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Abstract

Private Set Intersection (PSI) allows a set of mutually distrustful parties, each holds a private
data set, to compute the intersection of all sets, such that no information is revealed except
for the intersection. The state-of-the-art PSI protocol (Garimella et al., CRYPTO’21) in the
multi-party setting tolerating any number of malicious corruptions requires the communication
bandwidth of O(nℓ|F|) bits for the central party P0 due to the star architecture, where n is
the number of parties, ℓ is the size of each set and |F| is the size of an exponentially large field
F. When n and ℓ are large, this forms an efficiency bottleneck (especially for networks with
restricted bandwidthes). In this paper, we present a new multi-party PSI protocol in dishonest-
majority malicious setting, which reduces the communication bandwidth of the central party
P0 from O(nℓ|F|) bits to O(ℓ|F|) bits using a tree architecture. Furthermore, our PSI protocol
reduces the expensive LPN encoding operations performed by P0 by a factor of n as well as the
computational cost by 2nℓ hash operations in total. Additionally, while the multi-party PSI
protocol (Garimella et al., CRYPTO’21) with a single output is secure, we present a simple
attack against its multi-output extension, which allows an adversary to learn more information
on the sets of honest parties beyond the intersection of all sets.

1 Introduction

Private Set Intersection (PSI) allows a set of mutually distrustful parties, where each holds a private
set, to compute the intersection of all sets, without revealing anything beyond the intersection. PSI
and its variants have found a wide variety of applications, including measuring the effectiveness
of online advertising [IKN+17, IKN+20], private contact discovery [KRS+19, DRRT18] and more.
In the two-party setting, PSI protocols has been extensively studied and become truly practical
with extremely fast implementations (see the recent work [GN19, PRTY19, PRTY20, CM20, RS21,
GPR+21, RR22] and references therein). While two-party PSI is interesting for many applications,
there are a lot of applications which are better suitable for the multi-party setting. For exam-
ple, a) several companies intend to combine their data sets to find a target audience for an ad
campaign [IKN+20]; b) a variant of multi-party PSI was recently used for cache sharing in edge
computing, which allows multiple network operators to obtain a set of common data items with the
highest access frequencies in the privacy-preserving way [NT21]. We refer the reader to [NTY21]
for more interesting examples that are suited to the multi-party case.
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The problem of multi-party PSI was first introduced in [FNP04]. The previous work [FNP04,
KS05, SS07, SS08, CJS10, HV17, GN19] constructed theoretical multi-party PSI protocols, where
all of these protocols are not concretely efficient (especially for large sets). The first practical PSI
protocol in the multi-party setting was proposed by Kolesnikov et al. [KMP+17]. This protocol
is secure against semi-honest adversaries in the dishonest-majority setting (i.e., the adversary can
corrupt up to n − 1 parties of the n parties but must follow the protocol specification). For
semi-honest security, efficient multi-party PSI protocols were further developed, including [IOP18,
KMS21] in the dishonest-majority setting based on Garbled Bloom Filter (GBF), and [CDG+21]
in the honest-majority setting (i.e., the adversary can corrupt up to less than a half of parties). In
this work, we focus on multi-party PSI protocols in the dishonest-majority setting in the presence
of malicious adversaries (i.e, the adversary allows to run an arbitrary attack strategy in its attempt
to break the protocol). This is the strongest adversary model that was considered in the previous
PSI protocols.

In the dishonest-majority malicious setting, several concretely efficient PSI protocols [ZLL+19,
ENOPC21, GPR+21, NTY21] have been proposed. Among these protocols, the multi-party PSI
protocol by Garimella et al. [GPR+21] achieves the best efficiency in this setting. This protocol
builds on the multi-party PSI protocol with augmented semi-honest security [KMP+17], and instan-
tiates the underlying Oblivious Programmable Pseudo-Random Function (OPPRF) primitive with
the Oblivious Key-Value Store (OKVS) scheme [GPR+21] and Oblivious Pseudo-Random Func-
tion (OPRF). Garimella et al. [GPR+21] use a 3-hash garbled cuckoo table to design the OKVS
scheme, which is an optimized version of the PaXoS construction [PRTY20] and can achieve much
better communication efficiency than GBF. The state-of-the-art protocol [RS21] to realize OPRF
adopts the recent LPN-based Vector Oblivious Linear-function Evaluation (VOLE) protocol with
sublinear communication [BCGI18, BCG+19b, BCG+19a, SGRR19, BCG+20, WYKW21, CRR21].
Garimella et al. [GPR+21] modified the augmented semi-honest PSI protocol [KMP+17] into a ma-
liciously secure protocol by adding a random oracle to wrap the OPRF output, 1 and proved that
the modified multi-party PSI protocol is secure against malicious adversaries. Although the state-
of-the-art multi-party PSI protocol [GPR+21] is concretely efficient, we observed the following two
aspects that need to be further improved and are addressed by this work.

• The multi-party PSI protocol [GPR+21] adopts the star architecture for communication. Specif-
ically, the central party P0 will interact with parties P1, . . . , Pn to compute n OPRF outputs that
will include n VOLE protocol executions, and then receives n OKVS from the n parties. When
n and the size ℓ of each set are large, the communication bandwidth of P0 is O(nℓ|F|) bits, which
forms an efficiency bottleneck (especially for networks with restricted bandwidthes), where |F| is
the size of an exponentially large field F.

• The n VOLE executions for computing n OPRF outputs will require n encoding operations
of Learning Parity with Noise (LPN) for the central party P0, where the LPN encoding is
computationally expensive [YWL+20] and forms a computational efficiency bottleneck of the
state-of-the-art VOLE protocol with malicious security [WYKW21].

1.1 Our Contributions

In this paper, we propose a new multi-party PSI protocol in the dishonest-majority malicious
setting, which improves the state-of-the-art multi-party PSI protocol [GPR+21] in the following
two aspects.

1A similar observation was also made by Nevo et al. [NTY21].
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MP-PSI Topology Communication Bandwidth Rounds

[ENOPC21] Star O(nℓκ2 + nℓκ log(ℓκ)) O(nℓκ2 + nℓκ log(ℓκ)) 4
[GPR+21] Star O(n2κ+ nℓ(κ+ ρ+ log ℓ)) O(nℓ(κ+ ρ+ log ℓ)) 2
This work Tree O(n2κ+ nℓ(κ+ ρ+ log ℓ)) O(ℓ(κ+ ρ+ log ℓ)) 2⌊log(n+ 1)⌋

Table 1: Comparison between our protocol and recent multi-party PSI protocols tolerating
all-but-one malicious corruptions. n+ 1 is the number of parties, ℓ is the size of each set, and κ and ρ
are the computational and statistical security parameters respectively. The bandwidth column denotes the
maximum communication sent or received by each party.

• We reduce the computation cost of LPN encoding for the central party P0 implied in the PSI
protocol [GPR+21] by a factor of n. Meanwhile, we further reduce the total computation cost
of their PSI protocol by 2nℓ hash operations. To achieve the efficiency gain, we construct the
PSI protocol by directly using VOLE in the multi-party setting (instead of calling OPRF) and
integrating the repetitive operations (see Section 3.2 for a technical overview).

• Building on the above technique to improve computation, we use a tree architecture to reduce
the communication bandwidth of the central party P0. In particular, we reduce the bandwidth
complexity of P0 from O(nℓ) field elements to O(ℓ) field elements by amortizing the communica-
tion among all parties in a tree network architecture. We present two types of tree architectures:
one is used to make P0 send the same message to parties P1, . . . , Pn; and the other is used to let
P1, . . . , Pn send the sum of n different messages to P0 in an aggregation way (see Section 3.3 for
a technical overview).

Our PSI protocol requires the underlying OKVS scheme to be linear, which is satisfied by the
recent efficient constructions [PRTY20, GPR+21, RR22]. We prove security of our protocol in the
Universal Composability (UC) model and random oracle model.

In addition, Garimella et al. [GPR+21] proposed a multi-output extension of their multi-party
PSI protocol such that all parties can obtain the output instead of only the central party P0. While
their multi-party PSI protocol with a single output is provably secure, we present a simple attack
against the multi-output extension. This attack allows an adversary to leak the information of the
sets held by honest parties more than that allowing to be obtained from the intersection of the sets
of all parties, even if the adversary behaves semi-honestly. In particular, if only P0 is honest, then
the adversary can leak some secret items in the private set of P0.

Comparison of communication, bandwidth and rounds. In Table 1, we compare our protocol
with two recent multi-party PSI protocols in the dishonest-majority malicious setting (where the
adversary can corrupt up to n parties of the n+1 parties). For the sake of simplicity, this table does
not compare the recent PSI protocol [NTY21], as it has the same complexities as [GPR+21] in this
setting. All costs are counted in the ROT/VOLE-hybrid model, where ROT represents random
oblivious transfer. For the state-of-the-art ROT or VOLE protocols, the communication of these
protocols is small compared to the whole communication. From this table, we can see that our
protocol has the lowest bandwidth complexity while keeping the same communication complexity.
In particular, our tree architecture does not increase the total communication cost, compared to
the state-of-the-art multi-party PSI protocol [GPR+21]. As a trade-off of lower communication
bandwidth, the round complexity of our PSI protocol is increased to O(log n), compared to the
multi-party PSI protocol [GPR+21, NTY21] with the round complexity of O(1).
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Functionality Fmpsi

Parameters: The size ℓ of the input set for every honest party. The maximal allowed size ℓ′ ≥ ℓ of the
input set for any malicious party. Let C be the set of corrupted parties.

Execution: This functionality runs with P0, . . . , Pn. Upon receiving (input, i,Xi) from every party Pi

for i ∈ [0, n], this functionality executes as follows:

1. If there exists some i ∈ C such that |Xi| > ℓ′, send abort to all parties and then abort.

2. If there exists some i /∈ C such that |Xi| > ℓ, send abort to all parties and then abort.

3. Otherwise, compute Y :=
⋂

i∈[0,n] Xi, and then send Y to P0.

Figure 1: Functionality for multi-party private set intersection.

2 Preliminaries

2.1 Notation

We use κ and λ to denote the computational and statistical security parameters, respectively. For
a, b ∈ N and a ≤ b, we use [a, b] to denote the set {a, . . . , b}. For a finite set S, we use x ← S to
denote sampling x uniformly at random from S. For a vector x, we denote by xi the i-th component
of x with x1 the first entry. For a set S, we use |S| to denote the size of set S.

2.2 Security Model and Functionalities

Security model. We use the Universal Composability (UC) framework [Can01] to prove security
in the presence of a static, malicious adversary. We say that a protocol Π UC-realizes an ideal
functionality F if for any Probabilistic Polynomial Time (PPT) adversary A, there exists a PPT
simulator S, such that for any PPT environment Z, the output distribution of Z in the real-world
execution where the parties interact with A and execute Π is computationally indistinguishable
from the output distribution of Z in the ideal-world execution where the parties interact with S
and F.

Functionality for multi-party PSI. In a PSI protocol, parties P0, P1, . . . , Pn with each having
an input set Xi of size ℓ compute the intersection of their input sets, i.e.,

⋂
i∈[0,n]Xi. As a result

of the protocol execution, P0 obtains the intersection output, and all other parties learn nothing.
The multi-party PSI functionality is shown in Figure 1. Following prior work such as [RR17,
PRTY20, RS21, ENOPC21], we allow the adversary who corrupts a party Pi to input a set Xi with
ℓ ≤ |Xi| ≤ ℓ′.

Functionality for VOLE. Following the previous definition [BCG+19a, WYKW21], the func-
tionality for Vector Oblivious Linear-function Evaluation (VOLE) is given in Figure 2. Two parties
run the initialization procedure only once, and then can repeatedly call the extend procedure to
obtain multiple batches of VOLE correlations. The VOLE functionality can be securely realized
by the recent LPN-based protocols with sublinear communication [BCGI18, BCG+19b, BCG+19a,
SGRR19, BCG+20, WYKW21, CRR21].

2.3 Oblivious Key-Value Stores

We recall the definitions of an Oblivious Key-Value Store (OKVS) proposed by Garimella et
al. [GPR+21]. OKVS is a general notion, and captures the functionality and security property
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Functionality Fvole

This functionality runs with a sender PS , a receiver PR and an adversary, and operates as follows:

Initialize: Upon receiving (init) from PS and PR, if PS is honest, then sample ∆← F, otherwise receive
∆ ∈ F from the adversary. Store ∆ and output ∆ to PS , and ignore all subsequent (init) commands.

Extend: Upon receiving (extend,m) from PS and PR, do the following:

1. If PS is honest, sample v ← Fm. Otherwise, receive v ∈ Fm from the adversary.

2. If PR is honest, sample u ← Fm and compute w := v + u ·∆. Otherwise, receive u,w ∈ Fm from
the adversary, and then recompute v := w − u ·∆.

3. Output v to PS and (u,w) to PR.

Figure 2: Functionality for vector oblivious linear-function evaluation.

of existing constructions, including polynomials, dense matrix, garbled Bloom filter [DCW13] and
PaXoS [PRTY20]. Then, we roughly discuss the state-of-the-art OKVS construction as well as its
communication and computation complexities.

Definition 1 ([GPR+21]). A key-value store is parameterized by a set K of keys, a set V of values,
and a set H of functions, and consists of the following two algorithms:

• EncodeH({(ki, vi)}i∈[1,ℓ]) takes as input a set of key-value pairs {(ki, vi)}i∈[1,ℓ], and outputs an
object S (or an error indicator ⊥ with statistically small probability).

• DecodeH(S, k) takes as input an object S, a key k, and outputs a value v.

A KVS is correct, if for all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥ ≠ S← EncodeH(A)⇒ DecodeH(S, k) = v.

For the sake of simplicity, we choose to omit the underlying parameter H in the rest of exposition,
as long as the context is clear. In the known OKVS constructions, we always have that the decision
whether Encode outputs ⊥ depends on the functions H and the keys {ki}i∈[ℓ], and is independent of
the values {vi}i∈[ℓ]. In the following, we define the security property guaranteeing that one cannot
decide whether a key k was used to generate S or not.

Definition 2 ([GPR+21]). A KVS is an Oblivious KVS (OKVS), if for all distinct keys {k01, ..., k0ℓ}
and all distinct keys {k11, ..., k1ℓ}, when Encode does not output ⊥ for both (k01, ..., k

0
ℓ ) and (k11, ..., k

1
ℓ ),

the output of R(k01, ..., k0ℓ ) is computationally indistinguishable from that of R(k11, ..., k1ℓ ), where
R(k1, ..., kℓ) is defined as:

• For i ∈ [1, ℓ], sample vi ← V.

• Output Encode({(ki, vi)}i∈[1,ℓ]).

From the above definition, we have that if the OKVS encodes random values, for any two sets
of keys K0,K1, it is infeasible to distinguish the OKVS encoding of the keys of K0 from that of
the keys of K1.

Our multi-party PSI protocol requires that an OKVS has some kind of additively homomorphic
property. In particular, Decode(·, k) is a linear function for all k ∈ K. The formal definition is
recalled as follows.
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Definition 3 ([GPR+21]). An OKVS is linear over a field F if V = F (i.e., “values” are elements
of F), then the output of Encode is a vector S in Fm, and the Decode function is defined as:

Decode(S, k) = ⟨d(k),S⟩ def=
m∑
i=1

d(k)i · Si

for some function d : K → Fm, where d is typically defined by hash functions. Thus, Decode(·, k)
is a linear map from Fm to F.

The idea of constructing a linear OKVS is that generating a solution to the linear system of
equations: 

− d(k1)−
− d(k2)−

...
− d(kℓ)−

 · S⊤ =


v1
v2
...
vℓ

 .

If Encode chooses uniformly from the set of solutions to the linear system and the values are uniform,
then the output S is uniformly distributed (and thus independent of the keys). That is, a linear
OKVS satisfies the obliviousness property. The recent linear OKVS scheme [GPR+21] (building on
the PaXoS technique [PRTY20]) has the computation complexity linear to the number of key-value
pairs, and achieves the rate of 0.81− o(1), where the rate of an OKVS that encodes ℓ items from F
is the ratio between ℓ · |F| and the size of the OKVS. Very recently, Rindal and Raghuraman [RR22]
significantly improved the computation efficiency of the linear OKVS scheme [GPR+21], and achieve
the best concrete performance for now.

An OKVS whose parameters are chosen to encode N items may hold even more than N items,
when it is generated by the adversary. In the context of PSI, this allows the adversary to encode
more items than advertised. In Appendix A, we review the the definition of OKVS overfitting to
bound the number of items that the adversary can “overfit” into an OKVS, which will be used in
the security proof of our PSI protocol.

3 Technical Overview

In this section, we give an overview of our techniques to improve the communication bandwidth
and computation cost of the state-of-the-art multi-party PSI protocol [GPR+21] tolerating any
number of malicious corruptions. The PSI protocol by Garimella et al. [GPR+21] is constructed by
transforming the augmented semi-honest PSI protocol [KMP+17] into a maliciously secure version
by adding a random oracle to wrap the OPRF output, which is also observed by Nevo et al. [NTY21].
Firstly, we review the multi-party PSI protocol [GPR+21] at a high level.

3.1 Overview of the Best-Known Multi-Party PSI Protocol

The state-of-the-art multi-party PSI protocol [GPR+21] tolerating any number of malicious cor-
ruptions, which builds on the augmented semi-honest protocol [KMP+17], executes as follows:

1. P0, P1, . . . Pn are the n+1 parties who will compute the intersection of input sets X0, X1, . . . , Xn

with |Xi| = ℓ for i ∈ [0, n], where P0 will obtain the output. For any h, every party Pi can
compute a zero share sih such that

∑
i∈[0,n] s

i
h = 0 by exchanging Pseudo-Random Function

(PRF) keys.
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Functionality Fmvole

Let C be the set of corrupted parties. This functionality runs with parties P0, P1, . . . , Pn and an adversary,
and operates as follows:

Initialize: For each i ∈ [1, n], upon receiving (init, i) from Pi, if Pi is honest, then sample ∆i ← F,
else receive ∆i ∈ F from the adversary. Store (∆1, . . . ,∆n) and output ∆i to Pi for each i ∈ [1, n], and
ignore all subsequent (init) commands.

Extend: Upon receiving (extend,m) from all parties, execute as follows:

1. For i ∈ [1, n], if Pi is honest, then sample vi ← Fm, else receive vi ∈ Fm from the adversary.

2. If P0 is honest, sample u← Fm and compute wi := vi + u ·∆i for i ∈ [1, n].

3. If P0 is corrupted, receive ui ∈ Fm for all i ∈ [1, n] and wi ∈ Fm for all i /∈ C from the adversary, and
then recompute vi := wi − ui ·∆i for each i /∈ C and compute wi := vi + ui ·∆i for each i ∈ C.

4. Output {(ui,wi)}i∈[1,n] to P0 and vi to Pi for i ∈ [1, n].

Figure 3: Functionality for multi-party VOLE.

2. For each i ∈ [1, n], P0 and Pi call an oblivious PRF functionality Foprf with malicious security,
and then Pi obtains the key denoted by PRFi and P0 gets the set {PRFi(h) |h ∈ X0}.

3. Let (Encode,Decode) be an OKVS scheme which maps ℓ items to m slots, and H : {0, 1}∗ → F
be a random oracle. For each i ∈ [1, n], Pi computes an OKVS Qi as

Qi = Encode
({

(h,H(PRFi(h), h) + sih) |h ∈ Xi

})
,

and then sends Qi to P0.

4. P0 computes an OKVS Q0 as

Q0 = Encode
({

(h,−
n∑

i=1

H(PRFi(h), h) + s0h)
∣∣∣h ∈ X0

})
.

5. After receiving the OKVS from other n parties, P0 computes the output as{
h ∈ X0

∣∣∣ n∑
i=0

Decode(Qi, h) = 0
}
.

3.2 Our Approach to Improve Computation Efficiency

The state-of-the-art OPRF protocol [RS21] is constructed by combining VOLE with an OKVS
scheme called PaXoS [PRTY20], where the efficiency of OKVS can be further improved using the
recent constructions [GPR+21, RR22]. At a high level, this protocol running between Pi and P0

works as follows:

1. Pi and P0 call functionality Fvole (shown in Figure 2), which returns vi to Pi and (u,wi) to P0,
where wi = vi + u ·∆i.

2. For an input set X0, P0 computes an OKVS as:

S = Encode ({(h,H(h)) |h ∈ X0}) .
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3. P0 computes d := S−u ∈ Fm and sends it to Pi who computes Vi := vi−d ·∆i. Let Wi = wi,
and thus Wi = Vi + S ·∆i.

4. P0 computes PRFi(h) = H(Decode(Wi, h), h) for h ∈ X0, and Pi can compute PRFi(x) =
H(Decode(Vi, x) + H(x) ·∆i, x) for any x in the domain.

If integrating the above OPRF protocol into the state-of-the-art multi-party PSI protocol with
malicious security shown in the previous section, P0 needs to call Fvole with n different parties. Note
that the LPN encoding is the computational efficiency bottleneck for the state-of-the-art VOLE
protocol [WYKW21] in the malicious setting. When instantiating functionality Fvole, the multi-
party PSI protocol requires P0 to perform n operations of LPN encoding, which is computationally
expensive.

Our solution. Our approach reduces the cost of LPN encoding associated with vector u by a
factor of n. We make an important observation that a single random vector u is sufficient to mask
the OKVS S, and thus it is unnecessary to compute n random vectors u1, . . . ,un. Thus, P0 needs
to generate n VOLE correlations with the same vector u by running a protocol with n different
parties. We model this as a multi-party VOLE functionality Fmvole shown in Figure 3. Note that
when P0 is corrupted, the adversary allows to choose different vectors u. That is, we do not require
the consistency check of vector u. Furthermore, we do not require P0 to broadcast the vector
d = S − u. These are sufficient to design multi-party PSI protocols in the malicious setting (see
the security proof of our protocol given in Section 4.3). Such a functionality Fmvole can be UC-
realized by calling the standard VOLE functionality (shown in Figure 2) n times and programming
the input/output of P0 to keep the consistency of u in the honest case (see [BCG+19b] for more
details).

Furthermore, we further reduce the computation cost of the multi-party PSI protocol described
as above by 2nℓ H operations. In particular, we construct the PSI protocol by directly using Fmvole

as the underlying primitive instead of the OPRF primitive. We adopt Fmvole and an OKVS to obtain
an OPRF, but simplify the computation of H(PRFi(h), h) = H

(
H(Decode(Vi, h) + H(h) ·∆i, h), h

)
performed by Pi for i ∈ [1, n], h ∈ Xi in the previous construction as

H(Decode(Vi, h) + H(h) ·∆i, h).

As such, the computation of
∑n

i=1H(PRFi(h), h) =
∑n

i=1H
(
H(Decode(Wi, h), h), h

)
performed by

P0 for h ∈ X0 can be simplified as

n∑
i=1

H(Decode(Wi, h), h).

In other words, we combine two hash operations into one, which removes the redundant hash
operations and significantly improves the computation efficiency.

3.3 Our Approach to Reduce Communication Bandwidth

The state-of-the-art multi-party PSI protocol [GPR+21] adopts the star network architecture. In
particular, the central party P0 will have to send the messages {di = S−ui ∈ Fm}i∈[1,n] to n parties
for computing OPRF values and receive the OKVSs Q1, . . . ,Qn ∈ Fm from n parties. These make
the communication bandwidth of P0 be nm|F| bits per protocol execution, wherem = ℓ/(0.81−o(1))
for the recent OKVS scheme [GPR+21] and ℓ is the size of a set. For a large number n of parties
and a large size ℓ of input sets, this forms an efficiency bottleneck of the PSI protocol (especially
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Figure 4: Transmission of a message M using a binary tree when n = 14.

for networks with restricted bandwidthes). For example, when ℓ = 224, n = 20 and |F| = 128, P0

needs about 53 gigabits of communication bandwidth. To reduce the communication bandwidth,
one may consider using the Cuckoo hashing approach [KMP+17] to divide a large set into multiple
bins. However, this approach is not secure against malicious adversaries [NTY21].

Our solution. In the following, we present an efficient approach to reduce the communication
bandwidth of P0 to 2m|F| bits by amortizing the communication among all parties in a binary-tree
architecture. Specifically, we first apply the optimized approach described in the previous section
to the multi-party PSI protocol. In this case, P0 needs to send the same message d = S− u to all
other parties. Therefore, we can use a binary-tree structure to send d. The parties P0, P1, . . . , Pn

constitute a binary tree with the root P0. Party P0 can only send d to its two child nodes P1 and
P2. Then, for each level of the tree, every parent node Pj−1 sends d to its children P2j−1 and P2j .
See Figure 4 for an example of n = 14 where the message M = d. Note that here we do not require
to broadcast vector d.

To reduce the bandwidth that communicates the OKVSsQ1, . . . ,Qn, we require that the OKVS
scheme is linear, which is satisfied by the recent highly-efficient constructions [RS21, GPR+21,
RR22]. In this case, we can aggregate these OKVSs into one OKVS through a binary tree. For
each level of the tree (from bottom to top), two child nodes P2j−1 and P2j respectively send Q2j−1

and Q2j to their parent node Pj−1 who updates its OKVS as Qj−1 := Qj−1+Q2j−1+Q2j . Finally,
the root node P0 obtains the OKVS Q0 :=

∑n
i=0Qi. See Figure 5 for an example of n = 14,

where Pi holds an OKVS Mi = Qi ∈ Fm for i ∈ [0, n]. According to the linearity of the OKVS
scheme, we have

∑n
i=0Decode(Qi, h) = Decode(

∑n
i=0Qi, h). Therefore, the OKVS

∑n
i=0Qi that

has been aggregated allows P0 to obtain the correct output. The message-aggregation approach can
also be used for the recent multi-party PSI protocols based on garbled Bloom filters [ENOPC21,
KMS21], where the approach can reduce the communication bandwidth of the central party P0 in
the protocol [ENOPC21] by a factor of O(n) and the rounds in the protocol [KMS21] from O(n) to
O(log n). In addition, our tree-architecture approach is able to be applied in the multi-party PSI
protocol [NTY21] for any corruption threshold t ≤ n.
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Figure 5: Message addition aggregation using a binary tree when n = 14

Protocol Πtree
send

Parameter: Let P0, P1, ..., Pn be n+ 1 parties that execute the protocol. Let h = ⌊log(n+ 1)⌋.

Input: P0 holds a message M ∈ {0, 1}∗. For i ∈ [1, n], Pi will receive message M .

Protocol execution:

1. Let Mi be the message received by Pi for i ∈ [0, n], where M0 = M . For an honest party P0, we
always have that Mi = M for i ∈ [1, n].

2. For each i ∈ [1, h], for each j ∈ [2i−1, 2i), Pj−1 sends the message Mj−1 (received by itself) to P2j−1

if 2j − 1 ≤ n and P2j if 2j ≤ n, where Pj−1 is the parent of two child nodes P2j−1 and P2j .

Figure 6: Protocol for sending messages with constant bandwidth using a binary tree.

4 Maliciously Secure Multi-Party PSI Protocol

We first describe two sub-protocols which are used to send and aggregate messages respectively
in a binary-tree architecture. Then, we present the detailed construction of our multi-party PSI
protocol with malicious security. Finally, we give a formal proof of security for our PSI protocol.

4.1 Protocols for Sending and Aggregating Messages Using Tree Architecture

We first describe the sub-protocol Πtree
send shown in Figure 6, which allows the central party P0 to

send a message M to all other parties P1, . . . , Pn. The message is transmitted in a binary-tree
architecture, which enables us to obtain O(1) communication bandwidth instead of O(n). As
a trade-off, the round complexity is increased from O(1) to O(log n). A malicious party Pi for
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Protocol Πtree
aggregate

Parameter: Let P0, P1, ..., Pn be n+ 1 parties that run the protocol. Let h = ⌊log(n+ 1)⌋.

Inputs: For i ∈ [1, n], Pi holds a message Mi ∈ Fm. Party P0 will obtain the output
∑

i∈[1,n] Mi.

Protocol execution:

1. P0 sets M0 := 0.

2. From i = h to i = 1, for each j ∈ [2i−1, 2i), P2j−1 sends M2j−1 to Pj−1 (if 2j − 1 ≤ n) and P2j

sends M2j to Pj−1 (if 2j ≤ n), and then Pj−1 computes M ′
j−1 := Mj−1 +M2j−1 +M2j and updates

Mj−1 := M ′
j−1.

3. P0 outputs the final message M0.

Figure 7: Protocol for aggregating messages with constant bandwidth using a binary
tree.

i ∈ [1, n] may send M ′ ̸= M to its left child and M ′′ ̸= M to its right child. In the next subsection,
we will show that such malicious behavior is harmless for the security of our PSI protocol.

In Figure 7, we describe the sub-protocol Πtree
aggregate, which allows n parties to send the sum of

their messages to the central party P0. These messages are aggregated by addition operations in
the binary-tree network architecture, which reduces the communication bandwidth from O(n) to
O(1). Similarly, the round complexity is increased from O(1) to O(log n).

In both of two sub-protocols, the message is always transmitted between a parent node and
two child nodes. While the parent node sends the same message to two child nodes in the protocol
Πtree

send, two child nodes send two different messages to the parent node who sums the two messages
and its message as an aggregation message in the protocol Πtree

aggregate.

Extending to k-ary trees. Although we describe our protocols in the binary-tree architecture,
they are easy to be extended to work in the k-ary tree architecture with any 2 ≤ k ≤ n. For a
k-ary tree, while the communication bandwidth will be increased by a factor of k/2, the round
complexity will be reduced from O(log n) to O(logk n). In particular, the star architecture used in
prior work can be considered as the special case of n-ary trees.

4.2 Our PSI protocol with Efficient Bandwidth and Computation

In Figure 8, we describe the details of our multi-party PSI protocol in the dishonest-majority
malicious setting. The communication bandwidth of the central party P0 is O(ℓ|F|) bits, where the
state-of-the-art protocol [GPR+21] that builds on the technique [KMP+17] requires the bandwidth
of O(nℓ|F|) bits for P0. This protocol works in the Fmvole-hybrid model, and is executed by n+ 1
parties P0, P1, . . . , Pn. We separate the protocol into two phases: preprocessing phase where the
input sets are unknown, and online phase in which the sets are known. In this protocol, only the
central party P0 obtains the output.

Correctness. To see that the PSI protocol as described in Figure 8 is correct in the honest case,
we first note that for any h,

n∑
i=0

sih =
n∑

i=0

∑
j<i

PRF(ki,j , h)−
∑
j>i

PRF(kj,i, h)

 = 0.
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Protocol Πmpsi

Parameters:

• A large finite field F with |F| ≥ 2κ.

• Linear OKVS scheme (Encode,Decode) that maps ℓ items to m slots.

• A cryptographic hash function H : {0, 1}∗ → F modeled as a random oracle.

• Let PRF : {0, 1}κ × {0, 1}κ → F be a Pseudo-Random Function (PRF).

Inputs: For n + 1 parties P0, P1, ..., Pn, every party Pi holds a set Xi such that Xi ∈ F and |Xi| = ℓ.
Let P0 be the designated party to receive the output

⋂
i∈[0,n] Xi.

Preprocessing: This procedure can be executed when the sets are unknown.

1. Every party Pi samples ki,j ← {0, 1}κ as a random PRF key, and then sends it to Pj over a private
channel for each j < i. (The zero-sharing setup phase is run only once.)

2. For each i ∈ [1, n], Pi sends (init, i) to the multi-party VOLE functionality Fmvole (shown in Figure 3),
which returns ∆i to Pi.

3. The parties P0, P1, ..., Pn send (extend,m) to functionality Fmvole, which returns u ∈ Fm and
{wi}i∈[1,n] to P0, and outputs vi ∈ Fm and ∆i ∈ F to Pi for each i ∈ [1, n], such that wi = vi+u ·∆i

for i ∈ [1, n].

Online: This procedure is run when the sets are known.

4. P0 computes OKVS via
S = Encode ({(h,H(h)) |h ∈ X0}) ,

and calculates d = S−u ∈ Fm. Then P0 sends d to Pi for each i ∈ [1, n] by running the sub-protocol
Πtree

send (shown in Figure 6) in a bandwidth-efficient way.

5. For each i ∈ [1, n], Pi computesVi := vi−d·∆i. P0 setsWi := wi for i ∈ [1, n] whereWi = Vi+S·∆i.

6. For each i ∈ [0, n], for each h ∈ Xi, every party Pi computes the following:

sih :=
∑
j<i

PRF(ki,j , h)−
∑
j>i

PRF(kj,i, h).

7. For each i ∈ [1, n], Pi computes zi,h = H(Decode(Vi, h) + H(h) · ∆i, h) for each h ∈ Xi, and then
computes OKVS Qi via

Qi = Encode
({

(h, zi,h + sih) |h ∈ Xi

})
.

8. Parties P1, ..., Pn run the sub-protocol Πtree
aggregate (shown in Figure 7) to send Q =

∑n
i=1 Qi ∈ Fm to

P0 in a bandwidth-efficient way.

9. P0 computes z′i,h = H(Decode(Wi, h), h) for each h ∈ X0, and then outputs{
h ∈ X0

∣∣∣∣∣Decode(Q, h) + s0h −
n∑

i=1

z′i,h = 0

}
.

Figure 8: Maliciously secure multi-party PSI protocol in the Fmvole-hybrid model.

Then, we observe that for each h ∈
⋂

i∈[0,n]Xi, i ∈ [1, n], the following holds:

zi,h − z′i,h = H(Decode(Vi, h) + H(h) ·∆i, h)− H(Decode(Wi, h), h)

= H(Decode(Vi, h) + H(h) ·∆i, h)− H(Decode(Vi + S ·∆i, h), h)

= H(Decode(Vi, h) + H(h) ·∆i, h)− H(Decode(Vi, h) + Decode(S, h) ·∆i, h)

= H(Decode(Vi, h) + H(h) ·∆i, h)− H(Decode(Vi, h) + H(h) ·∆i, h) = 0.12



Therefore, for each h ∈
⋂

i∈[0,n]Xi, we have

Decode(Q, h) + s0h −
n∑

i=1

z′i,h = Decode(
n∑

i=1

Qi, h) + s0h −
n∑

i=1

z′i,h

= s0h +
n∑

i=1

Decode(Qi, h)−
n∑

i=1

z′i,h

= s0h +
n∑

i=1

(zi,h + sih)−
n∑

i=1

z′i,h

=
n∑

i=0

sih +
n∑

i=1

(
zi,h − z′i,h

)
= 0.

4.3 Proof of Security

In the following, we prove the security of our PSI protocol in the multi-party malicious setting.
Our proof of security will use the following lemma, which has been proven in [GPR+21].

Lemma 1 ([GPR+21]). Given a set of parties that run the zero-sharing setup (i.e., the step 1 in
Figure 8) such that a pair of parties Pi, Pj are honest and the adversary’s view is independent of

the Pi’s share sih, then the Pj’s share sjh is computationally indistinguishable from a uniform value.

Based on the above lemma, we prove the following theorem.

Theorem 1. Let H be a random oracle and (Encode,Decode) be a linear OKVS scheme. Let PRF be
a pseudo-random function. Then protocol Πmpsi shown in Figure 8 UC-realizes functionality Fmpsi

in the presence of a malicious adversary corrupting up to n of the n+1 parties in the Fmvole-hybrid
model.

Proof. We first consider the case of a malicious central party P0, and then consider the case of
an honest P0. In each case, we construct a PPT simulator S given access to functionality Fmpsi,
running a PPT adversary A as a subroutine when emulating Fmvole. For each case, S simulates
the random oracle H by responding the queries made by A with random values when keeping the
consistency of responses. We always implicitly consider that whenever A aborts, S sends abort
to functionality Fmpsi and then aborts. For each case, we show that no PPT environment Z can
distinguish the real-world execution from the ideal-world execution. Let C ⊂ [0, n] denote the set
of corrupted parties.

Malicious central party P0. When emulating Fmvole, S interacts with adversary A as follows:

1. In the zero-sharing setup, on behalf of every honest party Pi, S samples ki,j ← {0, 1}κ and sends
it to A for each j < i, j ∈ C, as well as receives kj,i ∈ {0, 1}κ from A for each j ∈ C, j > i. Thus,
for any h, S can compute the share sih for i /∈ C, when it also samples the PRF keys between
any two honest parties.

2. S emulates the (init) command of Fmvole and receives ∆i for i ∈ C from A. Then, S emulates
the (extend) command of Fmvole by receiving ui,wi ∈ Fm for i ∈ [1, n] from A. For i ∈ [1, n], S
sets Wi = wi.
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3. During the protocol execution of Πtree
send, S receives di ∈ Fm for i /∈ C from A, and then computes

Si := di + ui for i /∈ C. Then, for i /∈ C, S computes the following set

Xi
0 := {h | A queried H at h and Decode(Si, h) = H(h)}.

4. S sends X̃0 :=
⋂

i/∈C X
i
0 to functionality Fmpsi, as the input of all corrupted parties, and then

receives Y = X̃0 ∩ (
⋂

i/∈C Xi) as the output.

5. For each i /∈ C, S chooses an arbitrary different h /∈ Y from the domain of Xi for each unknown
value in set Xi\Y , and then computes the OKVS Qi of honest party Pi as follows:

Qi =

{
Encode

(
h,H(Decode(Wi, h), h) + sih

)
if h ∈ Y

Encode(h, ri,h) with ri,h ← F if h /∈ Y
(1)

On behalf of every honest party Pi, S sends Qi to A when simulating the protocol execution of
Πtree

aggregate.

Hybrid argument. In the following, we use a series of hybrid games to prove that the real-world
execution is computationally indistinguishable from the ideal-world execution.

Hybrid0: This is the real-world execution, where every honest party Pi computes the OKVS Qi

as follows:
Qi = Encode

({(
h,H(Decode(Vi, h) + H(h) ·∆i, h) + sih

) ∣∣∣h ∈ Xi

})
.

Hybrid1: In this hybrid, the simulator S simulates the zero-sharing setup honestly, and emulates
functionality Fmvole by recording the values sent by A as described above.

Note that for each i ∈ C ∩ [1, n], letting A choose the output vector wi for corrupted party
P0 is equivalent to making A choose vi for corrupted party Pi, as wi = vi + ui ·∆i holds. Thus,
Hybrid1 has the identical distribution as Hybrid0.

Hybrid2: In this hybrid, S extracts the sets Xi
0 for all i /∈ C as described above. Then, for each

i /∈ C, S computes Ti := Xi ∩Xi
0, where the simulator knows the input sets of honest parties in the

hybrid. On behalf of every honest party Pi, S computes the OKVS Qi as follows:

Qi =

{
Encode

(
h,H(Decode(Wi, h), h) + sih

)
if h ∈ Ti

Encode(h, ri,h) with ri,h ← F if h ∈ Xi\Ti

Then, for i /∈ C, S sends Qi to A in the tree-aggregation way during the execution of Πtree
aggregate.

From the simulation, we can see that Wi = Vi + Si · ∆i for i /∈ C. From the linearity of the
Decode algorithm, for h ∈ Xi

0, we have the following:

Decode(Wi, h) = Decode(Vi, h) + Decode(Si, h) ·∆i

= Decode(Vi, h) + H(h) ·∆i.

Therefore, for i /∈ C, for h ∈ Ti = Xi ∩Xi
0, the corresponding element of Qi in Hybrid2 has the

identical distribution as that in Hybrid1. Below, we analyze the case of h ∈ Xi\Ti. While Qi =
Encode

(
h,H(Decode(Vi, h) + H(h) ·∆i, h) + sih

)
in Hybrid1, Qi = Encode(h, ri,h) in Hybrid2.

From the above equation, we know that Decode(Vi, h) + H(h) · ∆i = Decode(Wi, h) + (H(h) −
Decode(Si, h)) ·∆i for h /∈ Xi

0. Since Decode(Si, h) ̸= H(h) and ∆i ∈ F is uniformly random from

14



the adversary’s view, the probability that A makes a query (Decode(Wi, h)+(H(h)−Decode(Si, h))·
∆i, h) to random oracle H is at most q/|F| that is negligible in security parameter κ, where q is the
number of H queries. Therefore, for h /∈ Xi

0, H(Decode(Vi, h) +H(h) ·∆i, h) = H(Decode(Wi, h) +
(H(h) − Decode(Si, h)) · ∆i, h) is uniform from the adversary’s view in the random oracle model.
Further, we have that the distribution of the elements of Qi associated with h ∈ Xi\Ti in Hybrid1

is computationally indistinguishable from that in Hybrid2.

Hybrid3: In this hybrid, S changes the way that creates the OKVS Qi of every honest party Pi

as follows:

Qi =

{
Encode

(
h,H(Decode(Wi, h), h) + sih

)
if h ∈

⋂
i/∈C Ti

Encode(h, ri,h) with ri,h ← F if h ∈ Xi\
⋂

i/∈C Ti

(2)

Clearly, if there is only one honest party, then the distribution of Hybrid3 is identical to
that of Hybrid2. In the following, we assume that there exists at least two honest parties. It
is easy to see that if h ∈

⋂
i/∈C Ti, then Hybrid3 is identical to Hybrid2. For each i /∈ C, the

computation of Qi is different in two hybrids for a value h ∈ Ti, where h /∈ Tj for some different

j /∈ C. When h /∈ Tj , we note that in Hybrid2, the computation of Qj does not use the value sjh
anywhere. From Lemma 1, we have that sih is computationally indistinguishable from a uniformly
random value. Thus, for h ∈ Ti and h /∈ Tj , the view of Encode

(
h,H(Decode(Wi, h), h) + sih

)
is

indistinguishable from Encode(h, ri,h) for a uniform value ri,h ∈ F. Therefore, the distribution of
Hybrid3 is computationally indistinguishable from that of Hybrid2.

Hybrid4: In this hybrid, S computes X̃0 :=
⋂

i/∈C X
i
0, and then receives the output Y = X̃0 ∩

(
⋂

i/∈C Xi) from functionality Fmpsi. For each i /∈ C, S chooses an arbitrary different h /∈ Y as each
unknown value in set Xi\Y , and then computes the OKVS Qi of honest party Pi as follows:

Qi =

{
Encode

(
h,H(Decode(Wi, h), h) + sih

)
if h ∈ Y

Encode(h, ri,h) with ri,h ← F if h /∈ Y

On behalf of every honest party Pi, S sends Qi to A during the protocol execution of Πtree
aggregate.

It is easy to see that Y = X̃0 ∩ (
⋂

i/∈C Xi) =
⋂

i/∈C(X̃0 ∩Xi) =
⋂

i/∈C Ti. Thus, for each h ∈ Y ,
the distribution of Qi in Hybrid3 is identical to that in Hybrid4. For the case of h /∈ Y , the
only difference between Hybrid3 and Hybrid4 is that h ∈ Xi\Y in Hybrid3, while h is chosen
arbitrarily from the domain in Hybrid4. From the security of the OKVS scheme (Encode,Decode),
we have that the only difference is negligible in κ.

Honest central party P0. Given access to functionality Fmpsi, S interacts with A as follows:

1. S simulates the zero-sharing setup just as in the case of malicious P0, and thus can compute the
share sih for any h and each i /∈ C.

2. Similarly, S emulates the (init) command of Fmvole and receives ∆i for i ∈ C from A. Then, S
emulates the (extend) command of Fmvole by receiving vi ∈ Fm for i ∈ C from A.

3. On behalf of honest party P0, S samples a uniform vector d ← Fm, and then sends it to A
during the protocol execution of Πtree

send.

4. For i ∈ C, S computes Vi = vi − d ·∆i ∈ Fm following the protocol description.
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5. If there are at least two honest parties, for each i /∈ C, i ̸= 0, S chooses an arbitrary input set
X ′

i, and samples ri,h ← F for h ∈ X ′
i. Then, for i /∈ C, i ̸= 0, S computes the OKVS Qi as

Qi = Encode
({

(h, ri,h) |h ∈ X ′
i

})
.

On behalf of every honest party Pi (i ̸= 0), S sendsQi during the protocol execution of Πtree
aggregate.

Note that in the binary-tree architecture, the OKVS Qi from an honest party Pi may be sent
to adversary A who corrupts the parent node Pj .

6. From the protocol execution of Πtree
aggregate, S computes the sum of OKVSs

∑
i∈C Qi.

7. According to the queries of random oracle H, S defines the set

O =
{
h
∣∣∣A made a query of the form H

(
Decode(Vi, h) + H(h) ·∆i, h

)
for i ∈ C

}
,

and then computes

X̃ :=
{
h ∈ O

∣∣∣Decode(∑
i∈C

Qi, h) =
∑
i∈C

H
(
Decode(Vi, h) + H(h) ·∆i, h

)
−

∑
i/∈C

sih

}
.

8. S sends X̃ to functionality Fmpsi as the input for every corrupted party. Then, Fmpsi returns the
output X̃ ∩ (

⋂
i/∈C Xi) to honest party P0.

Hybrid argument. In the following, we use a series of hybrid games to prove that the real-world
execution is computationally indistinguishable from the ideal-world execution.

Hybrid0: This is the real-world execution, where honest party P0 computes the output as:{
h ∈ X0

∣∣∣ ∑
i∈C

Decode(Qi, h) +
∑
i/∈C

Decode(Qi, h) + s0h −
n∑

i=1

H
(
Decode(Wi, h), h

)
= 0

}
.

Hybrid1: In this hybrid, how P0 computes the output is modified as:{
h ∈

⋂
i/∈C

Xi

∣∣∣ ∑
i∈C

Decode(Qi, h)+
∑
i/∈C

Decode(Qi, h)+s0h−
n∑

i=1

H
(
Decode(Vi, h)+H(h) ·∆i, h

)
= 0

}
.

From the linearity of Decode, we have that for i ∈ [1, n], for h ∈ X0 ⊆
⋂

i/∈C Xi,

Decode(Wi, h) = Decode(Vi + S ·∆i, h)

= Decode(Vi, h) + Decode(S, h) ·∆i

= Decode(Vi, h) + H(h) ·∆i.

Therefore, the computation of the output only differs for values h ∈ X0 where h /∈ Xi for some
i /∈ C. Such an h will never satisfy the equation in Hybrid1 as h /∈ Xi. For such an h, since h /∈ Xi,
Qi is generated independently of sih. Nevertheless, the output computed by P0 at h contains a term
s0h, which renders the whole equation uniformly random in the computational sense (by Lemma 1).
Thus, the probability that h satisfies the equality in Hybrid0 is at most 1/|F| which is negligible
in κ.

Note that if h ∈
⋂

i/∈C Xi, then Decode(Qi, h) = H
(
Decode(Vi, h) + H(h) ·∆i, h

)
+ sih for i /∈ C.

Therefore, we can rewrite the equation as follows:{
h ∈

⋂
i/∈C

Xi

∣∣∣ ∑
i∈C

Decode(Qi, h) =
∑
i∈C

H
(
Decode(Vi, h) + H(h) ·∆i, h

)
−
∑
i/∈C

sih

}
.
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Hybrid2: In this hybrid, how P0 computes the output is modified again. Specifically, the simulator
computes the following set

O =
{
h
∣∣∣A made a query of the form H

(
Decode(Vi, h) + H(h) ·∆i, h

)
for i ∈ C

}
.

Then, on behalf of P0, the simulator computes the output with a modified computation as follows:{
h ∈ O ∩ (

⋂
i/∈C

Xi)
∣∣∣ ∑

i∈C
Decode(Qi, h) =

∑
i∈C

H
(
Decode(Vi, h) + H(h) ·∆i, h

)
−
∑
i/∈C

sih

}
.

It suffices to show that if h /∈ O, then the probability that h would have satisfied the equation
in Hybrid1 is negligible in κ. Indeed, if h /∈ O, then when the adversary sends Qi for i ∈ C, the
value H

(
Decode(Vi, h) + H(h) ·∆i, h

)
is distributed independently of the adversary’s view. Since

the condition in Hybrid1 is a linear equality including the term, the probability that it is satisfied
is at most 1/|F| which is negligible in κ. We can rewrite the above equation as{
h ∈ O

∣∣∣ ∑
i∈C

Decode(Qi, h) =
∑
i∈C

H
(
Decode(Vi, h) + H(h) ·∆i, h

)
−

∑
i/∈C

sih

}
∩ (

⋂
i/∈C

Xi) = X̃ ∩ (
⋂
i/∈C

Xi).

Hybrid3: In this hybrid, the simulator S simulates the zero-sharing setup honestly, and emulates
functionality Fmvole as described above, as well as sends a uniform vector d ∈ Fm to adversary A
via executing protocol Πtree

send with A.
Clearly, the simulation of the zero-sharing setup and Fmvole is perfect. In Hybrid2, the vector

d = S−u is uniformly random, as u is uniform in the presence of the adversary’s view. Therefore,
Hybrid3 has the identical distribution as Hybrid2.

Hybrid4: In this hybrid, if there exists at least two honest parties, then for each i /∈ C, i ̸= 0, S
computes and sends the OKVS Qi to A via running protocol Πtree

aggregate with A, in the way that
an arbitrary input set X ′

i and random values ri,h ∈ F for h ∈ X ′
i are used in the computation of

OKVS Qi as described above.

If there are at least two honest parties, the simulator needs to simulate the OKVS of honest
parties before seeing the OKVS of corrupted parties, as the OKVS is transmitted in a binary-tree
architecture. For each i /∈ C, i ̸= 0, for each h ∈ Xi, the value zi,h + sih is uniformly random in
Hybrid3, since s

i
h is uniform for the case of honest Pi and P0 from the adversary’s view. From the

security of the OKVS scheme (Encode,Decode), A cannot distinguish between the real input set
Xi and the dummy input set X ′

i after seeing the OKVS Qi for each i /∈ C, i ̸= 0. Overall, Hybrid4

is computationally indistinguishable from Hybrid3.

Hybrid5: In this hybrid, S extracts the set X̃ following the way as described above, and then
sends X̃ to functionality Fmpsi as the input for every corrupted party.

According to the definition of the output of P0 in the previous hybrid, it is easy to see that
Hybrid5 has the identical distribution as Hybrid4, where P0 will obtain the same output in two
hybrids.

In conclusion, no PPT environment Z can distinguish between the real-world execution and the
ideal-world execution, which completes the proof.
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5 An Attack against Multi-Output Extension of A PSI Protocol

In the malicious setting, it is a non-trivial task to extend a multi-party PSI protocol to support
multiple outputs where every party (instead of only party P0) will obtain the output. This is
because the parties cannot be trusted to deliver the intersection output faithfully. In the multi-party
malicious setting, Garimella et al. [GPR+21] extended their PSI protocol with a single output to a
protocol supporting multiple outputs that achieves the best efficiency. In this section, we present
a simple and practical attack for the multi-output extension [GPR+21], which allows the attacker
to reveal more information of the sets of honest parties than that obtained from the intersection
of the sets of all parties. Specifically, we first review the multi-output extension by Garimella et
al. [GPR+21]. This extension modifies the multi-party PSI protocol shown in Section 3.1 to realize
that all parties obtain the output in the following procedure:

• All parties P0, P1, . . . , Pn publicly commit to their OKVSs {Qi}i∈[0,n]. That is, every party Pi

broadcasts a commitment comi = Commit(Qi; ri) to all other parties where ri is a randomness.

• After all the commitments that have been made, the parties open these commitments. That is,
for i ∈ [0, n], every party Pi sends (Qi, ri) to all other parties, and then verifies the correctness
of all the openings (i.e., checking that comj = Commit(Qj ; rj) for all j ̸= i).

• Every party Pi with i ∈ [0, n] computes the output as{
h ∈ Xi

∣∣∣ n∑
j=0

Decode(Qj , h) = 0
}
.

An attack to leak the information of the sets held by honest parties. Below, we show a
simple but practical attack against the above multi-output extension to reveal more information of
the sets held by honest parties beyond the intersection of all sets. Suppose that P0 is honest. Let
C ⊆ [1, n] denote the set of corrupted parties. In particular, an adversary A (who even behaves
semi-honestly) is able to perform the following attack:

1. A receives the OKVS Qi for all i /∈ C that contain Q0. Recall that the OKVS Qi for i /∈ C, i ̸= 0
is defined as follows:

Qi = Encode
({(

h,H(PRFi(h), h) + sih
) ∣∣∣h ∈ Xi

})
.

The OKVS Q0 is computed as

Q0 = Encode
({(

h, s0h −
n∑

i=1

H(PRFi(h), h)
∣∣∣h ∈ X0

)})
.

2. A computes Q :=
∑

i/∈C Qi. According to the definition of zero sharings, we know that∑
i∈[0,n] s

i
h = 0 for any h. Therefore, for each h ∈

⋂
i/∈C Xi, we obtain the following:∑

i/∈C

Decode(Qi, h) = −
∑
i∈C

sih −
∑
i∈C

H(PRFi(h), h). (3)

3. A who corrupts Pi for i ∈ C can compute the shares sih and values PRFi(h) for all i ∈ C when
any h is known. Then, for any h /∈

⋂
i∈[0,n]Xi, A is able to decide whether h ∈

⋂
i/∈C Xi by

checking if the equation (3) holds. For the items in the set
⋂

i/∈C Xi that have a low entropy, A
can directly reveal these items by enumerating the items and then checking their correctness,
and thus obtain the secret data included in

⋂
i/∈C Xi.
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In the special case that only P0 is honest and all other parties are corrupted (i.e., |C| = n), the
adversary can leak some secret items in the set X0 by performing the above attack. The reason
behind the successful attack is that the OKVS Q0 is revealed by the honest central party P0. This
does not occur in the original multi-party PSI protocol [GPR+21] that only P0 obtains the output,
where P0 only uses the OKVS Q0 locally in the original protocol. To prevent the attack as describe
above, one may need to change the way computing the OKVS Q0 and introduce some high-entropy
secrets into Q0. We leave it as an interesting future work to design a concretely efficient multi-party
PSI protocol supporting multiple outputs in the malicious setting.
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A OKVS Overfitting

For the security proof of a maliciously secure PSI protocol, the simulator obtains an OKVS from
a corrupted party, and needs to extract the keys that are encoded in the OKVS. In general, this
is done by defining vi = H(ki) for i ∈ [1, ℓ] where H is a random oracle. Then, the simulator
can observe the queries to H made by the adversary, and then check which of the keys k satisfy
Decode(S, k) = H(k). An OKVS whose parameters are chosen to encode ℓ keys may often hold
even more than ℓ keys, when it is generated by the adversary. In the context of PSI, this allows the
adversary to encode more keys than advertised. Therefore, we need to bound the number of keys
that the adversary can “overfit” into an OKVS. Following the previous work [GPR+21], we model
the property in the following definition.

Definition 4 ([GPR+21]). The (ℓ, ℓ′)-OKVS overfitting game is defined as follows.

• Let (Encode,Decode) be an OKVS with parameters chosen to support ℓ items, and A be any PPT
adversary. Let H : K → V be a random oracle.

• Run S← AH(·)(1κ).

• Define the following set:

X = {k | A made a query (k) to H and Decode(S, k) = H(k)}.

• If |X| > ℓ′, then the adversary A wins.

We say that the (ℓ, ℓ′)-OKVS overfitting problem is hard for an OKVS, if no PPT adversary wins
this game except with negligible probability.

For κ = 128 and λ = 40, according to the analysis [PRTY20], when H : K → F is used to define
the values, a linear OKVS with a field size |F| = 128 can guarantee that the successful probability
of the adversary in the above overfitting game is less than 1/240, even though the adversary is
allowed to make 280 queries to H.
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