
Password-Authenticated Key Exchange
from Group Actions

Michel Abdalla1,2 , Thorsten Eisenhofer3, Eike Kiltz3 ,
Sabrina Kunzweiler3 , Doreen Riepel3

1 DFINITY, Zürich, Switzerland
2 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

michel.abdalla@ens.fr
3 Ruhr-Universität Bochum, Bochum, Germany

{thorsten.eisenhofer,eike.kiltz,sabrina.kunzweiler,doreen.riepel}@rub.de

Abstract. We present two provably secure password-authenticated key exchange (PAKE) proto-
cols based on a commutative group action. To date the most important instantiation of isogeny-
based group actions is given by CSIDH. To model the properties more accurately, we extend the
framework of cryptographic group actions (Alamati et al., ASIACRYPT 2020) by the ability of
computing the quadratic twist of an elliptic curve. This property is always present in the CSIDH
setting and turns out to be crucial in the security analysis of our PAKE protocols.
Despite the resemblance, the translation of Diffie-Hellman based PAKE protocols to group actions
either does not work with known techniques or is insecure (“How not to create an isogeny-based
PAKE”, Azarderakhsh et al., ACNS 2020). We overcome the difficulties mentioned in previous
work by using a “bit-by-bit” approach, where each password bit is considered separately.
Our first protocol X-GA-PAKE` can be executed in a single round. Both parties need to send
two set elements for each password bit in order to prevent offline dictionary attacks. The second
protocol Com-GA-PAKE` requires only one set element per password bit, but one party has to send
a commitment on its message first. We also discuss different optimizations that can be used to
reduce the computational cost. We provide comprehensive security proofs for our base protocols
and deduce security for the optimized versions.

Keywords: Password-authenticated key exchange, group actions, CSIDH

https://orcid.org/0000-0002-2447-4329
https://orcid.org/0000-0003-1178-048X
https://orcid.org/0000-0002-6179-2094
https://orcid.org/0000-0002-4990-0929

Table of Contents

1 Introduction . 3
2 Preliminaries . 7
3 (Restricted) Effective Group Actions (with Twists) . 7

3.1 Isogeny-based REGAs . 8
3.2 Computational Assumptions . 9

4 Password Authenticated Key Exchange . 10
5 First Attempt: Protocol GA-PAKE` . 11
6 X-GA-PAKE`: One-Round PAKE from Group Actions . 12

6.1 Description of the Protocol . 12
6.2 Security of X-GA-PAKE` . 12

7 Com-GA-PAKE`: Three-Round PAKE from Group Actions . 22
7.1 Description of the Protocol . 22

8 Variants of the PAKE Protocols . 24
8.1 Increasing the Number of Public Parameters . 24
8.2 Using Twists in the Setup . 24

A Relation to Assumptions from ADMP20 [5] . 26
B Reset Lemma. 27
C Security of GA-PAKE` in the EGA Setting . 28
D Security of X-GA-PAKE`,N and X-GA-PAKEt

` . 35
D.1 X-GA-PAKE`,N . 35
D.2 X-GA-PAKEt

` . 36
E Security of Com-GA-PAKE` and its Variants . 36

E.1 Proof of Theorem 2 . 36
E.2 Variants of Com-GA-PAKE` . 47

F PAKE with Perfect Forward Secrecy . 50
F.1 Perfect Forward Secrecy of GA-PAKE` . 50
F.2 Perfect Forward Secrecy for X-GA-PAKE` . 54
F.3 Perfect Forward Secrecy of Com-GA-PAKE` . 57

1 Introduction

Password-authenticated key exchange (PAKE) enables two parties to securely establish a joint session key
assuming that they only share a low-entropy secret known as the password. This reflects that passwords
are often represented in short human-readable formats and are chosen from a small set of possible values,
often referred to as dictionary.

Since the introduction of PAKE by Bellovin and Merritt [9], many PAKE protocols have been pro-
posed, including SPEKE [22], SPAKE2 [4], J-PAKE [21] and CPace [20]. In particular over the last few
years, the design and construction of PAKE protocols has attracted increasing attention, as the Crypto
Forum Research Group (CFRG) which is part of the Internet Research Task Force (IETF) started a
selection process to decide which PAKE protocols should be used in IETF protocols. Recently, CPace
was selected as the recommended protocol for symmetric PAKE, where both parties share the same
password.

Different models have been used to formally prove security of PAKE protocols, like indistinguishability-
based models or the universal composability framework. In general, a PAKE protocol should resist offline
and online dictionary attacks. On the one hand an adversary should not be able to perform an exhaustive
search of the password offline. On the other hand, an active adversary should only be able to try a small
number of passwords in one protocol execution. Furthermore, forward security ensures that session keys
are still secure, even if the password is leaked at a later point in time. The same should hold if session
keys are disclosed, which should not affect security of other session keys.

CSIDH and Group Actions. The PAKE protocols mentioned above are mostly based on a Diffie-
Hellman key exchange in a prime order group. A promising post-quantum replacement is isogeny-based
key exchange. The different isogeny-based protocols can be divided into two groups. On the one hand
there are constructions based on commutative group actions on a set of elliptic curves. The first proposals
by Couveignes [14], and Stolbunov and Rostovtsev [31] suggested to use the action of the class group
cl(O) on the set of Fq-isomorphism classes of ordinary elliptic curves with endomorphism ring O. In
2018, Castryck et al. showed that this idea can also be adapted to the class group action on the set of
Fp-isomorphism classes of supersingular elliptic curves [13]. The resulting scheme is called CSIDH and
constitutes the first practical key exchange scheme based on class group actions.

In [14], Couveignes introduces hard homogeneous spaces - an abstract framework for group actions
that models isogeny-based assumptions. This framework has been further refined by Alamati et al. in
[5]. Using the abstract setting of cryptographic group actions the authors develop several new crypto-
graphic primitives that can be instantiated with CSIDH. On the other hand there is the Supersingular
Isogeny Diffie-Hellman (SIDH) protocol suggested by Jao and De Feo in 2011 [23]. Here, the set of
Fp2 -isomorphism classes of supersingular elliptic curves is considered. The endomorphism ring of a su-
persingular elliptic curve over Fp2 is non-commutative, hence protocols based on SIDH do not fall into
the group action framework.

We now recall the framework of (restricted) effective group actions introduced in [5]. Throughout, G
denotes a finite commutative group and X a set. We assume that G acts regularly on X via the operator
? : G × X → X . Regularity guarantees that for any x, y ∈ X there exists precisely one group element
g ∈ G satisfying y = g ? x. Broadly speaking, we are interested in group actions, where evaluation is easy,
but the “discrete logarithm problem” is hard. Expressed differently:
– Given x ∈ X and g ∈ G, one can efficiently compute the set element y = g ? x.
– Given x, y ∈ X , it is hard to find the element g ∈ G satisfying y = g ? x.

These properties facilitate the definition of a Diffie-Hellman key exchange. Let x be some fixed set
element. Alice chooses a secret gA ∈ G and publishes yA = gA ? x. Similarly Bob chooses gB ∈ G and
publishes yB = gB ? x. They can both compute the shared secret yAB = gA ? yB = gB ? yA. The group
action computational Diffie-Hellman problem (GA-CDH) then states that given yA and yB, it is hard to
compute yAB. We refer to Section 3 for more precise definitions.

Contributions and Technical Details. Our main contributions are the two PAKE protocols X-GA-
PAKE` and Com-GA-PAKE` based on commutative group actions. These are the first two provably secure
PAKE protocols that are directly constructed from isogenies.
Group Actions with Twists. To date the most important instantiation of isogeny-based group actions
is given by CSIDH. To model this situation more accurately, we suggest an enhancement of the framework

3

User U Server S

crs := (x0, x1) ∈ X 2,

pw := (b1, ..., b`) ∈ {0, 1}`

(u1, ..., u`) $← G` (s1, ..., s`) $← G`

for i ∈ [`] for i ∈ [`]
xU

i := ui ? xbi xS
i := si ? xbi

for i ∈ [`] for i ∈ [`]
zi := ui ? xS

i zi := si ? xU
i

K := H(U,S, xU
1 , ..., xU

` , xS
1 , ..., xS

` , pw, z1, ..., z`)

xU
1 , ..., xU

`

xS
1 , ..., xS

`

Fig. 1. First Attempt: Protocol GA-PAKE`.

which includes the ability of computing the quadratic twist of an elliptic curve efficiently. This property
is inherent to CSIDH (cf. [13]) and it turns out to be crucial in the security analysis of our PAKE
protocols. On the one hand, twisting allows us to construct an offline dictionary attack against our first
natural PAKE attempt GA-PAKE`. Notably, this first protocol is secure for group actions where twisting
is not possible efficiently. On the other hand, twists play an important role in various security reductions
applied to prove the security of our new protocols X-GA-PAKE` and Com-GA-PAKE`. Interestingly, this
is also the case when twists are not part of any of the two problems involved in the reduction.

First attempt: GA-PAKE`. Our two secure PAKE protocols are modifications of GA-PAKE`. In order
to illustrate the main idea behind the protocols, we describe GA-PAKE` in more detail here. The protocol
(Figure 1) can be seen as an adaption of the simple password exponential key exchange protocol SPEKE
[22] to the group action setting. In SPEKE the password is used to hash to a generator of the group.
Then the user and the server establish a session key following the Diffie-Hellman key exchange. Directly
translating this protocol to the group action setting requires to hash the password to a random set
element x ∈ X . For isogeny-based group actions, this is still an open problem, hence (at the moment)
a straight-forward translation of SPEKE is not possible (see also [6, §4.1]). In GA-PAKE` we map the
password to an `-tuple of elements in X instead of hashing to one element. More precisely, two elements
crs = (x0, x1) ∈ X 2 are fixed by a trusted party and a password pw = (b1, . . . , b`) ∈ {0, 1}` is mapped to
the tuple (xb1 , · · · , xb`

) ∈ X `. Then a Diffie-Hellman key exchange is performed with basis xbi for each
i ∈ [`]. This means the user generates ` random group elements u1, . . . , u` and computes the elements
xU

1 = u1?xb1 , . . . , xU
` = u`?xb`

which it sends to the server. Similarly, the server generates ` random group
elements s1, . . . , s` and computes xS

1 = s1 ? xb1 , . . . , xS
` = s` ? xb`

which it sends to the user. Note that the
messages may be sent simultaneously in one round. Then both parties compute zi = ui ? xS

i = si ? xU
i

for each i ∈ [`]. Finally the session key K is computed as K = H(U,S, xU
1 , ..., xU

` , xS
1 , ..., xS

` , pw, z1, ..., z`),
where H : {0, 1}∗ → K is a hash function into the key space K.

In Section 5, we present an offline dictionary attack against GA-PAKE` for group actions with twists.
This attack is not captured by the abstract group action framework defined in [5] which underlines the
necessity of our suggested enhancement of the framework. Roughly speaking, the attack uses the fact
that an attacker can choose its message in dependence on the other party’s message. Using twists, it can
then achieve that certain terms in the key derivation cancel out and the session key no longer depends
on the other party’s input.

Secure PAKE: X-GA-PAKE` and Com-GA-PAKE`. The protocol X-GA-PAKE` is a modified version of
GA-PAKE`. Here security is achieved by doubling the message length in the first round of the protocol
and tripling it in the key derivation. Intuitively the additional parts of the message can be viewed as an
additional challenge for the key derivation that inhibits an attacker from choosing its message depending
on the other party’s message. The security of the protocol relies on a new computational assumption,
SqInv-GA-StCDH, in which the adversary needs to compute the square and the inverse of its input at the
same time (cf. Definition 7, Theorem 1).

4

GA-GapCDH
(Definition 6)

SqInv-GA-StCDH
(Definition 7)

Sim-GA-StCDH
(Definition 12)

ISim-GA-StCDH
(Definition 15)

DSim-GA-StCDH
(Definition 9)

GA-PAKE`
(Figure 1)

EProposition 1

Com-GA-PAKE`
(Figure 10)

X-GA-PAKE`
(Figure 4)

Lemma 4
(using twists)

Lemma 1
(using twists)

Theorem 3

Theorem 2

Theorem 1

insecure instantiation: E
non-tight implication:

Fig. 2. Overview of our security implications between assumptions (round boxes) and schemes (square boxes).
Note that there exists an attack against protocol GA-PAKE` using twists which makes it insecure for CSIDH. Our
two main protocols X-GA-PAKE` and Com-GA-PAKE` are proven secure under protocol-specific assumptions, but
we also give reductions to simpler assumptions making use of the twisting property. Solid arrows denote tight
reductions, dashed arrows non-tight reductions.

Protocol |crs| Elements Evaluations Rounds Assumption Rew. ROM

X-GA-PAKEt
`,N 2N−1 2`/N 5`/N 1 SqInv-GA-StCDH no yes

↪→ (`,N) = (128, 8) 128 32 80

Com-GA-PAKEt
`,N 2N−1 `/N (+1) 2`/N 3 Sq-GA-GapCDH yes yes

↪→ (`,N) = (128, 8) 128 16 (+1) 32

OT-based` [27,12] 1 3` (+6`) 11` 4 GA-CDH yes yes
↪→ ` = 128 1 384 (+768) 1408

OT-based` [5,29,12] 4 > `2 > `2
3 GA-DDH + CCA PKE no no

↪→ ` = 128 4 > 16, 000 > 16, 000

Table 1. Overview of our two optimized protocols Com-GA-PAKEt
`,N and X-GA-PAKEt

`,N and comparison to
the only other CSIDH-based constructions. All protocols use a bit-wise approach, i.e., passwords are treated as
bitstrings of length `. Sample values for ` = 128 are marked in gray. “Elements” refers to the number of set
elements (+ strings or symmetric ciphertexts) that each party has to send. “Evaluations” refers to the number
of group action evaluations that each party has to perform. “Rew.” indicates that rewinding is used to reduce to
the assumption indicated in the table and GA-DDH refers to the group action decisional Diffie-Hellman problem.

The protocol Com-GA-PAKE` is a modification of GA-PAKE` as well. In order to achieve security
against offline dictionary attacks, the protocol requires that the server sends a commitment before re-
ceiving the first message from the user. This prevents that any party chooses its message depending on
the other party’s message. We reduce the security of the protocol to the hardness of standard security
assumptions in the isogeny-based setting (Theorem 2). An overview of our results is provided in Figure 2.
Optimizations. Both X-GA-PAKE` and Com-GA-PAKE` require to compute multiple group action eval-
uations. In the last section, we discuss two optimizations that can be used to reduce the number of
evaluations and show that these do not affect the security of the protocols. The first makes a tradeoff
between the size of the public parameters (the common reference string crs) and the number of elements
that have to be sent as well as the group actions that have to be performed. The second optimization
relies on the possibility to compute twists efficiently, which is yet another advantage of adding this prop-
erty to the framework and which allows to decrease the size of the public parameters by a factor of 2.
We denote the final optimizations by Com-GA-PAKEt

`,N and X-GA-PAKEt
`,N , where N is a parameter for

the crs size. If N equals 1, we omit it. An overview and example of the parameter choice is provided in
Table 1.

Difficulties in constructing PAKE from Isogenies. Terada and Yoneyama [34] proposed isogeny-
based PAKE based on the EKE approach. The basic idea is that the parties perform an SIDH or CSIDH
key exchange where the messages are encrypted with the password. However, as shown in [6], these

5

protocols are not only vulnerable to offline dictionary attacks, but a modified version is even vulnerable
to man-in-the-middle attacks. The main reason for the insecurity is that the elliptic curves used in the key
exchange and encrypted with the password are distinguishable from random bitstrings. An exhaustive
search over all passwords just requires to check if the decrypted message is a valid curve.

Another proposal based on SIDH was made by Taraskin et al. [33]. In this protocol the password is
used to obfuscate the auxiliary points that are exchanged during an SIDH key exchange. While their
obfuscation method prevents a certain type of offline dictionary attack, the authors were not able to
provide a security proof for their protocol. The same is true for a symmetric variant of the protocol
proposed by Soukharev and Hess [32]. Until now these are the only PAKE protocol based on isogenies
which are not broken.

As noted in [6], other popular Diffie-Hellman constructions may also not be directly translated into
the isogeny setting. The main reason is that hashing into the set of supersingular elliptic curves is still
an open problem. This approach is for example used in SPEKE. (However, we show how to non-trivially
translate the idea.) Also the approach of J-PAKE seems difficult as in this scheme different public keys
are combined to obtain certain “mixed” public keys. In isogeny-based protocols, the public keys are
elliptic curves and there is no natural ring structure on the set of elliptic curves that would allow to
combine two elliptic curves.

In the following, we elaborate known generic constructions of PAKE from hash proof systems (HPS)
and oblivious transfer (OT). We explain that the only known isogeny-based HPS is not suitable for
generic constructions. On the other hand, the isogeny-based OT protocols from the literature are suited
for generic constructions. However, we show that the resulting PAKE protocols are less efficient than our
new proposals.

Using the framework of cryptographic group actions, Alamati et al. construct a universal hash proof
system [5, §4.1]. Their HPS is defined for the subset membership problem based on the DDH assumption
for group actions. However, we need a different type of subset membership problem in order to construct
PAKE. In particular, the framework introduced by Gennaro and Lindell [18] and that of follow-up works
[19,24] uses an HPS for the language of ciphertexts of a public-key encryption scheme. More concretely,
given a public key of the encryption scheme, a pair of message and ciphertext (m, c) is in the language
of the HPS if c is a valid decryption of m (under the given public key). Note that the public evaluation
of the HPS can use the encryption randomness as a witness. These kinds of HPS have been constructed
for ElGamal and Cramer-Shoup encryption in the prime-order group setting (e.g., [10]), however it is
less clear how this will work for group actions. We illustrate this for the simpler example of the “group
action ElGamal” encryption scheme. The main obstacle here is that due to the limited structure we
cannot simply encrypt the message by a one-time pad like operation (see for example [28]). Instead,
one can additionally hash the set element that serves as the ElGamal KEM key and then encrypt the
message via XOR. However, this destroys all structure and makes it hard to build a hash proof system
for ciphertexts of this form. Therefore, we leave it as an interesting open problem to build such an HPS
from group actions which can then be used to construct PAKE.

It is well known that PAKE can also be generically constructed from OT. In [12], Canetti et al.
describe two different constructions: the first builds upon a UC-secure OT protocol to construct a UC-
secure PAKE and the second uses a statistically receiver-private OT protocol to construct PAKE in
a game-based security model. In both constructions, the password is interpreted as a bit string. In
particular, for each individual password bit, the PAKE user and server run the OT protocol twice:
once taking the role of the OT sender for randomly chosen messages and once taking the role of the
OT receiver using the password bit to recover one of the messages chosen by the other party. Together
with some additional overhead consisting of nonces and/or ciphertexts that need to be sent to compute
the shared session key, this results in a PAKE protocol of at least three rounds. That means, even for
round-optimal and efficient OT protocols, this approach makes the final construction quite inefficient.
To compare against our protocols, we apply the compiler of [12] to the following two OT protocols.
– Alamati et al. propose a two-message statistically sender-private OT, however we can construct a

similar receiver-private OT protocol based on their dual-mode public-key encryption scheme and
the transformation given in [29]. The resulting OT protocol already uses a “bit-by-bit” approach,
hence the resulting PAKE will have communication and computation complexity quadratic in the
parameter `.

6

– Recently, Lai et al. proposed a new very efficient CSIDH-based OT protocol using twists and the
random oracle model [27]. However, in order to achieve active security the protocol needs four rounds.4
Additionally applying the generic PAKE compiler results in a protocol with complexity linear in `.

The efficiency of the generic constructions compared to our new protocols is given in Table 1. Note that
the computational complexity of the second OT-based protocol as well as the complexity of our protocols
is linear in the password length `. However the constants are important for concrete instantiations.
For ` = 128 and N = 8, our optimized versions of X-GA-PAKE`,N (resp. Com-GA-PAKE`,N) perform
considerably better. In particular, each party then has to send 32 (resp. 16) set elements and perform
80 (resp. 32) group action evaluations. Whereas each party would have to send 384 set elements and
perform 1408 group action evaluations in the OT-based protocol. Additionally, Com-GA-PAKE` is the
only one-round protocol, where both parties send simultaneous flows, which plays an important role for
practical applications.

Open Problems and Future Work. Until now, protocols based on CSIDH or group actions that use
search problems together with the random oracle model do not consider quantum access to the ROM
[35,17,25,26,27]. Since PAKE proofs are already complex, we also did not prove security in the QROM.
Although no reprogramming of the random oracle is necessary, the main difficulty in the QROM is to
simulate the real session keys using the decision oracle. We leave this as future work. We believe that
we can easily allow quantum access to the additional random oracle that is used in Com-GA-PAKE` to
commit on the message. In this case, the output is transferred classically in the first message flow such
that extraction is possible using recently developed techniques [16].

As [27], we use rewinding to reduce the interactive assumption underlying Com-GA-PAKE` to a
standard assumption. An interesting open question is whether current techniques enabling quantum
rewinding are applicable here.

Outline. Section 3 sets the framework for our paper. We introduce (restricted) effective group actions
with twists and define the computational assumptions underlying the security of our protocols. In Section
4, we give some background on the security model that is used in the subsequent sections. In Section
5 we present our first attempt for a PAKE protocol, GA-PAKE`, and explain its security gap. Section
6 contains a thorough analysis of our new secure protocol X-GA-PAKE`. In Section 7 we present the
protocol Com-GA-PAKE` and sketch the security proof. A full proof is provided in Appendix E. Finally,
we discuss possible optimizations of the protocols in Section 8.

2 Preliminaries

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ...,n}. For m = 1, we simply write
[n]. For a set S , s $← S denotes that s is sampled uniformly and independently at random from S .
y ← A(x1, x2, ...) denotes that on input x1, x2, ... the probabilistic algorithm A returns y. AO denotes
that algorithm A has access to oracleO. An adversary is a probabilistic algorithm. We will use code-based
games, where Pr[G ⇒ 1] denotes the probability that the final output of game G is 1.

3 (Restricted) Effective Group Actions (with Twists)

In this section we recall the definition of (restricted) effective group actions from [5], which provides
an abstract framework to build cryptographic primitives relying on isogeny-based assumptions such as
CSIDH. Moreover, we suggest an enhancement of this framework, by introducing (restricted) effective
group actions with twists. This addition is essential for the security analysis of our new PAKE protocols.

Definition 1 (Group Action). Let (G, ·) be a group with identity element id ∈ G, and X a set. A
map

? : G × X → X

is a group action if it satisfies the following properties:
4 The original (three-round) version of this protocol was later found to have a (fixable) bug, cf. https://iacr.

org/submit/files/slides/2021/eurocrypt/eurocrypt2021/20/slides.pdf.

7

https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/20/slides.pdf
https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/20/slides.pdf

1. Identity: id ?x = x for all x ∈ X .
2. Compatibility: (g · h) ? x = g ? (h ? x) for all g, h ∈ G and x ∈ X .

Remark 1. Throughout this paper, we only consider group actions, where G is commutative. Moreover
we assume that the group action is regular. This means that for any x, y ∈ X there exists precisely one
g ∈ G satisfying y = g ? x.

Definition 2 (Effective Group Action). Let (G,X , ?) be a group action satisfying the following
properties:
1. The group G is finite and there exist efficient (PPT) algorithms for membership and equality testing,

(random) sampling, group operation and inversion.
2. The set X is finite and there exist efficient algorithms for membership testing and to compute a

unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to compute g ? x given g and x.
Then we call x̃ ∈ X the origin and (G,X , ?, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often too strong. Therefore we will consider
the weaker notion of restricted effective group actions.

Definition 3 (Restricted Effective Group Action). Let (G,X , ?) be a group action and let g =
(g1, ..., gn) be a generating set for G. Assume that the following properties are satisfied:
1. The group G is finite and n = poly(log(#G)).
2. The set X is finite and there exist efficient algorithms for membership testing and to compute a

unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi ? x and g−1

i ? x.
Then we call (G,X , ?, x̃) a restricted effective group action (REGA).

3.1 Isogeny-based REGAs
An important instantiation of REGAs is provided by isogeny-based group actions. We will focus on the
CSIDH setting and present a refined definition of REGAs tailored to this situation.

Let p be a large prime of the form p = 4 · `1 · · · `n − 1, where the `i are small distinct odd primes.
Fix the elliptic curve E0 : y2 = x3 + x over Fp. The curve E0 is supersingular and its Fp-rational
endomorphism ring is O = Z[π], where π is the Frobenius endomorphism. Let È `p(O) be the set of
elliptic curves defined over Fp, with endomorphism ring O. The ideal class group cl(O) acts on the set
È `p(O), i.e., there is a map

? : cl(O)× È `p(O)→ È `p(O)
([a],E) 7→ [a] ? E ,

satisfying the properties from Definition 1 [13, Theorem 7]. Moreover the analysis in [13] readily shows
that (cl(O), È `p(O), ?,E0) is indeed a REGA.

Elliptic curves in È `p(O) admit equations of the form EA : y2 = x3 + Ax2 + x, which allows to
represent them by their Montgomery coefficient A ∈ Fp. An intrinsic property of the CSIDH group
action which is not covered by Definition 3, is the following. For any curve EA = [a] ? E0 ∈ È `p(O), its
quadratic twist is easily computed as (EA)t = E−A and satisfies the property (EA)t = [a]−1 ? E0.

Definition 4 ((Restricted) Effective Group Action with Twists). We say that a (R)EGA (G,X , ?, x̃)
is a (Restricted) Effective Group Action with Twists ((R)EGAT) if there exists an efficient algorithm that
given x = g ? x̃ ∈ X computes xt = g−1 ? x̃ .

As noted in [13, §10], this property contrasts with the classical group-based setting. It has already been
used for the design of new cryptographic primitives based on CSIDH such as the signature scheme
CSIFiSh [11] and the OT protocol in [27]. Moreover, it is important to consider twists in the security
analysis of schemes based on group actions. In Section 5 we use twists to construct an attack on the
protocol GA-PAKE` showing that it cannot be securely instantiated with the CSIDH group action. On the
other hand, we prove that GA-PAKE` is secure when instantiated with a group action without efficient
twisting (Theorem 3).

8

3.2 Computational Assumptions
For cryptographic applications, we are interested in (restricted) effective group actions that are equipped
with the following hardness properties:
– Given (x, y) ∈ X 2, it is hard to find g ∈ G such that y = g ? x.
– Given (x, y0, y1) ∈ X 3, it is hard to find z = (g0 · g1) ? x, where g0, g1 ∈ G are such that y0 = g0 ? x

and y1 = g1 ? x.
In [5] such group actions are called cryptographic group actions, and in [14] they are called hard homo-
geneous spaces.

The two hardness assumptions are the natural generalizations of the discrete logarithm assumption
and the Diffie-Hellman assumption in the traditional group based setting. In analogy to this setting, we
introduce the notation

GA-CDHx(y0, y1) = g0 ? y1, where g0 ∈ G such that y0 = g0 ? x

and define the decision oracle

GA-DDHx(y0, y1, z) =
{

1 if GA-CDHx(y0, y1) = z,
0 otherwise.

For both, GA-CDH and GA-DDH, we omit the index x if x = x̃, i.e. we set GA-CDHx̃(y0, y1) =
GA-CDH(y0, y1) and GA-DDHx̃(y0, y1, z) = GA-DDH(y0, y1, z).

We now introduce three computational problems GA-StCDH, GA-GapCDH, SqInv-GA-StCDH (Defini-
tions 5 to 7). The security of our PAKE protocols relies on the hardness of these problems.

The first two problems are variants of the standard Diffie-Hellman problem, where an adversary is
either given access to some fixed-basis decision oracles (indicated by the prefix strong) or to a general
decision oracle (indicated by the prefix gap). Note that these problems were already defined and used
in previous work [35,17,25,26]. In contrast the problem from Definition 7 has not been studied in any
previous work. Therefore, we provide evidence for its hardness in Remark 3.

Definition 5 (Group Action Strong Computational Diffie-Hellman Problem (GA-StCDH)).
On input (g ? x̃, h ? x̃) ∈ X 2, the GA-StCDH problem requires to compute the set element (g · h) ? x̃ . To
an effective group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate the advantage function of an
adversary A as

AdvGA-StCDH
XXX (A) := Pr[AGA-DDH(g?x̃,·,·)(g ? x̃, h ? x̃)⇒ (g · h) ? x̃] ,

where (g, h) $← G2 and A has access to decision oracle GA-DDH(g ? x̃, ·, ·).

Definition 6 (Group Action Gap Computational Diffie-Hellman Problem (GA-GapCDH)).
On input (g ? x̃, h ? x̃) ∈ X 2, the GA-GapCDH problem requires to compute the set element (g · h) ? x̃ . To
an effective group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate the advantage function of an
adversary A as

AdvGA-GapCDH
XXX (A) := Pr[AGA-DDH∗(g ? x̃, h ? x̃)⇒ (g · h) ? x̃] ,

where (g, h) $← G2 and A has access to a general decision oracle GA-DDH∗.

Remark 2. A group action where the group action computational Diffie-Hellman problem (without any
decision oracle) is hard, is the same as a weak unpredictable group action as defined by Alamati et al.
[5]. Further details are given in Appendix A. Also note that the ability to compute the twist of a set
element does not help in solving these problems. Hence, all results based on these problems remain true
for (R)EGAT.

Definition 7 (Square-Inverse GA-StCDH (SqInv-GA-StCDH)). On input x = g?x̃ , the SqInv-GA-StCDH
problem requires to find a tuple (y, y0, y1) ∈ X 3 such that y0 = g2 ? y and y1 = g−1 ? y. For a group
action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage function of A as

AdvSqInv-GA-StCDH
XXX (A) := Pr

y0 = GA-CDHxt (x, y)
y1 = GA-CDH(xt , y)

∣∣∣∣∣∣
g $← G

x = g ? x̃
(y, y0, y1)← AO(x)

 ,

where O = {GA-DDHxt (x, ·, ·),GA-DDH(x, ·, ·)}.

9

Remark 3. Intuitively SqInv-GA-StCDH is hard if we assume that the adversary can only use the group
and twist operation. To go into more detail, A can choose y only based on known elements, that is either
based on x̃, its input x or xt .

If A chooses y = α ? x̃ for some α ∈ G, then it can easily compute y1 = α ? xt , but not y0 = αg2 ? x̃.
If A chooses y = α ? x, then computing y1 = α ? x̃ is trivial, but computing y0 = αg3 ? x̃ is hard. If A
chooses y = α ? xt , then computing y0 = α ? x is trivial, but computing y1 = αg−2 ? x̃ is hard.

4 Password Authenticated Key Exchange

Password-authenticated key exchange (PAKE) allows two parties, typically referred to as the user and
the server, to establish a shared session key with the help of a short secret, known as a password,
which can be drawn from a small set of possible values. To prove security of a PAKE protocol, we use
the indistinguishability-based security model by Bellare, Pointcheval and Rogaway [8] and its extension
to multiple test queries by Abdalla, Fouque and Pointcheval [2]. In our proofs, we further adapt the
game-based pseudocode used in [1].

The name spaces for users U and servers S are assumed to be disjoint. Each pair of user and server
(U,S) ∈ U × S holds a shared password pwUS. A party P denotes either a user or server. Each party P
has multiple instances πi

P and each instance has its own state. We denote the session key space by K.
Passwords are bit strings of length ` and we define the password space as PW ({0, 1}`.

Instance State. The state of an instance πi
P is a tuple (e, tr,K , acc) where

– e stores the (secret) ephemeral values chosen by the party in that instance (in our case group ele-
ments).

– tr stores the trace of that instance, i.e., the user and server name involved in the protocol execution
and the messages sent and received by that instance.

– K is the accepted session key.
– acc is a Boolean flag that indicates whether the instance has accepted the session key. As long as the

instance did not receive the last message, acc = ⊥.
To access individual components of the state, we write πt

P.{e, tr,K , acc}.

Partnering. Partnering is defined via matching conversations. In particular, a user instance πt0
U and a

server instance πt1
S are partnered iff

πt0
U .acc = πt1

S .acc = true and πt0
U .tr = πt1

S .tr .

Two user instances are never partnered, neither are two server instances. We define a partner predicate
Partner(πt0

P0
, πt1

P1
) which outputs 1 if the two instances πt0

P0
and πt1

P1
are partnered and 0 otherwise.

Security Experiment. The security experiment is played between a challenger and an adversary A. The
challenger draws a random challenge bit β and creates the public parameters. Then it outputs the public
parameters to A. Now A has access to the following oracles:
– Execute(U, t0,S, t1): one complete protocol execution between user instance πt0

U and server instance
πt1

S . This query models security against passive adversaries.
– SendInit, SendResp, SendTermInit, SendTermResp: send oracles to model security against

active adversaries. SendTermResp is only available for three-message protocols.
– Corrupt(U,S): outputs the shared password pwUS of U and S.
– Reveal(P, t): outputs the session key of instance πt

P.
– Test(P, t): challenge query. Depending on the challenge bit β, the experiment outputs either the ses-

sion key of instance πt
P or a uniformly random key. By πt

P.test = true, we mark an instance as tested.

We denote the experiment by ExpPAKE. The pseudocode is given in G0 in Figure 5, instantiated with our
first PAKE protocol.

10

Freshness. During the game, we register if a query is allowed to prevent trivial wins. Therefore, we define
a freshness predicate Fresh(P, i). An instance πt

P is fresh iff
1. πt

P accepted.
2. πt

P was not queried to Test or Reveal before.
3. At least one of the following conditions holds:

3.1 πt
P accepted during a query to Execute.

3.2 There exists more than one partner instance.
3.3 A unique fresh partner instance exists.
3.4 No partner exists and Corrupt was not queried.

Definition 8 (Security of PAKE). We define the security experiment, partnering and freshness
conditions as above. The advantage of an adversary A against a password authenticated key exchange
protocol PAKE in ExpPAKE is defined as

AdvPAKE(A) :=
∣∣∣∣Pr[ExpPAKE ⇒ 1]− 1

2

∣∣∣∣ .
A PAKE is considered secure if the best the adversary can do is to perform an online dictionary attack.
More concretely, this means that the advantage of the adversary should be negligibly close to qs/|PW|
when passwords are drawn uniformly and independently from PW, where qs is the number of send
queries made by the adversary.

Note that this definition captures weak forward secrecy. We will give an extended security definition
capturing also perfect forward secrecy in Appendix F, as well as proofs for our protocols.

5 First Attempt: Protocol GA-PAKE`

The GA-PAKE` protocol was already introduced in the introduction (Section 1). We refer to Figure 1 for
a description of the protocol. In contrast to the two PAKE protocols from Sections 6 and 7, GA-PAKE`
is not secure for EGATs, i.e., if it is possible to compute twists of set elements efficiently. In particular it
should not be instantiated with the CSIDH-group action. However, it is instructive to examine its security
and it serves as a good motivation for the design of the two secure PAKE protocols X-GA-PAKE` and
Com-GA-PAKE`.

In this section we present an offline dictionary attack against GA-PAKE` for (R)EGAT. However, if
twisting is hard, then we can prove security of GA-PAKE` based on a hardness assumption that is similar
to the simultaneous Diffie-Hellman problem which was introduced to prove the security of TBPEKE and
CPace [30,3]. Our proof for GA-PAKE` is given in Appendix C.
Proposition 1. For EGATs, the protocol GA-PAKE` is vulnerable to offline dictionary attacks.
Proof. We construct an adversary A that takes the role of the server. The attack is summarized in Figure
3. After receiving xU, the adversary computes

xS
i = s̃i ? (xU

i)t = s̃i ? (ui ? xbi)t = (s̃i · u−1
i) ? xt

bi = (s̃i · u−1
i · g−1

bi
) ? x̃

for each i ∈ [`] and sends xS
1 , . . . , xS

` to the user. Then the user computes zi = ui?xS
i = (s̃i ·g−1

bi
)?x̃ = s̃i?xt

bi
.

For each i ∈ [`], the adversary A can now compute zi for both possibilities bi = 0 and bi = 1. This allows
him to compute K for all possible passwords pw ∈ PW ({0, 1}` (being offline). ut

This offline attack can easily be used to win the security experiment with high probability. A only needs
to issue two send queries. It chooses any user U, initiates a session and computes its message xS

1 , ..., xS
`

as described in Figure 3. It reveals the corresponding session key and starts its offline attack by brute
forcing all pw ∈ PW until it finds a match for a candidate pw∗. Now A issues its second send query.
This time it computes the message following the protocol using pw∗ and derives a key K∗. It issues a
test query and gets Kβ . If K∗ = Kβ , then it outputs 0, otherwise it outputs 1. In case there is more than
one password candidate, i.e., two inputs to H lead to the same K∗, then A can issue another send and
reveal query to rule out false positives. In the end, it can still happen that β = 1 and K∗ = K , but this
event only occurs with probability 1/|K|.
Corollary 1. For any adversary A against GA-PAKE` instantiated with an EGAT, we have Pr[ExpGA-PAKE`

⇒
1] = 1− 1

|K| .

11

User U Adversary A

crs := (x0, x1) ∈ X 2,

pw := (b1, ..., b`) ∈ {0, 1}`

(u1, ..., u`) $← G` (s̃1, ..., s̃`) $← G`

for i ∈ [`] for i ∈ [`]
xU

i := ui ? xbi xS
i := s̃i ? (xU

i)t

for i ∈ [`] for i ∈ [`]
zi := ui ? xS

i zi := s̃i ? x t
0 for bi = 0

zi := s̃i ? x t
1 for bi = 1

K := H(U, S, xU
1 , ..., xU

` , xS
1 , ..., xS

` , pw, z1, ..., z`)

xU = (xU
1 , ..., xU

`)

xS = (xS
1 , ..., xS

`)

Fig. 3. Attack against GA-PAKE` using twists.

6 X-GA-PAKE`: One-Round PAKE from Group Actions

In the previous section we showed that GA-PAKE` is insecure when instantiated with an EGAT. Here,
we present the modification X-GA-PAKE`, which impedes the offline dictionary attack presented in that
section. Broadly speaking, the idea is to double the message size of both parties in the first flow. In the
second flow it is then necessary to compute certain “cross products” which is only possible if the previous
message has been honestly generated. The letter X in X-GA-PAKE` stands for cross product.

By means of these modifications, the protocol X-GA-PAKE` is provably secure for EGATs. We show
that its security can be reduced to the hardness of the computational problems GA-StCDH and SqInv-GA-StCDH
(Theorem 1).

6.1 Description of the Protocol

The setup for X-GA-PAKE` is the same as for GA-PAKE`. The crs = (x0, x1) comprises two elements of
the set X , and the shared password is a bit string (b1, . . . , b`) of length `.

In the first flow of the protocol the user generates 2·` random group elements, u1, . . . , u` and û1, . . . , û`.
Using these elements it computes the set elements xU

i = ui ? xbi and x̂U
i = ûi ? xbi for each i ∈ [`] and

sends these to the server.
Simultaneously, the server generates the random group elements s1, . . . , s` and ŝ1, . . . , ŝ`, which it

uses to compute the set elements xS
i = si ? xbi and x̂S

i = ŝi ? xbi for each i ∈ [`] and sends these to the
user.

Upon receiving the set elements from the other party, both the server and the user compute the
following three elements

zi,1 = ui ? xS
i = si ? xU

i , zi,2 = ûi ? xS
i = si ? x̂U

i , zi,3 = ui ? x̂S
i = ŝi ? xU

i ,

for each i ∈ [`]. Finally, these elements are used to compute the session key K . The protocol is sketched
in Figure 4.

6.2 Security of X-GA-PAKE`

We now prove the security of X-GA-PAKE` for EGATs.

Theorem 1 (Security of X-GA-PAKE`). For any adversary A against X-GA-PAKE` that issues at
most qe execute queries and qs send queries and where H is modeled as a random oracle, there exist an
adversary B1 against GA-StCDH and an adversary B2 against SqInv-GA-StCDH such that

AdvX-GA-PAKE`
(A) ≤ AdvGA-StCDH

EGAT (B1) + AdvSqInv-GA-StCDH
EGAT (B2) + qs

|PW|
+ (qs + qe)2

|G|2`
.

12

User U Server S

crs := (x0, x1) ∈ X 2,

pw := (b1, ..., b`) ∈ {0, 1}`

(u1, ..., u`) $← G` (s1, ..., s`) $← G`

(û1, ..., û`) $← G` (ŝ1, ..., ŝ`) $← G`

for i ∈ [`] for i ∈ [`]
xU

i := ui ? xbi xS
i := si ? xbi

x̂U
i := ûi ? xbi x̂S

i := ŝi ? xbi

for i ∈ [`] for i ∈ [`]
zi := (ui ? xS

i , ûi ? xS
i , ui ? x̂S

i) zi := (si ? xU
i , si ? x̂U

i , ŝi ? xU
i)

K := H(U, S, xU
1 , ..., xU

` , x̂U
1 , . . . x̂U

` , xS
1 , ..., xS

` , x̂S
1 , . . . x̂S

` , pw, z1, ..., z`)

xU
1 , ..., xU

` , x̂U
1 , . . . , x̂U

`

xS
1 , ..., xS

` , x̂S
1 , . . . , x̂S

`

Fig. 4. PAKE protocol X-GA-PAKE` from group actions.

Before proving Theorem 1, we will introduce a new computational assumption which is tailored to the
protocol.

Definition 9 (Double Simultaneous GA-StCDH (DSim-GA-StCDH)). On input (x0, x1,w0,w1) =
(g0?x̃, g1?x̃, h0?x̃, h1?x̃) ∈ X 4, the DSim-GA-StCDH problem requires to find a tuple (y, y0, y1, y2, y3) ∈ X 5

such that
(y0, y1, y2, y3) = (g−1

0 · h0 ? y, g−1
0 · h1 ? y, g−1

1 · h0 ? y, g−1
1 · h1 ? y).

For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage function of an adversary
A as

AdvDSim-GA-StCDH
XXX (A) := Pr


y0 = GA-CDHx0(w0, y)
y1 = GA-CDHx0(w1, y)
y2 = GA-CDHx1(w0, y)
y3 = GA-CDHx1(w1, y)

∣∣∣∣∣∣∣∣
(g0, g1, h0, h1) $← G4

(x0, x1) = (g0 ? x̃, g1 ? x̃)
(w0,w1) = (h0 ? x̃, h1 ? x̃)

(y, y0, y1, y2, y3)← AO(x0, x1,w0,w1)

 ,
where O = {GA-DDHxj (wi , ·, ·)}i,j∈{0,1}.

Remark 4. Note that DSim-GA-StCDH may be viewed as the doubled version of the Sim-GA-StCDH
problem defined in the appendix (cf. Definition 12). The latter is an assumption underlying the security
of GA-PAKE` and (in the notation of the above problem) it only requires to find the tuple (y, y0, y2).
For a group action with twists, this admits the trivial solution (y, y0, y2) = (wt

0, xt
0, xt

1). Such a trivial
solution is inhibited by requiring to find y1 and y3 as well.

Lemma 1. In the EGAT setting, the square-inverse GA-StCDH (SqInv-GA-StCDH) implies the double si-
multaneous GA-StCDH (DSim-GA-StCDH). In particular,

AdvDSim-GA-StCDH
EGAT (A) ≤ AdvSqInv-GA-StCDH

EGAT (B) .

Proof. Given a challenge x = g ? x̃ ∈ X and oracles GA-DDH(x, ·, ·), GA-DDHxt (x, ·, ·) for the
SqInv-GA-StCDH problem, we choose three group elements α, β, γ $← G and call the adversary for the
DSim-GA-StCDH problem on input

(x0, x1,w0,w1) = (xt , α ? x, β ? x, γ ? x̃).

13

The corresponding decision oracles can be simulated using the oracles provided by SqInv-GA-StCDH.
More precisely, for any z1, z2 ∈ X :

GA-DDHx0(w0, z1, z2) = GA-DDHxt (x, z1, β
−1 ? z2),

GA-DDHx0(w1, z1, z2) = GA-DDH(x, z1, γ
−1 ? z2),

GA-DDHx1(w0, z1, z2) = GA-DDH(x̃, z1, (α · β−1) ? z2),
GA-DDHx0(w1, z1, z2) = GA-DDH(x, zt

1, (α−1 · γ) ? zt
2).

For the third oracle note that GA-DDH(x̃, z1, (α · β−1) ? z2) = 1 precisely when z1 = (α · β−1) ? z2. For
the forth oracle, note that GA-DDHx0(w1, z1, z2) = 1 iff z2 = (α−1 · γ · g−1) ? z1. This implies

zt
2 = (α · γ−1 · g) ? zt

1 = (α · γ−1) · GA-CDH(x, zt
1).

If the adversary is successful, it returns a tuple (y, y0, y1, y2, y3), where

y0 = g(βg) ? y, y1 = g · γ ? y, y2 = α−1 · β ? y, y3 = (αg)−1γ ? y.

Consequently, the tuple (y, y′0, y′1) = (y, β−1 ? y0, α ? y3) solves the SqInv-GA-StCDH problem. ut

In the following, we give the full proof of Theorem 1.

Proof (of Theorem 1). Let A be an adversary against X-GA-PAKE`. Consider the games in Figures 5, 7,
8.
Game G0. This is the original game, hence

AdvX-GA-PAKE`
(A) ≤ |Pr[G0 ⇒ 1]− 1/2| .

Game G1. In game G1, we raise flag badcoll whenever a server instance computes the same trace as any
other accepted instance (line 69) or a user instance computes the same trace as any other accepted user
instance (line 84). In this case, SendResp or SendTermInit return ⊥. We do the same if a trace that
is computed in an Execute query collides with one of a previously accepted instance (line 28). Due to
the difference lemma,

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[badcoll] .

Note that when badcoll is not raised, each instance is unique and has at most one partner. In or-
der to bound badcoll, recall that the trace of an oracle πt

P consists of (U,S, xU = (xU
1 , ..., xU

`), x̂U =
(x̂U

1 , ...x̂U
`), xS = (xS

1 , ..., xS
`), x̂S = (x̂S

1 , ..., x̂S
`)), where at least one of the message pairs (xU, x̂U) or (xS, x̂S)

was chosen by the game. Thus, badcoll can only happen if all those 2 · ` set elements collide with all
2 · ` set elements of another instance. The probability that this happens for two (fixed) sessions is |G|−2`,
hence the union bound over qe and qs sessions yields

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[badcoll] ≤
(
qe + qs

2

)
· 1
|G|2`

≤ (qe + qs)2

|G|2`
.

Game G2. In game G2, we make the freshness explicit. To each oracle πt
P, we assign an additional variable

πt
P.fr which is updated during the game. In particular, all instances used in execute queries are marked

as fresh (line 34).
An instance is fresh if the password was not corrupted yet (lines 72, 89). Otherwise, it is not fresh

(lines 74, 91). For user instances we also check if there exists a fresh partner (line 87). If A issues a
Corrupt query later, the freshness variable will also be updated (line 103). When the session key of an
instance is revealed, this instance and its potential partner instance are marked as not fresh (line 41). On
a query to test, the game then only checks the freshness variable (line 44). These are only a conceptual
changes, hence

Pr[G2 ⇒ 1] = Pr[G1 ⇒ 1] .

14

GAMES G0-G4
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,T) := (∅,∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0, S, t1)
09 if πt0

U 6= ⊥ or πt1
S 6= ⊥

10 return ⊥
11 (b1, ..., b`) := pwUS �G0-G3
12 u := (u1, ..., u`) $← G`
13 û := (û1, ..., û`) $← G`
14 s := (s1, ..., s`) $← G`
15 ŝ := (ŝ1, ..., ŝ`) $← G`
16 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`) �G0-G3

17 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? xb1 , ..., û` ? xb`) �G0-G3
18 xS := (xS

1 , ..., xS
`) := (s1 ? xb1 , ..., s` ? xb`) �G0-G3

19 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? xb1 , ..., ŝ` ? xb`) �G0-G3
20 for i ∈ [`] : �G0-G3
21 zi := (zi,1, zi,2, zi,3) := (ui ? xS

i , ûi ? xS
i , ui ? x̂S

i) �G0-G3
22 z := (z1, . . . , z`) �G0-G3
23 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃) �G4

24 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? x̃, ..., û` ? x̃) �G4
25 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃) �G4

26 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? x̃, ..., ŝ` ? x̃) �G4

27 if ∃P ∈ U ∪S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4

28 badcoll := true �G1-G4
29 return ⊥ �G1-G4
30 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z) �G0-G2
31 K $← K �G3-G4
32 πt0

U := ((u, û), (U, S, xU, x̂U, xS, x̂S),K , true)
33 πt1

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K , true)
34 (πt0

U .fr, π
t1
S .fr) := (true, true) �G2-G4

35 return (U, xU, x̂U, S, xS, x̂S)

Reveal(P, t)
36 if πt

P.acc 6= true or πt
P.test = true

37 return ⊥
38 if ∃P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, π
t′
P′) = 1

and πt′
P′ .test = true

39 return ⊥
40 ∀(P′, t′) s. t. πt′

P′ .tr = πt
P.tr �G2-G4

41 πt′
P′ .fr := false �G2-G4

42 return πt
P.K

Test(P, t)
43 if Fresh(πt

P) = false return ⊥ �G0-G1
44 if πt

P.fr = false return ⊥ �G2-G4
45 K∗0 := Reveal(P, t)
46 if K∗0 = ⊥ return ⊥
47 K∗1 $← K
48 πt

P.test := true
49 return K∗β

H(U, S, xU, x̂U, xS, x̂S, pw, z)
50 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
51 return K
52 T [U, S, xU, x̂U, xS, x̂S, pw,Z] $← K
53 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendInit(U, t, S)
54 if πt

U 6= ⊥ return ⊥
55 (b1, ..., b`) := pwUS
56 u := (u1, ..., u`) $← G`
57 û := (û1, ..., û`) $← G`
58 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`)

59 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? xb1 , ..., û` ? xb`)
60 πt

U := ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
61 πt

U.fr := false �G2-G4
62 return (U, xU, x̂U)

SendResp(S, t,U, xU, x̂U)
63 if πt

S 6= ⊥ return ⊥
64 (b1, ..., b`) := pwUS
65 (s1, ..., s`) $← G`
66 xS := (xS

1 , ..., xS
`) := (s1 ? xb1 , ..., s` ? xb`)

67 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? xb1 , ..., ŝ` ? xb`)
68 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U,S, xU, x̂U, xS, x̂S) �G1-G4
69 badcoll := true �G1-G4
70 return ⊥ �G1-G4
71 if (U, S) /∈ C �G2-G4
72 πt

S.fr := true �G2-G4
73 else �G2-G4
74 πt

S.fr := false �G2-G4
75 for i ∈ [`] :
76 zi := (zi,1, zi,2, zi,3) := (si ? xU

i , s ? x̂U
i , ŝi ? xU

i)
77 z := (z1, ..., z`)
78 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
79 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K , true)
80 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
81 if πt

U 6= ((u, û), (U,S, xU, x̂U,⊥,⊥),⊥,⊥)
82 return ⊥
83 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4
84 badcoll := true �G1-G4
85 return ⊥ �G1-G4

86 if ∃t′ s. t. πt′
S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt′
S .fr = true �G2-G4

87 πt
U.fr := true �G2-G4

88 else if (U, S) /∈ C �G2-G4
89 πt

U.fr := true �G2-G4
90 else �G2-G4
91 πt

U.fr := false �G2-G4
92 for i ∈ [`] :
93 zi := (zi,1, zi,2, zi,3) := (ui ? xS

i , ûi ? xS
i , ui ? x̂S

i)
94 z := (z1, ..., z`)
95 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
96 πt

U := ((u, û), (U,S, xU, x̂UxS, x̂S),K , true)
97 return true

Corrupt(U,S)
98 if (U, S) ∈ C return ⊥
99 for P ∈ {U, S}

100 if ∃t s. t. πt
P.test = true

and @P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, π

t′
P′) = 1

101 return ⊥
102 ∀πt

P : if @P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, π

t′
P′) = 1 �G2-G4

103 πt
P.fr = false �G2-G4

104 C := C ∪ {(U, S)}
105 return pwUS

Fig. 5. Games G0-G4 for the proof of Theorem 1. A has access to oracles O := {Execute,SendInit,SendResp,
SendTermInit,Reveal,Corrupt,Test,H}.

15

BGA-DDH(x,·,·)
1 (x, y)

00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,T ,Te) := (∅,∅,∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 Stop.

H(U, S, xU, xS, pw, z)
09 if ∃(u, û, s, ŝ)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, u, û, s, ŝ) ∈ Te
10 (b1, ..., b`) := pw
11 for i ∈ [`]
12 (zi,1, zi,2, zi,3) := zi
13 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi,1) = 1

14 Stop with (u−1
i · s−1

i · gbi) ? zi,1
15 if GA-DDH(x, xS

i , (û−1
i · gbi) ? zi,2) = 1

16 Stop with (û−1
i · s−1

i · gbi) ? zi,2
17 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi,3) = 1

18 Stop with (u−1
i · ŝ−1

i · gbi) ? zi,3
19 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
20 return K
21 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
22 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

Execute(U, t0,S, t1)
23 if πt0

U 6= ⊥ or πt1
S 6= ⊥

24 return ⊥
25 (b1, ..., b`) := pwUS
26 u := (u1, ..., u`) $← G`
27 û := (û1, ..., û`) $← G`
28 s := (s1, ..., s`) $← G`
29 ŝ := (ŝ1, ..., ŝ`) $← G`
30 xU := (xU

1 , ..., xU
`) := (u1 ? x, ..., u` ? x)

31 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? x, ..., û` ? x)
32 xS := (xS

1 , ..., xS
`) := (s1 ? y, ..., s` ? y)

33 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? y, ..., ŝ` ? y)
34 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
35 badcoll := true
36 return ⊥
37 ∀z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T
38 for i ∈ [`]
39 (zi,1, zi,2, zi,3) := zi
40 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi,1) = 1

41 Stop with (u−1
i · s−1

i · gbi) ? zi,1
42 if GA-DDH(x, xS

i , (û−1
i · gbi) ? zi,2) = 1

43 Stop with (û−1
i · s−1

i · gbi) ? zi,2
44 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi,3) = 1

45 Stop with (u−1
i · ŝ−1

i · gbi) ? zi,3
46 Te := Te ∪ {U, S, xU, x̂U, xS, x̂S, pwUS, u, û, s, ŝ}
47 K $← K
48 πt0

U := ((u, û), (U, S, xU, x̂U, xS, x̂S),K , true)
49 πt1

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K , true)
50 (πt0

U .fr, π
t1
S .fr) := (true, true)

51 return (U, xU, x̂U, S, xS, x̂S)

Fig. 6. Adversary B1 against GA-StCDH for the proof of Theorem 1. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Oracles SendInit, SendResp,
SendTermInit, Reveal, Corrupt and Test are defined as in G2. Lines written in blue show how B1 simulates
the game.

Game G3. In game G3, we choose random keys for instances queried to Execute. We construct adversary
B1 against GA-StCDH in Figure 6 and show that

|Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ AdvGA-StCDH
EGAT (B1) .

Adversary B1 inputs a GA-StCDH challenge (x, y) = (g ? x̃, h ? x̃) and has access to a decision oracle
GA-DDH(x, ·, ·). First, it generates the crs elements (x0, x1) as in game G3 and then runs adversary A.
Queries to Execute are simulated as follows: It chooses random group elements ui , ûi and si , ŝi for user
and server instances and i ∈ [`], but instead of using (x0, x1) to compute the set elements, B1 uses x for
the user instance and y for the server instance, independent of the password bits bi (lines 30 to 33). We
can rewrite this as

xU
i = ui ? x = (ui · g) ? x̃ = (ui · g · gbi · g−1

bi
) ? x̃ = (ui · g · g−1

bi
)︸ ︷︷ ︸

u′i

?xbi ,

where u′i is the group element that the user actually needs in order to compute the session key. In the
same way, û′i = ûi · g · g−1

bi
, s′i = si · h · g−1

bi
and ŝ′i = ŝi · h · g−1

bi
. Note that zi = (zi,1, zi,2, zi,3) is implicitly

set to

zi,1 = (u′i · s′i) ? xbi = ui · g · si · h · g−1
bi

? x̃ ,

zi,2 = (û′i · s′i) ? xbi = ûi · g · si · h · g−1
bi

? x̃ ,

zi,3 = (u′i · ŝ′i) ? xbi = ui · g · ŝi · h · g−1
bi

? x̃ .

Before choosing a random session key, we check if there has been a query to the random oracle H that
matches the session key (line 37-45). We iterate over the entries in T , where U, S, xU, x̂U, xS, x̂S and pwUS

16

match, and check if one of the entries in z is correct. Note that we can use the following equivalences:

GA-CDHxbi
(xU

i , xS
i) = zi,1 ⇔ GA-CDH(x, xS

i) = (u−1
i · gbi) ? zi,1,

GA-CDHxbi
(x̂U

i , xS
i) = zi,2 ⇔ GA-CDH(x, xS

i) = (û−1
i · gbi) ? zi,2,

GA-CDHxbi
(xU

i , x̂S
i) = zi,3 ⇔ GA-CDH(x, x̂S

i) = (u−1
i · gbi) ? zi,3,

which allows us to use the restricted decision oracle GA-DDH(x, ·, ·). If one of zi,1, zi,2, zi,3 is correct,
B1 aborts and outputs the solution (g · h) ? x̃ which is respectively given by (u−1

i · s−1
i · gbi) ? zi,1,

(û−1
i · s−1

i · gbi) ? zi,2 or (u−1
i · ŝ−1

i · gbi) ? zi,3.
Otherwise, we store the values ui , ûi and si , ŝi in list Te together with the trace and the password

(line 46) and choose a session key uniformly at random. We need list Te to identify relevant queries to H.
In particular, if the trace and password appear in a query, we retrieve the values ui , ûi and si , ŝi to check
whether the provided zi are correct. We do this in the same way as described above using the decision
oracle (lines 09-18). If the oracle returns 1 for any zi,j , B1 aborts and outputs the solution for (g · h) ? x̃
which is respectively given by (u−1

i · s−1
i · gbi) ? zi,1, (û−1

i · s−1
i · gbi) ? zi,2 or (u−1

i · ŝ−1
i · gbi) ? zi,3.

Game G4. In game G4, we remove the password from execute queries. In particular, we do not compute
xU, x̂U, xS, x̂S to the basis xbi , but simply use x̃ . Note that the values have the same distribution as in
the previous game. Also, the group elements u, û, s and ŝ are not used to to derive the key. Hence, this
change is not observable by A and

Pr[G4 ⇒ 1] = Pr[G3 ⇒ 1] .

Game G5. G5 is given in Figure 7. In this game we want to replace the session keys by random for
all fresh instances in oracles SendResp and SendTermInit (lines 62, 83). Therefore, we introduce an
additional independent random oracle Ts which maps only the trace of an instance to a key (lines 63,
84). We keep partner instances consistent, i.e., in case the adversary queries SendTermInit for a user
instance and there exists a fresh partner instance, then we retrieve the corresponding key from Ts and
also assign it to this instance (line 78). For all instances that are not fresh, we simply compute the correct
key using random oracle H (lines 66-69, 87-90). If a session is fresh and there is an inconsistency between
T and Ts, we raise flag bad. This happens in the following cases:
– a server instance is about to compute the session key, the password was not corrupted, but there

already exists an entry in T with the correct password and z (lines 60-61).
– a user instance is about to compute the session key, there exists no partner instance and the password

was not corrupted, but there already exists an entry in T with the correct password and z (lines
81-82).

– the random oracle is queried on some trace that appears in Ts together with the correct password
and z (lines 36-47). At this point, we also check if the password was corrupted in the meantime and
if this is the case and the adversary issues the correct query, we simply output the key stored in Ts
(line 46) as this instance cannot be tested. This case corresponds to perfect forward secrecy which
we cover in Appendix F.2.

When bad is not raised, there is no difference between G4 and G5. Hence,

|Pr[G5 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ Pr[G5 ⇒ bad] .

Game G6. G6 is given in Figure 8. In this game we remove the password from send queries and generate
passwords as late as possible, that is either when the adversary issues a corrupt query (line 21) or after it
has stopped with output β′ (line 07). In SendInit and SendResp we still choose group elements ui , ûi , si
and ŝi uniformly at random, but now compute xU

i , x̂U
i , xS

i and x̂S
i using the origin element (lines 26, 27,

51 and 52). Thus, depending on which password is chosen afterwards, we implicitly set

xU
i = ui · x̃ = (ui · g−1

0) ? x0 = (ui · g−1
1) ? x1

and analogously for x̂U
i , xS

i and x̂S
i . For all instances that are not fresh, we have to compute the real session

key using zi = (si ·g−1
bi
?xU

i , si ·g−1
bi
? x̂U

i , ŝi ·g−1
bi
?xU

i) (line 70) or zi = (ui ·g−1
bi
?xS

i , ûi ·g−1
bi
?xS

i , ui ·g−1
bi
? x̂S

i)
(line 97). Note that the password is already defined for these instances.

Recall that event bad in game G5 is raised whenever there is an inconsistency in the random oracle
queries and the keys of fresh instances. In this game, we split event bad into two different events:

17

GAME G5
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,T ,Ts) := (∅,∅,∅)
03 bad := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0, S, t1)
09 if πt0

U 6= ⊥ or πt1
S 6= ⊥: return ⊥

10 u := (u1, ..., u`) $← G`
11 û := (û1, ..., û`) $← G`
12 s := (s1, ..., s`) $← G`
13 ŝ := (ŝ1, ..., ŝ`) $← G`
14 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃)

15 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? x̃, ..., û` ? x̃)
16 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃)

17 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? x̃, ..., ŝ` ? x̃)
18 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
19 return ⊥
20 K $← K
21 πt0

U := ((u, û), (U, S, xU, x̂U, xS, x̂S),K , true)
22 πt1

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K , true)
23 (πt0

U .fr, π
t1
S .fr) := (true, true)

24 return (U, xU, x̂U, S, xS, x̂S)

SendInit(U, t, S)
25 if πt

U 6= ⊥ return ⊥
26 (b1, ..., b`) := pwUS
27 u := (u1, ..., u`) $← G`
28 û := (û1, ..., û`) $← G`
29 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`)

30 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? xb1 , ..., û` ? xb`)
31 πt

U := ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
32 πt

U.fr := false
33 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)
34 if T [U,S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
35 return K
36 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts and pw = pwUS
37 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
38 for i ∈ [`]
39 z ′i := (ui ? xS

i , ûi ? xS
i , ui ? x̂S

i)
40 z ′ := (z ′1, ..., z ′`)
41 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
42 for i ∈ [`]
43 z ′i := (si ? xU

i , si ? x̂U
i , ŝi ? xU

i)
44 z ′ := (z ′1, ..., z ′`)
45 if z = z ′
46 if (U,S) ∈ C: return K
47 if (U,S) /∈ C: bad := true
48 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
49 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)
50 if πt

S 6= ⊥ return ⊥
51 (b1, ..., b`) := pwUS
52 s := (s1, ..., s`) $← G`
53 ŝ := (ŝ1, ..., ŝ`) $← G`
54 xS := (xS

1 , ..., xS
`) := (s1 ? xb1 , ..., s` ? xb`)

55 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? xb1 , ..., ŝ` ? xb`)
56 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
57 return ⊥
58 if (U, S) /∈ C
59 πt

S.fr := true
60 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and zi := (si ? xU
i , si ? x̂U

i , ŝi ? xU
i) ∀i ∈ [`]

61 bad := true
62 K $← K
63 Ts[U,S, xU, x̂U, xS, x̂S] := (S, (s, ŝ),K)
64 else
65 πt

S.fr := false
66 for i ∈ [`]
67 zi := (si ? xU

i , si ? x̂U
i , ŝi ? xU

i)
68 z := (z1, ..., z`)
69 K := H(U,S, xU, x̂U, xS, x̂S, pwUS, z)
70 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K , true)
71 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
72 if πt

U 6= ((u, û), (U,S, xU, x̂U,⊥,⊥),⊥,⊥)
73 return ⊥
74 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
75 return ⊥
76 if ∃t′ s. t. πt′

S .tr = (U, S, xU, x̂U, xS, x̂S)
and πt′

S .fr = true
77 πt

U.fr := true
78 (S, (s, ŝ),K) := Ts[U, S, xU, x̂U, xS, x̂S]
79 else if (U,S) /∈ C
80 πt

U.fr := true
81 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and zi := (ui ? xS
i , ûi ? xS

i , ui ? x̂S
i) ∀i ∈ [`]

82 bad := true
83 K $← K
84 Ts[U,S, xU, x̂U, xS, x̂S] := (U, (u, û),K)
85 else
86 πt

U.fr := false
87 for i ∈ [`]
88 zi := (ui ? xS

i , ûi ? xS
i , ui ? x̂S

i)
89 z := (z1, ..., z`)
90 K := H(U,S, xU, x̂U, xS, x̂S, pwUS, z)
91 πt

U := ((u, û), (U, S, xU, x̂U, xS, x̂S),K , true)
92 return true

Fig. 7. Game G5 for the proof of Theorem 1. A has access to oracles O := {Execute, SendInit, SendResp,
SendTermInit, Reveal, Corrupt, Test, H}. Reveal, Test and Corrupt are defined as in Figure 5. Differ-
ences to G4 are highlighted in blue.

– badpw captures the event that there exists more than one valid entry in T for the same trace of a
fresh instance, but different passwords.

– badguess happens only if badpw does not happen and is raised if there exists a valid entry in T for
the trace of a fresh instance and the correct password, where the password was not corrupted when

18

GAME G6
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,T ,Ts,Tbad) := (∅,∅,∅,∅)
03 (badguess,badpw) := (false, false)
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U, S, xU, x̂U, xS, x̂S, z, z ′)

s. t. (U,S, xU, x̂U, xS, x̂S, pw, z) ∈ Tbad
and (U, S, xU, x̂U, xS, x̂S, pw′, z ′) ∈ Tbad

09 badpw := true
10 else
11 if ∃U, S, xU, x̂U, xS, x̂S, z

s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ Tbad
12 badguess := true
13 return Jβ = β′K

Corrupt(U,S)
14 if (U, S) ∈ C return ⊥
15 for P ∈ {U, S}
16 if ∃t s. t. πt

P.test = true
and @P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, π
t′
P′) = 1

17 return ⊥
18 ∀πt

P : if @P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, π

t′
P′) = 1

19 πt
P.fr = false

20 C := C ∪ {(U, S)}
21 pwUS

$← PW
22 return pwUS

SendInit(U, t, S)
23 if πt

U 6= ⊥ return ⊥
24 u := (u1, ..., u`) $← G`
25 û := (û1, ..., û`) $← G`
26 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃)

27 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? x̃, ..., û` ? x̃)
28 πt

U := ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
29 πt

U.fr := ⊥
30 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)
31 if T [U,S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
32 return K
33 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts
34 (b1, ..., b`) := pw
35 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
36 for i ∈ [`]
37 z ′i := (ui · g−1

bi
? xS

i , ûi · g−1
bi

? xS
i , ui · g−1

bi
? x̂S

i)
38 z ′ := (z ′1, ..., z ′`)
39 if Ts[U,S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
40 for i ∈ [`]
41 z ′i := (si · g−1

bi
? xU

i , si · g−1
bi

? x̂U
i , ŝi · g−1

bi
? xU

i)
42 z ′ := (z ′1, ..., z ′`)
43 if z = z ′
44 if (U, S) ∈ C and pw = pwUS: return K
45 if (U, S) /∈ C: Tbad := Tbad ∪ {U, S, xU, x̂U, xS, x̂S, pw, z}
46 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
47 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)
48 if πt

S 6= ⊥ return ⊥
49 s := (s1, ..., s`) $← G`
50 ŝ := (ŝ1, ..., ŝ`) $← G`
51 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃)

52 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? x̃, ..., ŝ` ? x̃)
53 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
54 return ⊥
55 if (U, S) /∈ C
56 πt

S.fr := true
57 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
58 (b1, ..., b`) := pw
59 for i ∈ [`]
60 z ′i := (si · g−1

bi
? xU

i , si · g−1
bi

? x̂U
i , ŝi · g−1

bi
? xU

i)
61 z ′ := (z ′1, ..., z ′`)
62 if z = z ′
63 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
64 K $← K
65 Ts[U,S, xU, x̂U, xS, x̂S] := (S, (s, ŝ),K)
66 else
67 πt

S.fr := false
68 (b1, ..., b`) := pwUS
69 for i ∈ [`]
70 zi := (si · g−1

bi
? xU

i , si · g−1
bi

? x̂U
i , ŝi · g−1

bi
? xU

i)
71 z := (z1, ..., z`)
72 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
73 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K , true)
74 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
75 if πt

U 6= ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
76 return ⊥
77 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U,S, xU, x̂U, xS, x̂S)
78 return ⊥
79 if ∃t′ s. t. πt′

S .tr = (U,S, xU, x̂U, xS, x̂S)
and πt′

S .fr = true
80 πt

U.fr := true
81 (S, (s, ŝ),K) := Ts[U, S, xU, x̂U, xS, x̂S]
82 else if (U, S) /∈ C
83 πt

U.fr := true
84 ∀pw, z s. t. (U,S, xU, x̂U, xS, x̂S, pw, z) ∈ T
85 (b1, ..., b`) := pw
86 for i ∈ [`]
87 z ′i := (ui · g−1

bi
? xS

i , ûi · g−1
bi

? xS
i , ui · g−1

bi
? x̂S

i)
88 z ′ := (z ′1, ..., z ′`)
89 if z = z ′
90 Tbad := Tbad ∪ {(U,S, xU, x̂U, xS, x̂S, pw, z)}
91 K $← K
92 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û),K)
93 else
94 πt

U.fr := false
95 (b1, ..., b`) := pwUS
96 for i ∈ [`]
97 zi := (ui · g−1

bi
? xS

i , ûi · g−1
bi

? xS
i , ui · g−1

bi
? x̂S

i)
98 z := (z1, ..., z`)
99 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)

100 πt
U := ((u1, ..., u`), (U,S, xU, x̂U, xS, x̂S),K , true)

101 return true

Fig. 8. Game G6 for the proof of Theorem 1. A has access to oracles O := {Execute,SendInit,SendResp,
SendTermInit,Reveal,Corrupt,Test,H}. Oracles Reveal and Test are defined as in game G4 in Figure 5.
Oracle Execute is defined as in Figure 7. Differences to G5 are highlighted in blue.

the query to H was made.

19

To identify the different events, we introduce a new set Tbad. For all fresh instances in SendResp and
SendTermInit, we now iterate over all entries in T that contain the corresponding trace. We check if
the given password and z are valid for this trace by computing the real values z ′ in the same way as
for non-fresh instances. If z = z ′, we add this entry to the set Tbad (lines 57-63, 84-90). We essentially
do the same when the random oracle H is queried on a trace that appears in Ts. Here, the adversary
specifies the password and we check if z is valid for that password using the ui , ûi stored in Ts for user
instances and si , ŝi for server instances. If z is valid and the instance is still fresh, we add the query to
Tbad (lines 33-45). In case the password was corrupted in the meantime, we output the key stored in Ts
as introduced in the previous game.

After the adversary terminates, we check Tbad whether event badpw (line 09) or event badguess
(line 12) occurred. We will bound these events below. First note that whenever bad is raised in G5, then
either flag badguess or badpw is raised in G6, thus

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess] .

Finally, we bound the probabilities of the two events. We start with badpw. In Figure 9, we construct
adversary B2 against DSim-GA-StCDH that simulates G6.

We show that when badpw occurs, then B2 can solve DSim-GA-StCDH. Hence,

Pr[G6 ⇒ badpw] ≤ AdvDSim-GA-StCDH
EGA (B2) .

Adversary B2 inputs (x0, x1,w0,w1), where x0 = g0 ? x̃, x1 = g1 ? x̃, w0 = h0 ? x̃ and w1 = h1 ? x̃ for
group elements g0, g1, h0, h1 ∈ G chosen uniformly at random. Adversary B2 also has access to decision
oracles GA-DDHxj (wi , ·, ·) for (i, j) ∈ {0, 1}2. It runs adversary A on (x0, x1). Queries to SendInit are
simulated as follows: B2 chooses group elements ui and ûi uniformly at random and sets

xU
i = ui ? w0 = (ui · h0 · g−1

0) ? x0 = (ui · h0 · g−1
1) ? x1 ,

x̂U
i = ûi ? w1 = (ûi · h1 · g−1

0) ? x0 = (ûi · h1 · g−1
1) ? x1 .

The simulation of xS
i and x̂S

i in SendResp is done in the same way, choosing random si and ŝi . In case the
server instance is fresh, we must check if there already exists an entry in T that causes an inconsistency.
As in G6, we iterate over all pw, z, in T that contain the trace of this instance. In particular, we must
check whether

zi,1 = GA-CDHxbi
(xU

i , xS
i) ⇔ GA-CDHxbi

(w0, xU
i) = s−1

i ? zi,1 ,

zi,2 = GA-CDHxbi
(x̂U

i , xS
i) ⇔ GA-CDHxbi

(w0, x̂U
i) = s−1

i ? zi,2 ,

zi,3 = GA-CDHxbi
(xU

i , x̂S
i) ⇔ GA-CDHxbi

(w1, xU
i) = ŝ−1

i ? zi,3 ,

which can be done with the decision oracles GA-DDHxbi
(wj , ·, ·). If all zi are valid, then we add this

entry to Tbad (lines 56-59).
If the instance is not fresh, then we have to compute the correct key. We check list T for a valid

entry z as explained above and if it exists, we assign this value to the session key (line 66). Otherwise,
we choose a random key and add a special entry to T , which instead of z contains the secret group
elements si and ŝi (line 69) so that we can patch the random oracle later. SendTermInit is simulated
analogously, using the secret group elements ui and ûi .

Now we look at the random oracle queries. If the trace is contained in set Ts which means the
corresponding instance was fresh when the send query was issued, we check if z is valid using the
GA-DDH oracle. We do this as described above, depending on whether it is a user or a server instance
(lines 25, 31). In case z is valid, we first check if the instance is still fresh (i.e., the password was not
corrupted in the meantime) and if this is the case, we add the query to Tbad (lines 28, 34). Otherwise,
if the password was corrupted and is specified in the query, we return the session key stored in Ts (lines
30, 36).

Next, we check if the query matches a special entry in T that was added in SendResp or SendTermInit
for a non-fresh instance, which means we have to output the same key that was chosen before. Again,
we can use the GA-DDH oracle and differentiate between user and server instances (lines 37-44).

After A terminates with output β′, B2 chooses the passwords which have not been generated in a
Corrupt query yet. If badpw occurred (lines 05-13), then there must be two entries in Tbad for the same

20

B
{GA-DDHxj (wi ,·,·)}i,j∈{0,1}
2 (x0, x1,w0,w1)

00 (C,T ,Ts,Tbad) := (∅,∅,∅,∅)
01 β $← {0, 1}
02 β′ ← AO(x0, x1)
03 for (U, S) ∈ U × S \ C
04 pwUS

$← PW
05 if ∃pw, pw′, (U, S, xU, x̂U, xS, x̂S, z, z ′)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ Tbad
and (U, S, xU, x̂U, xS, x̂S, pw′, z ′) ∈ Tbad

06 (b1, ..., b`) := pw
07 (b′1, ..., b′`) := pw′
08 Find first index i such that bi 6= b′i
09 W.l.o.g. let bi = 0, b′i = 1
10 if Ts[U,S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
11 Stop with (xS

i , u−1
i ? zi,1, û−1

i ? zi,2, u−1
i ? z ′i,1, û−1

i ? z ′i,2)
12 if Ts[U,S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
13 Stop with (xU

i , s−1
i ? zi,1, ŝ−1

i ? zi,3, s−1
i ? z ′i,1, ŝ−1

i ? z ′i,3)

SendInit(U, t, S)
14 if πt

U 6= ⊥ return ⊥
15 u := u1, ..., u`) $← G`
16 û := (û1, ..., û`) $← G`
17 xU := (xU

1 , ..., xU
`) := (u1 ? w0, ..., u` ? w0)

18 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? w1, ..., û` ? w1)
19 πt

U := ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
20 return (U, xU, x̂U)

H(U,S, xU, x̂U, xS, x̂S, pw, z)
21 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
22 return K
23 if (U,S, xU, x̂U, xS, x̂S) ∈ Ts
24 (b1, ..., b`) := pw
25 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
26 if GA-DDHxbi

(w0, xS
i , u−1

i ? zi,1) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w1, xS
i , û−1

i ? zi,2) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w0, x̂S
i , u−1

i ? zi,3) = 1 ∀i ∈ [`]
27 if (U,S) /∈ C
28 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
29 if (U, S) ∈ C and pw = pwUS
30 return K
31 if Ts[U,S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
32 if GA-DDHxbi

(w0, xU
i , s−1

i ? zi,1) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w0, x̂U
i , s−1

i ? zi,2) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w1, xU
i , ŝ−1

i ? zi,3) = 1 ∀i ∈ [`]
33 if (U, S) /∈ C
34 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
35 if (U, S) ∈ C and pw = pwUS
36 return K
37 if ∃(u, û) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (u, û)) ∈ T
38 (b1, ..., b`) := pw
39 if GA-DDHxbi

(w0, xS
i , u−1

i ? zi,1) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w1, xS
i , û−1

i ? zi,2) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w0, xS
i , u−1

i ? zi,3) = 1 ∀i ∈ [`]
40 return T [U, S, xU, x̂U, xS, x̂S, pw, (u, û)]
41 else if ∃(s, ŝ) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ) ∈ T
42 (b1, ..., b`) := pw
43 if GA-DDHxbi

(w0, xU
i , s−1

i ? zi,1) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w0, x̂U
i , s−1

i ? zi,2) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w1, xU
i , ŝ−1

i ? zi,3) = 1 ∀i ∈ [`]
44 return T [U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ)]
45 T [U,S, xU, x̂U, xS, x̂S, pw, z] $← K
46 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU)
47 if πt

S 6= ⊥ return ⊥
48 s := (s1, ..., s`) $← G`
49 ŝ := (ŝ1, ..., ŝ`) $← G`
50 xS := (xS

1 , ..., xS
`) := (s1 ? w0, ..., s` ? w0)

51 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? w1, ..., ŝ` ? w1)
52 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
53 return ⊥
54 if (U, S) /∈ C
55 πt

S.fr := true
56 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
57 (b1, ..., b`) := pw
58 if GA-DDHxbi

(w0, xU
i , s−1

i ? zi,1) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w0, x̂U
i , s−1

i ? zi,2) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w1, xU
i , ŝ−1

i ? zi,3) = 1 ∀i ∈ [`]
59 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
60 K $← K
61 Ts[U, S, xU, x̂U, xS, x̂S] := (S , (s, ŝ),K)
62 else
63 πt

S.fr := false
64 (b1, ..., b`) := pwUS
65 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and GA-DDHxbi
(w0, xU

i , s−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂U

i , s−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, xU

i , ŝ−1
i ? zi,3) = 1 ∀i ∈ [`]

66 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
67 else
68 K $← K
69 T [U, S, xU, x̂U, xS, x̂S, pwUS, (s, ŝ)] := K
70 πt

S := ((s, ŝ), (U,S, xU, x̂U, xS, x̂S),K , true)
71 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
72 if πt

U 6= ((u, û), (U,S, xU, x̂U,⊥,⊥),⊥,⊥) return ⊥
73 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S) return ⊥
74 if ∃t′ s. t. πt′

S .tr = (U, S, xU, x̂U, xS, x̂S) and πt′
S .fr = true

75 πt
U.fr := true

76 (S, (s, ŝ),K) := Ts[U,S, xU, x̂U, xS, x̂S]
77 else if (U,S) /∈ C
78 πt

U.fr := true
79 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
80 (b1, ..., b`) := pw
81 if GA-DDHxbi

(w0, xS
i , u−1

i ? zi,1) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w1, xS
i , û−1

i ? zi,2) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w0, x̂S
i , u−1

i ? zi,3) = 1 ∀i ∈ [`]
82 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
83 K $← K
84 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û),K)
85 else
86 πt

S.fr := false
87 (b1, ..., b`) := pwUS
88 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and GA-DDHxbi
(w0, xS

i , u−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, xS

i , û−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂S

i , u−1
i ? zi,3) = 1 ∀i ∈ [`]

89 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
90 else
91 K $← K
92 T [U, S, xU, x̂U, xS, x̂S, pwUS, (u, û)] := K
93 πt

U := ((u, û), (U,S, xU, x̂U, xS, x̂S),K , true)
94 return true

Fig. 9. Adversary B2 against DSim-GA-StCDH for the proof of Theorem 1. A has access to ora-
cles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Oracles Execute,
Reveal, Corrupt and Test are defined as in G6. Lines written in blue show how B2 simulates the game.

21

trace and different passwords pw 6= pw′ along with values z and z ′. Let i be the first index where the
two passwords differ, i.e., bi 6= b′i . Without loss of generality assume that bi = 0 and b′i = 1, otherwise
swap pw, z and pw′, z ′. If the entries in Tbad are those of a user instance, we retrieve the secret group
elements u,ûi from Ts.

Recall that the DSim-GA-StCDH problem requires to compute the four values y0 = GA-CDHx0(w0, y),
y1 = GA-CDHx0(w1, y), y2 = GA-CDHx1(w0, y) and y3 = GA-CDHx1(w1, y), where y can be chosen by the
adversary. B2 sets y = xS

i , and outputs y and

y0 = u−1
i ? zi,1 = GA-CDHx0(u−1

i ? xU
i , xS

i) = GA-CDHx0(w0, xS
i) ,

y1 = û−1
i ? zi,2 = GA-CDHx0(û−1

i ? x̂U
i , xS

i) = GA-CDHx0(w1, xS
i) ,

y2 = u−1
i ? z ′i,1 = GA-CDHx1(u−1

i ? xU
i , xS

i) = GA-CDHx1(w0, xS
i) ,

y3 = û−1
i ? z ′i,2 = GA-CDHx1(û−1

i ? x̂U
i , xS

i) = GA-CDHx1(w1, xS
i) .

If the instance is a server instance, B2 outputs (y, y0, y1, y2, y3) = (xU
i , s−1

i ? zi,1, ŝ−1
i ? zi,3, s−1

i ? z ′i,1, ŝ−1
i ?

z ′i,3). This concludes the analysis of badpw.

Next, we analyze event badguess. Recall that badguess happens only if badpw does not happen. Hence,
for each instance there is at most one entry in Tbad and the size of Tbad is at most qs. As all entries were
added before the corresponding password was sampled, the probability is bounded by

Pr[G6 ⇒ badguess] ≤
qs
|PW|

.

Finally, note that if none of the bad events happens in G6, all session keys output by Test are uniformly
random and the adversary can only guess β. Hence, Pr[G6 ⇒ 1] = 1

2 . Collecting the probabilities and
using Equation Lemma 1 yields the bound in Theorem 1. ut

7 Com-GA-PAKE`: Three-Round PAKE from Group Actions
In this section we present a second modification of GA-PAKE`, which can be securely instantiated with
an EGAT. The protocol Com-GA-PAKE` extends GA-PAKE` by a commitment that has to be sent before
sending the actual messages. In the first round, the server sends a commitment on those set elements it
will send in the next round, thus ensuring that the server cannot choose the set elements depending on
the message it receives from the user. This is the crucial step in the attack against GA-PAKE`. In the
second round, the user sends its message to the server and only after receiving that message, the servers
sends its message to the user. While this protocol adds two rounds to the original protocol, the total
computational cost is lower than for X-GA-PAKE`.

7.1 Description of the Protocol
The setup for Com-GA-PAKE` is the same as for GA-PAKE`, where the crs = (x0, x1) comprises two set
elements, and the shared password is a bit string (b1, . . . , b`) of length `.

The difference to GA-PAKE` is that before sending the set elements xU and xS, the server commits
on xS. More precisely, in the first round the server sends com = G(xS), where G : {0, 1}∗ → {0, 1}λ is a
hash function and λ is a parameter of the protocol. The user only accepts the session key after verifying
that com corresponds to xS. The session key K is derived as in GA-PAKE` but additionally takes the
commitment com as input. The protocol is sketched in Figure 10. The security of Com-GA-PAKE` for
EGATs is established in the following theorem.
Theorem 2 (Security of Com-GA-PAKE`). For any adversary A against Com-GA-PAKE` that issues
at most qe execute queries, qs send queries and at most qG and qH queries to random oracles G and H,
there exist an adversary B1 against GA-StCDH and an adversary B2 against GA-GapCDH such that

AdvCom-GA-PAKE`
(A) ≤ AdvGA-StCDH

EGAT (B1) + qs` ·
√

AdvGA-GapCDH
EGAT (B2) + (qs + qe)2

|G|`
+ qGqs
|G|`

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

22

User U Server S

crs := (x0, x1) ∈ X 2,

pw := (b1, ..., b`) ∈ {0, 1}`

(s1, ..., s`) $← G`

for i ∈ [`]
xS

i := si ? xbi

(u1, ..., u`) $← G` com = G(xS
1 , . . . , xS

`)
for i ∈ [`]

xU
i := ui ? xbi

if com = G(xS
1 , . . . , xS

`)
for i ∈ [`] for i ∈ [`]

zi := ui ? xS
i zi := si ? xU

i

K := H(U, S, xU
1 , ..., xU

` , xS
1 , ..., xS

` , com, pw, z1, ..., z`)

com

xU
1 , ..., xU

`

xS
1 , ..., xS

`

Fig. 10. PAKE protocol Com-GA-PAKE` from group actions.

where λ is the output length of G in bits.

The proof is similar to the one of Theorem 1 so we will only sketch it here. The full proof is given in
Appendix E.

Proof (Sketch). After ensuring that all traces are unique, we need to deal with the commitment and in
particular collisions. First, we require that there are never two inputs to the random oracle G that return
the same commitment. This is to ensure that the adversary cannot open a commitment to a different
value, which might depend on previous messages.

Second, we need to ensure that after the adversary has seen a commitment, it does not query G on
the input, which is the hiding property of the commitment. What we actually do here is that we choose
a random commitment in the first round. Only later we choose the input and patch the random oracle
accordingly.

Now we can replace the session keys of instances which are used in execute queries. Here, the freshness
condition allows the adversary to corrupt the password. However, as both xS and xU are generated by the
experiment, the only chance to notice this change is to solve the GA-StCDH problem, where the decision
oracle is required to simulate instances correctly.

In order to replace the session keys of fresh instances which are used in send queries, we make the
key independent of the password. The session key of a fresh instance is now defined by the trace of
that instance. The only issue that may arise here is an inconsistency between the session key that is
derived using the trace and the session key that is derived using the random oracle H. Whenever such
an inconsistency occurs, we differentiate between two cases:
– There exists more than one valid entry in TH for the same trace of a fresh instance, but different

passwords.
– There exists a valid entry in TH for the trace of a fresh instance and the correct password, where the

password was not corrupted when the query to H was made.
Finally, we bound the probabilities of the two cases. Similar to Theorem 1, we will define a new com-
putational problem that reflects exactly the interaction in the protocol. We show that this problem is
implied by GA-GapCDH using the reset lemma. The general idea is that the adversary can always com-
pute the session key for one password guess, but not for a second one. After excluding this, we choose
the actual password, which is possible because session keys are computed independently of the password.
Thus, looking at one fixed instance, the probability that the adversary guessed the password correctly is
1/|PW|. ut

23

8 Variants of the PAKE Protocols

Both protocols X-GA-PAKE` and Com-GA-PAKE` require that the user and the server generate multiple
random group elements and evaluate their action on certain set elements. In this section we present two
optimizations that allow us to reduce the number of random group elements and more importantly the
number of necessary group action evaluations.

8.1 Increasing the Number of Public Parameters

In X-GA-PAKE` and Com-GA-PAKE` the common reference string is set to crs := (x0, x1) ∈ X 2. Increasing
the number of public parameters allows to reduce the number of group action evaluations in the execution
of the protocol. The idea is similar to the optimizations deployed to speed up the CSIDH-based signatures
schemes SeaSign [15] and CSI-FiSh [11]. We refer to Table 1 in the introduction for an overview and
example of the parameter choice.

We explain the changes on the basis of protocol X-GA-PAKE`. A security analysis for the variant
is provided in Appendix D.1. The analysis for the variant of Com-GA-PAKE` is similar and is given in
Appendix E.2. For some positive integer N dividing `, we set

crs := (x0, . . . , x2N−1) ∈ X 2N
.

As before, the password is a bitstring of length `, but now we divide it into `/N blocks of length N and
write

pw = (b1, ..., b`/N) ∈ {0, ..., 2N − 1}`/N .

In particular xbi refers to one of the 2N different set elements in the crs. The general outline of the
protocol does not change. The only difference is that in the first step both the server and the user only
generate 2 · `/N random group elements (instead of 2 · `). Hence they only need to perform 2 · `/N group
action evaluations in the first round and 3 ·`/N evaluations in the session key derivation. We write X-GA-
PAKE`,N for this variant of the protocol.

8.2 Using Twists in the Setup

Both X-GA-PAKE` and Com-GA-PAKE` require that some trusted party generates two random set el-
ements crs = (x0, x1). Here, we shortly discuss the setup where x1 is replaced by the twist of x0, i.e.
crs := (x0, xt

0).
This simplification is particularly helpful when applied to one of the variants from the previous subsec-

tion. These modified versions require to generate 2N random set elements for the crs. Using twists it suf-
fices to generate 2N−1 random set elements. More precisely, a trusted party provides (x0, . . . , x2N−1−1) ∈
X 2N−1 , then user and server set xi+2N−1 = xt

i for each i ∈ [0, 2N−1 − 1].
The security of X-GA-PAKEt

` and Com-GA-PAKEt
` (the twisted versions of X-GA-PAKE` and Com-GA-PAKE`)

are discussed in Appendices D.2 and E.2, respectively.

Acknowledgments

Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler and Doreen Riepel were supported by the DFG
under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

References

1. Abdalla, M., Barbosa, M.: Perfect forward security of SPAKE2. Cryptology ePrint Archive, Report 2019/1194
(2019), https://eprint.iacr.org/2019/1194

2. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key exchange in the three-party
setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer, Heidelberg (Jan 2005).
https://doi.org/10.1007/978-3-540-30580-4_6

3. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. Cryptology ePrint Archive, Report 2021/114
(2021), https://eprint.iacr.org/2021/114

24

https://eprint.iacr.org/2019/1194
https://eprint.iacr.org/2021/114

4. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange protocols. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer, Heidelberg (Feb 2005). https://doi.org/10.1007/978-
3-540-30574-3_14

5. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In:
Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 411–439. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64834-3_14

6. Azarderakhsh, R., Jao, D., Koziel, B., LeGrow, J.T., Soukharev, V., Taraskin, O.: How not to create an
isogeny-based PAKE. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 20, Part I. LNCS,
vol. 12146, pp. 169–186. Springer, Heidelberg (Oct 2020). https://doi.org/10.1007/978-3-030-57808-4_9

7. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: Proofs of security against impersonation
under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177.
Springer, Heidelberg (Aug 2002). https://doi.org/10.1007/3-540-45708-9_11

8. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (May 2000).
https://doi.org/10.1007/3-540-45539-6_11

9. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols secure against dictionary
attacks. In: 1992 IEEE Symposium on Security and Privacy. pp. 72–84. IEEE Computer Society Press (May
1992). https://doi.org/10.1109/RISP.1992.213269

10. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and effi-
cient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 449–475. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-40041-4_25

11. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based signatures through class
group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp.
227–247. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-34578-5_9

12. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password authenticated key exchange
via oblivious transfer. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
449–466. Springer, Heidelberg (May 2012). https://doi.org/10.1007/978-3-642-30057-8_27

13. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient post-quantum commu-
tative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp.
395–427. Springer, Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03332-3_15

14. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006), https:
//eprint.iacr.org/2006/291

15. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from class group actions. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 759–789. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17659-4_26

16. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum random-oracle model.
Cryptology ePrint Archive, Report 2021/280 (2021), https://eprint.iacr.org/2021/280

17. Fujioka, A., Takashima, K., Yoneyama, K.: One-round authenticated group key exchange from isogenies. In:
Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS, vol. 11821, pp. 330–338. Springer, Heidelberg (Oct
2019). https://doi.org/10.1007/978-3-030-31919-9_20

18. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Bi-
ham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (May 2003).
https://doi.org/10.1007/3-540-39200-9_33, https://eprint.iacr.org/2003/032.ps.gz

19. Groce, A., Katz, J.: A new framework for efficient password-based authenticated key exchange. In: Al-
Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010. pp. 516–525. ACM Press (Oct 2010).
https://doi.org/10.1145/1866307.1866365

20. Haase, B., Labrique, B.: AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT. IACR TCHES
2019(2), 1–48 (2019). https://doi.org/10.13154/tches.v2019.i2.1-48, https://tches.iacr.org/index.php/
TCHES/article/view/7384

21. Hao, F., Ryan, P.: J-PAKE: Authenticated key exchange without PKI. Cryptology ePrint Archive, Report
2010/190 (2010), https://eprint.iacr.org/2010/190

22. Jablon, D.P.: Strong password-only authenticated key exchange. ACM SIGCOMMComputer Communication
Review 26(5), 5–26 (1996)

23. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies.
In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011. pp. 19–34.
Springer, Heidelberg (Nov / Dec 2011). https://doi.org/10.1007/978-3-642-25405-5_2

24. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In: Ishai, Y. (ed.)
TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer, Heidelberg (Mar 2011). https://doi.org/10.1007/978-3-
642-19571-6_18

25. Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated key exchange from random
self-reducibility on CSIDH. In: Hong, D. (ed.) ICISC 20. LNCS, vol. 12593, pp. 58–84. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-68890-5_4

25

https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2021/280
https://eprint.iacr.org/2003/032.ps.gz
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://eprint.iacr.org/2010/190

26. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In:
Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) Selected Areas in Cryptography. pp. 451–479. Springer
International Publishing, Cham (2021)

27. Lai, Y.F., Galbraith, S.D., de Saint Guilhem, C.: Compact, efficient and UC-secure isogeny-based oblivious
transfer. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 213–241.
Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5_8

28. Moriya, T., Onuki, H., Takagi, T.: SiGamal: A supersingular isogeny-based PKE and its application to a
PRF. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 551–580. Springer,
Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-64834-3_19

29. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious trans-
fer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (Aug 2008).
https://doi.org/10.1007/978-3-540-85174-5_31

30. Pointcheval, D., Wang, G.: VTBPEKE: Verifier-based two-basis password exponential key exchange. In:
Karri, R., Sinanoglu, O., Sadeghi, A.R., Yi, X. (eds.) ASIACCS 17. pp. 301–312. ACM Press (Apr 2017)

31. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies. Cryptology ePrint Archive,
Report 2006/145 (2006), https://eprint.iacr.org/2006/145

32. Soukharev, V., Hess, B.: PQDH: A quantum-safe replacement for Diffie-Hellman based on SIDH. Cryptology
ePrint Archive, Report 2019/730 (2019), https://eprint.iacr.org/2019/730

33. Taraskin, O., Soukharev, V., Jao, D., LeGrow, J.: An isogeny-based password-authenticated key establishment
protocol. Cryptology ePrint Archive, Report 2018/886 (2018), https://eprint.iacr.org/2018/886

34. Terada, S., Yoneyama, K.: Password-based authenticated key exchange from standard isogeny assumptions.
In: Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS, vol. 11821, pp. 41–56. Springer, Heidelberg (Oct
2019). https://doi.org/10.1007/978-3-030-31919-9_3

35. Yoneyama, K.: Post-quantum variants of iso/iec standards: Compact chosen ciphertext secure key encap-
sulation mechanism from isogeny. In: Proceedings of the 5th ACM Workshop on Security Standardisation
Research Workshop. p. 13–21. SSR’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3338500.3360336

Overview of Appendices

In Appendix A, we establish the relation between our assumptions and the computational assumptions
in [5]. In Appendix B, we recall the Reset Lemma which is used in several security reductions. In
Appendix C, we show that our first attempt GA-PAKE` would be secure if an adversary was not able to
compute twists efficiently. In Appendix D, we provide a security analysis for the two variants of X-GA-
PAKE`. Appendix E contains the security analysis of Com-GA-PAKE` as well as an analysis for different
variants of the protocol. Finally, Appendix F deals with the perfect forward secrecy of GA-PAKE`, X-GA-
PAKE` and Com-GA-PAKE`.

A Relation to Assumptions from ADMP20 [5]

We first recall the definitions of a weak unpredictable permutation and weak unpredictable group action
from [5] and then relate them to the group action computational Diffie-Hellman problem from Section 3.

Definition 10 (Weak Unpredictable Permutation [5]). Let K, X and Y be sets indexed by λ,
and let DK and DX be distributions on K and X respectively. Let F$

k be a randomized oracle that when
queried, samples x ← DX and outputs (x,F(k, x)). A (DK ,DX)-weak UP (wUP) is a family of efficiently
computable permutations {F(k, ·) : X → X}k∈K such that for all PPT adversaries A we have

Pr[AF$
k (x∗) = F(k, x∗)] ≤ negl(λ),

where k ← DK , and x∗ ← DX . If DK and DX are uniform distributions, then we simply speak of a wUP
family.

Definition 11 (Weak Unpredictable Group Action [5]). A group action (G,X , ?) is (DG ,DX)-
weakly unpredictable if the family of efficiently computable permutations {πg : X → X}g∈G is (DG ,DX)-
weakly unpredictable, where πg is defined as πg : x 7→ g ? x and DG, DX are distributions on G, X
respectively.

26

https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2019/730
https://eprint.iacr.org/2018/886

Proposition 2. If the group action computational Diffie-Hellman problem is hard for a group action,
then the group action is weak unpredictable.

Proof. Let A be an adversary against weak unpredictability, i.e., given access to an oracle πg, where
g ← DG and x∗ ← DX , A will compute g ? x∗. We use A to construct an adversary B against the group
action computational Diffie-Hellman problem. B inputs (x, y) = (g ? x̃, h ? x̃) and has to compute gh ? x̃.
Therefore, it runs A on x∗ := y. On a query to πg, B chooses h′ ← DG and computes x ′ = h′ ? x̃ (instead
of x ′ ← DX) and returns (x ′, h′ ? x) to A. Note that h′ ? x = g ? x ′. Finally, A outputs g ? x∗, which B
forwards as a solution to the group action computational Diffie-Hellman problem, since g?x∗ = gh? x̃. ut

The other direction is a bit more intricate. We can easily show that a more general definition of the
group action computational Diffie-Hellman problem, namely where the basis is not the origin element x̃,
but a random set element, is tightly implied by the weak unpredictability property. However, we can also
use the standard group action computational Diffie-Hellman problem, but with a non-tight reduction.
Therefore, we use the fact that GA-CDHx(y0, y1) = GA-CDH(GA-CDH(y0, y1), xt).

Proposition 3. If a group action is weak unpredictable, then the group action computational Diffie-
Hellman problem is hard for the group action.

Proof. Let A be an adversary against the group action computational Diffie-Hellman problem, i.e., on
input (x, y) = (g ? x̃, h ? x̃) it computes gh ? x̃. We use A to construct an adversary B against weak
unpredictability. B inputs x∗ ← DX and has access to an oracle πg, where g ← DG . It queries πg once
to receive (x, g ? x). Let x = g′ ? x̃. B runs A on (g ? x, x∗) and A outputs gg′ ? x∗. Now B runs A a
second time, this time on input (gg′ ? x∗, xt). Note that GA-CDH(gg′ ? x∗, xt) = gg′(g′)−1 ? x∗, which is
the solution for the weak unpredictability experiment. ut

B Reset Lemma

We recall the reset lemma given by Bellare and Palacio [7, Lemma 3.1], which we will need to relate
some of our new assumptions.

Lemma 2 (Reset Lemma [7]). Fix a non-empty set H . Let B be an adversary that on input (I , h)
returns a pair, where the first element is a bit b and the second element σ is some side output. Let IG be
a randomized algorithm that we call instance generator. The accepting probability of B is defined as

acc := Pr[b = 1 | I $← IG; h $← H ; (b, σ) $← B(I , h)] .

The reset algorithm RB associated to B is defined as in Figure 11. Let res = Pr[b∗ = 1 : I $←
IG; (b∗, σ, σ′) $← RB(I)]. Then

acc ≤
√

res + 1
|H | .

RB(I)
00 Pick random coins ρ for B
01 h $← H ; (b, σ)← B(I , h; ρ)
02 h′ $← H ; (b′, σ′)← B(I , h′; ρ)
03 if b = b′ = 1 and h 6= h′
04 return (1, σ, σ′)
05 return (0, ε, ε)

Fig. 11. Reset algorithm RB associated to adversary B.

27

C Security of GA-PAKE` in the EGA Setting

We introduce a new security assumption for EGA and REGA, namely the simultaneous GA-StCDH, which
is used in the traditional Diffie-Hellman setting to prove security of several PAKE protocols [30,3].

Definition 12 (Simultaneous GA-StCDH (Sim-GA-StCDH)). On input (x, x0, x1) = (g?x̃, g0?x̃, g1?x̃),
the Sim-GA-StCDH problem requires to compute the set elements y0 = (g0

−1 · g) ? y, y1 = (g1
−1 · g) ? y,

where y ∈ X can be chosen by the adversary A. To an effective group action XXX ∈ {EGA,REGA}, we
associate the advantage function of A as

AdvSim-GA-StCDH
XXX (A) := Pr

y0 = GA-CDHx0(x, y),
y1 = GA-CDHx1(x, y)

∣∣∣∣∣∣
(g, g0, g1) $← G3

(x, x0, x1) := (g ? x̃, g0 ? x̃, g1 ? x̃)
(y, y0, y1)← AO(x, x0, x1)


where O = {GA-DDHx0(x, ·, ·),GA-DDHx1(x, ·, ·)}.

Note that the Sim-GA-StCDH problem is easy in the EGAT and REGAT setting, where the group ac-
tion allows to twist elements efficiently (see Definition 4). The attack works exactly as the attack
against GA-PAKE` given in Section 5. An adversary can solve the Sim-GA-StCDH problem by choos-
ing (y, y0, y1) = (xt , xt

0, xt
1).

On the other hand, if a group action does not allow for efficient twisting, the Sim-GA-StCDH problem
is believed to be hard. Pointcheval and Wand [30] analyzed the generic hardness of the assumption in
the traditional Diffie-Hellman setting, where G = X = F∗p.

Theorem 3 (Security of GA-PAKE`). For any adversary A against GA-PAKE` that issues at most qe
execute queries and qs send queries and where H is modeled as a random oracle, there exist adversary
B1 against GA-StCDH and adversary B2 against Sim-GA-StCDH such that

AdvGA-PAKE`
(A) ≤ AdvGA-StCDH

EGA (B1) + AdvSim-GA-StCDH
EGA (B2) + qs

|PW|
+ (qs + qe)2

|G|`
.

Proof. The proof follows the one of Theorem 1 very closely, so we will give the full games and adversaries
in pseudocode, but leave descriptions short.

Let A be an adversary against GA-PAKE`. Consider the games in Figure 12.
Game G0. This is the original game, hence

AdvGA-PAKE`
(A) ≤ |Pr[G0 ⇒ 1]− 1/2| .

Game G1. In game G1, we raise flag badcoll and output ⊥ whenever a server instance computes the same
trace as any other accepted instance or a user instance computes the same trace as any other accepted
user instance. As user and server messages consist of ` group elements each, we have

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[badcoll] ≤
(qe + qs)2

|G|`
.

Game G2. In game G2, we make the freshness explicit. To each oracle πt
P, we assign an additional variable

πt
P.fr which is updated during the game. These are only a conceptual changes, hence

Pr[G2 ⇒ 1] = Pr[G1 ⇒ 1] .

Game G3. In game G3, we choose random keys for all instances queried to Execute. We construct
adversary B1 against GA-StCDH in Figure 13 and show that

|Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ AdvGA-StCDH
EGA (B1) . (1)

Adversary B1 inputs a GA-StCDH challenge (x, y) = (g ? x̃, h ? x̃) and has access to a decision oracle
GA-DDH(x, ·, ·). First, it generates the crs elements (x0, x1) as in game G3 and then runs adversary A.

28

GAMES G0-G4
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,T) := (∅,∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0, S, t1)
09 if πt0

U 6= ⊥ or πt1
S 6= ⊥

10 return ⊥
11 (b1, ..., b`) := pwUS �G0-G3
12 (u1, ..., u`) $← G`
13 (s1, ..., s`) $← G`
14 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`) �G0-G3

15 xS := (xS
1 , ..., xS

`) := (s1 ? xb1 , ..., s` ? xb`) �G0-G3
16 z := (z1, ..., z`) := (u1 ? xS

1 , ..., u` ? xS
`) �G0-G3

17 xU := (xU
1 , ..., xU

`) := (u1 ? x̃, ..., u` ? x̃) �G4
18 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃) �G4

19 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U,S, xU, xS) �G1-G4

20 badcoll := true �G1-G4
21 return ⊥ �G1-G4
22 K := H(U, S, xU, xS, pwUS, z) �G0-G2
23 K $← K �G3-G4
24 πt0

U := ((u1, ..., u`), (U,S, xU, xS),K , true)
25 πt1

S := ((s1, ..., s`), (U, S, xU, xS),K , true)
26 (πt0

U .fr, π
t1
S .fr) := (true, true) �G2-G4

27 return (U, xU, S, xS)

Reveal(P, t)
28 if πt

P.acc 6= true or πt
P.test = true

29 return ⊥
30 if ∃P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, π
t′
P′) = 1

and πt′
P′ .test = true

31 return ⊥
32 ∀(P′, t′) s. t. πt′

P′ .tr = πt
P.tr �G2-G4

33 πt′
P′ .fr := false �G2-G4

34 return πt
P.K

Test(P, t))
35 if Fresh(πt

P) = false return ⊥ �G0-G1
36 if πt

P.fr = false return ⊥ �G2-G4
37 K∗0 := Reveal(P, t)
38 if K∗0 = ⊥ return ⊥
39 K∗1 $← K
40 πt

P.test := true
41 return K∗β

H(U, S, xU, xS, pw, z)
42 if T [U, S, xU, xS, pw, z] = K 6= ⊥
43 return K
44 T [U, S, xU, xS, pw,Z] $← K
45 return T [U, S, xU, xS, pw, z]

SendInit(U, t, S)
46 if πt

U 6= ⊥ return ⊥
47 (b1, ..., b`) := pwUS
48 (u1, ..., u`) $← G`
49 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`)

50 πt
U := ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)

51 πt
U.fr := false �G2-G4

52 return (U, xU)

SendResp(S, t,U, xU)
53 if πt

S 6= ⊥ return ⊥
54 (b1, ..., b`) := pwUS
55 (s1, ..., s`) $← G`
56 xS := (xS

1 , ..., xS
`) := (s1 ? xb1 , ..., s` ? xb`)

57 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, xS) �G1-G4

58 badcoll := true �G1-G4
59 return ⊥ �G1-G4
60 if (U,S) /∈ C �G2-G4
61 πt

S.fr := true �G2-G4
62 else �G2-G4
63 πt

S.fr := false �G2-G4
64 z := (z1, ..., z`) := (s1 ? xU

1 , ..., s` ? xU
`)

65 K := H(U, S, xU, xS, pwUS, z)
66 πt

S := ((s1, ..., s`), (U, S, xU, xS),K , true)
67 return (S, xS)

SendTermInit(U, t, S, xS)
68 if πt

U 6= ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
69 return ⊥
70 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS) �G1-G4
71 badcoll := true �G1-G4
72 return ⊥ �G1-G4

73 if ∃t′ s. t. πt′
S .tr = (U, S, xU, xS)

and πt′
S .fr = true �G2-G4

74 πt
U.fr := true �G2-G4

75 else if (U, S) /∈ C �G2-G4
76 πt

U.fr := true �G2-G4
77 else �G2-G4
78 πt

U.fr := false �G2-G4
79 z := (z1, ..., z`) := (u1 ? xS

1 , ..., u` ? xS
`)

80 K := H(U, S, xU, xS, pwUS, z)
81 πt

U := ((u1, ..., u`), (U, S, xU, xS),K , true)
82 return true

Corrupt(U,S)
83 if (U, S) ∈ C return ⊥
84 for P ∈ {U, S}
85 if ∃t s. t. πt

P.test = true
and @P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, π
t′
P′) = 1

86 return ⊥
87 ∀πt

P : if @P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, π

t′
P′) = 1 �G2-G4

88 πt
P.fr = false �G2-G4

89 C := C ∪ {(U, S)}
90 return pwUS

Fig. 12. Games G0-G4 for the proof of Theorem 3. A has access to oracles O := {Execute,SendInit,SendResp,
SendTermInit,Reveal,Corrupt,Test,H}.

In Execute queries, B1 chooses random group elements ui and si and computes xU using x and xS using
y independent of the password such that

xU
i = ui ? x = (ui · g) ? x̃ = (ui · g · gbi · g−1

bi
) ? x̃ = (ui · g · g−1

bi
) ? xbi

29

and analogously for server instances. Note that the value zi is implicitly set to

zi = ui · g · si · h · g−1
bi

? x̃

Before choosing a random session key now, we check if there has been a query to the random oracle H
with the correct z. This can be done using the decision oracle and the following equality:

GA-CDH(x, xS
i) = (u−1

i · gbi) ? zi ⇔ GA-CDH(xU
i , xS

i) = gbi ? zi

⇔ GA-CDHxbi
(xU

i , xS
i) = zi .

If one zi is correct, B1 aborts and outputs the solution (u−1
i · s−1

i · gbi) ? zi = (g · h) ? x̃.
Otherwise, we store the values ui and si in list Te together with the trace and the password and choose

a session key uniformly at random. List Te is used to identify relevant queries to H. In particular, if the
trace and password appear in a query, we retrieve the values ui and si to check whether the provided zi
are correct as described above. If the oracle returns 1 for any i, B1 aborts and outputs (u−1

i ·s−1
i ·gbi)?zi .

BGA-DDH(x,·,·)
1 (x, y)

00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,T ,Te) := (∅,∅,∅)
03 β $← {0, 1}
04 for (U, S) ∈ U × S
05 pwUS

$← PW
06 β′ ← AO(x0, x1)
07 Stop.

H(U, S, xU, xS, pw, z)
08 if ∃(u1, ..., u`, s1, ..., s`)

s. t. (U, S, xU, xS, pw, u1, ..., u`, s1, ..., s`) ∈ Te
09 (b1, ..., b`) := pw
10 for i ∈ [`]
11 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi) = 1

12 Stop with (u−1
i · s−1

i · gbi) ? zi
13 if T [U, S, xU, xS, pw, z] = K 6= ⊥
14 return K
15 T [U, S, xU, xS, pw, z] $← K
16 return T [U, S, xU, xS, pw, z]

Execute(U, t0,S, t1)
17 if πt0

U 6= ⊥ or πt1
S 6= ⊥

18 return ⊥
19 (b1, ..., b`) := pwUS
20 (u1, ..., u`) $← G`
21 (s1, ..., s`) $← G`
22 xU := (xU

1 , ..., xU
`) := (u1 ? x, ..., u` ? x)

23 xS := (xS
1 , ..., xS

`) := (s1 ? y, ..., s` ? y)
24 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, xS)
25 return ⊥
26 ∀z s. t. (U,S, xU, xS, pwUS, z) ∈ T
27 for i ∈ [`]
28 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi) = 1

29 Stop with (u−1
i · s−1

i · gbi) ? zi
30 Te := Te ∪ {U, S, xU, xS, pwUS, u1, ..., u`, s1, ..., s`}
31 K $← K
32 πt0

U := ((u1, ..., u`), (U, S, xU, xS),K , true)
33 πt1

S := ((s1, ..., s`), (U,S, xU, xS),K , true)
34 (πt0

U .fr, π
t1
S .fr) := (true, true)

35 return (U, xU, S, xS)

Fig. 13. Adversary B1 against GA-StCDH for the proof of Theorem 3. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Oracles SendInit, SendResp,
SendTermInit, Reveal, Corrupt and Test are defined as in G2. Lines written in blue show how B1 simulates
the game.

Game G4. In game G4, we remove the password from execute queries and use x̃ as the basis to compute
xU

i and xS
i . This change is not observable by A and

Pr[G4 ⇒ 1] = Pr[G3 ⇒ 1] .

Game G5. G5 is given in Figure 14. In this game we want to replace the session keys by random for
all fresh instances in oracles SendResp and SendTermInit. Therefore, we introduce an additional
independent random oracle Ts which maps only the trace of an instance to a key. For all instances that
are not fresh, we simply compute the correct key using random oracle H. If an instance is fresh and there
is an inconsistency between T and Ts, we raise flag bad. This happens in the following cases:
– a fresh user or server instance is about to compute the session key, but there already exists a valid

entry in T .
– the random oracle is queried on some trace of a fresh instance that appears in Ts together with the

correct password and z.

30

Note that when bad is not raised, there is no difference between G4 and G5. Hence,

|Pr[G5 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ Pr[G5 ⇒ bad] .

GAME G5
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,T ,Ts) := (∅,∅,∅)
03 bad := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0, S, t1)
09 if πt0

U 6= ⊥ or πt1
S 6= ⊥

10 return ⊥
11 (u1, ..., u`) $← G`
12 (s1, ..., s`) $← G`
13 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃)

14 xS := (xS
1 , ..., xS

`) := (s1 ? x̃, ..., s` ? x̃)
15 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, xS)
16 return ⊥
17 K $← K
18 πt0

U := ((u1, ..., u`), (U, S, xU, xS),K , true)
19 πt1

S := ((s1, ..., s`), (U, S, xU, xS),K , true)
20 (πt0

U .fr, π
t1
S .fr) := (true, true)

21 return (U, xU, S, xS)

SendInit(U, t, S)
22 if πt

U 6= ⊥ return ⊥
23 (b1, ..., b`) := pwUS
24 (u1, ..., u`) $← G`
25 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`)

26 πt
U := ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)

27 πt
U.fr := false

28 return (U, xU)

H(U, S, xU, xS, pw, z)
29 if T [U,S, xU, xS, pw, z] = K 6= ⊥
30 return K
31 if (U, S, xU, xS) ∈ Ts and pw = pwUS
32 if Ts[U, S, xU, xS] = (U, u1, ..., u`,K)
33 z ′ := (z ′1, ..., z ′`) := (u1 ? xS

1 , ..., u` ? xS
`)

34 if Ts[U, S, xU, xS] = (S, s1, ..., s`,K)
35 z ′ := (z ′1, ..., z ′`) := (s1 ? xU

1 , ..., s` ? xU
`)

36 if z = z ′
37 if (U, S) ∈ C
38 return K
39 if (U, S) /∈ C
40 bad := true
41 T [U, S, xU, xS, pw, z] $← K
42 return T [U,S, xU, xS, pw, z]

SendResp(S, t,U, xU)
43 if πt

S 6= ⊥ return ⊥
44 (b1, ..., b`) := pwUS
45 (s1, ..., s`) $← G`
46 xS := (xS

1 , ..., xS
`) := (s1 ? xb1 , ..., s` ? xb`)

47 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U,S, xU, xS)

48 return ⊥
49 if (U,S) /∈ C
50 πt

S.fr := true
51 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and zi = si ? xU
i ∀i ∈ [`]

52 bad := true
53 K $← K
54 Ts[U, S, xU, xS] := (S, (s1, ..., s`),K)
55 else
56 πt

S.fr := false
57 z := (z1, ..., z`) := (s1 ? xU

1 , ..., s` ? xU
`)

58 K := H(U, S, xU, xS, pwUS, z)
59 πt

S := ((s1, ..., s`), (U, S, xU, xS),K , true)
60 return (S, xS)

SendTermInit(U, t, S, xS)
61 if πt

U 6= ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
62 return ⊥
63 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS)
64 return ⊥
65 if ∃t′ s. t. πt′

S .tr = (U, S, xU, xS)
and πt′

S .fr = true
66 πt

U.fr := true
67 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS]
68 else if (U, S) /∈ C
69 πt

U.fr := true
70 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and zi = ui ? xS
i ∀i ∈ [`]

71 bad := true
72 K $← K
73 Ts[U, S, xU, xS] := (U, (u1, ..., u`),K)
74 else
75 πt

U.fr := false
76 z := (z1, ..., z`) := (u1 ? xS

1 , ..., u` ? xS
`)

77 K := H(U, S, xU, xS, pwUS, z)
78 πt

U := ((u1, ..., u`), (U,S, xU, xS),K , true)
79 return true

Fig. 14. Game G5 for the proof of Theorem 3. A has access to oracles O := {Execute,SendInit,SendResp,
SendTermInit,Reveal,Corrupt,Test,H}. Oracles Reveal, Corrupt and Test are defined as in Figure 12.
Differences to game G4 are highlighted in blue.

Game G6. G6 is given in Figure 15. In this game we remove the password from send queries and generate
passwords as late as possible. In SendInit and SendResp we then compute xU and xS using x̃ such that

xU
i = ui · x̃ = (ui · g−1

0) ? x0 = (ui · g−1
1) ? x1

31

and equivalently for server instances. For all instances that are not fresh, we have to compute the real
session key using zi = (si · g−1

bi
) ? xU

i or zi = (ui · g−1
bi

) ? xS
i . Now we split event bad into two different

events:
– badpw captures the event that there exists more than one valid entry in T for the same trace of a

fresh instance, but different passwords.
– badguess happens only if badpw does not happen and if there exists a valid entry in T for the trace

of a fresh instance and the correct password.
To identify the different events, we introduce a new set Tbad. For all fresh instances in SendResp and
SendTermInit, we now iterate over all entries in T that contain the corresponding trace. We check if
the given password and z are valid for this trace by computing the real values z ′ in the same way as for
non-fresh instances. If z = z ′, we add this entry to the set Tbad. We essentially do the same when the
random oracle H is queried on a trace that appears in Ts. Here, the adversary specifies the password
and we check if z is valid for that password using the ui stored in Ts for user instances and si for server
instances. If z is valid and the instance is still fresh, we add the query to Tbad. In case the password was
corrupted in the meantime, we output the key stored in Ts as introduced in the previous game.

After the adversary terminates, we check Tbad whether event badpw or event badguess occurred. We
will bound these events below. First note that whenever bad is raised in G5, then either flag badguess or
badpw is raised in G6, thus

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess] .

To bound badpw, we construct adversary B2 against Sim-GA-StCDH in Figure 16. When badpw occurs,
then B2 can solve Sim-GA-StCDH. Hence,

Pr[G6 ⇒ badpw] ≤ AdvSim-GA-StCDH
EGA (B2) .

Adversary B2 inputs (x, x0, x1), where x = g ? x̃, x0 = g0 ? x̃ and x1 = g1 ? x̃ for uniformly random group
elements g, g0, g1 ∈ G. It also has access to decision oracles GA-DDHx0(x, ·, ·) and GA-DDHx1(x, ·, ·). It
runs adversary A on (x0, x1). On a query to SendInit, B2 embeds x in xU such that

xU
i = ui ? x = (ui · g−1

0 · g) ? x0 = (ui · g−1
1 · g) ? x1 .

The simulation of xS
i in SendResp is done in the same way. In case the server instance is fresh, we must

check if there already exists an entry in T that causes an inconsistency, iterating over all pw, z, in T
and using the decision oracles to check

zi = GA-CDHxbi
(xU

i , xS
i) = GA-CDHxbi

(xU
i , si ? x) ⇔ GA-CDHxbi

(x, xU
i) = s−1

i ? zi ,

If all zi are valid, then we add this entry to Tbad.
If the instance is not fresh, then we have to compute the correct key. We check list T for a valid entry

z as explained above or choose a random key and add a special entry to T , which instead of z contains
the secret group elements si so that we can patch the random oracle later. SendTermInit is simulated
analogously.

Now we look at the random oracle queries. If the trace is contained in set Ts, we check if z is valid
using the GA-DDH oracle. In case z is valid, we first check if the instance is still fresh and we add the
query to Tbad. Otherwise, if the password was corrupted and is specified in the query, we return the
session key stored in Ts. Next, we check if the query matches a special entry in T that was added in
SendResp or SendTermInit for a non-fresh instance to keep the output consistent.

After A terminates with output β′, B2 chooses the passwords which have not been generated yet. If
badpw occurred, then there must be two entries in Tbad for the same trace and different passwords pw
and pw′ along with values z and z ′. As pw 6= pw′, we look for the first index i where the two passwords
differ, i.e., bi 6= b′i . Recall that the Sim-GA-StCDH problem requires to compute y0 = GA-CDHx0(x, y),
y1 = GA-CDHx1(x, y), where y can be chosen by the adversary. If the entries in Tbad belong to a user
instance, B2 sets y = xS

i and outputs y together with

y0 = u−1
i ? zi = GA-CDHx0(u−1

i ? xU
i , xS

i) = GA-CDHx0(x, xS
i) ,

y1 = u−1
i ? z ′i = GA-CDHx1(u−1

i ? xU
i , xS

i) = GA-CDHx1(x, xS
i) .

32

GAME G6
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,T ,Ts,Tbad) := (∅,∅,∅,∅)
03 (badguess,badpw,badpfs) = (false, false, false)
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U, S, xU, xS, z, z ′)

s. t. (U, S, xU, xS, pw, z) ∈ Tbad
and (U, S, xU, xS, pw′, z ′) ∈ Tbad

09 badpw := true
10 else
11 if ∃U, S, xU, xS, z

s. t. (U, S, xU, xS, pwUS, z) ∈ Tbad
12 badguess := true
13 return Jβ = β′K

Corrupt(U,S)
14 if (U, S) ∈ C return ⊥
15 for P ∈ {U, S}
16 if ∃t s. t. πt

P.test = true
and @P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, π
t′
P′) = 1

17 return ⊥
18 ∀πt

P : if @P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, π

t′
P′) = 1

19 πt
P.fr = false

20 C := C ∪ {(U, S)}
21 pwUS

$← PW
22 return pwUS

SendInit(U, t, S)
23 if πt

U 6= ⊥ return ⊥
24 (u1, ..., u`) $← G`
25 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃)

26 πt
U := ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)

27 πt
U.fr := ⊥

28 return (U, xU)

H(U, S, xU, xS, pw, z)
29 if T [U,S, xU, xS, pw, z] = K 6= ⊥
30 return K
31 if (U, S, xU, xS) ∈ Ts
32 (b1, ..., b`) := pw
33 if Ts[U, S, xU, xS] = (U, u1, ..., u`,K)
34 z ′ := ((u1 · g−1

b1
) ? xS

1 , ..., (u` · g−1
b`

) ? xS
`)

35 if Ts[U, S, xU, xS] = (S, s1, ..., s`,K)
36 z ′ := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
`)

37 if z = z ′
38 if (U,S) ∈ C and pw = pwUS
39 return K
40 if (U, S) /∈ C
41 Tbad := Tbad ∪ {U, S, xU, xS, pw, z}
42 T [U, S, xU, xS, pw, z] $← K
43 return T [U, S, xU, xS, pw, z]

SendResp(S, t,U, xU)
44 if πt

S 6= ⊥ return ⊥
45 (s1, ..., s`) $← G`
46 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃)

47 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U,S, xU, xS)

48 return ⊥
49 if (U,S) /∈ C
50 πt

S.fr := true
51 ∀pw, z s. t. (U, S, xU, xS, pw, z) ∈ T
52 (b1, ..., b`) := pw
53 z ′ := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
`)

54 if z = z ′
55 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
56 K $← K
57 Ts[U, S, xU, xS] := (S, (s1, ..., s`),K)
58 else
59 πt

S.fr := false
60 (b1, ..., b`) := pwUS
61 z := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
`)

62 K := H(U, S, xU, xS, pwUS, z)
63 πt

S := ((s1, ..., s`), (U, S, xU, xS),K , true)
64 return (S, xS)

SendTermInit(U, t, S, xS)
65 if πt

U 6= ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
66 return ⊥
67 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS)
68 return ⊥
69 if ∃t′ s. t. πt′

S .tr = (U, S, xU, xS)
and πt′

S .fr = true
70 πt

U.fr := true
71 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS]
72 else if (U, S) /∈ C
73 πt

U.fr := true
74 ∀pw, z s. t. (U, S, xU, xS, pw, z) ∈ T
75 (b1, ..., b`) := pw
76 z ′ := ((u1 · g−1

b1
) ? xS

1 , ..., (u` · g−1
b`

) ? xS
`)

77 if z = z ′
78 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
79 K $← K
80 Ts[U, S, xU, xS] := (U, (u1, ..., u`),K)
81 else
82 πt

U.fr := false
83 (b1, ..., b`) := pwUS
84 z := ((u1 · g−1

b1
) ? xS

1 , ..., (u` · g−1
b`

) ? xS
`)

85 K := H(U, S, xU, xS, pwUS, z)
86 πt

U := ((u1, ..., u`), (U,S, xU, xS),K , true)
87 return true

Fig. 15. Game G6 for the proof of Theorem 3. A has access to oracles O := {Execute,SendInit,SendResp,
SendTermInit,Reveal,Corrupt,Test,H}. Oracles Reveal and Test are defined as in game G4 in Figure 12.
Oracle Execute is defined as in Figure 14. Differences to game G5 are highlighted in blue.

If the instance is a server instance, B2 outputs (y, y0, y1) = (xU
i , s−1

i ? zi , s−1
i ? z ′i). This concludes the

analysis of badpw.

Next, we analyze event badguess. As badguess happens only if badpw does not happen, there is at most
one entry for each instance in Tbad and the size of Tbad is at most qs. As all entries were added before

33

BGA-DDHx0 (x,·,·),GA-DDHx1 (x,·,·)
2 (x, x0, x1)

00 (C,T ,Ts) := (∅,∅,∅)
01 β $← {0, 1}
02 β′ ← AO(x0, x1)
03 for (U, S) ∈ U × S \ C
04 pwUS

$← PW
05 if ∃pw, pw′, (U, S, xU, xS, z, z ′)

s. t. (U,S, xU, xS, pw, z) ∈ Tbad
and (U, S, xU, xS, pw′, z ′) ∈ Tbad

06 (b1, ..., b`) := pw
07 (b′1, ..., b′`) := pw′
08 Find first index i such that bi 6= b′i
09 W.l.o.g. let bi = 0, b′i = 1
10 if Ts[U,S, xU, xS] = (U, (u1, ..., u`),K)
11 Stop with (xS

i , u−1
i ? zi , u−1

i ? z ′i)
12 if Ts[U, S, xU, xS] = (S, (s1, ..., s`),K)
13 Stop with (xU

i , s−1
i ? zi , s−1

i ? z ′i)

SendInit(U, t, S)
14 if πt

U 6= ⊥ return ⊥
15 (u1, ..., u`) $← G`
16 xU := (xU

1 , ..., xU
`) := (u1 ? x, ..., u` ? x)

17 πt
U := ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)

18 return (U, xU)

H(U, S, xU, xS, pw, z)
19 if T [U, S, xU, xS, pw, z] = K 6= ⊥
20 return K
21 if (U, S, xU, xS) ∈ Ts
22 (b1, ..., b`) := pw
23 if Ts[U, S, xU, xS] = (U, (u1, ..., u`),K)
24 if GA-DDHxbi

(x, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`]
25 if (U,S) /∈ C
26 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
27 if (U,S) ∈ C and pw = pwUS
28 return K
29 if Ts[U, S, xU, xS] = (S, (s1, ..., s`),K)
30 if GA-DDHxbi

(x, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`]
31 if (U,S) /∈ C
32 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
33 if (U,S) ∈ C and pw = pwUS
34 return K
35 if ∃(u1, ..., u`) s. t. (U, S, xU, xS, pw, (u1, ..., u`)) ∈ T
36 (b1, ..., b`) := pw
37 if GA-DDHxbi

(x, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`]
38 return T [U,S, xU, xS, pw, (u1, ..., u`)]
39 else if ∃(s1, ..., s`) s. t. (U, S, xU, xS, pw, (s1, ..., s`)) ∈ T
40 (b1, ..., b`) := pw
41 if GA-DDHxbi

(x, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`]
42 return T [U, S, xU, xS, pw, (s1, ..., s`)]
43 T [U, S, xU, xS, pw, z] $← K
44 return T [U,S, xU, xS, pw, z]

SendResp(S, t,U, xU)
45 if πt

S 6= ⊥ return ⊥
46 (s1, ..., s`) $← G`
47 xS := (xS

1 , ..., xS
`) := (s1 ? x, ..., s` ? x)

48 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, xS) return ⊥

49 if (U, S) /∈ C
50 πt

S.fr := true
51 ∀pw, z s. t. (U, S, xU, xS, pw, z) ∈ T
52 (b1, ..., b`) := pw
53 if GA-DDHxbi

(x, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`]
54 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
55 K $← K
56 Ts[U, S, xU, xS] := (S , (s1, ..., s`),K)
57 else
58 πt

S.fr := false
59 (b1, ..., b`) := pwUS
60 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and GA-DDHxbi
(x, xU

i , s−1
i ? zi) = 1 ∀i ∈ [`]

61 K := T [U, S, xU, xS, pwUS, z]
62 else
63 K $← K
64 T [U, S, xU, xS, pwUS, (s1, ..., s`)] := K
65 πt

S := ((s1, ..., `), (U,S, xU, xS),K , true)
66 return (S, xS)

SendTermInit(U, t,S, xS)
67 if πt

U 6= ((u1, ..., u`), (U,S, xU,⊥),⊥,⊥) return ⊥
68 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS) return ⊥
69 if ∃t′ s. t. πt′

S .tr = (U, S, xU, xS) and πt′
S .fr = true

70 πt
U.fr := true

71 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS]
72 else if (U,S) /∈ C
73 πt

U.fr := true
74 ∀pw, z s. t. (U, S, xU, xS, pw, z) ∈ T
75 (b1, ..., b`) := pw
76 if GA-DDHxbi

(x, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`]
77 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
78 K $← K
79 Ts[U, S, xU, xS] := (U, (u1, ..., u`),K)
80 else
81 πt

S.fr := false
82 (b1, ..., b`) := pwUS
83 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and GA-DDHxbi
(x, xS

i , u−1
i ? zi) = 1 ∀i ∈ [`]

84 K := T [U, S, xU, xS, pwUS, z]
85 else
86 K $← K
87 T [U, S, xU, xS, pwUS, (u1, ..., u`)] := K
88 πt

U := ((u1, ..., u`), (U, S, xU, xS),K , true)
89 return true

Fig. 16. Adversary B2 against Sim-GA-StCDH for the proof of Theorem 3.A has access to oraclesO := {Execute,
SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Oracles Execute, Reveal, Corrupt and
Test are defined as in G6. Lines written in blue show how B2 simulates the game.

the corresponding password was sampled, we can bound the probability by

Pr[G6 ⇒ badguess] ≤
qs
|PW|

.

Finally, if none of the bad events happens in G6, all session keys output by Test are uniformly random
and the adversary can only guess β. Hence, Pr[G6 ⇒ 1] = 1

2 and collecting the probabilities yields the
bound in Theorem 3. ut

34

D Security of X-GA-PAKE`,N and X-GA-PAKEt
`

Protocols X-GA-PAKE`,N and X-GA-PAKEt
` are the two variants of X-GA-PAKE` as introduced in Sec-

tion 8. In Appendices D.1 and D.2, we now provide a security analysis for the two protocols.

D.1 X-GA-PAKE`,N

The main result of this part is the following theorem.

Theorem 4 (Security of X-GA-PAKE`,N). For any adversary A against X-GA-PAKE`,N that issues
at most qe execute queries and qs send queries and where H is modeled as a random oracle, there exist
adversary B1 against GA-StCDH and B2 against SqInv-GA-StCDH such that

AdvX-GA-PAKE`,N (A) ≤ AdvGA-StCDH
EGA (B1) + 2 · AdvSqInv-GA-StCDH

EGA (B2) + qs
|PW|

+ (qs + qe)2

|G|M
.

The proof of Theorem 4 is very similar to the proof of Theorem 1. Therefore we do not give a full proof
for the security of X-GA-PAKE`,N , but shortly explain the difference between the two proofs.

The security assumptions underlying the proof of Theorem 1 need to be slightly adapted. In particular,
the problem DSim-GA-StCDH is replaced by its variant 2NDSim-GA-StCDH. However the 2NDSim-GA-StCDH
problem can be reduced to DSim-GA-StCDH (Lemma 3).

Definition 13 (2NDSim-GA-StCDH). On input (x0 = g0 ? x̃, ..., x2N−1 = g2N−1 ? x̃,w0 = h0 ? x̃,w1 =
h1 ? x̃) ∈ X 2N +2, the 2NDSim-GA-StCDH problem requires to find i 6= j ∈ [0, 2N − 1] and a tuple
(y, y0, y1, y2, y3) ∈ X 5 such that

(y0, y1, y2, y3) = (g−1
i · h0 ? y, g−1

i · h1 ? y, g−1
j · h0 ? y, g−1

j · h1 ? y).

For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage function of an adversary
A as

Adv2NDSim-GA-StCDH
XXX (A) := Pr


i 6= j ∈ [0, 2N − 1]

y0 = GA-CDHxi (w0, y)
y1 = GA-CDHxi (w1, y)
y2 = GA-CDHxj (w0, y)
y3 = GA-CDHxj (w1, y)

∣∣∣∣∣∣∣∣∣∣
(g0, ..., g2N−1, h0, h1) $← G2N +2

(x0, ..., x2N−1) = (g0 ? x̃, ..., g2N−1 ? x̃)
(w0,w1) = (h0 ? x̃, h1 ? x̃)

(i, j, y, y0, y1, y2, y3)← AO(x0, ..., x2N−1,w0,w1)

 ,

where O = {GA-DDHxi (wj , ·, ·)}i∈[0,2N−1],j∈{0,1}.

Lemma 3. For any adversary A against 2NDSim-GA-StCDH, there exists adversary B against DSim-GA-StCDH
such that

Adv2NDSim-GA-StCDH
EGAT (A) ≤ 2 · AdvDSim-GA-StCDH

EGAT (B) .

Proof. We construct adversary B as follows. On input (x0, x1,w0,w1) = (g0 ? x̃, g1 ? x̃, h0 ? x̃, h1 ? x̃), B
chooses a random bit bi

$← {0, 1}, a random group element αi
$← G and computes x ′i = αi ? xbi for each

i ∈ {0, ..., 2N − 1}. Then it runs A on input (x ′0, ..., x ′2N−1,w0,w1). Finally, A outputs two indices (i, j)
with i 6= j and (y, y0, y1, y2, y3). If bi = bj which happens with probability 1/2, then B aborts. Otherwise,
assume that bi = 0 and bj = 1. Then x ′i = (αig0) ? x̃ and x ′j = (αjg1) ? x̃, hence

y0 = (α−1
i g−1

0 h0) ? y, y2 = (α−1
j g−1

1 h0) ? y,
y1 = (α−1

i g−1
0 h1) ? y, y3 = (α−1

j g−1
1 h1) ? y.

It follows that B can compute the solution by simply multiplying by αi and αj respectively. If bj = 0
and bi = 1, the output of B must be swapped.

During the experiment, A also has access to decision oracles GA-DDHx′i (wj , ·, ·) for i ∈ {0, ..., 2N−1}
and j ∈ {0, 1}. These can be easily simulated using B’s decision oracles. On a queryGA-DDHx′i (wj , z1, z2),
B queries its own oracle on GA-DDHxbi

(wj , z1, αi ? z2) and forwards the output to A. ut

35

D.2 X-GA-PAKEt
`

Here we discuss the security of X-GA-PAKEt
`, the twisted version of X-GA-PAKE`, in more detail. For

the most part, one can just replace x1 by xt
0 everywhere in the proof of Theorem 1. The only signif-

icant difference occurs in the analysis of the event badpw. In particular this event does not allow to
construct an adversary against DSim-GA-StCDH. Instead, we need to consider the following alteration of
DSim-GA-StCDH for the security analysis.

Definition 14 (Twisted Double Simultaneous GA-StCDH (TDSim-GA-StCDH)). On input (x0 =
g0 ? x̃,w0 = h0 ? x̃,w1 = h1 ? x̃) ∈ X 3, the TDSim-GA-StCDH requires to find a tuple (y, y0, y1, y2, y3) ∈ X 5

such that
(y0, y1, y2, y3) = (g−1

0 · h0 ? y, g−1
0 · h1 ? y, g0 · h0 ? y, g0 · h1 ? y).

For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage function of an adversary
A as

AdvTDSim-GA-StCDH
XXX (A) := Pr


y0 = GA-CDHx0(w0, y)
y1 = GA-CDHx0(w1, y)
y2 = GA-CDHxt

0
(w0, y)

y3 = GA-CDHxt
0
(w1, y)

∣∣∣∣∣∣∣∣
(g0, h0, h1) $← G4

x0 = g0 ? x̃
(w0,w1) = (h0 ? x̃, h1 ? x̃)

(y, y0, y1, y2, y3)← AO(x0,w0,w1)

 ,

where O = {GA-DDHx0(wj , ·, ·)}j∈{0,1}.

The proof of Lemma 1 can be adapted to the TDSim-GA-StCDH problem in a straight forward way,
showing that

AdvTDSim-GA-StCDH
EGAT (A) ≤ AdvSqInv-GA-StCDH

EGAT (B) .

Consequently the statement of Theorem 1 continues to hold true for X-GA-PAKEt
`.

E Security of Com-GA-PAKE` and its Variants

The first part of this section is dedicated to the proof of Theorem 2. The second part discusses the
different variants of Com-GA-PAKE` and analyzes their security.

E.1 Proof of Theorem 2

For the convenience of the reader, we repeat the statement of the theorem.

Theorem 2 (Security of Com-GA-PAKE`). For any adversary A against Com-GA-PAKE` that issues
at most qe execute queries, qs send queries and at most qG and qH queries to random oracles G and H,
there exist an adversary B1 against GA-StCDH and an adversary B2 against GA-GapCDH such that

AdvCom-GA-PAKE`
(A) ≤ AdvGA-StCDH

EGAT (B1) + qs` ·
√

AdvGA-GapCDH
EGAT (B2) + (qs + qe)2

|G|`
+ qGqs
|G|`

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

where λ is the output length of G in bits.

Before proving this theorem, we will introduce a new (interactive) computational assumption which is
tailored to the protocol where the interactive part of the assumption reflects the commitment in that
protocol. We will show that this assumption is implied by GA-GapCDH.

Definition 15 (Interactive Simultaneous GA-StCDH (ISim-GA-StCDH)). On input (x0, x1) = (g0 ?
x̃, g1 ? x̃) ∈ X 2, the adversary first chooses and commits to some y ∈ X . After receiving the challenge

36

x = g ? x̃ ∈ X , the ISim-GA-StCDH problem requires to compute y0 = gg−1
0 ? y, y1 = gg−1

1 ? y. For a group
action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage function of an adversary A as

AdvISim-GA-StCDH
XXX (A) := Pr


y0 = GA-CDHx0(x, y)
y1 = GA-CDHx1(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣

(g0, g1) $← G2

(x0, x1) = (g0 ? x̃, g1 ? x̃)
y ← AO1(x0, x1)

g $← G
x = g ? x̃

(y0, y1)← AO1,O2(x)

 ,

where O1 = {GA-DDHxj (x̃, ·, ·)}j∈{0,1} and O2 = {GA-DDHxj (x, ·, ·)}j∈{0,1}.

Note that ISim-GA-StCDH would be easy without the commitment if a group action allows to compute
twists efficiently. In this case an adversary could simply choose (y, y0, y1) = (xt , xt

0, xt
1). The commitment

prevents this trivial solution and intuitively, it thwarts the offline dictionary attack that was possible on
GA-PAKE` (Proposition 1).

Lemma 4. The Group Action Gap Computational Diffie-Hellman Problem (GA-GapCDH) problem im-
plies the Interactive Simultaneous GA-StCDH (ISim-GA-StCDH) for EGATs, in particular

AdvISim-GA-StCDH
EGAT (A) ≤

√
AdvGA-GapCDH

EGAT (B) .

Proof. For the proof we use the reset lemma (see Lemma 2) with H = X . Let A be an adversary against
ISim-GA-StCDH. Consider adversary B against GA-GapCDH in Figure 17 that takes input (x0, x1) as well
as x. It also has access to a gap oracle GA-DDH∗. First, B runs A on (x0, x1) to receive a commitment
y. Now B sends x to A and A will finally output (y0, y1). B checks if the solution is correct using the
decision oracle and if this is the case, it outputs b = 1 and σ = (y, y0, y1). Otherwise it outputs (0, ε). As
B has access to a full gap oracle, it can forward all queries of A.

BGA-DDH∗(x0, x1, x)
00 y ← AO1 (x0, x1)
01 (y0, y1)← AO1,O2 (x)
02 if GA-DDHx0 (x, y, y0) = 1

and GA-DDHx1 (x, y, y1) = 1
03 return (1, (y, y0, y1))
04 return (0, ε)

CGA-DDH∗(x0, x1)
05 Pick random coins ρ for B
06 a $← G; x := a ? x̃
07 (b, σ)← BGA-DDH∗(x0, x t

1, x; ρ)
08 if b = 0 return ⊥
09 (y, y0, y1) := σ
10 α $← G; x ′ := α ? yt

0
11 (b′, σ′)← BGA-DDH∗(x0, x t

1, x ′; ρ)
12 if b = 0 return ⊥
13 (y, y′0, y′1) := σ
14 return α−1 · a ? y′1

Fig. 17. Adversaries B and C against GA-GapCDH for the proof of Lemma 4. Adversary A has access to decision
oracles O1 = {GA-DDHxj (x̃, ·, ·)}j∈{0,1} and O2 = {GA-DDHxj (x, ·, ·)}j∈{0,1}, which B simulates using the gap
oracle GA-DDH∗.

Let IG be the algorithm that chooses g0, g1
$← G and outputs (x0, x1) = (g0 ? x̃, g1 ? x̃). Let acc be

defined as in Lemma 2, thus
acc ≥ AdvISim-GA-StCDH

EGAT (A) .

Let RB be the reset algorithm associated to B as in Lemma 2 with access to the same decision oracles
as B.

We construct an adversary C against GA-GapCDH (Figure 17), but instead of running the reset
algorithm, C will simulate RB running B directly.
C inputs (x0, x1) and has access to a gap oracle. First, it chooses random coins ρ for B. It also samples

a random element from H by first picking a $← G and then computing x = a ? x̃. Then it runs B on
(x0, xt

1, x; ρ). Note that we use the twist of x1. B outputs a bit b and side output σ. If B was successful,
i.e., b = 1, then C parses σ as (y, y1, y2). Otherwise it aborts. Now it runs B a second time, this time on
input (x0, xt

1, x ′), where x ′ = α ? yt
0 for some α $← G, and the same random coins ρ. Note that x ′ is also

37

uniformly distributed over X . If B is successful again, it outputs (1, (y, y′0, y′1)), where y is the same as
before since we run B on the same random coins. Now C can solve GA-GapCDH as follows: Let y = h ? x̃
for some h ∈ G. Then we have

α ? yt
0 = (α · a−1g0h−1) ? x̃,

hence y′0 = (α · a−1) ? x̃, y′1 = (α · a−1 · g0 · g1 ? x̃). Note that h cancels out. Using the knowledge of a
and α, C can compute α−1 · a ? y′1 = GA-CDH(x0, x1).

Note that even if x = x ′, we can solve GA-GapCDH, so there is no additional term in the bound. ut

Note that for the above proof it is indeed necessary that B (and C) has access to a full gap oracle. If B
only had access to a restricted oracle, it would not be able to simulate the oracles GA-DDHx0(α?yt

0, ·, ·)
and GA-DDHxt

1
(α ? yt

0, ·, ·) in the second part of the proof.
Now we give the full proof of Theorem 2.

Proof (of Theorem 2). Let A be an adversary against Com-GA-PAKE`. Consider the games in Figure 18.
Game G0. This is the original game, hence

AdvCom-GA-PAKE`
(A) ≤ |Pr[G0 ⇒ 1]− 1/2| .

Game G1. In game G1, we raise flag badcoll whenever a server instance computes the same trace as any
other accepted instance (line 92) or a user instance computes the same trace as any other accepted user
instance (line 108). In this case, SendTermInit or SendTermResp return ⊥. We do the same if a trace
that is computed in an Execute query collides with one of a previously accepted instance (line 20). Due
to the difference lemma,

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[badcoll] .

Note that when badcoll is not raised, each instance is unique and has at most one partner. In or-
der to bound badcoll, recall that the trace of an oracle πt

P consists of (U,S, xU = (xU
1 , ..., xU

`), xS =
(xS

1 , ..., xS
`), com), where the user message consists of xU and the server messages consist of (xS, com).

When the game chooses xU, then the probability that it collides with one particular other user instances
is |G|−` as all group elements must be the same. On the server side, the commitment is determined by
the choice of xS and when the game chooses xS , then the probability that this instance collides with one
particular other server instances is |G|−` as well. As there are at most qs + qe queries, this yields

Pr[badcoll] ≤
(
qs + qe

2

)
· 1
|G|`
≤ (qs + qe)2

|G|`
.

Game G2. In G2 we raise flag badbind if two different inputs to the random oracle G return the same
commitment (line 53). This is to ensure that the adversary cannot open a commitment to a different
value, which might depend on previous messages. The number of queries to G is bounded by qG +qs +qe,
thus we have

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Pr[badbind] ≤ (qG + qs + qe)2

2λ .

Game G3. In G3 we choose the commitment uniformly at random when a session is initiated with a
SendInit query (line 65). Then we can choose xS only later in SendTermInit (line 86). However, we
have to take into account some subtleties.

First, in the previous games we ensured that traces are unique and also the same commitment is
not chosen twice. In this case G would have returned ⊥ in G2, so now we take care of this explicitly in
SendInit. In particular, we also return ⊥ whenever there already exists an entry in TG that evaluates
to the commitment chosen in SendInit (line 67). We add an entry to TG with a placeholder � as input
(line 68) to avoid that the commitment is chosen again. (Essentially, the checks in lines 52 and 66 also
consider xS = �.) Also we can now only save the commitment in the trace (line 69) and will adapt the
initial check in SendTermInit (line 83).

Second, we have to take care of the case that the adversary has already issued a query to G on xS

before these values are chosen in SendTermInit because then we cannot assign com to this input. We

38

GAMES G0-G7
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,TH,TG) := (∅,∅)
03 (badcoll,badbind,badhide) := (false, false, false)
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0, S, t1)
09 if πt0

U 6= ⊥ or πt1
S 6= ⊥ return ⊥

10 (b1, ..., b`) := pwUS �G0-G6
11 (u1, ..., u`) $← G`
12 (s1, ..., s`) $← G`
13 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`) �G0-G6

14 xS := (xS
1 , ..., xS

`) := (s1 ? xb1 , ..., s` ? xb`) �G0-G6
15 z := (z1, ..., z`) := (u1 ? xS

1 , ..., u` ? xS
`) �G0-G6

16 xU := (xU
1 , ..., xU

`) := (u1 ? x̃, ..., u` ? x̃) �G7
17 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃) �G7

18 com := G(xS)
19 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U,S, xU, xS, com) �G1-G7
20 badcoll := true; return ⊥ �G1-G7
21 K := H(U, S, xU, xS, com, pwUS, z) �G0-G5
22 K $← K �G6-G7
23 πt0

U := ((u1, ..., u`), (U,S, xU, xS, com),K , true)
24 πt1

S := ((s1, ..., s`), (U, S, xU, xS, com),K , true)
25 (πt0

U .fr, π
t1
S .fr) := (true, true) �G5-G7

26 return (U, xU, S, (com, xS))

Corrupt(U, S)
27 if (U,S) ∈ C return ⊥
28 for P ∈ {U,S}
29 if ∃t s. t. πt

P.test = true
and @P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, π
t′
P′) = 1

30 return ⊥
31 ∀πt

P : if @P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, π

t′
P′) = 1 �G5-G7

32 πt
P.fr = false �G5-G7

33 C := C ∪ {(U,S)}
34 return pwUS

Test(P, t))
35 if Fresh(πt

P) = false return ⊥ �G0-G4
36 if πt

P.fr = false return ⊥ �G5-G7
37 K∗0 := Reveal(P, t)
38 if K∗0 = ⊥ return ⊥
39 K∗1 $← K
40 πt

P.test := true
41 return K∗β

Reveal(P, t)
42 if πt

P.acc 6= true or πt
P.test = true

43 return ⊥
44 if ∃P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, π
t′
P′) = 1

and πt′
P′ .test = true

45 return ⊥
46 ∀(P′, t′) s. t. πt′

P′ .tr = πt
P.tr �G5-G7

47 πt′
P′ .fr := false �G5-G7

48 return πt
P.K

G(xS)
49 if TG[xS] = com 6= ⊥
50 return com
51 TG[xS] $← {0, 1}λ

52 if ∃xS′ s. t. TG[xS′] = TG[xS] �G2-G7
53 badbind := true; return ⊥ �G2-G7
54 return TG[xS]

H(U, S, xU, xS, com, pw, z)
55 if TH[U, S, xU, xS, com, pw, z] = K 6= ⊥
56 return K
57 TH[U, S, xU, xS, com, pw,Z] $← K
58 return TH[U,S, xU, xS, com, pw, z]

SendInit(S, t,U)
59 if πt

S 6= ⊥ return ⊥
60 (b1, ..., b`) := pwUS
61 (s1, ..., s`) $← G` �G0-G2
62 xS := (xS

1 , ..., xS
`) := (s1 ? xb1 , ..., s` ? xb`) �G0-G2

63 com := G(xS) �G0-G2
64 πt

S := ((s1, ..., s`), (U, S,⊥, xS, com),⊥,⊥) �G0-G2
65 com $← {0, 1}λ �G3-G7
66 if ∃xS s. t. TG[xS] = com �G3-G7
67 return ⊥ �G3-G7
68 TG[�] := com �G3-G7
69 πt

S := (⊥, (U, S,⊥,⊥, com),⊥,⊥) �G3-G7
70 πt

S.fr := false �G5-G7
71 return (S, com)

SendResp(U, t, S, com)
72 if πt

U 6= ⊥ return ⊥
73 if @xS s. t. TG[xS] = com �G4-G7
74 πt

U.acc := false �G4-G7
75 (b1, ..., b`) := pwUS
76 (u1, ..., u`) $← G`
77 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`)

78 πt
U := ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)

79 πt
U.fr := false �G5-G7

80 return (U, xU)

SendTermInit(S, t,U, xU)
81 if πt

S 6= ((s1, ..., s`), (U, S,⊥, xS, com),⊥,⊥) �G0-G2
82 return ⊥ �G0-G2
83 if πt

S 6= (⊥, (U, S,⊥,⊥, com),⊥,⊥) �G3-G7
84 return ⊥ �G3-G7
85 (b1, ..., b`) := pwUS
86 (s1, ..., s`) $← G` �G3-G7
87 xS := (xS

1 , ..., xS
`) := (s1 ? xb1 , ..., s` ? xb`) �G3-G7

88 if TG[xS] 6= ⊥ �G3-G7
89 badhide := true; return ⊥ �G3-G7
90 Replace � in TG[�] := com with xS �G3-G7

91 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, xS, com) �G1-G7

92 badcoll := true �G1-G7
93 return ⊥ �G1-G7
94 if (U, S) /∈ C �G5-G7
95 πt

S.fr := true �G5-G7
96 else �G5-G7
97 πt

S.fr := false �G5-G7
98 z := (z1, ..., z`) := (s1 ? xU

1 , ..., s` ? xU
`)

99 K := H(U, S, xU, xS, com, pwUS, z)
100 πt

S := ((s1, ..., s`), (U, S, xU, xS, com),K , true)
101 return (S, xS)

SendTermResp(U, t, S, xS)
102 if πt

U 6= ((u1, ..., u`), (U,S, xU,⊥, com),⊥,⊥)
103 return ⊥
104 if G(xS) 6= com
105 πt

U := ((u1, ..., u`), (U,S, xU, xS, com),⊥, false)
106 return ⊥
107 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS, com) �G1-G7
108 badcoll := true; return ⊥ �G1-G7

109 if ∃t′ s. t. πt′
S .tr = (U, S, xU, xS, com)

and πt′
S .fr = true �G5-G7

110 πt
U.fr := true �G5-G7

111 else if (U,S) /∈ C �G5-G7
112 πt

U.fr := true �G5-G7
113 else �G5-G7
114 πt

U.fr := false �G5-G7
115 z := (z1, ..., z`) := (u1 ? xS

1 , ..., u` ? xS
`)

116 K := H(U, S, xU, xS, com, pwUS, z)
117 πt

U := ((u1, ..., u`), (U, S, xU, xS, com),K , true)
118 return true

Fig. 18. Games G0-G7 for the proof of Theorem 2. A has access to oracles O := {Execute,SendInit,SendResp,
SendTermInit,Reveal,Corrupt,Test,G,H}.

39

cover this in event badhide (line 89). If badhide does not happen, we can overwrite the entry with the
placeholder in TG with the correct input (line 90).

Note that A can only distinguish these changes if badhide occurs. The probability that badhide occurs
for one particular instance can be bounded by qG

|G|` since xS is fresh. For at most qs instances, this yields

|Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Pr[badhide] ≤ qGqs
|G|`

.

Game G4. Whenever A sends a commitment com in G4 which was not computed using G, i.e., there does
not exist an entry xS in TG such that TG[xS] = com, we expect that this instance will reject the key and
we immediately set the acc flag to false (line 74). Although SendResp will still output the first message,
as soon as SendTermResp is queried, the game will return ⊥ as the initial check will fail (line 102).

This change is only observable if A finds a correct input to G after it has sent the commitment. Then
the instance will accept the key in G3, but not in G4. As there are at most qG + qs + qe queries to G and
qs instances, we can upper bound the difference by

|Pr[G4 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ (qG + qs + qe)qs
2λ .

Game G5. In game G5, we make the freshness explicit. To each oracle πt
P, we assign an additional variable

πt
P.fr which is updated during the game. In particular, all instances used in execute queries are marked

as fresh (line 25).
A server instance is fresh if the password was not corrupted yet (line 95). Otherwise, it is not fresh

(line 97). A user instance is fresh if it has a fresh partner instance (line 110) or the password was not
corrupted yet (line 112). Otherwise, it is not fresh (line 114). If A issues a Corrupt query later, the
freshness variable will also be updated (line 32). When the session key of an instance is revealed, this
instance and its potential partner instance are marked as not fresh (line 47). On a query to test, the
game then only checks the freshness variable (line 36).

These are only a conceptual changes, hence

Pr[G5 ⇒ 1] = Pr[G4 ⇒ 1] .

Game G6. In game G6, we choose random keys for all instances queried to Execute (line 22). We
construct adversary B1 against GA-StCDH in Figure 19 and show that

|Pr[G6 ⇒ 1]− Pr[G5 ⇒ 1]| ≤ AdvGA-StCDH
EGAT (B1) .

Adversary B1 inputs a GA-StCDH challenge (x, y) = (g ? x̃, h ? x̃) and has access to a decision oracle
GA-DDH(x, ·, ·). First, it generates the crs elements (x0, x1) as in game G6 and then runs adversary A.
Queries to Execute are simulated as follows: For i ∈ [`] it chooses random group elements ui and si for
user and server instances, but instead of using (x0, x1) to compute the set elements, B1 uses x for the
user instance (line 22) and y for the server instance (line 23), independent of the password bits bi . We
can rewrite this as

xU
i = ui ? x = (ui · g) ? x̃ = (ui · g · gbi · g−1

bi
) ? x̃ = (ui · g · g−1

bi
)︸ ︷︷ ︸

u′i

?xbi ,

where u′i is the group element that the user actually needs to compute the session key. In the same way,
s′i = si · h · g−1

bi
. Note that zi is implicitly set to

zi = (u′i · s′i) ? xbi = ui · g · si · h · g−1
bi

? x̃ . (2)

We want to choose a random session key now, but before that we check if there has been a query to the
random oracle H that matches the session key (lines 27-30). We iterate over the entries in TH, where U,

40

BGA-DDH(x,·,·)
1 (x, y)

00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,TH,TG) := (∅,∅)
03 β $← {0, 1}
04 for (U, S) ∈ U × S
05 pwUS

$← PW
06 β′ ← AO(x0, x1)
07 Stop.

H(U, S, xU, xS, com, pw, z)
08 if ∃(u1, ..., u`, s1, ..., s`) s. t.

(U, S, xU, xS, com, pw, u1, ..., u`, s1, ..., s`) ∈ Te
09 (b1, ..., b`) := pw
10 for i ∈ [`]
11 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi) = 1

12 Stop with (u−1
i · s−1

i · gbi) ? zi
13 if TH[U, S, xU, xS, com, pw, z] = K 6= ⊥
14 return K
15 TH[U, S, xU, xS, com, pw,Z] $← K
16 return TH[U,S, xU, xS, com, pw, z]

Execute(U, t0,S, t1)
17 if πt0

U 6= ⊥ or πt1
S 6= ⊥

18 return ⊥
19 (b1, ..., b`) := pwUS
20 (u1, ..., u`) $← G`
21 (s1, ..., s`) $← G`
22 xU := (xU

1 , ..., xU
`) := (u1 ? x, ..., u` ? x)

23 xS := (xS
1 , ..., xS

`) := (s1 ? y, ..., s` ? y)
24 com := G(xS)
25 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U,S, xU, xS, com)
26 return ⊥
27 ∀z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH
28 for i ∈ [`]
29 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi) = 1

30 Stop with (u−1
i · s−1

i · gbi) ? zi
31 Te := Te ∪ {U, S, xU, xS, com, pwUS, u1, ..., u`, s1, ..., s`}
32 K $← K
33 πt0

U := ((u1, ..., u`), (U,S, xU, xS, com),K , true)
34 πt1

S := ((s1, ..., s`), (U, S, xU, xS, com),K , true)
35 (πt0

U .fr, π
t1
S .fr) := (true, true)

36 return (U, xU,S, (com, xS))

Fig. 19. Adversary B1 against GA-StCDH for the proof of Theorem 2. A has access to oracles
O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,G,H}. Oracles SendInit,
SendResp, SendTermInit, Reveal, Corrupt, Test and G are defined as in G5. Lines written in blue show
how B1 simulates the game.

S, xU, xS and pwUS match, and check if one of the entries in z is correct. More precisely, for all i ∈ [`],
we check whether

GA-CDH(x, xS
i) = (u−1

i · gbi) ? zi ⇔ GA-CDH(xU
i , xS

i) = gbi ? zi

⇔ GA-CDHxbi
(xU

i , xS
i) = zi

using the decision oracle GA-DDH(x, ·, ·).
If one zi is correct, B1 aborts and outputs the solution (u−1

i · s−1
i · gbi) ? zi = (g · h) ? x̃ (cf. Equation

(2)).
Otherwise, we store the values ui and si in list Te together with the trace and the password (line 31)

and choose a session key uniformly at random. We need list Te to identify relevant queries to H. In
particular, if the trace and password appear in a query, we retrieve the values ui and si to check whether
the provided zi are correct. We do this in the same way as described above using the decision oracle
(lines 08-12). If the oracle returns 1 for any i, B1 aborts and outputs (u−1

i · s−1
i · gbi) ? zi .

Game G7. In game G7, we remove the password from execute queries. In particular, we do not compute
xU and xS to the basis xbi , but simply use x̃ (lines 16, 17). Note that the values have the same distribution
as in the previous game. Also, the group elements u and s are not used to derive the key. Hence, this
change is not observable by A and

Pr[G7 ⇒ 1] = Pr[G6 ⇒ 1] .

Game G8. G8 is given in Figure 20. In this game we want to replace the session keys by random for all
fresh instances in oracles SendTermInit and SendTermResp (lines 74, 96). Therefore, we introduce
an additional independent random oracle Ts which maps only the trace of an instance to a key (lines
75, 97). We keep partner instances consistent, i.e., in case the adversary queries SendTermResp for a
user instance and there exists a fresh partner instance, then we look in Ts for the corresponding key and
assign it to this instance as well (line 91). For all instances that are not fresh, we simply compute the
correct key using random oracle H (lines 78-79, 100-101). If a session is fresh and there is an inconsistency
between TH and Ts, we raise flag bad. This happens in the following cases:
– a server instance is about to compute the session key, the password was not corrupted, but there

already exists an entry in TH with the correct password and z (lines 72-73).
– a user instance is about to compute the session key, there exists no partner instance and the password

was not corrupted, but there already exists an entry in TH with the correct password and z (lines
94-95).

41

GAMES G8
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,TH,TG) := (∅,∅)
03 β $← {0, 1}
04 for (U,S) ∈ U × S
05 pwUS

$← PW
06 β′ ← AO(x0, x1)
07 return Jβ = β′K

Execute(U, t0, S, t1)
08 if πt0

U 6= ⊥ or πt1
S 6= ⊥

09 return ⊥
10 (u1, ..., u`) $← G`
11 (s1, ..., s`) $← G`
12 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃)

13 xS := (xS
1 , ..., xS

`) := (s1 ? x̃, ..., s` ? x̃)
14 com := G(xS)
15 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, xS, com)
16 return ⊥
17 K $← K
18 πt0

U := ((u1, ..., u`), (U, S, xU, xS, com),K , true)
19 πt1

S := ((s1, ..., s`), (U, S, xU, xS, com),K , true)
20 (πt0

U .fr, π
t1
S .fr) := (true, true)

21 return (U, xU, S, (com, xS))

SendInit(S, t,U)
22 if πt

S 6= ⊥ return ⊥
23 (b1, ..., b`) := pwUS
24 com $← {0, 1}λ
25 if ∃xS s. t. TG[xS] = com
26 return ⊥
27 TG[�] := com
28 πt

S := (⊥, (U, S,⊥,⊥, com),⊥,⊥)
29 πt

S.fr := false
30 return (S, com)

G(xS)
31 if TG[xS] = com 6= ⊥
32 return com
33 TG[xS] $← {0, 1}λ

34 if ∃xS′ s. t. TG[xS′] = TG[xS]
35 return ⊥
36 return TG[xS]

H(U,S, xU, xS, com, pw, z)
37 if TH[U,S, xU, xS, com, pw, z] = K 6= ⊥
38 return K
39 if (U, S, xU, xS, com) ∈ Ts and pw = pwUS
40 if Ts[U,S, xU, xS, com] = (U, u1, ..., u`,K)
41 z ′ := (z ′1, ..., z ′`) := (u1 ? xS

1 , ..., u` ? xS
`)

42 if Ts[U, S, xU, xS, com] = (S, s1, ..., s`,K)
43 z ′ := (z ′1, ..., z ′`) := (s1 ? xU

1 , ..., s` ? xU
`)

44 if z = z ′
45 if (U, S) ∈ C
46 return K
47 if (U, S) /∈ C
48 bad := true
49 TH[U,S, xU, xS, com, pw,Z] $← K
50 return TH[U, S, xU, xS, com, pw, z]

SendResp(U, t, S, com)
51 if πt

U 6= ⊥ return ⊥
52 if @ xS s. t. TG[xS] = com
53 πt

U.acc := false
54 (b1, ..., b`) := pwUS
55 (u1, ..., u`) $← G`
56 xU := (xU

1 , ..., xU
`) := (u1 ? xb1 , ..., u` ? xb`)

57 πt
U := ((u1, ..., u`), (U,S, xU,⊥, com),⊥,⊥)

58 πt
U.fr := false

59 return (U, xU)

SendTermInit(S, t,U, xU)
60 if πt

S 6= (⊥, (U, S,⊥,⊥, com),⊥,⊥)
61 return ⊥
62 (b1, ..., b`) := pwUS
63 (s1, ..., s`) $← G`
64 xS := (xS

1 , ..., xS
`) := (s1 ? xb1 , ..., s` ? xb`)

65 if TG[xS] 6= ⊥
66 return ⊥
67 Replace � in TG[�] := com with xS

68 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, xS, com)

69 return ⊥
70 if (U,S) /∈ C
71 πt

S.fr := true
72 if ∃z s. t. (U,S, xU, xS, com, pwUS, z) ∈ TH

and zi = si ? xU
i ∀i ∈ [`]

73 bad := true
74 K $← K
75 Ts[U, S, xU, xS, com] := (S, (s1, ..., s`),K)
76 else
77 πt

S.fr := false
78 z := (z1, ..., z`) := (s1 ? xU

1 , ..., s` ? xU
`)

79 K := H(U, S, xU, xS, com, pwUS, z)
80 πt

S := ((s1, ..., s`), (U, S, xU, xS, com),K , true)
81 return (S, xS)

SendTermResp(U, t,S, xS)
82 if πt

U 6= ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
83 return ⊥
84 if G(xS) 6= com
85 πt

U := ((u1, ..., u`), (U, S, xU, xS, com),⊥, false)
86 return ⊥
87 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS, com)
88 return ⊥
89 if ∃t′ s. t. πt′

S .tr = (U, S, xU, xS, com)
and πt′

S .fr = true
90 πt

U.fr := true
91 (S, (s1, ..., s`),K) := Ts[U,S, xU, xS, com]
92 else if (U,S) /∈ C
93 πt

U.fr := true
94 if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and zi = ui ? xS
i ∀i ∈ [`]

95 bad := true
96 K $← K
97 Ts[U,S, xU, xS, com] := (U, (u1, ..., u`),K)
98 else
99 πt

U.fr := false
100 z := (z1, ..., z`) := (u1 ? xS

1 , ..., u` ? xS
`)

101 K := H(U,S, xU, xS, com, pwUS, z)
102 πt

U := ((u1, ..., u`), (U, S, xU, xS, com),K , true)
103 return true

Fig. 20. Game G8 for the proof of Theorem 2. A has access to oracles O := {Execute,SendInit,SendResp,
SendTermInit,Reveal,Corrupt,Test,G,H}. Oracles Reveal, Corrupt and Test are defined as in Fig-
ure 18. Differences to game G7 are highlighted in blue.

– the random oracle is queried on some trace that appears in Ts together with the correct password
and z (lines 39-48). At this point, we also check if the password was corrupted in the meantime and

42

if this is the case and the adversary issues the correct query, we simply output the key stored in Ts
(line 46) as this instance cannot be tested. This case corresponds to perfect forward secrecy which
we cover in Appendix F.3.

Note that when bad is not raised, there is no difference between G7 and G8. Hence,

|Pr[G8 ⇒ 1]− Pr[G7 ⇒ 1]| ≤ Pr[G8 ⇒ bad] .

Game G9. G9 is given in Figure 21. In this game we remove the password from send queries and generate
passwords as late as possible, that is either when the adversary issues a corrupt query (line 29) or after it
has stopped with output β′ (line 07). In SendResp and SendTermInit we still choose group elements
ui and si uniformly at random, but now compute xU

i and xS
i using the origin element (lines 56 and 63).

Thus, depending on which password is chosen afterwards, we implicitly set

xU
i = ui · x̃ = (ui · g−1

0) ? x0 = (ui · g−1
1) ? x1

and analogously for xS
i . For all instances that are not fresh, we have to compute the real session key

using zi = (si · g−1
bi

) ? xU
i (line 81) or zi = (ui · g−1

bi
) ? xS

i (line 107). Note that the password is already
defined for these instances.

Recall that event bad in game G8 is raised whenever there is an inconsistency in the random oracle
queries and the keys of fresh instances. In this game, we split event bad into two different events:
– badpw captures the event that there exists more than one valid entry in TH for the same trace of a

fresh instance, but different passwords.
– badguess happens only if badpw does not happen and captures the event that there exists a valid

entry in TH for the trace of a fresh instance and the correct password, where the password was not
corrupted when the query to H was made.

To identify the different events, we introduce a new set Tbad. For all fresh instances in SendTermInit
and SendTermResp, we now iterate over all entries in TH that contain the corresponding trace. We
check if the given password and z are valid for this trace by computing the real values z ′ in the same
way as for non-fresh instances. If z = z ′, we add this entry to the set Tbad (lines 71-75, 97-101). We
essentially do the same when the random oracle H is queried on a trace that appears in Ts. Here, the
adversary specifies the password and we check if z is valid for that password using the ui stored in Ts
for user instances and si for server instances. If z is valid and the instance is still fresh, we add the query
to Tbad (lines 39-49). In case the password was corrupted in the meantime, we output the key stored
in Ts as introduced in the previous game. After the adversary terminates, we check Tbad whether event
badpw (line 09) or event badguess (line 12) occurred. We will bound these events below. First note that
whenever bad is raised in G8, then either flag badguess or badpw is raised in G9, thus

Pr[G8 ⇒ bad] ≤ Pr[G9 ⇒ badpw] + Pr[G9 ⇒ badguess] .

Finally, we bound the probabilities of the two events. We start with badpw. In Figure 22, we construct
adversary B2 against ISim-GA-StCDH that simulates G9. We show that when badpw occurs, then B2 can
solve ISim-GA-StCDH. In the proof we need to guess the instance and the password bit for which badpw
happens. Hence,

Pr[G9 ⇒ badpw] ≤ qs` · AdvISim-GA-StCDH
EGAT (B2) .

Recall that in the ISim-GA-StCDH problem, B2 must commit on some y ∈ X to receive the challenge
x = g ? x̃ for g $← G. Thus, adversary B2 will first guess a send query τ∗ and a password bit i∗ for
which it will solve the problem. On a high level, the simulation of G9 for adversary A works as follows:
on the τ∗-th send query, where A sends xP, B2 will output the i∗-th set element xP

i∗ as a commitment.
It then embeds the challenge x in the i∗’s set element which will be output to A. If in the end, A has
issued two valid queries to H for that trace, where the passwords differ in the i∗’s bit, B2 can solve the
ISim-GA-StCDH problem.

Let us now describe B2 in more detail. Adversary B2 inputs (x0, x1), where x0 = g0 ? x̃ and x1 = g1 ? x̃
for group elements g0, g1 ∈ G chosen uniformly at random. Adversary B2 also has access to decision

43

GAMES G9
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C,TH,TG) := (∅,∅)
03 (badguess,badpw) = (false, false)
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U,S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U,S, xU, xS, com, z, z ′)

s. t. (U, S, xU, xS, com, pw, z) ∈ Tbad
and (U, S, xU, xS, com, pw′, z ′) ∈ Tbad

09 badpw := true
10 else
11 if ∃U,S, xU, xS, com, z

s. t. (U, S, xU, xS, com, pwUS, z) ∈ Tbad
12 badguess := true
13 return Jβ = β′K

SendInit(S, t,U)
14 if πt

S 6= ⊥ return ⊥
15 com $← {0, 1}λ
16 if ∃xS s. t. TG[xS] = com
17 return ⊥
18 TG[�] := com
19 πt

S := (⊥, (U, S,⊥,⊥, com),⊥,⊥)
20 πt

S.fr := false
21 return (S, com)

Corrupt(U,S)
22 if (U, S) ∈ C return ⊥
23 for P ∈ {U,S}
24 if ∃t s. t. πt

P.test = true
and @P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, π
t′
P′) = 1

25 return ⊥
26 ∀πt

P : if @P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, π

t′
P′) = 1

27 πt
P.fr = false

28 C := C ∪ {(U, S)}
29 pwUS

$← PW
30 return pwUS

G(xS)
31 if TG[xS] = com 6= ⊥
32 return com
33 TG[xS] $← {0, 1}λ

34 if ∃xS′ s. t. TG[xS′] = TG[xS]
35 return ⊥
36 return TG[xS]

H(U,S, xU, xS, com, pw, z)
37 if TH[U,S, xU, xS, com, pw, z] = K 6= ⊥
38 return K
39 if (U, S, xU, xS, com) ∈ Ts
40 (b1, ..., b`) := pw
41 if Ts[U,S, xU, xS, com] = (U, u1, ..., u`,K)
42 z ′ := (z ′1, ..., z ′`) := ((u1 · g−1

b1
) ? xS

1 , ..., (u` · g−1
b`

) ? xS
`)

43 if Ts[U,S, xU, xS, com] = (S, s1, ..., s`,K)
44 z ′ := (z ′1, ..., z ′`) := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
`)

45 if z = z ′
46 if (U, S) ∈ C and pw = pwUS
47 return K
48 if (U, S) /∈ C
49 Tbad := Tbad ∪ {U, S, xU, xS, com, pw, z}
50 TH[U, S, xU, xS, com, pw,Z] $← K
51 return TH[U, S, xU, xS, com, pw, z]

SendResp(U, t, S, com)
52 if πt

U 6= ⊥ return ⊥
53 if @xS s. t. TG[xS] = com
54 πt

U.acc := false
55 (u1, ..., u`) $← G`
56 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃)

57 πt
U := ((u1, ..., u`), (U,S, xU,⊥, com),⊥,⊥)

58 πt
U.fr := false

59 return (U, xU)

SendTermInit(S, t,U, xU)
60 if πt

S 6= (⊥, (U,S,⊥,⊥, com),⊥,⊥)
61 return ⊥
62 (s1, ..., s`) $← G`
63 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃)

64 if TG[xS] 6= ⊥
65 return ⊥
66 Replace � in TG[�] := com with xS

67 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, xS, com)

68 return ⊥
69 if (U,S) /∈ C
70 πt

S.fr := true
71 ∀pw, z s. t. (U,S, xU, xS, com, pw, z) ∈ TH
72 (b1, ..., b`) := pw
73 z ′ := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
`)

74 if z = z ′
75 Tbad := Tbad ∪ {(U,S, xU, xS, com, pw, z)}
76 K $← K
77 Ts[U, S, xU, xS, com] := (S, (s1, ..., s`),K)
78 else
79 πt

S.fr := false
80 (b1, ..., b`) := pwUS
81 z := (z1, ..., z`) := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
`)

82 K := H(U, S, xU, xS, com, pwUS, z)
83 πt

S := ((s1, ..., s`), (U, S, xU, xS, com),K , true)
84 return (S, xS)

SendTermResp(U, t,S, xS)
85 if πt

U 6= ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
86 return ⊥
87 if G(xS) 6= com
88 πt

U := ((u1, ..., u`), (U, S, xU, xS, com),⊥, false)
89 return ⊥
90 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS, com)
91 return ⊥
92 if ∃t′ s. t. πt′

S .tr = (U, S, xU, xS, com)
and πt′

S .fr = true
93 πt

U.fr := true
94 (S, (s1, ..., s`),K) := Ts[U,S, xU, xS, com]
95 else if (U, S) /∈ C
96 πt

U.fr := true
97 ∀pw, z s. t. (U, S, xU, xS, com, pw, z) ∈ TH
98 (b1, ..., b`) := pw
99 z ′ := ((u1 · g−1

b1
) ? xS

1 , ..., (u` · g−1
b`

) ? xS
`)

100 if z = z ′
101 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
102 K $← K
103 Ts[U,S, xU, xS, com] := (S, (s1, ..., s`),K)
104 else
105 πt

U.fr := false
106 (b1, ..., b`) := pwUS
107 z := (z1, ..., z`) := ((u1 · g−1

b1
) ? xS

1 , ..., (u` · g−1
b`

) ? xS
`)

108 K := H(U,S, xU, xS, com, pwUS, z)
109 πt

U := ((u1, ..., u`), (U, S, xU, xS, com),K , true)
110 return true

Fig. 21. Game G9 for the proof of Theorem 2. A has access to oracles O := {Execute,SendInit,SendResp,
SendTermInit,Reveal,Corrupt,Test,G,H}. Oracles Reveal and Test are defined as in game G7 in Fig-
ure 18. Oracle Execute is defined as in Figure 20. Differences to game G8 are highlighted in blue.

44

BGA-DDHx0 (x̃,·,·),GA-DDHx1 (x̃,·,·)
2 (x0, x1)

00 (C,TH,TG) := (∅,∅)
01 τ∗ $← [qs]
02 i∗ $← [`]
03 cnt := 0
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U, S, xU, xS, com, z, z ′)

s. t. (U, S, xU, xS, com, pw, z) ∈ Tbad
and (U, S, xU, xS, com, pw′, z ′) ∈ Tbad

09 if (U,S, xU, xS, com) = tr∗
10 (b1, ..., b`) := pw
11 (b′1, ..., b′`) := pw′
12 if bi∗ 6= b′i∗
13 W.l.o.g. bi∗ = 0, b′i∗ = 1
14 Stop with (zi∗ , z ′i∗)

SendInit(S, t,U)
15 cnt := cnt + 1
16 if πt

S 6= ⊥ return ⊥
17 com $← {0, 1}λ
18 if ∃xS s. t. TG[xS] = com
19 return ⊥
20 TG[�] := com
21 πt

S := (⊥, (U, S,⊥,⊥, com),⊥,⊥)
22 πt

S.fr := false
23 return (S, com)

SendResp(U, t,S, com)
24 cnt := cnt + 1
25 if πt

U 6= ⊥ return ⊥
26 if @xS s. t. TG[xS] = com
27 πt

U.acc := false
28 (u1, ..., u`) $← G`
29 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃)

30 if cnt = τ∗ and πt
U.acc 6= false

31 find xS s. t. TG[xS] = com
32 (xS

1 , ..., xS
`) := xS

33 Output y := xS
i∗ to receive challenge x

34 � From now on B2 also has access to
GA-DDHx0 (x, ·, ·), GA-DDHx1 (x, ·, ·)

35 xU
i∗ := x

36 ui∗ := ⊥
37 tr∗ = (U, S, xU,⊥, com)
38 πt

U := ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
39 πt

U.fr := false
40 return (U, xU)

H(U, S, xU, xS, com, pw, z)
41 if TH[U, S, xU, xS, com, pw, z] = K 6= ⊥
42 return K
43 (b1, ..., b`) := pw
44 if (U,S, xU, xS, com) ∈ Ts
45 if Ts[U, S, xU, xS, com] = (U, (u1, ..., u`),K)
46 if (U, S, xU, xS, com) = tr∗
47 if GA-DDHxbi

(x̃, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`] \ {i∗}
and GA-DDHxbi∗

(x, xS
i∗ , zi∗) = 1

48 if (U, S) /∈ C
49 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
50 if (U, S) ∈ C and pw = pwUS
51 return K
52 else
53 if GA-DDHxbi

(x̃, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`]
54 if (U, S) /∈ C
55 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
56 if (U, S) ∈ C and pw = pwUS
57 return K
58 if Ts[U, S, xU, xS, com] = (S, (s1, ..., s`),K)
59 if (U, S, xU, xS, com) = tr∗
60 if GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`] \ {i∗}
and GA-DDHxbi∗

(x, xU
i∗ , zi∗) = 1

61 if (U, S) /∈ C
62 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
63 if (U,S) ∈ C and pw = pwUS
64 return K
65 else
66 if GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`]
67 if (U, S) /∈ C
68 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
69 if (U, S) ∈ C and pw = pwUS
70 return K
71 if ∃(u1, ..., u`) s. t. (U, S, xU, xS, com, pw, (u1, ..., u`)) ∈ TH
72 if (U, S, xU, xS, com) = tr∗
73 if GA-DDHxbi

(x̃, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`] \ {i∗}
and GA-DDHxbi∗

(x, xS
i∗ , zi∗) = 1

74 return TH[U,S, xU, xS, com, pw, (u1, ..., u`)]
75 else
76 if GA-DDHxbi

(x̃, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`]
77 return TH[U,S, xU, xS, com, pw, (u1, ..., u`)]
78 else if ∃(s1, ..., s`) s. t. (U, S, xU, xS, com, pw, (s1, ..., s`)) ∈ TH
79 if (U,S, xU, xS, com) = tr∗
80 if GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`] \ {i∗}
and GA-DDHxbi∗

(x, xU
i∗ , zi∗) = 1

81 return TH[U, S, xU, xS, com, pw, (s1, ..., s`)]
82 else
83 if GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`]
84 return TH[U, S, xU, xS, com, pw, (s1, ..., s`)]
85 TH[U, S, xU, xS, com, pw,Z] $← K
86 return TH[U, S, xU, xS, com, pw, z]

Fig. 22. Adversary B2 against ISim-GA-StCDH for the proof of Theorem 2. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,G,H}. Oracles Execute, Reveal,
Corrupt, Test and G are defined as in G9. Oracles SendTermInit and SendTermResp are defined in Figure 23.
Lines written in blue show how B2 simulates the game.

oracles GA-DDHx0(x̃, ·, ·), GA-DDHx1(x̃, ·, ·). It guesses a send query τ∗ $← [qs] and a password bit
i∗ $← [`] and then initializes a counter cnt (lines 01-03), before it runs A on (x0, x1).

Apart from increasing the counter, queries to SendInit are simulated exactly as in G9 as we do not
choose any set elements here, but later in SendTermInit.

In SendResp, we also increase the counter and then we choose xU as in G9. Only if this is the τ∗-th
query and the commitment sent by A was output by G before, then B2 looks in the list TG to find
the corresponding input xS and outputs xS

i∗ as commitment y to receive the ISim-GA-StCDH challenge
x = g ? x̃ (lines 30-33). It replaces the i∗-th element in xU with x, implicitly defining ui∗ = g. In order to

45

SendTermInit(S, t,U, xU)
00 cnt := cnt + 1
01 if πt

S 6= (⊥, (U,S,⊥,⊥, com),⊥,⊥)
02 return ⊥
03 (s1, ..., s`) $← G`
04 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃)

05 if cnt = τ∗

06 (xU
1 , ..., xU

`) := xU

07 Output y := xU
i∗ to receive challenge x

08 � From now on B2 also has access to
GA-DDHx0 (x, ·, ·), GA-DDHx1 (x, ·, ·)

09 xS
i∗ := x

10 si∗ := ⊥
11 tr∗ = (U, S, xU, xS, com)
12 if TG[xS] 6= ⊥
13 return ⊥
14 Replace � in TG[�] := com with xS

15 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, xS, com)

16 return ⊥
17 if (U,S) /∈ C
18 πt

S.fr := true
19 ∀pw, z s. t. (U,S, xU, xS, com, pw, z) ∈ TH
20 (b1, ..., b`) := pw
21 if (U, S, xU, xS, com) = tr∗
22 if GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`] \ {i∗}
and GA-DDHxbi∗

(x, xU
i∗ , zi∗) = 1

23 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
24 else
25 if GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`]
26 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
27 K $← K
28 Ts[U,S, xU, xS, com] := (S, (s1, ..., s`),K)
29 else
30 πt

S.fr := false
31 (b1, ..., b`) := pwUS
32 if (U,S, xU, xS, com) = tr∗

and ∃z s. t. (U,S, xU, xS, com, pwUS, z) ∈ TH
and GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`] \ {i∗}
and GA-DDHxbi∗

(x, xU
i∗ , zi∗) = 1

33 K := TH[U, S, xU, xS, com, pwUS, z]
34 else if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and GA-DDHxbi
(x̃, xU

i , s−1
i ? zi) = 1 ∀i ∈ [`]

35 K := TH[U, S, xU, xS, com, pwUS, z]
36 else
37 K $← K
38 TH[U, S, xU, xS, com, pwUS, (s1, ..., s`)] := K
39 πt

S := ((s1, ..., s`), (U,S, xU, xS, com),K , true)
40 return (S, xS)

SendTermResp(U, t,S, xS)
41 cnt := cnt + 1
42 if πt

U 6= ((u1, ..., u`), (U,S, xU,⊥, com),⊥,⊥)
43 return ⊥
44 if G(xS) 6= com
45 πt

U := ((u1, ..., u`), (U,S, xU, xS, com),⊥, false)
46 return ⊥
47 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS, com)
48 return ⊥
49 if πt

U.tr = tr∗
50 tr∗ := (U, S, xU, xS, com)
51 if ∃t′ s. t. πt′

S .tr = (U, S, xU, xS, com)
and πt′

S .fr = true
52 πt

U.fr := true
53 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS, com]
54 else if (U, S) /∈ C
55 πt

U.fr := true
56 ∀pw, z s. t. (U,S, xU, xS, com, pw, z) ∈ TH
57 (b1, ..., b`) := pw
58 if (U, S, xU, xS, com) = tr∗
59 if GA-DDHxbi

(x̃, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`] \ {i∗}
and GA-DDHxbi∗

(x, xS
i∗ , zi∗) = 1

60 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
61 else
62 if GA-DDHxbi

(x̃, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`]
63 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
64 K $← K
65 Ts[U, S, xU, xS, com] := (U, (u1, ..., u`),K)
66 else
67 πt

U.fr := false
68 (b1, ..., b`) := pwUS
69 if (U,S, xU, xS, com) = tr∗

and ∃z s. t. (U,S, xU, xS, com, pwUS, z) ∈ TH
and GA-DDHxbi

(x̃, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`] \ {i∗}
and GA-DDHxbi∗

(x, xS
i∗ , zi∗) = 1

70 K := TH[U, S, xU, xS, com, pwUS, z]
71 else if ∃z s. t. (U,S, xU, xS, com, pwUS, z) ∈ TH

and GA-DDHxbi
(x̃, xS

i , u−1
i ? zi) = 1 ∀i ∈ [`]

72 K := TH[U, S, xU, xS, com, pwUS, z]
73 else
74 K $← K
75 TH[U, S, xU, xS, com, pwUS, (u1, ..., u`)] := K
76 πt

U := ((u1, ..., u`), (U, S, xU, xS, com),K , true)
77 return true

Fig. 23. Oracles SendTermInit and SendTermResp for adversary B2 in Figure 22.

recognize where the challenge was embedded, B2 marks the trace of this instance as the target trace tr∗
(lines 35-37). From now on, B2 also has access to decision oracles GA-DDHx0(x, ·, ·), GA-DDHx1(x, ·, ·).

Queries to SendTermInit are simulated similarly (see Figure 23). After increasing the counter, B2
computes xS and if this is the τ∗-th query, it outputs xU

i∗ as commitment to receive x. xS
i∗ is then set to

x, implicitly setting si∗ = g. B2 also marks the trace as tr∗ (lines 05-11). Now B2 also needs to compute
a session key. If the instance is fresh, we must check if there already exists an entry in TH that causes
an inconsistency. As in G9, we iterate over all pw, z in TH that contain the trace of this instance (line
19). In particular, we must check whether zi satisfies

zi = GA-CDHxbi
(xU

i , xS
i) = GA-CDHxbi

(xU
i , si ? x̃) ⇔ GA-CDHxbi

(x̃, xU
i) = s−1

i ? zi ,

which we can do using the GA-DDH oracle and the equation on the right-hand side (lines 24-26). When
checking for an inconsistency of tr∗, we need to call the corresponding additional oracle (where the
challenge x is fixed) for the i∗-th element (lines 21-23). In this case, we need to check if

zi∗ = GA-CDHxbi∗
(xU

i∗ , xS
i∗) = GA-CDHxbi∗

(xU
i∗ , x) = GA-CDHxbi∗

(x, xU
i∗) .

46

If all zi are valid, then we add this entry to Tbad.
If the instance is not fresh, i.e., the password is corrupted, then we have to compute the correct key.

We check list TH for a valid entry z as explained above and if it exists, we assign this value to the session
key (lines 32-35). Here we also must treat tr∗ accordingly. Otherwise, we choose a random key and add
a special entry to TH, which instead of z contains the secret group elements si (lines 37, 38) so that we
can patch the random oracle later.

SendTermInit is simulated analogously, using the secret group elements ui . Here we must first
update tr∗ if necessary (line 50).

Now we look at the random oracle queries to H (see Figure 22). If the trace is contained in set Ts
(line 44) which means the corresponding instance was fresh when the send query was issued, we check
if z is valid using the GA-DDH oracle. We do this as described above, depending on whether it is a
user or server instance (lines 45, 58) and depending on whether it is tr∗ (lines 46, 59) or not (lines 52,
65). In case z is valid, we first check if the instance is still fresh (i.e., the password was not corrupted in
the meantime) and if this is the case, we add the query to Tbad (lines 49, 55, 62, 68). Otherwise, if the
password was corrupted and is specified in the query, we return the session key stored in Ts (lines 51,
57, 64, 70).

Next, we check if the query matches a special entry in TH that was added in SendTermInit or
SendTermResp for a non-fresh instance, which means we have to output the same key that was chosen
before. Again, we can use the GA-DDH oracle and differentiate between user and server instances (lines
71, 78) and tr∗(lines 72, 79).

After A terminates with output β′, B2 chooses the passwords which have not been generated yet in a
Corrupt query (line 07). Then we check for event badpw (line 08). If badpw occurred, then there must
be at least two entries in Tbad for the same trace and different passwords pw and pw′ along with values
z and z ′. We check if this is the case for the target trace tr∗ (line 09) and if the two passwords differ in
the i∗-th bit (line 12). In this case B2 will output zi∗ and z ′i∗ for bi∗ = 0 and b′i∗ = 1 (line 14) or it must
swap the output. Otherwise, B2 aborts.

Recall that in case tr∗ belongs to a user instance, B2 committed on y = xS
i∗ and embedded the

challenge x in xU
i∗ . To solve the ISim-GA-StCDH problem, B2 needs to compute

y0 = GA-CDHx0(x, y) = GA-CDHx0(xU
i∗ , xS

i∗) = zi∗ if bi∗ = 0,
y1 = GA-CDHx1(x, y) = GA-CDHx1(xU

i∗ , xS
i∗) = z ′i∗ if b′i∗ = 1,

which is exactly what is stored in Tbad. If tr∗ belongs to a server instance, the analysis works analogously.
Therefore, B2 is successful whenever its guesses are correct and A issues two queries for the target

trace and both password bits. This concludes the analysis of badpw.

Next, we analyze event badguess. Recall that badguess happens only if badpw does not happen. Hence,
for each instance there is at most one entry in Tbad and the size of Tbad is at most qs. As all entries were
added before the corresponding password was sampled, the probability is bounded by

Pr[G9 ⇒ badguess] ≤
qs
|PW|

.

Finally, note that if none of the bad events happens in G9, all session keys output by Test are uniformly
random and the adversary can only guess β. Hence, Pr[G9 ⇒ 1] = 1

2 . Collecting the probabilities and
applying Lemma 4 yields the bound in Theorem 2. ut

E.2 Variants of Com-GA-PAKE`

In Section 8 we described optimizations that can be used to reduce the number of group action evaluations
in an execution of the protocol. Here, we show that Com-GA-PAKE` remains secure when one or both
optimizations is applied.

Com-GA-PAKE`,N . Let N be some positive integer dividing `. We set

crs := (x0, . . . , x2N−1) ∈ X 2N

47

and divide the password into `/N blocks of length N

pw = (b1, ..., b`/N) ∈ {0, ..., 2N − 1}`/N .

The general outline of the protocol does not change. The only difference is that both the server and
the user only generate `/N random group elements (instead of `). Hence they only need to perform
2 · `/N group action evaluations in total. We write Com-GA-PAKE`,N for this variant of the protocol.
The alterations are summarized in Figure 24.

User U Server S

crs := (x0, ..., x2N−1) ∈ X 2N
,

pw := (b1, ..., b`/N) ∈ {0, ..., 2N − 1}`/N

(s1, ..., sM) $← G`/N

for i ∈ [`/N]
xS

i := si ? xbi

(u1, ..., u`/N) $← G`/N com = G(xS
1 , . . . , xS

`/N)
for i ∈ [`/N]

xU
i := ui ? xbi

if com = G(xS
1 , . . . , xS

M)
for i ∈ [`/N] for i ∈ [`/N]

zi := ui ? xS
i zi := si ? xU

i

K := H(U, S, xU
1 , ..., xU

`/N , xS
1 , ..., xS

`/N , com, pw, z1, ..., z`/N)

com

xU
1 , ..., xU

`/N

xS
1 , ..., xS

`/N

Fig. 24. Com-GA-PAKE`,N with some N | `.

Theorem 5 (Security of Com-GA-PAKE`,N). For any adversary A against Com-GA-PAKE`,N that
issues at most qe queries to oracle Execute and qs queries to oracle SendInit and SendResp, there
exist adversary B1 against GA-StCDH, B2 against GA-GapCDH such that

AdvCom-GA-PAKE`
(A) ≤ AdvGA-StCDH

EGAT (B1) + 2qs`

N ·
√

AdvGA-GapCDH
EGAT (B2) + (qs + qe)2

|G|`/N + qGqs

|G|`/N

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

where λ is the output length of G in bits.

The proof of Theorem 5 is very similar to the proof of Theorem 2. Therefore we do not give a full proof
for the security of Com-GA-PAKE`,N , but shortly explain the difference between the two protocols.

The main difference appears in the analysis of the event badpw. Here, it is not possible to construct an
adversary against ISim-GA-StCDH as was done in the original proof. Instead, we construct an adversary
against 2NISim-GA-StCDH (Definition 16). This construction is a straight-forward adaption of the original
construction, therefore we do not give any details here. But we show that the new assumption can be
reduced to ISim-GA-StCDH (Theorem 6).

Definition 16 (2N-Interactive Simultaneous GA-StCDH (2NISim-GA-StCDH)). On input (x0 =
g0 ? x̃, ..., x2N−1 = g2N−1 ? x̃) ∈ X 2N , the adversary first chooses and commits to some y ∈ X . After
receiving the challenge x = g?x̃ ∈ X , the 2NISim-GA-StCDH problem requires to compute y0 = gg−1

i ?y and
y1 = gg−1

j ?y for one pair i 6= j ∈ {0, ..., 2N−1}. For a group action XXX ∈ {EGA,REGA,EGAT,REGAT},

48

we define the advantage function of an adversary A as

Adv2NISim-GA-StCDH
XXX (A) := Pr


i 6= j

y0 = GA-CDHxi (x, y)
y1 = GA-CDHxj (x, y)

∣∣∣∣∣∣∣∣∣∣∣∣

(g0, ..., g2N) $← G2N

(x0, ..., x2N−1) = (g0 ? x̃, ..., g2N−1 ? x̃)
y ← AO1(x0, ..., x2N−1)

g $← G
x = g ? x̃

(y0, y1)← AO1,O2(x)

 ,

where O1 = {GA-DDHxk (x̃, ·, ·)}k and O2 = {GA-DDHxk (x, ·, ·)}k with k ∈ {0, ..., 2N − 1}.

Theorem 6 (ISim-GA-StCDH implies 2NISim-GA-StCDH). For any adversary A against 2NISim-GA-StCDH,
there exists adversary B against ISim-GA-StCDH such that

Adv2NISim-GA-StCDH
EGAT (A) ≤ 2 · AdvISim-GA-StCDH

EGAT (B) .

Proof. We construct adversary B as follows. On input (x0, x1) = (g0?x̃, g1?x̃), for each i ∈ {0, ..., 2N−1} B
chooses a random bit bi

$← {0, 1}, a random group element hi
$← G and computes xi = hi?xbi . Then it runs

A on input (x0, ..., x2N−1). When A commits on y, B forwards the commitment to receive the challenge
x which it gives to A. Finally, A outputs (i, j) and (y0, y1) such that i 6= j and y0 = GA-CDHxi (x, y),
y1 = GA-CDHxj (x, y). If bi = bj which happens with probability 1/2, then B aborts. Otherwise, note that
xi = (higbi) ? x̃ and thus y0 = (h−1

i g−1
bi

g) ? y, so B can compute the solution y′0 = hi ? y0 = g−1
bi

g ? y and
equivalently y′1 = hj ? y1 = g−1

bj
g ? y. If bj = 0 and bi = 1, the output of B must be swapped.

During the experiment, A also has access to decision oraclesGA-DDHxi (x̃, ·, ·) andGA-DDHxi (x, ·, ·)
for i ∈ {0, ..., 2N − 1}. These can be easily simulated using B’s decision oracles for x0 and x1. On a query
GA-DDHxi (x̃, z1, z2), B queries its own oracle GA-DDHxbi

(x̃, z1, hi ? z2) and fowards the output to A.
Analogously, on a query GA-DDHxi (x, z1, z2), B queries GA-DDHxbi

(x, z1, hi ? z2). ut

Twisted version of Com-GA-PAKE`. Here, we analyze the security of Com-GA-PAKEt
`, the twisted

version of Com-GA-PAKE`, as defined in Section 8.2. In contrast to the situation for X-GA-PAKEt
`, The-

orem 2 needs to be changed slightly. Before presenting the new theorem, we need to introduce the the
following assumption.

Definition 17 (Square GA-GapCDH (Sq-GA-GapCDH)). On input g? x̃ ∈ X , the Sq-GA-GapCDH prob-
lem requires to compute the set element g2 ? x̃ . To an effective group action XXX ∈ {EGA,REGA,EGAT,
REGAT}, we associate the advantage function of an adversary A as

AdvSq-GA-GapCDH
XXX (A) := Pr[AGA-DDH∗(g ? x̃)⇒ g2 ? x̃] ,

where g $← G and A has access to a general decision oracle GA-DDH∗.

Note that in the CSIDH setting, the square group action computational Diffie-Hellman problem coincides
with Problem 3 in [27].

Theorem 7 (Security of Com-GA-PAKEt
`). For any adversary A against Com-GA-PAKEt

` that issues
at most qe execute queries, qs send queries and at most qG and qH queries to random oracles G and H,
there exist an adversary B1 against GA-StCDH and an adversary B2 against Sq-GA-GapCDH such that

AdvCom-GA-PAKEt
`
(A) ≤ AdvGA-StCDH

EGAT (B1) + qs` ·
√

AdvSq-GA-GapCDH
EGAT (B2) + (qs + qe)2

|G|`
+ qGqs
|G|`

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

where λ is the output length of G in bits.

49

Again, we do not provide a full proof of the theorem since most parts are completely analogous to the
proof of Theorem 2. For the most part, one can just replace x1 by xt

0 everywhere in the proof. The only
significant difference occurs in the analysis of the event badpw. In particular the restriction x1 = xt

0 does
not allow to construct an adversary against ISim-GA-StCDH. Instead, we need to consider the following
alteration of ISim-GA-StCDH for the security analysis.

Definition 18 (Twisted Interactive Simultaneous GA-StCDH (TISim-GA-StCDH)). On input x0 =
g0 ? x̃ ∈ X , the adversary first chooses and commits to some y ∈ X . After receiving the challenge
x = g ? x̃ ∈ X , the (TISim-GA-StCDH) problem requires to compute y0 = gg−1

0 ? y, y1 = gg0 ? y. For a
group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage function of an adversary A
as

AdvTISim-GA-StCDH
XXX (A) := Pr


y0 = GA-CDHx0(x, y)
y1 = GA-CDHxt

0
(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣

g0
$← G

x0 = g0 ? x̃
y ← AO1(x0)

g $← G
x = g ? x̃

(y0, y1)← AO1,O2(x)

 ,

where O1 = {GA-DDHx0(x̃, ·, ·),GA-DDHxt
0
(x̃, ·, ·)} and O2 = {GA-DDHx0(x, ·, ·),GA-DDHxt

0
(x, ·, ·)}.

Recall that for the proof of Com-GA-PAKE`, we showed that the ISim-GA-StCDH is implied by GA-
GapCDH (Lemma 4). In the same way, one can show that TISim-GA-StCDH is implied by Sq-GA-GapCDH,
more precisely

AdvTISim-GA-StCDH
EGAT (A) ≤

√
AdvSq-GA-GapCDH

EGAT (B) .

This explains the dependence on the new security assumption Sq-GA-GapCDH for this version of Com-GA-PAKE`.

F PAKE with Perfect Forward Secrecy

When considering perfect forward secrecy, the security experiment is the same as ExpPAKE described in
Section 4. However, we replace the forth freshness condition by the following:
3.4 No partner exists and Corrupt was not queried prior to acceptance.

As a result, the Corrupt oracle does not need to check anymore whether an instance that has no partner
instance has been tested before or not. If it has tested, it must have been fresh at that point which is
not changed by a corruption query.

Definition 19 (Security of PAKE with Forward Security). We define the security experiment
as ExpPAKE with the additional property in the freshness definition. The advantage of an adversary A
against a password authenticated key exchange protocol PAKE in Exppfs

PAKE is defined as

Advpfs
PAKE(A) :=

∣∣∣∣Pr[Exppfs
PAKE ⇒ 1]− 1

2

∣∣∣∣ .
F.1 Perfect Forward Secrecy of GA-PAKE`

In order to consider perfect forward secrecy, we need an interactive and password-based security assump-
tion. This is similar as in the analysis of SPAKE2 [1] for example.

Definition 20 (Password-based GA-StCDH (Pw-GA-StCDH)). On input (x0, x1, xP
1 , ..., xP

`) = (g0 ?
x̃, g1? x̃, p1? x̃, ..., p`? x̃), the Pw-GA-StCDH problem requires the adversary to commit on (yP

1 , ..., yP
`) ∈ X `

and then compute zi = GA-CDHxbi
(xP

i , yP
i) = (g−1

bi
· pi) ? yP

i ∀i ∈ [`] after receiving the challenge password

50

pw = (b1, ..., b`) ∈ {0, 1}`. To an effective group action XXX ∈ {EGA,REGA}, we define the advantage
function of A as

AdvPw-GA-StCDH
XXX (A) := Pr

zi = GA-CDHxbi
(xP

i , yP
i) ∀i ∈ [`]

∣∣∣∣∣∣∣∣∣∣∣∣

(g0, g1, p1, ..., p`) $← G`+2

(x0, x1) := (g0 ? x̃, g1 ? x̃)
(xP

1 , ..., xP
`) := (p1 ? x̃, ..., p` ? x̃)

(yP
1 , ..., yP

`)← AO(x0, x1, xP
1 , ..., xP

`)
pw := (b1, ..., b`) $← PW

(z1, ..., z`)← AO(pw)

 ,

where O = {GA-DDHxj (xP
i , ·, ·)}i∈[`],j∈{0,1}.

Lemma 5. The simultaneous GA-StCDH (Sim-GA-StCDH) implies the password-based GA-StCDH (Pw-GA-StCDH),
more precisely

AdvPw-GA-StCDH
EGA (A) ≤

√
AdvSim-GA-StCDH

EGA (B) + 1
|PW|

.

Proof. Intuitively, the term 1/|PW| comes from the fact that the adversary can trivially solve the problem
when guessing the password directly. For the proof we apply the reset lemma (see Lemma 2), where
H = PW.

Let A be an adversary against the Pw-GA-StCDH problem. Now consider adversary B in Figure 25
that takes as input three set elements (x, x0, x1) and a password pw. It also has access to decision oracles.
First, B chooses (p1, ...p`) $← G` and computes xP

i = pi ? x for all i ∈ [`]. Then it runs A on input
(x0, x1, xP

1 , ..., xP
`) and receives a commitment (yP

1 , ..., yP
`). Now B gives pw to A and A will finally output

(z1, ..., z`). B checks if the solution is correct using the decision oracles and if this is the case, it outputs
I = 1 and σ = (pw, p1, ..., p`, yP

1 , ..., yP
` , z1, ..., z`). Otherwise it outputs (0, ε).

BGA-DDHx0 (x,·,·),GA-DDHx1 (x,·,·)(x, x0, x1, pw)
00 (p1, ..., p`) $← G`
01 (xP

1 , ..., xP
`) := (p1 ? x, ..., p` ? x)

02 (yP
1 , ..., yP

`)← AO(x0, x1, xP
1 , ...xP

`)
03 (z1, ..., z`)← AO(pw)
04 (b1, ..., b`) := pw
05 if GA-DDHxbi

(x, yP
i , p−1

i ? zi) = 1 ∀i ∈ [`]
06 return (1, (pw, p1, ..., p`, yP

1 , ..., yP
` , z1, ..., z`))

07 return (0, ε)

{GA-DDHxj (xP
i , y′, z ′)}i∈[`],j∈{0,1}

08 return GA-DDHxj (x, y′, p−1
i ? z ′)

CGA-DDHx0 (x,·,·),GA-DDHx1 (x,·,·)(x, x0, x1)
09 (b∗, σ, σ′)←RO′

B (x, x0, x1)
10 if b∗ = 0
11 abort and return ⊥
12 (pw, p1, ..., p`, yP

1 , ..., yP
` , z1, ..., z`) := σ

13 (pw′, p1, ..., p`, yP
1 , ..., yP

` , z ′1, ..., z ′`) := σ′

14 (b1, ..., b`) := pw
15 (b′1, ..., b′`) := pw′
16 Find i such that bi 6= b′i
17 return (yP

i , p−1
i ? zi , p−1

i ? z ′i)

Fig. 25. Adversaries B and C against Sim-GA-StCDH for the proof of Lemma 5. A has access to O =
{GA-DDHxj (xP

i , ·, ·)}i∈[`],j∈{0,1}. Reset algorithmRB has access toO′ = {GA-DDHx0 (x, ·, ·),GA-DDHx1 (x, ·, ·)}.

If A issues a query to a decision oracle GA-DDHxj (xP
i , y′, z ′) for some i ∈ [`] and j ∈ {0, 1}, B queries

its own decision oracle GA-DDHxj (x, y′, p−1
i ? z ′) and forwards the output to A.

Let IG be the algorithm that chooses g, g0, g1
$← G and outputs (x, x0, x1) = (g ? x̃, g0 ? x̃, g1 ? x̃). Let

acc be defined as in Lemma 2, thus

acc ≥ AdvPw-GA-StCDH
EGA (A) .

Let RB be the reset algorithm associated to B as in Lemma 2 with access to the same decision oracles as
B. Then we construct adversary C against Sim-GA-StCDH as in Figure 25. C runs the reset algorithm to
obtain a bit b∗ as well as the two side outputs σ, σ′ each consisting of a password, ` group elements pi , `
set elements yP

i and ` set elements zi . If b∗ = 0, it aborts. If the reset algorithm was successful, note that
pw 6= pw′, but pi = p′i and yP

i = yP
i
′ for all i ∈ [`] as we run B on the same random coins. Now C looks for

the first index i where the two passwords differ and outputs the solution (y, y0, y1) = (yP
i , p−1

i ?zi , p−1
i ?z ′i)

51

which solves Sim-GA-StCDH as zi = GA-CDHx0(xP
i , yP

i) = (g−1
0 · pi) ? xP

i and z ′i = GA-CDHx1(xP
i , yP

i) =
(g−1

1 · pi) ? yP
i .

Applying Lemma 2, we get the bound stated in Lemma 5. ut

Theorem 8 (Perfect Forward Secrecy of GA-PAKE`). For any adversary A against GA-PAKE` that
issues at most qe execute queries and qs send queries and where H is modeled as a random oracle, there
exist adversary B1 against GA-StCDH and adversaries B2, B3 against Sim-GA-StCDH such that

Advpfs
GA-PAKE`

(A) ≤ AdvGA-StCDH
EGA (B1) + AdvSim-GA-StCDH

EGA (B2) + qs ·
√

AdvSim-GA-StCDH
EGA (B3)

+ 2qs
|PW|

+ (qs + qe)2

|G|`
.

Proof. The proof follows the one of Theorem 3 very closely. However, we have to consider that an
instance is fresh if the password was not corrupted when the instance accepts. We keep games G0-G6
from Figures 12, 14 and 15 almost as they are, with the following differences.

In G2, we do not update the freshness variable in the Corrupt oracle in case the instance was tested
(line 88, Figure 12) because this is now a valid query.

Recall that in G5, we raise flag bad whenever there is an inconsistency between the random oracle list
T and the list of keys from send queries Ts. Now we also want keys to be random even if the password
was corrupted afterwards, hence we raise bad in H in this case as well (line 38, Figure 14), instead of
outputting the real session key.

This also translates to G6, where we will then raise flag badpfs at this point (line 39, Figure 15).
Thus, we now have

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess] + Pr[G6 ⇒ badpfs] ,

where badpw and badguess can be bounded as in the proof of Theorem 3.
It remains to bound badpfs. Therefore, we construct an adversary B3 against Pw-GA-StCDH in Fig-

ure 26 and show that

Pr[G6 ⇒ badpfs] ≤ qs · AdvPw-GA-StCDH
EGA (B3) .

We cannot achieve a tight bound for badpfs, as an adversary against Pw-GA-StCDH must commit on ` set
elements before it receives the challenge password. Thus, adversary B3 first guesses a send query τ∗ which
it will use to solve the problem. On a high level, the simulation of G6 for adversary A works as follows:
on the τ∗-th send query, B3 will output the ` set elements xP

i provided by the assumption and it uses
the input to that send query as the commitment yP

i . Then, if A decides to corrupt the password, it will
receive the challenge password and if it then issues the correct query to H, we can solve Pw-GA-StCDH,
where we use the decision oracle to simulate the other instances.

We will now describe adversary B3 in more detail. B3 inputs set elements (x0, x1) = (g0 ? x̃, g1 ? x̃)
and xP

i = (pi ? x̃) for g0, g1, pi
$← G and i ∈ [`]. It chooses index τ∗ uniformly at random from [qs] and

initializes a counter to keep track of the number of send queries issued so far (lines 01, 03). The counter
is incremented whenever a send query is made (lines 07, 40, 63). As we do not know whether the τ∗-th
send query will be issued for a user or a server instance, B3 will embed the elements xP

i for all instances,
similarly to adversary B2 in Figure 16. In particular,

xU
i = ui ? xP

i = (ui · pi · g−1
0) ? x0 = (ui · pi · g−1

1) ? x1

xS
i = si ? xP

i = (si · pi · g−1
0) ? x0 = (si · pi · g−1

1) ? x1

If the password of an instance is not corrupted when the send query is issued, B3 checks whether this is
the τ∗-th query. If this is the case, it marks the trace of this instance as tr∗ and outputs xU in SendResp
or xS in SendTermInit as the commitment yP (lines 48-50, 73-75) to receive the challenge password
pwUS. This is the password which B3 will output when the adversary corrupts this pair (U,S). For all
other corrupt queries, it samples a password uniformly at random (line 16). Instances that are not fresh

52

B{GA-DDHx0 (xP
i ,·,·),GA-DDHx1 (xP

i ,.·,·)}i∈[`]
3 (x0, x1, xP

1 , ..., xP
`)

00 (C,T ,Ts) := (∅,∅,∅)
01 τ∗ $← [qs]
02 tr∗ := ⊥
03 cnt := 0
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 Stop.

SendInit(U, t, S)
07 cnt := cnt + 1
08 if πt

U 6= ⊥ return ⊥
09 (u1, ..., u`) $← G`
10 xU := (xU

1 , ..., xU
`) := (u1 ? xP

1 , ..., u` ? xP
`)

11 πt
U := ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)

12 return (U, xU)

Corrupt(U,S)
13 if (U,S) ∈ C return ⊥
14 C := C ∪ {(U,S)}
15 if tr∗ 6= (U, S, ·, ·)
16 pwUS

$← PW
17 return pwUS

H(U, S, xU, xS, pw, z)
18 if T [U, S, xU, xS, pw, z] = K 6= ⊥
19 return K
20 if (U,S, xU, xS) ∈ Ts
21 (b1, ..., b`) := pw
22 if Ts[U, S, xU, xS] = (U, (u1, ..., u`),K)
23 if GA-DDHxbi

(xP
i , xS

i , u−1
i ? zi) = 1 ∀i ∈ [`]

and (U,S) ∈ C and pw := pwUS
24 if tr∗ 6= (U,S, xU, xS) abort
25 Output (u−1

1 ? z1, ..., u−1
` ? z`)

26 if Ts[U, S, xU, xS] = (S, (s1, ..., s`),K)
27 if GA-DDHxbi

(xP
i , xU

i , s−1
i ? zi) = 1 ∀i ∈ [`]

and (U,S) ∈ C and pw := pwUS
28 if tr∗ 6= (U, S, xU, xS) abort
29 Output (s−1

1 ? z1, ..., s−1
` ? z`)

30 if ∃(u1, ..., u`) s. t. (U, S, xU, xS, pw, (u1, ..., u`)) ∈ T
31 (b1, ..., b`) := pw
32 if GA-DDHxbi

(xP
i , xS

i , u−1
i ? zi) = 1 ∀i ∈ [`]

33 return T [U,S, xU, xS, pw, (u1, ..., u`)]
34 else if ∃(s1, ..., s`) s. t. (U, S, xU, xS, pw, (s1, ..., s`)) ∈ T
35 (b1, ..., b`) := pw
36 if GA-DDHxbi

(xP
i , xU

i , s−1
i ? zi) = 1 ∀i ∈ [`]

37 return T [U, S, xU, xS, pw, (s1, ..., s`)]
38 T [U, S, xU, xS, pw, z] $← K
39 return T [U,S, xU, xS, pw, z]

SendResp(S, t,U, xU)
40 cnt := cnt + 1
41 if πt

S 6= ⊥ return ⊥
42 (s1, ..., s`) $← G`
43 xS := (xS

1 , ..., xS
`) := (s1 ? xP

1 , ..., s` ? xP
`)

44 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, xS)

45 return ⊥
46 if (U,S) /∈ C
47 πt

S.fr := true
48 if cnt = τ∗

49 tr∗ := (U, S, xU, xS)
50 Output yP := xU to receive pwUS
51 K $← K
52 Ts[U, S, xU, xS] := (S, (s1, ..., s`),K)
53 else
54 πt

S.fr := false
55 (b1, ..., b`) := pwUS
56 if ∃z s. t. (U,S, xU, xS, pwUS, z) ∈ T

and ∀i ∈ [`] : GA-DDHxbi
(xP

i , xU
i , s−1

i ? zi) = 1
57 K := T [U,S, xU, xS, pwUS, z]
58 else
59 K $← K
60 T [U, S, xU, xS, pwUS, (s1, ..., s`)] := K
61 πt

S := ((s1, ..., s`), (U, S, xU, xS),K , true)
62 return (S, xS)

SendTermInit(U, t, S, xS)
63 cnt := cnt + 1
64 if πt

U 6= ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
65 return ⊥
66 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, xS)
67 return ⊥
68 if ∃t′ s. t. πt′

S .tr = (U, S, xU, xS)
and πt′

S .fr = true
69 πt

U.fr := true
70 (S, (s1, ..., s`),K) := Ts[U, S, xU,B]
71 else if (U, S) /∈ C
72 πt

U.fr := true
73 if cnt = τ∗

74 tr∗ := (U, S, xU, xS)
75 Output yP := xS to receive pwUS
76 K $← K
77 Ts[U, S, xU, xS] := (U, (u1, ..., u`),K)
78 else
79 πt

U.fr := false
80 (b1, ..., b`) := pwUS
81 if ∃z s. t. (U,S, xU, xS, pwUS, z) ∈ T

and ∀i ∈ [`] : GA-DDHxbi
(xP

i , xS
i , u−1

i ? zi) = 1
82 K := T [U,S, xU, xS, pwUS, z]
83 else
84 K $← K
85 T [U, S, xU, xS, pwUS, (u1, ..., u`)] := K
86 πt

U := ((u1, ..., u`), (U,S, xU, xS),K , true)
87 return true

Fig. 26. Adversary B3 against Pw-GA-StCDH for the proof of Theorem 8.A has access to oraclesO := {Execute,
SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Oracles Execute, Reveal and Test are
defined as in Figure 15. Lines written in blue show how B3 simulates the game.

will be simulated with the decision oracles as in the simulation of adversary B2. For server instances
(lines 56-57), this means that we check if there already exists an entry in T such that

zi = GA-CDHxbi
(xU

i , xS
i) = GA-CDHxbi

(xU
i , si ? xP

i) ⇔ GA-CDHxbi
(xP

i , xU
i) = s−1

i ? zi .

Equivalently, we check if GA-CDHxbi
(xP

i , xS
i) = u−1

i ? zi for user instances (lines 81-82). If there does not
exist an entry yet, B3 adds a special entry to T (lines 60, 85), which contains the secret group elements
si or ui so that we can patch the random oracle later (lines 30-37).

53

Finally, we look at random oracle queries for all fresh instances contained in Ts (lines 20-29). B3 checks
if the provided z is valid using the decision oracles as explained above. Then it checks for event badpfs,
i.e., if the password was corrupted and it matches the one in the query. If the query now additionally
contains the target trace tr∗, we can solve the Pw-GA-StCDH problem by outputting u−1

i ? zi in case of
a user instance or s−1

i ? zi in case of a server instance. If the trace is not the target trace, B3 aborts.
This concludes the analysis of badpfs. Collecting the bounds and applying Lemma 5 yields the bound

in Theorem 8. ut

F.2 Perfect Forward Secrecy for X-GA-PAKE`

In order to prove forward secrecy of X-GA-PAKE`, we need the following interactive problem which is
non-tightly implied by the SqInv-GA-StCDH problem.

Definition 21 (Double Password-based GA-StCDH (DPw-GA-StCDH)). On input (x0, x1, xP
1 , ..., xP

` ,
x̂P

1 , ..., x̂P
`) = (g0 ? x̃, g1 ? x̃, p1 ? x̃, ..., p` ? x̃, p̂1 ? x̃, ..., p̂` ? x̃), the DPw-GA-StCDH problem requires the

adversary to commit on (yP
1 , ..., yP

`) ∈ X ` and then compute zi = (g−1
bi
· pi) ? yP

i ∀i ∈ [`], as well as
ẑi = (g−1

bi
· p̂i) ? yP

i ∀i ∈ [`] after receiving the challenge password pw = (b1, ..., b`) ∈ {0, 1}`. To an
effective group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage function of A as

AdvDPw-GA-StCDH
XXX (A) := Pr


zi = GA-CDHxbi

(xP
i , yP

i) ∀i ∈ [`]
ẑi = GA-CDHxbi

(x̂P
i , yP

i) ∀i ∈ [`]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(g0, g1, p1, ..., p`, p̂1, ..., p̂`) $← G2`+2

(x0, x1) := (g0 ? x̃, g1 ? x̃)
(xP

1 , ..., xP
`) := (p1 ? x̃, ..., p` ? x̃)

(x̂P
1 , ..., x̂P

`) := (p̂1 ? x̃, ..., p̂` ? x̃)
(yP

1 , ..., yP
`)← AO(x0, x1, xP

1 , ..., xP
` , x̂P

1 , ..., x̂P
`)

pw := (b1, ..., b`) $← PW
(z1, ..., z`, ẑ1, ..., ẑ`)← AO(pw)


,

where O = {GA-DDHxj (xP
i , ·, ·),GA-DDHxj (x̂P

i , ·, ·)}i∈[`],j∈{0,1}.

Lemma 6. The square-inverse GA-StCDH (SqInv-GA-StCDH) implies the double password-based GA-StCDH
(DPw-GA-StCDH), more precisely

AdvDPw-GA-StCDH
EGAT (A) ≤

√
AdvSqInv-GA-StCDH

EGAT (B) + 1
|PW|

.

Proof. Instead of considering the SqInv-GA-StCDH problem, we will show that the DSim-GA-StCDH
problem implies the DPw-GA-StCDH problem and then appy Lemma 1. The proof is similar to the one
of Lemma 5. We apply the reset lemma (Lemma 2), where H = PW.

Let A be an adversary against the DPw-GA-StCDH problem. Consider adversary B in Figure 27
that takes as input four set elements (x0, x1,w0,w1) and a password pw. It also has access to decision
oracles GA-DDHxj (wi , ·, ·) with i, j ∈ {0, 1}. First, B generates (p1, ...p`, p̂1, ..., p̂`) $← G2` and computes
xP

i = pi ? w0 and x̂P
i = p̂i ? w1 for all i ∈ [`]. Then it runs A on input (x0, x1, xP

1 , ..., xP
` , x̂P

1 , ..., x̂P
`) and

receives a commitment (yP
1 , ..., yP

`). Now B sends pw to A and A will finally output (z1, ..., z`, ẑ1, ..., ẑ`).
B checks if the solution is correct using the decision oracles and if this is the case, it outputs b = 1 and
σ = (pw, p1, ..., p`, p̂1, ..., p̂`, yP

1 , ..., yP
` , z1, ..., z`, ẑ1, ..., ẑ`). Otherwise it outputs (0, ε).

If A issues a query to a decision oracle GA-DDHxj (xP
i , y′, z ′) for some i ∈ [`] and j ∈ {0, 1}, B

queries its own decision oracle GA-DDHxj (w0, y′, p−1
i ? z ′) and forwards the output to A. Analogously,

if A issues a query to a decision oracle GA-DDHxj (x̂P
i , y′, z ′), B queries GA-DDHxj (w1, y′, p̂−1

i ? z ′).
Let IG be the algorithm that chooses g0, g1, h0, h1

$← G and outputs

(x0, x1,w0,w1) = (g0 ? x̃, g1 ? x̃, h0 ? x̃, h1 ? x̃).

Let acc be defined as in Lemma 2, thus

acc ≥ AdvDPw-GA-StCDH
EGAT (A) .

Let RB be the forking algorithm associated to B as in Lemma 2 with access to the same decision oracles
as B. Then we construct adversary C against DSim-GA-StCDH as in Figure 28. C runs the reset algorithm

54

B{GA-DDHxj (wi ,·,·)}i,j∈{0,1}(x0, x1,w0,w1, pw)
00 (p1, ..., p`, p̂1, ..., p̂`) $← G2`

01 (xP
1 , ..., xP

`) := (p1 ? x, ..., p` ? w0)
02 (x̂P

1 , ..., x̂P
`) := (p̂1 ? x, ..., p̂` ? w1)

03 (yP
1 , ..., yP

`)← AO(x0, x1, xP
1 , ...xP

` , x̂P
1 , ..., x̂P

`)
04 (z1, ..., z`, ẑ1, ..., ẑ`)← AO(pw)
05 (b1, ..., b`) := pw
06 if GA-DDHxbi

(w0, yP
i , p−1

i ? zi) = 1 ∀i ∈ [`]
and GA-DDHxbi

(w1, yP
i , p̂−1

i ? ẑi) = 1 ∀i ∈ [`]
07 return (1, (pw, p1, ..., p`, p̂1, ..., p̂`, yP

1 , ..., yP
` , z1, ..., z`, ẑ1, ..., ẑ`))

08 return (0, ε)

{GA-DDHxj (xP
i , y′, z ′)}i∈[`],j∈{0,1}

09 return GA-DDHxj (w0, y′, p−1
i ? z ′)

{GA-DDHxj (x̂P
i , y′, z ′)}i∈[`],j∈{0,1}

10 return GA-DDHxj (w1, y′, p̂−1
i ? z ′)

Fig. 27. Adversary B for the proof of Lemma 6. Adversary A has access to oracles O = {GA-DDHxj (xP
i , ·, ·),

GA-DDHxj (x̂P
i , ·, ·)}i∈[`],j∈{0,1}.

C{GA-DDHxj (wi ,·,·)}i,j∈{0,1}(x0, x1,w0,w1)
00 (b, σ, σ′)← RO

B(x0, x1,w0,w1)
01 if b = 0
02 abort and return ⊥
03 (pw, p1, ..., p`, p̂1, ..., p̂`, yP

1 , ..., yP
` , z1, ..., z`, ẑ1, ..., ẑ`) := σ

04 (pw′, p1, ..., p`, p̂1, ..., p̂`, yP
1 , ..., yP

` , z ′1, ..., z ′`, ẑ ′1, ..., ẑ ′`) := σ′

05 (b1, ..., b`) := pw
06 (b′1, ..., b′`) := pw′
07 Find i such that bi 6= b′i
08 return (yP

i , p−1
i ? zi , p̂−1

i ? ẑi , p−1
i ? z ′i , p̂−1

i ? ẑ ′i)

Fig. 28. Adversary C against DSim-GA-StCDH for the proof of Lemma 6. RB has access to oracles O =
{GA-DDHxj (wi , ·, ·)}i,j∈{0,1}.

to obtain a bit b∗ as well as the two side outputs σ, σ′. C looks for the first index i where pw and pw′
differ and outputs the solution (y, y0, y1, y2, y3) = (yP

i , p−1
i ? zi , p̂−1

i ? ẑi , p−1
i ? z ′i , p̂−1

i ? ẑ ′i).
To see that the latter solves the DSim-GA-StCDH problem, note that p−1

i ? xP
i = w0. This implies,

GA-CDHxbi
(w0, yP

i) = p−1
i ? GA-CDHxbi

(xP
i , yP

i) = p−1
i ? zi .

And similarly GA-CDHxbi
(w1, yP

i) = p̂−1
i ? ẑi .

Applying Lemmata 1 and 2, we get the bound stated in Lemma 6. ut

Theorem 9 (Perfect Forward Secrecy of X-GA-PAKE`). For any adversary A against X-GA-PAKE`
that issues at most qe execute queries and qs send queries and where H is modeled as a random oracle,
there exist adversary B1 against GA-StCDH, and adversaries B2, B3 against SqInv-GA-StCDH such that

Advpfs
X-GA-PAKE`

(A) ≤ AdvGA-StCDH
EGAT (B1) + AdvSqInv-GA-StCDH

EGAT (B2)

+ qs ·
√

AdvSqInv-GA-StCDH
EGAT (B3) + 2qs

|PW|
+ (qs + qe)2

|G|2`
.

Proof. The proof follows the one of Theorem 1 very closely and we make the same adaptions as for the
proof of Theorem 8. In particular, we also keep games G0-G6 from Figures 5, 7 and 8 with the same
changes as described in the proof of Theorem 8, until we get

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess] + Pr[G6 ⇒ badpfs] ,

where it remains to bound badpfs. For this purpose, we construct an adversary B3 against DPw-GA-StCDH
in Figure 29 and show that

Pr[G6 ⇒ badpfs] ≤ qs · AdvDPw-GA-StCDH
EGAT (B3) .

As in the proof of Theorem 8, we cannot achieve a tight bound for badpfs. The adversary against
DPw-GA-StCDH must commit on ` set elements before it receives the challenge password. Thus, we

55

B
{GA-DDHxb (y,·,·)}b∈{0,1},y∈{xP

i ,x̂P
i },i∈[`]

3 (x0, x1, xP
1 , ..., xP

` , x̂P
1 , ..., x̂P

`)
00 (C,T ,Ts) := (∅,∅,∅)
01 τ∗ $← [qs]
02 tr∗ := ⊥
03 cnt := 0
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 Stop.

SendInit(U, t, S)
07 cnt := cnt + 1
08 if πt

U 6= ⊥ return ⊥
09 u := (u1, ..., u`) $← G`
10 û := (û1, ..., û`) $← G`
11 xU := (xU

1 , ..., xU
`) := (u1 ? xP

1 , ..., u` ? xP
`)

12 x̂U := (x̂U
1 , ..., x̂U

`) := (û1 ? x̂P
1 , ..., û` ? x̂P

`)
13 πt

U := ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
14 return (U, xU, x̂U)

Corrupt(U, S)
15 if (U, S) ∈ C return ⊥
16 C := C ∪ {(U, S)}
17 if tr∗ 6= (U, S, ·, ·)
18 pwUS

$← PW
19 return pwUS

H(U, S, xU, x̂U, xS, x̂S, pw, z)
20 if T [U,S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
21 return K
22 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts
23 (b1, ..., b`) := pw
24 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
25 if GA-DDHxbi

(xP
i , xS

i , u−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(x̂P

i , xS
i , û−1

i ? zi,2) = 1 ∀i ∈ [`]
and (U,S) ∈ C and pw := pwUS

26 if tr∗ 6= (U,S, xU, x̂U, xS, x̂S) abort
27 Output (u−1

1 ?z1,1, ..., u−1
` ?z`,1, û−1

1 ?z1,2, ..., û−1
` ?z`,2)

28 if Ts[U,S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
29 if GA-DDHxbi

(xP
i , xU

i , s−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(x̂P

i , xU
i , ŝ−1

i ? zi,3) = 1 ∀i ∈ [`]
and (U,S) ∈ C and pw := pwUS

30 if tr∗ 6= (U, S, xU, x̂U, xS, x̂S) abort
31 Output (s−1

1 ?z1,1, ..., s−1
` ?z`,1, ŝ−1

1 ?z1,3, ..., ŝ−1
` ?z`,3)

32 if ∃(u, û) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (u, û)) ∈ T
33 (b1, ..., b`) := pw
34 if GA-DDHxbi

(xP
i , xS

i , u−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(x̂P

i , xS
i , û−1

i ? zi,2) = 1 ∀i ∈ [`]
35 return T [U, S, xU, x̂U, xS, x̂S, pw, (u, û)]
36 else if ∃(s, ŝ) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ)) ∈ T
37 (b1, ..., b`) := pw
38 if GA-DDHxbi

(xP
i , xU

i , s−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(x̂P

i , xU
i , ŝ−1

i ? zi,3) = 1 ∀i ∈ [`]
39 return T [U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ)]
40 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
41 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)
42 cnt := cnt + 1
43 if πt

S 6= ⊥ return ⊥
44 s := (s1, ..., s`) $← G`
45 ŝ := (ŝ1, ..., ŝ`) $← G`
46 xS := (xS

1 , ..., xS
`) := (s1 ? xP

1 , ..., s` ? xP
`)

47 x̂S := (x̂S
1 , ..., x̂S

`) := (ŝ1 ? x̂P
1 , ..., ŝ` ? x̂P

`)
48 if ∃P ∈ U ∪ S, t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
49 return ⊥
50 if (U, S) /∈ C
51 πt

S.fr := true
52 if cnt = τ∗

53 tr∗ := (U,S, xU, x̂U, xS, x̂S)
54 Output yP := xU to receive pwUS
55 K $← K
56 Ts[U,S, xU, x̂U, xS, x̂S] := (S, (s, ŝ),K)
57 else
58 πt

S.fr := false
59 (b1, ..., b`) := pwUS
60 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and ∀i ∈ [`] : GA-DDHxbi
(xP

i , xU
i , s−1

i ? zi,1) = 1
and ∀i ∈ [`] : GA-DDHxbi

(x̂P
i , xU

i , ŝ−1
i ? zi,3) = 1

61 K := T [U,S, xU, x̂U, xS, x̂S, pwUS, z]
62 else
63 K $← K
64 T [U,S, xU, x̂U, xS, x̂S, pwUS, (s, ŝ)] := K
65 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K , true)
66 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
67 cnt := cnt + 1
68 if πt

U 6= ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
69 return ⊥
70 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U,S, xU, x̂U, xS, x̂S)
71 return ⊥
72 if ∃t′ s. t. πt′

S .tr = (U,S, xU, x̂U, xS, x̂S)
and πt′

S .fr = true
73 πt

U.fr := true
74 (S, (s, ŝ),K) := Ts[U, S, xU, x̂U, xS, x̂S]
75 else if (U, S) /∈ C
76 πt

U.fr := true
77 if cnt = τ∗

78 tr∗ := (U, S, xU, x̂U, xS, x̂S)
79 Output yP := xS to receive pwUS
80 K $← K
81 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û),K)
82 else
83 πt

U.fr := false
84 (b1, ..., b`) := pwUS
85 if ∃z s. t. (U,S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and ∀i ∈ [`] : GA-DDHxbi
(xP

i , xS
i , u−1

i ? zi,1) = 1
and ∀i ∈ [`] : GA-DDHxbi

(x̂P
i , xS

i , û−1
i ? zi,2) = 1

86 K := T [U,S, xU, x̂U, xS, x̂S, pwUS, z]
87 else
88 K $← K
89 T [U,S, xU, x̂U, xS, x̂S, pwUS, (u, û)] := K
90 πt

U := ((u, û), (U, S, xU, x̂U, xS, x̂S),K , true)
91 return true

Fig. 29. Adversary B3 against DPw-GA-StCDH for the proof of Theorem 9. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Oracles Execute, Reveal and
Test are defined as in Figure 8. Lines written in blue show how B3 simulates the game.

apply the same guessing and simulation strategy. Due to the similarities to Theorem 8, we will only
briefly describe B3.

56

It inputs set elements (x0, x1) = (g0 ? x̃, g1 ? x̃) and xP
i = (pi ? x̃), x̂P

i = (p̂i ? x̃) for g0, g1, pi , p̂i
$← G

and i ∈ [`]. It embeds the elements xP
i , x̂P

i in all instances queried to SendInit and SendResp.
If the password of an instance is not corrupted when one of SendResp or SendTermInit is

queried, B3 checks whether this is the τ∗-th query and in this case outputs xU in SendResp or xS

in SendTermInit as the commitment yP to receive the challenge password pwUS. This is the password
B3 will output when the adversary corrupts this pair of user and server. Instances that are not fresh will
be simulated with the decision oracles.

Finally, we look at random oracle queries for all fresh instances contained in Ts. B3 checks if the
provided z is valid using the decision oracles. Then it checks for event badpfs, i.e., if the password was
corrupted and matches the one in the query. If the query now additionally contains the target trace, we
can solve the DPw-GA-StCDH problem. If the trace is not the target trace, B3 aborts. This concludes the
analysis of badpfs. Collecting the bounds and applying Lemma 6 yields the bound in Theorem 9.

ut

F.3 Perfect Forward Secrecy of Com-GA-PAKE`

In order to prove forward secrecy of Com-GA-PAKE`, we need the following interactive problem which is
non-tightly implied by the GA-GapCDH problem.

Definition 22 (Interactive Password-based GA-StCDH (IPw-GA-StCDH)). On input (x0, x1) = (g0?
x̃, g1 ? x̃), the IPw-GA-StCDH problem requires the adversary to commit on (yP

1 , ..., yP
`) ∈ X `. Then it

receives (xP
1 , ..., xP

`) = (p1 ? x̃, ..., p` ? x̃) and the challenge password pw = (b1, ..., b`) ∈ {0, 1}` and must
compute zi = (g−1

bi
· pi) ? yP

i ∀i ∈ [`]. To an effective group action XXX ∈ {EGA,REGA,EGAT,REGAT},
we associate the advantage function of A as

AdvIPw-GA-StCDH
XXX (A) := Pr

zi = GA-CDHxbi
(xP

i , yP
i) ∀i ∈ [`]

∣∣∣∣∣∣∣∣∣∣∣∣

(g0, g1, p1, ..., p`) $← G`+2

(x0, x1) := (g0 ? x̃, g1 ? x̃)
(yP

1 , ..., yP
`)← AO1(x0, x1)

(xP
1 , ..., xP

`) := (p1 ? x̃, ..., p` ? x̃)
pw := (b1, ..., b`) $← PW

(z1, ..., z`)← AO1,O2(xP
1 , ..., xP

` , pw)

 ,

where O1 = {GA-DDHxj (x̃, ·, ·)}j∈{0,1} and O2 = {GA-DDHxj (xP
i , ·, ·)}i∈[`],j∈{0,1}.

Lemma 7. The group action gap computational Diffie-Hellman problem (GA-GapCDH) implies the in-
teractive password-based GA-StCDH (IPw-GA-StCDH), more precisely

AdvIPw-GA-StCDH
EGAT (A) ≤

√
AdvGA-GapCDH

EGAT (B) + 1
|PW|

.

Instead of proving that the ISim-GA-StCDH problem implies the password-based version IPw-GA-StCDH,
we directly use the GA-GapCDH problem to achieve a better bound. The proof uses techniques that are
also used in the proof of Lemma 4.

Proof. We use the reset lemma (see Lemma 2) with H = X ` × PW. Let A be an adversary against
IPw-GA-StCDH. Consider adversary B against GA-GapCDH in Figure 30 that takes input (x0, x1) as well
as (xP

1 , ..., xP
` , pw). It also has access to a gap oracle GA-DDH∗. First, B runs A on (x0, x1) to receive

a commitment (yP
1 , ..., yP

`). Now B sends (xP
1 , ..., xP

` , pw) to A and A will finally output (z1, ..., z`). B
checks if the solution is correct using the decision oracle and if this is the case, it outputs b = 1 and
σ = (yP

1 , ..., yP
` , z1, ..., z`) as side output. Otherwise it outputs (0, ε). As B has access to a full gap oracle,

it can forward all queries of A.
Let IG be the algorithm that chooses g0, g1

$← G and outputs (x0, x1) = (g0 ? x̃, g1 ? x̃). Let acc be
defined as in Lemma 2, thus

acc ≥ AdvIPw-GA-StCDH
EGAT (A) .

Let RB be the reset algorithm associated to B as in Lemma 2 with access to the same decision oracles
as B.

57

BGA-DDH∗(x0, x1, (xP
1 , ..., xP

` , pw))
00 (yP

1 , ..., yP
`)← AO1 (x0, x1)

01 (z1, ..., z`)← AO1,O2 (xP
1 , ..., xP

` , pw)
02 (b1, ..., b`) := pw
03 if GA-DDHxbi

(xP
i , yP

i , zi) = 1 ∀i ∈ [`]
04 return (1, (yP

1 , ...yP
` , z1, ..., z`))

05 return (0, ε)

CGA-DDH∗(x0, x1)
06 Pick random coins ρ for B
07 (p1, ..., p`) $← G`
08 xP := (xP

1 , ..., xP
`) := (p1 ? x̃, ..., p` ? x̃)

09 pw := (b1, ..., b`) $← PW
10 (b, σ)← BGA-DDH∗(x0, x t

1, (xP, pw); ρ)
11 if b = 0 return ⊥
12 (yP

1 , ..., yP
` , z1, ..., z`) := σ

13 (α1, ..., α`) $← G`

14 xP′ := (xP
1
′
, ..., xP

`
′) := (α1 ? z t

1, ..., α` ? z t
`)

15 pw′ := (b′1, ..., b′`) $← PW
16 (b′, σ′)← BGA-DDH∗(x0, x t

1, (xP′, pw′); ρ)
17 if b = 0 return ⊥
18 (yP

1 , ..., yP
` , z ′1, ..., z ′`) := σ′

19 Find i such that bi 6= b′i
20 if bi = 0 and b′i = 1
21 return α−1

i · pi ? z ′i
22 else
23 return (α−1

i · pi ? z ′i)t

Fig. 30. Adversaries B and C against GA-GapCDH for the proof of Lemma 7. Adversary A has access to decision
oracles O1 = {GA-DDHxj (x̃, ·, ·)}j∈{0,1} and O2 = {GA-DDHxj (xP

i , ·, ·)}i∈[`],j∈{0,1}, which B simulates using the
gap oracle GA-DDH∗.

We construct an adversary C against GA-GapCDH (Figure 30), but instead of running the reset
algorithm, C will simulate RB running B directly.
C inputs (x0, x1) and has access to a gap oracle. First, it chooses random coins ρ for B. It also

samples a random element from H by first picking pi
$← G for i ∈ [`] and a password pw and then

computing xP
i = pi ? x̃. Then it runs B on (x0, xt

1, (xP
1 , ..., xP

` , pw) using random coins ρ. Note that we
use the twist of x1. B outputs a bit b and side output σ. If B was successful, i.e., b = 1, then C
parses σ as (yP

1 , ..., yP
` , z1, ..., z`). Otherwise it aborts. Now it runs B a second time, this time on input

(x0, xt
1, (xP

1
′
, ..., xP

`

′
, pw′), where xP

i
′ = αi ? zt

i for αi
$← G and i ∈ [`] and pw′ is a fresh random password,

using the same random coins ρ. Note that all xP
i are also uniformly distributed over X . If B is successful

again, it outputs (1, (yP
1 , ..., yP

` , z ′1, ..., z ′`)), where the first ` set elements are the same as in the first run
of B since we run B on the same random coins. Now C can solve GA-GapCDH as follows: Let yP

i = hi ? x̃
for some hi ∈ G. Then we have

αi ? zt
i =

{
αi · g0 · p−1

i · h−1
i ? x̃ if bi = 0

αi · g−1
1 · p−1

i · h−1
i ? x̃ if bi = 1

and for z ′i it holds that

z ′i =


g−1

0 · αi · g0 · p−1
i ? x̃ if bi = 0, b′i = 0

g1 · αi · g0 · p−1
i ? x̃ if bi = 0, b′i = 1

g−1
0 · αi · g−1

1 · p−1
i ? x̃ if bi = 1, b′i = 0

g1 · αi · g−1
1 · p−1

i ? x̃ if bi = 1, b′i = 1

where hi cancels out in all cases. If pw 6= pw′, then they must differ in at least one bit. Let i be the first
index such that bi 6= b′i . Using the knowledge of pi and αi , C outputs α−1 · pi ? z ′i = GA-CDH(x0, x1) in
case bi = 0 and b′i = 1. Otherwise if bi = 1 and b′i = 0, it outputs (α−1

i pi ? z ′i)t = GA-CDH(x0, x1). ut

Theorem 10 (Perfect Forward Secrecy of Com-GA-PAKE`). For any adversary A against Com-GA-PAKE`
that issues at most qe execute queries, qs send queries and at most qG and qH queries to random oracles
G and H, there exist adversary B1 against GA-StCDH and adversaries B2, B3 against GA-GapCDH such
that

Advpfs
Com-GA-PAKE`

(A) ≤ AdvGA-StCDH
EGAT (B1) + qs` ·

√
AdvGA-GapCDH

EGAT (B2) + qs ·
√

AdvGA-GapCDH
EGAT (B3)

+ (qs + qe)2

|G|`
+ qGqs
|G|`

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

58

where λ is the output length of G in bits.

Proof. The proof follows the one of Theorem 2 very closely and we make the same adaptions as for the
proof of Theorem 8. In particular, we also keep games G0-G9 from Figures 18, 20 and 21 with the same
changes as described in the proof of Theorem 8, until we get

Pr[G8 ⇒ bad] ≤ Pr[G9 ⇒ badpw] + Pr[G9 ⇒ badguess] + Pr[G9 ⇒ badpfs] ,

where it remains to bound badpfs. For this purpose, we construct an adversary B3 against IPw-GA-StCDH
in Figure 31 and show that

Pr[G9 ⇒ badpfs] ≤ qs · AdvIPw-GA-StCDH
EGAT (B3) .

BGA-DDHx0 (x̃,·,·),GA-DDHx1 (x̃,.·,·)
3 (x0, x1)

00 (C,TG,TH,Ts) := (∅,∅,∅,∅)
01 τ∗ $← [qs]
02 tr∗ := ⊥
03 cnt := 0
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 Stop.

SendInit(S, t,U)
07 cnt := cnt + 1
08 if πt

S 6= ⊥ return ⊥
09 com $← {0, 1}λ
10 if ∃xS s. t. TG[xS] = com
11 return ⊥
12 TG[�] := com
13 πt

S := (⊥, (U, S,⊥,⊥, com),⊥,⊥)
14 πt

S.fr := false
15 return (S, com)

SendResp(U, t, S, com)
16 cnt := cnt + 1
17 if πt

U 6= ⊥ return ⊥
18 if @ xS s. t. TG[xS] = com
19 πt

U.acc := false
20 (u1, ..., u`) $← G`
21 xU := (xU

1 , ..., xU
`) := (u1 ? x̃, ..., u` ? x̃)

22 if cnt = τ∗ and πt
U.acc 6= false

23 find (xS) s. t. TG[xS] = com
24 Output yP := xS to receive xP, pwUS
25 � From now on B3 also has access to

GA-DDHx0 (xP
i , ·, ·),GA-DDHx1 (xP

i , ·, ·) ∀i ∈ [`]
26 xU := xP

27 (u1, ..., u`) := ⊥
28 tr∗ = (U,S, xU,⊥, com)
29 πt

U := ((u1, ..., u`), (U,S, xU,⊥, com),⊥,⊥)
30 πt

U.fr := false
31 return (U, xU)

Corrupt(U, S)
32 if (U,S) ∈ C return ⊥
33 C := C ∪ {(U,S)}
34 if tr∗ 6= (U, S, ·, ·)
35 pwUS

$← PW
36 return pwUS

H(U,S, xU, xS, com, pw, z)
37 if TH[U, S, xU, xS, com, pw, z] = K 6= ⊥
38 return K
39 (b1, ..., b`) := pw
40 if (U,S, xU, xS, com) ∈ Ts
41 if Ts[U, S, xU, xS, com] = (U, (u1, ..., u`),K)
42 if tr∗ = (U, S, xU, xS, com)

and GA-DDHxbi
(xP

i , xS
i , zi) = 1 ∀i ∈ [`]

and (U,S) ∈ C and pw := pwUS
43 Output (z1, ..., z`)
44 if tr∗ = (U, S, xU, xS, com)

and GA-DDHxbi
(x̃, xS

i , u−1
i ? zi) = 1 ∀i ∈ [`]

and (U,S) ∈ C and pw := pwUS
45 abort
46 if Ts[U,S, xU, xS, com] = (S, (s1, ..., s`),K)
47 if tr∗ = (U, S, xU, xS, com)

and GA-DDHxbi
(xP

i , xU
i , zi) = 1 ∀i ∈ [`]

and (U,S) ∈ C and pw := pwUS
48 Output (z1, ..., z`)
49 if GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`]
and (U,S) ∈ C and pw := pwUS

50 abort
51 if ∃(u1, ..., u`) s. t. (U, S, xU, xS, com, pw, (u1, ..., u`)) ∈ TH
52 if tr∗ = (U,S, xU, xS, com)

and GA-DDHxbi
(xP

i , xS
i , zi) = 1 ∀i ∈ [`]

53 return TH[U, S, xU, xS, com, pw, (u1, ..., u`)]
54 if GA-DDHxbi

(x̃, xS
i , u−1

i ? zi) = 1 ∀i ∈ [`]
55 return TH[U, S, xU, xS, com, pw, (u1, ..., u`)]
56 else if ∃(s1, ..., s`) s. t. (U, S, xU, xS, com, pw, (s1, ..., s`)) ∈ TH
57 if tr∗ = (U,S, xU, xS, com)

and GA-DDHxbi
(xP

i , xU
i , zi) = 1 ∀i ∈ [`]

58 return TH[U, S, xU, xS, com, pw, (s1, ..., s`)]
59 if GA-DDHxbi

(x̃, xU
i , s−1

i ? zi) = 1 ∀i ∈ [`]
60 return TH[U, S, xU, xS, com, pw, (s1, ..., s`)]
61 TH[U,S, xU, xS, com, pw, z] $← K
62 return TH[U, S, xU, xS, com, pw, z]

Fig. 31. Adversary B3 against IPw-GA-StCDH for the proof of Theorem 10. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,G,H}. Oracles Execute, Reveal,
Test and G are defined as in Figure 21. Oracles SendTermInit and SendTermResp are defined in Figure 32.
Lines written in blue show how B3 simulates the game.

59

SendTermInit(S, t,U, xU)
00 cnt := cnt + 1
01 if πt

S 6= (⊥, (U, S,⊥,⊥, com),⊥,⊥)
02 return ⊥
03 (s1, ..., s`) $← G`
04 xS := (xS

1 , ..., xS
`) := (s1 ? x̃, ..., s` ? x̃)

05 if cnt = τ∗

06 Output yP := xU to receive challenge xP, pwUS
07 � From now on B3 also has access to

GA-DDHx0 (xP
i , ·, ·),GA-DDHx1 (xP

i , ·, ·) ∀i ∈ [`]
08 xS := xP

09 (s1, ..., s`) := ⊥
10 tr∗ = (U,S, xU, xS, com)
11 if TG[xS] 6= ⊥
12 return ⊥
13 Replace � in TG[�] := com with xS

14 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U,S, xU, xS, com)

15 return ⊥
16 if (U, S) /∈ C
17 πt

S.fr := true
18 K $← K
19 Ts[U,S, xU, xS, com] := (S, (s1, ..., s`),K)
20 else
21 πt

S.fr := false
22 (b1, ..., b`) := pwUS
23 if (U,S, xU, xS, com) = tr∗

and ∃z s. t. (U,S, xU, xS, com, pwUS, z) ∈ TH
and GA-DDHxbi

(xP
i , xU

i , zi) = 1 ∀i ∈ [`]
24 K := TH[U, S, xU, xS, com, pwUS, z]
25 else if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and GA-DDHxbi
(x̃, xU

i , s−1
i ? zi) = 1 ∀i ∈ [`]

26 K := TH[U, S, xU, xS, com, pwUS, z]
27 else
28 K $← K
29 TH[U, S, xU, xS, com, pwUS, (s1, ..., s`)] := K
30 πt

S := ((s1, ..., s`), (U,S, xU, xS, com),K , true)
31 return (S, xS)

SendTermResp(U, t, S, xS)
32 cnt := cnt + 1
33 if πt

U 6= ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
34 return ⊥
35 if G(xS) 6= com
36 πt

U := ((u1, ..., u`), (U, S, xU, xS, com),⊥, false)
37 return ⊥
38 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U,S, xU, xS, com)
39 return ⊥
40 if πt

U.tr = tr∗
41 tr∗ := (U,S, xU, xS, com)
42 if ∃t′ s. t. πt′

S .tr = (U,S, xU, xS, com)
and πt′

S .fr = true
43 πt

U.fr := true
44 (S, (s1, ..., s`),K) := Ts[U,S, xU, xS, com]
45 else if (U, S) /∈ C
46 πt

U.fr := true
47 K $← K
48 Ts[U, S, xU, xS, com] := (U, (u1, ..., u`),K)
49 else
50 πt

U.fr := false
51 (b1, ..., b`) := pwUS
52 if (U,S, xU, xS, com) = tr∗

and ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH
and GA-DDHxbi

(xP
i , xS

i , zi) = 1 ∀i ∈ [`]
53 K := TH[U, S, xU, xS, com, pwUS, z]
54 else if ∃z s. t. (U,S, xU, xS, com, pwUS, z) ∈ TH

and GA-DDHxbi
(x̃, xS

i , u−1
i ? zi) = 1 ∀i ∈ [`]

55 K := TH[U, S, xU, xS, com, pwUS, z]
56 else
57 K $← K
58 TH[U, S, xU, xS, com, pwUS, (u1, ..., u`)] := K
59 πt

U := ((u1, ..., u`), (U, S, xU, xS, com),K , true)
60 return true

Fig. 32. Oracles SendTermInit and SendTermResp for adversary B3 in Figure 31.

We apply the same guessing and simulation strategy. Due to the similarities to Theorem 8 and
adversary B2 in Theorem 2, we will only briefly describe B3. It inputs set elements (x0, x1) = (g0?x̃, g1?x̃).

In SendResp, we check if this is the τ∗-th query and the commitment sent by A was output by G
before, then B3 looks in the list TG to find the corresponding input xS and outputs xS as commitment yP

to receive the IPw-GA-StCDH challenge xP and pwUS. Queries to SendTermInit are simulated similarly.
B2 computes xS and if this is the τ∗-th query, it outputs xU as commitment yP to receive xP and pwUS.
Instances that are not fresh will be simulated with the decision oracles.

Finally, we look at random oracle queries for all fresh instances contained in Ts. B3 checks if the
provided z is valid using the decision oracles. Then it checks for event badpfs, i.e., if the password was
corrupted and it matches the one in the query. If the query now additionally contains the target trace,
we can solve the IPw-GA-StCDH problem. If the trace is not the target trace, B3 aborts. This concludes
the analysis of badpfs and applying Lemma 7 yields the bound in Theorem 10. ut

60

	 Password-Authenticated Key Exchange from Group Actions
	Introduction
	Preliminaries
	(Restricted) Effective Group Actions (with Twists)
	Isogeny-based REGAs
	Computational Assumptions

	Password Authenticated Key Exchange
	First Attempt: Protocol
	: One-Round PAKE from Group Actions
	Description of the Protocol
	Security of

	: Three-Round PAKE from Group Actions
	Description of the Protocol

	Variants of the PAKE Protocols
	Increasing the Number of Public Parameters
	Using Twists in the Setup

	Relation to Assumptions from ADMP20 AC:ADMP20
	Reset Lemma
	Security of in the EGA Setting
	Security of [,][N] and
	[,][N]
	

	Security of and its Variants
	Proof of theorem:3pake
	Variants of

	PAKE with Perfect Forward Secrecy
	Perfect Forward Secrecy of
	Perfect Forward Secrecy for
	Perfect Forward Secrecy of

