) 6= m] = 0

• Security. For any PPT adversary (A1,A2), we have:

Pr


(pk, sk)← KeyGen(1λ);

(m∗0,m
∗
1, state)← A1(pk);

b
$← {0, 1};

ct∗ ← Enc(pk,m∗b)

: A2(ct∗, state) = b

 ≤ 1/2 + negl(λ)

43

Besides, we need the PKE scheme to have pseudorandom ciphertexts, which
requires:

• Ciphertext Pseudorandomness. For any PPT adversary (A1,A2), we
have:

Pr



(pk, sk)← KeyGen(1λ);

(m∗, state)← A1(pk);

b
$← {0, 1};

ct∗0 ← Enc(pk,m∗);

ct∗1
$← CT

: A2(ct∗b , state) = b


≤ 1/2 + negl(λ)

As shown in [Reg05], we can construct a secure PKE scheme with pseudo-
random ciphertexts from the standard LWE assumption. The scheme does not
have perfect correctness. Nonetheless, it is easy to achieve the property via trun-
cating the error terms in the scheme to be of bounded size. This will not affect
security of the scheme. In addition, we can use the trick proposed in Remark
D.1 to transform a pseudorandom ciphertext of the scheme into a pseudorandom
binary string. The transformation is needed when we use the PKE scheme in
the construction provided in Sec. 5.3.

B.4 Statistically Sound NIZK Proof

A non-interactive zero-knowledge proof [BFM88] for a language L consists of
three PPT algorithms:

• KeyGen. On input the security parameter 1λ, the common reference string
generation algorithm outputs a common reference string crs.

• Prove. On input the common reference string crs, a statement x ∈ L and a
witness w for x, the proving algorithm outputs a proof π.

• Verify. On input the common reference string crs, a statement x and a proof
π, the verification algorithm outputs a bit indicating whether the proof is
valid.

Also, it satisfies the following conditions:

• Completeness. For any statement x ∈ L, and any valid witness w for x, let
crs ← KeyGen(1λ) and π ← Prove(crs, x, w), then we have Pr[Verify(crs,
x, π) = 1] = 1.

• Statistical Soundness. We have:

Pr[crs ← KeyGen(1λ) : ∃(x, π) s.t. Verify(crs, x, π) = 1 ∧ x 6∈ L] ≤ negl(λ)

44

• Adaptively Zero-Knowledge. There exists a PPT simulator (S1, S2) that
for any PPT adversary (A1,A2), we have:

Pr



b← {0, 1};
crs0 ← KeyGen(1λ);

(crs1, td)← S1(1λ);

(x,w, state)← A1(crsb);

π0 ← Prove(crs0, x, w);

π1 ← S2(crs1, x, td);

b′ ← A2(πb, state);

: b = b′


≤ 1/2 + negl(λ)

Here A1 is required to output a valid statement/witness pair.

As shown in [PS19], we can construct statistically sound NIZK proofs for any
NP language from the standard LWE assumption.

B.5 The Jump Finding Algorithm

We will use the jump finding algorithm [BCP14, NWZ16] in our construction
of message-embedding watermarking scheme. We recall the algorithm and its
properties in Lemma B.7.

Lemma B.7 ([NWZ16]). Let κ, q be positive integers. Let δ, ϕ be real values
in [0, 1] s.t. δ ≥ ϕ(2 + (κ − 1)q). Let C ⊂ (0, 2κ − 1] be a set of q elements and
let P : [0, 2κ − 1]→ [0, 1]R

14 be an oracle that:

1. |P(2κ − 1)− P(0)| > δ.
2. For any a, b ∈ [0, 2κ − 1] s.t. a < b and (a, b] ∩ C = ∅, |P(a)− P(b)| < ϕ.

The algorithm TraceP(0, 2κ − 1), which is described in Figure 6, will run in
time poly(κ, q) (and makes at most q · (κ + 1) distinct queries to P) and will
output a non-empty subset of C.

TraceP

Input: ind1, ind2
1. p1 = P(ind1).
2. p2 = P(ind2).
3. ∆ = |p1 − p2|.
4. If ∆ ≤ ϕ: Return ∅.
5. If ind2 − ind1 = 1: Return {ind2}.
6. ind3 = b ind1+ind2

2
c.

7. Return Trace(ind1, ind3) ∪ Trace(ind3, ind2).

Fig. 6 The algorithms TraceP.

14 We use [0, 1]R to denote all real values r s.t. 0 ≤ r ≤ 1.

45

B.6 Secret-Key Watermarkable PRFs

A secret-key watermarkable PRF family with public extraction [CHN+16], which
has key space K, input space X , output space Y, and message spaceM consists
of the following algorithms:

• Setup(1λ) → (PP,MK,EK) : On input the security parameter 1λ, the
setup algorithm outputs the public parameter PP , the mark key MK and
the extraction key EK.

• KeyGen(PP) → k : On input the public parameter PP , the key generation
algorithm outputs a PRF key k ∈ K.

• Eval(PP, k, x)→ y : On input the public parameter PP , a PRF key k ∈ K,
and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

• Mark(PP,MK, k,msg)→ C : On input the public parameter PP , the mark
key MK, a PRF key k ∈ K, and a message msg ∈M, the marking algorithm
outputs a marked circuit C : X → Y.

• Extract(PP,EK, C) → msg : On input the public parameter PP , the ex-
traction key EK, and a circuit C, the extraction algorithm outputs a message
msg ∈M∪ {⊥}, where ⊥ denotes that the circuit is unmarked.

Also, it satisfies the following conditions:

• Functionality Preserving. For any msg ∈ M, let (PP,MK,EK) ←
Setup(1λ), k ← KeyGen(PP), C ← Mark(PP,MK, k,msg), and x

$← X ,
then we have

Pr[C(x) 6= Eval(PP, k, x)] ≤ negl(λ)

• Extraction Correctness. For any msg ∈ M, let (PP,MK,EK) ←
Setup(1λ), k ← KeyGen(PP), and C ← Mark(PP,MK, k,msg), then we
have

Pr[Extract(PP,EK, C) 6= msg] ≤ negl(λ)

and

Pr[Extract(PP,EK, Eval(PP, k, ·)) 6=⊥] ≤ negl(λ)

• Watermarking Meaningfulness. For any circuit C : X → Y, let (PP,
MK,EK)← Setup(1λ), then we have

Pr[Extract(PP,EK, C) 6=⊥] ≤ negl(λ)

• Pseudorandomness. Let (PP,MK,EK)← Setup(1λ), k ← KeyGen(PP),
and f be a random function from X to Y. Also, let O0(·) be an oracle that
takes as input a string x ∈ X and returns Eval(PP, k, x), and let O1(·) be
an oracle that takes as input a string x ∈ X and returns f(x). Then for all
PPT adversary A, we have:

| Pr[AO0(·)(PP,MK,EK) = 1]− Pr[AO1(·)(PP,MK,EK) = 1] |≤ negl(λ)

46

• Q-Bounded ε-Unremovability. For any PPT adversary A, we have:

Pr

(PP,MK,EK)← Setup(1λ);

k∗ ← KeyGen(PP);

C̃← AOmark (·,·),Ocha(·)(PP,EK);

: Extract(PP,EK, C̃) 6∈ Q∗

 ≤ negl(λ)

Here, the marking oracle Omark (·, ·) takes as input a PRF key k ∈ K and a
message msg ∈ M and returns a circuit C ← Mark(PP,MK, k,msg); and
the challenge oracle Ocha(·) takes as input a message msg ∈M and returns a
circuit C∗ ← Mark(PP,MK, k∗,msg). Also, we useQ∗ to denote all messages
submitted to the challenge oracle and use R∗ to denote all circuits returned
by the challenge oracle. In addition, we require that A is only allowed to
query the challenge oracle for at most Q times, and that there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ ε · |X |.15

C Functional Encryption with Strong Correctness

In this section, we define and construct the FE scheme needed.

The Definition. A functional encryption scheme [BSW11,O’N10] for a function
family F with message space M and ciphertext space CT consists of four PPT
algorithms:

• Setup. On input the security parameter 1λ, the setup algorithm outputs the
master public key/master secret key pair (mpk,msk).

• KeyGen. On input the master public key mpk, the master secret key msk
and a function f ∈ F , the key generation algorithm outputs a secret key fsk
for f .

• Enc. On input the master public key mpk and a message msg ∈ M, the
encryption algorithm outputs a ciphertext ct ∈ CT .

• Dec. On input the master public key mpk, the secret key fsk for a function f
and a ciphertext ct ∈ CT , the decryption algorithm outputs a message msg,
where msg is either in the output space of f or is the decryption failure
symbol ⊥.

Also, it satisfies the following conditions:

• Perfect Correctness. For any message msg ∈ {0, 1}m and any f ∈ F , let
(mpk,msk) ← Setup(1λ), fsk ← KeyGen(mpk,msk, f), and ct ← Enc(mpk,
msg), then we have Pr[Dec(mpk, fsk , ct) = f(msg)] = 1.

15 We can also define negl(λ)-unremovability, which requires that there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ negl(λ) · |X |.

47

• Q-Adaptive Indistinguishability. For any PPT adversary (A1, A2), we
have:

Pr



(mpk,msk)← Setup(1λ);

(msg0,msg1, state)← AOmsk(·)
1 (mpk);

b← {0, 1};
ct← Enc(mpk,msgb);

b′ ← A2(ct, state);

: b = b′

 ≤ 1/2 + negl(λ)

Here, Omsk takes as input a function f ∈ F and outputs a secret key fsk ←
KeyGen(mpk,msk, f). We require that for all f submitted to the oracleOmsk,
f(msg0) = f(msg1) and the oracle Omsk can only be queried for Q times.

Besides, we need the FE scheme to have a stronger correctness, which re-
quires:

• Strong Correctness. For each master public key/master secret key pair
(mpk,msk), there exists a valid ciphertext set Vmpk,msk s.t.
1. For any f ∈ F , we have

Pr[(mpk,msk)← Setup(1λ), fsk ← KeyGen(mpk,msk, f) :

∃ct ∈ CT \Vmpk,msk, Dec(mpk, fsk , ct) 6=⊥] ≤ negl(λ)

2. Assume that the identity function ID ∈ F (for any msg ∈M, ID(msg) =
msg), then for any f ∈ F , we have

Pr[(mpk,msk)← Setup(1λ), fskf ← KeyGen(mpk,msk, f),

fskID ← KeyGen(mpk,msk, ID) : ∃ct ∈ Vmpk,msk,
Dec(mpk, fskf , ct) 6= f(Dec(mpk, fskID, ct))] ≤ negl(λ)

Remark C.1. We use density of FE to denote the fraction of honestly generated
ciphertexts in the ciphertext space of the FE scheme. For technical reason, we
consider the ratio between the distribution of honestly generated ciphertexts and
the distribution of random ciphertexts (instead of the ratio between the sizes of
the supports of these two distribution).

Formally, let Empk be the output distribution of the algorithm Enc on input
mpk and a random message. Let C be the uniform distribution over CT . We use
the Rényi divergence [Rén61,VEH14,LSS14] to measure the ratio between Empk
and C, which is

RDmpk = max
x∈CT

Empk(x)

C(x)

We also define

ρ =
1

maxmpk RDmpk

as the density of FE.

48

Remark C.2. We assume that the decryption algorithm of FE is deterministic.
Note that for an FE scheme with probabilistic decryption algorithm and per-
fect correctness, it is safe to fix its decryption randomness without affecting its
correctness and security.

Remark C.3. We define Q-adaptive indistinguishability in the single-challenge
setting, i.e., the adversary is only allowed to submit one pair of challenge mes-
sages and receives one challenge ciphertext. It is easy to see that by a standard
hybrid argument, the single-challenge security impliesQ-adaptive indistinguisha-
bility in the multiple-challenge setting, where the adversary is allowed to submit
n pairs of challenge messages and receives n challenge ciphertexts, for any poly-
nomial n.

The Construction. Existing FE schemes does not have strong correctness and
next we show how to upgrade an FE scheme with perfect correctness and Q-
adaptive indistinguishability (but without strong correctness) into an FE scheme
with all three properties listed above. Our construction is inspired by the con-
struction of puncturable functional encryption with similar strong correctness
requirement presented in [YAL+19].

Let λ be the security parameter.
Let FE0 = (FE0. Setup,FE0. KeyGen,FE0. Enc,FE0. Dec) be an FE scheme for

a function family F .
Let NIZK = (NIZK. KeyGen,NIZK. Prove,NIZK. Verify) be a statistically

sound NIZK proof system for L, where

L = {(mpk, ct) : ∃(msg, r), ct = FE0. Enc(mpk,msg; r)}.

We construct the FE scheme FE = (Setup, KeyGen, Enc, Dec) for F as follows:

• Setup. On input the security parameter 1λ, the setup algorithm generates
(mpk,msk)← FE0. Setup(1λ) and crs← NIZK. KeyGen(1λ). Then it outputs
the master public key MPK = (mpk, crs) and the master secret key MSK =
msk.
• KeyGen. On input the master public key MPK = (mpk, crs), the master

secret key MSK = msk, and a function f ∈ F , the key generation algorithm
generates fsk ← FE0. KeyGen(mpk,msk, f) and outputs FSK = fsk .
• Enc. On input the master public key MPK = (mpk, crs) and a message
msg, the encryption algorithm first samples randomness r for the algo-
rithm FE0. Enc. Then, it computes ct = FE0. Enc(mpk,msg; r), and π ←
NIZK. Prove(crs, (mpk, ct), (msg, r)). Finally, it outputs CT = (ct, π).
• Dec. On input the master public key MPK = (mpk, crs), the secret key

FSK = fsk and a ciphertext CT = (ct, π), the decryption algorithm first
checks the validity of π and outputs ⊥ if NIZK. Verify(crs, (mpk, ct), π) = 0.
Otherwise, it outputs FE0. Dec(mpk, fsk , ct).

Theorem C.1. If FE0 is a secure functional encryption for F with perfect cor-
rectness and Q-adaptive indistinguishability and NIZK is a statistically sound

49

NIZK proof system for language L, then FE is a secure functional encryption for
F with perfect correctness, Q-adaptive indistinguishability, and strong correct-
ness.

Proof. We prove Theorem C.1 by proving the perfect correctness, adaptive in-
distinguishability, and strong correctness of FE.

Perfect Correctness. The perfect correctness of FE comes from the perfect cor-
rectness of FE0 and the completeness of NIZK directly.

Adaptive Indistinguishability. The Q-adaptive indistinguishability of FE comes
from the adaptively zero-knowledge property of NIZK and the Q-adaptive indis-
tinguishability of FE0 by direct reductions.

Strong Correctness. Finally, to argue the strong correctness of FE, we define

VMPK=(mpk,crs),MSK = {CT = (ct, π) : NIZK. Verify(crs, (mpk, ct), π) = 1}

for any (MPK ,MSK)← Setup(1λ).
Let (mpk,msk)← FE0. Setup(1λ), crs← NIZK. KeyGen(1λ), MPK = (mpk,

crs) and MSK = msk. Also, for any function f ∈ F , let fskID ← FE0. KeyGen(mpk,
msk, ID), fskf ← FE0. KeyGen(mpk,msk, f), FSK ID = fskID and FSK f = fskf .

Firstly, for any ciphertext CT = (ct, π) 6∈ VMPK ,MSK , the decryption algo-
rithm will always output ⊥ since NIZK. Verify(crs, (mpk, ct), π) = 0.

Secondly, by the statistical soundness of NIZK, we have (mpk, ct) ∈ L for all
CT = (ct, π) ∈ VMPK ,MSK with all but negligible probability. This implies that
for each CT = (ct, π) ∈ VMPK ,MSK , there exists msg, r s.t. ct = FE0. Enc(mpk,
msg; r). Then by the perfect correctness of FE0, we have FE0. Dec(mpk, fskID,
ct) = msg and FE0. Dec(mpk, fskf , ct) = f(msg). Thus, with all but negligible
probability, we have Dec(MPK ,FSK f , CT) = f(Dec(MPK ,FSK ID, CT)) for all
CT ∈ VMPK ,MSK .

Remark C.4. Looking ahead, we can use the trick proposed in Remark D.1 to
transform ciphertexts of the constructed FE scheme into binary strings. Let ρ
and ρ′ be the density of the original scheme and the new scheme respectively,
then we have ρ′ ≥ (1 − 1

2λ
) · ρ. Thus, the parameter of the scheme constructed

in Sec. 5.3 will not be affected after the transformation.

The Instantiations. As shown in [GVW12], for any polynomial Q, we can con-
struct FE scheme for all polynomial-size circuits with perfect correctness and
Q-adaptive indistinguishability from a secure PKE scheme with perfect correct-
ness and a randomized encoding [Yao86, IK00, AIK06] with perfect correctness,
small locality and low degree. Such randomized encoding can be instantiated
from the SIS assumption as shown in [AIK04, AIK06]. Thus, we can construct
such FE schemes from standard lattice assumptions. Also, as shown in [PS19],
we can construct statistically sound NIZK proofs for any NP language from the

50

standard LWE assumption. Thus, we can instantiate FE schemes with perfect
correctness, Q-adaptive indistinguishability, and strong correctness from stan-
dard lattice assumptions. However, when instantiating our construction with
existing FE and NIZK proofs, the scheme has an exponentially-small ciphertext
density (although the encryption algorithm could output exponentially-many
ciphertexts). To summarize, we have

Corollary C.1. Assuming the worst-case hardness of appropriately parameter-
ized GapSVP problem, there exist FE schemes for all polynomial-size circuits
with perfect correctness, poly(λ)-adaptive indistinguishability, strong correctness,

and ciphertext density 2poly(λ)

2n ≤ ρ ≤ 1
2poly(λ) , where n is the length of the cipher-

text.

D Special Fully Homomorphic Encryption

In this section, we define and construct the special FHE scheme needed. We
remark that the syntax and construction details are quite different from that in
the construction overview presented in Sec. 2.3. Nonetheless, the high-level ideas
are identical.

D.1 The Definition

In this section, we define the special FHE scheme needed in our construction of
robust unobfuscatable PRF. Generally, the definition is similar to previous defi-
nitions of FHE schemes [Gen09,BV11,GSW13], with some additional algorithms
and properties.

In more detail, the scheme additionally has a public key randomization al-
gorithm and an evaluation key randomization algorithm, which rerandomize the
public key and the evaluation key respectively. We require that outputs of the
two algorithms (as well as ciphertexts of the scheme) should be pseudorandom.
Besides, the scheme has an algorithm that transforms its ciphertexts, where the
transformed ciphertext can also be decrypted correctly by the secret key (with a
modified decryption algorithm). In addition, if the encrypted message is random,
the transformed ciphertext should be indistinguishable from a random sting even
if the distinguisher has the secret key.

Formally, the special FHE scheme SFHE consists of the following PPT algo-
rithms, where we use C, RPK, REK, C̄ to denote the output spaces of algorithms
Enc, RandPK, RandEK, and TranCT respectively.

• KeyGen. On input the security parameter 1λ, the key generation algorithm
outputs a public key pk, a secret key sk, and an evaluation key ek.

• Enc. On input the public key pk and a message msg ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct ∈ C.

• Dec. On input the secret key sk and a ciphertext ct ∈ C, the decryption
algorithm outputs a message msg ∈ {0, 1}.

51

• Eval. For any polynomial `in , `out , on input a (randomized) evaluation key
ek, a vector of `in ciphertexts ctx, and a circuit C : {0, 1}`in → {0, 1}`out , the
evaluation algorithm outputs a vector of `out ciphertexts cty ∈ C`out .

• RandPK. On input the public key pk, the public key randomization algorithm
outputs a randomized public key rpk ∈ RPK.

• RandEK. On input the public key pk and the evaluation key ek, the evaluation
key randomization algorithm outputs a randomized evaluation key ek′ ∈
REK.

• TranCT. On input a randomized public key rpk ∈ RPK and a ciphertext
ct ∈ C, the ciphertext transform algorithm outputs a transformed ciphertext
tct ∈ C̄.

• TCTDec.On input the secret key sk and a transformed ciphertext tct ∈ C̄, the
decryption algorithm for transformed ciphertexts outputs a message msg ∈
{0, 1}. Here, we require that the algorithm is deterministic.

Also, we define the following notions and properties for SFHE:

• Valid Ciphertext. A ciphertext ct ∈ C is a “valid ciphertext” for a message
msg ∈ {0, 1} under keys (pk, sk, ek) ← KeyGen(1λ) if one of the following
two conditions is satisfied:
1. ct← Enc(pk,msg).
2. ct = cty[i], where

(a) cty ← Eval(ek′, ctx, C);
(b) Either ek′ = ek or ek′ ← RandEK(pk, ek).
(c) ctx is a valid ciphertexts vector of x (i.e., the j-th ciphertext in the

vector ctx is a valid ciphertext of x[j]);
(d) C(x)[i] = msg.

• Perfect Correctness. For any message msg ∈ {0, 1}, for any (pk, sk, ek)←
KeyGen(1λ), and for any rpk ← RandPK(pk), let ct be a valid ciphertext of
msg under (pk, sk, ek), then we have

Pr[Dec(sk, ct) 6= msg] = 0

and
Pr[TCTDec(sk, TranCT(rpk , ct)) 6= msg] = 0

• Ciphertext and Key Pseudorandomness. Let (pk, sk, ek)← KeyGen(1λ),
then for all PPT adversary A, we have:

| Pr[AO
0
enc(·),O0

rpk (),O0
rek ()(pk, ek) = 1]−

Pr[AO
1
enc(·),O1

rpk (),O1
rek ()(pk, ek) = 1] |≤ negl(λ)

Here we define the oracles that can be queried by the adversary as follows:
– O0

enc is an oracle that takes as input a message msg ∈ {0, 1} and returns
Enc(pk,msg).

– O0
rpk is an oracle that returns RandPK(pk).

52

– O0
rek is an oracle that returns RandEK(pk, ek).

– O1
enc is an oracle that takes as input a message msg ∈ {0, 1} and returns

ct
$← C.

– O1
rpk is an oracle that returns rpk $← RPK.

– O1
rek is an oracle that returns ek′

$← REK.
• Bad Randomness for RandPK. Let {0, 1}lrpk be the randomness space for

the algorithm RandPK. We define B ⊂ {0, 1}lrpk as the set of “bad random-
ness”16 and require that

Pr[rrpk
$← {0, 1}lrpk : rrpk ∈ B] ≤ negl(λ) (2)

• Dividing the Ciphertext Space. For any (pk, sk, ek) ← KeyGen(1λ), we
can divide the output space C̄ of TranCT into two subsets C0 and C117, s.t.

C0 ∩ C1 = ∅ (3)

| |C0|
|C̄|
− 1

2
| ≤ negl(λ) | |C1|

|C̄|
− 1

2
| ≤ negl(λ) (4)

where the set Cb for b ∈ {0, 1} is actually a set that is close to the set of
transformed ciphertexts encrypting b.
• Uniformity of Transformed Ciphertext. For any msg ∈ {0, 1} and any
rrpk ∈ {0, 1}lrpk \B, let (pk, sk, ek)← KeyGen(1λ) and rpk = RandPK(pk; rrpk).
Also, let ct be a valid ciphertext of msg, then we have

(pk, sk, ek, rrpk , ct,msg, tct0) ≈s (pk, sk, ek, rrpk , ct,msg, tct1)

where
tct0 ← TranCT(rpk , ct) and tct1

$← Cmsg
The following fact can be implied by properties of C0 and C1 directly.

Corollary D.1. For any (pk, sk, ek) ← KeyGen(1λ), let b
$← {0, 1}, tct1

$← Cb,
and tct2

$← C̄, then we have tct1 ≈s tct2.

Proof.

SD(tct1, tct2)

=
1

2
· (|C0| · |

1

2
· 1

|C0|
− 1

|C̄|
|+ |C1| · |

1

2
· 1

|C1|
− 1

|C̄|
|+ (|C̄| − (|C0|+ |C1|)) ·

1

|C̄|
)

=
1

2
· (|1

2
− |C0|
|C̄|
|+ |1

2
− |C1|
|C̄|
|+ (1− |C0|+ |C1|

|C̄|
))

≤negl(λ)

where the first equality comes from Equation (3) the last inequality comes from
Equation (4).
16 The set B is used below in defining the “uniformity of transformed ciphertext”

property.
17 The subsets C0 and C1 are used below in defining the “uniformity of transformed

ciphertext” property.

53

D.2 The Construction

Next, we construct the special FHE scheme defined above. The starting point is
a variant of the GSW homomorphic encryption scheme presented in [GSW13],
where the dimension-modulus reduction technique proposed in [BV11] is applied
to reduce the decryption complexity in the bootstrapping procedure. Then we
show how to rerandomize the public key and the evaluation key for this scheme.
We also design a ciphertext transform algorithm and the corresponding decryp-
tion algorithm for the transformed ciphertext.

Let λ be the security parameter. Let k, p, n,m, m̄, l̂, l,K,N, σ̂, σ, Σ̂ be positive
integers that are polynomial in λ and Σ′, Σ, q be positive integers that are quasi-
polynomial in λ, which satisfy: p, q are odd prime numbers, n > k, l̂ = dlog pe,
l = dlog qe, K = kl̂, m̄ = (n + 1)l + λ, m = m̄l + λ, N = (n + 1)l, Σ̂ =
nl((nl+ 1)(λ · σ̂ + 1) + 1), Σ′ = 2(N + 1)ω(log k), Σ = m · λ · σ · (l ·Σ′ + m̄) + 2,

p > 8Σ̂, and q ≥ 2ω(log λ) · p · Σ. Without loss of generality, we use integers in
[0, q − 1] (resp. [0, p− 1]) to represent elements in Zq (resp. Zp).

Let

G =


1 2 4 . . . 2l−1

1 2 4 . . . 2l−1

. . .

1 2 4 . . . 2l−1


be a matrix in Z(n+1)×N . Let G−1 : Zn+1

q → {0, 1}N be a (bijective) function
that decomposes each element of a vector into bits. In particular, for any vector
v ∈ Zn+1

q , let v̄ = G−1(v) ∈ {0, 1}N , then v[i] =
∑l
j=1(2j−1 · v̄[(i− 1)l+ j]) for

i ∈ [1, n + 1]. It is easy to see G ·G−1(v) = v for any vector v ∈ Znq . For any

positive integer ` and for any matrix V ∈ Zn×`q , we also write

G−1(V) =
(
G−1(v1) G−1(v2) . . . G−1(v`)

)
where vi is the i− th column of V . Note that we still have G ·G−1(V) = V .

Let h ∈ {0, 1}l be the binary decomposition of q+1
2 , i.e.,

∑l
j=1 2j−1 · h[j] =

q+1
2 . Let G′ be the last l columns of the matrix G, then

G′ · h =


0
...
0
q+1

2


We construct the special FHE scheme SFHE = (KeyGen, Enc, Dec, Eval, RandPK,

RandEK, TranCT, TCTDec) as follows:

• KeyGen. On input the security parameter 1λ, the key generation algorithm

first samples B
$← Zn×mq , s

$← Znq , e← D̃mσ , and computes

A =

 B

sᵀB + eᵀ

 mod q

54

Then, the algorithm samples t̂
$← Zkp. Also, for i ∈ [1, n], ι ∈ [1, l], it samples

âi,ι
$← Zkp, êi,ι ← D̃σ̂, and computes

ψ̂i,ι =

 âi,ι

âi,ι · t̂+ êi,ι + bpq · 2
ι−1 · s[i]e

 mod p

Besides, the algorithm decomposes the vector t̂ into a K-bit string t̄ and for

i ∈ [1,K], it samples qRi
$← {0, 1}m×N and computes

qΨ i = t̄[i] ·G+A qRi mod q

Finally, it outputs the public key pk = A, the secret key sk = s and the
evaluation key ek = ((ψ̂i,ι)i∈[1,n],ι∈[1,l], (qΨ i)i∈[1,K]).

• Enc. On input a public key pk = A and a message µ ∈ {0, 1}, the encryption

algorithm samples R
$← {0, 1}m×N and computes

C = µ ·G+AR mod q

Then it outputs the ciphertext ct = C.

• Dec. On input a secret key sk = s and a ciphertext ct = C ∈ Z(n+1)×N
q , the

decryption algorithm first sets C ′ as the last l columns of C and computes
c = C ′ · h. Then it sets w = c[n+ 1] and v = c[1 : n] and computes

u = w − s · v mod q

It output 1 if |u− q+1
2 | ≤ Σ and outputs 0 otherwise.

• Eval. For any `in , `out that are polynomial in λ, the input of the evaluation
algorithm includes a (randomized) evaluation key ek = ((ψ̂i,ι)i∈[1,n],ι∈[1,l],

(qΨ i)i∈[1,K]), a vector of `in ciphertext ctx = (Ci)i∈[1,`in] ∈ (Z(n+1)×N
q)`in ,

and a circuit C : {0, 1}`in → {0, 1}`out .
Let |C| be the number of wires for the circuit C and label each wire of C with
a number in [1, |C|], where each wire has a larger label than its children. We
can label the input wires as 1, . . . , `in . Also, we can label the output wires as
|C|− `out +1, . . . , |C|, where the i-th output wire is labeled with |C|− `out + i.
For i ∈ [`in + 1, |C|], let iL and iR be the labels of the children of the wire
labelled with i, then the evaluation algorithm computes

Ci = DecNAND(ek,CiL ,CiR)

where we define the auxiliary algorithm DecNAND below. Finally, the evalua-
tion algorithm outputs

cty = (Ci)i∈[|C|−`out+1,|C|] ∈ (Z(n+1)×N
q)`out

Description of auxiliary algorithms. We next describe a few auxiliary algo-
rithms that are used in the evaluation algorithm. The algorithm DecNAND

55

takes as input two ciphertexts, which encrypt µ0, µ1 respectively, and out-
puts a ciphertext that encrypts µ0 Z µ1. As the bootstrapping method is
used, the error term of the output ciphertext is fixed. The algorithm NAND

also performs the NAND operation over the input ciphertexts. But, the er-
ror term in the output ciphertext will increase. The algorithm RedCT reduce
the dimension and modulus of a ciphertext. In particular, it transforms a

ciphertext under s, which is in Z(n+1)×N
q into a ciphertext under t, which is

in Zk+1
p .

– DecNAND. On input a (randomized) evaluation key ek = ((ψ̂i,ι)i∈[1,n],ι∈[1,l],

(qΨ i)i∈[1,K]), and two ciphertexts C0,C1 ∈ Z(n+1)×N
q , the algorithm first

computes
(v̂0, ŵ0)← RedCT(ek,C0)

(v̂1, ŵ1)← RedCT(ek,C1)

where we define the algorithm RedCT below. Then it sets D = D̄[v̂0, ŵ0,
v̂1, ŵ1], where D̄ is defined in Figure 7.
Let |D| be the number of wires for the circuit D and label each wire of
D with a number in [1, |D|], where each wire has a larger label than its
children. We can label the input wires as 1, . . . ,K. Also, we can label
the output wire as |D|.
For i ∈ [1,K], letDi = qΨ i. For i ∈ [K+1, |D|], let iL and iR be the labels
of the children of the wire labelled with i, then the algorithm computes

Di = NAND(DiL ,DiR)

where the algorithm NAND is defined below.
Finally, it outputs D|D|.

– RedCT. On input a (randomized) evaluation key ek = ((ψ̂i,ι)i∈[1,n],ι∈[1,l],

(qΨ i)i∈[1,K]), and a ciphertext C ∈ Z(n+1)×N
q , the algorithm first sets

C ′ as the last l columns of C and computes c = C ′ · h. Then it sets
w = c[n+ 1] and v = c[1 : n].
Let vi,ι be the ι-th bit of v[i], i.e., v[i] =

∑
ι∈[1,l] 2ι−1 · vi,ι. Also, for

i ∈ [1, n], ι ∈ [1, l], let âi,ι = ψ̂i,ι[1 : k] and let b̂i,ι = ψ̂i,ι[k + 1].
Then, the algorithm outputs

ŵ = bp
q
we −

n∑
i=1

l∑
ι=1

vi,ι · b̂i,ι mod p

and

v̂ = −
n∑
i=1

l∑
ι=1

vi,ι · âi,ι mod p

– NAND. On input two ciphertexts C0,C1 ∈ Z(n+1)×N
q , the algorithm out-

puts
G−C0 ·G−1(C1) mod q

56

D̄

Constant: v̂0, ŵ0, v̂1, ŵ1

Input: t ∈ {0, 1}K

1. u0 = Σ̂ + ŵ0 −
∑k
i=1

∑l̂
ι=1 2ι−1 · v̂0[i] · t[(i− 1)l̂ + ι] mod p.

2. u1 = Σ̂ + ŵ1 −
∑k
i=1

∑l̂
ι=1 2ι−1 · v̂1[i] · t[(i− 1)l̂ + ι] mod p.

3. If u0 ≥ 2l̂−2, µ0 = 1; otherwise, µ0 = 0.

4. If u1 ≥ 2l̂−2, µ1 = 1; otherwise, µ1 = 0.

5. Output µ0 Z µ1.

Fig. 7 The circuit D̄.

• RandPK. On input a public key pk = A, the public key randomization algo-

rithm samples R
$← {0, 1}m×m̄ and computes

A′ = AR mod q

Then it outputs the randomized public key rpk = A′.
• RandEK. The input of the evaluation key randomization algorithm includes a

public key pk = A and an evaluation key ek = ((ψ̂i,ι)i∈[1,n],ι∈[1,l], (qΨ i)i∈[1,K]).

First, for i ∈ [1, n] and ι ∈ [1, l], the algorithm sample R̂
′
i,ι

$← {0, 1}m×N ,
computes

Ĉ
′
i,ι = AR̂

′
i,ι mod q

and obtains
(v̂i,ι, ŵi,ι)← RedCT(ek, Ĉ

′
i,ι)

where RedCT is an auxiliary algorithm defined above in the evaluation algo-
rithm. Then it computes

ψ̂
′
i,ι = ψ̂i,ι +

v̂i,ι
ŵi,ι

 mod p

Next, for i ∈ [1,K], the algorithm samples qR
′
i

$← {0, 1}m×N and computes

qΨ
′
i = qΨ i +A qR

′
i mod q

Finally, it outputs the randomized evaluation key ek′ = ((ψ̂
′
i,ι)i∈[1,n],ι∈[1,l],

(qΨ
′
i)i∈[1,K]).

• TranCT. On input a randomized public key rpk = A′ and a ciphertext ct =

C ′ ∈ Z(n+1)×N
q , the ciphertext transform algorithm first sets C ′′ as the last

l columns of C ′ and computes c′ = C ′′ · h. Next, it samples x
$← {0, 1}m̄,

z
$← [Σ, q+1

2 −Σ], and computes

c = c′ +A′x+


0
...
0
z

 mod q

57

Finally, it outputs the transformed ciphertext tct = c.
• TCTDec. On input a secret key sk = s and a transformed ciphertext tct =
c ∈ Zn+1

q , the decryption algorithm first sets w = c[n+ 1], v = c[1 : n] and
computes

u = w − s · v mod q

It output 0 if u ∈ [0, q+1
2) and outputs 1 otherwise.

Theorem D.1. Assume the circular security of the GSW homomorphic encryp-
tion scheme,18 then SFHE satisfies all properties required in Appendix D.1.

We present Proof of Theorem D.1 in Appendix E.5.

Remark D.1. In above construction, the outputs of the algorithms Enc, RandPK,
RandEK, and TranCT are matrices/vectors in Zq or Zp. However, in the construc-
tion of unobfuscatable PRF given in Sec. 6.3, it is required that outputs of these
algorithms are binary strings. The trivial solution that decomposes numbers in
Zq (or Zp) into bits does not work here. This is because we need the outputs
to be (pseudo)random strings over the output spaces of the algorithms, but as
p, q are not a power of 2, the decomposed binary string may not uniform even
if the original output is a uniform matrix/vector over Zq or Zq. For example,
if dlog qe − log q ≈ 1/2, then the probability that the most significant bit of a
random number in Zq is 0 is about 0.7 (instead of 1/2).

We solve the problem in a general way, i.e. we do not impose any restriction
on the selection of the parameters in above construction. Our main observation
is that for any number Q, there exists a number Q̃ s.t. Q̃ is a multiple of Q and
Q̃ is close to a power of 2. Let l = dlogQe and let L = l + λ. Then we set

Q̃ = Q · b2
L

Q
c

Obviously, Q̃ is a multiple of Q and let P = Q̃/Q. Also, note that

2L − Q̃
2L

=
Q · (2L

Q − b
2L

Q c)
2L

≤ Q

2L
≤ 1

2λ

Now, let rQ
$← ZQ and rP

$← ZP . Let r0 = rP ·Q+rQ, and let r1
$← Z2L (i.e.,

the binary decomposition of r1 is a uniform string in {0, 1}L). Then we have

SD(r0, r1) =
1

2
|
∑

a∈[0,Q̃−1)

(
1

Q̃
− 1

2L
) +

∑
a∈[Q̃−1,2L−1)

1

2L
| = 2L − Q̃

2L
≤ 1

2λ
(5)

In this way, we can approximately map a random element in ZQ into a random
L-bit string.

18 We elaborate the assumption later in the proof of ciphertext and key pseudoran-
domness property.

58

Let C, RPK, REK, and C̄ be the output spaces of algorithms Enc, RandPK,
RandEK, and TranCT respectively. Let Qc = |C|, Qp = |RPK|, Qe = |REK|, and
Qc̄ = |C̄|. Note that one can map between elements in C, RPK, REK, C̄ and
numbers in ZQc , ZQp , ZQe , ZQc̄ efficiently. Thus, we can apply the above trick
to map (pseudo)random outputs of the algorithms Enc, RandPK, RandEK, and
TranCT into (pseudo)random binary strings and recovers the original outputs
from the binary strings if needed.

E Deferred Proofs

E.1 Security Analysis of Public-Key Hinting Watermarkable PRFs
from Puncturable PRFs

We present proof of Theorem 5.1 in this section. More precisely, we will prove the
functionality preserving property, extraction correctness, watermarking mean-
ingfulness, pseudorandomness, and 1-bounded 1-unremovability of HWF.

Functionality Preserving. The functionality preserving property of HWF
comes from correctness of PPRF directly.

Extraction Correctness. Let w
$← {0, 1}λ and PP = w. Also, let k ←

PPRF. KeyGen(1λ), x∗
$← {0, 1}n, y∗ = PPRF. Eval(k, x∗), z∗ = F(y∗), K = (k,

x∗), and hint = (x∗, z∗, w). Besides, let ck ← PPRF. Constrain(k, x∗) and let
C : {0, 1}n → {0, 1}m be a circuit s.t. C(x) = PPRF. ConstrainEval(ck, x) for
any x ∈ {0, 1}n.

Now, assume the extraction algorithm takes as input the watermarked circuit
C and the hint hint = (x∗, z∗, w). First, by the constrained pseudorandomness
of PPRF, C(x∗) 6= y∗ with all but negligible probability. Next, by the injectivity
of F, F(C(x∗)) 6= z∗ if C(x∗) 6= y∗. Thus, with all but negligible probability we
have Extract(PP, C, hint) =“marked”.

On the other hand, assume the input circuit is Eval(PP,K, ·). As Eval(PP,
K, x∗) = PPRF. Eval(k, x∗) = y∗, we have F(Eval(PP,K, x∗)) = z∗. Thus, we
always have Extract(PP, Eval(PP,K, ·), hint) =⊥.

This completes the proof of extraction correctness.

Watermarking Meaningfulness. For any fixed circuit C : {0, 1}n → {0, 1}m

and for any fixed hint hint = (x, z, w′), let w
$← {0, 1}λ. Then the probability

that w = w′ is 1/2λ. Thus, the probability that a fixed pair of circuit and hint can
pass the extraction algorithm (with random public parameter w) is negligible.

Pseudorandomness. Pseudorandomness of HWF comes from pseudorandom-
ness of PPRF directly.

Unremovability. Next, we prove the unremovability of HWF. First, we define
the following games between a challenger and a PPT 1-unremoving-admissible
adversary A:

• Game 0. This is the real experiment ExptUR. More precisely, the challenger
proceeds as follows.

59

I. First, the challenger samples w
$← {0, 1}λ, k ← PPRF. KeyGen(1λ), x∗

$←
{0, 1}n, and computes y∗ = PPRF. Eval(k, x∗), z∗ = F(y∗).

II. Then, it returns PP = w and hint∗ = (x∗, z∗, w) to the adversary. It also
computes ck ← PPRF. Constrain(k, x∗) and sets C∗ : {0, 1}n → {0, 1}m
as a circuit that for any x ∈ {0, 1}n: C∗(x) = PPRF. ConstrainEval(ck,
x). It returns C∗ to the adversary as the response to the challenge oracle
query19.

III. Finally, after A submits a circuit C̃, the challenger outputs 1 if

z∗ = F(C̃(x∗))

Otherwise, it outputs 0.
• Game 1. This is identical to Game 0 except that the challenger samples

y∗
$← {0, 1}m.

Let Ei be the output of Game i and we next show that Pr[E0 = 1] ≤ negl(λ)
via proving the following lemmas.

Lemma E.1. | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 0 and Game 1 comes from the con-
strained pseudorandomness of PPRF directly.

Lemma E.2. Pr[E1 = 1] ≤ negl(λ).

Proof. Game 1 outputs 1 iff F(C̃(x∗)) = z∗, where z∗ = F(y∗) for a random string
y∗. This will occur with a negligible probability due to the one-wayness of F.

Combining Lemma E.1 to Lemma E.2, we have Pr[E0 = 1] ≤ negl(λ), i.e.,
the probability that A wins in the real experiment ExptUR is negligible. This
completes the proof of unremovability.

E.2 Security Analysis of Public-Key Hinting Watermarkable PRFs
from Functional Encryption

We present proof of Theorem 5.2 in this section. More precisely, we will prove the
functionality preserving property, extraction correctness, watermarking mean-
ingfulness, pseudorandomness, and unremovability of HWF.

Functionality Preserving. For any message msg ∈ [1, 2κ − 1], let w
$← {0,

1}λ, t∗
$← {0, 1}λ, and PP = (w, t∗). Also, let (mpk,msk) ← FE. Setup(1λ),

(pk, sk) ← PKE. KeyGen(1λ), k ← F. KeyGen(1λ), fsk ← FE. KeyGen(mpk,msk,
f⊥), K = (mpk,msk, pk, k, fsk) and hint = (mpk, sk, w). Besides, let fskmsg ←
FE. KeyGen(mpk,msk, fmsg,t∗) and let C = M[mpk, fskmsg , pk, k]. Let fskID =
FE. KeyGen(mpk,msk, ID), where ID is the identity function.

19 As there is only one message in the message space, the adversary only needs to query
the challenge oracle once and the submitted message must be “marked”.

60

It is easy to see that for any x ∈ {0, 1}n, C(x) = Eval(PP,K, x) if FE. Dec(mpk,
fsk , x) = FE. Dec(mpk, fskmsg , x). Thus, it is sufficient to bound the probability
that fsk0 and fsk1 decrypt a random ciphertext to different messages.

First, by the strong correctness of FE, with all but negligible probability over
the choice of mpk,msk, fsk , fskmsg , fskID, we have:

1. For any x 6∈ Vmpk,msk, FE. Dec(mpk, fsk , x) = FE. Dec(mpk, fskmsg , x) =⊥.
2. For any x ∈ Vmpk,msk, let (ind‖t‖µ) = FE. Dec(mpk, fskID, x), then FE. Dec(mpk,

fsk , x) = FE. Dec(mpk, fskmsg , x) = µ if t 6= t∗.

It remains to show that for a random x ∈ Vmpk,msk, the probability that
FE. Dec(mpk, fskID, x)[κ+ 1, κ+ λ] = t∗ is negligible.

To prove this, we define Vt = {x ∈ Vmpk,msk : FE. Dec(mpk, fskID, x)[κ + 1,
κ + λ] = t} for any t ∈ {0, 1}λ and define L = {t ∈ {0, 1}λ : |Vt|/|Vmpk,msk| >
1/2λ/2}. Then we have |L| ≤ 2λ/2 (recall that FE. Dec is a deterministic algo-
rithm). Thus, Pr[t∗ ∈ L] ≤ 2λ/2/2λ = 1/2λ/2, which is negligible. Now, assume
that t∗ 6∈ L, which occurs with all but negligible probability, then we have

Pr[x
$← Vmpk,msk : FE. Dec(mpk, fskID, x)[κ + 1, κ + λ] = t∗] ≤ 1/2λ/2, which is

negligible.
This completes the proof of functionality preserving.

Extraction Correctness. For any message msg ∈ [1, 2κ − 1], let w
$← {0,

1}λ, t∗
$← {0, 1}λ, and PP = (w, t∗). Also, let (mpk,msk) ← FE. Setup(1λ),

(pk, sk) ← PKE. KeyGen(1λ), k ← F. KeyGen(1λ), fsk ← FE. KeyGen(mpk,msk,
f⊥), K = (mpk,msk, pk, k, fsk) and hint = (mpk, sk, w). Besides, let fskmsg ←
FE. KeyGen(mpk,msk, fmsg,t∗) and let C = M[mpk, fskmsg , pk, k].

Now, assume the extraction algorithm takes as input the watermarked circuit
C and the hint hint = (mpk, sk, w). Then by perfect correctness of FE and
perfect correctness of PKE, we have Test(ind) = 1 for all ind < msg tested
in the extraction algorithm; also, with all but negligible probability, we have
Test(ind) = 0 for all ind ≥ msg tested in the extraction algorithm. Next, by
Lemma B.7, the Trace algorithm will output {msg}. Therefore, the extraction
algorithm will output msg with all but negligible probability given C as input.

On the other hand, assume the input circuit is Eval(PP,K, ·). Then by
perfect correctness of FE and perfect correctness of PKE, we have Test(0) =
Test(2κ − 1) = 1. Thus, the Trace algorithm will output ∅. Therefore, the
extraction algorithm will output ⊥ on input Eval(PP,K, ·).

This completes the proof of extraction correctness.

Watermarking Meaningfulness. For any fixed circuit C : {0, 1}n → {0, 1}m

and for any fixed hint hint = (mpk, sk, w′), let w
$← {0, 1}λ. Then the prob-

ability that w = w′ is 1/2λ. Thus, the probability that a fixed pair of circuit
and hint can pass the extraction algorithm (with random public parameter w)
is negligible.

Pseudorandomness. Pseudorandomness of HWF comes from pseudorandom-
ness of F and ciphertext pseudorandomness of PKE directly.

61

Unremovability. Next, we prove the unremovability of HWF. First, we define
the following games between a challenger and a PPT ε-unremoving-admissible
adversary A:

• Game 0. This is the real experiment ExptUR. More precisely, the challenger
proceeds as follows.

I. First, the challenger samples w
$← {0, 1}λ, t∗

$← {0, 1}λ, and generates
(mpk,msk) ← FE. Setup(1λ), (pk, sk) ← PKE. KeyGen(1λ), and k ←
F. KeyGen(1λ).

II. Then, it returns PP = (w, t∗) and hint∗ = (mpk, sk, w) to the adver-
sary and answers the adversary’s challenge oracle queries (for at most Q
times) as follows:
• On receiving a message msg, the challenger first computes fskmsg ←
FE. KeyGen(mpk,msk, fmsg,t∗) and returns the circuit M[mpk, fskmsg ,
pk, k], where M is defined in Figure 2.

Here, we denote the messages submitted by the adversary as msg∗1 ,msg
∗
2 ,

. . . ,msg∗Q, wheremsg∗1 ≤ msg∗2 ≤ . . . ≤ msg∗Q. Also, we setQ∗ = {msg∗1 ,
msg∗2 , . . . ,msg

∗
Q}. In addition, for i ∈ [1, Q], assuming msg∗i is submitted

in the `i-th challenge oracle query, we use C∗i to denote the response of
the `i-th challenge oracle query and use fsk∗i to denote the secrete key
fskmsg generated when answering this query. 20

III. Finally, after A submits a circuit C̃, the challenger proceeds as follows,
where the algorithms Test, Trace are defined in Figure 3 and we also
recall the two algorithms (with slight modification on the syntax) in
Figure 8.
1. Set the constant for the algorithm Test as (C̃,mpk, sk, t∗).
2. p0 = Test(0).
3. p2κ−1 = Test(2κ − 1).
4. M← Trace(0, 2κ−1, p0, p2κ−1). Here, the extraction algorithm will

abort and output 1 if the test algorithms (including Test, Test′

and Test′′) have been invoked for more than Q · (κ+ 1) times in the
Trace algorithm.

5. If M = ∅, output 1.

6. msg
$←M.

7. If msg 6∈ Q∗, output 1.
8. Output 0.

• Game 1. This is identical to Game 0 except that the challenger sets the con-
stant for the algorithm Test′ as (C̃,mpk, sk, t∗) and computes p′0 = Test′()
(the algorithm Test′ is defined in Figure 8) before computing p0. Then it
aborts and outputs 2 if p′0 < θ − ϕ.

• Game 2. This is identical to Game 1 except that the challenger changes
the way to compute pind (including p0 and some pind3

calculated in the
Trace algorithm) in Phase III. In particular, it invokes Test′() (with constant

20 If repeated messages are submitted, e.g., there exists 1 ≤ i < j ≤ Q s.t. msg∗i−1 <
msg∗i = . . . = msg∗j < msg∗j+1, we assume `i < . . . < `j .

62

(C̃,mpk, sk, t∗)) instead of Test(ind) if ind < msg∗1 , i.e., for all pind s.t.
0 ≤ ind < msg∗1 , pind = Test′().

• Game 3. This is identical to Game 2 except that the challenger changes
the way to compute pind (including some pind3

calculated in the Trace

algorithm) in Phase III. In particular, it invokes Test(msg∗i) (with con-
stant (C̃,mpk, sk, t∗)) instead of Test(ind) when there exists i ∈ [1, Q − 1]
s.t. msg∗i ≤ ind < msg∗i+1, i.e., for all pind s.t. msg∗i ≤ ind < msg∗i+1,
pind = Test(msg∗i).

• Game 4. This is identical to Game 3 except that the challenger changes
the way to compute pind (including p2κ−1 and some pind3 calculated in the
Trace algorithm) in Phase III. In particular, it sets the constant of Test′′

(the algorithm Test′′ is defined in Figure 8) as (C̃,mpk, sk, t∗) and invokes
Test′′(ind) instead of Test(ind) if ind ≥ msg∗Q, i.e., for all pind s.t. ind ≥
msg∗Q, pind = Test′′(ind).

• Game 5. This is identical to Game 4 except that the challenger aborts and
outputs 2 if p0 < θ − 2ϕ.

• Game 6. Let msg∗0 = 0, then the challenger aborts and outputs 2 if there
exists i ∈ [0, Q− 1] and ind, ind′ ∈ [msg∗i ,msg

∗
i+1) s.t. |pind − pind′ | ≥ ϕ. It

proceeds identically as in Game 5 if no such (i, ind, ind′) exists.

• Game 7. This is identical to Game 6 except that the challenger aborts and
outputs 2 if there exists ind ≥ msg∗Q s.t. pind 6= 0.

Let Ei be the output of Game i and we next show that Pr[E0 = 1] ≤ negl(λ)
via proving the following lemmas.

Lemma E.3. | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. Let

p = Pr[(ind′, t, µ)
$← {0, 1}κ × {0, 1}λ\{t∗} × {0, 1}λ,

x← FE. Enc(mpk, ind′‖t‖µ), y = C̃(x) : PKE. Dec(sk, y) = µ]

We first give a lower bound of p.

Claim E.1. p ≥ θ − 1/(2λ − 1).

Proof. For any (ind′, t, µ) ∈ {0, 1}κ×{0, 1}λ\{t∗}×{0, 1}λ, let x← FE. Enc(mpk,
ind′‖t‖µ) and y = C̃(x). Then, by perfect correctness of FE and perfect correct-
ness of PKE, we have PKE. Dec(sk, y) = µ if C̃(x) = C∗1(x) (recall that C∗1(x) is
the watermarked circuit returned by the challenge oracle on receiving msg∗1).
Thus, we have

p ≥ p′ = Pr[(ind′, t, µ)
$← {0, 1}κ × {0, 1}λ\{t∗} × {0, 1}λ,

x← FE. Enc(mpk, ind′‖t‖µ) : C̃(x) = C∗1(x)]

63

Trace

Input: ind1, ind2, pind1 , pind2

1. ∆ = |pind1 − pind2 |.
2. If ∆ ≤ ϕ:

Return ∅.
3. If ind2 − ind1 = 1:

Return {ind2}.
4. ind3 = b ind1+ind2

2
c.

5. pind3 = Test(ind3).
6. Return Trace(ind1, ind3, pind1 , pind3)
∪ Trace(ind3, ind2, pind3 , pind2).

Test

Constant: E,mpk, sk, t∗

Input: ind
1. Acc = 0
2. For i ∈ [1, T]:

(a) Sample µ
$← {0, 1}λ.

(b) x← FE. Enc(mpk, ind‖t∗‖µ).
(c) y = E(x).
(d) µ̄ = PKE. Dec(sk, y).
(e) If µ = µ̄: Acc = Acc+ 1.

3. Return Acc
T

.

Test′

Constant: E,mpk, sk, t∗

1. Acc = 0
2. For i ∈ [1, T]:

(a) Sample ind′
$← {0, 1}κ.

(b) Sample t
$← {0, 1}λ\{t∗}.

(c) Sample µ
$← {0, 1}λ.

(d) x← FE. Enc(mpk, ind′‖t‖µ).
(e) y = E(x).
(f) µ̄ = PKE. Dec(sk, y).
(g) If µ = µ̄: Acc = Acc+ 1.

3. Return Acc
T

.

Test′′

Constant: E,mpk, sk, t∗

Input: ind
1. Acc = 0
2. For i ∈ [1, T]:

(a) Sample µ
$← {0, 1}λ.

(b) x← FE. Enc(mpk, ind‖t∗‖0λ).
(c) y = E(x).
(d) µ̄ = PKE. Dec(sk, y).
(e) If µ = µ̄: Acc = Acc+ 1.

3. Return Acc
T

.

Fig. 8 The algorithms Trace, Test, Test′, and Test′′. We use red underlines to high-
light the differences between Test′ and Test and the difference between Test′′ and
Test.

Let E ′ be the distribution of x in the Test′ algorithm, i.e., for any x∗ ∈ {0,
1}n:

E ′(x∗) = Pr[(ind′, t, µ)
$← {0, 1}κ × {0, 1}λ\{t∗} × {0, 1}λ,

x← FE. Enc(mpk, ind′‖t‖µ) : x = x∗]

Let R be the randomness space for the algorithm FE. Enc and let Empk be the
output distribution of FE. Enc(mpk, ·) on input a random message, then for any
x∗ ∈ {0, 1}n, we have:

E′(x∗)

=
|{(ind′, t, µ, r) ∈ {0, 1}κ × {0, 1}λ\{t∗} × {0, 1}λ ×R : x∗ = FE. Enc(mpk, ind′‖t‖µ; r)}|

2κ+λ · (2λ − 1) · |R|

=
|{(ind′, t, µ, r) ∈ {0, 1}κ × {0, 1}λ\{t∗} × {0, 1}λ ×R : x∗ = FE. Enc(mpk, ind′‖t‖µ; r)}|

2κ+2λ · |R|
·

2λ

2λ − 1

≤
|{(ind′, t, µ, r) ∈ {0, 1}κ × {0, 1}λ × {0, 1}λ ×R : x∗ = FE. Enc(mpk, ind′‖t‖µ; r)}|

2κ+2λ · |R|
·

2λ

2λ − 1

=Empk(x
∗
) ·

2λ

2λ − 1

64

Let D = {x ← E ′ : C̃(x) 6= C∗1(x)}. Note that for any x ← E ′, any i ∈ [1,
Q], C∗i (x) = C∗1(x). Also, the adversary is ε-unremoving-admissibile, where ε ≤
ρ · (1− θ), thus we have

|D| ≤ 2n · ρ · (1− θ)
= 2n · 1/(2n · (max

mpk′
max

x∈{0,1}n
Empk′(x))) · (1− θ)

≤ 2n · 1/(2n · max
x∈{0,1}n

Empk(x)) · (1− θ)

=
1− θ

maxx∈{0,1}n Empk(x)

Thus, we have

1− p′ =
∑
x∈D
E ′(x)

≤
∑
x∈D
Empk(x) · 2λ

2λ − 1

≤ (max
x∈{0,1}n

Empk(x) · 2λ

2λ − 1
) · |D|

≤ (max
x∈{0,1}n

Empk(x) · 2λ

2λ − 1
) · 1− θ

maxx∈{0,1}n Empk(x)

=
2λ

2λ − 1
· (1− θ)

≤ 1− θ +
1

2λ − 1

i.e., p ≥ p′ ≥ θ − 1
2λ−1

.

In each repetition of the Test′ algorithm, Acc will increase with probability p.
Then, for i ∈ [1, T], let Xi be a random variable over {0, 1} that Pr[Xi = 1] = p
and let X =

∑T
i=1Xi. Then by the Chernoff bound, we have

Pr[X ≤ (1− ϕ

2p
)pT] ≤ e−

ϕ2

8p2
pT

= e
− λ

8p ≤ e−λ8

which is negligible. Thus with all but negligible probability, we have

p′0 > (1− ϕ

2p
)p ≥ θ − 1

2λ − 1
− ϕ

2
> θ − ϕ

Therefore, the challenger will output 2 with only negligible probability in Game
1.

Lemma E.4. | Pr[E1 = 1]− Pr[E2 = 1] |≤ negl(λ).

65

Proof. Game 1 and Game 2 are identical except that in these two games, the
challenger uses different ways to generate the test points in the test algorithm
when ind < msg∗1 .

In particular, in Game 1, the challenger will sample µ
$← {0, 1}λ and compute

x ← FE. Enc(mpk, ind‖t∗‖µ). In Game 2, the challenger will sample ind′
$← {0,

1}κ, t
$← {0, 1}λ\{t∗}, µ $← {0, 1}λ, and compute x← FE. Enc(mpk, ind′‖t‖µ).

Note that the adversary can only view at most Q secret keys of the FE scheme
and for j ∈ [1, Q], the secret key fsk∗j ← FE. KeyGen(mpk,msk, fmsg∗j ,t∗), where

fmsg∗j ,t∗(ind‖t
∗‖µ) = fmsg∗j ,t∗(ind

′‖t‖µ) = µ

In addition, in the whole extraction procedure, only polynomially-many test
points are calculated (as the test algorithm is only invoked for polynomially-
many times). Thus, points generated in these two ways are computationally in-
distinguishable due to the Q-adaptive indistinguishability (in the multi-challenge
setting) of FE.

Lemma E.5. | Pr[E2 = 1]− Pr[E3 = 1] |≤ negl(λ).

Proof. Game 2 and Game 3 are identical except that in these two games, the
challenger uses different ways to generate the test points in the test algorithm
when msg∗i ≤ ind < msg∗i+1 for some i ∈ [1, Q− 1].

In particular, in Game 2, the challenger will sample µ
$← {0, 1}λ and compute

x← FE. Enc(mpk, ind‖t∗‖µ). In Game 3, the challenger will sample µ
$← {0, 1}λ

and compute x← FE. Enc(mpk,msg∗i ‖t∗‖µ).
Note that the adversary can only view at most Q secret keys of the FE scheme

and for j ∈ [1, Q], the secret key fsk∗j ← FE. KeyGen(mpk,msk, fmsg∗j ,t∗), where
for j ≤ i

fmsg∗j ,t∗(ind‖t
∗‖µ) = fmsg∗j ,t∗(msg

∗
i ‖t∗‖µ) = 0

and for j ≥ i+ 1

fmsg∗j ,t∗(ind‖t
∗‖µ) = fmsg∗j ,t∗(msg

∗
i ‖t∗‖µ) = µ

In addition, in the whole extraction procedure, only polynomially-many test
points are calculated. Thus, points generated in these two ways are compu-
tationally indistinguishable due to the Q-adaptive indistinguishability (in the
multi-challenge setting) of FE.

Lemma E.6. | Pr[E3 = 1]− Pr[E4 = 1] |≤ negl(λ).

Proof. Game 3 and Game 4 are identical except that in these two games, the
challenger uses different ways to generate the test points in the test algorithm
when ind ≥ msg∗Q.

In particular, in Game 3, the challenger will sample µ
$← {0, 1}λ and com-

pute x ← FE. Enc(mpk, ind‖t∗‖µ). In Game 4, the challenger will compute
x← FE. Enc(mpk, ind‖t∗‖0λ).

66

Note that the adversary can only view at most Q secret keys of the FE scheme
and for j ∈ [1, Q], the secret key fsk∗j ← FE. KeyGen(mpk,msk, fmsg∗j ,t∗), where

fmsg∗j ,t∗(ind‖t
∗‖µ) = fmsg∗j ,t∗(ind‖t

∗‖0λ) = 0λ

In addition, in the whole extraction procedure, only polynomially-many test
points are calculated. Thus, points generated in these two ways are compu-
tationally indistinguishable due to the Q-adaptive indistinguishability (in the
multi-challenge setting) of FE.

Lemma E.7. | Pr[E4 = 1]− Pr[E5 = 1] |≤ negl(λ).

Proof. Game 4 and Game 5 are identical except that p′0 ≥ θ−ϕ but p0 < θ−2ϕ in
the games. Thus, it is sufficient to prove that |p0−p′0| ≤ ϕ with all but negligible
probability. As both p0 = Test′() and p′0 = Test′(), this can be implied by the
following general claim :

Claim E.2. For any p ∈ [0, 1], for i ∈ [1, T], let Xi be a random variable over

{0, 1} that Pr[Xi = 1] = p and let X =
∑T
i=1Xi; also, for i ∈ [1, T], let Yi be a

random variable over {0, 1} that Pr[Yi = 1] = p and let Y =
∑T
i=1 Yi. Then we

have Pr[|X − Y | ≥ ϕT] ≤ negl(λ).

Proof. First, by the Chernoff bound, we have

Pr[X ≥ (1 +
ϕ

2p
)pT] ≤ e−

ϕ2

4p2·(2+ϕ/2p)
pT

= e
− λ

8p+2ϕ ≤ e− λ
10

which is negligible. Similar, we have Pr[Y ≥ (1 + ϕ
2p)pT] ≤ negl(λ).

Now, if p ≤ ϕ
2 , then with all but negligible probability, we have

0 ≤ X < pT +
ϕ

2
T ≤ ϕT

Similar, we have 0 ≤ Y < ϕT with all but negligible probability. Thus, we have
|X − Y | < ϕT with all but negligible probability.

Also, if p > ϕ
2 , then by the Chernoff bound , we have

Pr[X ≤ (1− ϕ

2p
)pT] ≤ e−

ϕ2

8p2
pT

= e
− λ

8p ≤ e−λ8

which is negligible. Similar, we have Pr[Y ≤ (1− ϕ
2p)pT] ≤ negl(λ). That is, with

all but negligible probability we have

pT − ϕ

2
T < X, Y < pT +

ϕ

2
T

Thus, we have |X − Y | < ϕT with all but negligible probability.
This completes proof of the Claim.

67

Lemma E.8. | Pr[E5 = 1]− Pr[E6 = 1] |≤ negl(λ).

Proof. First, for ind, ind′ ∈ [0,msg∗1), pind = Test′() and pind′ = Test′(), thus,
by Claim E.2, we have Pr[|pind − pind′ | ≥ ϕ] ≤ negl(λ).

Also, for i ∈ [1, Q−1], for ind, ind′ ∈ [msg∗i ,msg
∗
i+1), pind = Test(msg∗i) and

pind′ = Test(msg∗i), thus, by Claim E.2, we have Pr[|pind−pind′ | ≥ ϕ] ≤ negl(λ).
Since in the whole extraction procedure, only polynomially-many pind are

calculated (as the test algorithm is only invoked for polynomially-many times),
the probability that there exists i ∈ [0, Q − 1] and ind, ind′ ∈ [msg∗i ,msg

∗
i+1)

s.t. |pind − pind′ | ≥ ϕ is also negligible.
Thus, with all but negligible probability, the new abort condition introduced

in Game 6 will not be triggered, and indistinguishability between Game 5 and
Game 6 follows.

Lemma E.9. | Pr[E6 = 1]− Pr[E7 = 1] |≤ negl(λ).

Proof. In each repetition of the algorithm Test′′, µ is independent of µ̄ and is
sampled uniformly at random from {0, 1}λ, thus, the probability that µ̄ = µ is
1/2λ. Moreover, as T is polynomial in λ, the probability that Acc 6= 0 is also
negligible. In addition, only polynomially-many pind are calculated, thus we have
pind = 0 for all ind ≥ msg∗Q with all but negligible probability.

Thus, with all but negligible probability, the new abort condition introduced
in Game 7 will not be triggered, and indistinguishability between Game 6 and
Game 7 follows.

Lemma E.10. Pr[E7 = 1] = 0.

Proof. In Game 7, the challenger outputs 1 only if the Trace algorithm invokes
the test algorithms for more than Q · (κ+1) times or if the Trace algorithm fails
to output a non-empty subset of Q∗.

Note that in Game 7, the Trace algorithm interacts with an oracle P that
outputs pind on a query ind. Assume that the game does not output 2, then we
have P(0) ≥ θ − 2ϕ and P(2κ − 1) = 0, which implies that

|P(2κ − 1)− P(0)| ≥ θ − 2ϕ = (3 + (κ− 1)Q)ϕ > (2 + (κ− 1)Q)ϕ

Also, for any a, b ∈ [0, 2κ − 1] s.t. a < b and (a, b] ∩ Q∗ = ∅, we have either of
the following three cases:

- 0 ≤ a < b < msg∗1 , then we have |P(a)− P(b)| < ϕ.
- ∃i ∈ [1, Q− 1],msg∗i ≤ a < b < msg∗i+1, then we have |P(a)− P(b)| < ϕ.
- msg∗Q ≤ a < b ≤ 2κ − 1, then we have |P(a)− P(b)| = 0.

if the game does not output 2.
Thus, by Lemma B.7, the algorithm Trace will make at most Q · (κ + 1)

distinct queries to P and output a non-empty subset of Q∗ if the game does not
output 2. That is, the game will not output 1.

68

Combining Lemma E.3 to Lemma E.10, we have Pr[E0 = 1] ≤ negl(λ), i.e.,
the probability that A wins in the real experiment ExptUR is negligible. This
completes the proof of unremovability.

Remark E.1. One may note that in our proof, we use the fact that the adversary
is (ρ · (1− θ))-unremoving-admissibile in Game 0. The adversary is also (ρ · (1−
θ) + negl(λ))-unremoving-admissibile in Game i for i > 0. However, as in our
instantiation, ρ is a concrete negligible function, the parameter may be much
larger than ρ · (1− θ) in other games, which would not imply the fact that p0 is
large enough.

Note that this subtle issue can be omitted when considering an ε-unremoving-
admissible adversary for some non-negligible ε or if ε is only required to be any
(rather than a concrete) negligible function.

E.3 Security Analysis of Public-Key Hinting Watermarkable PRFs
from Secret-Key Watermarkable PRFs

We present proof of Theorem 5.3 in this section. More precisely, we will prove the
functionality preserving property, extraction correctness, watermarking mean-
ingfulness, pseudorandomness, and unremovability of HWF.

Functionality Preserving. The functionality preserving property of HWF
comes from the functionality preserving property of SK-WPRF directly.

Extraction Correctness. Let (PP = w) ← Setup(1λ) and (K, hint = (pp,
ek, w′)) ← KeyGen(PP), then we always have w = w′. Thus, the first check
in the extraction algorithm can always be passed given the correct hint, i.e.,
we always have Extract(PP, C, hint) = SK-WPRF. Extract(pp, ek, C) for any
circuit C. Then by the extraction correctness of SK-WPRF, it is easy to prove
the extraction correctness of HWF.

Watermarking Meaningfulness. For any fixed circuit C : {0, 1}n → {0, 1}m

and for any fixed hint hint = (pp, ek, w′), let w
$← {0, 1}λ. Then the probability

that w = w′ is 1/2λ. Thus, the probability that a fixed pair of circuit and hint can
pass the extraction algorithm (with random public parameter w) is negligible.

Pseudorandomness. The pseudorandomness of HWF comes from the pseudo-
randomness of SK-WPRF by a direct reduction.

Unremovability. Finally, we prove the unremovability of HWF. This comes
from the unremovability of SK-WPRF by a direct reduction. More precisely, as-
suming there exists an adversary A that breaks the Q-bounded ε-unremovability
of HWF, then we can construct an adversary B that breaks the Q-bounded ε-
unremovability of SK-WPRF as follows.21

On receiving the public parameter pp and the extraction key ek from its

challenger, the adversary B first samples w
$← {0, 1}λ. Then it sets PP = w and

hint∗ = (pp, ek, w), and sends (PP, hint∗) to the adversary A. Next, it answers

21 The reduction proceeds identically for the negl(λ)-unremovability case.

69

A’s challenge oracle queries for at most Q times. In particular, each time on
receiving A’s challenge oracle query msg, B submits a query msg to its own
challenge oracle and on receiving the response C∗ from its challenge oracle, it
returns C∗ to A. Here, we use Q∗ to denote the set of all messages submitted by
A/B and use R∗ to denote the set of all circuits returned to A/B. Finally, after
A submits a circuit C̃, B also submits C̃ to its challenger.

First, it is easy to see, the view of A in the environment simulated by B
is identical to its view in the real experiment ExptUR defined in Definition 5.2.
Thus, the submitted circuit C̃ satisfies

∃ C∗ ∈ R∗, |{x ∈ {0, 1}n : C∗(x) 6= C̃(x)}| ≤ ε · 2n

and with a non-negligible probability,

Extract(PP, C̃, hint∗) = SK-WPRF. Extract(pp, ek, C̃) 6∈ Q∗

Therefore, the circuit C̃ submitted by B is approximate to the watermarked
circuits returned by its challenge oracle and with a non-negligible probability,
it is embedded with a different message, i.e., B will succeed in breaking the
Q-bounded ε-unremovability of SK-WPRF. This completes the proof of unre-
movability.

E.4 Security Analysis of Robust Unobfuscatable PRFs from One
Way Functions

We present proof of Theorem 6.1 in this section. More precisely, we will prove
the correctness, negl(λ)-robust learnability, and black-box pseudorandomness of
UOF.

Correctness. For any message msg, let K = (α, β, kenc , kIR, kmask , kpad ,msg)
be the output of the key generation algorithm. Also, let ct1, . . . , ct|P|, x1, y1, γ,
x̃1, ỹ1, x3, y3, x̃3, ỹ3 be the variables used in Extract(Eval(K, ·)).

First, ct1, . . . , ctλ are encryption of bits of α since they are contained in the
output of the evaluation algorithm on input an input with prefix 000. Then,
ct|P|−λ+1, . . . , ct|P| will be encryption of bits of P(α) as the repetitions in the
extraction algorithm actually evaluates the circuit P homomorphically with input
encrypted in ct1, . . . , ctλ. Next, let x1 = (u0, u1, u2, u3, u4, u5), then we have

y1 = Eval(K,x1) = Fmask . Eval(kmask , u1‖u2‖u3‖u4‖u5)

and

ỹ1 = Eval(K, x̃1) = Fmask . Eval(kmask , u1‖u2‖u3‖u4 ⊕ α⊕ α‖u5)⊕ (β‖0m−λ)

Thus, the output of P(α) will be β⊕γ, i.e., ct|P|−λ+1, . . . , ct|P| will be encryption
of bits of β ⊕ γ.

Now, let x3 = (u0, u1, u2, u3, u4, u5), then we have

y3 = Eval(K,x3) = Fmask . Eval(kmask , u1‖u2‖u3‖u4 ⊕ β ⊕ γ ⊕ β‖u5)⊕msg

70

In addition, we have

ỹ3 = Eval(K, x̃3) = Fmask . Eval(kmask , u1‖u2‖u3‖u4 ⊕ γ‖u5)

Therefore, ỹ3 ⊕ y3 = msg and thus the extraction algorithm will always output
the correct message on input the evaluation algorithm Eval(K, ·).
Robust Learnability. Next, we prove the negl(λ)-robust learnability of UOF.
First, we define the following games between a challenger and a PPT negl(λ)-
admissible adversary A:

• Game 0. This is the real experiment defined in Definition 6.3. More pre-
cisely, the challenger proceeds as follows:
• In the beginning, the adversary submits a messagemsg∗ to the challenger

and the challenger samples K = (α, β, kenc , kIR, kmask , kpad ,msg
∗) by

using the key generation algorithm of UOF.
• The challenger returns K to A, and the adversary submits a circuit C

that agrees with Eval(K, ·) on all but negligible fraction of inputs.
• Finally, the challenger runs the extraction algorithm as follows, where
P,|P| and jL, jR for j ∈ [λ+ 1, |P|] are defined as in the construction:

1. x′0
$← {0, 1}n−n0 .

2. x0 = 000‖x′0.
3. y0 = C(x0).
4. (ct1, . . . , ctλ) = y0[1 : λ · (λ+ 1)].

5. x′1
$← {0, 1}n−n0 .

6. γ
$← {0, 1}λ.

7. x1 = 011‖x′1.
8. y1 = C(x1).
9. For j ∈ [λ+ 1, |P|]:

(a) u
(j)
1

$← {0, 1}n1 .

(b) (u
(j)
3 , u

(j)
4 , u

(j)
5)

$← {0, 1}n3 × {0, 1}n4 × {0, 1}n5 .
(c) If jL 6= jR:

i. u
(j)
2 = (ctjL , ctjR).

(d) If jL = jR:

i. (ū
(j)
1 , ū

(j)
2)

$← {0, 1}n1 × {0, 1}n2 .

ii. (ū
(j)
4 , ū

(j)
5)

$← {0, 1}n4 × {0, 1}n5 .

iii. ū
(j)
3 = ctjL .

iv. ū
(j)
0 = 010.

v. x̄2,j = ū
(j)
0 ‖ū

(j)
1 ‖ū

(j)
2 ‖ū

(j)
3 ‖ū

(j)
4 ‖ū

(j)
5 .

vi. ȳ2,j = C(x̄2,j).
vii. c̄tjL = ȳ2,j [1 : λ+ 1].

viii. u
(j)
2 = (ctjL , c̄tjL).

(e) u
(j)
0 = 001.

(f) x2,j = u
(j)
0 ‖u

(j)
1 ‖u

(j)
2 ‖u

(j)
3 ‖u

(j)
4 ‖u

(j)
5 .

71

(g) y2,j = C(x2,j).
(h) ctj = y2,j [1 : λ+ 1].

10. (u1, u2, u3, u4)
$← {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}n4 .

11. u5 = (ct|P|−λ+1, . . . , ct|P|).
12. u0 = 101.
13. x3 = u0‖u1‖u2‖u3‖u4‖u5.
14. y3 = C(x3).
15. ũ0 = 011.
16. ũ4 = u4 ⊕ γ.
17. x̃3 = ũ0‖u1‖u2‖u3‖ũ4‖u5.
18. ỹ3 = C(x̃3).
19. msg = ỹ3 ⊕ y3.
The challenger outputs 1, which indicates that the adversary wins, iff
msg 6= msg∗.

• Game 1. This is identical to Game 0 except that the challenger computes
y0 as y0 = Eval(K,x0).
• Game 2. This is identical to Game 1 except that the challenger changes the

way to compute ct1, . . . , ctλ. In particular, for j ∈ [1, λ], it samples rj
$← {0,

1}λ and computes ctj = rj‖Fenc . Eval(kenc , rj)⊕ α[j].
• Game 3. This is identical to Game 2 except that the challenger changes

the way to compute ct|P|−λ+1, . . . , ct|P|. In particular, for j ∈ [1, λ], it sam-

ples rj
$← {0, 1}λ and computes ct|P|−λ+j = rj‖Fenc . Eval(kenc , rj)⊕P(α)[j].

More precisely, the challenger proceeds as follows when extracting the mes-
sage in the last step:

1. (u′1, u
′
2, u
′
3, u
′
4, u
′
5)

$← {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}n4 × {0, 1}n5 .
2. u′0 = 011.

3. γ
$← {0, 1}λ.

4. x1 = u′0‖u′1‖u′2‖u′3‖u′4‖u′5.
5. y1 = C(x1).
6. ũ′0 = 100.
7. ũ′4 = u′4 ⊕ α.
8. x̃1 = ũ′0‖u′1‖u′2‖u′3‖ũ′4‖u′5.
9. ỹ1 = C(x̃1).

10. b = (ỹ1 ⊕ y1)[1 : λ].
11. For j ∈ [1, λ]:

(a) rj
$← {0, 1}λ.

(b) ct|P|−λ+j = rj‖Fenc . Eval(kenc , rj)⊕ (b⊕ γ)[j].

12. (u1, u2, u3, u4)
$← {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}n4 .

13. u5 = (ct|P|−λ+1, . . . , ct|P|).
14. u0 = 101.
15. x3 = u0‖u1‖u2‖u3‖u4‖u5.
16. y3 = C(x3).
17. ũ0 = 011.
18. ũ4 = u4 ⊕ γ.

72

19. x̃3 = ũ0‖u1‖u2‖u3‖ũ4‖u5.
20. ỹ3 = C(x̃3).
21. msg = ỹ3 ⊕ y3.
• Game 4. This is identical to Game 3 except that the challenger computes
y1 as y1 = Eval(K,x1).
• Game 5. This is identical to Game 4 except that the challenger computes
ỹ1 as ỹ1 = Eval(K, x̃1).

• Game 6. This is identical to Game 5 except that the challenger changes the
way to compute ct|P|−λ+1, . . . , ct|P|. In particular, for j ∈ [1, λ], it samples

rj
$← {0, 1}λ and computes ct|P|−λ+j = rj‖Fenc . Eval(kenc , rj)⊕ (β ⊕ γ)[j].

• Game 7. This is identical to Game 6 except that the challenger computes
y3 as y3 = Eval(K,x3).
• Game 8. This is identical to Game 7 except that the challenger computes
ỹ3 as ỹ3 = Eval(K, x̃3).

Let D = {x ∈ {0, 1}n : C(x) 6= Eval(K,x)} be the set of inputs that C

evaluates differently from the PRF. As the adversary is only allowed to change
evaluation of the PRF on a negligible fraction of inputs, we have

|D|
2n
≤ negl(λ)

Now, let Ei be the output of Game i and we next show that Pr[E0 = 1] ≤
negl(λ), which implies that the adversary wins in Game 0 (i.e., the real exper-
iment defined in Definition 6.3) with a negligible probability, via proving the
following lemmas.

Lemma E.11. | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. Game 0 and Game 1 are identical unless x0 ∈ D. Since x0 is sampled
uniformly from a subset of {0, 1}n, which contains 2n−3 elements, we have

Pr[x0 ∈ D] ≤ |D|
2n−3

≤ 8 · |D|
2n
≤ negl(λ)

Lemma E.12. | Pr[E1 = 1]− Pr[E2 = 1] |= 0.

Proof. Let x0 = (u0, u1, u2, u3, u4, u5) and for j ∈ [1, λ], let ctj = rj‖cj . In
Game 1, rj is derived from output of FIR. Eval(kIR, u0‖u2‖u3‖u4‖u5, u1) and
cj = Fenc . Eval(kenc , rj)⊕ α[j]; while in Game 2, rj is sampled uniformly from
{0, 1}λ and cj is computed in the same way. Since in Game 1, u1 is sampled
uniformly from {0, 1}n1 , the invoker randomization property of FIR ensures that
the output of FIR. Eval(kIR, u0‖u2‖u3‖u4‖u5, u1) will be uniform even if the
other part of x0 and the key kIR is fixed and known. Thus, the distributions
of (r1, . . . , rλ) are identical in both games. Therefore, the probabilities that the
two games output 1 are identical.

73

Lemma E.13. | Pr[E2 = 1]− Pr[E3 = 1] |≤ negl(λ).

Proof. We first define the following hybrids for h ∈ [λ+ 1, |P|+ 1], where we use
ph to denote the value of the h-th wire when computing P(α).

• Hh,0: Game Hh,0 is identical to Game 2 except that it changes the way to
compute ctj for j ∈ [λ+ 1, h). In particular, for j ∈ [λ+ 1, h− 1], it samples

rj
$← {0, 1}λ and computes ctj = rj‖Fenc . Eval(kenc , rj)⊕ pj .

• Hh,1: Game Hh,1 is identical to Game Hh,0 except that it computes ȳ2,h as
ȳ2,h = Eval(K, x̄2,h) (if needed).

• Hh,2: Game Hh,2 is identical to Game Hh,1 except that it changes the way

to compute c̄thL (if needed). In particular, it samples r̄h
$← {0, 1}λ and

computes c̄thL = r̄h‖Fenc . Eval(kenc , r̄h)⊕phL , where hL is defined as in the
construction.

• Hh,3: Game Hh,3 is identical to Game Hh,2 except that it computes y2,h as
y2,h = Eval(K,x2,h).

• Hh,4: Game Hh,4 is identical to Game Hh,3 except that it changes the way

to compute cth. In particular, it samples rh
$← {0, 1}λ and computes cth =

rh‖Fenc . Eval(kenc , rh)⊕ ph.

It is easy to see Game Hλ+1,0 is identical to Game 2 and Game H|P|+1,0 is identical
to Game 3. Also, for h ∈ [λ+ 1, |P|], Game Hh,4 is identical to Hh+1,0. Thus, it is
sufficient to argue indistinguishability between Hh,0 and Hh,4 for h ∈ [λ+ 1, |P|].
Let Eh,i be the output of Game Hh,i for h ∈ [λ+ 1, |P|]. Next, we prove this via
the following claims.

Claim E.3. For h ∈ [λ+ 1, |P|], | Pr[Eh,0 = 1]− Pr[Eh,1 = 1] |≤ negl(λ).

Proof. Game Hh,0 and Game Hh,1 are identical unless x̄2,h ∈ D. Let x̄2,h =

(ū
(h)
0 , ū

(h)
1 , ū

(h)
2 , ū

(h)
3 , ū

(h)
4 , ū

(h)
5). As ū

(h)
1 , ū

(h)
2 , ū

(h)
4 , ū

(h)
5 are uniform strings, and

ū
(h)
3 = cthL , whose first λ bits are uniform (note that hL < h), the string x̄2,h

is sampled uniformly from a subset of {0, 1}n with 2n−4 elements. Thus, the
probability that x̄2,h is in D, which only contains a negligible fraction of inputs
in {0, 1}n, is negligible.

Claim E.4. For h ∈ [λ+ 1, |P|], | Pr[Eh,1 = 1]− Pr[Eh,2 = 1] |= 0.

Proof. Let x̄2,h = (ū
(h)
0 , ū

(h)
1 , ū

(h)
2 , ū

(h)
3 , ū

(h)
4 , ū

(h)
5) and c̄thL = r̄h‖c̄h. In Game

Hh,1, r̄h is derived from output of FIR. Eval(kIR, ū
(h)
0 ‖ū

(h)
2 ‖ū

(h)
3 ‖ū

(h)
4 ‖ū

(h)
5 , ū

(h)
1)

and c̄h = Fenc . Eval(kenc , r̄h)⊕ µ, where µ is the decryption of cthL and is phL .
In Game Hh,2, r̄h is sampled uniformly from {0, 1}λ and c̄h = Fenc . Eval(kenc ,
r̄h)⊕ phL . The two distributions are identical due to the invoker randomization

property of FIR and the fact that ū
(h)
1 is sampled uniformly from {0, 1}n1 .

Claim E.5. For h ∈ [λ+ 1, |P|], | Pr[Eh,2 = 1]− Pr[Eh,3 = 1] |≤ negl(λ).

74

Proof. Game Hh,2 and Game Hh,3 are identical unless x2,h ∈ D. Let x2,h = (u
(h)
0 ,

u
(h)
1 , u

(h)
2 , u

(h)
3 , u

(h)
4 , u

(h)
5). Then, u

(h)
1 , u

(h)
3 , u

(h)
4 , u

(h)
5 are uniform strings. Also,

u
(h)
2 is either cthL‖cthR or cthL‖c̄thL , where in both cases, the first λ bits and

the (λ+2)-bit to the (2λ+1)-bit of u
(h)
2 are sampled uniformly at random. Thus,

the string x2,h is sampled uniformly from a subset of {0, 1}n with 2n−5 elements
and therefore, the probability that x2,h is in D is negligible.

Claim E.6. For h ∈ [λ+ 1, |P|], | Pr[Eh,3 = 1]− Pr[Eh,4 = 1] |= 0.

Proof. Let x2,h = (u
(h)
0 , u

(h)
1 , u

(h)
2 , u

(h)
3 , u

(h)
4 , u

(h)
5) and cth = rh‖ch. In Game

Hh,3, rh is derived from output of FIR. Eval(kIR, u
(h)
0 ‖u

(h)
2 ‖u

(h)
3 ‖u

(h)
4 ‖u

(h)
5 , u

(h)
1)

and ch = Fenc . Eval(kenc , rh)⊕µ. Here, µ = µ1Zµ2 and µ1, µ2 are the decryption
of cthL and cthR (c̄thL if hL = hR), respectively. Thus, we have µ1 = phL and
µ2 = phR and therefore µ = phL Z phR = ph. In Game Hh,4, rh is sampled
uniformly from {0, 1}λ and ch = Fenc . Eval(kenc , rh)⊕ph. The two distributions
are identical due to the invoker randomization property of FIR and the fact that

u
(h)
1 is sampled uniformly from {0, 1}n1 .

Lemma E.14. | Pr[E3 = 1]− Pr[E4 = 1] |≤ negl(λ).

Proof. Game 3 and Game 4 are identical unless x1 ∈ D. Since x1 is sampled
uniformly from a subset of {0, 1}n, which contains 2n−3 elements, the probability
that x1 is in D is negligible.

Lemma E.15. | Pr[E4 = 1]− Pr[E5 = 1] |≤ negl(λ).

Proof. Game 4 and Game 5 are identical unless x̃1 ∈ D. Since x̃1 is equal to
100‖u′1‖u′2‖u′3‖u′4 ⊕ α‖u′5, where u′1, u

′
2, u
′
3, u
′
4, u
′
5 are random strings, the prob-

ability that x̃1 is in D is also negligible.

Lemma E.16. | Pr[E5 = 1]− Pr[E6 = 1] |= 0.

Proof. Game 5 and Game 6 are identical if b = β. Since

y1 = Eval(K,x1) = Fmask . Eval(kmask , u
′
1‖u′2‖u′3‖u′4‖u′5)

and

ỹ1 = Eval(K, x̃1) = Fmask . Eval(kmask , u
′
1‖u′2‖u′3‖u′4 ⊕ α⊕ α‖u5)⊕ (β‖0m−λ)

we have b = (ỹ1 ⊕ y1)[1 : λ] = β.

Lemma E.17. | Pr[E6 = 1]− Pr[E7 = 1] |≤ negl(λ).

75

Proof. Game 6 and Game 7 are identical unless x3 ∈ D. First, x3 = (u0, u1,
u2, u3, u4, u5), where u0 = 101, u1, u2, u3, u4 are random strings, and u5 =
(ct|P|−λ+1, . . . , ct|P|). Note that for j ∈ [1, λ], ct|P|−λ+j = rj‖cj , where rj is sam-

pled uniformly at random from {0, 1}λ and cj = Fenc . Eval(kenc , rj)⊕β[j]⊕γ[j],
which is also a random bit since γ is sampled uniformly at random from {0, 1}λ.
Thus, u5 is also a random string. Therefore, the probability that x3 is in D is
negligible.

Lemma E.18. | Pr[E7 = 1]− Pr[E8 = 1] |≤ negl(λ).

Proof. Game 7 and Game 8 are identical unless x̃3 ∈ D. First, x̃3 = (ũ0, u1,
u2, u3, ũ4, u5), where ũ0 = 011, u1, u2, u3 are random strings, ũ4 = u4 ⊕ γ,

u4
$← {0, 1}λ, and u5 = (ct|P|−λ+1, . . . , ct|P|). Similarly, we have u5 uniform as

γ is sampled uniformly from {0, 1}λ. Also note that although ũ4 = u4 ⊕ γ, it
reveals no information about γ since u4 is a uniform string in {0, 1}λ. Thus, the
string u1‖u2‖u3‖ũ4‖u5 is still distributed uniformly in {0, 1}n−n0 . Therefore, the
probability that x̃3 is in D is also negligible.

Lemma E.19. Pr[E8 = 1] = 0.

Proof. In Game 8, we have

y3 = Eval(K,x3) = Fmask . Eval(kmask , u1‖u2‖u3‖u4 ⊕ β ⊕ γ ⊕ β‖u5)⊕msg∗

In addition, we have

ỹ3 = Eval(K, x̃3) = Fmask . Eval(kmask , u1‖u2‖u3‖u4 ⊕ γ‖u5)

This implies that ỹ3 ⊕ y3 = msg∗. Therefore, in Game 8, the challenger always
gets msg∗ after extraction and thus will never output 1.

Combining Lemma E.11 to Lemma E.19, we have Pr[E0 = 1] ≤ negl(λ),
i.e., the probability that A wins in the real experiment for robust learnability is
negligible. This completes the proof of negl(λ)-robust learnability.

Black-Box Pseudorandomness. Next, we prove the black-box pseudoran-
domness of UOF. First, we define the following games between a challenger and
a PPT adversary A:

• Game 0. In Game 0, the challenger answers A’s oracle queries with O0.
More precisely, in the beginning, the adversary submits a message msg to the
challenger and the challenger samples K = (α, β, kenc , kIR, kmask , kpad ,msg)
by running the key generation algorithm KeyGen(1λ,msg).
Then, each time the adversary submits an input x ∈ {0, 1}n, the challenger
first parses x = (u0, u1, u2, u3, u4, u5) ∈ {0, 1}n0 × {0, 1}n1 × {0, 1}n2 × {0,
1}n3 × {0, 1}n4 × {0, 1}n5 . Then it answers A’s query as follows:

– If u0 = 0:
1. w = (u0, u2, u3, u4, u5).
2. (r1, r2, . . . , rλ+2) = FIR. Eval(kIR, w, u1).

76

3. For i ∈ [1, λ]:
(a) cti = ri‖Fenc . Eval(kenc , ri)⊕ α[i].

4. ypad = Fpad . Eval(kpad , x)[1 : m− λ · (λ+ 1)].
5. Return ct1‖ . . . ‖ctλ‖ypad .

– If u0 = 1:
1. Parse u2 = (r̄1, c̄1, r̄2, c̄2) ∈ {0, 1}λ × {0, 1} × {0, 1}λ × {0, 1}.
2. µ1 = Fenc . Eval(kenc , r̄1)⊕ c̄1.
3. µ2 = Fenc . Eval(kenc , r̄2)⊕ c̄2.
4. µ = µ1 Z µ2.
5. w = (u0, u2, u3, u4, u5).
6. (r1, r2, . . . , rλ+2) = FIR. Eval(kIR, w, u1).
7. ct = rλ+1‖Fenc . Eval(kenc , rλ+1)⊕ µ.
8. ypad = Fpad . Eval(kpad , x)[1 : m− (λ+ 1)].
9. Return ct‖ypad .

– If u0 = 2:
1. Parse u3 = (r̄, c̄) ∈ {0, 1}λ × {0, 1}.
2. µ = Fenc . Eval(kenc , r̄)⊕ c̄.
3. w = (u0, u2, u3, u4, u5).
4. (r1, r2, . . . , rλ+2) = FIR. Eval(kIR, w, u1).
5. ct = rλ+2‖Fenc . Eval(kenc , rλ+2)⊕ µ.
6. ypad = Fpad . Eval(kpad , x)[1 : m− (λ+ 1)].
7. Return ct‖ypad .

– If u0 = 3:
1. z = (u1, u2, u3, u4, u5).
2. ymask = Fmask . Eval(kmask , z).
3. Return ymask .

– If u0 = 4:
1. u′4 = u4 ⊕ α.
2. z = (u1, u2, u3, u

′
4, u5).

3. ymask = Fmask . Eval(kmask , z).
4. Return (β‖0m−λ)⊕ ymask .

– If u0 = 5:
1. Parse u5 = (r̄i, c̄i)i∈[1,λ] ∈ ({0, 1}λ × {0, 1})λ.
2. For i ∈ [1, λ]:

(a) µi = Fenc . Eval(kenc , r̄i)⊕ c̄i.
3. ν = µ1‖ . . . ‖µλ.
4. u′4 = u4 ⊕ ν ⊕ β.
5. z = (u1, u2, u3, u

′
4, u5).

6. ymask = Fmask . Eval(kmask , z).
7. Return msg ⊕ ymask .

– If u0 = 6 or u0 = 7:
1. ypad = Fpad . Eval(kpad , x).
2. Return ypad .

Finally, the game outputs 1 iff the adversary outputs 1.
Here, w.l.o.g., we assume that all inputs submitted by the adversary are
distinct.

77

• Game 1. This is identical to Game 0 except that for each query, in case
u0 ∈ {0, 1, 2, 6, 7}, the challenger samples ypad uniformly at random instead
of evaluating it as (parts of) the output of Fpad . Eval(kpad , x).

• Game 2. This is identical to Game 1 except that for each query, in case

u0 ∈ {0, 1, 2}, the challenger samples (r1, . . . , rλ+2)
$← ({0, 1}λ)λ+2 instead

of evaluating it as (r1, r2, . . . , rλ+2) = FIR. Eval(kIR, u0‖u2‖u3‖u4‖u5, u1).
• Game 3. This is identical to Game 2 except that for each query, in case
u0 ∈ {0, 1, 2, 5}, the challenger uses a random function f instead of the
pseudorandom function Fenc .

• Game 4. This is identical to Game 3 except that for each query, in case
u0 ∈ {3, 4, 5}, the challenger uses a random function g instead of the pseu-
dorandom function Fmask .

• Game 5. This is identical to Game 4 except that the challenger maintains
a list L. Here, L is initialized as an empty list in the beginning. Then on
receiving a query x = (u0, u1, u2, u3, u4, u5), the challenger puts (x, z) to the
list if u0 ∈ {3, 4, 5}, where z is the input to g. Recall that, z is computed as
follows in each case:

– If u0 = 3:
1. z = (u1, u2, u3, u4, u5).

– If u0 = 4:
1. u′4 = u4 ⊕ α.
2. z = (u1, u2, u3, u

′
4, u5).

– If u0 = 5:
1. Parse u5 = (r̄i, c̄i)i∈[1,λ] ∈ ({0, 1}λ × {0, 1})λ.
2. For i ∈ [1, λ]:

(a) µi = f(r̄i)⊕ c̄i.
3. ν = µ1‖ . . . ‖µλ.
4. u′4 = u4 ⊕ ν ⊕ β.
5. z = (u1, u2, u3, u

′
4, u5).

• Game 6. This is identical to Game 5 except that for each query, in case
u0 ∈ {3, 4, 5}, the challenger returns a random string y ∈ {0, 1}m. Note that
in Game 6, the challenger does not need to maintain the list L and L is only
used in arguing the indistinguishability between Game 5 and Game 6.

• Game 7. This is identical to Game 6 except that for each query, in case
u0 ∈ {0, 1, 2}, the challenger returns a random string y ∈ {0, 1}m.

It is easy to see that in Game 7, the challenger answers the adversary’s
queries with O1. Let Ei be the output of Game i, then it is sufficient to show
that |Pr[E0 = 1] − Pr[E7 = 1]| ≤ negl(λ). Next, we argue this via proving the
following lemmas.

Lemma E.20. | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. First, by pseudorandomness of Fpad , we can use a random function F to
replace Fpad in answering A’s queries. Next, as for each query, the input to F is
x, which will be distinct (recall that we assume w.l.o.g. that all inputs submitted
to the oracle are distinct), it is safe to replace output of F with a fresh random
string.

78

Lemma E.21. | Pr[E1 = 1]− Pr[E2 = 1] |≤ negl(λ).

Proof. First, by pseudorandomness of FIR, we can use a random function F to
replace FIR in answering A’s queries. Next, for each query, the input to F , which
is u0‖u2‖u3‖u4‖u5‖u1, will be distinct since the inputs x are distinct and the
map from x to u0‖u2‖u3‖u4‖u5‖u1 is bijective. Thus, it is safe to replace output
of F with a fresh random string.

Lemma E.22. | Pr[E2 = 1]− Pr[E3 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 2 and Game 3 comes from pseudoran-
domness of Fenc directly.

Lemma E.23. | Pr[E3 = 1]− Pr[E4 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 3 and Game 4 comes from pseudoran-
domness of Fmask directly.

Lemma E.24. | Pr[E4 = 1]− Pr[E5 = 1] |= 0.

Proof. The adversary’s view in Game 4 and Game 5 are identical, thus the
probabilities that the two games output 1 are also identical.

Lemma E.25. | Pr[E5 = 1]− Pr[E6 = 1] |≤ negl(λ).

Proof. In Game 5, the challenger will return g(z)⊕S to the adversary if u0 ∈ {3,
4, 5}, where g is a random function and S ∈ {0m, β‖0m−λ,msg}; and in Game
6, the challenger will return a random string in {0, 1}m if u0 ∈ {3, 4, 5}. Note
that Game 5 and Game 6 are identical if all z are distinct.

To prove that z are not likely to repeat, we first define

Lσ = {(x = (u0, u1, u2, u3, u4, u5), z) ∈ L : u0 = σ}

for σ ∈ {3, 4, 5}. Then we define the following events in Game 5:

• col 3: There exists (x, z) and (x′, z′) in L3 s.t. x 6= x′ and z = z′.
• col 4: There exists (x, z) and (x′, z′) in L4 s.t. x 6= x′ and z = z′.
• col 5: There exists (x, z) and (x′, z′) in L5 s.t. x 6= x′ and z = z′.
• col 34: There exists (x, z) ∈ L3 and (x′, z′) ∈ L4 s.t. x 6= x′ and z = z′.
• col 35: There exists (x, z) ∈ L3 and (x′, z′) ∈ L5 s.t. x 6= x′ and z = z′.
• col 45: There exists (x, z) ∈ L4 and (x′, z′) ∈ L5 s.t. x 6= x′ and z = z′.

It is easy to see if none of the 6 events occurs, then all z are distinct. Thus, it is
sufficient to show that the probability that at least one of the 6 event occurs is
negligible.

Claim E.7. Pr[col 3] = 0

Proof. Assuming col 3 occurs, i.e., there exists (x, z) and (x′, z′) in L3 s.t. x 6= x′

and z = z′. Let x = (u0, u1, u2, u3, u4, u5) and x′ = (u′0, u
′
1, u
′
2, u
′
3, u
′
4, u
′
5). Then

we have u0 = u′0 = 3, z = (u1, u2, u3, u4, u5) and z′ = (u′1, u
′
2, u
′
3, u
′
4, u
′
5). Since

z = z′, we have ui = u′i for i ∈ [1, 5]. This contradicts the assumption that
x 6= x′, thus col 3 will not occur.

79

Claim E.8. Pr[col 4] = 0

Proof. Assuming col 4 occurs, i.e., there exists (x, z) and (x′, z′) in L4 s.t. x 6= x′

and z = z′. Let x = (u0, u1, u2, u3, u4, u5) and x′ = (u′0, u
′
1, u
′
2, u
′
3, u
′
4, u
′
5). Then

we have u0 = u′0 = 4, z = (u1, u2, u3, u4⊕α, u5) and z′ = (u′1, u
′
2, u
′
3, u
′
4⊕α, u′5).

Since z = z′, we have ui = u′i for i ∈ [1, 5]. This contradicts the assumption that
x 6= x′, thus col 4 will not occur.

Claim E.9. Pr[col 5] = 0

Proof. Assuming col 5 occurs, i.e., there exists (x, z) and (x′, z′) in L5 s.t. x 6= x′

and z = z′. Let x = (u0, u1, u2, u3, u4, u5) and x′ = (u′0, u
′
1, u
′
2, u
′
3, u
′
4, u
′
5). Then

we have u0 = u′0 = 5, z = (u1, u2, u3, u4 ⊕ ν ⊕ β, u5) and z′ = (u′1, u
′
2, u
′
3,

u′4 ⊕ ν′ ⊕ β, u′5), where ν, ν′ are decryption of u5 and u′5 respectively. Since
z = z′, we have ui = u′i for i ∈ [1, 3] and u5 = u′5, which implies that ν = ν′.
Thus, we also have u4 = u′4. This contradicts the assumption that x 6= x′, thus
col 5 will not occur.

Before arguing that the remaining 3 events also occur with a negligible prob-
ability, we first define “mask query” as a query x = (u0, u1, u2, u3, u4, u5) satis-
fying u0 ∈ {3, 4, 5} and define “enc query” as a query x = (u0, u1, u2, u3, u4, u5)
satisfying u0 ∈ {0, 1, 2}. Then we define a set of auxiliary adversaries B`, which
is identical to A except that it will artificially abort the game (and outputs
1) after submitting ` mask queries.22 We also define col σ,` for σ ∈ {3, 4, 5, 34,
35, 45} to be the event that col σ occurs when the challenger interacts with B`
(instead of A) in Game 5. Assume that the PPT adversary A makes at most Q
queries to the challenger, where Q is polynomial in λ, then BQ+1 is identical to
A. Thus, it is sufficient to prove that col σ,Q+1 occurs with negligible probability
for σ ∈ {34, 35, 45}.

To prove this, we first prove the following claim.

Claim E.10. For ` ∈ [1, Q], if

Pr[col 3,` ∨ col 4,` ∨ col 5,` ∨ col 34,` ∨ col 35,` ∨ col 45,`] ≤ negl(λ)

then we have

Pr[col 35,`+1 ∨ col 45,`+1 ∨ col 34,`+1] ≤ negl(λ)

Proof. We first define the following auxiliary games:

• H0: The challenger interacts with B`+1 and proceeds identically as it does
in Game 5, except that after B`+1 stops or after it submits the (` + 1)-th
mask query and aborts (i.e., the challenger does not need to respond the
(`+ 1)-th mask query from B`+1), the challenger outputs 1 iff at least one
of the three events col 35,`+1, col 45,`+1 and col 34,`+1 occurs.

22 If A stops the game with an output before triggering B`’s abort condition, then B`
will also stop and outputs what A outputs.

80

• H1: This is identical to Game H0 except that the challenger returns random
strings in the first ` mask queries.

• H2: This is identical to Game H1 except that the challenger does not check
if col 35,`+1 or col 45,`+1 occurs. In particular, after B`+1 stops or aborts, the
challenger outputs 1 iff col 34,`+1 occurs.
Note that in Game H2, the challenger does not need to compute and store z
for an input x = (u0, u1, u2, u3, u4, u5) if u0 = 5.

• H3: This is identical to Game H2 except that the challenger returns random
strings for enc queries.

Let Fi be the output of Game Hi. It is easy to see Pr[col 35,`+1 ∨ col 45,`+1 ∨
col 34,`+1] = Pr[F0 = 1]. Thus, it is sufficient to prove that Pr[F0 = 1] ≤ negl(λ).
This can be guaranteed by the following claims:

Claim E.10.1. | Pr[F0 = 1]− Pr[F1 = 1] |≤ negl(λ).

Proof. First, Game H0 and Game H1 are identical if all z appeared in the first
` mask queries are distinct. This will occur with all but negligible probability
since Pr[col 3,i ∨ col 4,i ∨ col 5,i ∨ col 34,i ∨ col 35,i ∨ col 45,i] ≤ negl(λ).

Claim E.10.2. | Pr[F1 = 1]− Pr[F2 = 1] |≤ negl(λ).

Proof. Game H1 and Game H2 are identical unless col 35,`+1 or col 45,`+1 occurs.
In Game H1, the challenger will return random strings for the first ` mask

queries and answers to other oracles queries can be generated without using
β. Thus, it does not need β when answering oracle queries and can postpone
the selection of β after the adversary stops or aborts.23 Therefore, all queries
submitted by the adversary will be independent of β.

For any (x, z) ∈ L5 and (x′, z′) ∈ L3. Let x = (u0, u1, u2, u3, u4, u5) and
x′ = (u′0, u

′
1, u
′
2, u
′
3, u
′
4, u
′
5). Then we have z = (u1, u2, u3, u4 ⊕ ν ⊕ β, u5) and

z′ = (u′1, u
′
2, u
′
3, u
′
4, u
′
5), where ν is determined by u5. If z = z′, then we have

u4 ⊕ ν ⊕ β = u′4, which occurs with a negligible probability since β is sampled
uniformly at random from {0, 1}λ after B`+1 submits the queries.

For any (x, z) ∈ L5 and (x′, z′) ∈ L4. Let x = (u0, u1, u2, u3, u4, u5) and
x′ = (u′0, u

′
1, u
′
2, u
′
3, u
′
4, u
′
5). Then we have z = (u1, u2, u3, u4 ⊕ ν ⊕ β, u5) and

z′ = (u′1, u
′
2, u
′
3, u
′
4⊕α, u′5), where ν is determined by u5. If z = z′, then we have

u4⊕ν⊕β = u′4⊕α, which occurs with a negligible probability since β is sampled
uniformly at random from {0, 1}λ after B`+1 submits the queries.

This completes proof of this Claim.

Claim E.10.3. | Pr[F2 = 1]− Pr[F3 = 1] |≤ negl(λ).

Proof. We first define the following hybrids for h ∈ [0, Q]

• H2,h: In Game H2,h, for the first h enc queries, the challenger answers them
as in Game H2, and for the remaining enc queries, it answers them as in
Game H3.

23 It can also postpone the computation of z after that.

81

Note that H2,Q = H2 and H2,0 = H3. Thus, it is sufficient to show indistinguisha-
bility between H2,h and H2,h−1 for h ∈ [1, Q].

Let x = (u0, u1, u2, u3, u4, u5) be the h-th enc query. We consider the follow-
ing cases:

• If u0 = 0. In this case, the challenger will output r1‖c1‖ . . . ‖rλ‖cλ‖ypad. In

both Game H2,h and Game H2,h−1, ypad
$← {0, 1}m−λ·(λ+1), and ri

$← {0, 1}λ
for i ∈ [1, λ]. In Game H2,h, ci = f(ri) ⊕ α[i] for i ∈ [1, λ]; while in Game

H2,h−1, ci
$← {0, 1} for i ∈ [1, λ].

Since for i ∈ [1, λ], ri is sampled uniformly from {0, 1}λ, the probability
that the challenger has evaluated f on ri in previous oracle queries and the
probability that there exists distinct i, j ∈ [1, λ] s.t. ri = rj are negligible.
In addition, all oracle queries after the h-th enc query are responded with
a random string (the (` + 1)-th mask query is not responded), thus, the
challenger will also not evaluate f(ri) after the h-th enc query. Besides, the
challenger does not need to evaluate z for an input x′ = (u′0, u

′
1, u
′
2, u
′
3, u
′
4,

u′5) if u′0 = 5, thus, it will not evaluate f(ri) when determining if it should
output 1. Therefore, it is safe to replace f(ri) (and thus ci) with a random
bit.

• If u0 = 1 or u0 = 2. In this case, the challenger will output r‖c‖ypad. In

both Game H2,h and Game H2,h−1, ypad
$← {0, 1}m−(λ+1), and r

$← {0, 1}λ.
In Game H2,h, c = f(r)⊕ µ, where µ is either determined by u2 (if u0 = 1)

or determined by u3 (if u0 = 2); while in Game H2,h−1, c
$← {0, 1}.

Since r is sampled uniformly from {0, 1}λ, the probability that the challenger
has evaluated f on r in previous oracle queries is negligible. In addition, all
oracle queries after the h-th enc query are responded with a random string
(the (` + 1)-th mask query is not responded), thus, the challenger will also
not evaluate f(r) after the h-th enc query. Besides, the challenger does not
need to evaluate z for an input x′ = (u′0, u

′
1, u
′
2, u
′
3, u
′
4, u
′
5) if u′0 = 5, thus, it

will not evaluate f(r) when determining if it should output 1. Therefore, it
is safe to replace f(r) (and thus c) with a random bit.

As for the h-th enc query x = (u0, u1, u2, u3, u4, u5), we have either u0 = 0
or u0 ∈ {1, 2}, and in both cases, the adversary’s views are identical in the two
games with all but negligible probability, indistinguishability between Game H2,h

and Game H2,h−1 follows.
Therefore, Game H2 and Game H3 are indistinguishable.

Claim E.10.4. Pr[F3 = 1] ≤ negl(λ).

Proof. In Game H3, the challenger will return random strings for all oracle
queries. Thus, it does not need α when answering oracle queries and can postpone
the selection of α after the adversary aborts or stops.24 Therefore, all queries
submitted by the adversary will be independent of α.

24 It can also postpone the computation of z after that.

82

For any (x, z) ∈ L4 and (x′, z′) ∈ L3. Let x = (u0, u1, u2, u3, u4, u5) and
x′ = (u′0, u

′
1, u
′
2, u
′
3, u
′
4, u
′
5). Then we have z = (u1, u2, u3, u4⊕α, u5) and z′ = (u′1,

u′2, u
′
3, u
′
4, u
′
5). If z = z′, then we have u4⊕α = u′4, which occurs with a negligible

probability since α is sampled uniformly at random from {0, 1}λ after B`+1

submits the queries.
This completes proof of this Claim.

We continue to show that Pr[col 34,Q+1 ∨ col 35,Q+1 ∨ col 45,Q+1] ≤ negl(λ).
First, from Claim E.7 to Claim E.9, we have Pr[col 3] = Pr[col 4] = Pr[col 5] = 0,
thus we have Pr[col 3,i] = Pr[col 4,i] = Pr[col 5,i] = 0 for all i ∈ [1, Q]. In addition,
Pr[col 34,1] = Pr[col 35,1] = Pr[col 45,1] = 0 since only one mask query is made and
there cannot be collision. Therefore, we have

Pr[col 3,1 ∨ col 4,1 ∨ col 5,1 ∨ col 34,1 ∨ col 35,1 ∨ col 45,1] = 0

Then, by Claim E.10, we have

Pr[col 35,2 ∨ col 45,2 ∨ col 34,2] ≤ negl(λ)

Now we have

Pr[col 3,2 ∨ col 4,2 ∨ col 5,2 ∨ col 34,2 ∨ col 35,2 ∨ col 45,2] ≤ negl(λ)

and repeating this for Q times, we have

Pr[col 34,Q+1 ∨ col 35,Q+1 ∨ col 45,Q+1] ≤ negl(λ) (6)

Since BQ+1 is identical to A, Equation (6) implies that

Pr[col 34 ∨ col 35 ∨ col 45] ≤ negl(λ)

Then combing with Claim E.7 to Claim E.9, we have

Pr[col 3 ∨ col 4 ∨ col 5 ∨ col 34 ∨ col 35 ∨ col 45] ≤ negl(λ)

That is, the inputs z to g will be distinct with all but negligible probability, and
it is safe to replace outputs of g with random strings. This completes proof of
Lemma E.25.

Lemma E.26. | Pr[E6 = 1]− Pr[E7 = 1] |≤ negl(λ).

Proof. Proof of Lemma E.26 is similar to proof of Claim E.10.3. For complete-
ness, we also provide the detailed proof for Lemma E.26 below.

We also define “enc query” as a query x = (u0, u1, u2, u3, u4, u5) satisfying
u0 ∈ {0, 1, 2}. Assume that A makes at most Q queries to the challenger, where
Q is polynomial in λ, then we define the following hybrids for h ∈ [0, Q]

83

• Hh: In Game Hh, for the first h enc queries, the challenger answers them as
in Game 6, and for the remaining enc queries, it answers them as in Game
7.

Note that HQ is identical to Game 6 and H0 is identical to Game 7. Thus, it is
sufficient to show indistinguishability between Hh and Hh−1 for h ∈ [1, Q].

Let x = (u0, u1, u2, u3, u4, u5) be the h-th enc query. We consider the follow-
ing cases:

• If u0 = 0. In this case, the challenger will output r1‖c1‖ . . . ‖rλ‖cλ‖ypad. In

both Game Hh and Game Hh−1, ypad
$← {0, 1}m−λ·(λ+1), and ri

$← {0, 1}λ
for i ∈ [1, λ]. In Game Hh, ci = f(ri) ⊕ α[i] for i ∈ [1, λ]; while in Game

Hh−1, ci
$← {0, 1} for i ∈ [1, λ].

Since for i ∈ [1, λ], ri is sampled uniformly from {0, 1}λ, the probability
that the challenger has evaluated f on ri in previous oracle queries and the
probability that there exists distinct i, j ∈ [1, λ] s.t. ri = rj are negligible.
In addition, all oracle queries after the h-th enc query are responded with a
random string, thus, the challenger will also not evaluate f(ri) after the h-th
enc query. Therefore, it is safe to replace f(ri) (and thus ci) with a random
bit.

• If u0 = 1 or u0 = 2. In this case, the challenger will output r‖c‖ypad. In

both Game Hh and Game Hh−1, ypad
$← {0, 1}m−(λ+1), and r

$← {0, 1}λ. In
Game Hh, c = f(r) ⊕ µ, where µ is either determined by u2 (if u0 = 1) or

determined by u3 (if u0 = 2); while in Game Hh−1, c
$← {0, 1}.

Since r is sampled uniformly from {0, 1}λ, the probability that the challenger
has evaluated f on r in previous oracle queries is negligible. In addition, all
oracle queries after the h-th enc query are responded with a random string,
thus, the challenger will also not evaluate f(r) after the h-th enc query.
Therefore, it is safe to replace f(r) (and thus c) with a random bit.

As for the h-th enc query x = (u0, u1, u2, u3, u4, u5), we have either u0 = 0
or u0 ∈ {1, 2}, and in both cases, the adversary’s views are identical in the two
games with all but negligible probability, indistinguishability between Game Hh
and Game Hh−1 follows.

Therefore, Game 6 and Game 7 are indistinguishable.

Combining Lemma E.20 to Lemma E.26, we have | Pr[E0 = 1]−Pr[E7 = 1] |≤
negl(λ), i.e., the probability that A outputs 1 when interacting with O0 and the
probability that it outputs 1 when interacting with O1 does not have a non-
negligible difference. This completes the proof of black-box pseudorandomness.

E.5 Security Analysis of Special FHE

We present proof of Theorem D.1 in this section. More precisely, we will prove
the perfect correctness, the ciphertext and key pseudorandomness, and the uni-
formity of transformed ciphertext of SFHE.

84

Perfect Correctness. For any public key A ∈ Z(n+1)×m
q and for any ciphertext

C ∈ Z(n+1)×N
q , we say that C is an encryption of µ ∈ {0, 1} with error E if there

exists R ∈ [−E,E]m×N s.t.

C = µ ·G+AR mod q

We first bound size of the error for a valid ciphertext.

Lemma E.27. For any message µ ∈ {0, 1} and any (pk, sk, ek)← KeyGen(1λ),
let C be a valid ciphertext of µ under (pk, sk, ek), then C is an encryption of µ
with error Σ′.

Proof. Let pk = A, sk = s and ek = ((ψ̂i,ι)i∈[1,n],ι∈[1,l], (qΨ i)i∈[1,K]) be any tuple

of keys output by the key generation algorithm. Also, let t̂, t̄ be the variables
used in the key generation algorithm for generating (pk, sk, ek). Also, let ek′ =

((ψ̂
′
i,ι)i∈[1,n],ι∈[1,l], (qΨ

′
i)i∈[1,K]) be any output of RandEK(pk, ek).

Note that a ciphertext is a valid ciphertext either if it is the output of the
encryption algorithm or it is the homomorphic evaluation result over valid ci-
phertexts. We first bound the error size for a fresh ciphertext.

Claim E.11. For any message µ ∈ {0, 1}, let C ← Enc(A, µ), then C is an
encryption of µ with error 1.

Proof. As C ← Enc(A, µ), there exists R ∈ {0, 1}m×N s.t. C = µ · G + AR
mod q. Thus, C is an encryption of µ with error E ≤ 1.

Next, we bound the error size for ciphertext output by the evaluation algo-
rithm. We first consider output of the auxiliary algorithm DecNAND.

Claim E.12. For any two ciphertexts C∗0, C∗1, where C∗0 is an encryption of
µ0 with error Σ′ and C∗1 is an encryption of µ1 with error Σ′, let ek∗ be either
ek or ek′, and let C∗ ← DecNAND(ek∗,C∗0,C

∗
1), then C∗ is an encryption of

µ = µ0 Z µ1 with error Σ′.

Proof. Let ek∗ = ((ψ̂
∗
i,ι)i∈[1,n],ι∈[1,l], (qΨ

∗
i)i∈[1,K]). Also, let (v̂∗0, ŵ

∗
0)← RedCT(ek∗,

C∗0) and (v̂∗1, ŵ
∗
1) ← RedCT(ek∗,C∗1) be the variables used in the algorithm

DecNAND for generating C∗. Besides, let D = D̄[v̂∗0, ŵ
∗
0 , v̂
∗
1, ŵ

∗
1]. We prove Claim

E.12 via arguing the following claims.

Claim E.12.1. For i ∈ [1,K], qΨ
∗
i is an encryption of t̄[i] with error 2.

Proof. If ek∗ = ek, then

qΨ
∗
i = t̄[i] ·G+A qRi mod q

where qRi ∈ {0, 1}m×N . Also, if ek∗ = ek′, then

qΨ
∗
i = t̄[i] ·G+A qRi +A qR

′
i mod q

85

where qRi ∈ {0, 1}m×N and qR
′
i ∈ {0, 1}m×N . In both case, we have

qΨ
∗
i = t̄[i] ·G+ARi mod q

where Ri ∈ [0, 2]m×N , and Claim E.12.1 follows.

Claim E.12.2. For any positive integer E, for any two ciphertexts C0, C1,
where C0 is an encryption of µ0 with error E and C1 is an encryption of µ1

with error E, let C ← NAND(C0,C1), then C is an encryption of µ = µ1 Z µ2

with error (N + 1)E.

Proof. First, we have

C0 = µ0 ·G+AR0 mod q

C1 = µ1 ·G+AR1 mod q

where R0 ∈ [−E,E]m×N and R1 ∈ [−E,E]m×N . Thus, we have

C = G−C0 ·G−1(C1)

= G− (µ0 ·G+AR0) ·G−1(C1)

= G− (µ0 ·C1 +AR0 ·G−1(C1))

= G− (µ0 · (µ1 ·G+AR1) +AR0 ·G−1(C1)) mod q

= G− (µ0µ1 ·G+ µ0 ·AR1 +AR0 ·G−1(C1))

= (1− µ0µ1) ·G+A · (−(µ0 ·R1 +R0 ·G−1(C1)))

= (1− µ0µ1) ·G+A ·R

where R = −(µ0 ·R1 +R0 ·G−1(C1)). Note that as µ0 ∈ {0, 1} and R1 ∈ [−E,
E]m×N , we have µ0 · R1 ∈ [−E,E]m×N . Also, as G−1(C1) ∈ {0, 1}N×N and
R0 ∈ [−E,E]m×N , we have R0 ·G−1(C1) ∈ [−NE,NE]m×N . Thus, we have
R ∈ [−(N + 1)E, (N + 1)E]m×N . This completes the proof.

Claim E.12.3. C∗ is an encryption of D(t̄) with error Σ′.

Proof. First, by Claim E.12.1 and Claim E.12.2, C∗ is an encryption of D(t̄)
with error 2(N + 1)d, where d is the depth of D.

Next, we bound the size of d. First, by Lemma 4.5 of [BV11], the first two
steps in the circuit D is of depth O(log k).25 Also, to compute step 3, we only need
to check if u0,l̂∨u0,l̂−1 = 1, where we use u0,i to denote the i-th bit of the binary

decomposition of u0 (i.e. u0 =
∑l̂
i=1 2i−1 · u0,i). This can be done in constant

depth. Similar, we can compute step 4 in constant depth. Finally, it is easy to see
step 5 can be computed in depth 1. Therefore, we have d = O(log k) < ω(log k)
and 2(N + 1)d < Σ′.
25 Lemma 4.5 of [BV11] shows that both steps are in Arith[O(log k), 1], which is the

class of arithmetic circuit over GF (2) with {+,×} gates and depth d = O(log k).
Note that the + gate and the × gate over GF (2) can be represented by constant
number of NAND gates, thus if we compute the two steps with a circuit composed
exclusively by NAND gates, the circuit depth is also in O(log k).

86

Claim E.12.4. For any positive integer E, let ek† = ((ψ̂
†
i,ι)i∈[1,n],ι∈[1,l], (qΨ

†
i)i∈[1,K])

satisfying ∀i ∈ [1, n], ι ∈ [1, l],∃â†i,ι ∈ Zkp, ê
†
i,ι ∈ [−E,E]:

ψ̂
†
i,ι =

 â†i,ι

â†i,ι · t̂+ ê†i,ι + bpq · 2
ι−1 · s[i]e

 mod p

Also, let C be an encryption of µ with error Σ′. Let (v̂, ŵ) ← RedCT(ek†, Ĉ).
Then there exists ê ∈ [−nl(E + 1), nl(E + 1)] s.t.

ŵ = v̂ · t̂+ ê+ µ · p+ 1

2
mod p

Proof. Let C ′ be the last l columns of C and let c = C ′ · h. Let w = c[n + 1],
v = c[1 : n]. Let vi,ι be the ι-th bit of v[i]. Then we have

v̂ = −
n∑
i=1

l∑
ι=1

vi,ι · âi,ι mod p

Also, we have

ŵ

=bp
q
we −

n∑
i=1

l∑
ι=1

vi,ι · (â†i,ι · t̂+ ê†i,ι + bp
q
· 2ι−1 · s[i]e)

=bp
q
we −

n∑
i=1

l∑
ι=1

vi,ι · â†i,ι · t̂−
n∑
i=1

l∑
ι=1

vi,ι · (ê†i,ι + bp
q
· 2ι−1 · s[i]e)

=v̂ · t̂+ bp
q
we −

n∑
i=1

l∑
ι=1

vi,ι · (ê†i,ι + bp
q
· 2ι−1 · s[i]e) mod p

=v̂ · t̂+
p

q
w − E1 −

n∑
i=1

l∑
ι=1

vi,ι ·
p

q
· 2ι−1 · s[i]

=v̂ · t̂+
p

q
w − E1 −

n∑
i=1

p

q
· v[i] · s[i]

=v̂ · t̂− E1 +
p

q
· (w − s · v)

where

E1 =
p

q
w − bp

q
we+

n∑
i=1

l∑
ι=1

vi,ι · (ê†i,ι + bp
q
· 2ι−1 · s[i]e − p

q
· 2ι−1 · s[i])

Since − 1
2 ≤

p
qw−b

p
qwe ≤

1
2 , ê†i,ι ∈ [−E,E], − 1

2 ≤ b
p
q ·2

ι−1·s[i]e− p
q ·2

ι−1·s[i] ≤ 1
2 ,

and vi,ι ∈ {0, 1},
|E1| ≤ nl(E +

1

2
) +

1

2

87

Also, as C is an encryption of µ with error Σ′, there exists R ∈ [−Σ′, Σ′]m×l
s.t.

C ′ = µ ·G′ +AR mod q

where G′ is the last l column of G. This implies that

c =

(
0

µ · q+1
2

)
+Ar mod q

where r ∈ [−l ·Σ′, l ·Σ′]m. Thus, we have

v = B · r mod q

and

w = µ · q + 1

2
+ sᵀ ·B · r + eᵀ · r mod q

where e← D̃mσ . Therefore

w − s · v = µ · q + 1

2
+ eᵀ · r mod q

That is,

ŵ

=v̂ · t̂− E1 +
p

q
· (µ · q + 1

2
+ eᵀ · r) mod p

=v̂ · t̂− E2 + µ · p+ 1

2

where

E2 = E1 +
q − p

2q
· µ− p

q
· eᵀ · r

Note that e ∈ [−λ ·σ, λ ·σ]m (by definition of the truncated discrete Gaussian
distribution), thus we have

|eᵀ · r| ≤ m · λ · σ · l ·Σ′ < Σ � q

p

i.e., |pq · e
ᵀ · r| < 1. Also, | q−p2q · µ| <

1
2 . Therefore, we have

|E2| ≤ nl(E +
1

2
) +

1

2
+

1

2
+ 1 ≤ nl(E +

1

2
) + 2 < nl(E + 1)

Finally, as v̂ · t̂, ŵ, µ, p+1
2 are all integers and E2 = v̂ · t̂− ŵ+µ · p+1

2 mod p,
E2 is also an integer.

To summarize, there exists ê ∈ [−nl(E + 1), nl(E + 1)] satisfying ŵ = v̂ · t̂+
ê+ µ · p+1

2 and this completes the proof.

88

Claim E.12.5. For i ∈ [1, n], ι ∈ [1, l], there exists v̂∗i,ι ∈ Zkp and ê∗i,ι ∈ [−(nl +
1)(λ · σ̂ + 1), (nl + 1)(λ · σ̂ + 1)] s.t.

ψ̂
∗
i,ι =

 v̂∗i,ι

v̂∗i,ι · t̂+ ê∗i,ι + bpq · 2
ι−1 · s[i]e

 mod p

Proof. If ek∗ = ek, then

ψ̂
∗
i,ι =

 âi,ι

âi,ι · t̂+ êi,ι + bpq · 2
ι−1 · s[i]e

 mod p

where âi,ι
$← Zkp and êi,ι ← D̃σ̂. Note that by definition of the truncated discrete

Gaussian distribution, |êi,ι| ≤ λ · σ̂.
Also, if ek∗ = ek′, then

ψ̂
∗
i,ι =

 âi,ι

âi,ι · t̂+ êi,ι + bpq · 2
ι−1 · s[i]e

+

v̂i,ι
ŵi,ι

 mod p

where (v̂i,ι, ŵi,ι) ← RedCT(ek, Ĉ
′
i,ι), Ĉ

′
i,ι = AR̂

′
i,ι mod q, and R̂

′
i,ι ∈ {0,

1}m×N . It is easy to see Ĉ
′
i,ι is an encryption of 0 with error 1. Then by Claim

E.12.4, there exists Ei,ι ∈ [−nl(λ · σ̂ + 1), nl(λ · σ̂ + 1)] s.t.

ŵi,ι = v̂i,ι · t̂+ Ei,ι

Thus,

ψ̂
∗
i,ι =

 âi,ι + v̂i,ι

(âi,ι + v̂i,ι) · t̂+ Êi,ι + bpq · 2
ι−1 · s[i]e

 mod p

where Êi,ι = Ei,ι + êi,ι and we have

|Êi,ι| ≤ nl(λ · σ̂ + 1) + λ · σ̂ < (nl + 1)(λ · σ̂ + 1)

This completes proof of Claim E.12.5.

Claim E.12.6. D(t̄) = µ0 Z µ1.

Proof. Recall that C∗0 is an encryption of µ0 with error Σ′. Then by Claim

E.12.5 and Claim E.12.4, there exists ê0 ∈ [−Σ̂, Σ̂] (recall that Σ̂ = nl((nl +
1)(λ · σ̂ + 1) + 1)) s.t.

ŵ∗0 = v̂∗0 · t̂+ ê0 + µ0 ·
p+ 1

2
mod p

89

Thus, we have

u∗0 = Σ̂ + ŵ∗0 −
k∑
i=1

l̂∑
ι=1

2ι−1 · v̂∗0[i] · t̄[(i− 1)l̂ + ι]

= Σ̂ + ŵ∗0 −
k∑
i=1

v̂∗0[i] · t̂[i] mod p

= Σ̂ + ê0 + µ0 ·
p+ 1

2

Note that 0 ≤ Σ̂ + ê0 ≤ 2Σ̂. Thus, if µ0 = 0,

0 ≤ u∗0 ≤ 2Σ̂ <
p+ 1

4
≤ 2l̂−2

Also, if µ0 = 1,

2l̂−2 <
p+ 1

2
≤ u∗0 ≤

p+ 1

2
+ 2Σ̂ <

3(p+ 1)

4
< p

Thus, the circuit D can recover the correct µ0. Similarly, we can prove that the
circuit D can recover the correct µ1. Therefore, we have D(t̄) = µ0 Z µ1.

Combining Claim E.12.3 and Claim E.12.6, Claim E.12 follows.

Since the evaluation algorithm mainly uses the algorithm DecNAND to perform
homomorphic operations over the ciphertext, Claim E.12 implies that if the input
ciphertexts to the evaluation algorithm are encryption of a vector x ∈ {0, 1}`in
with error Σ′, then the output ciphertexts are also encryption of the correct
output with error Σ′. Formally, we have:

Corollary E.1. For any `in , `out that are polynomial in λ, any circuit C : {0,
1}`in → {0, 1}`out , any x ∈ {0, 1}`in , and for any vector of ciphertexts ctx s.t.
for i ∈ [1, `in], ctx[i] is an encryption of x[i] with error Σ′, let ek∗ be either
ek or ek′, and let cty ← Eval(ek∗, ctx, C). Then for i ∈ [1, `out], cty[i] is an
encryption of C(x)[i] with error Σ′.

Now, we denote a ciphertext output by the encryption algorithm as a level
0 valid ciphertext. Also, for any positive integer Q, we say that a ciphertext is
a level Q valid ciphertext if it is outputted by the evaluation algorithm, where
the input ciphertexts are valid ciphertexts of levels not exceeding Q− 1 and at
least one of them is a level Q− 1 valid ciphertext.26 We prove Lemma E.27 via
proving that for any non-negative integer Q, a level Q valid ciphertext of µ is
an encryption of µ with error Σ′.

26 Looking ahead, we only need to deal with level 2 valid ciphertext in the security
analysis of our FHE-based robust unobfuscatable PRF.

90

First, by Claim E.11, a level 0 valid ciphertext of µ is an encryption of µ
with error Σ′. Now, for any positive integer Q, assume that for all 0 ≤ P < Q,
any level P valid ciphertext of µ is an encryption of µ with error Σ′, then by
Corollary E.1, any level Q valid ciphertext of µ is also an encryption of µ with
error Σ′. This completes the proof.

We then show that a ciphertext with a small error can be decrypted correctly
by the decryption algorithms.

Lemma E.28. For any message µ ∈ {0, 1}, for any (pk, sk, ek)← KeyGen(1λ),
and for any rpk ← RandPK(pk), let C be an encryption of µ with error Σ′, and
let c← TranCT(rpk ,C), then we have

Dec(sk,C) = µ

and
TCTDec(sk, c) = µ

Proof. Let C ′ be the last l columns of C and let c′ = C ′ · h. Let w = c′[n+ 1],
v = c′[1 : n]. As C is an encryption of µ with error Σ′, there exists R ∈ [−Σ′,
Σ′]m×l s.t.

C ′ = µ ·G′ +AR mod q

where G′ is the last l column of G. This implies that

c′ =

(
0

µ · q+1
2

)
+Ar mod q

where r ∈ [−l ·Σ′, l ·Σ′]m. Thus, we have

v = B · r mod q

and

w = µ · q + 1

2
+ (sᵀ ·B + eᵀ) · r mod q

where e← D̃mσ .
We first prove that the standard decryption algorithm can recover the correct

message from C. First, we have

u = w − s · v = µ · q + 1

2
+ eᵀ · r mod q

Note that e ∈ [−λ · σ, λ · σ]m (by definition of the truncated discrete Gaussian
distribution), thus we have

|eᵀ · r| ≤ m · λ · σ · l ·Σ′ ≤ Σ � q

4

Therefore, if µ = 1, we have |u − q+1
2 | ≤ Σ and the decryption algorithm will

output 1. In addition, if µ = 0, we have either u < q
4 or u > 3q

4 , which implies

that |u− q+1
2 | >

q−2
4 � Σ and thus the decryption algorithm will output 0.

91

Next, we prove that the decryption algorithm for transformed ciphertexts is
also able to recover the correct message. Recall that rpk = A′ where

A′ = AR′ mod q

and R′ ∈ {0, 1}m×m̄. Also,

c =

v
w

+A′x+


0
...
0
z

 mod q

where x ∈ {0, 1}m̄, z ∈ [Σ, q+1
2 −Σ]. Thus, we have

c =

 B · (r +R′ · x)

µ · q+1
2 + (sᵀ ·B + eᵀ) · (r +R′ · x) + z

 mod q (7)

Let w′ = c[n+ 1], v′ = c[1 : n], then we have

u′ = w′ − s · v′ = µ · q + 1

2
+ eᵀ · (r +R′ · x) + z mod q

Since r ∈ [−l ·Σ′, l ·Σ′]m, R′ ∈ {0, 1}m×m̄ and x ∈ {0, 1}m̄, we have r+R′ ·x ∈
[−(l ·Σ′ + m̄), l ·Σ′ + m̄]m. Therefore,

|eᵀ · (r +R′ · x)| ≤ m · λ · σ · (l ·Σ′ + m̄) ≤ Σ − 2 (8)

Moreover, as z ∈ [Σ, q+1
2 −Σ], we have eᵀ · (r+R′ ·x) + z ∈ [2, q+1

2 − 2]. Thus,

if µ = 0, we have u′ ∈ [2, q+1
2 − 2] ⊂ [0, q+1

2), and thus the algorithm TCTDec

will output 0. In addition, if µ = 1, we have u′ ∈ [2 + q+1
2 , q − 1], and thus the

algorithm TCTDec will output 1.
This completes proof of Lemma E.28.

Combining Lemma E.27 and Lemma E.28, the perfect correctness of SFHE
follows.

Ciphertext and key Pseudorandomness. Before proving the ciphertext and
key pseudorandomness of SFHE, we first give a formal description of our assump-
tion. Roughly speaking, we assume that the bootstrappable version of GSW
scheme presented in [GSW13] (denoted as GSW in this section), which uses the
dimension-modulus reduction technique proposed in [BV11], has pseudorandom
ciphertext.
The Assumption. Now, we give a formal definition of our assumption.

Definition E.1. Let (pk, sk, ek)← KeyGen(1λ), then for all PPT adversary A,
we have:

| Pr[AO
0
E (·)(pk, ek) = 1]− Pr[AO

1
E (·)()(pk, ek) = 1] |≤ negl(λ)

Here we define the oracles that can be queried by the adversary as follows:

92

– O0
E is an oracle that takes as input a message msg ∈ {0, 1} and returns

Enc(pk,msg).
– O1

E is an oracle that takes as input a message msg ∈ {0, 1} and returns a

random matrix in Z(n+1)×N
q .

Remark E.2. The key generation algorithm of our special FHE scheme is iden-
tical to the key generation algorithm of GSW. Our encryption algorithm works
slightly differently from the encryption algorithm of GSW. In more detail, the
output of our encryption algorithm is C = µ ·G+AR mod q, and the output
of the encryption algorithm of GSW is the bit decomposition of C. As one can
transform between these two forms of ciphertexts efficiently, circular IND-CPA
security of GSW, which should be assumed if one hopes to prove that GSW is a
secure fully homomorphic encryption scheme, implies circular IND-CPA security
of our special FHE scheme.

Here, we require that the special FHE scheme has pseudorandom ciphertext
instead of requiring that its ciphertexts of 0 and 1 are indistinguishable. This
requirement is close to the circular IND-CPA security. In addition, the non-
circular version of the requirement comes from the standard LWE assumptions
as shown below in Remark E.3. Thus, it should be satisfied if GSW is secure.

Remark E.3. It is easy to see the assumption described above can be implied
by the standard LWE assumption directly if we do not require circular security
(i.e., (qΨ i)i∈[1,K] in the evaluation key is removed). In particular, by the decision-

LWEk,nl,p,D̃σ̂ assumption, (ψ̂i,ι)i∈[1,n],ι∈[1,l] are indistinguishable from random

vectors in Zk+1
p . Thus, the adversary cannot learn any information about s from

the evaluation key. Then by the decision-LWEn,m,q,D̃σ assumption, A is indistin-

guishable from a random matrix in Z(n+1)×m
q . Finally, if A is a random matrix,

then the ciphertexts are statistically indistinguishable from random matrices in

Z(n+1)×N
q due to the leftover hash lemma, and the (non-circular version of the)

above assumption follows.

The Proof. The ciphertext and key pseudorandomness defined in Appendix D.1
comes from the above assumption by a direct reduction. More precisely, assuming
there exists an adversary A that breaks the ciphertext and key pseudorandom-
ness of SFHE, then we can construct an adversary B that invalidates the above
assumption as follows.

On receiving the pubic key pk and the evaluation key ek = ((ψ̂i,ι)i∈[1,n],ι∈[1,l],

(qΨ i)i∈[1,K]), the adversary B sends (pk, ek) to A. Then it answers A’s oracle
queries as follows:

• On receiving a message msg to the oracle Oenc, B submits a query msg to
its own oracle OE and on receiving the response C from its oracle, it returns
C to A.

• On receiving an oracle query to Orpk, B submits dm̄/Ne queries to its or-
acle OE , where the submitted messages are all 0. Then on receiving the
responses C1, . . . ,Cdm̄/Ne, it sets C = (C1, . . . ,Cdm̄/Ne) and returns the
first m̄ columns of C.

93

• On receiving an oracle query to Orek, B submits (K + nl) queries to its
oracle OE , where the submitted messages are all 0. Then on receiving the
responses C1, . . . ,CK+nl, it first computes

qΨ
′
i = qΨ i +Ci mod q

for i ∈ [1,K]. Then for i ∈ [1, n] and ι ∈ [1, l], it computes

(v̂i,ι, ŵi,ι)← RedCT(ek,CK+(i−1)l+ι)

and

ψ̂
′
i,ι = ψ̂i,ι +

v̂i,ι
ŵi,ι

 mod p

It returns ek′ = ((ψ̂
′
i,ι)i∈[1,n],ι∈[1,l], (qΨ

′
i)i∈[1,K]) to A.

Finally, after A outputs a bit b, B also outputs b.
It is easy to see, if B’s oracle queries are answered by O0

E , then B answers A’s
oracle queries to Oenc, Orpk and Orek with O0

enc, O0
rpk and O0

rek respectively.

On the other hand, if B’s oracle queries are answered by O1
E , then B will

use random matrices to answer A’s oracle queries to Oenc and Orpk, i.e., they
are answered with O1

enc and O1
rpk respectively. In addition, for each randomized

evaluation key ek′ = ((ψ̂
′
i,ι)i∈[1,n],ι∈[1,l], (qΨ

′
i)i∈[1,K]) returned by B, qΨ

′
i will be a

random matrix in Z(n+1)×N
q if the matrices C1, . . . ,CK used to generate them

are random matrices in Z(n+1)×N
q . Also, by Claim E.13 stated and argued below,

ψ̂
′
i,ι will be a random vector in Zk+1

p if the matrices CK+1, . . . ,CK+nl used to

generate them are random matrices in Z(n+1)×N
q . Thus, if B’s oracle queries are

answered by O1
E , then it answers A’s oracle queries to Orek with O1

rek.
Therefore, if A can distinguish the oracles (O0

enc,O0
rpk,O0

rek) from the oracles

(O1
enc,O1

rpk,O1
rek) with a non-negligible probability, then B can also distinguish

its oracles O0
E from O1

E with a non-negligible probability. This completes the
reduction.

Claim E.13. Let (pk, sk, ek)← KeyGen(1λ) and C
$← Z(n+1)×N

q , then (v̂, ŵ)←
RedCT(ek,C) is statistically indistinguishable from a random vector in Zk+1

p .

Proof. Let ek = ((ψ̂i,ι)i∈[1,n],ι∈[1,l], (qΨ i)i∈[1,K]), C
′ be the last l columns of C

and c = C ′ ·h. Also, let w = c[n+ 1] and v = c[1 : n]. Let vi,ι be the ι-th bit of

v[i]. Besides, for i ∈ [1, n], ι ∈ [1, l], let âi,ι = ψ̂i,ι[1 : k] and let b̂i,ι = ψ̂i,ι[k+1].
Note that

ŵ = bp
q
we −

n∑
i=1

l∑
ι=1

vi,ι · b̂i,ι mod p

and

v̂ = −
n∑
i=1

l∑
ι=1

vi,ι · âi,ι mod p

94

As C is distributed uniformly over Z(n+1)×N
q and h is a fixed non-zero vector

independent of C, c is a uniform vector in Z(n+1)
q . Thus, v is a random vector

in Znq , which implies that the binary string (vi,ι)i∈[1,n],ι∈[1,l] has min-entropy of

n log q > k log p+ω(log λ). Let Â = (â1,1, . . . , ân,l), then Â is a uniform matrix

in Zk×nlp (recall that âi,ι
$← Zkp in the key genration algorithm). By the leftover

hash lemma, v̂ is statistically indistinguishable from a random vector in Zkp.

The fact that c is a uniform vector in Z(n+1)
q also implies that w is a random

number in Zq. Then by the following Claim, bpqwe is statistically indistinguish-
able from a random number in Zp, i.e., ŵ is statistically indistinguishable from
a random number in Zp.

This completes proof of Claim E.13.

Claim E.13.1. Let x
$← Zq, y = bpq · xe, and y′

$← Zp, then y ≈s y′.

Proof. Let ∆ = b qpc and δ = q
p −∆. Note that ∆ � 1 and 0 ≤ δ < 1. For any

b ∈ Zp, let a ∈ Zq satisfying that b = bpq · ae and b− 1 = bpq · (a− 1)e. Then we
have

bp
q
· (a+∆− 1)e

=bp
q
· (a− 1) +

p

q
·∆e

=bp
q
· (a− 1) +

p

q
· (q
p
− δ)e

=bp
q
· (a− 1) + 1− p

q
· δe

=1 + bp
q
· (a− 1)− p

q
· δe

≤1 + b− 1 = b

bp
q
· (a+∆+ 1)e

=bp
q
· a+

p

q
· (∆+ 1)e

=bp
q
· a+

p

q
· (q
p

+ 1− δ)e

=bp
q
· a+ 1 +

p

q
· (1− δ)e

=1 + bp
q
· a+

p

q
· (1− δ)e

≥1 + b

As bpq · (a + ∆ − 1)e ≥ bpq · ae = b, we always have bpq · (a + ∆ − 1)e = b. Also,

we always have bpq · (a+∆+ 1)e > b.

Thus, for any b ∈ Zp, the number of a ∈ Zq s.t. b = bpq · ae is at least ∆ and
is at most ∆+ 1. This implies that for any b ∈ Zp,

∆

q
≤ Pr[a

$← Zq : b = bp
q
· ae] ≤ ∆+ 1

q

95

Therefore, we have

SD(y, y′) =
1

2
·
∑
b∈Zp

|Pr[a
$← Zq : b = bp

q
· ae]− 1

p
|

≤ 1

2
· p ·max (

1

p
− ∆

q
,
∆+ 1

q
− 1

p
)

=
1

2
· p ·max (

δ

q
,

1− δ
q

)

≤ 1

2
· p · 1

q

=
p

2q
≤ 1

2ω(log λ)

which is negligible.

Uniformity of Transformed Ciphertext. We first define the set of bad ran-
domness for RandPK. Recall that the randomness used in the public key random-
ization algorithm is a uniform matrix R ∈ {0, 1}m×m̄. We say that R ∈ B if its
columns are not linear independent, i.e., there exists x ∈ Zm̄q \{0m̄} s.t. Rx = 0
mod q.

Note that for any fixed x ∈ Zm̄q \{0m̄}, there exists i∗ ∈ [1, m̄] s.t. x[i∗] 6= 0.
Also, for any R ∈ {0, 1}m×m̄, let ri be the i-th column of R. Then Rx = 0
mod q iff

ri∗ = x[i∗]−1 · (
∑
j 6=i∗

x[j] · rj) mod q

Thus, if R
$← {0, 1}m×m̄, then

Pr[R · x = 0 mod q] = Pr[ri∗ = x[i∗]−1 · (
∑
j 6=i∗

x[j] · rj) mod q] ≤ 1

2m

Therefore, the probability that there exists x ∈ Zm̄q \{0m̄} s.t.Rx = 0 mod q

does not exceed qm̄

2m , i.e.,

Pr[R ∈ B] ≤ qm̄

2m
≤ 1

2λ

which is negligible.
Next, we define the set C0 and C1. For any (pk, sk, ek) ← KeyGen(1λ), let

sk = s, we define

C0 = {(vᵀ, w)ᵀ ∈ Zn+1
q : vᵀ ∈ Znq ∧ ∃u ∈ [0,

q − 3

2
], w = s · v + u mod q}

C1 = {(vᵀ, w)ᵀ ∈ Zn+1
q : vᵀ ∈ Znq ∧ ∃u ∈ [0,

q − 3

2
], w = s·v+

q + 1

2
+u mod q}

96

It is easy to see C0 ∩ C1 = ∅. Also,

|C0|
qn+1

=
qn · (q−1

2)

qn+1
=

1

2
− 1

2q

|C1|
qn+1

=
qn · (q−1

2)

qn+1
=

1

2
− 1

2q

Both are negligibly close to 1/2.
Uniformity of Transformed Ciphertext. Now, we are ready to prove the unifor-
mity of transformed ciphertext for SFHE. For any message µ ∈ {0, 1} and for
any R ∈ {0, 1}m×m̄\B (i.e., columns of R are linearly independent), let (pk,
sk, ek) ← KeyGen(1λ) and let pk = A, sk = s. Let A′ = A · R. Let C be

any valid ciphertext of µ. Also, let c0 ← TranCT(A′,C) and let c1
$← Cµ. Let

info = (A, s, ek,R,C, µ), we next prove that

(info, c0) ≈s (info, c1)

First, as shown in the proof of Lemma E.28 (Equation (7)), we have

c0 =

(
B · r +B ·R · x

µ · q+1
2 + (sᵀ ·B + eᵀ) · (r +R · x) + z

)
mod q

where B
$← Zn×mq , r ∈ [−l · Σ′, l · Σ′]m and e ← D̃mσ are variables determined

by info and x
$← {0, 1}m̄ and z

$← [Σ, q+1
2 − Σ] are variables sampled in the

ciphertext transformation algorithm.
Let v0 = B · r +B ·R · x, E = eᵀ · (r +R · x) and u0 = E + z. Also, let

v1
$← Znq and u1

$← [0, q−3
2]. Let Fs,µ : Znq × Zq → Znq × Zq be a deterministic

function that for any v ∈ Znq , u ∈ Zq,

Fs,µ(v, u) =

(
v

s · v + µ · q+1
2 + u

)
Then it is easy to see c0 = Fs,µ(v0, u0) and c1 = Fs,µ(v1, u1). Also, let

G(A, s, ek,R,C, µ,v, u) = (A, s, ek,R,C, µ, Fs,µ(v, u))

then we have G(info,v0, u0) = (info, c0) and G(info,v1, u1) = (info, c1).
Thus, by Lemma B.2,

SD((info, c0), (info, c1)) ≤ SD((info,v0, u0), (info,v1, u1)) (9)

We next prove that SD((info,v0, u0), (info,v1, u1)) ≤ negl(λ).
Since columns of R are linearly independent, for any distinct x1,x2 ∈ {0,

1}m̄, R · x1 6= R · x2 mod q. Thus, the min-entropy of R · x is m̄. Then we
have

H∞(R · x | info, u0) ≥ H∞(R · x | info)− log q

= m̄− log q ≥ (n+ 1)l + λ− l = nl + λ ≥ n log q + λ

97

where the first inequality comes from Lemma B.3 and the second equality comes
from the fact that x and info are independent. In addition, B is a random
matrix, then by the leftover hash lemma,

(info,v0, u0) ≈s (info,v1, u0) (10)

It remains to prove that (info,v1, u0) ≈s (info,v1, u1).
We have shown in the proof of Lemma E.28 (Equation (8)) that E ∈ [−Σ,

Σ]. Also note that z
$← [Σ, q+1

2 − Σ]. Thus, for any α, β and for any a ∈ [2Σ,
q+1

2 − 2Σ], we have

Pr[u0 = a | info = α ∧ v1 = β]

=
∑

b∈[−Σ,Σ]

Pr[E = b ∧ z = a− b | info = α ∧ v1 = β]

=
∑

b∈[−Σ,Σ]

Pr[E = b | info = α ∧ v1 = β] · Pr[z = a− b]

=
∑

b∈[−Σ,Σ]

Pr[E = b | info = α ∧ v1 = β] · 1

Q

=
1

Q

where Q = q+1
2 − 2Σ + 1. Next, let T be a set that for ay (α, β, a) ∈ T ,

Pr[info = α ∧ v1 = β ∧ u0 = a] < Pr[info = α ∧ v1 = β ∧ u1 = a]

Note that for any α, β, a,

Pr[info = α ∧ v1 = β ∧ u1 = a]− Pr[info = α ∧ v1 = β ∧ u0 = a]

= Pr[info = α ∧ v1 = β] · (Pr[u1 = a | info = α ∧ v1 = β]− Pr[u0 = a | info = α ∧ v1 = β])

= Pr[info = α ∧ v1 = β] · (Pr[u1 = a]− Pr[u0 = a | info = α ∧ v1 = β])

As for any a ∈ [2Σ, q+1
2 − 2Σ] and for any α, β,

Pr[u0 = a | info = α ∧ v1 = β] =
1

Q
>

1

(q − 1)/2
= Pr[u1 = a]

and for any a 6∈ [0, q−3
2], Pr[u1 = a] = 0, we must have a ∈ [0, 2Σ) ∪ (q+1

2 − 2Σ,
q−3

2] if we hope (α, β, a) ∈ T . Also, since for any a ∈ [0, 2Σ) ∪ (q+1
2 − 2Σ, q−3

2],
Pr[u1 = a] = 1

(q−1)/2 , we have

Pr[u1 = a]− Pr[u0 = a | info = α ∧ v1 = β] ≤ 1

(q − 1)/2

for any a ∈ [0, 2Σ) ∪ (q+1
2 − 2Σ, q−3

2].

98

Then by Lemma B.2,

SD((info,v1, u0), (info,v1, u1))

=
∑

(α,β,a)∈T

(Pr[info = α ∧ v1 = β ∧ u1 = a]− Pr[info = α ∧ v1 = β ∧ u0 = a])

=
∑

(α,β,a)∈T

(Pr[info = α ∧ v1 = β] · (Pr[u1 = a]− Pr[u0 = a | info = α ∧ v1 = β]))

≤ 1

(q − 1)/2
·

∑
(α,β,a)∈T

Pr[info = α ∧ v1 = β]

=
1

(q − 1)/2
· (

∑
a∈[0,2Σ)∪(q+1

2 −2Σ, q−3
2]

∑
(α,β)s.t.(α,β,a)∈T

Pr[info = α ∧ v1 = β])

≤ 1

(q − 1)/2
· (

∑
a∈[0,2Σ)∪(q+1

2 −2Σ, q−3
2]

1)

=(4Σ − 2) · 1

(q + 1)/2

≤ 1

2ω(log λ)

(11)
which is negligible.

Combining Equation (9), (10) and (11), the uniformity of transformed ci-
phertext property follows.

E.6 Security Analysis of Robust Unobfuscatable PRFs from Fully
Homomorphic Encryption

We present proof of Theorem 6.2 in this section. More precisely, we will prove
the correctness, (1

6 − ε)-robust learnability, and black-box pseudorandomness of
UOF.

Correctness. For any message msg ∈ {0, 1}m2 , let K = (α, β, kIR, kmask , pk,
sk, ek,msg) be the output of the key generation algorithm KeyGen(1λ,msg). We
prove correctness of UOF via arguing the following Lemmas.

Lemma E.29. Let ctβ be any vector of valid ciphertexts of β (under (pk, sk,
ek)), rpk and rek be any outputs of SFHE. RandPK(pk) and SFHE. RandEK(pk,
ek) respectively. Let msg′ ← ExtractIII(Eval(K, ·), ctβ , rpk , rek), then we have
msg = msg′.

Proof. Let ψ(i), ũ
(i)
0 , u

(i)
0 , u

(i)
1 , u

(i)
2 , ũ

(i)
2 , u

(i)
3 , γ(i), ct

(i)
β,γ , (tct (i)

1 , . . . , tct (i)
λ), x

(i)
3 , y

(i)
3 ,

x̃
(i)
3 , ỹ

(i)
3 ,msg(i) be variables used in the i-th repetition when running the algo-

rithm ExtractIII(Eval(K, ·), ctβ , rpk , rek).
First, as ctβ are valid ciphertexts of β and rek is a randomized evaluation

key of ek, ct
(i)
β,γ are valid ciphertexts of β⊕γ(i). Then by the perfect correctness

99

of SFHE, SFHE. TCTDec(sk, tct (i)
j) = (β ⊕ γ(i))[j] for j ∈ [1, λ]. Thus, we have

y
(i)
3 [m1 + 1,m]

= Eval(K, (u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3))[m1 + 1,m]

=msg ⊕ Fmask . Eval(kmask , (u
(i)
0 − 2, u

(i)
1 , u

(i)
2 ⊕ β ⊕ γ(i) ⊕ β, u(i)

3))

=msg ⊕ Fmask . Eval(kmask , (u
(i)
0 − 2, u

(i)
1 , u

(i)
2 ⊕ γ(i), u

(i)
3)

Also, we have

ỹ
(i)
3 [m1 + 1,m]

= Eval(K, (ũ
(i)
0 , u

(i)
1 , ũ

(i)
2 , u

(i)
3))[m1 + 1,m]

=Fmask . Eval(kmask , (ũ
(i)
0 , u

(i)
1 , ũ

(i)
2 , u

(i)
3))

=Fmask . Eval(kmask , (u
(i)
0 − 2, u

(i)
1 , u

(i)
2 ⊕ γ(i), u

(i)
3)

Thus, we have msg(i) = (y
(i)
3 ⊕ ỹ

(i)
3)[m1 + 1 : m] = msg. As msg(i) = msg for

all i ∈ [1, N], we have msg′ = msg.

Lemma E.30. Let ctα be any vector of valid ciphertexts of α, rpk and rek be any
outputs of SFHE. RandPK(pk) and SFHE. RandEK(pk, ek) respectively. Let msg′ ←
ExtractII(Eval(K, ·), ctα, rpk , rek), then we have msg = msg′.

Proof. Let ψ(i), u
(i)
0 , ũ

(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3 , x

(i)
2 , y

(i)
2 , P(i), ct

(i)
β ,msg(i) be variables used

in the i-th repetition when running the algorithm ExtractII(Eval(K, ·), ctα,
rpk , rek).

First, we have

y
(i)
2 [m1 + 1,m]

= Eval(K, (u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3))[m1 + 1,m]

=Fmask . Eval(kmask , (u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3))

Next, let ỹ
(i)
2 be the variable ỹ2 used in evaluating the circuit P(i)(α), then we

have

ỹ
(i)
2 [m1 + 1,m]

= Eval(K, (ũ
(i)
0 , u

(i)
1 , u

(i)
2 ⊕ α, u

(i)
3))[m1 + 1,m]

=(β‖0m2−λ)⊕ Fmask . Eval(kmask , (ũ
(i)
0 − 1, u

(i)
1 , u

(i)
2 ⊕ α⊕ α, u

(i)
3))

=(β‖0m2−λ)⊕ Fmask . Eval(kmask , (u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3))

Thus, we have P(i)(α) = (ỹ
(i)
2 ⊕ y

(i)
2)[m1 + 1,m1 + λ] = β.

Next, as ctα are valid ciphertexts of α and rek is a randomized evaluation

key of ek, ct
(i)
β are valid ciphertexts of P(i)(α) = β. Then by Lemma E.29,

ExtractIII(Eval(K, ·), ct(i)β , rpk , rek) = msg, i.e., msg(i) = msg. As msg(i) =
msg for all i ∈ [1, N], we have msg′ = msg.

100

Lemma E.31. Let msg′ ← ExtractI(Eval(K, ·)), then we have msg = msg′.

Proof. Let x
(i)
1 , y

(i)
1 , ct

(i)
α , rpk (i), rek (i),msg(i) be variables used in the i-th repe-

tition when running the algorithm ExtractI(Eval(K, ·)).
It is easy to see ct

(i)
α [j] ← SFHE. Enc(pk, α[j]) for j ∈ [1, λ], rpk (i) ←

SFHE. RandPK(pk), and rek (i) ← SFHE. RandEK(pk, ek). Then by definition of

valid ciphertexts of SFHE, ct
(i)
α is a vector of valid ciphertexts for α. Next, by

Lemma E.30, ExtractII(Eval(K, ·), ct(i)α , rpk (i), rek (i)) = msg, i.e., msg(i) =
msg. As msg(i) = msg for all i ∈ [1, N], we have msg′ = msg.

Correctness of UOF comes from Lemma E.31 directly.

Robust Learnability. For any message msg ∈ {0, 1}m2 , let K = (α, β, kIR,
kmask , pk, sk, ek,msg) be the output of the key generation algorithm KeyGen(1λ,
msg). Let C be any circuit from {0, 1}n to {0, 1}m s.t. |{x ∈ {0, 1}n : C(x) 6=
Eval(K,x)}| ≤ (1

6 − ε) · 2
n. We prove (1

6 − ε)-robust learnability of UOF via
arguing the following Lemmas.

Lemma E.32. Let ctβ be any vector of valid ciphertexts of β, and let rek be any
output of SFHE. RandEK(pk, ek). Let rrpk ∈ {0, 1}lrpk be any string that is not in
the “bad randomness subset” B for SFHE. RandPK (the set is defined in Appendix
D.1), and let rpk = SFHE. RandPK(pk; rrpk). Let msg′ ← ExtractIII(C, ctβ , rpk ,
rek), then we have Pr[msg 6= msg′] ≤ negl(λ).

Proof. Let ψ(i), ũ
(i)
0 , u

(i)
0 , u

(i)
1 , u

(i)
2 , ũ

(i)
2 , u

(i)
3 , γ(i), ct

(i)
β,γ , (tct (i)

1 , . . . , tct (i)
λ), x

(i)
3 , y

(i)
3 ,

x̃
(i)
3 , ỹ

(i)
3 ,msg(i) be variables used in the i-th repetition when running the algo-

rithm ExtractIII(C, ctβ , rpk , rek).
First, we define the following two deterministic functions27:

f(ψ, u1, u2, u3) = (3 · ψ + 2, u1, u2, u3)

g(ψ, u1, u2, u3) = (3 · ψ, u1, u2 ⊕ D(sk, u3)⊕ β, u3)

where

D(sk, u3) = (SFHE. TCTDec(sk, u3[(j − 1)Lt + 1 : jLt]))j∈[1,λ]

Then, we define a subset G of [0, b 2λ

3 c− 1]×{0, 1}n1 ×{0, 1}n2 ×{0, 1}n3 as:

G = {(ψ, u1, u2, u3) ∈ [0, b2
λ

3
c − 1]× {0, 1}n1 × {0, 1}n2 × {0, 1}n3 :

∃x, x̃ ∈ {0, 1}n, x = f(ψ, u1, u2, u3) ∧ C(x) = Eval(K,x)∧
x̃ = g(ψ, u1, u2, u3) ∧ C(x̃) = Eval(K, x̃)}

Next, we prove a few facts about G.

27 As SFHE. TCTDec is a deterministic algorithm, D is also deterministic, thus the two
functions are deterministic.

101

Claim E.14. Let ψ
$← [0, b 2λ

3 c−1], u1
$← {0, 1}n1 , u2

$← {0, 1}n2 , and u3
$← {0,

1}n3 , then we have

Pr[(ψ, u1, u2, u3) ∈ G] ≥ 1

2
+ 2ε

Proof. Let U = [0, b 2λ

3 c − 1]× {0, 1}n1 × {0, 1}n2 × {0, 1}n3 and let

B1 = {(ψ, u1, u2, u3) ∈ U : ∃x ∈ {0, 1}n, x = f(ψ, u1, u2, u3) ∧ C(x) 6= Eval(K,x)}

B2 = {(ψ, u1, u2, u3) ∈ U : ∃x̃ ∈ {0, 1}n, x̃ = g(ψ, u1, u2, u3) ∧ C(x̃) 6= Eval(K, x̃)}

First, it is easy to see for any (ψ, u1, u2, u3) ∈ U , (ψ, u1, u2, u3) ∈ G if and
only if (ψ, u1, u2, u3) 6∈ B1 and (ψ, u1, u2, u3) 6∈ B2. Thus, we have

|G| = |U| − |B1 ∪ B2| ≥ |U| − (|B1|+ |B2|) (12)

Next, we bound the size of B1 and B2.

Claim E.14.1. |B1|+ |B2| ≤ (1
6 − ε) · 2

n.

Proof. Let

B̄1 = {x ∈ {0, 1}n : ∃(ψ, u1, u2, u3) ∈ B1, x = f(ψ, u1, u2, u3)}

B̄2 = {x ∈ {0, 1}n : ∃(ψ, u1, u2, u3) ∈ B2, x = g(ψ, u1, u2, u3)}

Obviously, f is an injective function. Thus, we have |B̄1| = |B1|.
Also, assuming g is not injective, then there exists distinct tuples (ψ, u1,

u2, u3) and (ψ′, u′1, u
′
2, u
′
3) s.t. g(ψ, u1, u2, u3) = g(ψ′, u′1, u

′
2, u
′
3). First, we have

u1 = u′1 and u3 = u′3. Also, since D is deterministic, D(sk, u3) is always equal
to D(sk, u′3). This implies that u2 = u′2. Finally, as 3ψ = 3ψ′, ψ = ψ′. This
contradicts the assumption that g is not injective. Therefore, g is injective and
we also have |B̄2| = |B2|.

Besides, as for any x = (u0, u1, u2, u3) ∈ B̄1, u0 = 2 mod 3 and for any
x′ = (u′0, u

′
1, u
′
2, u
′
3) ∈ B̄2, u′0 = 0 mod 3, we have x 6= x′, i.e., B̄1 ∩ B̄2 = ∅.

Therefore,

|B̄1 ∪ B̄2| = |B̄1|+ |B̄2| = |B1|+ |B2|

Finally, since for any x ∈ B̄1 ∪ B̄2, C(x) 6= Eval(K,x), we have

|B1|+ |B2| = |B̄1 ∪ B̄2| ≤ |{x ∈ {0, 1}n : C(x) 6= Eval(K,x)}| ≤ (
1

6
− ε) · 2n

102

By Equation (12) and Claim E.14.1, we have

|G|
|U|
≥ |U| − (|B1|+ |B2|)

|U|

≥ 1−
(1

6 − ε) · 2
n

b 2λ

3 c · 2n1 · 2n2 · 2n3

= 1−
(1

6 − ε) · 2
λ

b 2λ

3 c

≥ 1−
(1

6 − ε) · (3 · b
2λ

3 c+ 3)

b 2λ

3 c

= 1− (
1

2
− 3ε)−

1
2 − 3ε

b 2λ

3 c

≥ 1

2
+ 2ε

(13)

Therefore, the probability that (ψ, u1, u2, u3)
$← U is in G is at least 1

2 + 2ε.

Claim E.15. For any i ∈ [1, N], Pr[(ψ(i), u
(i)
1 , u

(i)
2 , u

(i)
3) ∈ G] ≥ 1

2 + ε.

Proof. First, as ctβ are valid ciphertexts of β and rek is a randomized evalua-

tion key of ek, ct
(i)
β,γ are valid ciphertexts of β ⊕ γ(i). Since rrpk ∈ {0, 1}lrpk\B

and rpk = SFHE. RandPK(pk; rrpk), by the uniformity of transformed ciphertext

property of SFHE, we have tct (i)
j ≈s tct ′(i)j for j ∈ [1, λ], where tct ′(i)j

$← Cβ⊕γ(i)[j]

(this set is defined in Appendix D.1).28 Then by Corollary D.1 and the fact that

γ is sampled uniformly at random, we have tct (i)
j ≈s tct ′′(i)j , where tct ′′(i)j

$← {0,
1}Lt . Thus, we have u

(i)
3 ≈s u

′(i)
3 , where u

′(i)
3

$← {0, 1}n3 . As ψ(i) $← [0, b 2λ

3 c−1],

u
(i)
1

$← {0, 1}n1 , and u
(i)
2

$← {0, 1}n2 , by Claim E.14 we have

Pr[(ψ(i), u
(i)
1 , u

(i)
2 , u

(i)
3) ∈ G] ≥ Pr[(ψ(i), u

(i)
1 , u

(i)
2 , u

′(i)
3) ∈ G]− negl(λ) ≥ 1

2
+ ε

Claim E.16. For any i ∈ [1, N], if (ψ(i), u
(i)
1 , u

(i)
2 , u

(i)
3) ∈ G, then msg(i) = msg.

Proof. First, as u
(i)
0 = 3ψ(i) + 2 and x

(i)
3 = (u

(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3), x

(i)
3 = f(ψ(i),

u
(i)
1 , u

(i)
2 , u

(i)
3). Since (ψ(i), u

(i)
1 , u

(i)
2 , u

(i)
3) ∈ G, we have C(x

(i)
3) = Eval(K,x

(i)
3).

Also, as ctβ are valid ciphertexts of β and rek is a randomized evaluation key

of ek, ct
(i)
β,γ are valid ciphertexts of β ⊕ γ(i). Then by the perfect correctness of

SFHE, SFHE. TCTDec(sk, tct (i)
j) = (β ⊕ γ(i))[j] for j ∈ [1, λ]. Thus, we have

ũ
(i)
2 = u

(i)
2 ⊕ γ(i) = u

(i)
2 ⊕ (β ⊕ γ(i))⊕ β = u

(i)
2 ⊕ D(sk, u

(i)
3)⊕ β

28 Note that the indistinguishability holds even when the distinguisher is given K.

103

In addition, we have ũ
(i)
0 = 3ψ(i). Therefore, we have x̃

(i)
3 = (ũ

(i)
0 , u

(i)
1 , ũ

(i)
2 ,

u
(i)
3) = g(ψ(i), u

(i)
1 , u

(i)
2 , u

(i)
3), which implies C(x̃

(i)
3) = Eval(K, x̃

(i)
3).

Now, we have

y
(i)
3 [m1 + 1,m]

= C(u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3)[m1 + 1,m]

= Eval(K, (u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3))[m1 + 1,m]

=msg ⊕ Fmask . Eval(kmask , (u
(i)
0 − 2, u

(i)
1 , u

(i)
2 ⊕ β ⊕ γ(i) ⊕ β, u(i)

3))

=msg ⊕ Fmask . Eval(kmask , (u
(i)
0 − 2, u

(i)
1 , u

(i)
2 ⊕ γ(i), u

(i)
3)

Also, we have

ỹ
(i)
3 [m1 + 1,m]

= C(ũ
(i)
0 , u

(i)
1 , ũ

(i)
2 , u

(i)
3)[m1 + 1,m]

= Eval(K, (ũ
(i)
0 , u

(i)
1 , ũ

(i)
2 , u

(i)
3))[m1 + 1,m]

=Fmask . Eval(kmask , (ũ
(i)
0 , u

(i)
1 , ũ

(i)
2 , u

(i)
3))

=Fmask . Eval(kmask , (u
(i)
0 − 2, u

(i)
1 , u

(i)
2 ⊕ γ(i), u

(i)
3)

Thus, we have msg(i) = (y
(i)
3 ⊕ ỹ

(i)
3)[m1 + 1 : m] = msg.

Combining Claim E.15 and Claim E.16, we have Pr[msg(i) = msg] ≥ 1
2 + ε.

Let Xi be a random variable over {0, 1} that Xi = 1 iff msg(i) = msg. Let

X =
∑N
i=1Xi and let µ =

∑N
i=1 Pr[msg(i) = msg]. Note that µ ≥ 1+2ε

2 ·N and

thus we have (1− 2ε
1+2ε) ·µ ≥ 1

1+2ε ·
1+2ε

2 ·N = N
2 . Then by the Chernoff bound,

we have

Pr[X ≤ N

2
]

≤Pr[X ≤ (1− 2ε

1 + 2ε
) · µ]

≤e−
4ε2

2(1+2ε)2
·µ

≤e−
4ε2

2(1+2ε)2
· 1+2ε

2 ·N

=e−
ε2

1+2ε ·N ≤ e− ε
2

3 ·N = e−
λ
3

which is negligible. This implies that with all but negligible probability, the
number of i ∈ [1, N] s.t. msg = msg(i) are over N

2 , and thus we have Pr[msg′ 6=
msg] ≤ negl(λ).

Lemma E.33. Let ctα be any vector of valid ciphertexts of α, and let rek be any
output of SFHE. RandEK(pk, ek). Let rrpk ∈ {0, 1}lrpk be any string that is not in
the “bad randomness subset” B for SFHE. RandPK (the set is defined in Appendix
D.1), and let rpk = SFHE. RandPK(pk; rrpk). Let msg′ ← ExtractII(C, ctα, rpk ,
rek), then we have Pr[msg 6= msg′] ≤ negl(λ).

104

Proof. Let ψ(i), u
(i)
0 , ũ

(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3 , x

(i)
2 , y

(i)
2 , P(i), ct

(i)
β ,msg(i) be variables used

in the i-th repetition when running the algorithm ExtractII(C, ctα, rpk , rek).

Also, let x̃
(i)
2 , ỹ

(i)
2 be the variable x̃2, ỹ2 used in evaluating the circuit P(i)(α).

First, we define the following two deterministic functions:

f(ψ, u1, u2, u3) = (3 · ψ, u1, u2, u3)

g(ψ, u1, u2, u3) = (3 · ψ + 1, u1, u2 ⊕ α, u3)

Then, we define a subset G of [0, b 2λ

3 c− 1]×{0, 1}n1 ×{0, 1}n2 ×{0, 1}n3 as:

G = {(ψ, u1, u2, u3) ∈ [0, b2
λ

3
c − 1]× {0, 1}n1 × {0, 1}n2 × {0, 1}n3 :

∃x, x̃ ∈ {0, 1}n, x = f(ψ, u1, u2, u3) ∧ C(x) = Eval(K,x)∧
x̃ = g(ψ, u1, u2, u3) ∧ C(x̃) = Eval(K, x̃)}

Next, we prove a few facts about G.

Claim E.17. Let ψ
$← [0, b 2λ

3 c−1], u1
$← {0, 1}n1 , u2

$← {0, 1}n2 , and u3
$← {0,

1}n3 , then we have

Pr[(ψ, u1, u2, u3) ∈ G] ≥ 1

2
+ 2ε

Proof. Proof of Claim E.17 is similar to the proof of Claim E.14. We give the
detailed proof below for completeness.

Let U = [0, b 2λ

3 c − 1]× {0, 1}n1 × {0, 1}n2 × {0, 1}n3 and let

B1 = {(ψ, u1, u2, u3) ∈ U : ∃x ∈ {0, 1}n, x = f(ψ, u1, u2, u3) ∧ C(x) 6= Eval(K,x)}

B2 = {(ψ, u1, u2, u3) ∈ U : ∃x̃ ∈ {0, 1}n, x̃ = g(ψ, u1, u2, u3) ∧ C(x̃) 6= Eval(K, x̃)}

Again, it is easy to see for any (ψ, u1, u2, u3) ∈ U , (ψ, u1, u2, u3) ∈ G if and
only if (ψ, u1, u2, u3) 6∈ B1 and (ψ, u1, u2, u3) 6∈ B2. Thus, we have

|G| = |U| − |B1 ∪ B2| ≥ |U| − (|B1|+ |B2|) (14)

Next, we bound the size of B1 and B2.

Claim E.17.1. |B1|+ |B2| ≤ (1
6 − ε) · 2

n.

Proof. Let

B̄1 = {x ∈ {0, 1}n : ∃(ψ, u1, u2, u3) ∈ B1, x = f(ψ, u1, u2, u3)}

B̄2 = {x ∈ {0, 1}n : ∃(ψ, u1, u2, u3) ∈ B2, x = g(ψ, u1, u2, u3)}

Obviously, f and g are injective functions. Thus, we have |B̄1| = |B1| and
|B̄2| = |B2|.

105

Besides, as for any x = (u0, u1, u2, u3) ∈ B̄1, u0 = 0 mod 3 and for any
x′ = (u′0, u

′
1, u
′
2, u
′
3) ∈ B̄2, u′0 = 1 mod 3, we have x 6= x′, i.e., B̄1 ∩ B̄2 = ∅.

Therefore,

|B̄1 ∪ B̄2| = |B̄1|+ |B̄2| = |B1|+ |B2|

Finally, since for any x ∈ B̄1 ∪ B̄2, C(x) 6= Eval(K,x), we have

|B1|+ |B2| = |B̄1 ∪ B̄2| ≤ |{x ∈ {0, 1}n : C(x) 6= Eval(K,x)}| ≤ (
1

6
− ε) · 2n

Similar to Equation (13), we have

|G|
|U|
≥ 1

2
+ 2ε

from Equation (14) and Claim E.17.1.

Therefore, the probability that (ψ, u1, u2, u3)
$← U is in G is at least 1

2 + 2ε.

Claim E.18. For any i ∈ [1, N], Pr[(ψ(i), u
(i)
1 , u

(i)
2 , u

(i)
3) ∈ G] ≥ 1

2 + 2ε.

Proof. This comes from Claim E.17 directly as here we have ψ(i) $← [0, b 2λ

3 c−1],

u
(i)
1

$← {0, 1}n1 , u
(i)
2

$← {0, 1}n2 , and u
(i)
3

$← {0, 1}n3 .

Claim E.19. For any i ∈ [1, N], if (ψ(i), u
(i)
1 , u

(i)
2 , u

(i)
3) ∈ G, then

Pr[msg(i) 6= msg] ≤ negl(λ)

Proof. First, as u
(i)
0 = 3ψ(i) and x

(i)
2 = (u

(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3), x

(i)
2 = f(ψ(i), u

(i)
1 ,

u
(i)
2 , u

(i)
3). Since (ψ(i), u

(i)
1 , u

(i)
2 , u

(i)
3) ∈ G, we have C(x

(i)
2) = Eval(K,x

(i)
2).

Also, as ũ
(i)
0 = 3ψ(i) + 1 and x̃

(i)
2 = (ũ

(i)
0 , u

(i)
1 , u

(i)
2 ⊕ α, u

(i)
3), x̃

(i)
2 = g(ψ(i),

u
(i)
1 , u

(i)
2 , u

(i)
3). Since (ψ(i), u

(i)
1 , u

(i)
2 , u

(i)
3) ∈ G, we have C(x̃

(i)
2) = Eval(K, x̃

(i)
2).

Now, we have

y
(i)
2 [m1 + 1,m]

= C(u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3)[m1 + 1,m]

= Eval(K, (u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3))[m1 + 1,m]

=Fmask . Eval(kmask , (u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3))

106

Also, we have

ỹ
(i)
2 [m1 + 1,m]

= C(ũ
(i)
0 , u

(i)
1 , u

(i)
2 ⊕ α, u

(i)
3)[m1 + 1,m]

= Eval(K, (ũ
(i)
0 , u

(i)
1 , u

(i)
2 ⊕ α, u

(i)
3))[m1 + 1,m]

=(β‖0m2−λ)⊕ Fmask . Eval(kmask , (ũ
(i)
0 − 1, u

(i)
1 , u

(i)
2 ⊕ α⊕ α, u

(i)
3))

=(β‖0m2−λ)⊕ Fmask . Eval(kmask , (u
(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3))

Thus, we have P(i)(α) = (ỹ
(i)
2 ⊕ y

(i)
2)[m1 + 1,m1 + λ] = β.

Next, as ctα are valid ciphertexts of α and rek is a randomized evaluation

key of ek, ct
(i)
β are valid ciphertexts of P(i)(α) = β. In addition, rpk is generated

by a “good” randomness. Thus, by Lemma E.32,

Pr[ExtractIII(C, ct
(i)
β , rpk , rek) 6= msg] ≤ negl(λ)

i.e., Pr[msg(i) 6= msg] ≤ negl(λ).

Combining Claim E.18 and Claim E.19, we have

Pr[msg(i) = msg]

≥Pr[msg(i) = msg ∧ (ψ(i), u
(i)
1 , u

(i)
2 , u

(i)
3) ∈ G]

= Pr[msg(i) = msg | (ψ(i), u
(i)
1 , u

(i)
2 , u

(i)
3) ∈ G] · Pr[(ψ(i), u

(i)
1 , u

(i)
2 , u

(i)
3) ∈ G]

≥(1− negl(λ)) · (1

2
+ 2ε)

≥1

2
+ ε

Let Xi be a random variable over {0, 1} that Xi = 1 iff msg(i) = msg. Let

X =
∑N
i=1Xi and let µ =

∑N
i=1 Pr[msg(i) = msg]. Note that µ ≥ 1+2ε

2 ·N and

thus we have (1− 2ε
1+2ε) ·µ ≥ 1

1+2ε ·
1+2ε

2 ·N = N
2 . Then by the Chernoff bound,

we have

Pr[X ≤ N

2
]

≤Pr[X ≤ (1− 2ε

1 + 2ε
) · µ]

≤e−
4ε2

2(1+2ε)2
·µ

≤e−
4ε2

2(1+2ε)2
· 1+2ε

2 ·N

=e−
ε2

1+2ε ·N ≤ e− ε
2

3 ·N = e−
λ
3

which is negligible. This implies that with all but negligible probability, the
number of i ∈ [1, N] s.t. msg = msg(i) are over N

2 , and thus we have Pr[msg′ 6=
msg] ≤ negl(λ).

107

Lemma E.34. Let msg′ ← ExtractI(C), then we have Pr[msg 6= msg′] ≤
negl(λ).

Proof. Let x
(i)
1 , y

(i)
1 , ct

(i)
α , rpk (i), rek (i),msg(i) be variables used in the i-th repe-

tition when running the algorithm ExtractI(C). First, we show that if C(x
(i)
1) =

Eval(K,x
(i)
1), then we have msg(i) = msg with all but negligible probability.

Claim E.20. If C(x
(i)
1) = Eval(K,x

(i)
1), Pr[msg(i) 6= msg] ≤ negl(λ).

Proof. Let x
(i)
1 = (u

(i)
0 , u

(i)
1 , u

(i)
2 , u

(i)
3), and let

(r
(i)
1 , . . . , r

(i)
λ , r

(i)
rpk , r

(i)
rek) = FIR. Eval(kIR, (u

(i)
0 , u

(i)
2 , u

(i)
3), u

(i)
1)

as C(x
(i)
1) = Eval(K,x

(i)
1), we have

∀j ∈ [1, λ], ct(i)α [j] = SFHE. Enc(pk, α[j]; r
(i)
j)

rpk (i) = SFHE. RandPK(pk; r
(i)
rpk)

rek (i) = SFHE. RandEK(pk, ek; r
(i)
rek)

This implies that ct
(i)
α is a vector of valid ciphertexts for α and rek is a

randomized evaluation key for ek.

In addition, since u
(i)
1 is sampled uniformly from {0, 1}n1 , the invoker ran-

domization property of FIR ensures that the output of FIR. Eval(kIR, (u
(i)
0 , u

(i)
2 ,

u
(i)
3), u

(i)
1) will be uniform even if the other part of x

(i)
1 and the key kIR is fixed

and known. Note that in the definition of special FHE (and more precisely Equa-

tion (2)), we require that Pr[rrpk
$← {0, 1}lrpk : rrpk ∈ B] ≤ negl(λ), where B is

the bad randomness subset for SFHE. RandPK. Thus, we have

Pr[r
(i)
rpk ∈ B] ≤ negl(λ)

Therefore, by Lemma E.33 we have

Pr[ExtractII(C, ct(i)α , rpk (i), rek (i)) = msg]

≥Pr[ExtractII(C, ct(i)α , rpk (i), rek (i)) = msg ∧ r(i)
rpk 6∈ B]

= Pr[ExtractII(C, ct(i)α , rpk (i), rek (i)) = msg | r(i)
rpk 6∈ B] · Pr[r

(i)
rpk 6∈ B]

≥(1− negl(λ)) · (1− negl(λ))

≥1− negl(λ)

Thus, we have Pr[msg(i) 6= msg] ≤ negl(λ).

108

Next, since x
(i)
1

$← {0, 1}n, we have

Pr[C(x
(i)
1) 6= Eval(K,x

(i)
1)] =

|{x ∈ {0, 1}n : C(x) 6= Eval(K,x)}|
2n

≤ 1

6
− ε

Thus, we have

Pr[msg(i) = msg]

≥Pr[msg(i) = msg ∧ C(x
(i)
1) = Eval(K,x

(i)
1))]

= Pr[msg(i) = msg | C(x
(i)
1) = Eval(K,x

(i)
1))] · Pr[C(x

(i)
1) = Eval(K,x

(i)
1))]

≥(1− negl(λ)) · (5

6
+ ε) ≥ 5

6

Let Xi be a random variable over {0, 1} that Xi = 1 iff msg(i) = msg. Let

X =
∑N
i=1Xi and let µ =

∑N
i=1 Pr[msg(i) = msg]. Note that µ ≥ 5

6 ·N . Then
by the Chernoff bound, we have

Pr[X ≤ N

2
] ≤ Pr[X ≤ (1− 2

5
) · µ] ≤ e− 2

25 ·µ ≤ e− 2
25 ·

5
6 ·N = e−

1
15 ·N ≤ e− λ

15

which is negligible. This implies that with all but negligible probability, the
number of i ∈ [1, N] s.t. msg = msg(i) are over N

2 , and thus we have Pr[msg′ 6=
msg] ≤ negl(λ).

The (1
6 − ε)-robust learnability of UOF comes from Lemma E.34 directly.

Black-Box Pseudorandomness. Next, we prove the black-box pseudoran-
domness of UOF. First, we define the following games between a challenger and
a PPT adversary A:

• Game 0. In Game 0, the challenger answers A’s oracle queries with O0.
More precisely, in the beginning, the adversary submits a message msg to the
challenger and the challenger samples K = (α, β, kIR, kmask , pk, sk, ek,msg)
by running KeyGen(1λ,msg).
Then, each time the adversary submits an input x ∈ {0, 1}n, the challenger
parses x = (u0, u1, u2, u3) ∈ {0, 1}n0 × {0, 1}n1 × {0, 1}n2 × {0, 1}n3 and
proceeds as follows:
1. w = (u0, u2, u3).
2. (r1, . . . , rλ, rrpk , rrek) = FIR. Eval(kIR, w, u1).
3. For i ∈ [1, λ]:

(a) cti = SFHE. Enc(pk, α[i]; ri).
4. rpk = SFHE. RandPK(pk; rrpk).
5. rek = SFHE. RandEK(pk, ek; rrek).
6. yct = ct1‖ct2‖ . . . ‖ctλ‖rpk ‖rek
7. d = u0 mod 3, where d ∈ {0, 1, 2}.
8. If d = 0:

(a) z = (u0, u1, u2, u3).
(b) ymask = Fmask . Eval(kmask , z).

109

(c) Return yct‖ymask .
9. If d = 1:

(a) u′0 = u0 − 1.
(b) u′2 = u2 ⊕ α.
(c) z = (u′0, u1, u

′
2, u3).

(d) ymask = Fmask . Eval(kmask , z).
(e) Return yct‖((β‖0m2−λ)⊕ ymask).

10. If d = 2:
(a) Parse u3 = (tct i)i∈[1,λ] ∈ ({0, 1}Lt)λ.
(b) For i ∈ [1, λ]:

i. µi = SFHE. TCTDec(sk, tct i).
(c) ν = µ1‖ . . . ‖µλ.
(d) u′2 = u2 ⊕ ν ⊕ β.
(e) u′0 = u0 − 2.
(f) z = (u′0, u1, u

′
2, u3).

(g) ymask = Fmask . Eval(kmask , z).
(h) Return yct‖(msg ⊕ ymask).

Finally, the game outputs 1 iff the adversary outputs 1.
Here, w.l.o.g., we assume that all inputs submitted by the adversary are
distinct.

• Game 1. This is identical to Game 0 except that for each query, the chal-

lenger samples (r1, . . . , rλ, rrpk , rrek)
$← {0, 1}n1 instead of evaluating it as

(r1, . . . , rλ, rrpk , rrek) = FIR. Eval(kIR, (u0, u2, u3), u1).
• Game 2. This is identical to Game 1 except that the challenger uses a ran-

dom function f instead of the pseudorandom function Fmask when answering
A’s oracle queries.

• Game 3. This is identical to Game 2 except that the challenger maintains
a list L. Here, L is initialized as an empty list in the beginning. Then on
receiving a query x = (u0, u1, u2, u3), the challenger puts (x, z) to the list
where z is the input to f . Recall that, z is computed as follows in each case:

– If u0 = 0 mod 3:
1. z = (u0, u1, u2, u3).

– If u0 = 1 mod 3:
1. u′0 = u0 − 1.
2. u′2 = u2 ⊕ α.
3. z = (u′0, u1, u

′
2, u3).

– If u0 = 2 mod 3:
1. Parse u3 = (tct i)i∈[1,λ] ∈ ({0, 1}Lt)λ.
2. For i ∈ [1, λ]:

(a) µi = SFHE. TCTDec(sk, tct i).
3. ν = µ1‖ . . . ‖µλ.
4. u′2 = u2 ⊕ ν ⊕ β.
5. u′0 = u0 − 2.
6. z = (u′0, u1, u

′
2, u3).

• Game 4. This is identical to Game 3 except that for each query, the chal-
lenger samples the second part of the output from {0, 1}m2 . In more detail,
the challenger proceeds as follows on receiving a query x:

110

1. For i ∈ [1, λ]:
(a) cti ← SFHE. Enc(pk, α[i]).

2. rpk ← SFHE. RandPK(pk).
3. rek ← SFHE. RandEK(pk, ek).
4. yct = ct1‖ct2‖ . . . ‖ctλ‖rpk ‖rek .

5. ymask
$← {0, 1}m2 .

6. Return yct‖ymask .
Note that in Game 4, the challenger does not need to maintain the list L
and L is only used in arguing the indistinguishability between Game 3 and
Game 4.
• Game 5. This is identical to Game 4 except that for each query, the chal-

lenger samples yct
$← {0, 1}m1 .

It is easy to see that in Game 5, the challenger answers the adversary’s
queries with O1. Let Ei be the output of Game i, then it is sufficient to show
that |Pr[E0 = 1] − Pr[E5 = 1]| ≤ negl(λ). Next, we argue this via proving the
following lemmas.

Lemma E.35. | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. First, by pseudorandomness of FIR, we can use a random function F to
replace FIR in answering A’s queries. Next, for each query, the input to F , which
is u0‖u2‖u3‖u1, will be distinct since the inputs x are distinct and the map from
x to u0‖u2‖u3‖u1 is bijective. Thus, it is safe to replace output of F with a fresh
random string.

Lemma E.36. | Pr[E1 = 1]− Pr[E2 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 1 and Game 2 comes from pseudoran-
domness of Fmask directly.

Lemma E.37. | Pr[E2 = 1]− Pr[E3 = 1] |= 0.

Proof. The adversary’s view in Game 2 and Game 3 are identical, thus the
probabilities that the two games output 1 are also identical.

Lemma E.38. | Pr[E3 = 1]− Pr[E4 = 1] |≤ negl(λ).

Proof. In Game 3, the second part of the oracle’s output is f(z) ⊕ S, where f
is a random function and S ∈ {0m2 , β‖0m2−λ,msg}; and in Game 4, the second
part of the oracle’s output is a random string in {0, 1}m2 . Note that Game 3 and
Game 4 are identical if all z are distinct.

To prove that z are not likely to repeat, we first define

Lσ = {(x = (u0, u1, u2, u3), z) ∈ L : u0 = σ mod 3}

for σ ∈ {0, 1, 2}. Then we define the following events in Game 3:

• col 0: There exists (x, z) and (x′, z′) in L0 s.t. x 6= x′ and z = z′.

111

• col 1: There exists (x, z) and (x′, z′) in L1 s.t. x 6= x′ and z = z′.

• col 2: There exists (x, z) and (x′, z′) in L2 s.t. x 6= x′ and z = z′.

• col 01: There exists (x, z) ∈ L0 and (x′, z′) ∈ L1 s.t. x 6= x′ and z = z′.

• col 02: There exists (x, z) ∈ L0 and (x′, z′) ∈ L2 s.t. x 6= x′ and z = z′.

• col 12: There exists (x, z) ∈ L1 and (x′, z′) ∈ L2 s.t. x 6= x′ and z = z′.

It is easy to see if none of the 6 events occurs, then all z are distinct. Thus, it is
sufficient to show that the probability that at least one of the 6 event occurs is
negligible.

Claim E.21. Pr[col 0] = 0

Proof. As for any (x, z) ∈ L0, z = x, there does not exist (x, z) and (x′, z′) in
L0 s.t. x 6= x′ and z = z′.

Claim E.22. Pr[col 1] = 0

Proof. Assuming col 1 occurs, i.e., there exists (x, z) and (x′, z′) in L1 s.t. x 6= x′

and z = z′. Let x = (u0, u1, u2, u3) and x′ = (u′0, u
′
1, u
′
2, u
′
3). Then we have

z = (u0 − 1, u1, u2 ⊕ α, u3) and z′ = (u′0 − 1, u′1, u
′
2 ⊕ α, u′3). Since z = z′, we

have u0 − 1 = u′0 − 1 (i.e., u0 = u′0), u1 = u′1, u2 ⊕ α = u′2 ⊕ α (i.e., u2 = u′2),
and u3 = u′3. This contradicts the assumption that x 6= x′, thus col 1 will not
occur.

Claim E.23. Pr[col 2] = 0

Proof. Assuming col 2 occurs, i.e., there exists (x, z) and (x′, z′) in L2 s.t. x 6= x′

and z = z′. Let x = (u0, u1, u2, u3) and x′ = (u′0, u
′
1, u
′
2, u
′
3). Then we have

z = (u0 − 2, u1, u2 ⊕ ν ⊕ β, u3) and z′ = (u′0 − 2, u′1, u
′
2 ⊕ ν′ ⊕ β, u′3) where ν, ν′

are decryption of u3 and u′3 respectively. Since z = z′, we have u0 − 2 = u′0 − 2
(i.e., u0 = u′0), u1 = u′1, and u3 = u′3, which implies that ν = ν′. Thus, we also
have u2 = u′2. This contradicts the assumption that x 6= x′, thus col 2 will not
occur.

Before arguing that the remaining 3 events also occur with a negligible prob-
ability, we first define a set of auxiliary adversaries B`, which is identical to A
except that it will artificially abort the game (and outputs 1) after submitting
` queries.29 We also define col σ,` for σ ∈ {0, 1, 2, 01, 02, 12} to be the event that
col σ occurs when the challenger interacts with B` (instead of A) in Game 3.
Assume that the PPT adversary A makes at most Q queries to the challenger,
where Q is polynomial in λ, then BQ+1 is identical to A. Thus, it is sufficient to
prove that col σ,Q+1 occurs with negligible probability for σ ∈ {01, 02, 12}.

To prove this, we first prove the following claim.

29 If A stops the game with an output before triggering B`’s abort condition, then B`
will also stop and outputs what A outputs.

112

Claim E.24. For ` ∈ [1, Q], if

Pr[col 0,` ∨ col 1,` ∨ col 2,` ∨ col 01,` ∨ col 02,` ∨ col 12,`] ≤ negl(λ)

then we have

Pr[col 02,`+1 ∨ col 12,`+1 ∨ col 01,`+1] ≤ negl(λ)

Proof. We first define the following auxiliary games:

• H0: The challenger interacts with B`+1 and proceeds identically as it does in
Game 3, except that after B`+1 stops or after it submits the (`+ 1)-th query
and aborts (i.e., the challenger does not need to respond the (`+1)-th query
from B`+1), the challenger outputs 1 iff at least one of the three events
col 02,`+1, col 12,`+1, and col 01,`+1 occurs.
• H1: This is identical to Game H0 except that for each query, the challenger

samples the second part of the output from {0, 1}m2 . More precisely, the
challenger proceeds as follows on receiving a query x:
1. For i ∈ [1, λ]:

(a) cti ← SFHE. Enc(pk, α[i]).
2. rpk ← SFHE. RandPK(pk).
3. rek ← SFHE. RandEK(pk, ek).
4. yct = ct1‖ct2‖ . . . ‖ctλ‖rpk ‖rek .

5. ymask
$← {0, 1}m2 .

6. Return yct‖ymask .
7. If u0 = 0 mod 3:

(a) z = (u0, u1, u2, u3).
8. If u0 = 1 mod 3:

(a) u′0 = u0 − 1.
(b) u′2 = u2 ⊕ α.
(c) z = (u′0, u1, u

′
2, u3).

9. If u0 = 2 mod 3:
(a) Parse u3 = (tct i)i∈[1,λ] ∈ ({0, 1}Lt)λ.
(b) For i ∈ [1, λ]:

i. µi = SFHE. TCTDec(sk, tct i).
(c) ν = µ1‖ . . . ‖µλ.
(d) u′2 = u2 ⊕ ν ⊕ β.
(e) u′0 = u0 − 2.
(f) z = (u′0, u1, u

′
2, u3).

10. Put (x, z) to L.
• H2: This is identical to Game H1 except that the challenger does not check

if col 02,`+1 or col 12,`+1 occurs. In particular, after B`+1 stops or aborts, the
challenger outputs 1 iff col 01,`+1 occurs.
Note that in Game H2, the challenger does not need to compute and store z
for an input x = (u0, u1, u2, u3) if u0 = 2 mod 3.
• H3: This is identical to Game H2 except that for each query, the challenger

returns a random string.

113

Let Fi be the output of Game Hi. It is easy to see Pr[col 02,`+1 ∨ col 12,`+1 ∨
col 01,`+1] = Pr[F0 = 1]. Thus, it is sufficient to prove that Pr[F0 = 1] ≤ negl(λ).
This can be guaranteed by the following claims:

Claim E.24.1. | Pr[F0 = 1]− Pr[F1 = 1] |≤ negl(λ).

Proof. First, as the challenger only needs to answer the first ` oracle queries from
the adversary B`+1, Game H0 and Game H1 are identical if all z appeared in
the first ` queries are distinct. This will occur with all but negligible probability
since Pr[col 0,i ∨ col 1,i ∨ col 2,i ∨ col 01,i ∨ col 02,i ∨ col 12,i] ≤ negl(λ).

Claim E.24.2. | Pr[F1 = 1]− Pr[F2 = 1] |≤ negl(λ).

Proof. Game H1 and Game H2 are identical unless col 02,`+1 or col 12,`+1 occurs.
First, as the challenger does not need β when answering oracle queries from

the adversary. It can postpone the selection of β after the adversary stops or
aborts.30 Therefore, all queries submitted by the adversary will be independent
of β.

For any (x, z) ∈ L2 and (x′, z′) ∈ L0. Let x = (u0, u1, u2, u3) and x′ = (u′0,
u′1, u

′
2, u
′
3). Then we have z = (u0−2, u1, u2⊕ν⊕β, u3) and z′ = (u′0, u

′
1, u
′
2, u
′
3),

where ν is determined by u3. If z = z′, then we have u2 ⊕ ν ⊕ β = u′2, which
occurs with a negligible probability since β is sampled uniformly at random from
{0, 1}λ after B`+1 submits the queries.

For any (x, z) ∈ L2 and (x′, z′) ∈ L1. Let x = (u0, u1, u2, u3) and x′ = (u′0, u
′
1,

u′2, u
′
3). Then we have z = (u0−2, u1, u2⊕ν⊕β, u3) and z′ = (u′0−1, u′1, u

′
2⊕α,

u′3), where ν is determined by u3. If z = z′, then we have u2⊕ν⊕β = u′2⊕α, which
occurs with a negligible probability since β is sampled uniformly at random from
{0, 1}λ after B`+1 submits the queries. This completes proof of this Claim.

Claim E.24.3. | Pr[F2 = 1]− Pr[F3 = 1] |≤ negl(λ).

Proof. In Game H2, the challenger does not need the secret key of SFHE when
answering oracle queries. Also, as the challenger only computes z for an input
x = (u0, u1, u2, u3) s.t. u0 = 0 mod 3 or u0 = 1 mod 3, it also does not need
the secret key of SFHE when determining if it should output 1. Thus, indistin-
guishability between Game H2 and Game H3 comes from the ciphertext and key
pseudorandomness property of SFHE by a direct reduction.

Claim E.24.4. Pr[F3 = 1] ≤ negl(λ).

Proof. In Game H3, the challenger will return random strings for all oracle
queries. Thus, it does not need α when answering oracle queries and can postpone
the selection of α after the adversary stops or aborts.31 Therefore, all queries
submitted by the adversary will be independent of α.

For any (x, z) ∈ L1 and (x′, z′) ∈ L0. Let x = (u0, u1, u2, u3) and x′ = (u′0,
u′1, u

′
2, u
′
3). Then we have z = (u0 − 1, u1, u2 ⊕ α, u3) and z′ = (u′0, u

′
1, u
′
2, u
′
3). If

30 It can also postpone the computation of z after that.
31 It can also postpone the computation of z after that.

114

z = z′, then we have u2⊕α = u′2, which occurs with a negligible probability since
α is sampled uniformly at random from {0, 1}λ after B`+1 submits the queries.

This completes proof of this Claim.

We continue to show that Pr[col 01,Q+1 ∨ col 02,Q+1 ∨ col 12,Q+1] ≤ negl(λ).
First, from Claim E.21 to Claim E.23, we have Pr[col 0] = Pr[col 1] = Pr[col 2] = 0,
thus we have Pr[col 0,i] = Pr[col 1,i] = Pr[col 2,i] = 0 for all i ∈ [1, Q]. In addition,
Pr[col 01,1] = Pr[col 02,1] = Pr[col 12,1] = 0 since only one query is made and there
cannot be collision. Therefore, we have

Pr[col 0,1 ∨ col 1,1 ∨ col 2,1 ∨ col 01,1 ∨ col 02,1 ∨ col 12,1] = 0

Then, by Claim E.24, we have

Pr[col 02,2 ∨ col 12,2 ∨ col 01,2] ≤ negl(λ)

Now we have

Pr[col 0,2 ∨ col 1,2 ∨ col 2,2 ∨ col 01,2 ∨ col 02,2 ∨ col 12,2] ≤ negl(λ)

and repeating this for Q times, we have

Pr[col 01,Q+1 ∨ col 02,Q+1 ∨ col 12,Q+1] ≤ negl(λ) (15)

Since BQ+1 is identical to A, Equation (15) implies that

Pr[col 01 ∨ col 02 ∨ col 12] ≤ negl(λ)

Then combing with Claim E.21 to Claim E.23, we have

Pr[col 0 ∨ col 1 ∨ col 2 ∨ col 01 ∨ col 02 ∨ col 12] ≤ negl(λ)

That is, the inputs z to f will be distinct with all but negligible probability, and
it is safe to replace outputs of f with random strings. This completes proof of
Lemma E.38.

Lemma E.39. | Pr[E4 = 1]− Pr[E5 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 4 and Game 5 comes from the cipher-
text and key pseudorandomness property of SFHE by a direct reduction.

Combining Lemma E.35 to Lemma E.39, we have | Pr[E0 = 1]−Pr[E5 = 1] |≤
negl(λ), i.e., the probability that A outputs 1 when interacting with O0 and the
probability that it outputs 1 when interacting with O1 does not have a non-
negligible difference. This completes the proof of black-box pseudorandomness.

115

E.7 Security Analysis of the General Construction of Public-Key
Watermarkable PRFs

We present proof of Theorem 7.1 in this section. More precisely, we will prove the
functionality preserving property, extraction correctness, watermarking mean-
ingfulness, pseudorandomness for unmarked keys, pseudorandomness for marked
keys, and Q-bounded ε-unremovability of WPRF.

Functionality Preserving. For any message msg ∈ {0, 1}κ, let
pphw ← HWF. Setup(1λ), ppuo ← UOF. Setup(1λ), and PP = (pphw ,
ppuo). Also, let (khw , hint) ← HWF. KeyGen(pphw), kf ← F. KeyGen(1λ),
kuo ← UOF. KeyGen(ppuo , hint‖kf), and K = (khw , kf , kuo). Let Chw ←
HWF. Mark(pphw , khw ,msg) and C : {0, 1}n → {0, 1}m be a circuit that for any
x ∈ {0, 1}n, C(x) = (Chw (x)⊕ F. Eval(kf , x),UOF. Eval(ppuo , kuo , x)).

As for any x ∈ {0, 1}n, C(x) 6= Eval(PP,K, x) iff Chw (x) 6= HWF. Eval(pphw ,
khw , x), the functionality preserving property of WPRF comes from the function-
ality preserving property of HWF directly.

Extraction Correctness. For any message msg ∈ {0, 1}κ, let pphw ←
HWF. Setup(1λ), ppuo ← UOF. Setup(1λ), and PP = (pphw , ppuo).
Also, let (khw , hint) ← HWF. KeyGen(pphw), kf ← F. KeyGen(1λ),
kuo ← UOF. KeyGen(ppuo , hint‖kf), and K = (khw , kf , kuo). Let Chw ←
HWF. Mark(pphw , khw ,msg) and C : {0, 1}n → {0, 1}m be a circuit that for any
x ∈ {0, 1}n, C(x) = (Chw (x)⊕ F. Eval(kf , x),UOF. Eval(ppuo , kuo , x)).

Now, assume the extraction algorithm takes as input the watermarked circuit
C, and let C′uo be a circuit that for any x ∈ {0, 1}n, C′uo(x) = C(x)[m1 + 1 : m],
(hint′, k′f)← UOF. Extract(ppuo , C

′
uo), C′hw be a circuit that for any x ∈ {0, 1}n,

C′hw (x) = C(x)[1 : m1] ⊕ F. Eval(k′f , x), and msg′ ← HWF. Extract(pphw , C
′
hw ,

hint′). First, by the correctness of UOF, we have hint′ = hint and k′f = kf .
Thus, for any x ∈ {0, 1}n, we have C′hw (x) = Chw (x). Then, by the extraction
correctness of HWF, we have msg′ = msg with all but negligible probability.

On the other hand, assume the extraction algorithm takes as input the cir-
cuit Eval(PP,K, ·), and let C′uo be a circuit that for any x ∈ {0, 1}n, C′uo(x) =
UOF. Eval(ppuo , kuo , x), (hint′, k′f) ← UOF. Extract(ppuo , C

′
uo), C′hw be a cir-

cuit that for any x ∈ {0, 1}n, C′hw (x) = HWF. Eval(pphw , khw , x) ⊕ F. Eval(kf ,
x) ⊕ F. Eval(k′f , x), and msg′ ← HWF. Extract(pphw , C

′
hw , hint

′). First, by the
correctness of UOF, we have hint′ = hint and k′f = kf . Thus, for any x ∈ {0,
1}n, we have C′hw (x) = HWF. Eval(pphw , khw , x). Then, by the extraction cor-
rectness of HWF, we have msg′ =⊥ with all but negligible probability.

This completes proof of extraction correctness.

Watermarking Meaningfulness. For any fixed circuit C : {0, 1}n → {0, 1}m,
and for any fixed ppuo ← UOF. Setup(1λ), let Cuo be a circuit that for any x ∈ {0,
1}n, Cuo(x) = C(x)[m1 + 1 : m], (hint, kf)← UOF. Extract(ppuo , Cuo), and Chw
be a circuit that for any x ∈ {0, 1}n, Chw (x) = C(x)[1 : m1]⊕ F. Eval(kf , x).

Let pphw ← HWF. Setup(1λ), then by the watermarking meaningfulness of
HWF, we have Pr[HWF. Extract(pphw , Chw , hint) 6=⊥] ≤ negl(λ), and the wa-
termarking meaningfulness of WPRF follows.

116

Pseudorandomness for Marked/Unmarked Keys. The pseudorandomness
properties of WPRF comes from the pseudorandomness of UOF and the pseudo-
randomness of F. Next, we only give a detailed proof for the pseudorandomness
for marked keys, and the pseudorandomness for unmarked keys can be proved
in a similar way.

First, we define the following games between a challenger and a PPT adver-
sary A:

• Game 0. In Game 0, the challenger answers A’s oracle queries with O0.
More precisely, the challenger first samples PP = (pphw , ppuo)← Setup(1λ).
It also samples (khw , hint) ← HWF. KeyGen(pphw), kf ← F. KeyGen(1λ),
kuo ← UOF. KeyGen(ppuo , hint‖kf), and sets K = (khw , kf , kuo).
Then it sends PP to the adversary and receives a message msg ∈ {0, 1}κ.
Next, it computes Chw ← HWF. Mark(pphw , khw ,msg) and answers the ad-
versary’s oracle queries. In particular, each time the adversary submits an
input x ∈ {0, 1}n, the challenger computes:

1. yhw = Chw (x).
2. yf = F. Eval(kf , x).
3. yuo = UOF. Eval(ppuo , kuo , x).

and returns y = (yhw ⊕ yf , yuo).
Finally, the game outputs 1 iff the adversary outputs 1.
Here, w.l.o.g., we assume that all inputs submitted by the adversary are
distinct.
• Game 1. This is identical to Game 0 except that for each oracle query,

the challenger samples yuo uniformly at random instead of evaluating it as
yuo = UOF. Eval(ppuo , kuo , x).
• Game 2. This is identical to Game 1 except that for each oracle query,

the challenger samples yf uniformly at random instead of evaluating it as
yf = F. Eval(kf , x).

It is easy to see that in Game 2, the challenger returns a random string in
{0, 1}m for each oracle query, thus it actually answers the adversary’s queries
with O1. Let Ei be the output of Game i, then it is sufficient to show that
|Pr[E0 = 1]−Pr[E2 = 1]| ≤ negl(λ). Next, we argue this via proving the following
lemmas.

Lemma E.40. | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 0 and Game 1 comes from black-box
pseudorandomness of UOF directly.

Lemma E.41. | Pr[E1 = 1]− Pr[E2 = 1] |≤ negl(λ).

Proof. Indistinguishability between Game 1 and Game 2 comes from pseudoran-
domness of F directly. Note that as in Game 1, the PRF key kuo of UOF is not
used, the challenger does not need to generate it. Thus, it can answer A’s oracle
queries given only oracle access to F. Eval(kf , ·).

117

Combining Lemma E.40 and Lemma E.41, we have |Pr[E0 = 1] − Pr[E2 =
1]| ≤ negl(λ), i.e., the probability that A outputs 1 when interacting with O0

and the probability that it outputs 1 when interacting with O1 does not have a
non-negligible difference. This completes the proof of pseudorandomness.

Unremovability. Finally, we prove the unremovability of WPRF. First, we
define the following games between a challenger and a PPT ε-unremoving-
admissible adversary A:

• Game 0. This is the real experiment ExptUR. More precisely, the challenger
proceeds as follows.
I. First, the challenger samples pphw ← HWF. Setup(1λ) and ppuo ←

UOF. Setup(1λ). It also samples (k∗hw , hint
∗) ← HWF. KeyGen(pphw),

k∗f ← F. KeyGen(1λ), and k∗uo ← UOF. KeyGen(ppuo , hint
∗‖k∗f).

II. Next, the challenger sends PP = (pphw , ppuo) to the adversary and
answers the adversary’s challenge oracle queries (for at most Q times)
as follow:
• On input a message msg ∈ {0, 1}κ, the challenger computes Chw ←
HWF. Mark(pphw , k

∗
hw ,msg) and returns a circuit C : {0, 1}n → {0,

1}m s.t. for any x ∈ {0, 1}n:

C(x) = (Chw (x)⊕ F. Eval(k∗f , x),UOF. Eval(ppuo , k
∗
uo , x))

Let Q∗ to be the set of all messages submitted to the challenge oracle
and let R∗ to be the set of all circuits returned by the challenge oracle.

III. Finally, after A submits a circuit C̃, the challenger proceeds as follow:
1. Set C̃uo as a circuit that for any x ∈ {0, 1}n, C̃uo(x) = C̃(x)[m1 + 1 :
m].

2. (hint, kf)← UOF. Extract(ppuo , C̃uo).
3. If (hint, kf) =⊥: output 1.
4. Set C̃hw as a circuit that for any x ∈ {0, 1}n, C̃hw (x) = C̃(x)[1 :
m1]⊕ F. Eval(kf , x).

5. msg ← HWF. Extract(pphw , C̃hw , hint).
6. Output 1 if msg 6∈ Q∗ and output 0 otherwise.

• Game 1. This is identical to Game 0 except that in Phased III, after obtain-
ing (hint, kf), the challenger aborts and outputs 2 if (hint, kf) 6= (hint∗,
k∗f).

Let Ei be the output of Game i and we next show that Pr[E0 = 1] ≤ negl(λ)
via proving the following lemmas.

Lemma E.42. | Pr[E0 = 1]− Pr[E1 = 1] |≤ negl(λ).

Proof. Game 0 and Game 1 are identical unless (hint, kf) 6= (hint∗, k∗f), thus,
it is sufficient to show that the inequality occurs with a negligible probability.
This comes from the ε2-robust learnability of UOF. More precisely, assuming
|Pr[E0 = 1] − Pr[E1 = 1]| is non-negligible (i.e., the probability that (hint,
kf) 6= (hint∗, k∗f) is non-negligible), then we can construct an adversary B that
breaks the ε2-robust learnability of UOF as follows:

118

• On receiving the public parameter ppuo from its challenger, the adversary B
samples pphw ← HWF. Setup(1λ), (k∗hw , hint

∗)← HWF. KeyGen(pphw), and
k∗f ← F. KeyGen(1λ). Then it submits hint∗‖k∗f as its challenge message to
its challenger and receives k∗uo .

• Next, B sends PP = (pphw , ppuo) to the adversary A and answers A’s chal-
lenge oracle queries for at most Q times. More precisely, each time the adver-
sary A submits a message msg, B computes Chw ← HWF. Mark(pphw , k

∗
hw ,

msg) and returns a circuit C : {0, 1}n → {0, 1}m s.t. for any x ∈ {0, 1}n:

C(x) = (Chw (x)⊕ F. Eval(k∗f , x),UOF. Eval(ppuo , k
∗
uo , x))

Here, we also use Q∗ to denote the set of all messages submitted by A and
use R∗ to denote the set of all circuits returned to A.

• Finally, after A submits a circuit C̃, B sets C̃uo as a circuit that for any
x ∈ {0, 1}n, C̃uo(x) = C̃(x)[m1 + 1 : m] and submits C̃uo to its challenger.

First, it is easy to see, the view of A in the environment simulated by B is iden-
tical to its view in Game 0 and Game 1. Thus, with a non-negligible probability

UOF. Extract(ppuo , C̃uo) 6= hint∗‖k∗f

Also, as A is ε-unremoving-admissible, there exists C∗ ∈ R∗ s.t. |{x ∈ {0, 1}n :
C∗(x) 6= C̃(x)}| ≤ ε · 2n. This implies that

|{x ∈ {0, 1}n : UOF. Eval(ppuo , k
∗
uo , x) 6= C̃uo(x)}| ≤ ε · 2n ≤ ε2 · 2n

i.e., B is ε2-admissible. Thus, B will succeed in breaking the ε2-robust learnability
of UOF.

This completes the proof of Lemma E.42.

Lemma E.43. Pr[E1 = 1] ≤ negl(λ).

Proof. This comes from the Q-bounded ε1-unremovability of HWF. More pre-
cisely, assuming Pr[E1 = 1] is non-negligible, then we can construct an adversary
B that breaks the ε1-unremovability of HWF as follows:

• On receiving the public parameter and hint (pphw , hint
∗) from its challenger,

the adversary B samples ppuo ← UOF. Setup(1λ), k∗f ← F. KeyGen(1λ), and
k∗uo ← UOF. KeyGen(ppuo , hint

∗‖k∗f).
• Then it sends PP = (pphw , ppuo) to the adversary A and answers A’s chal-

lenge oracle queries for at most Q times. More precisely, each time the adver-
sary A submits a message msg, B submits msg to its own challenge oracle
and on receiving the response Chw from its challenge oracle, it returns a
circuit C : {0, 1}n → {0, 1}m s.t. for any x ∈ {0, 1}n:

C(x) = (Chw (x)⊕ F. Eval(k∗f , x),UOF. Eval(ppuo , k
∗
uo , x))

Here, we also let Q∗ to be the set of all messages submitted by A and let
R∗ to be the set of all circuits returned to A. In addition, we let R̄∗ to be
the set of all circuits returned to B.

119

• Finally, after A submits a circuit C̃, B sets C̃hw as a circuit that for any
x ∈ {0, 1}n, C̃hw (x) = C̃(x)[1 : m1] ⊕ F. Eval(k∗f , x) and submits C̃hw to its
challenger.

First, it is easy to see, the view of A in the environment simulated by B is
identical to its view in Game 1. Thus, we have

HWF. Extract(pphw , C̃hw , hint
∗) 6∈ Q∗

with a non-negligible probability.32 Also, as A is ε-unremoving-admissible33,
there exists C∗ ∈ R∗ s.t. |{x ∈ {0, 1}n : C∗(x) 6= C̃(x)}| ≤ ε · 2n, i.e., |{x ∈ {0,
1}n : C∗(x)[1 : m1] ⊕ F. Eval(k∗f , x) 6= C̃(x)[1 : m1] ⊕ F. Eval(k∗f , x)}| ≤ ε · 2n.

This implies that there exists Chw ∈ R̄
∗

s.t.

|{x ∈ {0, 1}n : Chw 6= C̃hw (x)}| ≤ ε · 2n ≤ ε1 · 2n

i.e., B is ε1-unremoving-admissible. Thus, B will succeed in breaking the Q-
bounded ε1-unremovability of HWF. This completes proof of Lemma E.43.

Combining Lemma E.42 and Lemma E.43, we have Pr[E0 = 1] ≤ negl(λ),
i.e., the probability that A wins in the real experiment ExptUR is negligible. This
completes the proof of unremovability.

32 Recall that in Game 1, the challenger will abort and output 2 if the extracted (hint,
kf) is not equal to (hint∗, k∗f).

33 Since A’s views are identical in Game 0 and Game 1, A is still ε-unremoving-
admissible in Game 1.

120

	Introduction
	Technical Overview
	Constructing Public-Key Hinting Watermarkable PRFs
	From Public-Key Hinting Watermarkable PRFs to Public-Key Watermarkable PRFs
	Constructing Robust Unobfuscatable PRFs

	Notations
	Definition of Public-Key Watermarkable PRFs
	Public-Key Hinting Watermarkable PRFs
	The Definition
	Public-Key Hinting Watermarkable PRFs from Puncturable PRFs
	Public-Key Hinting Watermarkable PRFs from Functional Encryption
	Public-Key Hinting Watermarkable PRFs from Secret-Key Watermarkable PRFs

	Robust Unobfuscatable PRFs
	The Definition
	Robust Unobfuscatable PRFs from One Way Functions
	Robust Unobfuscatable PRFs from Fully Homomorphic Encryption

	Construction of Public-Key Watermarkable PRFs
	Related Work
	Preliminaries
	Injective One Way Function
	Pseudorandom Objects
	Public Key Encryption
	Statistically Sound NIZK Proof
	The Jump Finding Algorithm
	Secret-Key Watermarkable PRFs

	Functional Encryption with Strong Correctness
	Special Fully Homomorphic Encryption
	The Definition
	The Construction

	Deferred Proofs
	Security Analysis of Public-Key Hinting Watermarkable PRFs from Puncturable PRFs
	Security Analysis of Public-Key Hinting Watermarkable PRFs from Functional Encryption
	Security Analysis of Public-Key Hinting Watermarkable PRFs from Secret-Key Watermarkable PRFs
	Security Analysis of Robust Unobfuscatable PRFs from One Way Functions
	Security Analysis of Special FHE
	Security Analysis of Robust Unobfuscatable PRFs from Fully Homomorphic Encryption
	Security Analysis of the General Construction of Public-Key Watermarkable PRFs

